Mixed Function Oxygenases: Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.Oxygenases: Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules.Piperonyl Butoxide: An insecticide synergist, especially for pyrethroids and ROTENONE.Aminopyrine N-Demethylase7-Alkoxycoumarin O-Dealkylase: A drug-metabolizing enzyme found in the hepatic, placental and intestinal microsomes that metabolizes 7-alkoxycoumarin to 7-hydroxycoumarin. The enzyme is cytochrome P-450- dependent.Benzopyrene Hydroxylase: A drug-metabolizing, cytochrome P-448 (P-450) enzyme which catalyzes the hydroxylation of benzopyrene to 3-hydroxybenzopyrene in the presence of reduced flavoprotein and molecular oxygen. Also acts on certain anthracene derivatives. An aspect of EC 1.14.14.1.Antipyrine: An analgesic and antipyretic that has been given by mouth and as ear drops. Antipyrine is often used in testing the effects of other drugs or diseases on drug-metabolizing enzymes in the liver. (From Martindale, The Extra Pharmacopoeia, 30th ed, p29)Phenobarbital: A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations.Oxidoreductases: The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)Allylisopropylacetamide: An allylic compound that acts as a suicide inactivator of CYTOCHROME P450 by covalently binding to its heme moiety or surrounding protein.Microsomes, Liver: Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough.SkatoleCytochrome P-450 Enzyme System: A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.Heme Oxygenase (Decyclizing): A mixed function oxidase enzyme which during hemoglobin catabolism catalyzes the degradation of heme to ferrous iron, carbon monoxide and biliverdin in the presence of molecular oxygen and reduced NADPH. The enzyme is induced by metals, particularly cobalt. EC 1.14.99.3.Biotransformation: The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.Enzyme Induction: An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.Ketoglutaric Acids: A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442)Dioxygenases: Non-heme iron-containing enzymes that incorporate two atoms of OXYGEN into the substrate. They are important in biosynthesis of FLAVONOIDS; GIBBERELLINS; and HYOSCYAMINE; and for degradation of AROMATIC HYDROCARBONS.Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Biliverdine: 1,3,6,7-Tetramethyl-4,5-dicarboxyethyl-2,8-divinylbilenone. Biosynthesized from hemoglobin as a precursor of bilirubin. Occurs in the bile of AMPHIBIANS and of birds, but not in normal human bile or serum.Aryl Hydrocarbon Hydroxylases: A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides.Nonheme Iron Proteins: Proteins, usually acting in oxidation-reduction reactions, containing iron but no porphyrin groups. (Lehninger, Principles of Biochemistry, 1993, pG-10)Emericella: A genus in the family Trichocomaceae, order EUROTIALES. The anamorph is ASPERGILLUS.Kinetics: The rate dynamics in chemical or physical systems.NADP: Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)Heme: The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins.Corynebacterium diphtheriae: A species of gram-positive, asporogenous bacteria in which three cultural types are recognized. These types (gravis, intermedius, and mitis) were originally given in accordance with the clinical severity of the cases from which the different strains were most frequently isolated. This species is the causative agent of DIPHTHERIA.beta-Carotene 15,15'-Monooxygenase: A monooxygenase that catalyzes the conversion of BETA-CAROTENE into two molecules of RETINAL. It was formerly characterized as EC 1.13.11.21 and EC 1.18.3.1.Hydroxylation: Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed)Iron: A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.Oxidoreductases, O-Demethylating: Drug metabolizing enzymes which oxidize methyl ethers. Usually found in liver microsomes.Carbon Monoxide: Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed)Rhodococcus: A bacterial genus of the order ACTINOMYCETALES.Pseudomonas putida: A species of gram-negative, aerobic bacteria isolated from soil and water as well as clinical specimens. Occasionally it is an opportunistic pathogen.Catechols: A group of 1,2-benzenediols that contain the general formula R-C6H5O2.Biodegradation, Environmental: Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers.Procollagen-Proline Dioxygenase: A mixed-function oxygenase that catalyzes the hydroxylation of a prolyl-glycyl containing peptide, usually in PROTOCOLLAGEN, to a hydroxyprolylglycyl-containing-peptide. The enzyme utilizes molecular OXYGEN with a concomitant oxidative decarboxylation of 2-oxoglutarate to SUCCINATE. The enzyme occurs as a tetramer of two alpha and two beta subunits. The beta subunit of procollagen-proline dioxygenase is identical to the enzyme PROTEIN DISULFIDE-ISOMERASES.Heme Oxygenase-1: A ubiquitous stress-responsive enzyme that catalyzes the oxidative cleavage of HEME to yield IRON; CARBON MONOXIDE; and BILIVERDIN.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Benzoates: Derivatives of BENZOIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxybenzene structure.Pseudomonas: A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.Catalysis: The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.Oxygen: An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.Crystallography, X-Ray: The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Bacterial Proteins: Proteins found in any species of bacterium.Hemin: Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Streptomyces: A genus of bacteria that form a nonfragmented aerial mycelium. Many species have been identified with some being pathogenic. This genus is responsible for producing a majority of the ANTI-BACTERIAL AGENTS of practical value.Molecular Structure: The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.IndianaAroclors: Industrial chemicals which have become widespread environmental pollutants. Each aroclor is a mixture of chlorinated biphenyls (1200 series) or chlorinated terphenyls (5400 series) or a combination of both (4400 series).Environmental Monitoring: The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment.ChicagoIsotopes: Atomic species differing in mass number but having the same atomic number. (Grant & Hackh's Chemical Dictionary, 5th ed)Oxidative Stress: A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).

