A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation.
Any of the infectious diseases of man and other animals caused by species of MYCOBACTERIUM.
A genus of gram-positive, aerobic bacteria. Most species are free-living in soil and water, but the major habitat for some is the diseased tissue of warm-blooded hosts.
MYCOBACTERIUM infections of the lung.
The bovine variety of the tubercle bacillus. It is called also Mycobacterium tuberculosis var. bovis.
A rapid-growing, nonphotochromogenic species of MYCOBACTERIUM originally isolated from human smegma and found also in soil and water. (From Dorland, 28th ed)
Infections with bacteria of the genus MYCOBACTERIUM.
Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy.
Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis.
A bacterium causing tuberculosis in domestic fowl and other birds. In pigs, it may cause localized and sometimes disseminated disease. The organism occurs occasionally in sheep and cattle. It should be distinguished from the M. avium complex, which infects primarily humans.
Tuberculosis resistant to chemotherapy with two or more ANTITUBERCULAR AGENTS, including at least ISONIAZID and RIFAMPICIN. The problem of resistance is particularly troublesome in tuberculous OPPORTUNISTIC INFECTIONS associated with HIV INFECTIONS. It requires the use of second line drugs which are more toxic than the first line regimens. TB with isolates that have developed further resistance to at least three of the six classes of second line drugs is defined as EXTENSIVELY DRUG-RESISTANT TUBERCULOSIS.
So-called atypical species of the genus MYCOBACTERIUM that do not cause tuberculosis. They are also called tuberculoid bacilli, i.e.: M. buruli, M. chelonae, M. duvalii, M. flavescens, M. fortuitum, M. gilvum, M. gordonae, M. intracellulare (see MYCOBACTERIUM AVIUM COMPLEX;), M. kansasii, M. marinum, M. obuense, M. scrofulaceum, M. szulgai, M. terrae, M. ulcerans, M. xenopi.
Proteins found in any species of bacterium.
Vaccines or candidate vaccines used to prevent or treat TUBERCULOSIS.
A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160)
A species of gram-positive, aerobic bacteria that causes LEPROSY in man. Its organisms are generally arranged in clumps, rounded masses, or in groups of bacilli side by side.
A complex that includes several strains of M. avium. M. intracellulare is not easily distinguished from M. avium and therefore is included in the complex. These organisms are most frequently found in pulmonary secretions from persons with a tuberculous-like mycobacteriosis. Strains of this complex have also been associated with childhood lymphadenitis and AIDS; M. avium alone causes tuberculosis in a variety of birds and other animals, including pigs.
Infections with nontuberculous mycobacteria (atypical mycobacteria): M. kansasii, M. marinum, M. scrofulaceum, M. flavescens, M. gordonae, M. obuense, M. gilvum, M. duvali, M. szulgai, M. intracellulare (see MYCOBACTERIUM AVIUM COMPLEX;), M. xenopi (littorale), M. ulcerans, M. buruli, M. terrae, M. fortuitum (minetti, giae), M. chelonae.
Substances elaborated by bacteria that have antigenic activity.
An active immunizing agent and a viable avirulent attenuated strain of Mycobacterium tuberculosis, var. bovis, which confers immunity to mycobacterial infections. It is used also in immunotherapy of neoplasms due to its stimulation of antibodies and non-specific immunity.
A pyrazine that is used therapeutically as an antitubercular agent.
An antitubercular agent that inhibits the transfer of mycolic acids into the cell wall of the tubercle bacillus. It may also inhibit the synthesis of spermidine in mycobacteria. The action is usually bactericidal, and the drug can penetrate human cell membranes to exert its lethal effect. (From Smith and Reynard, Textbook of Pharmacology, 1992, p863)
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Substances obtained from various species of microorganisms that are, alone or in combination with other agents, of use in treating various forms of tuberculosis; most of these agents are merely bacteriostatic, induce resistance in the organisms, and may be toxic.
Material coughed up from the lungs and expectorated via the mouth. It contains MUCUS, cellular debris, and microorganisms. It may also contain blood or pus.
A moderate-growing, photochromogenic species found in aquariums, diseased fish, and swimming pools. It is the cause of cutaneous lesions and granulomas (swimming pool granuloma) in humans. (Dorland, 28th ed)
A rapid-growing, nonphotochromogenic species that is potentially pathogenic, producing lesions of lung, bone, or soft tissue following trauma. It has been found in soil and in injection sites of humans, cattle, and cold-blooded animals. (Dorland, 28th ed)
Mycolic acids are complex, long-chain fatty acids that are a major component of the cell wall of Mycobacterium species, including the causative agents of tuberculosis and leprosy, providing them with unique characteristics such as resistance to acid-alkali stability, pigmentation, and protection against host immune responses.
One of several skin tests to determine past or present tuberculosis infection. A purified protein derivative of the tubercle bacilli, called tuberculin, is introduced into the skin by scratch, puncture, or interdermal injection.
A slow-growing, photochromogenic species that is the etiologic agent of a tuberculosis-like disease in humans and is frequently isolated from human pulmonary secretions or tubercles. The incidence of infection is sharply increased among immunocompromised individuals. (Dorland, 28th ed)
A species of gram-positive, aerobic bacteria commonly found in soil and occasionally isolated from sputum. It causes postoperative wound infections as well as gluteal abscesses.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
An infection of cattle caused by MYCOBACTERIUM BOVIS. It is transmissible to man and other animals.
Techniques used in studying bacteria.
An acute form of TUBERCULOSIS in which minute tubercles are formed in a number of organs of the body due to dissemination of the bacilli through the blood stream.
Viruses whose host is one or more Mycobacterium species. They include both temperate and virulent types.
The dormant form of TUBERCULOSIS where the person shows no obvious symptoms and no sign of the causative agent (Mycobacterium tuberculosis) in the SPUTUM despite being positive for tuberculosis infection skin test.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Infection of the lymph nodes by tuberculosis. Tuberculous infection of the cervical lymph nodes is scrofula.
A subspecies of gram-positive, aerobic bacteria. It is the etiologic agent of Johne's disease (PARATUBERCULOSIS), a chronic GASTROENTERITIS in RUMINANTS.
A nontuberculous infection when occurring in humans. It is characterized by pulmonary disease, lymphadenitis in children, and systemic disease in AIDS patients. Mycobacterium avium-intracellulare infection of birds and swine results in tuberculosis.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A technique for identifying individuals of a species that is based on the uniqueness of their DNA sequence. Uniqueness is determined by identifying which combination of allelic variations occur in the individual at a statistically relevant number of different loci. In forensic studies, RESTRICTION FRAGMENT LENGTH POLYMORPHISM of multiple, highly polymorphic VNTR LOCI or MICROSATELLITE REPEAT loci are analyzed. The number of loci used for the profile depends on the ALLELE FREQUENCY in the population.
A form of bacterial meningitis caused by MYCOBACTERIUM TUBERCULOSIS or rarely MYCOBACTERIUM BOVIS. The organism seeds the meninges and forms microtuberculomas which subsequently rupture. The clinical course tends to be subacute, with progressions occurring over a period of several days or longer. Headache and meningeal irritation may be followed by SEIZURES, cranial neuropathies, focal neurologic deficits, somnolence, and eventually COMA. The illness may occur in immunocompetent individuals or as an OPPORTUNISTIC INFECTION in the ACQUIRED IMMUNODEFICIENCY SYNDROME and other immunodeficiency syndromes. (From Adams et al., Principles of Neurology, 6th ed, pp717-9)
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.
Tuberculosis of the skin. It includes scrofuloderma and tuberculid, but not LUPUS VULGARIS.
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
A saprophytic bacterium widely distributed in soil and dust and on plants.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Tuberculosis resistant to ISONIAZID and RIFAMPIN and at least three of the six main classes of second-line drugs (AMINOGLYCOSIDES; polypeptide agents; FLUOROQUINOLONES; THIOAMIDES; CYCLOSERINE; and PARA-AMINOSALICYLIC ACID) as defined by the CDC.
A slow-growing mycobacterium that infects the skin and subcutaneous tissues, giving rise to indolent BURULI ULCER.
Tuberculosis of the bones or joints.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
Tuberculosis of the serous membrane lining the thoracic cavity and surrounding the lungs.
A protein extracted from boiled culture of tubercle bacilli (MYCOBACTERIUM TUBERCULOSIS). It is used in the tuberculin skin test (TUBERCULIN TEST) for the diagnosis of tuberculosis infection in asymptomatic persons.
TUBERCULOSIS that involves any region of the GASTROINTESTINAL TRACT, mostly in the distal ILEUM and the CECUM. In most cases, MYCOBACTERIUM TUBERCULOSIS is the pathogen. Clinical features include ABDOMINAL PAIN; FEVER; and palpable mass in the ileocecal area.
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.
An antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by inhibiting the initiation and elongation processes during protein synthesis.
Osteitis or caries of the vertebrae, usually occurring as a complication of tuberculosis of the lungs.
The functional hereditary units of BACTERIA.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
A second-line antitubercular agent that inhibits mycolic acid synthesis.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
A relatively small nodular inflammatory lesion containing grouped mononuclear phagocytes, caused by infectious and noninfectious agents.
Cyclic peptide antibiotic similar to VIOMYCIN. It is produced by Streptomyces capreolus.
Toxic glycolipids composed of trehalose dimycolate derivatives. They are produced by MYCOBACTERIUM TUBERCULOSIS and other species of MYCOBACTERIUM. They induce cellular dysfunction in animals.
The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Tandem arrays of moderately repetitive, short (10-60 bases) DNA sequences which are found dispersed throughout the GENOME, at the ends of chromosomes (TELOMERES), and clustered near telomeres. Their degree of repetition is two to several hundred at each locus. Loci number in the thousands but each locus shows a distinctive repeat unit.
Infection of the spleen with species of MYCOBACTERIUM.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
The genetic complement of a BACTERIA as represented in its DNA.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
Tuberculosis of the brain, spinal cord, or meninges (TUBERCULOSIS, MENINGEAL), most often caused by MYCOBACTERIUM TUBERCULOSIS and rarely by MYCOBACTERIUM BOVIS. The infection may be limited to the nervous system or coexist in other organs (e.g., TUBERCULOSIS, PULMONARY). The organism tends to seed the meninges causing a diffuse meningitis and leads to the formation of TUBERCULOMA, which may occur within the brain, spinal cord, or perimeningeal spaces. Tuberculous involvement of the vertebral column (TUBERCULOSIS, SPINAL) may result in nerve root or spinal cord compression. (From Adams et al., Principles of Neurology, 6th ed, pp717-20)
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Commercially prepared reagent sets, with accessory devices, containing all of the major components and literature necessary to perform one or more designated diagnostic tests or procedures. They may be for laboratory or personal use.
The application of molecular biology to the answering of epidemiological questions. The examination of patterns of changes in DNA to implicate particular carcinogens and the use of molecular markers to predict which individuals are at highest risk for a disease are common examples.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
A non-tuberculous mycobacterium causing cervical lymphadenitis in children. It very rarely causes pulmonary disease, and is believed to be non-pathogenic in animals.
A general term for MYCOBACTERIUM infections of any part of the UROGENITAL SYSTEM in either the male or the female.
Membrane-bound cytoplasmic vesicles formed by invagination of phagocytized material. They fuse with lysosomes to form phagolysosomes in which the hydrolytic enzymes of the lysosome digest the phagocytized material.
Tuberculous infection of the eye, primarily the iris, ciliary body, and choroid.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A chronic granulomatous infection caused by MYCOBACTERIUM LEPRAE. The granulomatous lesions are manifested in the skin, the mucous membranes, and the peripheral nerves. Two polar or principal types are lepromatous and tuberculoid.
Infection of the LIVER with species of MYCOBACTERIUM, most often MYCOBACTERIUM TUBERCULOSIS. It is characterized by localized small tuberculous miliary lesions or tumor-like mass (TUBERCULOMA), and abnormalities in liver function tests.
Opportunistic infections found in patients who test positive for human immunodeficiency virus (HIV). The most common include PNEUMOCYSTIS PNEUMONIA, Kaposi's sarcoma, cryptosporidiosis, herpes simplex, toxoplasmosis, cryptococcosis, and infections with Mycobacterium avium complex, Microsporidium, and Cytomegalovirus.
Measurable quantity of bacteria in an object, organism, or organism compartment.
MOLECULAR BIOLOGY techniques used in the diagnosis of disease.
Ability of a microbe to survive under given conditions. This can also be related to a colony's ability to replicate.
Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage)
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Copies of transposable elements interspersed throughout the genome, some of which are still active and often referred to as "jumping genes". There are two classes of interspersed repetitive elements. Class I elements (or RETROELEMENTS - such as retrotransposons, retroviruses, LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS) transpose via reverse transcription of an RNA intermediate. Class II elements (or DNA TRANSPOSABLE ELEMENTS - such as transposons, Tn elements, insertion sequence elements and mobile gene cassettes of bacterial integrons) transpose directly from one site in the DNA to another.
A slow-growing, scotochromogenic species occurring usually harmlessly in human secretions but occasionally associated with chronic pulmonary disease. (Dorland, 28th ed)
The etiologic agent of rat leprosy, also known as murine leprosy.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A group I chaperonin protein that forms the barrel-like structure of the chaperonin complex. It is an oligomeric protein with a distinctive structure of fourteen subunits, arranged in two rings of seven subunits each. The protein was originally studied in BACTERIA where it is commonly referred to as GroEL protein.
Studies determining the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. For drugs and devices, CLINICAL TRIALS AS TOPIC; DRUG EVALUATION; and DRUG EVALUATION, PRECLINICAL are available.
The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents.
MYCOBACTERIUM infections of the female reproductive tract (GENITALIA, FEMALE).
Identification of those persons (or animals) who have had such an association with an infected person, animal, or contaminated environment as to have had the opportunity to acquire the infection. Contact tracing is a generally accepted method for the control of sexually transmitted diseases.
A family of multisubunit protein complexes that form into large cylindrical structures which bind to and encapsulate non-native proteins. Chaperonins utilize the energy of ATP hydrolysis to enhance the efficiency of PROTEIN FOLDING reactions and thereby help proteins reach their functional conformation. The family of chaperonins is split into GROUP I CHAPERONINS, and GROUP II CHAPERONINS, with each group having its own repertoire of protein subunits and subcellular preferences.
Using MOLECULAR BIOLOGY techniques, such as DNA SEQUENCE ANALYSIS; PULSED-FIELD GEL ELECTROPHORESIS; and DNA FINGERPRINTING, to identify, classify, and compare organisms and their subtypes.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both.
A chronic GASTROENTERITIS in RUMINANTS caused by MYCOBACTERIUM AVIUM SUBSPECIES PARATUBERCULOSIS.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
A bacterial DNA topoisomerase II that catalyzes ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. Gyrase binds to DNA as a heterotetramer consisting of two A and two B subunits. In the presence of ATP, gyrase is able to convert the relaxed circular DNA duplex into a superhelix. In the absence of ATP, supercoiled DNA is relaxed by DNA gyrase.
Substances that reduce the growth or reproduction of BACTERIA.
Elements of limited time intervals, contributing to particular results or situations.
The relationships of groups of organisms as reflected by their genetic makeup.
A fat-soluble riminophenazine dye used for the treatment of leprosy. It has been used investigationally in combination with other antimycobacterial drugs to treat Mycobacterium avium infections in AIDS patients. Clofazimine also has a marked anti-inflammatory effect and is given to control the leprosy reaction, erythema nodosum leprosum. (From AMA Drug Evaluations Annual, 1993, p1619)
A treatment method in which patients are under direct observation when they take their medication or receive their treatment. This method is designed to reduce the risk of treatment interruption and to ensure patient compliance.
Laboratory techniques that involve the in-vitro synthesis of many copies of DNA or RNA from one original template.
A republic in southern Africa, the southernmost part of Africa. It has three capitals: Pretoria (administrative), Cape Town (legislative), and Bloemfontein (judicial). Officially the Republic of South Africa since 1960, it was called the Union of South Africa 1910-1960.
Infection of the KIDNEY with species of MYCOBACTERIUM.
A group of ANTI-BACTERIAL AGENTS characterized by a chromophoric naphthohydroquinone group spanned by an aliphatic bridge not previously found in other known ANTI-BACTERIAL AGENTS. They have been isolated from fermentation broths of Streptomyces mediterranei.
A class of quinoline compounds defined by the presence of two aromatic ring structures which are attached via a side chain to carbon 3 of the qunolinyl structure. The two aromatic moieties are typically NAPTHALENE and BENZENE. Several compounds in this class are used as ANTITUBERCULAR AGENTS.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Amidohydrolases are enzymes that catalyze the hydrolysis of amides and related compounds, playing a crucial role in various biological processes including the breakdown and synthesis of bioactive molecules.
Infection of the ENDOCRINE GLANDS with species of MYCOBACTERIUM, most often MYCOBACTERIUM TUBERCULOSIS.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
'Azā compounds' are a class of organic molecules containing at least one nitrogen atom in a five-membered ring, often found in naturally occurring substances and pharmaceuticals, with the name derived from the Arabic word "azZa" meaning 'strong' referring to the ring's aromatic stability.
Tuberculosis involving the larynx, producing ulceration of the VOCAL CORDS and the LARYNGEAL MUCOSA.
An encapsulated lymphatic organ through which venous blood filters.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
A family of hemoglobin-like proteins found in BACTERIA; PLANTS; and unicellular eukaryotes. Truncated hemoglobins are distantly related to vertebrate hemoglobins and are typically shorter than vertebrate hemoglobins by 20-40 residues.
An increased reactivity to specific antigens mediated not by antibodies but by cells.
Proteins prepared by recombinant DNA technology.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
An antitubercular agent often administered in association with ISONIAZID. The sodium salt of the drug is better tolerated than the free acid.
Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide to water, while oxidizing various organic and inorganic compounds, playing crucial roles in diverse biological processes including stress response, immune defense, and biosynthetic reactions.
Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS).
The use of devices which use detector molecules to detect, investigate, or analyze other molecules, macromolecules, molecular aggregates, or organisms.
A tumor-like mass resulting from the enlargement of a tuberculous lesion.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA.
A species of gram-positive, aerobic bacteria that causes granulomatous or ulcerating skin lesions in immunosuppressed persons. This organism owes its name to its requirement for growth of high levels of iron, conveniently supplied as blood, heme, or ferric ammonium citrate.
Simultaneous infection of a host organism by two or more pathogens. In virology, coinfection commonly refers to simultaneous infection of a single cell by two or more different viruses.
Granulomatous disorders affecting one or more sites in the respiratory tract.
Any technique by which an unknown color is evaluated in terms of standard colors. The technique may be visual, photoelectric, or indirect by means of spectrophotometry. It is used in chemistry and physics. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Burrowing, chiefly nocturnal mammals of the family Dasypodidae having bodies and heads encased in small bony plates. They are widely distributed in the warmer parts of the Americas.
Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A synthetic fluoroquinolone antibacterial agent that inhibits the supercoiling activity of bacterial DNA GYRASE, halting DNA REPLICATION.
The interactions between a host and a pathogen, usually resulting in disease.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Tuberculosis of the mouth, tongue, and salivary glands.
A broad-spectrum antibiotic that is being used as prophylaxis against disseminated Mycobacterium avium complex infection in HIV-positive patients.
A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes.
A family of gram-positive bacteria found in soil and dairy products and as parasites on animals and man. Several are important pathogens.
A phenothiazine antipsychotic used in the management of PHYCOSES, including SCHIZOPHRENIA.
A group of QUINOLONES with at least one fluorine atom and a piperazinyl group.
Procedures for collecting, preserving, and transporting of specimens sufficiently stable to provide accurate and precise results suitable for clinical interpretation.
A pattern recognition receptor that forms heterodimers with other TOLL-LIKE RECEPTORS. It interacts with multiple ligands including PEPTIDOGLYCAN, bacterial LIPOPROTEINS, lipoarabinomannan, and a variety of PORINS.
A thiosemicarbazone that is used in association with other antimycobacterial agents in the initial and continuation phases of antituberculosis regimens. Thiacetazone containing regimens are less effective than the short-course regimen recommended by the International Union Against Tuberculosis and are used in some developing countries to reduce drug costs. (From Martindale, The Extra Pharmacopoeia, 30th ed, p217)
An enzyme that catalyzes the oxidation of nitrite to nitrate. It is a cytochrome protein that contains IRON and MOLYBDENUM.
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
Incorrect diagnoses after clinical examination or technical diagnostic procedures.
The assay of INTERFERON-GAMMA released from lymphocytes after their exposure to a specific test antigen, to check for IMMUNOLOGIC MEMORY resulting from a previous exposure to the antigen. The amount of interferon-gamma released is usually assayed by an ENZYME-LINKED IMMUNOSORBENT ASSAY.
Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.
Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions.
Polysaccharides composed of repeating galactose units. They can consist of branched or unbranched chains in any linkages.
A form of PERITONITIS seen in patients with TUBERCULOSIS, characterized by lesion either as a miliary form or as a pelvic mass on the peritoneal surfaces. Most patients have ASCITES, abdominal swelling, ABDOMINAL PAIN, and other systemic symptoms such as FEVER; WEIGHT LOSS; and ANEMIA.
Immunologic techniques involved in diagnosis.
Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role.
Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.
The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants.
Colloids with a gaseous dispersing phase and either liquid (fog) or solid (smoke) dispersed phase; used in fumigation or in inhalation therapy; may contain propellant agents.
Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Six-membered heterocycles containing an oxygen and a nitrogen.
An NAD-dependent enzyme that catalyzes the reversible DEAMINATION of L-ALANINE to PYRUVATE and AMMONIA. The enzyme is needed for growth when ALANINE is the sole CARBON or NITROGEN source. It may also play a role in CELL WALL synthesis because L-ALANINE is an important constituent of the PEPTIDOGLYCAN layer.
The process of leaving one's country to establish residence in a foreign country.
I'm sorry for any confusion, but "India" is not a medical term that can be defined in a medical context. It is a geographical location, referring to the Republic of India, a country in South Asia. If you have any questions related to medical topics or definitions, I would be happy to help with those!
Quinolines are heterocyclic aromatic organic compounds consisting of a two-nitrogened benzene ring fused to a pyridine ring, which have been synthesized and used as building blocks for various medicinal drugs, particularly antibiotics and antimalarials.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The study of disease in prehistoric times as revealed in bones, mummies, and archaeologic artifacts.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
X-ray visualization of the chest and organs of the thoracic cavity. It is not restricted to visualization of the lungs.
Simultaneous resistance to several structurally and functionally distinct drugs.
Round, granular, mononuclear phagocytes found in the alveoli of the lungs. They ingest small inhaled particles resulting in degradation and presentation of the antigen to immunocompetent cells.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Presence of fluid in the pleural cavity resulting from excessive transudation or exudation from the pleural surfaces. It is a sign of disease and not a diagnosis in itself.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
MYCOBACTERIUM infections of the male reproductive tract (GENITALIA, MALE).

Cell-mediated immunity: dealing a direct blow to pathogens. (1/9979)

Cytotoxic T lymphocytes are essential for defence against viral infections. Recent data demonstrating direct killing of intracellular bacteria by granulysin, a protein released from the granules of cytotoxic T lymphocytes, emphasize the contribution of these lymphocytes to the control of tuberculosis.  (+info)

Surfactant protein A suppresses reactive nitrogen intermediates by alveolar macrophages in response to Mycobacterium tuberculosis. (2/9979)

Mycobacterium tuberculosis attaches to, enters, and replicates within alveolar macrophages (AMs). Our previous studies suggest that surfactant protein A (SP-A) can act as a ligand in the attachment of M. tuberculosis to AMs. Reactive nitrogen intermediates (RNIs) play a significant role in the killing of mycobacteria. We have demonstrated that RNI levels generated by AMs were significantly increased when interferon-gamma-primed AMs were incubated with M. tuberculosis. However, the RNI levels were significantly suppressed in the presence of SP-A (10 microg/ml). The specificity of SP-A's effect was demonstrated by the use of F(ab')2 fragments of anti-SP-A monoclonal antibodies and by the use of mannosyl-BSA, which blocked the suppression of RNI levels by SP-A. Furthermore, incubation of deglycosylated SP-A with M. tuberculosis failed to suppress RNI by AMs, suggesting that the oligosaccharide component of SP-A, which binds to M. tuberculosis, is necessary for this effect. These results show that SP-A-mediated binding of M. tuberculosis to AMs significantly decreased RNI levels, suggesting that this may be one mechanism by which M. tuberculosis diminishes the cytotoxic response of activated AMs.  (+info)

Tuberculosis outbreaks in prison housing units for HIV-infected inmates--California, 1995-1996. (3/9979)

During 1995-1996, staff from the California departments of corrections and health services and local health departments investigated two outbreaks of drug-susceptible tuberculosis (TB). The outbreaks occurred in two state correctional institutions with dedicated HIV housing units. In each outbreak, all cases were linked by IS6110-based DNA fingerprinting of Mycobacterium tuberculosis isolates. This report describes the investigations of both outbreaks; the findings indicated that M. tuberculosis can spread rapidly among HIV-infected inmates and be transmitted to their visitors and prison employees, with secondary spread to the community.  (+info)

Influence of sampling on estimates of clustering and recent transmission of Mycobacterium tuberculosis derived from DNA fingerprinting techniques. (4/9979)

The availability of DNA fingerprinting techniques for Mycobacterium tuberculosis has led to attempts to estimate the extent of recent transmission in populations, using the assumption that groups of tuberculosis patients with identical isolates ("clusters") are likely to reflect recently acquired infections. It is never possible to include all cases of tuberculosis in a given population in a study, and the proportion of isolates found to be clustered will depend on the completeness of the sampling. Using stochastic simulation models based on real and hypothetical populations, the authors demonstrate the influence of incomplete sampling on the estimates of clustering obtained. The results show that as the sampling fraction increases, the proportion of isolates identified as clustered also increases and the variance of the estimated proportion clustered decreases. Cluster size is also important: the underestimation of clustering for any given sampling fraction is greater, and the variability in the results obtained is larger, for populations with small clusters than for those with the same number of individuals arranged in large clusters. A considerable amount of caution should be used in interpreting the results of studies on clustering of M. tuberculosis isolates, particularly when sampling fractions are small.  (+info)

A train passenger with pulmonary tuberculosis: evidence of limited transmission during travel. (5/9979)

In January 1996, smear- and culture-positive tuberculosis (TB) was diagnosed for a 22-year-old black man after he had traveled on two U.S. passenger trains (29.1 hours) and a bus (5.5 hours) over 2 days. To determine if transmission had occurred, passengers and crew were notified of the potential exposure and instructed to undergo a tuberculin skin test (TST). Of the 240 persons who completed screening, 4 (2%) had a documented TST conversion (increase in induration of > or = 10 mm between successive TSTs), 11 (5%) had a single positive TST (> or = 10 mm), and 225 (94%) had a negative TST (< 10 mm). For two persons who underwent conversion, no other risk factors for a conversion were identified other than exposure to the ill passenger during train and/or bus travel. These findings support limited transmission of Mycobacterium tuberculosis from a potentially highly infectious passenger to other persons during extended train and bus travel.  (+info)

Site-directed spin labeling study of subunit interactions in the alpha-crystallin domain of small heat-shock proteins. Comparison of the oligomer symmetry in alphaA-crystallin, HSP 27, and HSP 16.3. (6/9979)

Site-directed spin labeling was used to investigate quaternary interactions along a conserved sequence in the alpha-crystallin domain of alphaA-crystallin, heat-shock protein 27 (HSP 27), and Mycobacterium tuberculosis heat-shock protein (HSP 16.3). In previous work, it was demonstrated that this sequence in alphaA-crystallin and HSP 27 forms a beta-strand involved in subunit contacts. In this study, the symmetry and geometry of the resulting interface were investigated. For this purpose, the pattern of spin-spin interactions was analyzed, and the number of interacting spins was determined in alphaA-crystallin and HSP 27. The results reveal a 2-fold symmetric interface consisting of two beta-strands interacting near their N termini in an antiparallel fashion. Remarkably, subunit interactions along this interface persist when the alpha-crystallin domains are expressed in isolation. Because this domain in alphaA-crystallin forms dimers and tetramers, it is inferred that interactions along this interface mediate the formation of a basic dimeric unit. In contrast, in HSP 16.3, spin-spin interactions are observed at only one site near the C terminus of the sequence. Furthermore, cysteine substitutions at residues flanking the N terminus resulted in the dissociation of the oligomeric structure. Analysis of the spin-spin interactions and size exclusion chromatography indicates a 3-fold symmetric interface. Taken together, our results demonstrate that subunit interactions in the alpha-crystallin domain of mammalian small heat-shock proteins assemble a basic building block of the oligomeric structure. Sequence divergence in this domain results in variations in the size and symmetry of the quaternary structure between distant members of the small heat-shock protein family.  (+info)

Comparison of synonymous codon distribution patterns of bacteriophage and host genomes. (7/9979)

Synonymous codon usage patterns of bacteriophage and host genomes were compared. Two indexes, G + C base composition of a gene (fgc) and fraction of translationally optimal codons of the gene (fop), were used in the comparison. Synonymous codon usage data of all the coding sequences on a genome are represented as a cloud of points in the plane of fop vs. fgc. The Escherichia coli coding sequences appear to exhibit two phases, "rising" and "flat" phases. Genes that are essential for survival and are thought to be native are located in the flat phase, while foreign-type genes from prophages and transposons are found in the rising phase with a slope of nearly unity in the fgc vs. fop plot. Synonymous codon distribution patterns of genes from temperate phages P4, P2, N15 and lambda are similar to the pattern of E. coli rising phase genes. In contrast, genes from the virulent phage T7 or T4, for which a phage-encoded DNA polymerase is identified, fall in a linear curve with a slope of nearly zero in the fop vs. fgc plane. These results may suggest that the G + C contents for T7, T4 and E. coli flat phase genes are subject to the directional mutation pressure and are determined by the DNA polymerase used in the replication. There is significant variation in the fop values of the phage genes, suggesting an adjustment to gene expression level. Similar analyses of codon distribution patterns were carried out for Haemophilus influenzae, Bacillus subtilis, Mycobacterium tuberculosis and their phages with complete genomic sequences available.  (+info)

Fluoroquinolone action against clinical isolates of Mycobacterium tuberculosis: effects of a C-8 methoxyl group on survival in liquid media and in human macrophages. (8/9979)

When the lethal action of a C-8 methoxyl fluoroquinolone against clinical isolates of Mycobacterium tuberculosis in liquid medium was measured, the compound was found to be three to four times more effective (as determined by measuring the 90% lethal dose) than a C-8-H control fluoroquinolone or ciprofloxacin against cells having a wild-type gyrA (gyrase) gene. Against ciprofloxacin-resistant strains, the C-8 methoxyl group enhanced lethality when alanine was replaced by valine at position 90 of the GyrA protein or when aspartic acid 94 was replaced by glycine, histidine, or tyrosine. During infection of a human macrophage model by wild-type Mycobacterium bovis BCG, the C-8 methoxyl group lowered survival 20- to 100-fold compared with the same concentration of a C-8-H fluoroquinolone. The C-8 methoxyl fluoroquinolone was also more effective than ciprofloxacin against a gyrA Asn94 mutant of M. bovis BCG. In an M. tuberculosis-macrophage system the C-8 methoxyl group improved fluoroquinolone action against both quinolone-susceptible and quinolone-resistant clinical isolates. Thus, a C-8 methoxyl group enhances the bactericidal activity of quinolones with N1-cyclopropyl substitutions; these data encourage further refinement of fluoroquinolones as antituberculosis agents.  (+info)

'Mycobacterium tuberculosis' is a species of slow-growing, aerobic, gram-positive bacteria that demonstrates acid-fastness. It is the primary causative agent of tuberculosis (TB) in humans. This bacterium has a complex cell wall rich in lipids, including mycolic acids, which provides a hydrophobic barrier and makes it resistant to many conventional antibiotics. The ability of M. tuberculosis to survive within host macrophages and resist the immune response contributes to its pathogenicity and the difficulty in treating TB infections.

M. tuberculosis is typically transmitted through inhalation of infectious droplets containing the bacteria, which primarily targets the lungs but can spread to other parts of the body (extrapulmonary TB). The infection may result in a spectrum of clinical manifestations, ranging from latent TB infection (LTBI) to active disease. LTBI represents a dormant state where individuals are infected with M. tuberculosis but do not show symptoms and cannot transmit the bacteria. However, they remain at risk of developing active TB throughout their lifetime, especially if their immune system becomes compromised.

