A species of gram-negative bacteria causing MASTITIS; ARTHRITIS; and RESPIRATORY TRACT DISEASES in CATTLE.
A genus of gram-negative, mostly facultatively anaerobic bacteria in the family MYCOPLASMATACEAE. The cells are bounded by a PLASMA MEMBRANE and lack a true CELL WALL. Its organisms are pathogens found on the MUCOUS MEMBRANES of humans, ANIMALS, and BIRDS.
Infections with species of the genus MYCOPLASMA.
Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus.
A species of gram-negative bacteria (currently incertae sedis) causing multisystem disease in CATTLE.
A genus of the family Bovidae having two species: B. bison and B. bonasus. This concept is differentiated from BUFFALOES, which refers to Bubalus arnee and Syncerus caffer.
A multifactorial disease of CATTLE resulting from complex interactions between environmental factors, host factors, and pathogens. The environmental factors act as stressors adversely affecting the IMMUNE SYSTEM and other host defenses and enhancing transmission of infecting agents.
A species of gram-negative bacteria causing contagious agalactia of SHEEP and GOATS.
A mammalian fetus expelled by INDUCED ABORTION or SPONTANEOUS ABORTION.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A common inhabitant of the vagina and cervix and a potential human pathogen, causing infections of the male and female reproductive tracts. It has also been associated with respiratory disease and pharyngitis. (From Dorland, 28th ed)
Inflammation of the lung parenchyma that is associated with BRONCHITIS, usually involving lobular areas from TERMINAL BRONCHIOLES to the PULMONARY ALVEOLI. The affected areas become filled with exudate that forms consolidated patches.
A species of gram-positive, coccoid bacteria commonly found in the alimentary tract of cows, sheep, and other ruminants. It occasionally is encountered in cases of human endocarditis. This species is nonhemolytic.
INFLAMMATION of the UDDER in cows.
Infectious diseases of cattle, sheep, and goats, characterized by blepharospasm, lacrimation, conjunctivitis, and varying degrees of corneal opacity and ulceration. In cattle the causative agent is MORAXELLA (MORAXELLA) BOVIS; in sheep, MYCOPLASMA; RICKETTSIA; CHLAMYDIA; or ACHOLEPLASMA; in goats, RICKETTSIA.
A species of gram-negative bacteria originally isolated from urethral specimens of patients with non-gonoccocal URETHRITIS. In primates it exists in parasitic association with ciliated EPITHELIAL CELLS in the genital and respiratory tracts.
A methylsulfonyl analog of CHLORAMPHENICOL. It is an antibiotic and immunosuppressive agent.
A species of the genus MYCOPLASMA, originally isolated infrequently from the lower genital tract of humans, and possessing uncertain pathogenicity. The incognitus strain of M. fermentans has been identified in necrotizing lesions of multiple organs from AIDS and non-AIDS patients dying of an acute influenza-like disease.
The etiological agent of contagious pleuropneumonia (PLEUROPNEUMONIA, CONTAGIOUS) of cattle and goats.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria normally commensal in the flora of CATTLE and SHEEP. But under conditions of physical or PHYSIOLOGICAL STRESS, it can cause MASTITIS in sheep and SHIPPING FEVER or ENZOOTIC CALF PNEUMONIA in cattle. Its former name was Pasteurella haemolytica.
A species of protozoa that is a cause of bovine babesiosis. Ticks of the genera Boophilus, Rhipicephalus, and IXODES are the chief vectors.
A species of gram-negative bacteria that causes MYCOPLASMA PNEUMONIA OF SWINE. The organism damages the CILIA in the airways of the pig, and thus compromises one of the most effective mechanical barriers against invading pathogens. The resulting weakening of the IMMUNE SYSTEM can encourage secondary infections, leading to porcine respiratory disease complex.
The white liquid secreted by the mammary glands. It contains proteins, sugar, lipids, vitamins, and minerals.
Substances elaborated by bacteria that have antigenic activity.
A group of viruses in the genus PESTIVIRUS, causing diarrhea, fever, oral ulcerations, hemorrhagic syndrome, and various necrotic lesions among cattle and other domestic animals. The two species (genotypes), BVDV-1 and BVDV-2 , exhibit antigenic and pathological differences. The historical designation, BVDV, consisted of both (then unrecognized) genotypes.
A species of gram-negative bacteria highly pathogenic to RATS and MICE. It is the primary cause of murine respiratory mycoplasmosis.
A species of gram-negative bacteria causing chronic respiratory disease in POULTRY.
A species of gram-negative, facultatively anaerobic bacteria. This organism shows remarkable pathobiologic properties: it adheres to cell surfaces, deeply penetrates into the cell, and strongly adsorbs human red blood cells and human CD4+ lymphocytes and monocytes. M. penetrans was first isolated from the urogenital tract of patients with AIDS and high frequencies of antibodies to it are seen in HIV-infected patients.
A species of gram-negative, aerobic bacteria that is most frequently isolated from bovine eyes in cases of infectious keratoconjunctivitis (KERATOCONJUNCTIVITIS, INFECTIOUS), but also occurs in unaffected eyes and the nasal cavity of cattle.