Decreased liver and lung drug-metabolizing activity in mice treated with Corynebacterium parvum. (1/3676)

Injections of killed suspensions of Corynebacterium parvum (i.p.) in young male mice were followed by time- and dose-dependent decreases in the drug-metabolizing activity of liver microsomes and lung homogenates. In vitro assays with model substrates [aminopyrine, aniline, p-nitroanisole, and benzo(a)pyrene] were used to quantitate drug-metabolizing activity. It is likely that such decreases in mixed function oxidases activity will act to significantly alter the pharmacokinetics of concurrently or subsequently administered drugs. The results provide a possible mechanism to explain several previously reported immunochemotherapeutic interactions.  (+info)

Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. (2/3676)

The anthocyanin biosynthetic pathway is responsible for the production of anthocyanin pigments in plant tissues and shares a number of enzymes with other biochemical pathways. The six core structural genes of this pathway have been cloned and characterized in two taxonomically diverse plant species (maize and snapdragon). We have recently cloned these genes for a third species, the common morning glory, Ipomoea purpurea. This additional information provides an opportunity to examine patterns of evolution among genes within a single biochemical pathway. We report here that upstream genes in the anthocyanin pathway have evolved substantially more slowly than downstream genes and suggest that this difference in evolutionary rates may be explained by upstream genes being more constrained because they participate in several different biochemical pathways. In addition, regulatory genes associated with the anthocyanin pathway tend to evolve more rapidly than the structural genes they regulate, suggesting that adaptive evolution of flower color may be mediated more by regulatory than by structural genes. Finally, for individual anthocyanin genes, we found an absence of rate heterogeneity among three major angiosperm lineages. This rate constancy contrasts with an accelerated rate of evolution of three CHS-like genes in the Ipomoea lineage, indicating that these three genes have diverged without coordinated adjustment by other pathway genes.  (+info)

The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. (3/3676)

The alk genes are located on the OCT plasmid of Pseudomonas oleovorans and encode an inducible pathway for the utilization of n-alkanes as carbon and energy sources. We have investigated the influence of alternative carbon sources on the induction of this pathway in P. oleovorans and Escherichia coli alk+ recombinants. In doing so, we confirmed earlier reports that induction of alkane hydroxylase activity in pseudomonads is subject to carbon catabolite repression. Specifically, synthesis of the monooxygenase component AlkB is repressed at the transcriptional level. The alk genes have been cloned into plasmid pGEc47, which has a copy number of about 5 to 10 per cell in both E. coli and pseudomonads. Pseudomonas putida GPo12 is a P. oleovorans derivative cured of the OCT plasmid. Upon introduction of pGEc47 in this strain, carbon catabolite repression of alkane hydroxylase activity was reduced significantly. In cultures of recombinant E. coli HB101 and W3110 carrying pGEc47, induction of AlkB and transcription of the alkB gene were no longer subject to carbon catabolite repression. This suggests that carbon catabolite repression of alkane degradation is regulated differently in Pseudomonas and in E. coli strains. These results also indicate that PalkBFGHJKL, the Palk promoter, might be useful in attaining high expression levels of heterologous genes in E. coli grown on inexpensive carbon sources which normally trigger carbon catabolite repression of native expression systems in this host.  (+info)