Effective prevention and control strategies for TB rely on early detection, treatment, and public health interventions to limit transmission. The current first-line treatments for drug-susceptible TB include a combination of isoniazid, rifampin, ethambutol, and pyrazinamide for at least six months. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis present significant challenges in TB control and require more complex treatment regimens.

Tuberculosis (TB) is a chronic infectious disease caused by the bacterium Mycobacterium tuberculosis. It primarily affects the lungs but can also involve other organs and tissues in the body. The infection is usually spread through the air when an infected person coughs, sneezes, or talks.

The symptoms of pulmonary TB include persistent cough, chest pain, coughing up blood, fatigue, fever, night sweats, and weight loss. Diagnosis typically involves a combination of medical history, physical examination, chest X-ray, and microbiological tests such as sputum smear microscopy and culture. In some cases, molecular tests like polymerase chain reaction (PCR) may be used for rapid diagnosis.

Treatment usually consists of a standard six-month course of multiple antibiotics, including isoniazid, rifampin, ethambutol, and pyrazinamide. In some cases, longer treatment durations or different drug regimens might be necessary due to drug resistance or other factors. Preventive measures include vaccination with the Bacillus Calmette-Guérin (BCG) vaccine and early detection and treatment of infected individuals to prevent transmission.

"Mycobacterium" is a genus of gram-positive, aerobic, rod-shaped bacteria that are characterized by their complex cell walls containing large amounts of lipids. This genus includes several species that are significant in human and animal health, most notably Mycobacterium tuberculosis, which causes tuberculosis, and Mycobacterium leprae, which causes leprosy. Other species of Mycobacterium can cause various diseases in humans, including skin and soft tissue infections, lung infections, and disseminated disease in immunocompromised individuals. These bacteria are often resistant to common disinfectants and antibiotics, making them difficult to treat.

Pulmonary tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. It primarily affects the lungs and can spread to other parts of the body through the bloodstream or lymphatic system. The infection typically enters the body when a person inhales droplets containing the bacteria, which are released into the air when an infected person coughs, sneezes, or talks.

The symptoms of pulmonary TB can vary but often include:

* Persistent cough that lasts for more than three weeks and may produce phlegm or blood-tinged sputum
* Chest pain or discomfort, particularly when breathing deeply or coughing
* Fatigue and weakness
* Unexplained weight loss
* Fever and night sweats
* Loss of appetite

Pulmonary TB can cause serious complications if left untreated, including damage to the lungs, respiratory failure, and spread of the infection to other parts of the body. Treatment typically involves a course of antibiotics that can last several months, and it is essential for patients to complete the full treatment regimen to ensure that the infection is fully eradicated.

Preventive measures include vaccination with the Bacillus Calmette-Guérin (BCG) vaccine, which can provide some protection against severe forms of TB in children, and measures to prevent the spread of the disease, such as covering the mouth and nose when coughing or sneezing, wearing a mask in public places, and avoiding close contact with people who have active TB.

"Mycobacterium bovis" is a species of slow-growing, aerobic, gram-positive bacteria in the family Mycobacteriaceae. It is the causative agent of tuberculosis in cattle and other animals, and can also cause tuberculosis in humans, particularly in those who come into contact with infected animals or consume unpasteurized dairy products from infected cows. The bacteria are resistant to many common disinfectants and survive for long periods in a dormant state, making them difficult to eradicate from the environment. "Mycobacterium bovis" is closely related to "Mycobacterium tuberculosis," the bacterium that causes tuberculosis in humans, and both species share many genetic and biochemical characteristics.

"Mycobacterium smegmatis" is a species of fast-growing, non-tuberculous mycobacteria (NTM). It is commonly found in the environment, including soil and water. This bacterium is known for its ability to form resistant colonies called biofilms. While it does not typically cause disease in humans, it can contaminate medical equipment and samples, potentially leading to misdiagnosis or infection. In rare cases, it has been associated with skin and soft tissue infections. It is often used in research as a model organism for studying mycobacterial biology and drug resistance due to its relatively harmless nature and rapid growth rate.

Mycobacterium infections are a group of infectious diseases caused by various species of the Mycobacterium genus, including but not limited to M. tuberculosis (which causes tuberculosis), M. avium complex (which causes pulmonary and disseminated disease, particularly in immunocompromised individuals), M. leprae (which causes leprosy), and M. ulcerans (which causes Buruli ulcer). These bacteria are known for their ability to resist destruction by normal immune responses and many disinfectants due to the presence of a waxy mycolic acid layer in their cell walls.

Infection typically occurs through inhalation, ingestion, or direct contact with contaminated materials. The severity and manifestations of the disease can vary widely depending on the specific Mycobacterium species involved, the route of infection, and the host's immune status. Symptoms may include cough, fever, night sweats, weight loss, fatigue, skin lesions, or lymphadenitis. Diagnosis often requires specialized laboratory tests, such as culture or PCR-based methods, to identify the specific Mycobacterium species involved. Treatment typically involves a combination of antibiotics and may require long-term therapy.

Antitubercular agents, also known as anti-tuberculosis drugs or simply TB drugs, are a category of medications specifically used for the treatment and prevention of tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis. These drugs target various stages of the bacteria's growth and replication process to eradicate it from the body or prevent its spread.

There are several first-line antitubercular agents, including:

1. Isoniazid (INH): This is a bactericidal drug that inhibits the synthesis of mycolic acids, essential components of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
2. Rifampin (RIF) or Rifampicin: A bactericidal drug that inhibits DNA-dependent RNA polymerase, preventing the transcription of genetic information into mRNA. This results in the interruption of protein synthesis and ultimately leads to the death of the bacteria.
3. Ethambutol (EMB): A bacteriostatic drug that inhibits the arabinosyl transferase enzyme, which is responsible for the synthesis of arabinan, a crucial component of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
4. Pyrazinamide (PZA): A bactericidal drug that inhibits the synthesis of fatty acids and mycolic acids in the mycobacterial cell wall, particularly under acidic conditions. PZA is most effective during the initial phase of treatment when the bacteria are in a dormant or slow-growing state.

These first-line antitubercular agents are often used together in a combination therapy to ensure complete eradication of the bacteria and prevent the development of drug-resistant strains. Treatment duration typically lasts for at least six months, with the initial phase consisting of daily doses of INH, RIF, EMB, and PZA for two months, followed by a continuation phase of INH and RIF for four months.

Second-line antitubercular agents are used when patients have drug-resistant TB or cannot tolerate first-line drugs. These include drugs like aminoglycosides (e.g., streptomycin, amikacin), fluoroquinolones (e.g., ofloxacin, moxifloxacin), and injectable bacteriostatic agents (e.g., capreomycin, ethionamide).

It is essential to closely monitor patients undergoing antitubercular therapy for potential side effects and ensure adherence to the treatment regimen to achieve optimal outcomes and prevent the development of drug-resistant strains.

Isoniazid is an antimicrobial medication used for the prevention and treatment of tuberculosis (TB). It is a first-line medication, often used in combination with other TB drugs, to kill the Mycobacterium tuberculosis bacteria that cause TB. Isoniazid works by inhibiting the synthesis of mycolic acids, which are essential components of the bacterial cell wall. This leads to bacterial death and helps to control the spread of TB.

Isoniazid is available in various forms, including tablets, capsules, and liquid solutions. It can be taken orally or given by injection. The medication is generally well-tolerated, but it can cause side effects such as peripheral neuropathy, hepatitis, and skin rashes. Regular monitoring of liver function tests and supplementation with pyridoxine (vitamin B6) may be necessary to prevent or manage these side effects.

It is important to note that Isoniazid is not effective against drug-resistant strains of TB, and its use should be guided by the results of drug susceptibility testing. Additionally, it is essential to complete the full course of treatment as prescribed to ensure the successful eradication of the bacteria and prevent the development of drug-resistant strains.

"Mycobacterium avium is a species of gram-positive, aerobic bacteria that belongs to the family Mycobacteriaceae. It is a slow-growing mycobacterium that is widely distributed in the environment, particularly in soil and water. M. avium is an opportunistic pathogen that can cause pulmonary disease, lymphadenitis, and disseminated infection in individuals with compromised immune systems, such as those with HIV/AIDS. It is also known to cause pulmonary disease in elderly people with structural lung damage. The bacteria are resistant to many common disinfectants and can survive in hostile environments for extended periods."

Multidrug-resistant tuberculosis (MDR-TB) is a form of tuberculosis (TB) infection caused by bacteria that are resistant to at least two of the first-line anti-TB drugs, isoniazid and rifampin. This makes MDR-TB more difficult and expensive to treat, requiring longer treatment durations and the use of second-line medications, which can have more severe side effects.

MDR-TB can occur when there are errors in prescribing or taking anti-TB drugs, or when people with TB do not complete their full course of treatment. It is a significant global health concern, particularly in low- and middle-income countries where TB is more prevalent and resources for diagnosis and treatment may be limited.

MDR-TB can spread from person to person through the air when someone with the infection coughs, speaks, or sneezes. People at higher risk of contracting MDR-TB include those who have been in close contact with someone with MDR-TB, people with weakened immune systems, and healthcare workers who treat TB patients.

Preventing the spread of MDR-TB involves early detection and prompt treatment, as well as infection control measures such as wearing masks, improving ventilation, and separating infected individuals from others. It is also important to ensure that anti-TB drugs are used correctly and that patients complete their full course of treatment to prevent the development of drug-resistant strains.

Nontuberculous mycobacteria (NTM) are a group of environmental mycobacteria that do not cause tuberculosis or leprosy. They can be found in water, soil, and other natural environments. Some people may become infected with NTM, leading to various diseases depending on the site of infection, such as lung disease (most common), skin and soft tissue infections, lymphadenitis, and disseminated disease.

The clinical significance of NTM isolation is not always clear, as colonization without active infection can occur. Diagnosis typically requires a combination of clinical, radiological, microbiological, and sometimes molecular evidence to confirm the presence of active infection. Treatment usually involves multiple antibiotics for an extended period, depending on the species involved and the severity of disease.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

A tuberculosis vaccine, also known as the BCG (Bacillus Calmette-Guérin) vaccine, is a type of immunization used to prevent tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis. The BCG vaccine contains a weakened strain of the bacteria that causes TB in cattle.

The BCG vaccine works by stimulating an immune response in the body, which helps to protect against severe forms of TB, such as TB meningitis and TB in children. However, it is not very effective at preventing pulmonary TB (TB that affects the lungs) in adults.

The BCG vaccine is not routinely recommended for use in the United States due to the low risk of TB infection in the general population. However, it may be given to people who are at high risk of exposure to TB, such as healthcare workers, laboratory personnel, and people traveling to countries with high rates of TB.

It is important to note that the BCG vaccine does not provide complete protection against TB and that other measures, such as testing and treatment for latent TB infection, are also important for controlling the spread of this disease.

Rifampin is an antibiotic medication that belongs to the class of drugs known as rifamycins. It works by inhibiting bacterial DNA-dependent RNA polymerase, thereby preventing bacterial growth and multiplication. Rifampin is used to treat a variety of infections caused by bacteria, including tuberculosis, Haemophilus influenzae, Neisseria meningitidis, and Legionella pneumophila. It is also used to prevent meningococcal disease in people who have been exposed to the bacteria.

Rifampin is available in various forms, including tablets, capsules, and injectable solutions. The medication is usually taken two to four times a day, depending on the type and severity of the infection being treated. Rifampin may be given alone or in combination with other antibiotics.

It is important to note that rifampin can interact with several other medications, including oral contraceptives, anticoagulants, and anti-seizure drugs, among others. Therefore, it is essential to inform your healthcare provider about all the medications you are taking before starting treatment with rifampin.

Rifampin may cause side effects such as nausea, vomiting, diarrhea, dizziness, headache, and changes in the color of urine, tears, sweat, and saliva to a reddish-orange color. These side effects are usually mild and go away on their own. However, if they persist or become bothersome, it is important to consult your healthcare provider.

In summary, rifampin is an antibiotic medication used to treat various bacterial infections and prevent meningococcal disease. It works by inhibiting bacterial DNA-dependent RNA polymerase, preventing bacterial growth and multiplication. Rifampin may interact with several other medications, and it can cause side effects such as nausea, vomiting, diarrhea, dizziness, headache, and changes in the color of body fluids.

"Mycobacterium leprae" is a slow-growing, rod-shaped, gram-positive bacterium that is the causative agent of leprosy, a chronic infectious disease that primarily affects the skin, peripheral nerves, and mucosal surfaces of the upper respiratory tract. The bacterium was discovered in 1873 by Gerhard Armauer Hansen, a Norwegian physician, and is named after him as "Hansen's bacillus."

"Mycobacterium leprae" has a unique cell wall that contains high amounts of lipids, which makes it resistant to many common disinfectants and antibiotics. It can survive and multiply within host macrophages, allowing it to evade the immune system and establish a chronic infection.

Leprosy is a treatable disease with multidrug therapy (MDT), which combines several antibiotics such as dapsone, rifampicin, and clofazimine. Early diagnosis and treatment can prevent the progression of the disease and reduce its transmission to others.

Mycobacterium avium Complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. These bacteria are commonly found in water, soil, and dust, and can cause pulmonary disease, lymphadenitis, and disseminated infection, particularly in individuals with compromised immune systems, such as those with HIV/AIDS. The infection caused by MAC is often chronic and difficult to eradicate, requiring long-term antibiotic therapy.

Nontuberculous Mycobacterium (NTM) infections refer to illnesses caused by a group of bacteria called mycobacteria that do not cause tuberculosis or leprosy. These bacteria are commonly found in the environment, such as in water, soil, and dust. They can be spread through inhalation, ingestion, or contact with contaminated materials.

NTM infections can affect various parts of the body, including the lungs, skin, and soft tissues. Lung infections are the most common form of NTM infection and often occur in people with underlying lung conditions such as chronic obstructive pulmonary disease (COPD) or bronchiectasis. Symptoms of NTM lung infection may include cough, fatigue, weight loss, fever, and night sweats.

Skin and soft tissue infections caused by NTM can occur through direct contact with contaminated water or soil, or through medical procedures such as contaminated injections or catheters. Symptoms of NTM skin and soft tissue infections may include redness, swelling, pain, and drainage.

Diagnosis of NTM infections typically involves a combination of clinical symptoms, imaging studies, and laboratory tests to identify the specific type of mycobacteria causing the infection. Treatment may involve multiple antibiotics for an extended period of time, depending on the severity and location of the infection.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

BCG (Bacillus Calmette-Guérin) vaccine is a type of immunization used primarily to prevent tuberculosis (TB). It contains a live but weakened strain of Mycobacterium bovis, which is related to the bacterium that causes TB in humans (Mycobacterium tuberculosis).

The BCG vaccine works by stimulating an immune response in the body, enabling it to better resist infection with TB bacteria if exposed in the future. It is often given to infants and children in countries where TB is common, and its use varies depending on the national immunization policies. The protection offered by the BCG vaccine is moderate and may not last for a very long time.

In addition to its use against TB, the BCG vaccine has also been investigated for its potential therapeutic role in treating bladder cancer and some other types of cancer. The mechanism of action in these cases is thought to be related to the vaccine's ability to stimulate an immune response against abnormal cells.

Pyrazinamide is an antituberculosis agent, a type of medication used to treat tuberculosis (TB) caused by Mycobacterium tuberculosis. It is an antimicrobial drug that works by inhibiting the growth of the bacterium. Pyrazinamide is often used in combination with other TB drugs such as isoniazid, rifampin, and ethambutol.

The medical definition of Pyrazinamide is: a synthetic antituberculosis agent, C6H5N3O (a pyridine derivative), used in the treatment of tuberculosis, especially in combination with isoniazid and rifampin. It is converted in the body to its active form, pyrazinoic acid, which inhibits the growth of Mycobacterium tuberculosis by interfering with bacterial cell wall synthesis.

It's important to note that Pyrazinamide should be used under the supervision of a healthcare professional and is usually prescribed for several months to ensure complete eradication of the TB bacteria. As with any medication, it can cause side effects, and individuals should report any unusual symptoms to their healthcare provider.

Ethambutol is an antimycobacterial medication used for the treatment of tuberculosis (TB). It works by inhibiting the synthesis of mycobacterial cell walls, which leads to the death of the bacteria. Ethambutol is often used in combination with other TB drugs, such as isoniazid and rifampin, to prevent the development of drug-resistant strains of the bacteria.

The most common side effect of ethambutol is optic neuritis, which can cause visual disturbances such as decreased vision, color blindness, or blurred vision. This side effect is usually reversible if the medication is stopped promptly. Other potential side effects include skin rashes, joint pain, and gastrointestinal symptoms such as nausea and vomiting.

Ethambutol is available in oral tablet and solution forms, and is typically taken once or twice daily. The dosage of ethambutol is based on the patient's weight, and it is important to follow the healthcare provider's instructions carefully to avoid toxicity. Regular monitoring of visual acuity and liver function is recommended during treatment with ethambutol.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Antitubercular antibiotics are a class of medications specifically used to treat tuberculosis (TB) and other mycobacterial infections. Tuberculosis is caused by the bacterium Mycobacterium tuberculosis, which can affect various organs, primarily the lungs.

There are several antitubercular antibiotics available, with different mechanisms of action that target the unique cell wall structure and metabolism of mycobacteria. Some commonly prescribed antitubercular antibiotics include:

1. Isoniazid (INH): This is a first-line medication for treating TB. It inhibits the synthesis of mycolic acids, a crucial component of the mycobacterial cell wall. Isoniazid can be bactericidal or bacteriostatic depending on the concentration and duration of treatment.
2. Rifampin (RIF): Also known as rifampicin, this antibiotic inhibits bacterial DNA-dependent RNA polymerase, preventing the transcription of genetic information into mRNA. It is a potent bactericidal agent against mycobacteria and is often used in combination with other antitubercular drugs.
3. Ethambutol (EMB): This antibiotic inhibits the synthesis of arabinogalactan and mycolic acids, both essential components of the mycobacterial cell wall. Ethambutol is primarily bacteriostatic but can be bactericidal at higher concentrations.
4. Pyrazinamide (PZA): This medication is active against dormant or slow-growing mycobacteria, making it an essential component of TB treatment regimens. Its mechanism of action involves the inhibition of fatty acid synthesis and the disruption of bacterial membrane potential.
5. Streptomycin: An aminoglycoside antibiotic that binds to the 30S ribosomal subunit, inhibiting protein synthesis in mycobacteria. It is primarily used as a second-line treatment for drug-resistant TB.
6. Fluoroquinolones: These are a class of antibiotics that inhibit DNA gyrase and topoisomerase IV, essential enzymes involved in bacterial DNA replication. Examples include ciprofloxacin, moxifloxacin, and levofloxacin, which can be used as second-line treatments for drug-resistant TB.

These antitubercular drugs are often used in combination to prevent the development of drug resistance and improve treatment outcomes. The World Health Organization (WHO) recommends a standardized regimen consisting of isoniazid, rifampicin, ethambutol, and pyrazinamide for the initial two months, followed by isoniazid and rifampicin for an additional four to seven months. However, treatment regimens may vary depending on the patient's clinical presentation, drug susceptibility patterns, and local guidelines.

Sputum is defined as a mixture of saliva and phlegm that is expelled from the respiratory tract during coughing, sneezing or deep breathing. It can be clear, mucoid, or purulent (containing pus) depending on the underlying cause of the respiratory issue. Examination of sputum can help diagnose various respiratory conditions such as infections, inflammation, or other lung diseases.

"Mycobacterium marinum" is a slow-growing, gram-positive bacterium that belongs to the group of nontuberculous mycobacteria (NTM). It is commonly found in fresh and saltwater environments, including aquariums and swimming pools. This pathogen can cause skin infections, known as swimmer's granuloma or fish tank granuloma, in individuals who have exposure to contaminated water. The infection typically occurs through minor cuts or abrasions on the skin, leading to a localized, chronic, and slowly progressive lesion. In some cases, disseminated infection can occur in people with weakened immune systems.

References:
1. Chan, R. C., & Cohen, S. M. (2017). Nontuberculous mycobacterial skin infections. Clinics in dermatology, 35(4), 416-423.
2. Kohler, P., Bloch, A., & Pfyffer, G. E. (2002). Nontuberculous mycobacteria: an overview. Swiss medical weekly, 132(35-36), 548-557.
3. Sanguinetti, M., & Bloch, S. A. (2019). Mycobacterium marinum skin infection. American journal of clinical dermatology, 20(2), 219-226.

"Mycobacterium fortuitum" is a rapidly growing mycobacterium (RGM) species that is commonly found in the environment, particularly in soil and water. It is a gram-positive, aerobic, non-tuberculous mycobacteria (NTM) that can cause a variety of infections in humans, including skin and soft tissue infections, lung infections, and disseminated disease.

M. fortuitum is known for its ability to form colonies on solid media within one week, which distinguishes it from other slow-growing mycobacteria such as Mycobacterium tuberculosis. It is also resistant to many common antibiotics, making treatment challenging. Infections caused by M. fortuitum are often associated with exposure to contaminated medical devices or procedures, such as contaminated tattoos, wound care, or invasive medical procedures.

It's important to note that while M. fortuitum can cause infections, it is not considered a highly virulent pathogen and most people who are exposed to it do not develop symptoms. However, individuals with weakened immune systems, such as those with HIV/AIDS or receiving immunosuppressive therapy, may be at higher risk for severe disease.

Mycolic acids are complex, long-chain fatty acids that are a major component of the cell wall in mycobacteria, including the bacteria responsible for tuberculosis and leprosy. These acids contribute to the impermeability and resistance to chemical agents of the mycobacterial cell wall, making these organisms difficult to eradicate. Mycolic acids are unique to mycobacteria and some related actinomycetes, and their analysis can be useful in the identification and classification of these bacteria.

A tuberculin test is a medical procedure used to determine if someone has developed an immune response to the bacterium that causes tuberculosis (TB), Mycobacterium tuberculosis. The test involves injecting a small amount of purified protein derivative (PPD) from the TB bacteria under the skin, usually on the forearm. After 48-72 hours, the area is examined for signs of a reaction, such as swelling, redness, or hardness. A positive result suggests that the person has been infected with TB at some point in the past, although it does not necessarily mean that they have active TB disease. However, individuals who have a positive tuberculin test should be evaluated further to determine if they need treatment for latent TB infection or active TB disease.

"Mycobacterium kansasii" is a slow-growing, gram-positive bacterium that belongs to the group of nontuberculous mycobacteria (NTM). It is named after the state of Kansas where it was first isolated. This bacterium can cause pulmonary and extrapulmonary infections in humans, particularly in individuals with compromised immune systems or underlying lung diseases such as chronic obstructive pulmonary disease (COPD) and bronchiectasis.

The symptoms of M. kansasii infection are similar to those of tuberculosis and can include cough, fever, night sweats, fatigue, weight loss, and chest pain. The diagnosis of M. kansasii infection is usually made by culturing the bacterium from clinical specimens such as sputum or bronchoalveolar lavage fluid. Treatment typically involves a combination of antibiotics such as rifampin, ethambutol, and isoniazid for an extended period of time, often up to 12-24 months.

"Mycobacterium chelonae" is a rapidly growing, gram-positive bacterium that belongs to the group of nontuberculous mycobacteria (NTM). It is widely distributed in the environment, particularly in water and soil. This organism can cause various types of infections in humans, ranging from localized skin and soft tissue infections to disseminated disease, especially in immunocompromised individuals. Infections are typically acquired through contaminated wounds, medical procedures, or inhalation of aerosolized particles. Common clinical manifestations include cutaneous abscesses, lung infections, catheter-related bloodstream infections, and ocular infections. Proper identification and targeted antimicrobial therapy are essential for the management of "Mycobacterium chelonae" infections.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Bovine tuberculosis (BTB) is a chronic infectious disease caused by the bacterium Mycobacterium bovis. It primarily affects cattle but can also spread to other mammals including humans, causing a similar disease known as zoonotic tuberculosis. The infection in animals typically occurs through inhalation of infectious droplets or ingestion of contaminated feed and water.

In cattle, the disease often affects the respiratory system, leading to symptoms such as chronic coughing, weight loss, and difficulty breathing. However, it can also affect other organs, including the intestines, lymph nodes, and mammary glands. Diagnosis of BTB typically involves a combination of clinical signs, laboratory tests, and epidemiological data.

Control measures for BTB include regular testing and culling of infected animals, movement restrictions, and vaccination of susceptible populations. In many countries, BTB is a notifiable disease, meaning that cases must be reported to the authorities. Proper cooking and pasteurization of dairy products can help prevent transmission to humans.

Bacteriological techniques refer to the various methods and procedures used in the laboratory for the cultivation, identification, and study of bacteria. These techniques are essential in fields such as medicine, biotechnology, and research. Here are some common bacteriological techniques:

1. **Sterilization**: This is a process that eliminates or kills all forms of life, including bacteria, viruses, fungi, and spores. Common sterilization methods include autoclaving (using steam under pressure), dry heat (in an oven), chemical sterilants, and radiation.

2. **Aseptic Technique**: This refers to practices used to prevent contamination of sterile materials or environments with microorganisms. It includes the use of sterile equipment, gloves, and lab coats, as well as techniques such as flaming, alcohol swabbing, and using aseptic transfer devices.

3. **Media Preparation**: This involves the preparation of nutrient-rich substances that support bacterial growth. There are various types of media, including solid (agar), liquid (broth), and semi-solid (e.g., stab agar). The choice of medium depends on the type of bacteria being cultured and the purpose of the investigation.

4. **Inoculation**: This is the process of introducing a bacterial culture into a medium. It can be done using a loop, swab, or needle. The inoculum should be taken from a pure culture to avoid contamination.

5. **Incubation**: After inoculation, the bacteria are allowed to grow under controlled conditions of temperature, humidity, and atmospheric composition. This process is called incubation.

6. **Staining and Microscopy**: Bacteria are too small to be seen with the naked eye. Therefore, they need to be stained and observed under a microscope. Gram staining is a common method used to differentiate between two major groups of bacteria based on their cell wall composition.

7. **Biochemical Tests**: These are tests used to identify specific bacterial species based on their biochemical characteristics, such as their ability to ferment certain sugars, produce particular enzymes, or resist certain antibiotics.

8. **Molecular Techniques**: Advanced techniques like PCR and DNA sequencing can provide more precise identification of bacteria. They can also be used for genetic analysis and epidemiological studies.

Remember, handling microorganisms requires careful attention to biosafety procedures to prevent accidental infection or environmental contamination.

Miliary tuberculosis is a disseminated form of tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis. The term "miliary" refers to the tiny millet-like size (2-5 microns in diameter) of the TB foci observed in the lungs or other organs during autopsy or on imaging studies. In military tuberculosis, these small granules are widespread throughout the body, affecting multiple organs such as the lungs, liver, spleen, bones, and brain. It can occur in people with weakened immune systems, including those with HIV/AIDS, or in individuals who have recently been infected with TB bacteria. Symptoms may include fever, night sweats, weight loss, fatigue, and cough. Early diagnosis and treatment are crucial to prevent severe complications and improve outcomes.

Mycobacteriophages are viruses that infect and replicate within mycobacteria, which include species such as Mycobacterium tuberculosis and Mycobacterium smegmatis. These viruses are important tools in the study of mycobacterial biology, genetics, and evolution. They have also been explored for their potential therapeutic use in treating mycobacterial infections, including tuberculosis.

Mycobacteriophages typically have double-stranded DNA genomes that range in size from around 50 to 170 kilobases. They can be classified into different groups or "clusters" based on genetic similarities and differences. Some mycobacteriophages are temperate, meaning they can either replicate lytically (killing the host cell) or establish a persistent relationship with the host by integrating their genome into the host's chromosome as a prophage. Others are strictly lytic and always kill the host cell upon infection.

Understanding the biology of mycobacteriophages can provide insights into the basic mechanisms of virus-host interactions, DNA replication, gene regulation, and other fundamental processes. Additionally, studying the diversity of mycobacteriophages can shed light on evolutionary relationships among different mycobacterial species and strains.

Latent Tuberculosis (TB) infection is defined as a state of persistent immune response to stimulation by Mycobacterium tuberculosis without evidence of clinically manifest active TB disease. The individuals with latent TB infection do not feel ill and are not infectious. However, they may develop active TB disease later in their lives, typically within the first 2 years after infection. It's estimated that about 5-10% of people with latent TB infection will develop active TB disease during their lifetime. The risk is higher in people who have weakened immune systems due to HIV infection, malnutrition, aging, or use of immunosuppressive medications. Diagnosis of latent TB infection is typically made through a tuberculin skin test or an interferon-gamma release assay (IGRA). Treatment of latent TB infection can reduce the risk of developing active TB disease.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Tuberculosis (TB) of the lymph node, also known as scrofula or tuberculous lymphadenitis, is a specific form of extrapulmonary tuberculosis. It involves the infection and inflammation of the lymph nodes (lymph glands) by the Mycobacterium tuberculosis bacterium. The lymph nodes most commonly affected are the cervical (neck) and supraclavicular (above the collarbone) lymph nodes, but other sites can also be involved.

The infection typically spreads to the lymph nodes through the bloodstream or via nearby infected organs, such as the lungs or intestines. The affected lymph nodes may become enlarged, firm, and tender, forming masses called cold abscesses that can suppurate (form pus) and eventually rupture. In some cases, the lymph nodes may calcify, leaving hard, stone-like deposits.

Diagnosis of tuberculous lymphadenitis often involves a combination of clinical evaluation, imaging studies (such as CT or MRI scans), and microbiological or histopathological examination of tissue samples obtained through fine-needle aspiration biopsy or surgical excision. Treatment typically consists of a standard anti-tuberculosis multi-drug regimen, which may include isoniazid, rifampin, ethambutol, and pyrazinamide for at least six months. Surgical intervention might be necessary in cases with complications or treatment failure.

Medical Definition:

Mycobacterium avium subspecies paratuberculosis (M. avium subsp. paratuberculosis) is a type of mycobacteria that causes a chronic infectious disease known as paratuberculosis or Johne's disease in domestic and wild animals, particularly ruminants such as cattle, sheep, goats, and deer. The infection primarily affects the intestines, leading to chronic diarrhea, weight loss, and decreased milk production in affected animals.

M. avium subsp. paratuberculosis is a slow-growing mycobacteria, which makes it difficult to culture and identify. It is resistant to many common disinfectants and can survive in the environment for long periods, facilitating its transmission between animals through contaminated feces, water, food, or milk.

Human infection with M. avium subsp. paratuberculosis is rare, but it has been implicated as a possible cause of Crohn's disease, a chronic inflammatory bowel condition in humans. However, the evidence for this association is still controversial and requires further research.

Mycobacterium avium-intracellulare (M. avium-intracellulare) infection is a type of nontuberculous mycobacterial (NTM) lung disease caused by the environmental pathogens Mycobacterium avium and Mycobacterium intracellulare, which are commonly found in water, soil, and dust. These bacteria can cause pulmonary infection, especially in individuals with underlying lung conditions such as chronic obstructive pulmonary disease (COPD), bronchiectasis, or prior tuberculosis infection.

M. avium-intracellulare infection typically presents with symptoms like cough, fatigue, weight loss, fever, night sweats, and sputum production. Diagnosis is established through a combination of clinical presentation, radiographic findings, and microbiological culture of respiratory samples. Treatment usually involves a multidrug regimen consisting of macrolides (such as clarithromycin or azithromycin), ethambutol, and rifamycins (such as rifampin or rifabutin) for an extended period, often 12-24 months. Eradication of the infection can be challenging due to the bacteria's inherent resistance to many antibiotics and its ability to survive within host cells.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

DNA fingerprinting, also known as DNA profiling or genetic fingerprinting, is a laboratory technique used to identify and compare the unique genetic makeup of individuals by analyzing specific regions of their DNA. This method is based on the variation in the length of repetitive sequences of DNA called variable number tandem repeats (VNTRs) or short tandem repeats (STRs), which are located at specific locations in the human genome and differ significantly among individuals, except in the case of identical twins.

The process of DNA fingerprinting involves extracting DNA from a sample, amplifying targeted regions using the polymerase chain reaction (PCR), and then separating and visualizing the resulting DNA fragments through electrophoresis. The fragment patterns are then compared to determine the likelihood of a match between two samples.

DNA fingerprinting has numerous applications in forensic science, paternity testing, identity verification, and genealogical research. It is considered an essential tool for providing strong evidence in criminal investigations and resolving disputes related to parentage and inheritance.

Meningeal tuberculosis, also known as Tuberculous meningitis, is a severe form of tuberculosis (TB) that affects the meninges, which are the membranes covering the brain and spinal cord. It is caused by the Mycobacterium tuberculosis bacterium, which can spread through the bloodstream from a primary infection site in the lungs or elsewhere in the body.

