An enzyme that catalyzes the conversion of methylmalonyl-CoA to succinyl-CoA by transfer of the carbonyl group. It requires a cobamide coenzyme. A block in this enzymatic conversion leads to the metabolic disease, methylmalonic aciduria. EC 5.4.99.2.
A malonic acid derivative which is a vital intermediate in the metabolism of fat and protein. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This metabolic disease is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA.
A cobalt-containing coordination compound produced by intestinal micro-organisms and found also in soil and water. Higher plants do not concentrate vitamin B 12 from the soil and so are a poor source of the substance as compared with animal tissues. INTRINSIC FACTOR is important for the assimilation of vitamin B 12.
An enzyme that catalyzes the conversion of 2-phospho-D-glycerate to 3-phospho-D-glycerate. EC 5.4.2.1.
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.
Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure.
A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5.
An enzyme that catalyzes the transfer of phosphate from C-3 of 1,3-diphosphoglycerate to C-2 of 3-phosphoglycerate, forming 2,3-diphosphoglycerate. EC 5.4.2.4.
A genus of gram-positive, rod-shaped bacteria whose cells occur singly, in pairs or short chains, in V or Y configurations, or in clumps resembling letters of the Chinese alphabet. Its organisms are found in cheese and dairy products as well as on human skin and can occasionally cause soft tissue infections.
Disorders affecting amino acid metabolism. The majority of these disorders are inherited and present in the neonatal period with metabolic disturbances (e.g., ACIDOSIS) and neurologic manifestations. They are present at birth, although they may not become symptomatic until later in life.
Malonates are organic compounds containing a malonate group, which is a dicarboxylic acid functional group with the structure -OC(CH2COOH)2, and can form salts or esters known as malonates.
The branch of chemistry dealing with detection (qualitative) and determination (quantitative) of substances. (Grant & Hackh's Chemical Dictionary, 5th ed)
I'm sorry for any confusion, but the term "Michigan" is not a medical concept or condition that has a defined meaning within the medical field. It refers to a state in the United States, and does not have a direct medical connotation.
A flammable, poisonous gas with a characteristic odor of rotten eggs. It is used in the manufacture of chemicals, in metallurgy, and as an analytical reagent. (From Merck Index, 11th ed)
Proteins that contain an iron-porphyrin, or heme, prosthetic group resembling that of hemoglobin. (From Lehninger, Principles of Biochemistry, 1982, p480)
An element that is a member of the chalcogen family. It has an atomic symbol S, atomic number 16, and atomic weight [32.059; 32.076]. It is found in the amino acids cysteine and methionine.
The large subunit of the 80s ribosome of eukaryotes. It is composed of the 28S RIBOSOMAL RNA, the 5.8S RIBOSOMAL RNA, the 5S RIBOSOMAL RNA, and about 50 different RIBOSOMAL PROTEINS.
A genus of black-spored basidiomycetous fungi of the family Coprinaceae, order Agaricales; some species are edible.

Co-ordinate variations in methylmalonyl-CoA mutase and methionine synthase, and the cobalamin cofactors in human glioma cells during nitrous oxide exposure and the subsequent recovery phase. (1/130)