Immunohistochemical study of Hemophilus somnus, Mycoplasma bovis, Mannheimia hemolytica, and bovine viral diarrhea virus in death losses due to myocarditis in feedlot cattle. (1/41)

The purpose of this study was to determine the presence of Hemophilus somnus, Mycoplasma bovis, Mannheimia hemolytica, and bovine viral diarrhea virus (BVDV) in lesional tissues of feeder calves dying with myocarditis. Tissues from the heart and lungs of 92 calves dying with myocarditis in Alberta feedlots were immunohistochemically stained for the antigens of these agents. Tissues from 44 calves dying from noninfectious causes and 35 calves dying with pneumonia were tested as controls. Hemophilus somnus was found in cardiac lesions in the majority of myocarditis cases (70/92). Mycoplasma bovis was concurrently demonstrated in the hearts of 4/92 affected calves. No bacterial pathogens were found in heart tissues from the control groups of calves. Bovine viral diarrhea virus was demonstrated in the tissues of 4/92 myocarditis cases compared with those of 13/35 calves dying from pneumonia and 0/44 calves dying from noninfectious causes. The results demonstrate that H. somnus is the principle pathogen associated with myocarditis in feedlot calves and that the presence of BVDV is more common in these calves compared with calves dying of noninfectious causes. The findings also suggest that BVDV is an important pathogen in calves dying with gross postmortem lesions of pneumonia.  (+info)

Molecular epidemiological analysis of Mycoplasma bovis isolates from the United Kingdom shows two genetically distinct clusters. (2/41)

Mycoplasma bovis is an important veterinary pathogen causing pneumonia, arthritis, and mastitis in infected cattle. We investigated the genetic diversity of 53 isolates collected in the United Kingdom between 1996 and 2002 with pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP), and random amplified polymorphic DNA (RAPD) analysis. In addition, the influence of variable surface protein (Vsp) profiles on the profiles generated with molecular typing techniques was studied. Both AFLP and RAPD separated the isolates into two distinct groups, but PFGE showed less congruence with the other techniques. There was no clear relationship between the geographic origin or year of isolation of the isolates and the profiles produced. No correlation between Vsp profiles and any of the molecular typing techniques was observed. We propose that RAPD and AFLP provide valuable tools for molecular typing of M. bovis.  (+info)

Diagnosis of a mixed mycoplasma infection associated with a severe outbreak of bovine pinkeye in young calves. (3/41)

Mycoplasma bovoculi and Mycoplasma bovis were both isolated from conjunctival swabs taken from young calves showing symptoms consistent with infectious bovine keratoconjunctivitis (pinkeye). No Moraxella spp. or other nonmycoplasma bacteria were isolated in association with this severe clinical outbreak. Based on laboratory tests and clinical observations, the first phase of the disease was likely pneumonic in nature, possibly caused by bovine respiratory syncytial virus and M. bovis. In the subsequent phase of the disease course, infection with both M. bovoculi and M. bovis resulted in ocular disease. A combination of microbiological, serological, and molecular diagnosticmethods was used to elucidate the etiology of the outbreak.  (+info)

Suppression subtractive hybridization as a basis to assess Mycoplasma agalactiae and Mycoplasma bovis genomic diversity and species-specific sequences. (4/41)

The phylogenically related Mycoplasma agalactiae and Mycoplasma bovis species are two ruminant pathogens difficult to differentiate and for which a limited amount of sequence data are available. To assess the degree of genomic diversity existing between and within these mycoplasma species, sets of DNA fragments specific for M. bovis type-strain PG45 or for M. agalactiae type-strain PG2 were isolated by suppression subtractive hybridization and used as probes on a panel of M. agalactiae and M. bovis field isolates. Results indicated that approximately 70 % of the DNA fragments specific to one or the other type strain are represented in all field isolates of the corresponding species. Only one M. bovis isolate, which was first classified as M. agalactiae, reacted with 15 % of the PG2-specific probes, while several M. agalactiae isolates reacted with 15 % of the PG45-specific probes. Sequence analyses indicated that most of the genomic diversity observed within one species is related to ORFs with (i) no homologies to proteins recorded in the databases or (ii) homologies to proteins encoded by restriction modification systems. Reminiscent of gene transfer as a means for genomic diversity, a PG45-specific DNA fragment with significant homologies to a central protein of an integrative conjugative element of Mycoplasma fermentans (ICEF) was found in most M. bovis field isolates and in a few M. agalactiae isolates. Finally, sequences encoding part of DNA polymerase III were found in both sets of M. agalactiae- and M. bovis-specific DNA fragments and were used to design a species-specific PCR assay for the identification and differentiation of M. agalactiae and M. bovis.  (+info)

In vitro antimicrobial inhibition profiles of Mycoplasma bovis isolates recovered from various regions of the United States from 2002 to 2003. (5/41)