In meningeal tuberculosis, the bacteria cause inflammation and thickening of the meninges, leading to increased intracranial pressure, cerebral edema, and vasculitis. These conditions can result in various neurological symptoms such as headache, fever, stiff neck, altered mental status, seizures, and focal neurologic deficits. If left untreated, meningeal tuberculosis can lead to severe complications, including brain damage, hydrocephalus, and even death.

Diagnosis of meningeal tuberculosis typically involves a combination of clinical symptoms, cerebrospinal fluid (CSF) analysis, imaging studies, and sometimes molecular or culture-based tests to detect the presence of Mycobacterium tuberculosis in the CSF. Treatment usually involves a prolonged course of antibiotics specifically designed to target TB, such as isoniazid, rifampin, ethambutol, and pyrazinamide, often administered for six to nine months or longer. In some cases, corticosteroids may also be used to reduce inflammation and prevent complications.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

Cutaneous tuberculosis (CTB) is a rare form of tuberculosis that affects the skin. It is caused by the Mycobacterium tuberculosis complex, including M. tuberculosis, M. bovis, and M. africanum. CTB can occur as a primary infection after direct inoculation of the skin with the bacteria, or it can be secondary to a distant focus of infection such as lung or lymph node TB.

The clinical presentation of CTB is varied and can include papules, nodules, pustules, ulcers, plaques, or scaly lesions. The lesions may be painless or painful, and they can be associated with systemic symptoms such as fever, night sweats, and weight loss.

CTB can be diagnosed through a combination of clinical examination, skin biopsy, culture, and PCR testing. Treatment typically involves a prolonged course of multiple antibiotics, often for six to nine months or more. The most commonly used drugs are isoniazid, rifampin, ethambutol, and pyrazinamide. Surgical excision may be necessary in some cases.

Prevention measures include early detection and treatment of pulmonary TB, BCG vaccination, and avoiding contact with people with active TB.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

"Mycobacterium phlei" is not a recognized medical condition or disease. Mycobacterium phlei is actually a species of non-tuberculous mycobacteria (NTM) that is commonly found in the environment, such as in soil and water. It is often used in laboratory settings as a reference strain for mycobacterial identification and research. This bacterium is not known to cause disease in humans and is generally considered to be non-pathogenic.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Extensively Drug-Resistant Tuberculosis (XDR-TB) is a term used to describe a rare, severe form of tuberculosis (TB) that is resistant to the majority of available drugs used to treat TB. This means that the bacteria that cause TB have developed resistance to at least four of the core anti-TB drugs, including isoniazid and rifampin, as well as any fluoroquinolone and at least one of the three injectable second-line drugs (amikacin, capreomycin, or kanamycin).

XDR-TB can be challenging to diagnose and treat due to its resistance to multiple drugs. It is also more likely to cause severe illness, spread from person to person, and result in poor treatment outcomes compared to drug-susceptible TB. XDR-TB is a public health concern, particularly in areas with high rates of TB and limited access to effective treatments.

It's important to note that XDR-TB should not be confused with Multi-Drug Resistant Tuberculosis (MDR-TB), which refers to TB that is resistant to at least isoniazid and rifampin, but not necessarily to the other second-line drugs.

"Mycobacterium ulcerans" is a slow-growing mycobacterium that is the causative agent of a chronic infection known as Buruli ulcer. This bacterium is naturally found in aquatic environments and can infect humans through minor traumas or wounds on the skin. The infection typically begins as a painless nodule or papule, which may progress to form necrotic ulcers if left untreated. The bacteria produce a unique toxin called mycolactone, which is responsible for the extensive tissue damage and destruction observed in Buruli ulcers.

Osteoarticular tuberculosis is a form of extrapulmonary tuberculosis (TB) that involves the bones and joints. It is caused by the bacterium Mycobacterium tuberculosis. The infection can spread to the bones and joints through the bloodstream or from nearby infected organs, such as the lungs.

The most commonly affected sites are the spine (Pott's disease), hip, knee, wrist, and small bones of the hands and feet. Symptoms may include pain, swelling, stiffness, and decreased range of motion in the affected joint or bone. In some cases, the infection can lead to deformity, chronic disability, or even death if left untreated.

Diagnosis typically involves a combination of medical history, physical examination, imaging studies (such as X-rays, CT scans, or MRI), and laboratory tests (such as blood tests, sputum cultures, or biopsy). Treatment usually consists of a long course of antibiotics (usually for at least six months) to kill the bacteria. Surgery may also be necessary in some cases to remove infected tissue or stabilize damaged joints.

Interferon-gamma (IFN-γ) is a soluble cytokine that is primarily produced by the activation of natural killer (NK) cells and T lymphocytes, especially CD4+ Th1 cells and CD8+ cytotoxic T cells. It plays a crucial role in the regulation of the immune response against viral and intracellular bacterial infections, as well as tumor cells. IFN-γ has several functions, including activating macrophages to enhance their microbicidal activity, increasing the presentation of major histocompatibility complex (MHC) class I and II molecules on antigen-presenting cells, stimulating the proliferation and differentiation of T cells and NK cells, and inducing the production of other cytokines and chemokines. Additionally, IFN-γ has direct antiproliferative effects on certain types of tumor cells and can enhance the cytotoxic activity of immune cells against infected or malignant cells.

Pleural Tuberculosis is a form of extrapulmonary tuberculosis (EPTB) that involves the infection and inflammation of the pleura, which are the thin membranes that surround the lungs and line the inside of the chest cavity. This condition is caused by the Mycobacterium tuberculosis bacterium, which can spread through the air when an infected person coughs, sneezes, or talks.

In pleural tuberculosis, the bacteria reach the pleura either through direct extension from a nearby lung infection or via bloodstream dissemination. The infection can cause the pleura to become inflamed and produce excess fluid, leading to pleural effusion. This accumulation of fluid in the pleural space can cause chest pain, coughing, and difficulty breathing.

Diagnosis of pleural tuberculosis typically involves a combination of medical history, physical examination, imaging studies such as chest X-rays or CT scans, and laboratory tests such as acid-fast bacilli (AFB) smear microscopy, culture, and nucleic acid amplification tests (NAATs) to detect the presence of M. tuberculosis in the pleural fluid or tissue samples.

Treatment of pleural tuberculosis typically involves a standard course of anti-tuberculosis therapy (ATT), which includes a combination of multiple antibiotics such as isoniazid, rifampin, ethambutol, and pyrazinamide. The duration of treatment may vary depending on the severity of the infection and the patient's response to therapy. In some cases, surgical intervention may be necessary to drain the pleural effusion or remove the infected pleura.

Tuberculin is not a medical condition but a diagnostic tool used in the form of a purified protein derivative (PPD) to detect tuberculosis infection. It is prepared from the culture filtrate of Mycobacterium tuberculosis, the bacterium that causes TB. The PPD tuberculin is injected intradermally, and the resulting skin reaction is measured after 48-72 hours to determine if a person has developed an immune response to the bacteria, indicating a past or present infection with TB. It's important to note that a positive tuberculin test does not necessarily mean that active disease is present, but it does indicate that further evaluation is needed.

Gastrointestinal tuberculosis (GTB) is a type of tuberculosis that affects the gastrointestinal tract, including the stomach, intestines, and associated organs such as the liver and spleen. It is caused by the bacterium Mycobacterium tuberculosis, which typically infects the lungs (pulmonary TB) but can spread to other parts of the body through the bloodstream or lymphatic system.

In GTB, the bacteria invade the tissues of the gastrointestinal tract and cause inflammation, ulceration, and thickening of the intestinal wall. This can lead to a variety of symptoms, including abdominal pain, diarrhea (which may be bloody), weight loss, fever, and fatigue. GTB can also cause complications such as bowel obstruction, perforation, or fistula formation.

Diagnosis of GTB can be challenging, as the symptoms are non-specific and can mimic those of other gastrointestinal disorders. Diagnostic tests may include endoscopy, biopsy, culture, and molecular testing for the presence of M. tuberculosis. Treatment typically involves a prolonged course of multiple antibiotics, such as isoniazid, rifampin, ethambutol, and pyrazinamide, administered under the guidance of a healthcare provider.

It's worth noting that GTB is relatively rare in developed countries with low rates of tuberculosis, but it is more common in areas where TB is endemic or among populations with weakened immune systems, such as those with HIV/AIDS.

DNA transposable elements, also known as transposons or jumping genes, are mobile genetic elements that can change their position within a genome. They are composed of DNA sequences that include genes encoding the enzymes required for their own movement (transposase) and regulatory elements. When activated, the transposase recognizes specific sequences at the ends of the element and catalyzes the excision and reintegration of the transposable element into a new location in the genome. This process can lead to genetic variation, as the insertion of a transposable element can disrupt the function of nearby genes or create new combinations of gene regulatory elements. Transposable elements are widespread in both prokaryotic and eukaryotic genomes and are thought to play a significant role in genome evolution.

Streptomycin is an antibiotic drug derived from the actinobacterium Streptomyces griseus. It belongs to the class of aminoglycosides and works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial death.

Streptomycin is primarily used to treat a variety of infections caused by gram-negative and gram-positive bacteria, including tuberculosis, brucellosis, plague, tularemia, and certain types of bacterial endocarditis. It is also used as part of combination therapy for the treatment of multidrug-resistant tuberculosis (MDR-TB).

Like other aminoglycosides, streptomycin has a narrow therapeutic index and can cause ototoxicity (hearing loss) and nephrotoxicity (kidney damage) with prolonged use or high doses. Therefore, its use is typically limited to cases where other antibiotics are ineffective or contraindicated.

It's important to note that the use of streptomycin requires careful monitoring of drug levels and kidney function, as well as regular audiometric testing to detect any potential hearing loss.

Tuberculosis (TB) of the spine, also known as Pott's disease, is a specific form of extrapulmonary tuberculosis that involves the vertebral column. It is caused by the Mycobacterium tuberculosis bacterium, which primarily affects the lungs but can spread through the bloodstream to other parts of the body, including the spine.

In Pott's disease, the infection leads to the destruction of the spongy bone (vertebral body) and the intervertebral disc space, resulting in vertebral collapse, kyphosis (hunchback deformity), and potential neurological complications due to spinal cord compression. Common symptoms include back pain, stiffness, fever, night sweats, and weight loss. Early diagnosis and treatment with a multidrug antibiotic regimen are crucial to prevent long-term disability and further spread of the infection.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Ethionamide is an antimicrobial medication used to treat tuberculosis (TB) caused by drug-resistant strains of the bacterium Mycobacterium tuberculosis. It belongs to a class of drugs called thioamides, which work by inhibiting the bacteria's ability to synthesize its cell wall.

Ethionamide is often used in combination with other TB medications to prevent the development of drug-resistant strains and improve treatment outcomes. Common side effects of ethionamide include gastrointestinal symptoms such as nausea, vomiting, and loss of appetite, as well as neurological symptoms such as dizziness, headache, and peripheral neuropathy.

It is important to note that the use of ethionamide should be under the close supervision of a healthcare professional, as it can cause serious side effects and its effectiveness may be affected by drug interactions or individual patient factors.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

A granuloma is a small, nodular inflammatory lesion that occurs in various tissues in response to chronic infection, foreign body reaction, or autoimmune conditions. Histologically, it is characterized by the presence of epithelioid macrophages, which are specialized immune cells with enlarged nuclei and abundant cytoplasm, often arranged in a palisading pattern around a central area containing necrotic debris, microorganisms, or foreign material.

Granulomas can be found in various medical conditions such as tuberculosis, sarcoidosis, fungal infections, and certain autoimmune disorders like Crohn's disease. The formation of granulomas is a complex process involving both innate and adaptive immune responses, which aim to contain and eliminate the offending agent while minimizing tissue damage.

Capreomycin is an antibiotic drug that is primarily used to treat tuberculosis (TB) that is resistant to other first-line medications. It belongs to a class of drugs called cyclic polypeptides, which work by inhibiting bacterial protein synthesis. Capreomycin is administered via intramuscular injection and is typically used in combination with other anti-TB drugs as part of a multidrug regimen.

The medical definition of 'Capreomycin' is:

A cyclic polypeptide antibiotic derived from Streptomyces capreolus, used in the treatment of tuberculosis, particularly drug-resistant strains. It inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit and is administered intramuscularly.

Cord factors are a group of glycolipids that are found on the surface of mycobacteria, including Mycobacterium tuberculosis, which is the bacterium that causes tuberculosis. These cord factors are called "cord factors" because they help to form characteristic "cords" or cable-like structures when mycobacteria grow in clumps.

Cord factors contribute to the virulence of mycobacteria by inhibiting the ability of certain immune cells, such as macrophages, to destroy the bacteria. They do this by preventing the fusion of lysosomes (which contain enzymes that can break down and kill the bacteria) with phagosomes (the compartments in which the bacteria are contained within the macrophage). This allows the mycobacteria to survive and replicate inside the host cells, leading to the development of tuberculosis.

Cord factors have also been shown to induce the production of pro-inflammatory cytokines, which can contribute to tissue damage and the pathogenesis of tuberculosis. Therefore, cord factors are an important target for the development of new therapies and vaccines against tuberculosis.

Multiple bacterial drug resistance (MDR) is a medical term that refers to the resistance of multiple strains of bacteria to several antibiotics or antimicrobial agents. This means that these bacteria have developed mechanisms that enable them to survive and multiply despite being exposed to drugs that were previously effective in treating infections caused by them.

MDR is a significant public health concern because it limits the treatment options available for bacterial infections, making them more difficult and expensive to treat. In some cases, MDR bacteria may cause severe or life-threatening infections that are resistant to all available antibiotics, leaving doctors with few or no effective therapeutic options.

MDR can arise due to various mechanisms, including the production of enzymes that inactivate antibiotics, changes in bacterial cell membrane permeability that prevent antibiotics from entering the bacteria, and the development of efflux pumps that expel antibiotics out of the bacteria. The misuse or overuse of antibiotics is a significant contributor to the emergence and spread of MDR bacteria.

Preventing and controlling the spread of MDR bacteria requires a multifaceted approach, including the judicious use of antibiotics, infection control measures, surveillance, and research into new antimicrobial agents.

Minisatellites, also known as VNTRs (Variable Number Tandem Repeats), are repetitive DNA sequences that consist of a core repeat unit of 10-60 base pairs, arranged in a head-to-tail fashion. They are often found in non-coding regions of the genome and can vary in the number of times the repeat unit is present in an individual's DNA. This variation in repeat number can occur both within and between individuals, making minisatellites useful as genetic markers for identification and forensic applications. They are also associated with certain genetic disorders and play a role in genome instability.

Splenic tuberculosis is a form of extrapulmonary tuberculosis (ETB), which refers to a manifestation of the disease outside of the lungs. It is caused by the bacterium Mycobacterium tuberculosis.

In splenic tuberculosis, the infection involves the spleen (an organ located in the upper left part of the abdomen that filters blood and helps fight infection). The infection can occur through the hematogenous spread (dissemination via the bloodstream) from a primary focus elsewhere in the body, such as the lungs.

The disease presents with various symptoms, including fever, fatigue, weight loss, abdominal pain, and splenomegaly (enlargement of the spleen). Diagnosis often requires a combination of clinical evaluation, imaging studies, and microbiological or histopathological confirmation. Treatment typically involves a prolonged course of multidrug antibiotics to eliminate the infection and prevent complications.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

A bacterial genome is the complete set of genetic material, including both DNA and RNA, found within a single bacterium. It contains all the hereditary information necessary for the bacterium to grow, reproduce, and survive in its environment. The bacterial genome typically includes circular chromosomes, as well as plasmids, which are smaller, circular DNA molecules that can carry additional genes. These genes encode various functional elements such as enzymes, structural proteins, and regulatory sequences that determine the bacterium's characteristics and behavior.

Bacterial genomes vary widely in size, ranging from around 130 kilobases (kb) in Mycoplasma genitalium to over 14 megabases (Mb) in Sorangium cellulosum. The complete sequencing and analysis of bacterial genomes have provided valuable insights into the biology, evolution, and pathogenicity of bacteria, enabling researchers to better understand their roles in various diseases and potential applications in biotechnology.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

Central Nervous System (CNS) Tuberculosis is a specific form of tuberculosis (TB) that refers to the infection and inflammation caused by Mycobacterium tuberculosis in the brain or spinal cord. The two most common forms of CNS tuberculosis are tuberculous meningitis and tuberculomas.

1. Tuberculous Meningitis (TBM): This is the most frequent form of CNS TB, characterized by the inflammation of the membranes surrounding the brain and spinal cord (meninges). The infection can lead to the formation of caseous lesions (granulomas), which may obstruct cerebrospinal fluid (CSF) flow and result in increased intracranial pressure. Symptoms often include headache, fever, altered mental status, neck stiffness, vomiting, and focal neurological deficits.
2. Tuberculomas: These are localized granulomatous lesions formed by the immune response to M. tuberculosis in the brain parenchyma. They can cause various neurological symptoms depending on their size and location, such as seizures, focal deficits, or increased intracranial pressure.

CNS TB is a severe manifestation of tuberculosis that requires prompt diagnosis and treatment to prevent long-term neurological damage or even death. Diagnosis typically involves imaging studies (CT or MRI scans) and analysis of cerebrospinal fluid obtained through lumbar puncture. Treatment usually consists of a prolonged course of multiple antituberculous drugs, along with corticosteroids to manage inflammation and prevent complications.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Reagent kits, diagnostic are prepackaged sets of chemical reagents and other components designed for performing specific diagnostic tests or assays. These kits are often used in clinical laboratories to detect and measure the presence or absence of various biomarkers, such as proteins, antibodies, antigens, nucleic acids, or small molecules, in biological samples like blood, urine, or tissues.

Diagnostic reagent kits typically contain detailed instructions for their use, along with the necessary reagents, controls, and sometimes specialized equipment or supplies. They are designed to simplify the testing process, reduce human error, and increase standardization, ensuring accurate and reliable results. Examples of diagnostic reagent kits include those used for pregnancy tests, infectious disease screening, drug testing, genetic testing, and cancer biomarker detection.

Molecular epidemiology is a branch of epidemiology that uses laboratory techniques to identify and analyze the genetic material (DNA, RNA) of pathogens or host cells to understand their distribution, transmission, and disease associations in populations. It combines molecular biology methods with epidemiological approaches to investigate the role of genetic factors in disease occurrence and outcomes. This field has contributed significantly to the identification of infectious disease outbreaks, tracking the spread of antibiotic-resistant bacteria, understanding the transmission dynamics of viruses, and identifying susceptible populations for targeted interventions.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Mycobacterium scrofulaceum is a species of mycobacteria that was previously known to cause a type of infection called scrofula, which is a form of tuberculosis affecting the lymph nodes in the neck. However, it's important to note that this organism has rarely been implicated in human disease in recent years, and its clinical significance is currently unclear.

Mycobacterium scrofulaceum is an environmental mycobacteria, which means it can be found in soil and water, and it is not typically transmitted from person to person. Infections caused by this organism are usually acquired through the ingestion of contaminated food or water or through inhalation of aerosolized particles.

The symptoms of infection with Mycobacterium scrofulaceum depend on the site of infection and can include swollen lymph nodes, cough, fever, and weight loss. Treatment typically involves a combination of antibiotics, but the optimal treatment regimen has not been well-studied due to the rarity of infections caused by this organism.

Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis. Urogenital tuberculosis (UTB) is a less common form of TB that affects the urinary and genital systems. It occurs when the bacteria spread through the bloodstream from the initial site of infection, usually the lungs, to the kidneys. The infection can then spread to other parts of the urinary system, including the ureters, bladder, and urethra, as well as the genital organs in both men and women.

UTB symptoms may include:
- Persistent dull pain in the lower back or side
- Frequent urination or urgent need to urinate
- Painful urination (dysuria)
- Blood in the urine (hematuria)
- Incontinence
- Sexual dysfunction in men, such as epididymitis or infertility
- Scrotal mass in men
- Amenorrhea or irregular menstruation in women

Diagnosis of UTB typically involves a combination of medical history, physical examination, imaging tests (such as ultrasound, CT scan, or MRI), urine analysis and culture, and sometimes biopsy. Treatment usually consists of a prolonged course of multiple antibiotics to eliminate the infection. Surgery may be required in some cases to repair damaged organs or remove scar tissue.

A phagosome is a type of membrane-bound organelle that forms around a particle or microorganism following its engulfment by a cell, through the process of phagocytosis. This results in the formation of a vesicle containing the ingested material, which then fuses with another organelle called a lysosome to form a phago-lysosome. The lysosome contains enzymes that digest and break down the contents of the phagosome, allowing the cell to neutralize and dispose of potentially harmful substances or pathogens.

In summary, phagosomes are important organelles involved in the immune response, helping to protect the body against infection and disease.

Ocular tuberculosis (OTB) is a form of extrapulmonary tuberculosis (TB), which results from the spread of Mycobacterium tuberculosis complex bacteria outside the lungs. In ocular tuberculosis, these bacteria primarily affect the eye and its surrounding structures.

The most common form of OTB is tubercular uveitis, which involves inflammation of the uveal tract (iris, ciliary body, and choroid). Other forms of OTB include:

* Tubercular conjunctivitis: Inflammation of the conjunctiva, the mucous membrane that covers the front part of the eye and lines the inside of the eyelids.
* Tubercular keratitis: Inflammation of the cornea, the transparent outer layer at the front of the eye.
* Tubercular scleritis: Inflammation of the sclera, the white protective coating of the eye.
* Tubercular episcleritis: Inflammation of the episclera, a thin layer of tissue between the conjunctiva and sclera.
* Tubercular dacryoadenitis: Inflammation of the lacrimal gland, which produces tears.
* Tubercular optic neuritis: Inflammation of the optic nerve, which transmits visual information from the eye to the brain.

Diagnosis of OTB can be challenging due to its varied clinical presentations and the need for laboratory confirmation. A definitive diagnosis typically requires the isolation of Mycobacterium tuberculosis from ocular tissues or fluids, which may involve invasive procedures. In some cases, a presumptive diagnosis might be made based on clinical findings, epidemiological data, and response to anti-tuberculous therapy.

Treatment for OTB usually involves a standard anti-tuberculosis regimen consisting of multiple drugs (isoniazid, rifampin, ethambutol, and pyrazinamide) for at least six months. Corticosteroids or other immunosuppressive agents might be used concomitantly to manage inflammation and prevent tissue damage. Close monitoring is essential to ensure treatment adherence, assess response to therapy, and detect potential side effects.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Leprosy, also known as Hansen's disease, is a chronic infectious disease caused by the bacterium Mycobacterium leprae. It primarily affects the skin, peripheral nerves, mucosal surfaces of the upper respiratory tract, and the eyes. The disease mainly spreads through droplets from the nose and mouth of infected people.

Leprosy is characterized by granulomatous inflammation, which leads to the formation of distinctive skin lesions and nerve damage. If left untreated, it can cause progressive and permanent damage to the skin, nerves, limbs, and eyes. However, with early diagnosis and multidrug therapy (MDT), the disease can be cured, and disability can be prevented or limited.

The World Health Organization (WHO) classifies leprosy into two types based on the number of skin lesions and bacteriological index: paucibacillary (one to five lesions) and multibacillary (more than five lesions). This classification helps determine the appropriate treatment regimen.

Although leprosy is curable, it remains a public health concern in many developing countries due to its stigmatizing nature and potential for social exclusion of affected individuals.

Hepatic tuberculosis (HTB) is a form of extrapulmonary tuberculosis (TB) that involves the liver. It can occur as a result of the spread of Mycobacterium tuberculosis from a primary site of infection, usually the lungs, through the bloodstream to the liver.

In hepatic tuberculosis, the liver may become enlarged and tender, and patients may experience symptoms such as fever, night sweats, loss of appetite, weight loss, and abdominal discomfort. Liver function tests may show elevated levels of certain enzymes, such as alkaline phosphatase and gamma-glutamyl transferase (GGT).

Diagnosis of hepatic tuberculosis can be challenging, as the symptoms and laboratory findings are nonspecific. Imaging studies such as ultrasound, CT scan, or MRI may show evidence of liver involvement, but a definitive diagnosis usually requires histological examination of liver tissue obtained through biopsy.

Treatment of hepatic tuberculosis involves the use of multiple antituberculous drugs, typically including isoniazid, rifampin, ethambutol, and pyrazinamide. The duration of treatment is usually at least six months, but may be longer in some cases. It is important to monitor liver function tests closely during treatment, as these medications can cause liver damage in some individuals.

AIDS-related opportunistic infections (AROIs) are infections that occur more frequently or are more severe in people with weakened immune systems, such as those with advanced HIV infection or AIDS. These infections take advantage of a weakened immune system and can affect various organs and systems in the body.

Common examples of AROIs include:

1. Pneumocystis pneumonia (PCP), caused by the fungus Pneumocystis jirovecii
2. Mycobacterium avium complex (MAC) infection, caused by a type of bacteria called mycobacteria
3. Candidiasis, a fungal infection that can affect various parts of the body, including the mouth, esophagus, and genitals
4. Toxoplasmosis, caused by the parasite Toxoplasma gondii
5. Cryptococcosis, a fungal infection that affects the lungs and central nervous system
6. Cytomegalovirus (CMV) infection, caused by a type of herpes virus
7. Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis
8. Cryptosporidiosis, a parasitic infection that affects the intestines
9. Progressive multifocal leukoencephalopathy (PML), a viral infection that affects the brain

Preventing and treating AROIs is an important part of managing HIV/AIDS, as they can cause significant illness and even death in people with weakened immune systems. Antiretroviral therapy (ART) is used to treat HIV infection and prevent the progression of HIV to AIDS, which can help reduce the risk of opportunistic infections. In addition, medications to prevent specific opportunistic infections may be prescribed for people with advanced HIV or AIDS.

Bacterial load refers to the total number or concentration of bacteria present in a given sample, tissue, or body fluid. It is a measure used to quantify the amount of bacterial infection or colonization in a particular area. The bacterial load can be expressed as colony-forming units (CFU) per milliliter (ml), gram (g), or other units of measurement depending on the sample type. High bacterial loads are often associated with more severe infections and increased inflammation.

Molecular diagnostic techniques are a group of laboratory methods used to analyze biological markers in DNA, RNA, and proteins to identify specific health conditions or diseases at the molecular level. These techniques include various methods such as polymerase chain reaction (PCR), DNA sequencing, gene expression analysis, fluorescence in situ hybridization (FISH), and mass spectrometry.

Molecular diagnostic techniques are used to detect genetic mutations, chromosomal abnormalities, viral and bacterial infections, and other molecular changes associated with various diseases, including cancer, genetic disorders, infectious diseases, and neurological disorders. These techniques provide valuable information for disease diagnosis, prognosis, treatment planning, and monitoring of treatment response.

Compared to traditional diagnostic methods, molecular diagnostic techniques offer several advantages, such as higher sensitivity, specificity, and speed. They can detect small amounts of genetic material or proteins, even in early stages of the disease, and provide accurate results with a lower risk of false positives or negatives. Additionally, molecular diagnostic techniques can be automated, standardized, and performed in high-throughput formats, making them suitable for large-scale screening and research applications.

Microbial viability is the ability of a microorganism to grow, reproduce and maintain its essential life functions. It can be determined through various methods such as cell growth in culture media, staining techniques that detect metabolic activity, or direct observation of active movement. In contrast, non-viable microorganisms are those that have been killed or inactivated and cannot replicate or cause further harm. The measurement of microbial viability is important in various fields such as medicine, food safety, water quality, and environmental monitoring to assess the effectiveness of disinfection and sterilization procedures, and to determine the presence and concentration of harmful bacteria in different environments.

Glycolipids are a type of lipid (fat) molecule that contain one or more sugar molecules attached to them. They are important components of cell membranes, where they play a role in cell recognition and signaling. Glycolipids are also found on the surface of some viruses and bacteria, where they can be recognized by the immune system as foreign invaders.

There are several different types of glycolipids, including cerebrosides, gangliosides, and globosides. These molecules differ in the number and type of sugar molecules they contain, as well as the structure of their lipid tails. Glycolipids are synthesized in the endoplasmic reticulum and Golgi apparatus of cells, and they are transported to the cell membrane through vesicles.

Abnormalities in glycolipid metabolism or structure have been implicated in a number of diseases, including certain types of cancer, neurological disorders, and autoimmune diseases. For example, mutations in genes involved in the synthesis of glycolipids can lead to conditions such as Tay-Sachs disease and Gaucher's disease, which are characterized by the accumulation of abnormal glycolipids in cells.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Interspersed Repeats or Interspersed Repetitive Sequences (IRSs) are repetitive DNA sequences that are dispersed throughout the eukaryotic genome. They include several types of repeats such as SINEs (Short INterspersed Elements), LINEs (Long INterspersed Elements), and LTR retrotransposons (Long Terminal Repeat retrotransposons). These sequences can make up a significant portion of the genome, with varying copy numbers among different species. They are typically non-coding and have been associated with genomic instability, regulation of gene expression, and evolution of genomes.

"Mycobacterium xenopi" is a slow-growing, non-tuberculous mycobacterium (NTM) species that is commonly found in the environment, particularly in water sources such as tap water and natural waterways. It is named after the South African frog (Xenopus laevis) from which it was first isolated.

"Mycobacterium xenopi" can cause pulmonary infections, especially in individuals with pre-existing lung conditions such as chronic obstructive pulmonary disease (COPD), bronchiectasis, or prior tuberculosis infection. The symptoms of "M. xenopi" infection are similar to those of tuberculosis and can include cough, fever, night sweats, fatigue, and weight loss.

Diagnosis of "M. xenopi" infection typically requires the isolation and identification of the organism from clinical specimens such as sputum or bronchoalveolar lavage fluid. Treatment usually involves a combination of antibiotics such as macrolides, rifamycins, and aminoglycosides, and may require prolonged therapy for several months to a year or more.

'Mycobacterium lepraemurium' is not typically associated with human leprosy or any medical conditions affecting humans. It is a species of mycobacteria that primarily infects rodents, particularly mice and rats. This bacterium is the causative agent of a form of leprosy-like disease in these animals, known as murine leprosy.

Human infections with 'Mycobacterium lepraemurium' are extremely rare and have only been reported in a handful of cases worldwide. When they do occur, they usually result from close contact with infected rodents or their excrement. The disease caused by this bacterium in humans is typically milder than human leprosy and often resolves on its own without specific treatment.

Therefore, 'Mycobacterium lepraemurium' should not be confused with the mycobacterial species that cause leprosy in humans, such as 'Mycobacterium leprae' or 'Mycobacterium lepromatosis'.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Chaperonin 60, also known as CPN60 or HSP60 (heat shock protein 60), is a type of molecular chaperone found in the mitochondria of eukaryotic cells. Molecular chaperones are proteins that assist in the proper folding and assembly of other proteins. Chaperonin 60 is a member of the HSP (heat shock protein) family, which are proteins that are upregulated in response to stressful conditions such as heat shock or oxidative stress.

Chaperonin 60 forms a large complex with a barrel-shaped structure that provides a protected environment for unfolded or misfolded proteins to fold properly. The protein substrate is bound inside the central cavity of the chaperonin complex, and then undergoes a series of conformational changes that facilitate its folding. Chaperonin 60 has been shown to play important roles in mitochondrial protein import, folding, and assembly, as well as in the regulation of apoptosis (programmed cell death).

Defects in chaperonin 60 have been linked to a variety of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer.

"Evaluation studies" is a broad term that refers to the systematic assessment or examination of a program, project, policy, intervention, or product. The goal of an evaluation study is to determine its merits, worth, and value by measuring its effects, efficiency, and impact. There are different types of evaluation studies, including formative evaluations (conducted during the development or implementation of a program to provide feedback for improvement), summative evaluations (conducted at the end of a program to determine its overall effectiveness), process evaluations (focusing on how a program is implemented and delivered), outcome evaluations (assessing the short-term and intermediate effects of a program), and impact evaluations (measuring the long-term and broad consequences of a program).

In medical contexts, evaluation studies are often used to assess the safety, efficacy, and cost-effectiveness of new treatments, interventions, or technologies. These studies can help healthcare providers make informed decisions about patient care, guide policymakers in developing evidence-based policies, and promote accountability and transparency in healthcare systems. Examples of evaluation studies in medicine include randomized controlled trials (RCTs) that compare the outcomes of a new treatment to those of a standard or placebo treatment, observational studies that examine the real-world effectiveness and safety of interventions, and economic evaluations that assess the costs and benefits of different healthcare options.