We investigated the co-ordinate variations of the two cobalamin (Cbl)-dependent enzymes, methionine synthase (MS) and methylmalonyl-CoA mutase (MCM), and measured the levels of their respective cofactors, methylcobalamin (CH3Cbl) and adenosylcobalamin (AdoCbl) in cultured human glioma cells during nitrous oxide exposure and during a subsequent recovery period of culture in a nitrous oxide-free atmosphere (air). In agreement with published data, MS as the primary target of nitrous oxide was inactivated rapidly (initial rate of 0.06 h(-1)), followed by reduction of CH3Cbl (to <20%). Both enzyme activity and cofactor levels recovered rapidly when the cells were subsequently cultured in air, but the recovery was completely blocked by the protein-synthesis inhibitor, cycloheximide. During MS inactivation, there was a reduction of cellular AdoCbl and holo-MCM activity (measured in the absence of exogenous AdoCbl) to about 50% of pre-treatment levels. When the cells were transferred to air, both AdoCbl and holo-MCM activity recovered, albeit more slowly than the MS system. Notably, the regain of the holo-MCM and AdoCbl was enhanced rather than inhibited by cycloheximide. These findings confirm irreversible damage of MS by nitrous oxide; hence, synthesis of the enzyme is required to restore its activity. In contrast, restoration of holo-MCM activity is only dependent on repletion of the AdoCbl cofactor. We also observed a synchronous fluctuation in AdoCbl and the much larger hydroxycobalamin pool during the inactivation and recovery phase, suggesting that the loss and repletion of AdoCbl reflect changes in intracellular Cbl homoeostasis. Our data demonstrate that the nitrous oxide-induced changes in MS and CH3Cbl are associated with reversible changes in both MCM holoactivity and the AdoCbl level, suggesting co-ordinate distribution of Cbl cofactors during depletion and repletion.  (+info)

Insertional inactivation of methylmalonyl coenzyme A (CoA) mutase and isobutyryl-CoA mutase genes in Streptomyces cinnamonensis: influence on polyketide antibiotic biosynthesis. (2/130)

The coenzyme B(12)-dependent isobutyryl coenzyme A (CoA) mutase (ICM) and methylmalonyl-CoA mutase (MCM) catalyze the isomerization of n-butyryl-CoA to isobutyryl-CoA and of methylmalonyl-CoA to succinyl-CoA, respectively. The influence that both mutases have on the conversion of n- and isobutyryl-CoA to methylmalonyl-CoA and the use of the latter in polyketide biosynthesis have been investigated with the polyether antibiotic (monensin) producer Streptomyces cinnamonensis. Mutants prepared by inserting a hygromycin resistance gene (hygB) into either icmA or mutB, encoding the large subunits of ICM and MCM, respectively, have been characterized. The icmA::hygB mutant was unable to grow on valine or isobutyrate as the sole carbon source but grew normally on butyrate, indicating a key role for ICM in valine and isobutyrate metabolism in minimal medium. The mutB::hygB mutant was unable to grow on propionate and grew only weakly on butyrate and isobutyrate as sole carbon sources. (13)C-labeling experiments show that in both mutants butyrate and acetoacetate may be incorporated into the propionate units in monensin A without cleavage to acetate units. Hence, n-butyryl-CoA may be converted into methylmalonyl-CoA through a carbon skeleton rearrangement for which neither ICM nor MCM alone is essential.  (+info)

Cloning and sequencing of the coenzyme B(12)-binding domain of isobutyryl-CoA mutase from Streptomyces cinnamonensis, reconstitution of mutase activity, and characterization of the recombinant enzyme produced in Escherichia coli. (3/130)

Isobutyryl-CoA mutase (ICM) catalyzes the reversible, coenzyme B(12)-dependent rearrangement of isobutyryl-CoA to n-butyryl-CoA, which is similar to, but distinct from, that catalyzed by methylmalonyl-CoA mutase. ICM has been detected so far in a variety of aerobic and anaerobic bacteria, where it appears to play a key role in valine and fatty acid catabolism. ICM from Streptomyces cinnamonensis is composed of a large subunit (IcmA) of 62.5 kDa and a small subunit (IcmB) of 14.3 kDa. icmB encodes a protein of 136 residues with high sequence similarity to the cobalamin-binding domains of methylmalonyl-CoA mutase, glutamate mutase, methyleneglutarate mutase, and cobalamin-dependent methionine synthase, including a conserved DXHXXG cobalamin-binding motif. Using IcmA and IcmB produced separately in Escherichia coli, we show that IcmB is necessary and sufficient with IcmA and coenzyme B(12) to afford the active ICM holoenzyme. The large subunit (IcmA) forms a tightly associated homodimer, whereas IcmB alone exists as a monomer. In the absence of coenzyme B(12), the association between IcmA and IcmB is weak. The ICM holoenzyme appears to comprise an alpha(2)beta(2)-heterotetramer with up to two molecules of bound coenzyme B(12). The equilibrium constant for the ICM reaction at 30 degrees C is 1.7 in favor of isobutyryl-CoA, and the pH optimum is near 7.4. The K(m) values for isobutyryl-CoA, n-butyryl-CoA, and coenzyme B(12) determined with an equimolar ratio of IcmA and IcmB are 57 +/- 13, 54 +/- 12, and 12 +/- 2 microM, respectively. A V(max) of 38 +/- 3 units/mg IcmA and a k(cat) of 39 +/- 3 s(-1) were determined under saturating molar ratios of IcmB to IcmA.  (+info)