Antimicrobial therapy continues to be important in reducing losses due to pneumonic forms of Mycoplasma bovis disease in beef and dairy calves. Although M. bovis diseases have been documented as frequent and economically important in the United States, there are no published reports on the antimicrobial activity of approved compounds against US strains. In this study, the authors report on the activity of 9 different antimicrobials against 223 recently recovered isolates of M. bovis. These isolates represent accessions from 5 geographic regions of the United States and were grouped by 4 tissues of origin (milk, respiratory, joint, or ear and eye). A broth microdilution test was used to determine minimum inhibitory concentration (MIC) values by reading redox changes detected in broth with alamarBlue (resazurin) indicator. For each antimicrobial, the median, MIC50, MIC90, mode, and range were calculated, and the values used for comparisons. In the absence of accepted breakpoint values, published MIC cutoff values for animal mycoplasmas as well as Clinical Laboratory Standards Institute interpretive criteria were used as a reference to define in vitro activity. The MIC values from active antimicrobials were found to distribute independently of region of origin of the isolates or of tissue of origin. Enrofloxacin, florfenicol, and spectinomycin were found to be active compounds in vitro. Oxytetracycline and chlortetracycline were active against more than half of the isolates. Very few isolates were inhibited by tilmicosin and none by erythromycin, ampicillin, or ceftiofur. The antimicrobial profiles determined for these US strains were remarkably similar to those reported for European isolates. However, unlike in Europe, there appears to be no diversity of profiles when US isolates are grouped by region or tissue of origin.  (+info)

Development of a real-time PCR for detection of Mycoplasma bovis in bovine milk and lung samples. (6/41)

A real-time polymerase chain reaction (PCR) assay using hybridization probes on a LightCycler platform was developed for detection of Mycoplasma bovis from individual bovine mastitis milk and pneumonic lung tissues. The detection limit was 550 colony forming units (cfu)/ml of milk and 650 cfu/25 mg of lung tissue. A panel of bovine Mycoplasma and of other bovine-origin bacteria were tested; only M. bovis strains were positive, with a melting peak of 66.6 degrees C. Mycoplasma agalactiae PG2 was also positive and could be distinguished because it had a melting peak of 63.1 degrees C. In validation testing of clinical samples, the relative sensitivity and specificity were 100% and 99.3% for individual milks and 96.6% and 100% for the lung tissue. Using M. bovis real-time PCR, the M. bovis culture-positive milk samples were estimated to contain between 5 x 10(4) and 7.7 x 10(8) cfu/ml and the M. bovis culture-positive lungs between 1 x 10(3) and 1 x 10(9) cfu/25 mg. Isolation, confirmed with the real-time PCR and colony fluorescent antibody test, showed that at the herd level, the proportion of samples positive for M. bovis isolation in mastitis milk samples submitted to the Mastitis Laboratory, Animal Health Laboratory, University of Guelph, Ontario, Canada, was 2.4% (5/201). We conclude that this probe-based real-time PCR assay is a sensitive, specific, and rapid method to identify M. bovis infection in bovine milk and pneumonic lungs.  (+info)

Diseases and pathogens associated with mortality in Ontario beef feedlots. (7/41)

This study determined the prevalence of diseases and pathogens associated with mortality or severe morbidity in 72 Ontario beef feedlots in calves that died or were euthanized within 60 days after arrival. Routine pathologic and microbiologic investigations, as well as immunohistochemical staining for detection of bovine viral diarrhea virus (BVDV) antigen, were performed on 99 calves that died or were euthanized within 60 days after arrival. Major disease conditions identified included fibrinosuppurative bronchopneumonia (49%), caseonecrotic bronchopneumonia or arthritis (or both) caused by Mycoplasma bovis (36%), viral respiratory disease (19%), BVDV-related diseases (21%), Histophilus somni myocarditis (8%), ruminal bloat (2%), and miscellaneous diseases (8%). Viral infections identified were BVDV (35%), bovine respiratory syncytial virus (9%), bovine herpesvirus-1 (6%), parainfluenza-3 virus (3%), and bovine coronavirus (2%). Bacteria isolated from the lungs included M. bovis (82%), Mycoplasma arginini (72%), Ureaplasma diversum (25%), Mannheimia haemolytica (27%), Pasteurella multocida (19%), H. somni (14%), and Arcanobacterium pyogenes (19%). Pneumonia was the most frequent cause of mortality of beef calves during the first 2 months after arrival in feedlots, representing 69% of total deaths. The prevalence of caseonecrotic bronchopneumonia caused by M. bovis was similar to that of fibrinosuppurative bronchopneumonia, and together, these diseases were the most common causes of pneumonia and death. M. bovis pneumonia and polyarthritis has emerged as an important cause of mortality in Ontario beef feedlots.  (+info)

Naturally occurring Mycoplasma bovis-associated pneumonia and polyarthritis in feedlot beef calves. (8/41)