A cell wall is a rigid layer found surrounding the plasma membrane of plant cells, fungi, and many types of bacteria. It provides structural support and protection to the cell, maintains cell shape, and acts as a barrier against external factors such as chemicals and mechanical stress. The composition of the cell wall varies among different species; for example, in plants, it is primarily made up of cellulose, hemicellulose, and pectin, while in bacteria, it is composed of peptidoglycan.

Female genital tuberculosis (FGTB) is a specific form of tuberculosis (TB) that affects the female reproductive organs. It is caused by the bacterium Mycobacterium tuberculosis, which primarily affects the lungs (pulmonary TB) but can spread to other parts of the body through the bloodstream or lymphatic system.

In FGTB, the bacteria typically infect the fallopian tubes, uterus, ovaries, and/or the cervix, leading to various gynecological symptoms. The infection can cause scarring, blockage of the fallopian tubes, and damage to the reproductive organs, which may result in infertility, ectopic pregnancy, or chronic pelvic pain.

FGTB is often asymptomatic or has non-specific symptoms, making it difficult to diagnose. Common symptoms include irregular menstrual bleeding, postmenopausal bleeding, vaginal discharge, and pelvic pain. Diagnosis typically involves a combination of clinical examination, imaging studies (such as ultrasound or CT scan), and laboratory tests (such as endometrial biopsy, PCR, or culture).

FGTB is usually treated with a standard anti-tuberculosis drug regimen that includes isoniazid, rifampicin, ethambutol, and pyrazinamide for at least six months. In some cases, surgery may be required to manage complications such as hydrosalpinx or chronic pelvic pain. Preventing the spread of pulmonary TB through early detection and treatment is crucial in preventing FGTB.

Contact tracing is a key public health strategy used to control the spread of infectious diseases. It involves identifying and monitoring individuals (contacts) who have come into close contact with an infected person (case), to prevent further transmission of the disease. The process typically includes:

1. Case identification: Identifying and confirming cases of infection through diagnostic testing.
2. Contact identification: Finding people who may have been in close contact with the infected case during their infectious period, which is the time when they can transmit the infection to others. Close contacts are usually defined as individuals who have had face-to-face contact with a confirmed case within a certain distance (often 6 feet or closer) and/or shared confined spaces for prolonged periods (usually more than 15 minutes).
3. Contact listing: Recording the identified contacts' information, including their names, addresses, phone numbers, and potentially other demographic data.
4. Risk assessment: Evaluating the level of risk associated with each contact based on factors such as the type of exposure, duration of contact, and the infectiousness of the case.
5. Notification: Informing contacts about their potential exposure to the infection and providing them with necessary health information, education, and guidance. This may include recommendations for self-quarantine, symptom monitoring, testing, and vaccination if available.
6. Follow-up: Monitoring and supporting contacts during their quarantine or isolation period, which typically lasts 14 days from the last exposure to the case. Public health professionals will check in with contacts regularly to assess their symptoms, provide additional guidance, and ensure they are adhering to the recommended infection prevention measures.
7. Data management: Documenting and reporting contact tracing activities for public health surveillance, evaluation, and future planning purposes.

Contact tracing is a critical component of infectious disease control and has been used effectively in managing various outbreaks, including tuberculosis, HIV/AIDS, Ebola, and more recently, COVID-19.

Chaperonins are a type of molecular chaperone found in cells that assist in the proper folding of other proteins. They are large, complex protein assemblies that form a protective cage-like structure around unfolded polypeptides, providing a protected environment for them to fold into their correct three-dimensional shape.

Chaperonins are classified into two groups: Group I chaperonins, which are found in bacteria and archaea, and Group II chaperonins, which are found in eukaryotes (including humans). Both types of chaperonins share a similar overall structure, consisting of two rings stacked on top of each other, with each ring containing multiple subunits.

Group I chaperonins, such as GroEL in bacteria, function by binding to unfolded proteins and encapsulating them within their central cavity. The chaperonin then undergoes a series of conformational changes that help to facilitate the folding of the encapsulated protein. Once folding is complete, the chaperonin releases the now-folded protein.

Group II chaperonins, such as TCP-1 ring complex (TRiC) in humans, function similarly but have a more complex mechanism of action. They not only assist in protein folding but also help to prevent protein aggregation and misfolding. Group II chaperonins are involved in various cellular processes, including protein quality control, protein trafficking, and the regulation of cell signaling pathways.

Defects in chaperonin function have been linked to several human diseases, including neurodegenerative disorders, cancer, and cardiovascular disease.

Molecular typing is a laboratory technique used to identify and characterize specific microorganisms, such as bacteria or viruses, at the molecular level. This method is used to differentiate between strains of the same species based on their genetic or molecular differences. Molecular typing techniques include methods such as pulsed-field gel electrophoresis (PFGE), multiple-locus variable number tandem repeat analysis (MLVA), and whole genome sequencing (WGS). These techniques allow for high-resolution discrimination between strains, enabling epidemiological investigations of outbreaks, tracking the transmission of pathogens, and studying the evolution and population biology of microorganisms.

Bacterial RNA refers to the genetic material present in bacteria that is composed of ribonucleic acid (RNA). Unlike higher organisms, bacteria contain a single circular chromosome made up of DNA, along with smaller circular pieces of DNA called plasmids. These bacterial genetic materials contain the information necessary for the growth and reproduction of the organism.

Bacterial RNA can be divided into three main categories: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). mRNA carries genetic information copied from DNA, which is then translated into proteins by the rRNA and tRNA molecules. rRNA is a structural component of the ribosome, where protein synthesis occurs, while tRNA acts as an adapter that brings amino acids to the ribosome during protein synthesis.

Bacterial RNA plays a crucial role in various cellular processes, including gene expression, protein synthesis, and regulation of metabolic pathways. Understanding the structure and function of bacterial RNA is essential for developing new antibiotics and other therapeutic strategies to combat bacterial infections.

Cluster analysis is a statistical method used to group similar objects or data points together based on their characteristics or features. In medical and healthcare research, cluster analysis can be used to identify patterns or relationships within complex datasets, such as patient records or genetic information. This technique can help researchers to classify patients into distinct subgroups based on their symptoms, diagnoses, or other variables, which can inform more personalized treatment plans or public health interventions.

Cluster analysis involves several steps, including:

1. Data preparation: The researcher must first collect and clean the data, ensuring that it is complete and free from errors. This may involve removing outlier values or missing data points.
2. Distance measurement: Next, the researcher must determine how to measure the distance between each pair of data points. Common methods include Euclidean distance (the straight-line distance between two points) or Manhattan distance (the distance between two points along a grid).
3. Clustering algorithm: The researcher then applies a clustering algorithm, which groups similar data points together based on their distances from one another. Common algorithms include hierarchical clustering (which creates a tree-like structure of clusters) or k-means clustering (which assigns each data point to the nearest centroid).
4. Validation: Finally, the researcher must validate the results of the cluster analysis by evaluating the stability and robustness of the clusters. This may involve re-running the analysis with different distance measures or clustering algorithms, or comparing the results to external criteria.

Cluster analysis is a powerful tool for identifying patterns and relationships within complex datasets, but it requires careful consideration of the data preparation, distance measurement, and validation steps to ensure accurate and meaningful results.

Paratuberculosis is a chronic infectious disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). It primarily affects ruminants, such as cattle, sheep, and goats, although other animal species, including humans, can also be infected. The disease is characterized by chronic inflammation of the intestines, leading to diarrhea, weight loss, and decreased milk production in affected animals.

Infection typically occurs through ingestion of contaminated feed or water, and the incubation period can range from several months to years. The bacteria are resistant to environmental degradation and can survive in soil, water, and feces for long periods, making control and eradication challenging.

While paratuberculosis is not considered a significant zoonotic disease, there is ongoing research into the potential link between MAP infection and Crohn's disease in humans, although this association remains controversial and unproven.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

DNA gyrase is a type II topoisomerase enzyme that plays a crucial role in the negative supercoiling and relaxation of DNA in bacteria. It functions by introducing transient double-stranded breaks into the DNA helix, allowing the strands to pass through one another and thereby reducing positive supercoils or introducing negative supercoils as required for proper DNA function, replication, and transcription.

DNA gyrase is composed of two subunits, GyrA and GyrB, which form a heterotetrameric structure (AB-BA) in the functional enzyme. The enzyme's activity is targeted by several antibiotics, such as fluoroquinolones and novobiocin, making it an essential target for antibacterial drug development.

In summary, DNA gyrase is a bacterial topoisomerase responsible for maintaining the correct supercoiling of DNA during replication and transcription, which can be inhibited by specific antibiotics to combat bacterial infections.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Clofazimine is an antimycobacterial medication used mainly in the treatment of leprosy (Hansen's disease) and also has some activity against Mycobacterium avium complex (MAC) infections. It is an oral riminophenazine dye that accumulates in macrophages and bacterial cells, where it inhibits mycobacterial DNA-dependent RNA polymerase. Its side effects include skin discoloration, gastrointestinal symptoms, and potential eye toxicity.

Directly Observed Therapy (DOT) is a treatment strategy in which a healthcare professional directly observes the patient taking each dose of their medication, typically used in the context of tuberculosis (TB) treatment. The goal of DOT is to ensure adherence to the prescribed treatment regimen and improve treatment outcomes by reducing the likelihood of missed doses or irregular medication-taking behaviors that can contribute to drug resistance and disease relapse.

In a DOT setting, the healthcare provider, which could be a nurse, community health worker, or other designated individual, directly observes the patient swallowing the medication. This can occur in various settings, such as a clinic, hospital, or even the patient's home, depending on the program and resources available. The frequency of observations may vary based on the specific treatment plan and clinical context.

DOT has been shown to improve treatment completion rates and reduce the risk of TB transmission and drug resistance. It is an essential component of the World Health Organization's (WHO) recommended strategy for TB control and care.

Nucleic acid amplification techniques (NAATs) are medical laboratory methods used to increase the number of copies of a specific DNA or RNA sequence. These techniques are widely used in molecular biology and diagnostics, including the detection and diagnosis of infectious diseases, genetic disorders, and cancer.

The most commonly used NAAT is the polymerase chain reaction (PCR), which involves repeated cycles of heating and cooling to separate and replicate DNA strands. Other NAATs include loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), and transcription-mediated amplification (TMA).

NAATs offer several advantages over traditional culture methods for detecting pathogens, including faster turnaround times, increased sensitivity and specificity, and the ability to detect viable but non-culturable organisms. However, they also require specialized equipment and trained personnel, and there is a risk of contamination and false positive results if proper precautions are not taken.

I'm sorry for any confusion, but "South Africa" is not a medical term or concept. It is a country located at the southernmost tip of the African continent. If you have any questions related to medical topics, I would be happy to help answer them!

Renal tuberculosis (TB) is a type of extrapulmonary tuberculosis that occurs when the Mycobacterium tuberculosis bacterium infects and affects the kidneys. It can also spread to other parts of the urinary system, such as the ureters, bladder, or urethra.

In renal TB, the infection typically begins in the renal cortex, where it causes caseous necrosis (formation of areas of tissue death) and granulomas (small clusters of immune cells). Over time, these lesions can lead to scarring, calcification, and destruction of renal tissues.

Symptoms of renal TB may include fever, fatigue, weight loss, flank pain, hematuria (blood in the urine), and sterile pyuria (pus in the urine without evidence of bacterial infection). Diagnosis typically involves a combination of medical history, physical examination, imaging studies (such as CT scans or intravenous pyelograms), and laboratory tests (such as urinalysis, acid-fast bacilli smears, and culture).

Treatment of renal TB usually involves a prolonged course of antibiotics (typically 6 to 9 months) using multiple drugs, such as isoniazid, rifampin, ethambutol, and pyrazinamide. Surgery may be necessary in some cases to remove damaged or infected tissues, or to relieve obstructions caused by scarring or calcification.

Rifamycins are a class of antibiotics derived from the bacterium Amycolatopsis rifamycinica. They have a unique chemical structure and mechanism of action, which involves inhibiting bacterial DNA-dependent RNA polymerase. This leads to the prevention of bacterial transcription and ultimately results in bacteriostatic or bactericidal activity, depending on the drug concentration and the susceptibility of the bacteria.

Rifamycins are primarily used in the treatment of various types of infections caused by gram-positive and gram-negative bacteria, as well as mycobacteria. Some examples of rifamycin antibiotics include rifampin (also known as rifampicin), rifabutin, and rifapentine. These drugs are often used to treat tuberculosis, meningitis, and other serious infections. It is important to note that resistance to rifamycins can develop rapidly if the drugs are not used appropriately or if they are used to treat infections caused by bacteria that are already resistant to these antibiotics.

Diarylquinolines are a class of antimicrobial compounds, which include drugs such as bedaquiline and TBA-354. These agents inhibit mycobacterial ATP synthase and have been used in the treatment of drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB).

Bedaquiline, for example, is a first-in-class diarylquinoline medication that was approved by the US Food and Drug Administration (FDA) in 2012 for use in combination with other antituberculosis drugs to treat adults with pulmonary MDR-TB.

It's important to note that the use of diarylquinolines should be under the guidance of a healthcare professional, as they can have potential side effects and drug interactions.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Amidohydrolases are a class of enzymes that catalyze the hydrolysis of amides and related compounds, resulting in the formation of an acid and an alcohol. This reaction is also known as amide hydrolysis or amide bond cleavage. Amidohydrolases play important roles in various biological processes, including the metabolism of xenobiotics (foreign substances) and endogenous compounds (those naturally produced within an organism).

The term "amidohydrolase" is a broad one that encompasses several specific types of enzymes, such as proteases, esterases, lipases, and nitrilases. These enzymes have different substrate specificities and catalytic mechanisms but share the common ability to hydrolyze amide bonds.

Proteases, for example, are a major group of amidohydrolases that specifically cleave peptide bonds in proteins. They are involved in various physiological processes, such as protein degradation, digestion, and regulation of biological pathways. Esterases and lipases hydrolyze ester bonds in various substrates, including lipids and other organic compounds. Nitrilases convert nitriles into carboxylic acids and ammonia by cleaving the nitrile bond (C≡N) through hydrolysis.

Amidohydrolases are found in various organisms, from bacteria to humans, and have diverse applications in industry, agriculture, and medicine. For instance, they can be used for the production of pharmaceuticals, biofuels, detergents, and other chemicals. Additionally, inhibitors of amidohydrolases can serve as therapeutic agents for treating various diseases, such as cancer, viral infections, and neurodegenerative disorders.

Endocrine tuberculosis (TB) is a form of extrapulmonary tuberculosis that involves the endocrine glands, such as the thyroid, pituitary, and adrenal glands. The infection can cause inflammation, granulomatous lesions, and tissue damage in these glands, leading to hormonal imbalances and various clinical manifestations.

Tuberculosis bacilli (Mycobacterium tuberculosis) reach the endocrine glands through hematogenous spread from a primary or secondary focus, usually in the lungs. The most common form of endocrine TB is adrenal TB, which can lead to adrenal insufficiency due to destruction of the adrenal cortex. Thyroid TB is rare and typically presents as a cold abscess or a thyroid mass. Pituitary TB is also uncommon but can cause hypopituitarism and visual impairment due to compression of the optic chiasm.

Diagnosis of endocrine TB often involves imaging studies, such as CT or MRI scans, hormonal assessments, and microbiological or histopathological examination of tissue samples obtained through biopsy. Treatment typically consists of a standard anti-tuberculous chemotherapy regimen, which may need to be adjusted based on the patient's hormonal status and clinical response.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

'Aza compounds' is a general term used in chemistry to describe organic compounds containing a nitrogen atom (denoted by the symbol 'N' or 'aza') that has replaced a carbon atom in a hydrocarbon structure. The term 'aza' comes from the Greek word for nitrogen, 'azote.'

In medicinal chemistry and pharmacology, aza compounds are of particular interest because the presence of the nitrogen atom can significantly affect the chemical and biological properties of the compound. For example, aza compounds may exhibit enhanced bioavailability, metabolic stability, or receptor binding affinity compared to their non-aza counterparts.

Some common examples of aza compounds in medicine include:

1. Aza-aromatic compounds: These are aromatic compounds that contain one or more nitrogen atoms in the ring structure. Examples include pyridine, quinoline, and isoquinoline derivatives, which have been used as anti-malarial, anti-inflammatory, and anti-cancer agents.
2. Aza-heterocyclic compounds: These are non-aromatic compounds that contain one or more nitrogen atoms in a cyclic structure. Examples include azepine, diazepine, and triazole derivatives, which have been used as anxiolytic, anti-viral, and anti-fungal agents.
3. Aza-peptides: These are peptide compounds that contain one or more nitrogen atoms in the backbone structure. Examples include azapeptides and azabicyclopeptides, which have been used as enzyme inhibitors and neuroprotective agents.
4. Aza-sugars: These are sugar derivatives that contain one or more nitrogen atoms in the ring structure. Examples include azasugars and iminosugars, which have been used as glycosidase inhibitors and anti-viral agents.

Overall, aza compounds represent an important class of medicinal agents with diverse chemical structures and biological activities.

Laryngeal tuberculosis is a specific form of tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis, that affects the larynx or voice box. The bacteria typically infect the lungs, leading to pulmonary TB, and can spread through the bloodstream or airways to other parts of the body, including the larynx.

In laryngeal tuberculosis, the infection causes granulomatous inflammation and ulceration in the laryngeal tissues, particularly affecting the vocal cords, epiglottis, and/or false vocal cords. Symptoms may include hoarseness, cough, difficulty swallowing, painful swallowing, stridor (high-pitched whistling sound during breathing), and occasionally respiratory distress or airway obstruction. Diagnosis typically involves a combination of clinical evaluation, imaging studies (such as X-rays or CT scans), endoscopic examination, and microbiological or histopathological confirmation of the presence of TB in tissue samples or secretions. Treatment usually consists of a standard multidrug antituberculosis chemotherapy regimen to eliminate the infection and prevent complications or further spread of the disease.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Truncated hemoglobins are a group of hemoglobin variants that lack the normal C-terminal extension of the beta-globin chain. They were first identified in organisms living in extreme environments, such as bacteria found in deep-sea hydrothermal vents and in animals adapted to high-altitude hypoxia. These hemoglobins have unique structural and functional properties that allow them to function efficiently under low oxygen concentrations.

Truncated hemoglobins are characterized by the absence of the last 1-3 amino acids at the C-terminus of the beta-globin chain, which results in a more compact structure compared to normal hemoglobin. This structural difference leads to altered oxygen binding properties and increased stability under extreme conditions.

Truncated hemoglobins have been studied for their potential applications in biotechnology and medicine, particularly in the development of new strategies for the treatment of hypoxia-related disorders such as ischemia, stroke, and cancer. However, further research is needed to fully understand their mechanisms of action and therapeutic potential.

Delayed hypersensitivity, also known as type IV hypersensitivity, is a type of immune response that takes place several hours to days after exposure to an antigen. It is characterized by the activation of T cells (a type of white blood cell) and the release of various chemical mediators, leading to inflammation and tissue damage. This reaction is typically associated with chronic inflammatory diseases, such as contact dermatitis, granulomatous disorders (e.g. tuberculosis), and certain autoimmune diseases.

The reaction process involves the following steps:

1. Sensitization: The first time an individual is exposed to an antigen, T cells are activated and become sensitized to it. This process can take several days.
2. Memory: Some of the activated T cells differentiate into memory T cells, which remain in the body and are ready to respond quickly if the same antigen is encountered again.
3. Effector phase: Upon subsequent exposure to the antigen, the memory T cells become activated and release cytokines, which recruit other immune cells (e.g. macrophages) to the site of inflammation. These cells cause tissue damage through various mechanisms, such as phagocytosis, degranulation, and the release of reactive oxygen species.
4. Chronic inflammation: The ongoing immune response can lead to chronic inflammation, which may result in tissue destruction and fibrosis (scarring).

Examples of conditions associated with delayed hypersensitivity include:

* Contact dermatitis (e.g. poison ivy, nickel allergy)
* Tuberculosis
* Leprosy
* Sarcoidosis
* Rheumatoid arthritis
* Type 1 diabetes mellitus
* Multiple sclerosis
* Inflammatory bowel disease (e.g. Crohn's disease, ulcerative colitis)

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Aminosalicylic acid is an anti-inflammatory medication that is primarily used to treat inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. It works by reducing the production of chemicals in the body that cause inflammation in the intestines.

Aminosalicylic acid is available in various forms, including tablets, capsules, and enema formulations. The medication is typically taken at regular intervals, often several times a day, to maintain its effectiveness in reducing inflammation.

Common side effects of aminosalicylic acid include headache, nausea, vomiting, diarrhea, and abdominal pain. In some cases, the medication may cause more serious side effects such as kidney or liver problems, allergic reactions, or blood disorders. It is important to discuss any potential risks or side effects with a healthcare provider before starting treatment with aminosalicylic acid.

Peroxidases are a group of enzymes that catalyze the oxidation of various substrates using hydrogen peroxide (H2O2) as the electron acceptor. These enzymes contain a heme prosthetic group, which plays a crucial role in their catalytic activity. Peroxidases are widely distributed in nature and can be found in plants, animals, and microorganisms. They play important roles in various biological processes, including defense against oxidative stress, lignin degradation, and host-pathogen interactions. Some common examples of peroxidases include glutathione peroxidase, which helps protect cells from oxidative damage, and horseradish peroxidase, which is often used in laboratory research.

HIV (Human Immunodeficiency Virus) infection is a viral illness that progressively attacks and weakens the immune system, making individuals more susceptible to other infections and diseases. The virus primarily infects CD4+ T cells, a type of white blood cell essential for fighting off infections. Over time, as the number of these immune cells declines, the body becomes increasingly vulnerable to opportunistic infections and cancers.

HIV infection has three stages:

1. Acute HIV infection: This is the initial stage that occurs within 2-4 weeks after exposure to the virus. During this period, individuals may experience flu-like symptoms such as fever, fatigue, rash, swollen glands, and muscle aches. The virus replicates rapidly, and the viral load in the body is very high.
2. Chronic HIV infection (Clinical latency): This stage follows the acute infection and can last several years if left untreated. Although individuals may not show any symptoms during this phase, the virus continues to replicate at low levels, and the immune system gradually weakens. The viral load remains relatively stable, but the number of CD4+ T cells declines over time.
3. AIDS (Acquired Immunodeficiency Syndrome): This is the most advanced stage of HIV infection, characterized by a severely damaged immune system and numerous opportunistic infections or cancers. At this stage, the CD4+ T cell count drops below 200 cells/mm3 of blood.

It's important to note that with proper antiretroviral therapy (ART), individuals with HIV infection can effectively manage the virus, maintain a healthy immune system, and significantly reduce the risk of transmission to others. Early diagnosis and treatment are crucial for improving long-term health outcomes and reducing the spread of HIV.

Molecular probe techniques are analytical methods used in molecular biology and medicine to detect, analyze, and visualize specific biological molecules or cellular structures within cells, tissues, or bodily fluids. These techniques typically involve the use of labeled probes that bind selectively to target molecules, allowing for their detection and quantification.

A molecular probe is a small molecule or biomacromolecule (such as DNA, RNA, peptide, or antibody) that has been tagged with a detectable label, such as a fluorescent dye, radioisotope, enzyme, or magnetic particle. The probe is designed to recognize and bind to a specific target molecule, such as a gene, protein, or metabolite, through complementary base pairing, antigen-antibody interactions, or other forms of molecular recognition.

Molecular probe techniques can be broadly classified into two categories:

1. In situ hybridization (ISH): This technique involves the use of labeled DNA or RNA probes to detect specific nucleic acid sequences within cells or tissues. The probes are designed to complement the target sequence and, upon hybridization, allow for the visualization of the location and quantity of the target molecule using various detection methods, such as fluorescence microscopy, brightfield microscopy, or radioisotopic imaging.
2. Immunohistochemistry (IHC) and immunofluorescence (IF): These techniques utilize antibodies as probes to detect specific proteins within cells or tissues. Primary antibodies are raised against a target protein and, upon binding, can be detected using various methods, such as enzyme-linked secondary antibodies, fluorescent dyes, or gold nanoparticles. IHC is typically used for brightfield microscopy, while IF is used for fluorescence microscopy.

Molecular probe techniques have numerous applications in basic research, diagnostics, and therapeutics, including gene expression analysis, protein localization, disease diagnosis, drug development, and targeted therapy.

A tuberculoma is a granulomatous lesion in the brain caused by the infection of Mycobacterium tuberculosis. It typically consists of caseating necrosis surrounded by a layer of epithelioid histiocytes, Langhans' giant cells, and lymphocytes. Tuberculomas can be single or multiple and may cause various neurological symptoms depending on their size and location. They are often associated with tuberculous meningitis but can also occur in immunocompromised individuals without obvious systemic infection.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Catalase is a type of enzyme that is found in many living organisms, including humans. Its primary function is to catalyze the decomposition of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect cells from the harmful effects of hydrogen peroxide, which can be toxic at high concentrations.

The chemical reaction catalyzed by catalase can be represented as follows:

H2O2 + Catalase → H2O + O2 + Catalase

Catalase is a powerful antioxidant enzyme that plays an important role in protecting cells from oxidative damage. It is found in high concentrations in tissues that produce or are exposed to hydrogen peroxide, such as the liver, kidneys, and erythrocytes (red blood cells).

Deficiency in catalase activity has been linked to several diseases, including cancer, neurodegenerative disorders, and aging. On the other hand, overexpression of catalase has been shown to have potential therapeutic benefits in various disease models, such as reducing inflammation and oxidative stress.

"Mycobacterium haemophilum" is a slow-growing, gram-positive, acid-fast bacterium that is a member of the Mycobacteriaceae family. It is an opportunistic pathogen that primarily causes skin and soft tissue infections in immunocompromised individuals, such as those with HIV/AIDS or organ transplant recipients. The bacterium requires enriched media containing hemoglobin or hemin for growth, which is why it is named "haemophilum." Infections caused by this bacterium can be difficult to diagnose and treat due to its slow growth rate and resistance to many first-line anti-tuberculosis drugs.

Coinfection is a term used in medicine to describe a situation where a person is infected with more than one pathogen (infectious agent) at the same time. This can occur when a person is infected with two or more viruses, bacteria, parasites, or fungi. Coinfections can complicate the diagnosis and treatment of infectious diseases, as the symptoms of each infection can overlap and interact with each other.

Coinfections are common in certain populations, such as people who are immunocompromised, have chronic illnesses, or live in areas with high levels of infectious agents. For example, a person with HIV/AIDS may be more susceptible to coinfections with tuberculosis, hepatitis, or pneumocystis pneumonia. Similarly, a person who has recently undergone an organ transplant may be at risk for coinfections with cytomegalovirus, Epstein-Barr virus, or other opportunistic pathogens.

Coinfections can also occur in people who are otherwise healthy but are exposed to multiple infectious agents at once, such as through travel to areas with high levels of infectious diseases or through close contact with animals that carry infectious agents. For example, a person who travels to a tropical area may be at risk for coinfections with malaria and dengue fever, while a person who works on a farm may be at risk for coinfections with influenza and Q fever.

Effective treatment of coinfections requires accurate diagnosis and appropriate antimicrobial therapy for each pathogen involved. In some cases, treating one infection may help to resolve the other, but in other cases, both infections may need to be treated simultaneously to achieve a cure. Preventing coinfections is an important part of infectious disease control, and can be achieved through measures such as vaccination, use of personal protective equipment, and avoidance of high-risk behaviors.

A granuloma in the respiratory tract refers to a small nodular lesion that forms in the lung tissue due to an ongoing immune response. It is typically composed of macrophages, lymphocytes, and other inflammatory cells that cluster together around a foreign substance or organism that the body cannot eliminate.

Granulomas can form in response to various stimuli, including infectious agents such as mycobacteria (tuberculosis, nontuberculous mycobacteria), fungi, and parasites, as well as non-infectious causes like inhaled particles (e.g., silica, beryllium) or autoimmune diseases (e.g., sarcoidosis).

These lesions can cause damage to the lung tissue over time, leading to symptoms such as cough, shortness of breath, chest pain, and fatigue. Diagnosis often involves imaging studies like chest X-rays or CT scans, followed by biopsy and microscopic examination to confirm the presence of granulomas and identify the underlying cause. Treatment depends on the underlying cause but may include antibiotics, corticosteroids, or other immunosuppressive medications.

Colorimetry is the scientific measurement and quantification of color, typically using a colorimeter or spectrophotometer. In the medical field, colorimetry may be used in various applications such as:

1. Diagnosis and monitoring of skin conditions: Colorimeters can measure changes in skin color to help diagnose or monitor conditions like jaundice, cyanosis, or vitiligo. They can also assess the effectiveness of treatments for these conditions.
2. Vision assessment: Colorimetry is used in vision testing to determine the presence and severity of visual impairments such as color blindness or deficiencies. Special tests called anomaloscopes or color vision charts are used to measure an individual's ability to distinguish between different colors.
3. Environmental monitoring: In healthcare settings, colorimetry can be employed to monitor the cleanliness and sterility of surfaces or equipment by measuring the amount of contamination present. This is often done using ATP (adenosine triphosphate) bioluminescence assays, which emit light when they come into contact with microorganisms.
4. Medical research: Colorimetry has applications in medical research, such as studying the optical properties of tissues or developing new diagnostic tools and techniques based on color measurements.

In summary, colorimetry is a valuable tool in various medical fields for diagnosis, monitoring, and research purposes. It allows healthcare professionals to make more informed decisions about patient care and treatment plans.

An armadillo is not a medical condition or term. It is a type of mammal that is native to the Americas, known for its distinctive armor-like shell. If you have any questions about a specific medical condition or topic, I would be happy to help if you could provide more information.

A DNA probe is a single-stranded DNA molecule that contains a specific sequence of nucleotides, and is labeled with a detectable marker such as a radioisotope or a fluorescent dye. It is used in molecular biology to identify and locate a complementary sequence within a sample of DNA. The probe hybridizes (forms a stable double-stranded structure) with its complementary sequence through base pairing, allowing for the detection and analysis of the target DNA. This technique is widely used in various applications such as genetic testing, diagnosis of infectious diseases, and forensic science.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Ofloxacin is an antibacterial drug, specifically a fluoroquinolone. It works by inhibiting the bacterial DNA gyrase, which is essential for the bacteria to replicate. This results in the death of the bacteria and helps to stop the infection. Ofloxacin is used to treat a variety of bacterial infections, including respiratory tract infections, urinary tract infections, skin infections, and sexually transmitted diseases. It is available in various forms, such as tablets, capsules, and eye drops. As with any medication, it should be used only under the direction of a healthcare professional, and its use may be associated with certain risks and side effects.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Tuberculosis (TB), when referring to "oral" or "oropharyngeal," is a specific form of this infectious disease caused by the bacterium Mycobacterium tuberculosis. In oral TB, the infection primarily affects the tissues in and around the mouth and throat (oropharynx). The most common sites for oral TB are the tongue, palate, tonsils, and buccal mucosa (the lining of the inner cheeks).

Oral TB can present with various symptoms, including:

1. Painless or painful ulcers in the mouth or throat
2. Swelling of the lymph nodes in the neck
3. Difficulty swallowing
4. Persistent cough and hoarseness
5. Fever and fatigue
6. Unintentional weight loss

It is important to note that oral TB is relatively rare compared to pulmonary tuberculosis (TB affecting the lungs). However, it can still be transmitted through respiratory droplets or direct contact with infected sputum or saliva. Diagnosis typically involves a combination of clinical examination, imaging studies, and laboratory tests such as smear microscopy, culture, or molecular techniques like PCR to detect the presence of M. tuberculosis in samples taken from the affected area. Treatment usually consists of a standard anti-TB drug regimen recommended by the World Health Organization (WHO) for at least six months.

Rifabutin is an antibiotic drug that belongs to the class of rifamycins. According to the Medical Subject Headings (MeSH) database of the National Library of Medicine, Rifabutin is defined as: "A semi-synthetic antibiotic produced from Streptomyces mediterranei and related to rifamycin B. It has iron-binding properties and is used, usually in combination with other antibiotics, to treat tuberculosis. Its antibacterial action is due to inhibition of DNA-dependent RNA polymerase activity."

Rifabutin is primarily used to prevent and treat Mycobacterium avium complex (MAC) infections in people with human immunodeficiency virus (HIV) infection or acquired immune deficiency syndrome (AIDS). It may also be used off-label for other bacterial infections, such as tuberculosis, atypical mycobacteria, and Legionella pneumophila.

Rifabutin has a unique chemical structure compared to other rifamycin antibiotics like rifampin and rifapentine. This structural difference results in a longer half-life and better tissue distribution, allowing for once-daily dosing and improved penetration into the central nervous system (CNS).