Properties of 5-aminolaevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania). (4/3676)

1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase.  (+info)

Null mutation in IRE1 gene inhibits overproduction of microsomal cytochrome P450Alk1 (CYP 52A3) and proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae. (5/3676)

Overproduction of microsomal cytochrome P450Alk1 (P450Alk1) of Candida maltosa in Saccharomyces cerevisiae resulted in an extensive proliferation of endoplasmic reticulum (ER) and induction of Kar2p and Pdi1p. The ire1 null mutation severely suppressed ER proliferation, reduced the level of functional P450Alk1, and showed no induction of these ER chaperones, suggesting that the function of Ire1p is required for ER proliferation upon the overproduction of P450Alk1. Cerulenin, a potent inhibitor of lipid biosynthesis, also induced these chaperones in an Ire1p-dependent manner and limited the production of functional P450Alk1. These results imply that Ire1p may function to restore the balance between membrane proteins and lipids of the ER when the ER is relatively overcrowded by membrane proteins.  (+info)

Structure of a cytochrome P450-redox partner electron-transfer complex. (6/3676)

The crystal structure of the complex between the heme- and FMN-binding domains of bacterial cytochrome P450BM-3, a prototype for the complex between eukaryotic microsomal P450s and P450 reductase, has been determined at 2.03 A resolution. The flavodoxin-like flavin domain is positioned at the proximal face of the heme domain with the FMN 4.0 and 18.4 A from the peptide that precedes the heme-binding loop and the heme iron, respectively. The heme-binding peptide represents the most efficient and coupled through-bond electron pathway to the heme iron. Substantial differences between the FMN-binding domains of P450BM-3 and microsomal P450 reductase, observed around the flavin-binding sites, are responsible for different redox properties of the FMN, which, in turn, control electron flow to the P450.  (+info)

Immunophilins, Refsum disease, and lupus nephritis: the peroxisomal enzyme phytanoyl-COA alpha-hydroxylase is a new FKBP-associated protein. (7/3676)

FKBP52 (FKBP59, FKBP4) is a "macro" immunophilin that, although sharing high structural and functional homologies in its amino-terminal domain with FKBP12 (FKBP1), does not have immunosuppressant activity when complexed with FK506, unlike FKBP12. To investigate the physiological function of FKBP52, we used the yeast two-hybrid system as an approach to find its potential protein partners and, from that, its cellular role. This methodology, which already has allowed us to find the FK506-binding protein (FKBP)-associated protein FAP48, also led to the detection of another FKBP-associated protein. Determination of the sequence of this protein permitted its identification as phytanoyl-CoA alpha-hydroxylase (PAHX), a peroxisomal enzyme that so far was unknown as an FKBP-associated protein. Inactivation of this enzyme is responsible for Refsum disease in humans. The protein also corresponds to the mouse protein LN1, which could be involved in the progress of lupus nephritis. We show here that PAHX has the physical capacity to interact with the FKBP12-like domain of FKBP52, but not with FKBP12, suggesting that it is a particular and specific target of FKBP52. Whereas the binding of calcineurin to FKBP12 is potentiated by FK506, the specific association of PAHX and FKBP52 is maintained in the presence of FK506. This observation suggests that PAHX is a serious candidate for studying the cellular signaling pathway(s) involving FKBP52 in the presence of immunosuppressant drugs.  (+info)

Involvement of cytochromes P-450 2E1 and 3A4 in the 5-hydroxylation of salicylate in humans. (8/3676)