Mycoplasma bovis is perceived as an emerging cause of mortality in feedlot beef cattle. This study examined the lesions and infectious agents in naturally occurring M. bovis-associated bronchopneumonia and arthritis and the relationship of this condition with bovine viral diarrhea virus (BVDV) infection. Standardized pathologic, immunohistochemical, and microbiologic investigations were conducted on 99 calves that died or were euthanized within 60 days after arrival in 72 feedlots. Cranioventral bronchopneumonia with multiple foci of caseous necrosis was identified in 54 of 99 calves, including 30 with concurrent fibrinosuppurative bronchopneumonia typical of pneumonic pasteurellosis. Mycoplasma bovis was consistently identified in these lesions by culture and immunohistochemistry, but also commonly in healthy lungs and those with pneumonia of other causes. Focal lesions of coagulation necrosis, typical of pneumonic pasteurellosis, were often infected with both Mannheimia haemolytica and M. bovis. Arthritis was present in 25 of 54 (46%) calves with M. bovis pneumonia, and all calves with arthritis had pneumonia. BVDV infection was more common in calves with lesions of bacterial pneumonia than in those dying of other causes, but BVDV infection was not more common in calves with caseonecrotic bronchopneumonia than those with fibrinosuppurative bronchopneumonia. Retrospective analysis identified cases of M. bovis pneumonia in the early 1980s that had milder lesions than the current cases. The findings suggest that, in at least some calves, M. bovis induces caseonecrotic bronchopneumonia within the lesions of pneumonic pasteurellosis.  (+info)

"Mycoplasma bovis" is a species of bacteria that lack a cell wall and are characterized by their small size. They can cause various diseases in cattle, including pneumonia, mastitis (inflammation of the mammary gland), arthritis, and otitis (inflammation of the ear). The bacteria can be transmitted through direct contact between animals, contaminated milk, and aerosols. Infection with Mycoplasma bovis can result in decreased productivity and increased mortality in affected herds, making it a significant concern for the cattle industry. Diagnosis is often made through culture or PCR-based tests, and treatment typically involves the use of antibiotics, although resistance to certain antibiotics has been reported. Prevention strategies include biosecurity measures such as testing and culling infected animals, as well as good hygiene practices to limit the spread of the bacteria.

Mycoplasma: A type of bacteria that lack a cell wall and are among the smallest organisms capable of self-replication. They can cause various infections in humans, animals, and plants. In humans, they are associated with respiratory tract infections (such as pneumonia), urogenital infections (like pelvic inflammatory disease), and some sexually transmitted diseases. Mycoplasma species are also known to contaminate cell cultures and can interfere with research experiments. Due to their small size and lack of a cell wall, they are resistant to many common antibiotics, making them difficult to treat.

Mycoplasma infections refer to illnesses caused by bacteria belonging to the genus Mycoplasma. These are among the smallest free-living organisms, lacking a cell wall and possessing a unique molecular structure. They can cause various respiratory tract infections (like pneumonia, bronchitis), urogenital infections, and other systemic diseases in humans, animals, and birds.

The most common Mycoplasma species that infect humans include M. pneumoniae, M. genitalium, M. hominis, and Ureaplasma urealyticum. Transmission usually occurs through respiratory droplets or sexual contact. Symptoms can vary widely depending on the site of infection but may include cough, chest pain, difficulty breathing, fatigue, joint pain, rash, and genital discharge or pelvic pain in women. Diagnosis often requires specific laboratory tests due to their unique growth requirements and resistance to many common antibiotics. Treatment typically involves macrolide or fluoroquinolone antibiotics.

Cattle diseases are a range of health conditions that affect cattle, which include but are not limited to:

1. Bovine Respiratory Disease (BRD): Also known as "shipping fever," BRD is a common respiratory illness in feedlot cattle that can be caused by several viruses and bacteria.
2. Bovine Viral Diarrhea (BVD): A viral disease that can cause a variety of symptoms, including diarrhea, fever, and reproductive issues.
3. Johne's Disease: A chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It primarily affects the intestines and can cause severe diarrhea and weight loss.
4. Digital Dermatitis: Also known as "hairy heel warts," this is a highly contagious skin disease that affects the feet of cattle, causing lameness and decreased productivity.
5. Infectious Bovine Keratoconjunctivitis (IBK): Also known as "pinkeye," IBK is a common and contagious eye infection in cattle that can cause blindness if left untreated.
6. Salmonella: A group of bacteria that can cause severe gastrointestinal illness in cattle, including diarrhea, dehydration, and septicemia.
7. Leptospirosis: A bacterial disease that can cause a wide range of symptoms in cattle, including abortion, stillbirths, and kidney damage.
8. Blackleg: A highly fatal bacterial disease that causes rapid death in young cattle. It is caused by Clostridium chauvoei and vaccination is recommended for prevention.
9. Anthrax: A serious infectious disease caused by the bacterium Bacillus anthracis. Cattle can become infected by ingesting spores found in contaminated soil, feed or water.
10. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hooved animals, including cattle. It is characterized by fever and blisters on the feet, mouth, and teats. FMD is not a threat to human health but can have serious economic consequences for the livestock industry.