As with any medication, Rifabutin can have side effects, including gastrointestinal disturbances, rashes, and elevated liver enzymes. Additionally, it is known to interact with several other medications, such as oral contraceptives, anticoagulants, and some anti-seizure drugs, which may require dose adjustments or monitoring for potential interactions.

CD4-positive T-lymphocytes, also known as CD4+ T cells or helper T cells, are a type of white blood cell that plays a crucial role in the immune response. They express the CD4 receptor on their surface and help coordinate the immune system's response to infectious agents such as viruses and bacteria.

CD4+ T cells recognize and bind to specific antigens presented by antigen-presenting cells, such as dendritic cells or macrophages. Once activated, they can differentiate into various subsets of effector cells, including Th1, Th2, Th17, and Treg cells, each with distinct functions in the immune response.

CD4+ T cells are particularly important in the immune response to HIV (human immunodeficiency virus), which targets and destroys these cells, leading to a weakened immune system and increased susceptibility to opportunistic infections. The number of CD4+ T cells is often used as a marker of disease progression in HIV infection, with lower counts indicating more advanced disease.

Mycobacteriaceae is a family of gram-positive, aerobic bacteria that are characterized by their high content of mycolic acids in the cell wall. This family includes several medically important genera, most notably Mycobacterium and Mycobacteroides. Many species within this family are environmental organisms, found in soil and water, but some are significant human pathogens. They are known for their ability to resist decolorization by acid after being stained with a basic fuchsin stain, known as acid-fast bacilli (AFB). This property is due to the unique structure of their cell walls, which contain mycolic acids and other lipids that make them resistant to many chemical and physical agents.

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is the most well-known pathogen within this family. Other important human pathogens include Mycobacterium leprae (leprosy), Mycobacterium avium complex (MAC) species that can cause pulmonary and disseminated infections, and Mycobacterium abscessus, which can cause various types of skin and soft tissue infections.

Mycobacteriaceae are typically slow-growing organisms, with some species taking weeks to grow in culture. Diagnosis of mycobacterial infections often involves microbiological culture, histopathology, and sometimes molecular techniques such as PCR and gene sequencing. Treatment usually requires a combination of antibiotics that target different components of the bacterial cell wall due to their inherent resistance to many conventional antibiotics.

Thioridazine is an antipsychotic medication that belongs to the class of phenothiazines. It works by blocking dopamine receptors in the brain, which helps to reduce psychotic symptoms such as delusions, hallucinations, and disordered thought processes. Thioridazine is used to treat schizophrenia and other mental disorders associated with anxiety, agitation, or hostility.

It's important to note that thioridazine has been associated with serious side effects, including prolongation of the QT interval on the electrocardiogram (ECG), which can lead to potentially fatal arrhythmias. Therefore, its use is generally reserved for patients who have not responded to other antipsychotic medications or who cannot tolerate them. Thioridazine has been withdrawn from the market in many countries due to these safety concerns.

Fluoroquinolones are a class of antibiotics that are widely used to treat various types of bacterial infections. They work by interfering with the bacteria's ability to replicate its DNA, which ultimately leads to the death of the bacterial cells. Fluoroquinolones are known for their broad-spectrum activity against both gram-positive and gram-negative bacteria.

Some common fluoroquinolones include ciprofloxacin, levofloxacin, moxifloxacin, and ofloxacin. These antibiotics are often used to treat respiratory infections, urinary tract infections, skin infections, and gastrointestinal infections, among others.

While fluoroquinolones are generally well-tolerated, they can cause serious side effects in some people, including tendonitis, nerve damage, and changes in mood or behavior. As with all antibiotics, it's important to use fluoroquinolones only when necessary and under the guidance of a healthcare provider.

Specimen handling is a set of procedures and practices followed in the collection, storage, transportation, and processing of medical samples or specimens (e.g., blood, tissue, urine, etc.) for laboratory analysis. Proper specimen handling ensures accurate test results, patient safety, and data integrity. It includes:

1. Correct labeling of the specimen container with required patient information.
2. Using appropriate containers and materials to collect, store, and transport the specimen.
3. Following proper collection techniques to avoid contamination or damage to the specimen.
4. Adhering to specific storage conditions (temperature, time, etc.) before testing.
5. Ensuring secure and timely transportation of the specimen to the laboratory.
6. Properly documenting all steps in the handling process for traceability and quality assurance.

Toll-like receptor 2 (TLR2) is a type of protein belonging to the family of pattern recognition receptors (PRRs), which play a crucial role in the innate immune system's response to pathogens. TLR2 is primarily expressed on the surface of various immune cells, including monocytes, macrophages, dendritic cells, and B cells.

TLR2 recognizes a wide range of microbial components, such as lipopeptides, lipoteichoic acid, and zymosan, derived from both gram-positive and gram-negative bacteria, fungi, and certain viruses. Upon recognition and binding to these ligands, TLR2 initiates a signaling cascade that activates various transcription factors, leading to the production of proinflammatory cytokines, chemokines, and costimulatory molecules. This response is essential for the activation and recruitment of immune cells to the site of infection, thereby contributing to the clearance of invading pathogens.

In summary, TLR2 is a vital pattern recognition receptor that helps the innate immune system detect and respond to various microbial threats by initiating an inflammatory response upon ligand binding.

Thioacetazone is an antituberculous drug that is primarily used in the treatment of tuberculosis. It works by inhibiting the synthesis of mycobacterial cell walls, thereby preventing the growth and multiplication of the bacteria that cause tuberculosis. Thioacetazone is often used in combination with other antituberculous drugs such as isoniazid and rifampicin to improve treatment outcomes and prevent drug resistance.

The chemical formula for thioacetazone is C4H6Cl2N2OS, and it is available in the form of tablets or capsules for oral administration. Common side effects of thioacetazone include skin rashes, gastrointestinal disturbances, and abnormal liver function tests. Rare but serious side effects may include severe skin reactions, hepatitis, and blood disorders. Thioacetazone is generally well-tolerated, but it should be used with caution in patients with liver or kidney disease, as well as those taking other medications that may interact with thioacetazone.

Nitrate reductase is an enzyme that catalyzes the reduction of nitrate (NO3-) to nitrite (NO2-). It is widely distributed in nature and plays a crucial role in the nitrogen cycle, particularly in the process of nitrate assimilation by plants, fungi, and some bacteria.

In plants, nitrate reductase is primarily located in the cytoplasm and chloroplasts of plant cells. It requires reduced forms of nicotinamide adenine dinucleotide phosphate (NADPH) or flavin adenine dinucleotide (FADH2) as electron donors to facilitate the reduction of nitrate to nitrite.

The reaction catalyzed by nitrate reductase can be summarized as follows:
NO3- + NAD(P)H + H+ -> NO2- + NAD(P)+ + H2O

It is worth noting that there are different types of nitrate reductases, each with distinct properties and functions. For example, some nitrate reductases require molybdenum cofactor as a prosthetic group for their catalytic activity, while others do not. Additionally, some nitrate reductases are membrane-bound, while others are soluble enzymes.

Overall, nitrate reductase is an essential enzyme in the global nitrogen cycle and has significant implications for agriculture, environmental science, and microbiology.

Lymphocyte activation is the process by which B-cells and T-cells (types of lymphocytes) become activated to perform effector functions in an immune response. This process involves the recognition of specific antigens presented on the surface of antigen-presenting cells, such as dendritic cells or macrophages.

The activation of B-cells leads to their differentiation into plasma cells that produce antibodies, while the activation of T-cells results in the production of cytotoxic T-cells (CD8+ T-cells) that can directly kill infected cells or helper T-cells (CD4+ T-cells) that assist other immune cells.

Lymphocyte activation involves a series of intracellular signaling events, including the binding of co-stimulatory molecules and the release of cytokines, which ultimately result in the expression of genes involved in cell proliferation, differentiation, and effector functions. The activation process is tightly regulated to prevent excessive or inappropriate immune responses that can lead to autoimmunity or chronic inflammation.

Diagnostic errors refer to inaccurate or delayed diagnoses of a patient's medical condition, which can lead to improper or unnecessary treatment and potentially serious harm to the patient. These errors can occur due to various factors such as lack of clinical knowledge, failure to consider all possible diagnoses, inadequate communication between healthcare providers and patients, and problems with testing or interpretation of test results. Diagnostic errors are a significant cause of preventable harm in medical care and have been identified as a priority area for quality improvement efforts.

The Interferon-gamma Release Assay (IGRA) is a type of blood test that measures the immune response to the bacterium Mycobacterium tuberculosis, which causes tuberculosis (TB). Specifically, it detects the release of interferon-gamma (IFN-γ), a signaling molecule produced by T cells when they are stimulated by antigens present in the M. tuberculosis complex.

The IGRA test is used as an aid in diagnosing latent TB infection (LTBI) and active TB disease, particularly in individuals who may have an increased risk of progression to active TB or who cannot provide a reliable sputum sample for conventional acid-fast bacilli (AFB) smear microscopy or culture.

There are two commercially available IGRA tests: the QuantiFERON-TB Gold In-Tube test and the T-SPOT.TB test. Both tests involve incubating a patient's whole blood sample with M. tuberculosis-specific antigens, followed by measurement of IFN-γ release from T cells. The QuantiFERON-TB Gold In-Tube test measures IFN-γ in the plasma using an enzyme-linked immunosorbent assay (ELISA), while the T-SPOT.TB test enumerates antigen-specific T cells using an enzyme-linked immunospot (ELISPOT) assay.

IGRA tests have several advantages over traditional tuberculin skin tests (TSTs), including higher specificity, less cross-reactivity with BCG vaccination or non-tuberculous mycobacteria, and greater ease of administration and interpretation. However, IGRAs may still have limitations in certain populations, such as immunocompromised individuals, and should be interpreted in conjunction with clinical symptoms, radiographic findings, and other diagnostic tests.

Vaccination is a simple, safe, and effective way to protect people against harmful diseases, before they come into contact with them. It uses your body's natural defenses to build protection to specific infections and makes your immune system stronger.

A vaccination usually contains a small, harmless piece of a virus or bacteria (or toxins produced by these germs) that has been made inactive or weakened so it won't cause the disease itself. This piece of the germ is known as an antigen. When the vaccine is introduced into the body, the immune system recognizes the antigen as foreign and produces antibodies to fight it.

If a person then comes into contact with the actual disease-causing germ, their immune system will recognize it and immediately produce antibodies to destroy it. The person is therefore protected against that disease. This is known as active immunity.

Vaccinations are important for both individual and public health. They prevent the spread of contagious diseases and protect vulnerable members of the population, such as young children, the elderly, and people with weakened immune systems who cannot be vaccinated or for whom vaccination is not effective.

I'm sorry for any confusion, but "Oxazoles" is not a medical term, it is a chemical term. Oxazoles are heterocyclic aromatic organic compounds that contain a five-membered ring made up of one nitrogen atom, one oxygen atom, and three carbon atoms. They have the molecular formula C4H4NO.

Oxazoles do not have specific medical relevance, but they can be found in some natural and synthetic substances, including certain drugs and bioactive molecules. Some oxazole-containing compounds have been studied for their potential medicinal properties, such as anti-inflammatory, antimicrobial, and anticancer activities. However, these studies are primarily within the field of chemistry and pharmacology, not medicine itself.

Galactans are a type of complex carbohydrates known as oligosaccharides that are composed of galactose molecules. They can be found in certain plants, including beans, lentils, and some fruits and vegetables. In the human body, galactans are not digestible and can reach the colon intact, where they may serve as a substrate for fermentation by gut bacteria. This can lead to the production of short-chain fatty acids, which have been shown to have various health benefits. However, in some individuals with irritable bowel syndrome or other functional gastrointestinal disorders, consumption of galactans may cause digestive symptoms such as bloating, gas, and diarrhea.

Tuberculous peritonitis is a specific type of peritonitis (inflammation of the peritoneum, the serous membrane that lines the abdominal cavity and covers the abdominal organs) that is caused by the Mycobacterium tuberculosis bacterium. This form of peritonitis is less common than peritonitis caused by other types of bacteria, but it can occur in people with weakened immune systems or those who have been in close contact with individuals with active TB.

The symptoms of tuberculous peritonitis may include abdominal pain and distension, fever, weight loss, decreased appetite, and ascites (accumulation of fluid in the abdominal cavity). Diagnosis typically involves a combination of clinical evaluation, imaging studies, and laboratory tests, such as cultures or nucleic acid amplification tests (NAATs) to detect the presence of M. tuberculosis in the peritoneal fluid or tissue. Treatment usually involves a prolonged course of multiple antibiotics that are active against M. tuberculosis, along with supportive care to manage any complications or symptoms.

Immunologic tests are a type of diagnostic assay that detect and measure the presence or absence of specific immune responses in a sample, such as blood or tissue. These tests can be used to identify antibodies, antigens, immune complexes, or complement components in a sample, which can provide information about the health status of an individual, including the presence of infection, autoimmune disease, or immunodeficiency.

Immunologic tests use various methods to detect these immune components, such as enzyme-linked immunosorbent assays (ELISAs), Western blots, immunofluorescence assays, and radioimmunoassays. The results of these tests can help healthcare providers diagnose and manage medical conditions, monitor treatment effectiveness, and assess immune function.

It's important to note that the interpretation of immunologic test results should be done by a qualified healthcare professional, as false positives or negatives can occur, and the results must be considered in conjunction with other clinical findings and patient history.

Cellular immunity, also known as cell-mediated immunity, is a type of immune response that involves the activation of immune cells, such as T lymphocytes (T cells), to protect the body against infected or damaged cells. This form of immunity is important for fighting off infections caused by viruses and intracellular bacteria, as well as for recognizing and destroying cancer cells.

Cellular immunity involves a complex series of interactions between various immune cells and molecules. When a pathogen infects a cell, the infected cell displays pieces of the pathogen on its surface in a process called antigen presentation. This attracts T cells, which recognize the antigens and become activated. Activated T cells then release cytokines, chemicals that help coordinate the immune response, and can directly attack and kill infected cells or help activate other immune cells to do so.

Cellular immunity is an important component of the adaptive immune system, which is able to learn and remember specific pathogens in order to mount a faster and more effective response upon subsequent exposure. This form of immunity is also critical for the rejection of transplanted organs, as the immune system recognizes the transplanted tissue as foreign and attacks it.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

Macrophage activation is a process in which these immune cells become increasingly active and responsive to various stimuli, such as pathogens or inflammatory signals. This activation triggers a series of changes within the macrophages, allowing them to perform important functions like phagocytosis (ingesting and destroying foreign particles or microorganisms), antigen presentation (presenting microbial fragments to T-cells to stimulate an immune response), and production of cytokines and chemokines (signaling molecules that help coordinate the immune response).

There are two main types of macrophage activation: classical (or M1) activation and alternative (or M2) activation. Classical activation is typically induced by interferon-gamma (IFN-γ) and lipopolysaccharide (LPS), leading to a proinflammatory response, enhanced microbicidal activity, and the production of reactive oxygen and nitrogen species. Alternative activation, on the other hand, is triggered by cytokines like interleukin-4 (IL-4) and IL-13, resulting in an anti-inflammatory response, tissue repair, and the promotion of wound healing.

It's important to note that macrophage activation plays a crucial role in various physiological and pathological processes, including immune defense, inflammation, tissue remodeling, and even cancer progression. Dysregulation of macrophage activation has been implicated in several diseases, such as autoimmune disorders, chronic infections, and cancer.

Aerosols are defined in the medical field as suspensions of fine solid or liquid particles in a gas. In the context of public health and medicine, aerosols often refer to particles that can remain suspended in air for long periods of time and can be inhaled. They can contain various substances, such as viruses, bacteria, fungi, or chemicals, and can play a role in the transmission of respiratory infections or other health effects.

For example, when an infected person coughs or sneezes, they may produce respiratory droplets that can contain viruses like influenza or SARS-CoV-2 (the virus that causes COVID-19). Some of these droplets can evaporate quickly and leave behind smaller particles called aerosols, which can remain suspended in the air for hours and potentially be inhaled by others. This is one way that respiratory viruses can spread between people in close proximity to each other.

Aerosols can also be generated through medical procedures such as bronchoscopy, suctioning, or nebulizer treatments, which can produce aerosols containing bacteria, viruses, or other particles that may pose an infection risk to healthcare workers or other patients. Therefore, appropriate personal protective equipment (PPE) and airborne precautions are often necessary to reduce the risk of transmission in these settings.

Kanamycin is an aminoglycoside antibiotic that is derived from the bacterium Streptomyces kanamyceticus. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Kanamycin is primarily used to treat serious infections caused by Gram-negative bacteria, such as Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. It is also used in veterinary medicine to prevent bacterial infections in animals.

Like other aminoglycosides, kanamycin can cause ototoxicity (hearing loss) and nephrotoxicity (kidney damage) with prolonged use or high doses. Therefore, it is important to monitor patients closely for signs of toxicity and adjust the dose accordingly. Kanamycin is not commonly used as a first-line antibiotic due to its potential side effects and the availability of safer alternatives. However, it remains an important option for treating multidrug-resistant bacterial infections.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Oxazines are heterocyclic organic compounds that contain a six-membered ring with one nitrogen atom, one oxygen atom, and four carbon atoms. The structure of oxazine is similar to benzene, but with one methine group (=CH−) replaced by a nitrogen atom and another methine group replaced by an oxygen atom.

Oxazines have important applications in the pharmaceutical industry as they are used in the synthesis of various drugs, including anti-inflammatory, antiviral, and anticancer agents. However, oxazines themselves do not have a specific medical definition, as they refer to a class of chemical compounds rather than a medical condition or treatment.

Alanine Dehydrogenase (ADH) is an enzyme that catalyzes the reversible conversion between alanine and pyruvate with the reduction of nicotinamide adenine dinucleotide (NAD+) to nicotinamide adenine dinucleotide hydride (NADH). This reaction plays a role in the metabolism of amino acids, particularly in the catabolism of alanine.

In humans, there are multiple isoforms of ADH that are expressed in different tissues and have different functions. The isoform known as ALDH4A1 is primarily responsible for the conversion of alanine to pyruvate in the liver. Deficiencies or mutations in this enzyme can lead to a rare genetic disorder called 4-hydroxybutyric aciduria, which is characterized by elevated levels of 4-hydroxybutyric acid in the urine and neurological symptoms.

Emigration is the process of leaving one's country of origin or habitual residence to settle in another country. It involves giving up the rights and privileges associated with citizenship in the country of origin and acquiring new rights and responsibilities as a citizen or resident of the destination country. Emigrants are people who choose to leave their native land to live elsewhere, often driven by factors such as economic opportunities, political instability, or conflict.

Immigration, on the other hand, is the process of entering and settling in a new country with the intention of becoming a permanent resident or citizen. Immigrants are individuals who come from another country to live in a new place, often seeking better job opportunities, education, or quality of life. They must comply with the immigration laws and regulations of the host country and may be required to undergo medical examinations, background checks, and other screening processes before being granted permission to enter and reside in the country.

In summary, emigration refers to leaving one's home country, while immigration refers to entering and settling in a new country.

I'm sorry for any confusion, but "India" is not a medical term or concept. It is a country in South Asia, the second-most populous country in the world, known for its rich history, diverse culture, and numerous contributions to various fields including medicine. If you have any questions related to medical topics, I would be happy to help answer them!

Quinolines are a class of organic compounds that consist of a bicyclic structure made up of a benzene ring fused to a piperidine ring. They have a wide range of applications, but they are perhaps best known for their use in the synthesis of various medications, including antibiotics and antimalarial drugs.

Quinolone antibiotics, such as ciprofloxacin and levofloxacin, work by inhibiting the bacterial enzymes involved in DNA replication and repair. They are commonly used to treat a variety of bacterial infections, including urinary tract infections, pneumonia, and skin infections.

Quinoline-based antimalarial drugs, such as chloroquine and hydroxychloroquine, work by inhibiting the parasite's ability to digest hemoglobin in the red blood cells. They are commonly used to prevent and treat malaria.

It is important to note that quinolines have been associated with serious side effects, including tendinitis and tendon rupture, nerve damage, and abnormal heart rhythms. As with any medication, it is important to use quinolines only under the supervision of a healthcare provider, and to follow their instructions carefully.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Paleopathology is the study of ancient diseases and injuries as recorded in bones, mummies, and other archaeological remains. It is an interdisciplinary field that combines knowledge from pathology, epidemiology, anthropology, and archaeology to understand the health and disease patterns of past populations. The findings of paleopathology can provide valuable insights into the evolution of diseases, the effectiveness of ancient medical practices, and the impact of environmental and social factors on human health over time. Examples of conditions that may be studied in paleopathology include infectious diseases (such as tuberculosis or leprosy), nutritional deficiencies, trauma, cancer, and genetic disorders.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Thoracic radiography is a type of diagnostic imaging that involves using X-rays to produce images of the chest, including the lungs, heart, bronchi, great vessels, and the bones of the spine and chest wall. It is a commonly used tool in the diagnosis and management of various respiratory, cardiovascular, and thoracic disorders such as pneumonia, lung cancer, heart failure, and rib fractures.

During the procedure, the patient is positioned between an X-ray machine and a cassette containing a film or digital detector. The X-ray beam is directed at the chest, and the resulting image is captured on the film or detector. The images produced can help identify any abnormalities in the structure or function of the organs within the chest.

Thoracic radiography may be performed as a routine screening test for certain conditions, such as lung cancer, or it may be ordered when a patient presents with symptoms suggestive of a respiratory or cardiovascular disorder. It is a safe and non-invasive procedure that can provide valuable information to help guide clinical decision making and improve patient outcomes.

"Multiple drug resistance" (MDR) is a term used in medicine to describe the condition where a patient's infection becomes resistant to multiple antimicrobial drugs. This means that the bacteria, virus, fungus or parasite that is causing the infection has developed the ability to survive and multiply despite being exposed to medications that were originally designed to kill or inhibit its growth.

In particular, MDR occurs when an organism becomes resistant to at least one drug in three or more antimicrobial categories. This can happen due to genetic changes in the microorganism that allow it to survive in the presence of these drugs. The development of MDR is a significant concern for public health because it limits treatment options and can make infections harder, if not impossible, to treat.

MDR can develop through several mechanisms, including mutations in the genes that encode drug targets or enzymes involved in drug metabolism, as well as the acquisition of genetic elements such as plasmids and transposons that carry resistance genes. The overuse and misuse of antimicrobial drugs are major drivers of MDR, as they create selective pressure for the emergence and spread of resistant strains.

MDR infections can occur in various settings, including hospitals, long-term care facilities, and communities. They can affect people of all ages and backgrounds, although certain populations may be at higher risk, such as those with weakened immune systems or chronic medical conditions. Preventing the spread of MDR requires a multifaceted approach that includes surveillance, infection control, antimicrobial stewardship, and research into new therapies and diagnostics.

Alveolar macrophages are a type of macrophage (a large phagocytic cell) that are found in the alveoli of the lungs. They play a crucial role in the immune defense system of the lungs by engulfing and destroying any foreign particles, such as dust, microorganisms, and pathogens, that enter the lungs through the process of inhalation. Alveolar macrophages also produce cytokines, which are signaling molecules that help to coordinate the immune response. They are important for maintaining the health and function of the lungs by removing debris and preventing infection.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Pleural effusion is a medical condition characterized by the abnormal accumulation of fluid in the pleural space, which is the thin, fluid-filled space that surrounds the lungs and lines the inside of the chest wall. This space typically contains a small amount of fluid to allow for smooth movement of the lungs during breathing. However, when an excessive amount of fluid accumulates, it can cause symptoms such as shortness of breath, coughing, and chest pain.

Pleural effusions can be caused by various underlying medical conditions, including pneumonia, heart failure, cancer, pulmonary embolism, and autoimmune disorders. The fluid that accumulates in the pleural space can be transudative or exudative, depending on the cause of the effusion. Transudative effusions are caused by increased pressure in the blood vessels or decreased protein levels in the blood, while exudative effusions are caused by inflammation, infection, or cancer.

Diagnosis of pleural effusion typically involves a physical examination, chest X-ray, and analysis of the fluid in the pleural space. Treatment depends on the underlying cause of the effusion and may include medications, drainage of the fluid, or surgery.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

Monocytes are a type of white blood cell that are part of the immune system. They are large cells with a round or oval shape and a nucleus that is typically indented or horseshoe-shaped. Monocytes are produced in the bone marrow and then circulate in the bloodstream, where they can differentiate into other types of immune cells such as macrophages and dendritic cells.

Monocytes play an important role in the body's defense against infection and tissue damage. They are able to engulf and digest foreign particles, microorganisms, and dead or damaged cells, which helps to clear them from the body. Monocytes also produce cytokines, which are signaling molecules that help to coordinate the immune response.

Elevated levels of monocytes in the bloodstream can be a sign of an ongoing infection, inflammation, or other medical conditions such as cancer or autoimmune disorders.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Tuberculosis (TB) of the male genital system, also known as genitourinary tuberculosis (GUTB), is a rare form of extrapulmonary tuberculosis that affects the urinary and genital organs. It is caused by the Mycobacterium tuberculosis bacterium, which typically enters the body through inhalation and spreads to other parts of the body via the bloodstream or lymphatic system.

In males, GUTB can affect the epididymis, testes, prostate gland, seminal vesicles, vas deferens, and urethra. The most common site of infection is the epididymis, followed by the prostate gland. Symptoms may include pain or swelling in the affected area, discharge from the urethra, blood in the urine, fever, fatigue, and weight loss.

Diagnosis of GUTB typically involves a combination of medical history, physical examination, imaging studies (such as ultrasound, CT scan, or MRI), and laboratory tests (such as urinalysis, culture, or biopsy). Treatment usually involves a prolonged course of multiple antibiotics that are effective against TB, such as isoniazid, rifampin, ethambutol, and pyrazinamide. Surgery may be necessary in some cases to drain abscesses or remove infected tissue.

GUTB can lead to serious complications if left untreated, including infertility, chronic pain, and spread of the infection to other parts of the body. Therefore, it is important to seek medical attention promptly if you experience any symptoms suggestive of GUTB.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Innate immunity, also known as non-specific immunity or natural immunity, is the inherent defense mechanism that provides immediate protection against potentially harmful pathogens (like bacteria, viruses, fungi, and parasites) without the need for prior exposure. This type of immunity is present from birth and does not adapt to specific threats over time.

Innate immune responses involve various mechanisms such as:

1. Physical barriers: Skin and mucous membranes prevent pathogens from entering the body.
2. Chemical barriers: Enzymes, stomach acid, and lysozyme in tears, saliva, and sweat help to destroy or inhibit the growth of microorganisms.
3. Cellular responses: Phagocytic cells (neutrophils, monocytes, macrophages) recognize and engulf foreign particles and pathogens, while natural killer (NK) cells target and eliminate virus-infected or cancerous cells.
4. Inflammatory response: When an infection occurs, the innate immune system triggers inflammation to increase blood flow, recruit immune cells, and remove damaged tissue.
5. Complement system: A group of proteins that work together to recognize and destroy pathogens directly or enhance phagocytosis by coating them with complement components (opsonization).

Innate immunity plays a crucial role in initiating the adaptive immune response, which is specific to particular pathogens and provides long-term protection through memory cells. Both innate and adaptive immunity work together to maintain overall immune homeostasis and protect the body from infections and diseases.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

I'm sorry for any confusion, but "Russia" is not a medical term or concept. Russia is the largest country in the world by land area, located primarily in Asia with a smaller portion extending into Europe. It is a nation rich in history and culture, known for its diverse landscapes, from tundra and forests to subtropical beaches.

If you have any medical questions or terms that you would like me to define, please feel free to ask!

Amikacin is a type of antibiotic known as an aminoglycoside, which is used to treat various bacterial infections. It works by binding to the 30S subunit of the bacterial ribosome, inhibiting protein synthesis and ultimately leading to bacterial cell death. Amikacin is often used to treat serious infections caused by Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. It may be given intravenously or intramuscularly, depending on the severity and location of the infection. As with all antibiotics, amikacin should be used judiciously to prevent the development of antibiotic resistance.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Oligonucleotides are short sequences of nucleotides, the building blocks of DNA and RNA. They typically contain fewer than 100 nucleotides, and can be synthesized chemically to have specific sequences. Oligonucleotides are used in a variety of applications in molecular biology, including as probes for detecting specific DNA or RNA sequences, as inhibitors of gene expression, and as components of diagnostic tests and therapies. They can also be used in the study of protein-nucleic acid interactions and in the development of new drugs.

Skin tests are medical diagnostic procedures that involve the application of a small amount of a substance to the skin, usually through a scratch, prick, or injection, to determine if the body has an allergic reaction to it. The most common type of skin test is the patch test, which involves applying a patch containing a small amount of the suspected allergen to the skin and observing the area for signs of a reaction, such as redness, swelling, or itching, over a period of several days. Another type of skin test is the intradermal test, in which a small amount of the substance is injected just beneath the surface of the skin. Skin tests are used to help diagnose allergies, including those to pollen, mold, pets, and foods, as well as to identify sensitivities to medications, chemicals, and other substances.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

'Corynebacterium glutamicum' is a species of Gram-positive, rod-shaped bacteria that are commonly found in the environment, particularly in soil and water. It is a facultative anaerobe, which means it can grow with or without oxygen. The bacterium is non-pathogenic and has been widely studied and used in biotechnology due to its ability to produce various amino acids and other industrially relevant compounds.

The name 'Corynebacterium glutamicum' comes from its discovery as a bacterium that can ferment the amino acid glutamate, which is why it has been extensively used in the industrial production of L-glutamate, an important ingredient in many food products and feed additives.

In recent years, 'Corynebacterium glutamicum' has also gained attention as a potential platform organism for the production of various biofuels and biochemicals, including alcohols, organic acids, and hydrocarbons. Its genetic tractability and ability to utilize a wide range of carbon sources make it an attractive candidate for biotechnological applications.

Th1 cells, or Type 1 T helper cells, are a subset of CD4+ T cells that play a crucial role in the cell-mediated immune response. They are characterized by the production of specific cytokines, such as interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2). Th1 cells are essential for protecting against intracellular pathogens, including viruses, bacteria, and parasites. They activate macrophages to destroy ingested microorganisms, stimulate the differentiation of B cells into plasma cells that produce antibodies, and recruit other immune cells to the site of infection. Dysregulation of Th1 cell responses has been implicated in various autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and type 1 diabetes.

Mononuclear leukocytes are a type of white blood cells (leukocytes) that have a single, large nucleus. They include lymphocytes (B-cells, T-cells, and natural killer cells), monocytes, and dendritic cells. These cells play important roles in the body's immune system, including defending against infection and disease, and participating in immune responses and surveillance. Mononuclear leukocytes can be found in the bloodstream as well as in tissues throughout the body. They are involved in both innate and adaptive immunity, providing specific and nonspecific defense mechanisms to protect the body from harmful pathogens and other threats.

Viomycin is an antibiotic that belongs to the class of drugs known as aminoglycosides. It works by binding to bacterial ribosomes and interfering with protein synthesis, leading to bacterial cell death. Viomycin is primarily used to treat tuberculosis and other mycobacterial infections that are resistant to other antibiotics. However, its use is limited due to its potential toxicity to the kidneys and hearing.

Here's a medical definition of Viomycin from Stedman's Medical Dictionary:

"A crystalline, basic polypeptide antibiotic produced by certain strains of Streptomyces floridae var. violaceusniger; used in the treatment of tuberculosis and other mycobacterial infections."

I'm sorry for any confusion, but "Peru" is not a medical term. It is a country located in South America, known for its rich history, diverse culture, and beautiful landscapes. If you have any questions about medical terms or concepts, I would be happy to help answer those!

I apologize, but I am not able to find a medical definition for "Benzophenoneidum." It is possible that this term may be used in other scientific fields, such as chemistry or materials science, but it does not appear to have a specific meaning within the field of medicine.

Benzophenones are a class of chemical compounds that contain a benzene ring linked to a ketone group through a carbon-carbon bond. They are often used in industrial and consumer products as UV absorbers, fragrances, and photographic developers. Some benzophenones have been studied for their potential toxicity and endocrine-disrupting effects, but they do not have a specific medical definition or application.

If you meant to ask about a different term or if you need information on a related topic, please let me know!

Anti-infective agents are a class of medications that are used to treat infections caused by various microorganisms such as bacteria, viruses, fungi, and parasites. These agents work by either killing the microorganism or inhibiting its growth, thereby helping to control the infection and alleviate symptoms.