Hydroxylation of salicylate into 2,3 and 2,5-dihydroxybenzoic acids (2,3-DHBA and 2,5-DHBA) by human liver microsomal preparations was investigated. Kinetic studies demonstrated that salicylate was 5-hydroxylated with two apparent Km: one high-affinity Km of 606 microM and one low-affinity Km greater than 2 mM. Liver microsomes prepared from 15 human samples catalyzed the formation of 2,5-DHBA at metabolic rate of 21.7 +/- 8.5 pmol/mg/min. The formation of 2, 3-DHBA was not P-450 dependent. Formation of 2,5-DHBA was inhibited by 36 +/- 14% following preincubation of microsomes with diethyldithiocarbamate, a mechanism-based selective inhibitor of P-450 2E1. Furthermore, the efficiency of inhibition was significantly correlated with four catalytic activities specific to P-450 2E1, whereas the residual activity was correlated with three P-450 3A4 catalytic activities. Troleandomycin, a mechanism-based inhibitor selective to P-450 3A4, inhibited by 30 +/- 12% the 5-hydroxylation of salicylate, and this inhibition was significantly correlated with nifedipine oxidation, specific to P-450 3A4. The capability of seven recombinant human P-450s to hydroxylate salicylate demonstrated that P-450 2E1 and 3A4 contributed to 2, 5-DHBA formation in approximately equal proportions. The Km values of recombinant P-450 2E1 and 3A4, 280 and 513 microM, respectively, are in the same range as the high-affinity Km measured with human liver microsomes. The plasmatic metabolic ratio 2,5-DHBA/salicylate, measured 2 h after ingestion of 1 g acetylsalicylate, was increased 3-fold in 12 alcoholic patients at the beginning of their withdrawal period versus 15 control subjects. These results confirm that P-450 2E1, inducible by ethanol, is involved in the 5-hydroxylation of salicylate in humans. Furthermore, this ratio was still increased by 2-fold 1 week after ethanol withdrawal. This finding suggests that P-450 3A4, known to be also inducible by alcoholic beverages, plays an important role in this increase, because P-450 2E1 returned to normal levels in less than 3 days after ethanol withdrawal. Finally, in vivo and in vitro data demonstrated that P-450 2E1 and P-450 3A4, both inducible by alcohols, catalyzed the 5-hydroxylation of salicylate.  (+info)

  • In this study, we identified and characterized the sidA gene of A. fumigatus , which encodes l -ornithine N 5 -oxygenase, the first committed step in hydroxamate siderophore biosynthesis. (asm.org)
  • Key secondary-structure elements important for catalysis, such as the βαβ fold, β-sheet wall and α12 helix, are conserved across this expanded class of oxygenases. (northwestern.edu)
  • 4-6 Increased NADPH oxidase activation is associated with conditions such as endothelial dysfunction, intimal hyperplasia, atherosclerosis, and hypertension 7 and has been linked to impairment of endothelial NO function in patients with coronary artery disease. (ahajournals.org)
  • values were obtained for both the NADH- and NADPH-dependent haem oxygenase reactions. (meta.org)
  • There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. (curehunter.com)
  • The enzyme can catalyze oxidation of NADH in the presence of free flavin, indicating that it can function as a flavin reductase in luminous bacteria. (asm.org)
  • 2-Oxoglutarate (2OG) dependent oxygenases are ubiquitous iron enzymes that couple substrate oxidation to the conversion of 2OG to succinate and carbon dioxide. (nih.gov)
  • Commercial applications of 2OG oxygenase inhibitors began with plant growth retardants, and now extend to a clinically used pharmaceutical compound for cardioprotection. (nih.gov)
  • Several 2OG oxygenases are now being targeted for therapeutic intervention for diseases including anaemia, inflammation and cancer. (nih.gov)
  • The first step in the metabolic pathway is the formation of epoxybutene, catalysed by mixed function oxygenases. (europa.eu)
  • abstract = "The abundant production of testicular estrogens and the presence of both ESR1 and ESR2 within boar testes are consistent with a role for estrogen in testicular development and/or function in this species. (elsevier.com)
  • Iron is an essential element for all eukaryotic cells and is required for important cellular functions such as DNA synthesis and repair, respiration, and detoxification of free radicals ( 9 , 10 ). (asm.org)
  • Measurement of enzyme activity in vitro revealed significantly reduced enzymatic function of FA2H associated with these mutations. (ucl.ac.uk)
  • Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. (meta.org)
  • This work suggests that the hepatic expression and function of ARNT and POR may be modulated by exposure to exogenous PXR activators and/or conditions that alter glucocorticoid levels such as stress, steroidal therapies, and diseases of excess or deficiency. (aspetjournals.org)
  • Although there is strong observational data connecting vitamin D deficiency with incident diabetes, trials of supplementation have yielded mixed results. (acc.org)