It's important to note that many of these diseases can be prevented or controlled through good management practices, such as vaccination, biosecurity measures, and proper nutrition. Regular veterinary care and monitoring are also crucial for early detection and treatment of any potential health issues in your herd.

Haemophilus somnus (also known as Histophilus somni) is not typically defined in a medical dictionary, but it is a gram-negative bacterium that can cause various diseases in animals, particularly in cattle. It is part of the Haemophilus genus and Pasteurellaceae family.

H. somnus can lead to respiratory illnesses, reproductive disorders (such as infertility, abortions, and stillbirths), and systemic infections like sepsis or joint inflammation (arthritis). The bacterium is often found in the upper respiratory tract of healthy cattle, but it can become pathogenic under stressful conditions or when the animal's immune system is weakened.

While Haemophilus somnus primarily affects animals and not humans, there have been rare cases where people working closely with infected animals (such as veterinarians, farmers, or slaughterhouse workers) may develop infections due to exposure. However, this is uncommon, and H. somnus does not typically pose a significant risk to human health.

I apologize for any confusion, but "Bison" is not a medical term. It is a common name used to refer to large, hoofed mammals that are part of the Bovidae family, which also includes cattle, buffalo, and antelope. The two most commonly known species of bison are the American bison (Bison bison) and the European bison, or wisent (Bison bonasus). These animals are native to North America and Europe, respectively, and have distinctive features such as a large head, humped back, and shaggy coat. They once roamed in great herds but were hunted to near extinction in the late 19th century. Conservation efforts have helped bring their populations back from the brink, although they still face threats from habitat loss and disease.

Bovine Respiratory Disease Complex (BRDC), also known as "Shipping Fever" or "Pneumonic Complex," is a significant respiratory disease in cattle, particularly affecting feedlot calves and animals undergoing transportation or commingling. It is a multifactorial disease, meaning that it results from the interaction of several factors, including:

1. Infectious agents: Viruses (such as bovine herpesvirus-1, bovine respiratory syncytial virus, parainfluenza virus-3, and bovine viral diarrhea virus) and bacteria (like Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis).
2. Environmental factors: Poor ventilation, dust, ammonia, and other air quality issues in confined spaces can contribute to the development of BRDC.
3. Stressors: Weaning, transportation, commingling, castration, and other management practices can cause stress and weaken the animal's immune system, making them more susceptible to BRDC.
4. Host factors: Age, genetics, nutritional status, and existing health conditions may also play a role in an animal's vulnerability to BRDC.

The clinical signs of BRDC can vary but often include coughing, nasal discharge, difficulty breathing, fever, lethargy, and reduced appetite. In severe cases, it can lead to pneumonia and even death. Prevention strategies typically involve vaccination programs, management practices that minimize stress, maintaining good air quality, and prompt treatment of sick animals.

"Mycoplasma agalactiae" is a species of bacteria that belongs to the genus Mycoplasma. It is a small, wall-less organism that can cause contagious diseases in animals, particularly in ruminants such as goats and sheep. The infection caused by this bacterium is known as contagious agalactia, which is characterized by symptoms like mastitis (inflammation of the mammary gland), arthritis, keratoconjunctivitis (inflammation of the cornea and conjunctiva of the eye), and sometimes pneumonia. It's worth noting that "Mycoplasma agalactiae" is not known to infect humans.

An aborted fetus refers to a developing human organism that is expelled or removed from the uterus before it is viable, typically as a result of an induced abortion. An abortion is a medical procedure that intentionally ends a pregnancy and can be performed through various methods, depending on the stage of the pregnancy.

It's important to note that the term "abortion" is often used in different contexts and may carry different connotations depending on one's perspective. In medical terminology, an abortion refers specifically to the intentional ending of a pregnancy before viability. However, in other contexts, the term may be used more broadly to refer to any spontaneous or induced loss of a pregnancy, including miscarriages and stillbirths.

The definition of "viable" can vary, but it generally refers to the point at which a fetus can survive outside the uterus with medical assistance, typically around 24 weeks of gestation. Fetal viability is a complex issue that depends on many factors, including the availability and accessibility of medical technology and resources.

In summary, an aborted fetus is a developing human organism that is intentionally expelled or removed from the uterus before it is viable, typically as a result of a medical procedure called an abortion.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Mycoplasma hominis is a species of bacteria that lack a cell wall and are among the smallest free-living organisms. They are commonly found as part of the normal flora in the genitourinary tract of humans, particularly in the urethra, cervix, and vagina. However, they can also cause various infections, especially in individuals with compromised immune systems or in the presence of other risk factors.