There are several types of anti-infective agents, including:

1. Antibiotics: These are medications that are used to treat bacterial infections. They work by either killing bacteria (bactericidal) or inhibiting their growth (bacteriostatic).
2. Antivirals: These are medications that are used to treat viral infections. They work by interfering with the replication of the virus, preventing it from spreading and causing further damage.
3. Antifungals: These are medications that are used to treat fungal infections. They work by disrupting the cell membrane of the fungus, killing it or inhibiting its growth.
4. Antiparasitics: These are medications that are used to treat parasitic infections. They work by either killing the parasite or inhibiting its growth and reproduction.

It is important to note that anti-infective agents are not effective against all types of infections, and it is essential to use them appropriately to avoid the development of drug-resistant strains of microorganisms.

I must clarify that "Ethiopia" is not a medical term or condition. Ethiopia is a country located in the Horn of Africa, known for its rich history and cultural heritage. It is the second-most populous nation in Africa, with diverse ethnic groups, languages, and religious practices.

If you have any questions related to medical terminology or health-related topics, please feel free to ask! I'm here to help.

Phagocytosis is the process by which certain cells in the body, known as phagocytes, engulf and destroy foreign particles, bacteria, or dead cells. This mechanism plays a crucial role in the immune system's response to infection and inflammation. Phagocytes, such as neutrophils, monocytes, and macrophages, have receptors on their surface that recognize and bind to specific molecules (known as antigens) on the target particles or microorganisms.

Once attached, the phagocyte extends pseudopodia (cell extensions) around the particle, forming a vesicle called a phagosome that completely encloses it. The phagosome then fuses with a lysosome, an intracellular organelle containing digestive enzymes and other chemicals. This fusion results in the formation of a phagolysosome, where the engulfed particle is broken down by the action of these enzymes, neutralizing its harmful effects and allowing for the removal of cellular debris or pathogens.

Phagocytosis not only serves as a crucial defense mechanism against infections but also contributes to tissue homeostasis by removing dead cells and debris.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

Virulence factors are characteristics or components of a microorganism, such as bacteria, viruses, fungi, or parasites, that contribute to its ability to cause damage or disease in a host organism. These factors can include various structures, enzymes, or toxins that allow the pathogen to evade the host's immune system, attach to and invade host tissues, obtain nutrients from the host, or damage host cells directly.

Examples of virulence factors in bacteria include:

1. Endotoxins: lipopolysaccharides found in the outer membrane of Gram-negative bacteria that can trigger a strong immune response and inflammation.
2. Exotoxins: proteins secreted by some bacteria that have toxic effects on host cells, such as botulinum toxin produced by Clostridium botulinum or diphtheria toxin produced by Corynebacterium diphtheriae.
3. Adhesins: structures that help the bacterium attach to host tissues, such as fimbriae or pili in Escherichia coli.
4. Capsules: thick layers of polysaccharides or proteins that surround some bacteria and protect them from the host's immune system, like those found in Streptococcus pneumoniae or Klebsiella pneumoniae.
5. Invasins: proteins that enable bacteria to invade and enter host cells, such as internalins in Listeria monocytogenes.
6. Enzymes: proteins that help bacteria obtain nutrients from the host by breaking down various molecules, like hemolysins that lyse red blood cells to release iron or hyaluronidases that degrade connective tissue.

Understanding virulence factors is crucial for developing effective strategies to prevent and treat infectious diseases caused by these microorganisms.

DNA-directed RNA polymerases are enzymes that synthesize RNA molecules using a DNA template in a process called transcription. These enzymes read the sequence of nucleotides in a DNA molecule and use it as a blueprint to construct a complementary RNA strand.

The RNA polymerase moves along the DNA template, adding ribonucleotides one by one to the growing RNA chain. The synthesis is directional, starting at the promoter region of the DNA and moving towards the terminator region.

In bacteria, there is a single type of RNA polymerase that is responsible for transcribing all types of RNA (mRNA, tRNA, and rRNA). In eukaryotic cells, however, there are three different types of RNA polymerases: RNA polymerase I, II, and III. Each type is responsible for transcribing specific types of RNA.

RNA polymerases play a crucial role in gene expression, as they link the genetic information encoded in DNA to the production of functional proteins. Inhibition or mutation of these enzymes can have significant consequences for cellular function and survival.

Pentosyltransferases are a group of enzymes that catalyze the transfer of a pentose (a sugar containing five carbon atoms) molecule from one compound to another. These enzymes play important roles in various biochemical pathways, including the biosynthesis of nucleotides, glycoproteins, and other complex carbohydrates.

One example of a pentosyltransferase is the enzyme that catalyzes the addition of a ribose sugar to form a glycosidic bond with a purine or pyrimidine base during the biosynthesis of nucleotides, which are the building blocks of DNA and RNA.

Another example is the enzyme that adds xylose residues to proteins during the formation of glycoproteins, which are proteins that contain covalently attached carbohydrate chains. These enzymes are essential for many biological processes and have been implicated in various diseases, including cancer and neurodegenerative disorders.

A regulon is a group of genes that are regulated together in response to a specific signal or stimulus, often through the action of a single transcription factor or regulatory protein. This means that when the transcription factor binds to specific DNA sequences called operators, it can either activate or repress the transcription of all the genes within the regulon.

This type of gene regulation is important for coordinating complex biological processes, such as cellular metabolism, stress responses, and developmental programs. By regulating a group of genes together, cells can ensure that they are all turned on or off in a coordinated manner, allowing for more precise control over the overall response to a given signal.

It's worth noting that the term "regulon" is not commonly used in clinical medicine, but rather in molecular biology and genetics research.

Multiplex polymerase chain reaction (Multiplex PCR) is a laboratory technique that allows the simultaneous amplification and detection of multiple specific DNA sequences in a single reaction. This method utilizes multiple sets of primers, each specifically designed to recognize and bind to a unique target sequence within the DNA sample.

The process involves several steps:

1. Denaturation: The DNA sample is heated to separate the double-stranded DNA into single strands.
2. Annealing: Primers specific to the target sequences are added, and the mixture is cooled, allowing the primers to attach to their respective complementary sequences on the DNA strands.
3. Extension/Amplification: Polymerase enzymes extend the primers along the DNA template, synthesizing new strands of DNA that contain the target sequence. This step is repeated multiple times (usually 25-40 cycles) to exponentially amplify the targeted sequences.

In multiplex PCR, several primer sets are used in a single reaction, allowing for the simultaneous amplification of different target sequences. After amplification, various methods can be employed to distinguish and detect the specific products, such as gel electrophoresis, capillary electrophoresis, or microarray analysis.

Multiplex PCR is widely used in diagnostic tests, pathogen detection, genetic testing, and research applications where multiple DNA targets need to be analyzed simultaneously.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Malate Synthase is a key enzyme in the gluconeogenesis pathway and the glyoxylate cycle, which are present in many organisms including plants, bacteria, and parasites. The glyoxylate cycle is a variation of the citric acid cycle (Krebs cycle) that allows these organisms to convert two-carbon molecules into four-carbon molecules, bypassing steps that require oxygen.

Malate Synthase catalyzes the reaction between glyoxylate and acetyl-CoA to produce malate, a four-carbon compound. This enzyme plays a crucial role in enabling these organisms to utilize fatty acids as a carbon source for growth and energy production, particularly under conditions where oxygen is limited or absent. In humans, Malate Synthase is not typically found, but its presence can indicate certain parasitic infections or metabolic disorders.

Avian tuberculosis is a zoonotic disease caused by Mycobacterium avium complex (MAC), specifically Mycobacterium avium and Mycobacterium intracellulare. It primarily affects birds, particularly poultry such as chickens and turkeys, but can also rarely infect mammals including humans.

In humans, avian tuberculosis is usually acquired through the inhalation of contaminated aerosols or ingestion of contaminated food or water. The infection typically involves the lungs (pulmonary TB) and less commonly other organs (extrapulmonary TB).

Symptoms of avian tuberculosis in humans may include cough, fever, night sweats, fatigue, weight loss, and chest pain. Diagnosis is confirmed through microbiological culture, PCR, or histopathological examination of tissue samples. Treatment typically involves a combination of antibiotics such as clarithromycin, rifabutin, and ethambutol for an extended period of time.

It's worth noting that avian tuberculosis is not the same as human tuberculosis, which is caused by Mycobacterium tuberculosis and is much more common in humans.

CD8-positive T-lymphocytes, also known as CD8+ T cells or cytotoxic T cells, are a type of white blood cell that plays a crucial role in the adaptive immune system. They are named after the CD8 molecule found on their surface, which is a protein involved in cell signaling and recognition.

CD8+ T cells are primarily responsible for identifying and destroying virus-infected cells or cancerous cells. When activated, they release cytotoxic granules that contain enzymes capable of inducing apoptosis (programmed cell death) in the target cells. They also produce cytokines such as interferon-gamma, which can help coordinate the immune response and activate other immune cells.

CD8+ T cells are generated in the thymus gland and are a type of T cell, which is a lymphocyte that matures in the thymus and plays a central role in cell-mediated immunity. They recognize and respond to specific antigens presented on the surface of infected or cancerous cells in conjunction with major histocompatibility complex (MHC) class I molecules.

Overall, CD8+ T cells are an essential component of the immune system's defense against viral infections and cancer.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Crystallization is a process in which a substance transitions from a liquid or dissolved state to a solid state, forming a crystal lattice. In the medical context, crystallization can refer to the formation of crystals within the body, which can occur under certain conditions such as changes in pH, temperature, or concentration of solutes. These crystals can deposit in various tissues and organs, leading to the formation of crystal-induced diseases or disorders.

For example, in patients with gout, uric acid crystals can accumulate in joints, causing inflammation, pain, and swelling. Similarly, in nephrolithiasis (kidney stones), minerals in the urine can crystallize and form stones that can obstruct the urinary tract. Crystallization can also occur in other medical contexts, such as in the formation of dental calculus or plaque, and in the development of cataracts in the eye.

A "false positive reaction" in medical testing refers to a situation where a diagnostic test incorrectly indicates the presence of a specific condition or disease in an individual who does not actually have it. This occurs when the test results give a positive outcome, while the true health status of the person is negative or free from the condition being tested for.

False positive reactions can be caused by various factors including:

1. Presence of unrelated substances that interfere with the test result (e.g., cross-reactivity between similar molecules).
2. Low specificity of the test, which means it may detect other conditions or irrelevant factors as positive.
3. Contamination during sample collection, storage, or analysis.
4. Human errors in performing or interpreting the test results.

False positive reactions can have significant consequences, such as unnecessary treatments, anxiety, and increased healthcare costs. Therefore, it is essential to confirm any positive test result with additional tests or clinical evaluations before making a definitive diagnosis.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Intergenic DNA refers to the stretches of DNA that are located between genes. These regions do not contain coding sequences for proteins or RNA and thus were once thought to be "junk" DNA with no function. However, recent research has shown that intergenic DNA can play important roles in the regulation of gene expression, chromosome structure and stability, and other cellular processes. Intergenic DNA may contain various types of regulatory elements such as enhancers, silencers, insulators, and promoters that control the transcription of nearby genes. Additionally, intergenic DNA can also include repetitive sequences, transposable elements, and other non-coding RNAs that have diverse functions in the cell.

I apologize, but "Brazil" is not a medical term or condition. It is the largest country in both South America and Latin America by land area and population. If you have any questions related to medical terminology or health concerns, please provide more information and I will do my best to help.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Fatty acid synthase type II (FASN2) is an alternative form of fatty acid synthase, which is a multi-functional enzyme complex responsible for the de novo synthesis of palmitate, a 16-carbon saturated fatty acid. In contrast to the classical type I fatty acid synthase (FASN), which is found in the cytoplasm and exists as a homodimer, FASN2 is localized in the mitochondria and consists of individual, monofunctional enzymes that catalyze each step of the fatty acid synthesis process.

The type II fatty acid synthase system includes several enzymes: acetyl-CoA carboxylase (ACC), which provides malonyl-CoA; 3-ketoacyl-CoA thiolase, which catalyzes the initial condensation of acetyl-CoA and malonyl-CoA to form acetoacetyl-CoA; 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (HAD), which catalyzes the reduction, dehydration, and isomerization of acetoacetyl-CoA to form hydroxybutyryl-CoA; 3-ketoacyl-CoA reductase, which reduces hydroxybutyryl-CoA to butyryl-CoA; and enoyl-CoA reductase (ECR), which catalyzes the final reduction of butyryl-CoA to palmitate.

FASN2 is involved in various cellular processes, including energy metabolism, lipid biosynthesis, and protein acetylation. Dysregulation of FASN2 has been implicated in several diseases, such as cancer, obesity, and neurodegenerative disorders.

Genetic polymorphism refers to the occurrence of multiple forms (called alleles) of a particular gene within a population. These variations in the DNA sequence do not generally affect the function or survival of the organism, but they can contribute to differences in traits among individuals. Genetic polymorphisms can be caused by single nucleotide changes (SNPs), insertions or deletions of DNA segments, or other types of genetic rearrangements. They are important for understanding genetic diversity and evolution, as well as for identifying genetic factors that may contribute to disease susceptibility in humans.

An operon is a genetic unit in prokaryotic organisms (like bacteria) consisting of a cluster of genes that are transcribed together as a single mRNA molecule, which then undergoes translation to produce multiple proteins. This genetic organization allows for the coordinated regulation of genes that are involved in the same metabolic pathway or functional process. The unit typically includes promoter and operator regions that control the transcription of the operon, as well as structural genes encoding the proteins. Operons were first discovered in bacteria, but similar genetic organizations have been found in some eukaryotic organisms, such as yeast.

Xanthenes are a class of organic compounds that contain a xanthene core, which is a tricyclic compound made up of two benzene rings fused to a central pyran ring. They have the basic structure:

While xanthenes themselves do not have significant medical applications, many of their derivatives are widely used in medicine and research. For example, fluorescein and eosin are xanthene dyes that are commonly used as diagnostic tools in ophthalmology and as stains in histology. Additionally, some xanthene derivatives have been explored for their potential therapeutic benefits, such as anti-inflammatory, antimicrobial, and anticancer activities. However, it is important to note that individual medical definitions would depend on the specific xanthene derivative in question.

Microscopy is a technical field in medicine that involves the use of microscopes to observe structures and phenomena that are too small to be seen by the naked eye. It allows for the examination of samples such as tissues, cells, and microorganisms at high magnifications, enabling the detection and analysis of various medical conditions, including infections, diseases, and cellular abnormalities.

There are several types of microscopy used in medicine, including:

1. Light Microscopy: This is the most common type of microscopy, which uses visible light to illuminate and magnify samples. It can be used to examine a wide range of biological specimens, such as tissue sections, blood smears, and bacteria.
2. Electron Microscopy: This type of microscopy uses a beam of electrons instead of light to produce highly detailed images of samples. It is often used in research settings to study the ultrastructure of cells and tissues.
3. Fluorescence Microscopy: This technique involves labeling specific molecules within a sample with fluorescent dyes, allowing for their visualization under a microscope. It can be used to study protein interactions, gene expression, and cell signaling pathways.
4. Confocal Microscopy: This type of microscopy uses a laser beam to scan a sample point by point, producing high-resolution images with reduced background noise. It is often used in medical research to study the structure and function of cells and tissues.
5. Scanning Probe Microscopy: This technique involves scanning a sample with a physical probe, allowing for the measurement of topography, mechanical properties, and other characteristics at the nanoscale. It can be used in medical research to study the structure and function of individual molecules and cells.

Lymphadenitis is a medical term that refers to the inflammation of one or more lymph nodes, which are small, bean-shaped glands that are part of the body's immune system. Lymph nodes contain white blood cells called lymphocytes, which help fight infection and disease.

Lymphadenitis can occur as a result of an infection in the area near the affected lymph node or as a result of a systemic infection that has spread through the bloodstream. The inflammation causes the lymph node to become swollen, tender, and sometimes painful to the touch.

The symptoms of lymphadenitis may include fever, fatigue, and redness or warmth in the area around the affected lymph node. In some cases, the overlying skin may also appear red and inflamed. Lymphadenitis can occur in any part of the body where there are lymph nodes, including the neck, armpits, groin, and abdomen.

The underlying cause of lymphadenitis must be diagnosed and treated promptly to prevent complications such as the spread of infection or the formation of an abscess. Treatment may include antibiotics, pain relievers, and warm compresses to help reduce swelling and discomfort.

Hydroxypropiophenone is not a term that has a widely recognized medical definition. It is a chemical compound with the formula C8H8O2, which consists of a benzene ring substituted with a hydroxy group and a propanone group. It may be used in the synthesis of certain pharmaceuticals or other organic compounds, but it is not itself a drug or a commonly used medical term.

I could not find a specific medical definition for "Vaccines, DNA." However, I can provide you with some information about DNA vaccines.

DNA vaccines are a type of vaccine that uses genetically engineered DNA to stimulate an immune response in the body. They work by introducing a small piece of DNA into the body that contains the genetic code for a specific antigen (a substance that triggers an immune response). The cells of the body then use this DNA to produce the antigen, which prompts the immune system to recognize and attack it.

DNA vaccines have several advantages over traditional vaccines. They are relatively easy to produce, can be stored at room temperature, and can be designed to protect against a wide range of diseases. Additionally, because they use DNA to stimulate an immune response, DNA vaccines do not require the growth and culture of viruses or bacteria, which can make them safer than traditional vaccines.

DNA vaccines are still in the experimental stages, and more research is needed to determine their safety and effectiveness. However, they have shown promise in animal studies and are being investigated as a potential tool for preventing a variety of infectious diseases, including influenza, HIV, and cancer.

Immunologic adjuvants are substances that are added to a vaccine to enhance the body's immune response to the antigens contained in the vaccine. They work by stimulating the immune system and promoting the production of antibodies and activating immune cells, such as T-cells and macrophages, which help to provide a stronger and more sustained immune response to the vaccine.

Immunologic adjuvants can be derived from various sources, including bacteria, viruses, and chemicals. Some common examples include aluminum salts (alum), oil-in-water emulsions (such as MF59), and bacterial components (such as lipopolysaccharide or LPS).

The use of immunologic adjuvants in vaccines can help to improve the efficacy of the vaccine, particularly for vaccines that contain weak or poorly immunogenic antigens. They can also help to reduce the amount of antigen needed in a vaccine, which can be beneficial for vaccines that are difficult or expensive to produce.

It's important to note that while adjuvants can enhance the immune response to a vaccine, they can also increase the risk of adverse reactions, such as inflammation and pain at the injection site. Therefore, the use of immunologic adjuvants must be carefully balanced against their potential benefits and risks.

Trehalose is a type of disaccharide, which is a sugar made up of two monosaccharides. It consists of two glucose molecules joined together in a way that makes it more stable and resistant to breakdown by enzymes and heat. This property allows trehalose to be used as a protectant for biological materials during freeze-drying and storage, as well as a food additive as a sweetener and preservative.

Trehalose is found naturally in some plants, fungi, insects, and microorganisms, where it serves as a source of energy and protection against environmental stresses such as drought, heat, and cold. In recent years, there has been interest in the potential therapeutic uses of trehalose for various medical conditions, including neurodegenerative diseases, diabetes, and cancer.

Medically speaking, trehalose may be used in some pharmaceutical formulations as an excipient or stabilizer, and it is also being investigated as a potential therapeutic agent for various diseases. However, its use as a medical treatment is still not widely established, and further research is needed to determine its safety and efficacy.

I apologize for any confusion, but "Arkansas" is a proper noun and refers to a state in the United States. It does not have a medical definition. Arkansas is located in the southern region of the U.S. and is known for its diverse geography, which includes mountains, forests, and lowlands. The capital and largest city of Arkansas is Little Rock.

If you have any questions related to health or medicine, I would be happy to try to help answer them.

Clinical laboratory techniques are methods and procedures used in medical laboratories to perform various tests and examinations on patient samples. These techniques help in the diagnosis, treatment, and prevention of diseases by analyzing body fluids, tissues, and other specimens. Some common clinical laboratory techniques include:

1. Clinical chemistry: It involves the analysis of bodily fluids such as blood, urine, and cerebrospinal fluid to measure the levels of chemicals, hormones, enzymes, and other substances in the body. These measurements can help diagnose various medical conditions, monitor treatment progress, and assess overall health.

2. Hematology: This technique focuses on the study of blood and its components, including red and white blood cells, platelets, and clotting factors. Hematological tests are used to diagnose anemia, infections, bleeding disorders, and other hematologic conditions.

3. Microbiology: It deals with the identification and culture of microorganisms such as bacteria, viruses, fungi, and parasites. Microbiological techniques are essential for detecting infectious diseases, determining appropriate antibiotic therapy, and monitoring the effectiveness of treatment.

4. Immunology: This technique involves studying the immune system and its response to various antigens, such as bacteria, viruses, and allergens. Immunological tests are used to diagnose autoimmune disorders, immunodeficiencies, and allergies.

5. Histopathology: It is the microscopic examination of tissue samples to identify any abnormalities or diseases. Histopathological techniques are crucial for diagnosing cancer, inflammatory conditions, and other tissue-related disorders.

6. Molecular biology: This technique deals with the study of DNA, RNA, and proteins at the molecular level. Molecular biology tests can be used to detect genetic mutations, identify infectious agents, and monitor disease progression.

7. Cytogenetics: It involves analyzing chromosomes and genes in cells to diagnose genetic disorders, cancer, and other diseases. Cytogenetic techniques include karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH).

8. Flow cytometry: This technique measures physical and chemical characteristics of cells or particles as they flow through a laser beam. Flow cytometry is used to analyze cell populations, identify specific cell types, and detect abnormalities in cells.

9. Diagnostic radiology: It uses imaging technologies such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound to diagnose various medical conditions.

10. Clinical chemistry: This technique involves analyzing body fluids, such as blood and urine, to measure the concentration of various chemicals and substances. Clinical chemistry tests are used to diagnose metabolic disorders, electrolyte imbalances, and other health conditions.

"Cardiovascular Tuberculosis" refers to a form of tuberculosis (TB) where the bacteria (Mycobacterium tuberculosis) infects the heart or the blood vessels. This is a less common manifestation of TB, but it can have serious consequences if left untreated.

In cardiovascular TB, the bacteria can cause inflammation and damage to the heart muscle (myocarditis), the sac surrounding the heart (pericarditis), or the coronary arteries that supply blood to the heart muscle. This can lead to symptoms such as chest pain, shortness of breath, coughing, fatigue, and fever. In severe cases, it can cause heart failure or life-threatening arrhythmias.

Cardiovascular TB is usually treated with a combination of antibiotics that are effective against the TB bacteria. The treatment may last for several months to ensure that all the bacteria have been eliminated. In some cases, surgery may be necessary to repair or replace damaged heart valves or vessels. Early diagnosis and treatment can help prevent serious complications and improve outcomes in patients with cardiovascular TB.

Nitroimidazoles are a class of antibiotic drugs that contain a nitro group (-NO2) attached to an imidazole ring. These medications have both antiprotozoal and antibacterial properties, making them effective against a range of anaerobic organisms, including bacteria and parasites. They work by being reduced within the organism, which leads to the formation of toxic radicals that interfere with DNA function and ultimately kill the microorganism.

Some common examples of nitroimidazoles include:

* Metronidazole: used for treating infections caused by anaerobic bacteria and protozoa, such as bacterial vaginosis, amebiasis, giardiasis, and pseudomembranous colitis.
* Tinidazole: similar to metronidazole, it is used to treat various infections caused by anaerobic bacteria and protozoa, including trichomoniasis, giardiasis, and amebiasis.
* Secnidazole: another medication in this class, used for the treatment of bacterial vaginosis, trichomoniasis, and amebiasis.

Nitroimidazoles are generally well-tolerated, but side effects can include gastrointestinal symptoms like nausea, vomiting, or diarrhea. Rare but serious side effects may include peripheral neuropathy (nerve damage) and central nervous system toxicity, particularly with high doses or long-term use. It is essential to follow the prescribed dosage and duration closely to minimize potential risks while ensuring effective treatment.

I'm sorry for any confusion, but "Uganda" is not a medical term or concept. It is the name of a country located in East Africa, known officially as the Republic of Uganda. If you have any questions about medical terms or concepts, I would be happy to help with those!

I am not aware of a specific medical definition for the term "China." Generally, it is used to refer to:

1. The People's Republic of China (PRC), which is a country in East Asia. It is the most populous country in the world and the fourth largest by geographical area. Its capital city is Beijing.
2. In a historical context, "China" was used to refer to various dynasties and empires that existed in East Asia over thousands of years. The term "Middle Kingdom" or "Zhongguo" (中国) has been used by the Chinese people to refer to their country for centuries.
3. In a more general sense, "China" can also be used to describe products or goods that originate from or are associated with the People's Republic of China.

If you have a specific context in which you encountered the term "China" related to medicine, please provide it so I can give a more accurate response.

Interleukin-12 (IL-12) is a heterodimeric cytokine composed of two subunits, p35 and p40. IL-12 subunit p40 is a 40 kDa protein that forms the alpha chain of the IL-12 heterodimer. It can also form a homodimer called IL-23 with another subunit, p19, which has distinct biological activities from IL-12.

IL-12 plays an essential role in the differentiation of naive CD4+ T cells into Th1 cells and the production of interferon-gamma (IFN-γ). It is produced primarily by activated dendritic cells, macrophages, and neutrophils in response to bacterial or viral infections. IL-12 p40 subunit is involved in the binding of IL-12 to its receptor, which consists of two chains, IL-12Rβ1 and IL-12Rβ2.

Abnormalities in IL-12 signaling have been implicated in various diseases, including autoimmune disorders, chronic infections, and cancer. Therefore, IL-12 p40 subunit has become a target for therapeutic interventions in these conditions.

Lepromatous leprosy is a type of leprosy, a chronic infectious disease caused by the bacterium Mycobacterium leprae. In this form of the disease, there is a widespread and diffuse involvement of the skin, mucous membranes, and peripheral nerves. The bacteria multiply slowly and spread to the skin, upper respiratory tract, and peripheral nerves.

In lepromatous leprosy, the immune response is weak, allowing for extensive bacterial multiplication and widespread tissue damage. The skin lesions are typically numerous, pale, and have a smooth surface. Nerve involvement can lead to loss of sensation, muscle weakness, and deformities, particularly in the hands and feet.

Lepromatous leprosy is a more severe form of the disease compared to tuberculoid leprosy, which has a stronger immune response and localized skin lesions. Both forms of the disease are treatable with multidrug therapy (MDT), recommended by the World Health Organization (WHO) for all leprosy patients. Early diagnosis and treatment can prevent disability and reduce transmission.

Lymph nodes are small, bean-shaped organs that are part of the immune system. They are found throughout the body, especially in the neck, armpits, groin, and abdomen. Lymph nodes filter lymph fluid, which carries waste and unwanted substances such as bacteria, viruses, and cancer cells. They contain white blood cells called lymphocytes that help fight infections and diseases by attacking and destroying the harmful substances found in the lymph fluid. When an infection or disease is present, lymph nodes may swell due to the increased number of immune cells and fluid accumulation as they work to fight off the invaders.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

In epidemiology, the incidence of a disease is defined as the number of new cases of that disease within a specific population over a certain period of time. It is typically expressed as a rate, with the number of new cases in the numerator and the size of the population at risk in the denominator. Incidence provides information about the risk of developing a disease during a given time period and can be used to compare disease rates between different populations or to monitor trends in disease occurrence over time.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Preclinical drug evaluation refers to a series of laboratory tests and studies conducted to determine the safety and effectiveness of a new drug before it is tested in humans. These studies typically involve experiments on cells and animals to evaluate the pharmacological properties, toxicity, and potential interactions with other substances. The goal of preclinical evaluation is to establish a reasonable level of safety and understanding of how the drug works, which helps inform the design and conduct of subsequent clinical trials in humans. It's important to note that while preclinical studies provide valuable information, they may not always predict how a drug will behave in human subjects.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

Repetitive sequences in nucleic acid refer to repeated stretches of DNA or RNA nucleotide bases that are present in a genome. These sequences can vary in length and can be arranged in different patterns such as direct repeats, inverted repeats, or tandem repeats. In some cases, these repetitive sequences do not code for proteins and are often found in non-coding regions of the genome. They can play a role in genetic instability, regulation of gene expression, and evolutionary processes. However, certain types of repeat expansions have been associated with various neurodegenerative disorders and other human diseases.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Interleukin-12 (IL-12) is a naturally occurring protein that is primarily produced by activated macrophages and dendritic cells, which are types of immune cells. It plays a crucial role in the regulation of the immune response, particularly in the development of cell-mediated immunity.

IL-12 is composed of two subunits, p35 and p40, which combine to form a heterodimer. This cytokine stimulates the differentiation and activation of naive T cells into Th1 cells, which are important for fighting intracellular pathogens such as viruses and bacteria. IL-12 also enhances the cytotoxic activity of natural killer (NK) cells and CD8+ T cells, which can directly kill infected or malignant cells.

In addition to its role in the immune response, IL-12 has been implicated in the pathogenesis of several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and psoriasis. As a result, therapeutic strategies targeting IL-12 or its signaling pathways have been explored as potential treatments for these conditions.

HIV seronegativity is a term used to describe a person who has tested negative for HIV (Human Immunodeficiency Virus) antibodies in their blood. This means that the individual does not show evidence of current or past infection with HIV, which can cause AIDS (Acquired Immune Deficiency Syndrome). However, it's important to note that there is a window period after initial infection during which a person may test negative for HIV antibodies, even though they are indeed infected. This window period typically lasts between 2-6 weeks but can extend up to 3 months in some cases. Therefore, if someone believes they have been exposed to HIV, they should consider getting tested again after this window period has passed.

I'm sorry for any confusion, but "Gambia" is not a medical term. It is the name of a country located in West Africa, officially known as the Republic of The Gambia. If you have any questions about medical terminology or health-related topics, I would be happy to try and help answer those for you.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that plays a crucial role in the modulation of immune responses. It is produced by various cell types, including T cells, macrophages, and dendritic cells. IL-10 inhibits the production of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-8, and IL-12, and downregulates the expression of costimulatory molecules on antigen-presenting cells. This results in the suppression of T cell activation and effector functions, which ultimately helps to limit tissue damage during inflammation and promote tissue repair. Dysregulation of IL-10 has been implicated in various pathological conditions, including chronic infections, autoimmune diseases, and cancer.

An open reading frame (ORF) is a continuous stretch of DNA or RNA sequence that has the potential to be translated into a protein. It begins with a start codon (usually "ATG" in DNA, which corresponds to "AUG" in RNA) and ends with a stop codon ("TAA", "TAG", or "TGA" in DNA; "UAA", "UAG", or "UGA" in RNA). The sequence between these two points is called a coding sequence (CDS), which, when transcribed into mRNA and translated into amino acids, forms a polypeptide chain.

In eukaryotic cells, ORFs can be located in either protein-coding genes or non-coding regions of the genome. In prokaryotic cells, multiple ORFs may be present on a single strand of DNA, often organized into operons that are transcribed together as a single mRNA molecule.

It's important to note that not all ORFs necessarily represent functional proteins; some may be pseudogenes or result from errors in genome annotation. Therefore, additional experimental evidence is typically required to confirm the expression and functionality of a given ORF.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

A laboratory (often abbreviated as lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurements may be performed. In the medical field, laboratories are specialized spaces for conducting diagnostic tests and analyzing samples of bodily fluids, tissues, or other substances to gain insights into patients' health status.

There are various types of medical laboratories, including:

1. Clinical Laboratories: These labs perform tests on patient specimens to assist in the diagnosis, treatment, and prevention of diseases. They analyze blood, urine, stool, CSF (cerebrospinal fluid), and other samples for chemical components, cell counts, microorganisms, and genetic material.
2. Pathology Laboratories: These labs focus on the study of disease processes, causes, and effects. Histopathology involves examining tissue samples under a microscope to identify abnormalities or signs of diseases, while cytopathology deals with individual cells.
3. Microbiology Laboratories: In these labs, microorganisms like bacteria, viruses, fungi, and parasites are cultured, identified, and studied to help diagnose infections and determine appropriate treatments.
4. Molecular Biology Laboratories: These labs deal with the study of biological molecules, such as DNA, RNA, and proteins, to understand their structure, function, and interactions. They often use techniques like PCR (polymerase chain reaction) and gene sequencing for diagnostic purposes.
5. Immunology Laboratories: These labs specialize in the study of the immune system and its responses to various stimuli, including infectious agents and allergens. They perform tests to diagnose immunological disorders, monitor immune function, and assess vaccine effectiveness.
6. Toxicology Laboratories: These labs analyze biological samples for the presence and concentration of chemicals, drugs, or toxins that may be harmful to human health. They help identify potential causes of poisoning, drug interactions, and substance abuse.
7. Blood Banks: Although not traditionally considered laboratories, blood banks are specialized facilities that collect, test, store, and distribute blood and its components for transfusion purposes.