M. hominis has been associated with several types of infections, including:

1. Genital tract infections: M. hominis can cause pelvic inflammatory disease (PID), cervicitis, urethritis, and endometritis in women. In men, it may lead to urethritis and prostatitis.
2. Postpartum and post-abortion fever: M. hominis can contribute to febrile morbidity following delivery or abortion.
3. Respiratory tract infections: While rare, M. hominis has been implicated in some cases of respiratory tract infections, particularly in immunocompromised individuals.
4. Joint and soft tissue infections: M. hominis can cause septic arthritis, osteomyelitis, and other soft tissue infections, especially in patients with underlying joint diseases or compromised immune systems.
5. Central nervous system (CNS) infections: Although uncommon, M. hominis has been associated with CNS infections such as meningitis and brain abscesses, primarily in immunocompromised individuals.
6. Bloodstream infections: Bacteremia due to M. hominis is rare but can occur in immunocompromised patients or those with indwelling catheters.

Diagnosis of M. hominis infections typically involves the detection of the organism through various laboratory methods, such as culture, polymerase chain reaction (PCR), or serological tests. Treatment usually consists of antibiotics that target mycoplasmas, such as macrolides (e.g., azithromycin) or tetracyclines (e.g., doxycycline). However, resistance to certain antibiotics has been reported in some M. hominis strains.

Bronchopneumonia is a type of pneumonia that involves inflammation and infection of the bronchioles (small airways in the lungs) and alveoli (tiny air sacs in the lungs). It can be caused by various bacteria, viruses, or fungi and often occurs as a complication of a respiratory tract infection.

The symptoms of bronchopneumonia may include cough, chest pain, fever, chills, shortness of breath, and fatigue. In severe cases, it can lead to complications such as respiratory failure or sepsis. Treatment typically involves antibiotics for bacterial infections, antiviral medications for viral infections, and supportive care such as oxygen therapy and hydration.

Streptococcus bovis is a type of bacteria that is part of the Streptococcus genus. It is a gram-positive, facultatively anaerobic coccus (spherical) bacterium that is commonly found in the gastrointestinal tracts of animals, including cattle, and can also be found in the human gastrointestinal tract, particularly in the colon.

There are several subspecies of Streptococcus bovis, including S. bovis biotype I (also known as Streptococcus gallolyticus), S. bovis biotype II/2, and S. bovis biotype II/1. Some strains of these bacteria have been associated with human diseases, such as endocarditis, bacteremia, and abscesses in various organs. Additionally, there is evidence to suggest that S. bovis biotype I may be associated with an increased risk of colorectal cancer.

It's important to note that Streptococcus bovis is not a common cause of infection in healthy individuals, but it can cause serious infections in people with underlying medical conditions, such as valvular heart disease or a weakened immune system.

Bovine mastitis is a common inflammatory condition that affects the mammary gland (udder) of dairy cows. It's primarily caused by bacterial infections, with Escherichia coli (E. coli), Streptococcus spp., and Staphylococcus aureus being some of the most common pathogens involved. The infection can lead to varying degrees of inflammation, which might result in decreased milk production, changes in milk composition, and, if left untreated, potentially severe systemic illness in the cow.

The clinical signs of bovine mastitis may include:
- Redness and heat in the affected quarter (or quarters) of the udder
- Swelling and pain upon palpation
- Decreased milk production or changes in milk appearance (such as flakes, clots, or watery consistency)
- Systemic signs like fever, loss of appetite, and depression in severe cases

Mastitis can be classified into two main types: clinical mastitis, which is characterized by visible signs of inflammation, and subclinical mastitis, where the infection might not present with obvious external symptoms but could still lead to decreased milk quality and production.

Prevention and control measures for bovine mastitis include good milking practices, maintaining a clean and dry environment for the cows, practicing proper udder hygiene, administering antibiotics or other treatments as necessary, and regularly monitoring milk for signs of infection through somatic cell count testing.

Infectious keratoconjunctivitis (IKC) is a medical condition that refers to an inflammation of both the cornea (kerato-) and the conjunctiva (-conjunctivitis), which are the transparent membranes that cover the front part of the eye. IKC is caused by an infection, most commonly due to viral or bacterial pathogens.

The viral form of IKC is often caused by adenoviruses and can be highly contagious, spreading through respiratory droplets, contaminated surfaces, or direct contact with the infected person's eyes. The symptoms may include redness, watery eyes, sensitivity to light, a gritty or burning sensation in the eyes, and discharge. In some cases, there might be swollen lymph nodes near the ear or neck.

Bacterial IKC can result from various bacterial species, such as Staphylococcus aureus, Streptococcus pneumoniae, or Haemophilus influenzae. The symptoms of bacterial IKC are similar to those of viral IKC but may also include more purulent discharge and potential complications like corneal ulcers or abscesses.

Treatment for infectious keratoconjunctivitis depends on the underlying cause. Viral IKC typically resolves within 1-3 weeks without specific treatment, although cool compresses and artificial tears may help alleviate symptoms. Bacterial IKC may require antibiotic eye drops or ointments to clear the infection and prevent complications. In both cases, good hygiene practices are essential to prevent spreading the infection to others.