Medical laboratories play a crucial role in diagnosing diseases, monitoring disease progression, guiding treatment decisions, and assessing patient outcomes. They must adhere to strict quality control measures and regulatory guidelines to ensure accurate and reliable results.

Communicable disease control is a branch of public health that focuses on preventing and controlling the spread of infectious diseases within a population. The goal is to reduce the incidence and prevalence of communicable diseases through various strategies, such as:

1. Surveillance: Monitoring and tracking the occurrence of communicable diseases in a population to identify trends, outbreaks, and high-risk areas.
2. Prevention: Implementing measures to prevent the transmission of infectious agents, such as vaccination programs, education campaigns, and environmental interventions (e.g., water treatment, food safety).
3. Case management: Identifying, diagnosing, and treating cases of communicable diseases to reduce their duration and severity, as well as to prevent further spread.
4. Contact tracing: Identifying and monitoring individuals who have been in close contact with infected persons to detect and prevent secondary cases.
5. Outbreak response: Coordinating a rapid and effective response to disease outbreaks, including the implementation of control measures, communication with affected communities, and evaluation of interventions.
6. Collaboration: Working closely with healthcare providers, laboratories, policymakers, and other stakeholders to ensure a coordinated and comprehensive approach to communicable disease control.
7. Research: Conducting research to better understand the epidemiology, transmission dynamics, and prevention strategies for communicable diseases.

Effective communicable disease control requires a multidisciplinary approach that combines expertise in medicine, epidemiology, microbiology, public health, social sciences, and healthcare management.

Serologic tests are laboratory tests that detect the presence or absence of antibodies or antigens in a patient's serum (the clear liquid that separates from clotted blood). These tests are commonly used to diagnose infectious diseases, as well as autoimmune disorders and other medical conditions.

In serologic testing for infectious diseases, a sample of the patient's blood is collected and allowed to clot. The serum is then separated from the clot and tested for the presence of antibodies that the body has produced in response to an infection. The test may be used to identify the specific type of infection or to determine whether the infection is active or has resolved.

Serologic tests can also be used to diagnose autoimmune disorders, such as rheumatoid arthritis and lupus, by detecting the presence of antibodies that are directed against the body's own tissues. These tests can help doctors confirm a diagnosis and monitor the progression of the disease.

It is important to note that serologic tests are not always 100% accurate and may produce false positive or false negative results. Therefore, they should be interpreted in conjunction with other clinical findings and laboratory test results.

Quaternary protein structure refers to the arrangement and interaction of multiple folded protein molecules in a multi-subunit complex. These subunits can be identical or different forms of the same protein or distinctly different proteins that associate to form a functional complex. The quaternary structure is held together by non-covalent interactions, such as hydrogen bonds, ionic bonds, and van der Waals forces. Understanding quaternary structure is crucial for comprehending the function, regulation, and assembly of many protein complexes involved in various cellular processes.

Insertional mutagenesis is a process of introducing new genetic material into an organism's genome at a specific location, which can result in a change or disruption of the function of the gene at that site. This technique is often used in molecular biology research to study gene function and regulation. The introduction of the foreign DNA is typically accomplished through the use of mobile genetic elements, such as transposons or viruses, which are capable of inserting themselves into the genome.

The insertion of the new genetic material can lead to a loss or gain of function in the affected gene, resulting in a mutation. This type of mutagenesis is called "insertional" because the mutation is caused by the insertion of foreign DNA into the genome. The effects of insertional mutagenesis can range from subtle changes in gene expression to the complete inactivation of a gene.

This technique has been widely used in genetic research, including the study of developmental biology, cancer, and genetic diseases. It is also used in the development of genetically modified organisms (GMOs) for agricultural and industrial applications.

Phenylthiourea is not typically considered a medical term, but it is a chemical compound that is used in scientific research and has been studied in the context of medicine. Here's a definition from a chemistry perspective:

Phenylthiourea (PTU) is an organic compound with the formula C6H5NCS. It is a derivative of thiourea, where one hydrogen atom is replaced by a phenyl group. PTU is a white crystalline powder that is soluble in water and alcohol.

In medical terms, PTU has been used as a medication to treat hyperthyroidism (overactive thyroid gland) because it can inhibit the production of thyroid hormones. However, its use as a therapeutic agent has declined due to the availability of other medications with fewer side effects. It is still used in research settings to study various biological processes and diseases.

It's important to note that PTU should only be administered under the supervision of a healthcare professional, as it can have adverse effects if not used properly.

Isocitrate lyase is an enzyme that plays a crucial role in the glyoxylate cycle, a metabolic pathway found in plants, bacteria, fungi, and parasites. This cycle bypasses two steps of the citric acid cycle (TCA cycle) and allows these organisms to grow on two-carbon compounds as their sole carbon source.

Isocitrate lyase specifically catalyzes the conversion of isocitrate into succinate and glyoxylate, which are further processed in the glyoxylate cycle to generate oxaloacetate and other metabolic intermediates. In humans, isocitrate lyase is not typically found in healthy tissues but has been observed in certain pathological conditions such as tumor growth and during periods of nutrient deprivation. It is also involved in the biosynthesis of fatty acids and steroids in some organisms.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

'Structural homology' in the context of proteins refers to the similarity in the three-dimensional structure of proteins that are not necessarily related by sequence. This similarity arises due to the fact that these proteins have a common evolutionary ancestor or because they share a similar function and have independently evolved to adopt a similar structure. The structural homology is often identified using bioinformatics tools, such as fold recognition algorithms, that compare the three-dimensional structures of proteins to identify similarities. This concept is important in understanding protein function and evolution, as well as in the design of new drugs and therapeutic strategies.

Tuberculous pericarditis is a specific form of pericarditis (inflammation of the pericardium, the thin sac-like membrane that surrounds the heart) that is caused by the bacterial infection of Mycobacterium tuberculosis. This type of pericarditis is more common in areas where tuberculosis is prevalent and can lead to serious complications if not diagnosed and treated promptly.

In tuberculous pericarditis, the bacteria typically spread from the lungs (the most common site of TB infection) or other infected organs through the bloodstream to the pericardium. The infection causes an inflammatory response, leading to the accumulation of fluid in the pericardial space (pericardial effusion), which can put pressure on the heart and impair its function. In some cases, the inflammation may lead to the formation of scar tissue, causing the pericardium to thicken and constrict, a condition known as constrictive pericarditis.

Symptoms of tuberculous pericarditis can include chest pain, cough, fever, fatigue, weight loss, and difficulty breathing. Diagnosis typically involves a combination of medical history, physical examination, imaging tests (such as echocardiography, CT scan, or MRI), and laboratory tests (including analysis of the pericardial fluid). Treatment usually consists of a long course of antibiotics specific to TB, along with anti-inflammatory medications and close monitoring for potential complications.

Alpha-crystallins are small heat shock proteins found in the lens of the eye. They are composed of two subunits, alpha-A and alpha-B, which can form homo- or hetero-oligomers. Alpha-crystallins have chaperone-like activity, helping to prevent protein aggregation and maintain transparency of the lens. Additionally, they play a role in maintaining the structural integrity of the lens and protecting it from oxidative stress. Mutations in alpha-crystallin genes have been associated with certain forms of cataracts and other eye diseases.

Dendritic cells (DCs) are a type of immune cell that play a critical role in the body's defense against infection and cancer. They are named for their dendrite-like projections, which they use to interact with and sample their environment. DCs are responsible for processing antigens (foreign substances that trigger an immune response) and presenting them to T cells, a type of white blood cell that plays a central role in the immune system's response to infection and cancer.

DCs can be found throughout the body, including in the skin, mucous membranes, and lymphoid organs. They are able to recognize and respond to a wide variety of antigens, including those from bacteria, viruses, fungi, and parasites. Once they have processed an antigen, DCs migrate to the lymph nodes, where they present the antigen to T cells. This interaction activates the T cells, which then go on to mount a targeted immune response against the invading pathogen or cancerous cells.

DCs are a diverse group of cells that can be divided into several subsets based on their surface markers and function. Some DCs, such as Langerhans cells and dermal DCs, are found in the skin and mucous membranes, where they serve as sentinels for invading pathogens. Other DCs, such as plasmacytoid DCs and conventional DCs, are found in the lymphoid organs, where they play a role in activating T cells and initiating an immune response.

Overall, dendritic cells are essential for the proper functioning of the immune system, and dysregulation of these cells has been implicated in a variety of diseases, including autoimmune disorders and cancer.

T-lymphocyte subsets refer to distinct populations of T-cells, which are a type of white blood cell that plays a central role in cell-mediated immunity. The two main types of T-lymphocytes are CD4+ and CD8+ cells, which are defined by the presence or absence of specific proteins called cluster differentiation (CD) molecules on their surface.

CD4+ T-cells, also known as helper T-cells, play a crucial role in activating other immune cells, such as B-lymphocytes and macrophages, to mount an immune response against pathogens. They also produce cytokines that help regulate the immune response.

CD8+ T-cells, also known as cytotoxic T-cells, directly kill infected cells or tumor cells by releasing toxic substances such as perforins and granzymes.

The balance between these two subsets of T-cells is critical for maintaining immune homeostasis and mounting effective immune responses against pathogens while avoiding excessive inflammation and autoimmunity. Therefore, the measurement of T-lymphocyte subsets is essential in diagnosing and monitoring various immunological disorders, including HIV infection, cancer, and autoimmune diseases.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

"Gene knockout techniques" refer to a group of biomedical research methods used in genetics and molecular biology to study the function of specific genes in an organism. These techniques involve introducing a deliberate, controlled genetic modification that results in the inactivation or "knockout" of a particular gene. This is typically achieved through various methods such as homologous recombination, where a modified version of the gene with inserted mutations is introduced into the organism's genome, replacing the original functional gene. The resulting organism, known as a "knockout mouse" or other model organisms, lacks the function of the targeted gene and can be used to study its role in biological processes, disease development, and potential therapeutic interventions.

Bronchoalveolar lavage (BAL) fluid is a type of clinical specimen obtained through a procedure called bronchoalveolar lavage. This procedure involves inserting a bronchoscope into the lungs and instilling a small amount of saline solution into a specific area of the lung, then gently aspirating the fluid back out. The fluid that is recovered is called bronchoalveolar lavage fluid.

BAL fluid contains cells and other substances that are present in the lower respiratory tract, including the alveoli (the tiny air sacs where gas exchange occurs). By analyzing BAL fluid, doctors can diagnose various lung conditions, such as pneumonia, interstitial lung disease, and lung cancer. They can also monitor the effectiveness of treatments for these conditions by comparing the composition of BAL fluid before and after treatment.

BAL fluid is typically analyzed for its cellular content, including the number and type of white blood cells present, as well as for the presence of bacteria, viruses, or other microorganisms. The fluid may also be tested for various proteins, enzymes, and other biomarkers that can provide additional information about lung health and disease.