Mycoplasma genitalium is a small, bacteria that lack a cell wall and can be found in the urinary and genital tracts of humans. It's known to cause several urogenital infections, such as urethritis in men and cervicitis in women. In some cases, it may also lead to pelvic inflammatory disease (PID) and complications like infertility or ectopic pregnancy in women. Mycoplasma genitalium can be sexually transmitted and is often associated with HIV transmission. Due to its small size and atypical growth requirements, it can be challenging to culture and diagnose using standard microbiological methods. Molecular tests, such as nucleic acid amplification tests (NAATs), are commonly used for detection in clinical settings.

Thiamphenicol is an antibiotic that belongs to the class of medications called amphenicols. It works by preventing the growth of bacteria. Thiamphenicol is used to treat various infections caused by bacteria. This medication may also be used to prevent bacterial endocarditis (inflammation of the lining of the heart and valves) in people having certain dental or surgical procedures.

Please note that this definition is for informational purposes only and should not be used as a substitute for professional medical advice, diagnosis, or treatment. If you have any questions about your medication, always consult with your healthcare provider.

"Mycoplasma fermentans" is a type of bacteria that lacks a cell wall and is commonly found as a commensal organism in the human respiratory and urogenital tracts. However, it can also cause opportunistic infections, particularly in individuals with weakened immune systems. It is known to be associated with chronic respiratory infections, inflammatory diseases, and has been suggested as a possible co-factor in the pathogenesis of certain conditions such as rheumatoid arthritis and chronic fatigue syndrome.

The medical definition of "Mycoplasma fermentans" is:
A species of small, gram-negative, pleomorphic bacteria belonging to the genus Mycoplasma, which lacks a cell wall and is capable of causing opportunistic infections in humans. It is commonly found as a commensal organism in the respiratory and urogenital tracts, but has been associated with chronic respiratory infections, inflammatory diseases, and other conditions. Its identification typically requires specialized laboratory tests, such as polymerase chain reaction (PCR) or culture-based methods.

"Mycoplasma mycoides" is a species of bacteria that lack a cell wall and are characterized by their small size. They are part of the class Mollicutes and are known to cause various diseases in animals, particularly ruminants such as cattle, goats, and sheep. The most well-known disease caused by M. mycoides is contagious bovine pleuropneumonia (CBPP), a severe and highly contagious respiratory disease in cattle that can lead to pneumonia, pleurisy, and death.

M. mycoides has been the subject of scientific research due to its small genome size and minimal genetic requirements for growth and survival. In fact, it was the first species of Mycoplasma to have its genome fully sequenced, and it has been used as a model organism in synthetic biology studies.

It's important to note that M. mycoides is not known to cause disease in humans. However, other species of Mycoplasma can cause respiratory and urogenital infections in humans.

"Mannheimia haemolytica" is a gram-negative, rod-shaped bacterium that is commonly found as part of the normal flora in the upper respiratory tract of cattle and other ruminants. However, under certain conditions such as stress, viral infection, or sudden changes in temperature or humidity, the bacteria can multiply rapidly and cause a severe respiratory disease known as shipping fever or pneumonic pasteurellosis.

The bacterium is named "haemolytica" because it produces a toxin that causes hemolysis, or the breakdown of red blood cells, resulting in the characteristic clear zones around colonies grown on blood agar plates. The bacteria can also cause other symptoms such as fever, coughing, difficulty breathing, and depression.

"Mannheimia haemolytica" is a significant pathogen in the cattle industry, causing substantial economic losses due to mortality, reduced growth rates, and decreased milk production. Prevention and control measures include good management practices, vaccination, and prompt treatment of infected animals with antibiotics.

'Babesia bovis' is a species of intraerythrocytic protozoan parasite that causes bovine babesiosis, also known as cattle fever or redwater fever, in cattle. The parasite is transmitted through the bite of infected ticks, primarily from the genus Boophilus (e.g., Boophilus microplus).

The life cycle of 'Babesia bovis' involves two main stages: the sporozoite stage and the merozoite stage. Sporozoites are injected into the host's bloodstream during tick feeding and invade erythrocytes (red blood cells), where they transform into trophozoites. The trophozoites multiply asexually, forming new infective stages called merozoites. These merozoites are released from the infected erythrocytes and invade other red blood cells, continuing the life cycle.

Clinical signs of bovine babesiosis caused by 'Babesia bovis' include fever, anemia, icterus (jaundice), hemoglobinuria (the presence of hemoglobin in the urine), and occasionally neurologic symptoms due to the parasite's ability to invade and damage blood vessels in the brain. The disease can be severe or fatal, particularly in naïve animals or those exposed to high parasitemia levels.

Prevention and control strategies for bovine babesiosis include tick control measures, such as acaricides and environmental management, as well as vaccination using attenuated or recombinant vaccine candidates. Treatment typically involves the use of antiprotozoal drugs, such as imidocarb dipropionate or diminazene accurate, to reduce parasitemia and alleviate clinical signs.

"Mycoplasma hyopneumoniae" is a type of bacteria that primarily affects the respiratory system of pigs, causing a disease known as Enzootic Pneumonia. It is one of the most common causes of pneumonia in pigs and can lead to reduced growth rates, decreased feed conversion efficiency, and increased mortality in infected herds.

The bacteria lack a cell wall, which makes them resistant to many antibiotics that target cell wall synthesis. They are also highly infectious and can be transmitted through direct contact with infected pigs or contaminated fomites such as feed, water, and equipment. Infection with "Mycoplasma hyopneumoniae" can lead to the development of lesions in the lungs, which can make the animal more susceptible to secondary bacterial and viral infections.

Diagnosis of Mycoplasma hyopneumoniae infection typically involves a combination of clinical signs, laboratory tests such as serology, PCR, or culture, and sometimes histopathological examination of lung tissue. Control measures may include antibiotic treatment, vaccination, biosecurity measures, and herd management practices aimed at reducing the spread of the bacteria within and between pig populations.

Medically, "milk" is not defined. However, it is important to note that human babies are fed with breast milk, which is the secretion from the mammary glands of humans. It is rich in nutrients like proteins, fats, carbohydrates (lactose), vitamins and minerals that are essential for growth and development.

Other mammals also produce milk to feed their young. These include cows, goats, and sheep, among others. Their milk is often consumed by humans as a source of nutrition, especially in dairy products. However, the composition of these milks can vary significantly from human breast milk.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

Bovine viral diarrhea (BVD) is a viral disease that primarily affects cattle, but can also infect other ruminants such as sheep and goats. The disease is caused by the bovine viral diarrhea virus (BVDV), which belongs to the family Flaviviridae and genus Pestivirus.

There are two biotypes of BVDV, type 1 and type 2, which can be further divided into various subtypes based on their genetic makeup. The virus can cause a range of clinical signs in infected animals, depending on the age and immune status of the animal, as well as the strain of the virus.

Acute infection with BVDV can cause fever, lethargy, loss of appetite, nasal discharge, and diarrhea, which can be severe and life-threatening in young calves. In addition, BVDV can cause reproductive problems such as abortion, stillbirth, and the birth of persistently infected (PI) calves. PI animals are those that were infected with BVDV in utero and have the virus continuously present in their bloodstream and other tissues throughout their lives. These animals serve as a source of infection for other cattle and can spread the virus to naive herds.

BVDV is transmitted through direct contact with infected animals or their bodily fluids, such as saliva, nasal secretions, and feces. The virus can also be spread indirectly through contaminated feed, water, and equipment. Prevention and control measures for BVDV include biosecurity practices, vaccination, and testing to identify and remove PI animals from herds.

"Mycoplasma pulmonis" is a species of bacteria that belongs to the genus Mycoplasma, which are characterized as the smallest free-living organisms. "M. pulmonis" is known to primarily infect rodents, particularly mice and rats, causing respiratory diseases. It colonizes the upper and lower respiratory tract, leading to conditions such as murine respiratory mycoplasmosis (MRM).

The bacteria lack a cell wall, which makes them resistant to many antibiotics that target cell wall synthesis. They can cause chronic inflammation and damage to the respiratory system, including airway obstruction, bronchiolitis, and alveolitis. Transmission of "M. pulmonis" typically occurs through direct contact with infected animals or their aerosolized secretions.

It is important to note that "Mycoplasma pulmonis" does not infect humans and is primarily a research model for studying bacterial respiratory infections and host immune responses.

"Mycoplasma gallisepticum" is a species of bacteria that belongs to the class Mollicutes and the genus Mycoplasma. It is a significant pathogen in birds, particularly in poultry such as chickens and turkeys, causing chronic respiratory disease (CRD) and infectious sinusitis. The bacterium lacks a cell wall, which makes it resistant to many antibiotics that target the cell wall. Mycoplasma gallisepticum can be transmitted through direct contact with infected birds or contaminated equipment and is highly contagious. It can cause significant economic losses in the poultry industry due to decreased growth rates, poor feed conversion, and increased mortality. In addition to poultry, Mycoplasma gallisepticum has also been found to infect wild bird species, such as house finches, leading to population declines in some areas.

Mycoplasma penetrans is a species of bacteria that lack a cell wall and are therefore resistant to many antibiotics that target the cell wall. It is a sexually transmitted infection (STI) that can infect the urogenital tract, causing inflammation and damage to the cells lining the urinary and reproductive systems.

M. penetrans has been associated with several health problems, including urethritis (inflammation of the urethra), cervicitis (inflammation of the cervix), pelvic inflammatory disease (PID), and increased risk of HIV transmission. However, its role in these conditions is not fully understood and further research is needed to determine the exact nature of its pathogenicity.

Diagnosis of M. penetrans infection typically involves nucleic acid amplification tests (NAATs) or direct detection of the organism in clinical specimens. Treatment usually involves antibiotics such as macrolides, fluoroquinolones, or tetracyclines, although resistance to these drugs has been reported.

It is important to note that M. penetrans infection can be asymptomatic and may not cause any noticeable symptoms in some people. Therefore, it is recommended to practice safe sex and get regular STI screenings to detect and treat infections early.

No FAQ available that match "mycoplasma bovis"

No images available that match "mycoplasma bovis"