Wikimedia Commons has media related to Mycobacterium tuberculosis. Scholia has a topic profile for Mycobacterium tuberculosis. ... TB database: an integrated platform for Tuberculosis research Photoblog about Tuberculosis "Mycobacterium tuberculosis". NCBI ... tuberculosis was found in a genetically related complex group of Mycobacterium species called Mycobacterium tuberculosis ... Todar K. "Mycobacterium tuberculosis and Tuberculosis". textbookofbacteriology.net. Retrieved 24 December 2016. McMurray DN ( ...
Mycobacterium tuberculosis contains at least nine small RNA families in its genome. The small RNA (sRNA) families were ... Pelly S, Bishai WR, Lamichhane G (May 2012). "A screen for non-coding RNA in Mycobacterium tuberculosis reveals a cAMP- ... June 1998). "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence". Nature. 393 (6685): 537- ... "Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells". The Journal of Experimental ...
It includes: Mycobacterium tuberculosis Mycobacterium africanum Mycobacterium orygis Mycobacterium bovis and the Bacillus ... Calmette-Guérin strain Mycobacterium microti Mycobacterium canettii Mycobacterium caprae Mycobacterium pinnipedii Mycobacterium ... Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis". International ... The Mycobacterium tuberculosis complex (MTC or MTBC) is a genetically related group of Mycobacterium species that can cause ...
... is a species of bacteria in the genus Mycobacterium and a member of the Mycobacterium tuberculosis complex ... "Mycobacterium tuberculosis subsp. caprae subsp. nov.: A taxonomic study of a new member of the Mycobacterium tuberculosis ... "Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to species rank as Mycobacterium caprae comb. nov., sp ... the species was referred to as Mycobacterium tuberculosis subsp. caprae. It is also synonymous with the name Mycobacterium ...
... (TB) is an infectious disease usually caused by Mycobacterium tuberculosis (MTB) bacteria. Tuberculosis generally ... June 2003). "Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in ... Tuberculosis at Curlie "Tuberculosis (TB)". Centers for Disease Control and Prevention (CDC). 24 October 2018. "Tuberculosis ( ... Number of new cases of tuberculosis per 100,000 people in 2016 Tuberculosis deaths per million persons in 2012 Tuberculosis ...
Deretic, V., & Fratti, R. A. (1999). Mycobacterium tuberculosis phagosome. Molecular microbiology, 31(6), 1603-1609. Chicago ... Mycobacterium tuberculosis inhibits phagosome-endosome fusion, thus avoiding being destroyed by the harsh environment of the ...
"Mycobacterium tuberculosis and Tuberculosis". Todar's Online Textbook of Bacteriology. (Articles with short description, Short ...
van Kessel J. C., Hatfull G. F. (2007). "Recombineering in Mycobacterium tuberculosis". Nature Methods. 4 (2): 147-152. doi: ... To date, recombineering has been performed in E. coli, S. enterica, Y. pseudotuberculosis, S. cerevisiae and M. tuberculosis. ... van Kessel J. C., Hatfull G. F. (2008). "Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: ... van Kessel J. C., Marinelli L. J., Hatfull G. F. (2008). "Recombineering mycobacteria and their phages". Nature Reviews ...
... tuberculosis and thus is a good model organism to study mycobacteria in general and the highly pathogenic M. tuberculosis in ... "A Protein Secretion Pathway Critical for Mycobacterium tuberculosis Virulence Is Conserved and Functional in Mycobacterium ... Although the Snm secretion system is a key in determining M. tuberculosis virulence, all mycobacteria have genes encoding the ... There are many different kinds of specific secretion systems, and M. tuberculosis has an Snm (secretion in mycobacteria) ...
It also killed Mycobacterium tuberculosis. It was also found to be effective in vivo, when used to treat mice infected with ... Teixobactin was shown to kill Staphylococcus aureus and Mycobacterium tuberculosis. In January 2015, a collaboration of four ... tuberculosis was generated in vitro when administering sublethal doses, for as long as 27 days in the case of the former. It is ...
"Protection by live Mycobacterium habana vaccine against Mycobacterium tuberculosis H37Rv challenge in mice". The Indian Journal ... "Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach". Tuberculosis. 82 (4-5): ... Mycobacterium tuberculosis India portal Medicine portal Long link - please select award year to see details Please see Selected ... "Mycobacterium tuberculosis specific DNA fragment". Justia Patents. 2017. World Intellectual Property Organization (2001). ...
"Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015". The International Journal of Tuberculosis and Lung ... It is a highly structured, text-based database focusing on Mycobacterium tuberculosis at seven different mutation loci: rpoB, ... Heym, B (February 1997). "Multidrug resistance in Mycobacterium tuberculosis". International Journal of Antimicrobial Agents. 8 ... "Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs". Journal of ...
Jayaram HN, Ramakrishnan T, Vaidyanathan CS (1969). "Aspartotransferase from Mycobacterium tuberculosis H37Ra". Indian J. ...
Phulera S, Mande SC (June 2013). "The crystal structure of Mycobacterium tuberculosis NrdH at 0.87 Å suggests a possible mode ... Phulera S, Akif M, Sardesai AA, Mande SC (2014-01-01). "Redox Proteins of Mycobacterium tuberculosis". Journal of the Indian ... This is especially true for Mycobacterium Haemophilum, and could be used for antibiotic resistant bacteria. Mustacich D, Powis ...
"ISONIAZID-RESISTANT STRAINS OF MYCOBACTERIUM TUBERCULOSIS." The Lancet 261.6768 (1953): 978-979". The Lancet. 262 (6768): 253- ... on the chemotherapy of tuberculosis. In addition, she lectured on dietetics to 2nd-year Social Science students at Trinity. Her ...
... is when a person is infected with Mycobacterium tuberculosis, but does not have active tuberculosis (TB). Active tuberculosis ... To give treatment for latent tuberculosis to someone with active tuberculosis is a serious error: the tuberculosis will not be ... There are 4 types of tuberculosis recognized in the world today: Tuberculosis (TB) Multi-drug-resistant tuberculosis (MDR TB) ... Because tuberculosis is not common in the United States, doctors may not suspect tuberculosis; therefore, they may not test. If ...
Mycobacterium bovis causes tuberculosis in cattle. Since tuberculosis can be spread to humans, milk is pasteurized to kill any ... Mycobacterium tuberculosis that causes tuberculosis (TB) in humans is an airborne bacterium that typically infects the human ... caused by Mycobacterium tuberculosis) and other diseases caused by atypical mycobacteria, such as leprosy (caused by ... Soon after Koch's discovery, Paul Ehrlich developed a stain for mycobacterium tuberculosis, called the alum hematoxylin stain. ...
Mycobacterium tuberculosis could also cause WFS. Tubercular invasion of the adrenal glands could cause hemorrhagic destruction ...
It is isolated from Mycobacterium tuberculosis. Huang H, Scherman MS, D'Haeze W, Vereecke D, Holsters M, Crick DC, McNeil MR ( ... July 2005). "Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1- ...
Mycobacterium tuberculosis: a once genetically intractable organism. In Molecular Genetics of the Mycobacteria, ed. GF Hatfull ... While originally isolated from the bacterial species Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative ... Froman S, Will DW, Bogen E (October 1954). "Bacteriophage active against virulent Mycobacterium tuberculosis. I. Isolation and ... Jones WD (1975). "Phage typing report of 125 strains of "Mycobacterium tuberculosis"". Annali Sclavo; Rivista di Microbiologia ...
aureus, Mycobacterium tuberculosis, Chlamydia and Candida. A detailed history allows doctors to determine whether the ...
"Polyprenyl phosphate biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis". Journal of Bacteriology. 182 (20 ... Kaur D, Brennan PJ, Crick DC (November 2004). "Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis". Journal of ...
... is a species of the tuberculosis complex of the genus Mycobacterium. It causes tuberculosis in oryx, ... Mycobacterium orygis is similar in morphology to species in the tuberculosis complex of Mycobacterium. It is a non-motile, acid ... "TUBERCULOSIS CAUSED BY MYCOBACTERIUM ORYGIS IN A GREATER ONE-HORNED RHINOCEROS (RHINOCEROS UNICORNIS): FIRST REPORT IN THE ... Characterization of Mycobacterium orygis as M. tuberculosis Complex Subspecies. Emerging Infectious Diseases, 18(4), 653-655. ...
It is a member of the Mycobacterium tuberculosis complex. There are seven major lineages in the Mycobacterium tuberculosis ... M. africanum tuberculosis is treated with an identical regime to tuberculosis caused by M. tuberculosis. The overall rate of ... "Progression to Active Tuberculosis, but Not Transmission, Varies by Mycobacterium tuberculosis Lineage in The Gambia". The ... March 2002). "A new evolutionary scenario for the Mycobacterium tuberculosis complex". Proc. Natl. Acad. Sci. U.S.A. 99 (6): ...
Rainwater DL, Kolattukudy PE (1985). "Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin ...
Pyrazinamid is currently used as a treatment for tuberculosis. Mycobacterium tuberculosis converts pyrazinamid into pyrazinoic ... "Synthesis and evaluation of a pyrazinoic acid prodrug in Mycobacterium tuberculosis". Saudi Pharmaceutical Journal. 22 (4): 376 ... "Pyrazinoic acid inhibits a bifunctional enzyme in Mycobacterium tuberculosis". Antimicrobial Agents and Chemotherapy. 61 (7). ... The use of pyrazinoic acid has been investigated as a possible treatment for pyrazinamid resistant strains of Mycobacterium ...
"Crystal structure of Mycobacterium tuberculosis catalase-peroxidase". The Journal of Biological Chemistry. 279 (37): 38991-9. ...
"Environmental Presence of Mycobacterium tuberculosis Complex in Aggregation Points at the Wildlife/Livestock Interface". ... "Mycobacterium tuberculosis transmission from human to canine". Emerging Infectious Diseases. 10 (12): 2258-2210. doi:10.3201/ ... Some boars and deer shared the same strains of tuberculosis which were similar to those found in livestock and humans ... This spurred a nation-wide epidemic, but because tuberculosis isn't a disease that's typically transmitted from animals to ...
... totarol potentiates isonicotinic acid hydrazide against various Mycobacteria.; methicillin against Mycobacterium tuberculosis ...
How the Host Withstands Persistent Mycobacterium tuberculosis". Frontiers in Immunology. 9: 2094. doi:10.3389/fimmu.2018.02094 ... For example, 90% of people infected with tuberculosis experience no symptoms. Similarly, many humans tolerate helminth ...
Wikimedia Commons has media related to Mycobacterium tuberculosis. Scholia has a topic profile for Mycobacterium tuberculosis. ... TB database: an integrated platform for Tuberculosis research Photoblog about Tuberculosis "Mycobacterium tuberculosis". NCBI ... tuberculosis was found in a genetically related complex group of Mycobacterium species called Mycobacterium tuberculosis ... Todar K. "Mycobacterium tuberculosis and Tuberculosis". textbookofbacteriology.net. Retrieved 24 December 2016. McMurray DN ( ...
... bovine tuberculosis) in humans from this fact sheet. ... Mycobacterium bovis (Bovine Tuberculosis) in Humans. What is ... cases in people are caused by Mycobacterium tuberculosis (M. tuberculosis). Mycobacterium bovis (M. bovis) is another ... Self-Study Modules on Tuberculosis, 1-5 Slide Sets. *The Tuberculosis (TB) in Correctional Settingsplus icon*Facilitator Guide ... Epidemiology of Tuberculosis in Correctional Facilities, United States, 1993-2017. *Prevention and Control of Tuberculosis in ...
Bacteria; Actinomycetota; Actinomycetes; Mycobacteriales; Mycobacteriaceae; Mycobacterium; Mycobacterium tuberculosis complex. ... Mycobacterium tuberculosis F11. organism-specific. BioCyc. 2 records from this provider. organism-specific. Genomes On Line ... Mycobacterium tuberculosis F11. Taxonomy ID: 336982 (for references in articles please use NCBI:txid336982). current name. ...
... and mycobacterium avium complex (MAC) are two distinct types of bacteria that can cause infections in the lungs and other parts ... Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis (TB), a global health concern and leading ... Mycobacterium tuberculosis (MTB) and Mycobacterium avium complex (MAC) are two distinct types of bacteria that can cause ... Mycobacterium tuberculosis and Mycobacterium avium complex (MAC) are bacteria that cause different infections. Both belong to ...
... tuberculosis drug target. Here, the authors present the full-length crystal structure of Mycobacterium smegmatis CoaBC, which ... tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here ... Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a ... pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The ...
... Antimicrob Agents ... including multidrug-resistant and extensively drug-resistant clinical strains of Mycobacterium tuberculosis. Avermectins are ... 1 Department of Microbiology and Immunology, and Centre for Tuberculosis Research, Life Sciences Centre, University of British ...
Mycobacterium tuberculosis. Mutation(s): 0 Gene Names: MT0019, MTCY10H4.16c, pbpA, Rv0016c. EC: 3.4.16.4. ... PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth ... PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth ... Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis. ...
Mycobacterium bovis BCG substrains confer different levels of protection against Mycobacterium tuberculosis infection in a BALB ... Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (edinb). 2018;108:186-194.. View ... PPE_MPTR genes are differentially expressed by Mycobacterium tuberculosis in vivo. Tuberculosis (Edinb). 2011;91(6):563-568. ... Monoclonal antibodies to Mycobacterium tuberculosis CDC 1551 reveal subcellular localization of MPT51. Tuberculosis (Edinb). ...
Species Mycobacterium tuberculosis [TaxId:1773] from f.2.1.7 Gated mechanosensitive channel is called Species Mycobacterium ... Timeline for Species Mycobacterium tuberculosis [TaxId:1773] from f.2.1.7 Gated mechanosensitive channel: * ... PDB entry in Species: Mycobacterium tuberculosis:. *Domain(s) for 1msl: *. Domain d1msla_: 1msl A: [43660]. ... Lineage for Species: Mycobacterium tuberculosis. *Root: SCOP 1.55 *. Class f: Membrane and cell surface proteins and peptides [ ...
Timeline for Species Mycobacterium tuberculosis [TaxId:1773] from a.104.1.1 Cytochrome p450 14 alpha-sterol demethylase (cyp51) ... PDB entries in Species: Mycobacterium tuberculosis:. *Domain(s) for 1e9x: *. Domain d1e9xa_: 1e9x A: [18969]. complexed with ... Species Mycobacterium tuberculosis [TaxId:1773] from a.104.1.1 Cytochrome p450 14 alpha-sterol demethylase (cyp51) appears in ... Species Mycobacterium tuberculosis [TaxId:1773] from a.104.1.1 Cytochrome p450 14 alpha-sterol demethylase (cyp51) appears in ...
In this context, a cohort study was conducted to assess the prevalence of BL strains among pulmonary tuberculosis (PTB) ... is associated with high tuberculosis (TB) transmission, multidrug resistance, and adverse treatment outcomes. Sri Lanka ... i,Mycobacterium tuberculosis,/i, belonging to Beijing sublineage (BL) ... Mycobacterium tuberculosis belonging to Beijing sublineage (BL) is associated with high tuberculosis (TB) transmission, ...
1993) Mycobacterium tuberculosis DNA in tissue affected by sarcoidosis. BMJ 306:546-549, . ... Mycobacterium tuberculosis (MTb) has long been a likely contender as the inciting antigen in sarcoidosis, although Kochs ... 1990) Polymerase chain reaction amplification of a repetitive DNA sequence for Mycobacterium tuberculosis. J Infect Dis 161:977 ... 1991) Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin ...
Host-pathogen Interactions During Latent Mycobacterium tuberculosis Infection (LTBI). Even though LTBI is estimated to affect ... In this context, we are interested in M. tuberculosis and M. bovis transmission between livestock to human. We investigate the ...
Furthermore, several M. tuberculosis BDQ resistant mutants were isolated by both MDR strains, harboring mutations in both atpE ... Furthermore, several M. tuberculosis BDQ resistant mutants were isolated by both MDR strains, harboring mutations in both atpE ... The two M. tuberculosis MDR clinical isolates were firstly characterized by whole genome sequencing, finding the main mutations ... The two M. tuberculosis MDR clinical isolates were firstly characterized by whole genome sequencing, finding the main mutations ...
... as the antigens used are almost exclusively expressed by the Mycobacterium tuberculosis (MTB) complex, but not Mycobacterium ... QuantiFERON-TB performance enhanced by novel Mycobacterium tuberculosis-specific antigens. Monica Losi, Ashley J. Knights, ... QuantiFERON-TB performance enhanced by novel Mycobacterium tuberculosis-specific antigens. Monica Losi, Ashley J. Knights, ... QuantiFERON-TB performance enhanced by novel Mycobacterium tuberculosis-specific antigens. Monica Losi, Ashley J. Knights, ...
Pathogenicity of Mycobacterium Tuberculosis. Mycobacterium tuberculosis is transmitted in the form of droplet nuclei exhaled by ... Mycobacterium tuberculosis (M. tuberculosis), a non-motile, obligately aerobic, intracellular bacterium known to cause ... Pulmonary Tuberculosis ( TB ): Chest x-ray shows alveolar infiltration at both lungs due to Mycobacterium tuberculosis ... G. M. J. Jr., "Microbial pathogenesis of Mycobacterium Tuberculosis: dawn of a discipline," Cell, no. 104, pp. 477-485, 2001. ...
One very important application of this work is investigating how pathogens like Mycobacterium tuberculosis (Mtb) respond to ... Publication Q&A: ODELAM Rapid Sequence-Independent Detection of Drug Resistance in Isolates of Mycobacterium Tuberculosis. June ... ODELAM Rapid Sequence-Independent Detection of Drug Resistance in Isolates of Mycobacterium Tuberculosis. Thurston Herricks, ... We developed a technique named One-Cell Doubling Evaluation of Living Arrays of Mycobacterium, or ODELAM, that uses a ...
... of the global population is infected with Mycobacterium tuberculosis (Mtb). Persistence of Mtb in host phagocytes depends on ...
tuberculosis isolated from PDL, stored at the Central Laboratory of RS, in the period from 2013 to 2018. The molecular ... tuberculosis strains to better understand transmission among persons deprived of liberty (PDL) in Rio Grande do Sul (RS), ... Spread of Mycobacterium tuberculosis in Southern Brazilian persons deprived of liberty: a molecular epidemiology study. *. ... tuberculosis isolated from PDL, stored at the Central Laboratory of RS, in the period from 2013 to 2018. The molecular ...
... tuberculosis (MTB) and M. avium complex (MAC) residing in MONO-MAC-6 human macrophage like cells (MM6-M phi s) and A-549 human ... In vitro antimicrobial activities of quinolones, rifamycins and macrolides against Mycobacterium tuberculosis and M.avium ... Profiles of expression of the antimicrobial activities of LVFX, KRM-1648 (KRM), and CAM against M. tuberculosis (MTB) and M. ...
... against mycobacterium tuberculosis mycobacterium avium complex mycobacterium chelonei mycobacterium fortuitum and mycobacterium ... and levofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex Antimicrobial Agents and Chemotherapy 43(12 ... and levofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex Antimicrobial Agents and ChemoTherapy 43(12 ... and Levofloxacin against Mycobacterium tuberculosis and Mycobacterium avium Complex Antimicrobial Agents and Chemotherapy 43(12 ...
Mycobacterium tuberculosis. Reference. Yamada H, Yamaguchi M, Chikamatsu K, Aono A, Mitarai S. Structome analysis of virulent ... Mycobacterium tuberculosis, which survives with only 700 ribosomes per 0.1 fl of cytoplasm. PLoS One. 2015 Jan 28 10(1): ... p.7 2nd paragraph:Three-dimensional (3D) analysis-The volume of each of the five M. tuberculosis cells was calculated using ...
... identification of Mycobacterium tuberculosis, Mycobacterium avium complex species, and other commonly isolated mycobacteria. J ... Mycobacterium tuberculosis is the main causing agent of tuberculosis (TB), an illness responsible for 26% of all possibly ... tuberculosis complex and one was identified as a non-tuberculosis mycobacteria. Sensitivity and specificity of PCR compared to ... tuberculosis complex and one was identified as a non-tuberculosis mycobacteria. Sensitivity and specificity of PCR compared to ...
Mycobacteria that cause TB in mammals form the Mycobacterium tuberculosis complex (MTC) and include M. tuberculosis, M. ... Other forms of mycobacteria that are considered opportunistic are termed mycobacteria other than Mycobacterium tuberculosis ( ... 9 were Mycobacterium tuberculosis complex isolates that showed 2 fragments, whereas lane 8 is Mycobacteria other than M. ... Mycobacterium other than tuberculosis (MOTT) infection: an emergency disease in infliximab treated patients. Journal of ...
Regimens targeting Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), require long courses of treatment and ... Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria. ... Unexpected abundance of coenzyme F(420)-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria. ... While prevalent in mycobacteria, markers of F(420) biosynthesis appeared to be absent from the normal human gut flora. These ...
... for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrobial Agents and ... Substances that inhibit the growth of Mycobacterium tuberculosis could potentially be used as antibiotics. These substances ... Effects of culture filtrates of endophytic fungi obtained from Piper aduncum L. on the growth of Mycobacterium tuberculosis ... The recent increase in multi-drug resistant clinical isolates of Mycobacterium tuberculosis has created an urgent need for the ...
Environmental mycobacteria in areas of high and low tuberculosis prevalence in the Islamic Republic of Iran ... There are currently 71 recognized or proposed species of Mycobacterium [1], all of which, except M. tuberculosis complex and M ... Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis. American review of respiratory disease, ... Exposure to Mycobacterium avium primes the immune system of calves for vaccination with Mycobacterium bovis BCG. Clinical and ...
This study was aimed to evaluate the recent technique (BACTEC MGIT 960 TM system) for screening of Mycobacterium tuberculosis ... BACTEC MGIT 960 TM system for screening of ,i,Mycobacterium tuberculosis,/i, complex among cattle ... Mycobacterium bovis and 2 (6.9%) unidentified slow growth. The BACTEC MGIT 960 TM system was used for recovery of Mycobacteria ... Bovine tuberculosis remains a disease of economic and public health importance in developing countries. The largest number of ...
  • https://doi.org/10.1016/j. from 93 cases of pulmonary tuberculosis. (cdc.gov)
  • In this context, a cohort study was conducted to assess the prevalence of BL strains among pulmonary tuberculosis (PTB) patients in the Kandy district of Sri Lanka (a popular tourist destination) and its association with patients' sociodemographic and clinical characteristics. (hindawi.com)
  • Mycobacterium tuberculosis is transmitted in the form of droplet nuclei exhaled by individuals affected with laryngeal/pulmonary TB. (gideononline.com)
  • In the present work, the detection of Mycobacterium tuberculosis by the Polymerase Chain Reaction (PCR) was standardized, and the laboratory diagnosis of pulmonary tuberculosis was evaluated comparing baciloscopy, culture and PCR tests. (scielo.br)
  • The study was carried out with 117 sputum samples from different patients suspected of having pulmonary tuberculosis, for whom physicians had ordered a baciloscopy test. (scielo.br)
  • Early-morning sputum samples were collected from 170 patients referred to the National Tuberculosis Institute in Sana'a city with suspected pulmonary tuberculosis. (who.int)
  • Four types of opportunistic mycobacterial disease of humans have been described: skin lesions (following traumatic inoculation of bacteria), localized lymphadenitis, tuberculosis (TB)-like pulmonary lesions and disseminated disease [5]. (who.int)
  • The human microbiota in pulmonary tuberculosis: Not so innocent bystanders. (ac.ir)
  • In the United States, pulmonary tuberculosis accounts for most tuberculosis cases. (medscape.com)
  • As in pulmonary tuberculosis, antituberculous chemotherapy has become the standard of care for scrofula, and newer diagnostic techniques (eg, fine-needle aspiration) have replaced more invasive methods of tissue harvesting. (medscape.com)
  • However, M. tuberculosis prefers tissues with high levels of oxygen , hence, pulmonary tuberculosis has the highest rate. (wikidoc.org)
  • Tuberculosis preventive therapy (TPT) offered to children who come into contact with infectious adult pulmonary tuberculosis (TB) cases is an important childhood TB prevention strategy. (who.int)
  • We report a rare case of pulmonary tuberculosis (TB) secondary to M. africanum in a man in Brunei Darussalam who had lived and worked in Guinea, West Africa for 6 years more than 20 years ago. (who.int)
  • Initial infections that are not contained may cause either progressive local disease (primary progressive pulmonary tuberculosis), or may disseminate hematogenously to seed other organs such as kidney, CNS, or bones, occasionally causing miliary tuberculosis. (medscape.com)
  • Primary pulmonary tuberculosis results from initial infection with tubercle bacilli. (medscape.com)
  • Pulmonary lesions progress to tuberculous pneumonia, cavitate, and can shed tubercle bacilli into bloodstream and result in miliary tuberculosis. (medscape.com)
  • No. The Cooperative State-Federal Tuberculosis Eradication Program, including the U.S. Department of Agriculture, state animal health agencies, and U.S. livestock producers, has nearly eliminated M. bovis infection from cattle in the United States. (cdc.gov)
  • M. tuberculosis causes TB and is a highly contagious respiratory infection, primarily affecting the lungs. (medicalnewstoday.com)
  • One of the most significant developments in the diagnosis of tuberculosis (TB) infection has been the introduction of whole-blood based interferon-γ release assays (IGRAs) [ 1 - 3 ]. (ersjournals.com)
  • Isoniazid Therapy for Mycobacterium Tuberculosis Infection in HIV Clinics, Los Angeles, California. (aidshealth.org)
  • Different Mycobacterium tuberculosis (M.tb) infection phase-dependent antigens may be differentially recognized in infected and diseased individuals and therefore useful as diagnostic tools for differentiating between M.tb infection states. (biomedcentral.com)
  • The identification of antigens able to differentiate tuberculosis (TB) disease from TB infection would be valuable. (pasteur.fr)
  • Thus, CD4 T cell assist performs a vital function in producing protecting CD8 T cell responses towards M. tuberculosis an infection in vitro and in vivo. (tbdb.org)
  • In 2017, the Korean authorities launched an unprecedentedly large-scaled latent tuberculosis an infection (LTBI) screening venture which lined greater than one million people in congregate settings. (tbdb.org)
  • The test is performed when the doctor suspects tuberculosis or other mycobacterium infection. (medlineplus.gov)
  • Cervical tuberculosis is usually a result of an infection in the lymph nodes, known as lymphadenitis. (medscape.com)
  • Surgery alone in M tuberculosis infection has had disappointing results and is plagued by a high rate of recurrence and fistulizations. (medscape.com)
  • Advanced cavitary disease and the presence of high numbers of M. tuberculosis in expectorated sputum is associated with transmission [ 7 ] but it is not known how early in the infection that patients pose a significant risk of infecting others. (biomedcentral.com)
  • It is intended for diagnosing and monitoring of patients related to infection by M. tuberculosis and other Mycobacteria. (mytaq.com)
  • To probe the role of the nrp gene in infection, we generated an nrp deletion mutant in M. tuberculosis H37Rv and tested its virulence in immunocompetent (C57BL/6) mice. (elsevierpure.com)
  • Mice infected with the mutant strain also survived for twice as long as those infected with wild-type M. tuberculosis and, remarkably, showed subdued pathology, despite similar bacterial loads at later stages of infection. (elsevierpure.com)
  • The symptoms in humans are usually restricted to skin and soft tissue destruction in most instances of Mycobacterium marinum infection via small purple lesions that can gradually grow. (aquarium-pond-answers.com)
  • Background: Zoonotic tuberculosis is defined as human infection with Mycobacterium bovis. (psu.edu)
  • Cholesterol, a four-ringed steroid with an alkyl side chain, is an important growth substrate for Mycobacterium tuberculosis (Mtb) during infection. (ubc.ca)
  • This article reviews the dermatologic manifestations of Mycobacterium avium-intracellulare (MAI, or MAC) infection. (medscape.com)
  • In the United States, Mycobacterium avium-intracellulare (MAI, or MAC) infection is considered a nonreportable infectious disease. (medscape.com)
  • It is important to consider cutaneous infection with Mycobacterium avium-intracellulare (MAI, or MAC) in patients with antibiotic-resistant cellulitis, nonhealing nodules, and ulcers, as well as in patients who are immunosuppressed with evidence of disseminated MAI (DMAI) infection. (medscape.com)
  • Data on skin and soft-tissue infection caused by nontuberculous mycobacteria in Taiwan (1997-2008) suggest that MAI is an important pathogen. (medscape.com)
  • In 2019, M. tuberculosis was found in a genetically related complex group of Mycobacterium species called Mycobacterium tuberculosis complex that has at least 9 members: M. tuberculosis sensu stricto M. africanum M. canetti M. bovis M. caprae M. microti M. pinnipedii M. mungi M. orygis It requires oxygen to grow, and is nonmotile. (wikipedia.org)
  • However, as with M. tuberculosis , not everyone infected with M. bovis becomes sick. (cdc.gov)
  • M. bovis is treated similarly to M. tuberculosis . (cdc.gov)
  • In fact, healthcare providers might not know that a person has M. bovis instead of M. tuberculosis . (cdc.gov)
  • In this context, we are interested in M. tuberculosis and M. bovis transmission between livestock to human. (jcvi.org)
  • IGRAs are endowed with great specificity, as the antigens used are almost exclusively expressed by the Mycobacterium tuberculosis (MTB) complex, but not Mycobacterium bovis bacille Calmette-Guerin (BCG) [ 1 - 3 ]. (ersjournals.com)
  • The results of isolation and identification using conventional culture method (Lowenstein- Jensen medium) were 22 mycobacterial isolates (75.9%), 20 (68.97%) Mycobacterium bovis and 2 (6.9%) unidentified slow growth. (ajol.info)
  • M. tuberculosis is one of the Mycobacterium tuberculosis complex, which also includes bacteria , such as M. bovis and M. africanum. (wikidoc.org)
  • Overexpression of Rv0494 in Mycobacterium bovis BCG reduced the basal level expression of kas operon genes, thereby suggesting the repressor nature of this protein in fatty acid synthase II regulation. (microbiologyresearch.org)
  • Interpretation: M bovis prevalence in humans is an inadequate proxy of zoonotic tuberculosis. (psu.edu)
  • 1. Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. (cdc.gov)
  • Tuberculosis (TB) is one of the major causes of death related to antimicrobial resistance worldwide because of the spread of Mycobacterium tuberculosis multi- and extensively drug resistant (multi-drug resistant (MDR) and extensively drug-resistant (XDR), respectively) clinical isolates. (frontiersin.org)
  • To this aim, in this work an in vitro generation of M. tuberculosis mutants resistant to BDQ was performed starting from two MDR clinical isolates as parental cultures. (frontiersin.org)
  • The two M. tuberculosis MDR clinical isolates were firstly characterized by whole genome sequencing, finding the main mutations responsible for their MDR phenotype. (frontiersin.org)
  • Of the 120 isolates analysed, 118 (98.3%) were identified as M. tuberculosis complex and 2 (1.7%) were identified as mycobacteria other than M. tuberculosis. (who.int)
  • The results showed that those 2 isolates were multi-drug resistant and the DNA sequencing analysis showed that the alignment of nucleic acid of DNA in isolates of mycobacteria other than M. tuberculosis was different from that of M. tuberculosis complex. (who.int)
  • 8. Gong Z, Wang G, Zeng J, Stojkoska A, Huang H, Xie J. Differential DNA methylomes of clinical MDR, XDR and XXDR Mycobacterium tuberculosis isolates revealed by using single-molecule real-time sequencing. (ac.ir)
  • Isolates identified as MTBC other than M tuberculosis or as inconclusive on PCR were subject to whole-genome sequencing (WGS), and phylogenetically compared with publicly available MTBC sequences from south Asia. (psu.edu)
  • Four isolates of cattle origin were dispersed among human sequences within M tuberculosis lineage 1, and the seven M orygis isolates from human MGIT cultures were dispersed among sequences from cattle. (psu.edu)
  • In contrast, the MAC consists of several nontuberculous mycobacterial species, known as nontuberculous mycobacteria (NTM). (medicalnewstoday.com)
  • 2014). Distinguishing Nontuberculous Mycobacteria from Multidrug-Resistant Mycobacterium tuberculosis, China. (cdc.gov)
  • ABSTRACT This study was done to characterize at the species level Mycobacterium spp. (who.int)
  • ABSTRACT This research compared the numbers and types of different Mycobacterium species in soil samples taken from 2 areas of Golestan province, Islamic Republic of Iran, 1 with a high prevalence of tuberculosis and 1 with a low prevalence. (who.int)
  • These compounds have the potential to be used as antimicrobials or in the diagnosis of tuberculosis. (ejbiotechnology.info)
  • The diagnosis of tuberculosis (TB) disease remains a challenge in resource-limited settings. (biomedcentral.com)
  • 2. Isaza R, Ketz C. A trunk wash technique for the diagnosis of tuberculosis in elephants. (vin.com)
  • Six patients provided apparent false positive breathalyzer results that did not correlate with a diagnosis of tuberculosis. (biomedcentral.com)
  • Here we report that members of the family, ivermectin, selamectin, and moxidectin, are bactericidal against mycobacterial species, including multidrug-resistant and extensively drug-resistant clinical strains of Mycobacterium tuberculosis. (nih.gov)
  • In this context, we undertook a study in Kandy (a popular tourist destination) with the aim of understanding the prevalence, patient characteristics, and treatment outcomes associated with BL strains among tuberculosis patients in Kandy, Sri Lanka. (hindawi.com)
  • Furthermore, several M. tuberculosis BDQ resistant mutants were isolated by both MDR strains, harboring mutations in both atpE and Rv0678 genes. (frontiersin.org)
  • tuberculosis strains to better understand transmission among persons deprived of liberty (PDL) in Rio Grande do Sul (RS), southern Brazil. (medworm.com)
  • A total of 598 M. tuberculosis strains were genotyped, and 37.5% were grouped into 53 clusters. (medworm.com)
  • Strategies for its control may be not as effective as it should be, specifically in case of resistant strains of Mycobacterium tuberculosis ( M.tb . (ac.ir)
  • The M. tuberculosis genome was sequenced in 1998. (wikipedia.org)
  • the complete genome sequence of Mycobacterium tuberculosis continues to provide an invaluable resource to understand tuberculosis (TB), the leading cause of global infectious disease mortality. (jci.org)
  • At the 25-year anniversary of this accomplishment, we describe how insights gleaned from the M. tuberculosis genome have led to vital tools for TB research, epidemiology, and clinical practice. (jci.org)
  • Whole-genome sequencing (WGS) of M. tuberculosis and related mycobacteria is now routine, allowing comparisons across time and space. (jci.org)
  • The M. tuberculosis genome has ushered in a quarter century of substantial clinical and public health advancements. (jci.org)
  • The second half was subjected to a qPCR targeting IS1081 of the M. tuberculosis complex genome. (vin.com)
  • Genetic variations in the M. tuberculosis genome lead to important phenotypical changes. (wikidoc.org)
  • 1998 ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. (microbiologyresearch.org)
  • The Mycobacterium tuberculosis genome harbors a nonribosomal peptide synthase gene, nrp, which is part of a gene cluster proposed to be involved in the biosynthesis of isonitrile lipopeptides. (elsevierpure.com)
  • Mycobacterium tuberculosis (M. tb), also known as Koch's bacillus, is a species of pathogenic bacteria in the family Mycobacteriaceae and the causative agent of tuberculosis. (wikipedia.org)
  • Compared to other commonly studied bacteria, M. tuberculosis has a remarkably slow growth rate, doubling roughly once per day. (wikipedia.org)
  • The slices of the Mycobacterium tuberculosis analyzed under a scanning electron microscope by a Japan-based research group has revealed that bacteria is about 2.71 ± 1.05μm in length with an average diameter of the cell approximately 0.345 ± 0.029 μm. (wikipedia.org)
  • Mycobacterium tuberculosis (MTB) and Mycobacterium avium complex (MAC) are two distinct types of bacteria that can cause infections in the lungs and other parts of the body. (medicalnewstoday.com)
  • Seven lineages of Mycobacterium tuberculosis (MTB), the bacteria that causes "Tuberculosis" (TB), have been identified till date [ 1 ]. (hindawi.com)
  • The most common acid-fast staining method for M. tuberculosis is the Ziehl-Neelsen stain method, in which a bacteria specimen is fixed, stained with carbol-fuchsin dye, and decolorized with an acid-alcohol mixture. (gideononline.com)
  • Contact with different species of environmental Mycobacterium can cause acquired immunity to M. tuberculosis or increase the efficacy of BCG vaccine protection (M. vaccae, M. microti), although some species of these bacteria reduce the efficacy of BCG vaccine (M. scrofulaceum) [8,10-13]. (who.int)
  • Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. (ac.ir)
  • Sputum stain for mycobacteria is a test to check for a type of bacteria that cause tuberculosis and other infections. (medlineplus.gov)
  • Computer-generated image of a cluster of rod-shaped drug-resistant Mycobacterium tuberculosis bacteria. (wikidoc.org)
  • Fish Tuberculosis is generally caused by Mycobacterium marinum , a bacterium closely related to the human TB (Tuberculosis) bacteria, Mycobacterium tuberculosis , although incidents of Mycobacterium triplex have also been reported with Bettas. (aquarium-pond-answers.com)
  • Despite some internet claims, based on my many years of "house calls" and other professional aquarium maintenance work has shown Fish "TB" to be relatively uncommon with the exception of cases where the bacteria has been passed around and the fish' immune system has been compromised, this is especially the case with recently confirmed Mycobacterium triplex . (aquarium-pond-answers.com)
  • Generally when the Mycobacterium marinum bacteria infects humans it is a dermatological issue as the bacterium usually enter the skin via small abrasions or cuts when you are performing aquarium maintenance. (aquarium-pond-answers.com)
  • The immune response against 85A protects against tuberculosis, as it primes the immune system to target the TB-causing bacteria. (thenakedscientists.com)
  • Using a variety of approaches, I elucidated key aspects of cholesterol catabolism in Mtb and other bacteria, particularly with respect to 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indane-dione (HIP), a metabolite that contains the last two steroid rings (C/D). Chapter 2 demonstrates that the first two steroid rings (A/B) are degraded prior to the side chain in mycobacteria and rhodococci. (ubc.ca)
  • The most frequently used diagnostic methods for tuberculosis are the tuberculin skin test, acid-fast stain, culture, and polymerase chain reaction. (wikipedia.org)
  • The aim of this study was to collect prospectively tissue from patients with sarcoidosis in whom tuberculosis had been excluded, and to use polymerase chain reaction (PCR) to search for DNA sequences specific for MTb. (bmj.com)
  • In addition, the opportunity to compare and potentially validate a direct real-time polymerase chain reaction (qPCR) method to detect Mycobacterium tuberculosis (Mtb) DNA in TW samples with standard mycobacterial culture methods for TW samples was undertaken. (vin.com)
  • The high sensitivity of amplification by polymerase chain reaction requires the specimen to be processed in an environment in which contamination of the specimen by Mycobacterium tuberculosis DNA is unlikely. (testcatalog.org)
  • It comprises less than 10% berculosis was confirmed at the time by of all perianal diseases and 0.7% of all polymerase chain reaction to amplify poly- tuberculosis cases [ 1 ]. (who.int)
  • The most potent antimycobacterial demonstrated a minimum inhibitory concentration (MIC99) of 9.6 μM against Mycobacterium tuberculosis H37Rv. (uwc.ac.za)
  • Mycobacterium tuberculosis (MTb) has long been a likely contender as the inciting antigen in sarcoidosis, although Koch's postulates have never been fulfilled. (bmj.com)
  • The 38 kDa protein is a serious antigen of mycobacterium tuberculosis and has been broadly utilized in TB serodiagnosis, on account of its extremely sensitivity and specificity. (tbdb.org)
  • We describe a novel device that utilizes immunosensor and bio-optical technology to detect M. tuberculosis antigen (Ag85B) in cough and demonstrate its use under field conditions during a pilot study in an area of high TB incidence. (biomedcentral.com)
  • Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. (cdc.gov)
  • Simultaneous drug resistance detection and genotyping of Mycobacterium tuberculosis using a low-density hydrogel microarray. (cdc.gov)
  • We isolated 315 fungal types, which represented 85 morphologies, from different parts of P. aduncum L. The bioassays were performed on 82 culture filtrates and 6 plant extracts and resulted in the detection of 1 culture filtrate that stimulated the growth of M. tuberculosis and 15 that inhibited microbial growth. (ejbiotechnology.info)
  • The mean time for detection of Mycobacteria was 17.8 ± 0.9 days and 46.5 ± 0.4 days for BACTEC MGIT 960 TM system and Lowenstein-Jensen medium, respectively while the contamination rate with BACTEC MGIT 960 TM system was 6.9% and 10.3% in Lowenstein-Jensen medium. (ajol.info)
  • We used lymphoproliferation, ELISpot IFN-gamma, cytokine production assays and detection of specific human antibodies against recombinant M. tuberculosis proteins. (pasteur.fr)
  • This test is not intended for the detection of latent tuberculosis and must not be used as a substitute for tests intended for detection of latent tuberculosis such as the tuberculin skin test or an interferon gamma release assay. (testcatalog.org)
  • Description: This kit is anenzyme-linked immunosorbent assay for qualitative detection of IgG antibodies to Mycobacterium tuberculosis in human serum or plasma. (mytaq.com)
  • Description: The Mycobacterium tuberculosis IgG antibody ELISA kit has been designed for the detection andthe quantitative determination of specific IgG antibodies against Mycobacterium tuberculosis in serum and plasma. (mytaq.com)
  • Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis (TB) , a global health concern and leading cause of death. (medicalnewstoday.com)
  • Mycobacterium tuberculosis , the causative agent is spread from person to person via infected aerosols created by patients with respiratory forms of the disease. (biomedcentral.com)
  • According to the World Health Organization (WHO) report, in 2018, tuberculosis (TB), caused by Mycobacterium tuberculosis , was one of the major causes of death related to antimicrobial resistance ( World Health Organization [WHO], 2019a ). (frontiersin.org)
  • tuberculosis isolated from PDL, stored at the Central Laboratory of RS, in the period from 2013 to 2018. (medworm.com)
  • Methods: We did a molecular epidemiological surveillance study of 940 positive mycobacteria growth indicator tube (MGIT) cultures, collected from patients visiting the outpatient department at Christian Medical College (Vellore, India) with suspected tuberculosis between Oct 1, 2018, and March 31, 2019. (psu.edu)
  • Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis , describe how it is organised as a dodecamer and regulated by CoA thioesters. (nature.com)
  • PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth in M. tuberculosis, but is important for proper cell division in Mycobacterium smegmatis. (rcsb.org)
  • Furthermore, heterologous expression of M. tb PpiA and PpiB in Mycobacterium smegmatis increased bacterial survival in THP-1 cells as compared to those transformed with the vector control . (bvsalud.org)
  • A new study has shown that a breakthrough vaccine against tuberculosis may be more effective when given alone, rather than alongside other vaccines. (thenakedscientists.com)
  • 2011. 'Immunogenicity of the Tuberculosis Vaccine MVA85A Is Reduced by Coadministration with EPI Vacci. (thenakedscientists.com)
  • We analyzed 98 Mycobacterium tuberculosis complex platform to enhance SARS-CoV-2 testing capacity. (cdc.gov)
  • tuberculosis complex based on colony phenotype. (cdc.gov)
  • Profiles of expression of the antimicrobial activities of LVFX, KRM-1648 (KRM), and CAM against M. tuberculosis (MTB) and M. avium complex (MAC) residing in MONO-MAC-6 human macrophage like cells (MM6-M phi s) and A-549 human type II alveolar pneumocyte cells (A-549 cells) were determined. (nih.gov)
  • For PCR, DNA was amplified with a specific pair of primers to the M. tuberculosis complex, with a resulting product of 123 bp from the insertion element IS6110. (scielo.br)
  • Among six samples with positive results in culture, one was identified by PCR-RFLP as belonging to the M. tuberculosis complex and one was identified as a non-tuberculosis mycobacteria. (scielo.br)
  • There are currently 71 recognized or proposed species of Mycobacterium [1], all of which, except M. tuberculosis complex and M. leprae, are considered as environmental mycobacteria and can usually be isolated from environmental samples including water, soil and dust [2]. (who.int)
  • This study was aimed to evaluate the recent technique (BACTEC MGIT 960 TM system) for screening of Mycobacterium tuberculosis complex among cattle in Egypt. (ajol.info)
  • Reports of the clinical efficacy of clarithromycin in patients with acquired immunodeficiency syndrome (AIDS) and Mycobacterium avium-intracellulare (MAI) complex have prompted its use in NTM lymphadenitis. (medscape.com)
  • Mycobacterium tuberculosis belongs to the Mycobacterium tuberculosis complex. (wikidoc.org)
  • The aim of this study was to obtain estimates of the human prevalence of animal-associated members of the Mycobacterium tuberculosis complex (MTBC) at a large referral hospital in India. (psu.edu)
  • Sputum culture grew Mycobacterium avium complex. (medscape.com)
  • Furthermore, the dependence of most of these tests on sputum implies that they are not suitable for patients with difficulties in providing good quality sputum samples such as children, extrapulmonary TB cases, or in cases where the sputum itself is negative (for example, many patients with HIV- Mycobacterium tuberculosis (M.tb) co-infections). (biomedcentral.com)
  • A) Section of the variable- number tandem-repeat-based dendrogram of the Latin-American-Mediterranean family of Mycobacterium tuberculosis RD-Rio strain with enlarged branch including SIT20 strain from Kazakhstan. (cdc.gov)
  • Latent TB represents the condition where the body's immune system restricts the growth of M . tuberculosis bacterium, making the individual appear asymptomatic [10]. (gideononline.com)
  • Infections initially contained by host defenses (latent tuberculosis) may, at a later time, in the face of immunosuppression, reactivate to cause either progressive local disease or disseminate. (medscape.com)
  • Reactivation of latent M tuberculosis is seen in the subapical posterior lung segments and is likely due to high pO2 concentration and limited lymphatic drainage. (medscape.com)
  • Today, approximately 95% of mycobacterial cervical infections in adults are caused by Mycobacterium tuberculosis, and the remainder are caused by atypical mycobacterium, or nontuberculous mycobacterium (NTM). (medscape.com)
  • Multidrug-resistant tuberculosis (MDR) continues to pose a threat to public health. (mdpi.com)
  • Bovine tuberculosis remains a disease of economic and public health importance in developing countries. (ajol.info)
  • Although globally, India has the largest number of human tuberculosis cases and the largest cattle population, in which bovine tuberculosis is endemic, the burden of zoonotic tuberculosis is unknown. (psu.edu)
  • The identification of M tuberculosis in cattle also reinforces the need for One Health investigations in countries with endemic bovine tuberculosis. (psu.edu)
  • Mycobacterium africanum is endemic to West Africa and is rare outside this region. (who.int)
  • Patients were enrolled in the study if they fulfilled previously accepted clinical diagnostic criteria, 15 had evidence of non-caseating granulomas on biopsy specimens, a negative Mantoux test, and negative MTb cultures with no prior history of tuberculosis. (bmj.com)
  • To fight MDR and XDR tuberculosis, three new antitubercular drugs, bedaquiline (BDQ), delamanid, and pretomanid were approved for use in clinical setting. (frontiersin.org)
  • Shete PB, Cattamanchi A, Yoon C. Tuberculosis: clinical manifestations and diagnosis. (medlineplus.gov)
  • We recommend studies be undertaken to determine the diagnostic sensitivity and specificity of the device when compared to microbiological and clinical indicators of tuberculosis disease. (biomedcentral.com)
  • For clinical aspects of the disease, see Tuberculosis . (wikidoc.org)
  • See also Mycobacterium Avium-Intracellulare . (medscape.com)
  • Orthologous clusters are found in other slow-growing pathogenic mycobacteria and actinomycetes. (elsevierpure.com)
  • Humans are the only known reservoirs of M. tuberculosis. (wikipedia.org)
  • Cellular and humoral immune responses to Erp (Exported repetitive protein)-a recently identified M. tuberculosis protein-have not yet been investigated in humans and may contribute to this aim. (pasteur.fr)
  • The recovery of M orygis from humans highlights the need to use a broadened definition, including MTBC subspecies such as M orygis, to investigate zoonotic tuberculosis. (psu.edu)
  • Mycobacterium tuberculosis is an obligate aerobe, non-spore-forming, slender rod. (medscape.com)
  • M. tuberculosis is an obligate aerobe , non-encapsulated , non-motile , acid-fast bacillus . (wikidoc.org)
  • Application of sensitive and specific molecular methods to uncover global dissemination of the major RDRio sublineage of the Latin American-Mediterranean Mycobacterium tuberculosis spoligotype family. (cdc.gov)
  • Human IgG antibody Laboratories manufactures the mycobacterium tuberculosis spoligotype spacers reagents distributed by Genprice. (mytaq.com)
  • The Mycobacterium Tuberculosis Spoligotype Spacers reagent is RUO (Research Use Only) to test human serum or cell culture lab samples. (mytaq.com)
  • SITVITWEB--a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. (cdc.gov)
  • Molecular typing of Mycobacterium spp. (who.int)
  • An antigenic analysis of the mycobacteria, Mycobacterium fortuitum, Myco. (eurekamag.com)
  • The most common species isolated were Mycobacterium fortuitum, M. flavescens and M. chelonae. (who.int)
  • Les espèces les plus couramment isolées étaient Mycobacterium fortuitum, M. flavescens et M. chelonae. (who.int)
  • Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis . (nature.com)
  • One very important application of this work is investigating how pathogens like Mycobacterium tuberculosis (Mtb) respond to antibiotics, as this helps inform how Mtb develops antimicrobial resistance or drug resistance. (seattlechildrens.org)
  • Preliminary report of side effects associated with drugs used in the treatment of tuberculosis in elephants. (vin.com)
  • Mycobacterium tuberculosis has developed extensive resistance to numerous antimycobacterial agents used in the treatment of tuberculosis. (uwc.ac.za)
  • The frequencies of environmental Mycobacterium in the low-prevalence area were much higher than in the high-prevalence area, perhaps due to different environmental factors. (who.int)
  • Description: Enzyme-linked immunosorbent assay kit for quantification of Human tuberculosis (TB) antibody ( IgG) in samples from serum, plasma, tissue homogenates and other biological fluids. (mytaq.com)
  • The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis , by a single bifunctional protein, CoaBC. (nature.com)
  • This is the first report, to the best of our knowledge, of a GntR/FadR family protein acting as a fatty acid-responsive transcriptional regulator in M. tuberculosis , suggesting a possible role for this protein in mycolic acid biosynthesis. (microbiologyresearch.org)
  • The so-called 'Modified Vaccinia virus Ankara', or MVA, was then manipulated genetically to express a protein found on Mycobacterium tubercolosis , called 85A. (thenakedscientists.com)
  • In contrast, the MAC consists of several related bacterial species, including Mycobacterium avium ( M. avium ) and Mycobacterium intracellulare ( M.intracellulare ), which are widespread in the environment. (medicalnewstoday.com)
  • M tuberculosis is a nonmotile, aerobic, intracellular bacterial pathogen measuring. (medscape.com)
  • Statistics indicate an increase in the prevalence and isolation of cervical lymphadenitis caused by NTM, far outnumbering tuberculosis as the cause of chronic cervical adenitis in children. (medscape.com)
  • Mycobacterium tuberculosis ( M. tuberculosis ), a non-motile, obligately aerobic, intracellular bacterium known to cause Tuberculosis (TB), was discovered by Robert Koch in 1882 [1]. (gideononline.com)
  • Insufficient intracellular accumulation of active moieties allows for selective survival of mycobacteria with drug resistance mutations and accordingly promotes the development of microbial drug resistance. (uwc.ac.za)
  • Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Are Immunogenic, Alter Cytokine Profile and Aid in Intracellular Survival. (bvsalud.org)
  • Biology and bacteriology of mycobacteria / by Abolhassan Zia Zarifi. (who.int)
  • Routine mycobacterial culture of trunk wash (TW) samples yielded Mycobacteria tuberculosis organisms from a 45-yr-old female Asian elephant, Elephas maximus . (vin.com)
  • If your facility is unable to perform mycobacterial culture, order CTB / Mycobacteria and Nocardia Culture, Varies concurrently with this test. (testcatalog.org)
  • Is International Travel an Emerging Issue on Transmission of Beijing Lineage Mycobacterium tuberculosis? (hindawi.com)
  • Tuberculosis (TB) is the most prevalent and deadly infectious disease worldwide and remains a global epidemic. (nature.com)
  • Tuberculosis is the oldest documented infectious disease. (medscape.com)
  • Tuberculosis is a highly infectious disease that is spread from person to person by infected aerosols emitted by patients with respiratory forms of the disease. (biomedcentral.com)
  • Tuberculosis (TB) an infectious illness brought on by Mycobacterium tuberculosis (Mtb), infects the lungs' alveolar surfaces by the aerosol droplets. (tbdb.org)
  • When in the lungs, M. tuberculosis is phagocytosed by alveolar macrophages, but they are unable to kill and digest the bacterium. (wikipedia.org)
  • [ 1 ] The granulomas of tuberculosis (see the first image below) are necrotizing and non-necrotizing, with involvement of lung parenchyma leading to peribronchial, perivascular, interstitial and alveolar granulomas and occasionally leading to exudative tuberculous granulomatous pneumonia (see the second image below). (medscape.com)
  • Extrapulmonary tuberculosis, such as scrofula, is observed most often in individuals who are immunocompromised. (medscape.com)
  • Involvement of the perianal region in tu- men from the anal ulcer was positive for berculosis is a rare extrapulmonary form acid-fast bacilli and Mycobacterium tub of this disease. (who.int)
  • from Madagascar, 14% of 64 patients with Abdominal sonography showed mul- extrapulmonary tuberculosis had tubercular tiple lymphadenopathies in the para-aor- anal fistula [ 3 ]. (who.int)
  • Although extrapulmonary tuberculosis splenomegaly was seen as well. (who.int)
  • The BACTEC MGIT 960 TM system was used for recovery of Mycobacteria and compared with conventional culture method (Lowenstein-Jensen medium). (ajol.info)