Proton transfer from histidine 244 may facilitate the 1,2 rearrangement reaction in coenzyme B(12)-dependent methylmalonyl-CoA mutase. (4/130)

Methylmalonyl-CoA mutase is an adenosylcobalamin-dependent enzyme that catalyzes the 1,2 rearrangement of methylmalonyl-CoA to succinyl-CoA. This reaction results in the interchange of a carbonyl-CoA group and a hydrogen atom on vicinal carbons. The crystal structure of the enzyme reveals the presence of an aromatic cluster of residues in the active site that includes His-244, Tyr-243, and Tyr-89 in the large subunit. Of these, His-244 is within hydrogen bonding distance to the carbonyl oxygen of the carbonyl-CoA moiety of the substrate. The location of these aromatic residues suggests a possible role for them in catalysis either in radical stabilization and/or by direct participation in one or more steps in the reaction. The mechanism by which the initially formed substrate radical isomerizes to the product radical during the rearrangement of methylmalonyl-CoA to succinyl-CoA is unknown. Ab initio molecular orbital theory calculations predict that partial proton transfer can contribute significantly to the lowering of the barrier for the rearrangement reaction. In this study, we report the kinetic characterization of the H244G mutant, which results in an acute sensitivity of the enzyme to oxygen, indicating the important role of this residue in radical stabilization. Mutation of His-244 leads to an approximately 300-fold lowering in the catalytic efficiency of the enzyme and loss of one of the two titratable pK(a) values that govern the activity of the wild type enzyme. These data suggest that protonation of His-244 increases the reaction rate in wild type enzyme and provides experimental support for ab initio molecular orbital theory calculations that predict rate enhancement of the rearrangement reaction by the interaction of the migrating group with a general acid. However, the magnitude of the rate enhancement is significantly lower than that predicted by the theoretical studies.  (+info)

Complementation studies in the cblA class of inborn error of cobalamin metabolism: evidence for interallelic complementation and for a new complementation class (cblH). (5/130)

AIM: To investigate genetic heterogeneity within the cblA class of inborn error of cobalamin metabolism. CONTEXT: The cblA disorder is characterised by vitamin B12 (cobalamin) responsive methylmalonic aciduria and deficient synthesis of adenosylcobalamin, required for activity of the mitochondrial enzyme methylmalonyl CoA mutase. The cblA gene has not been identified or cloned. We have previously described a patient with the clinical and biochemical phenotype of the cblA disorder whose fibroblasts complemented cells from patients with all known types of inborn error of adenosylcobalamin synthesis, including cblA. METHODS: We have performed somatic cell complementation analysis of the cblA variant fibroblast line with a panel of 28 cblA lines. We have also performed detailed complementation analysis on a panel of 10 cblA fibroblast lines, not including the cblA variant line. RESULTS: The cblA variant line complemented all 28 cell lines of the panel. There was evidence for interallelic complementation among the 10 cblA lines used for detailed complementation analysis; no cell line in this panel complemented all other members. CONCLUSIONS: These results strongly suggest that the cblA variant represents a novel complementation class, which we have designated cblH and which represents a mutation at a distinct gene. They also suggest that the cblA gene encodes a protein that functions as a multimer, allowing for extensive interallelic complementation.  (+info)

The enigma of cobalamin (Vitamin B12) biosynthesis in Porphyromonas gingivalis. Identification and characterization of a functional corrin pathway. (6/130)

The ability of Porphyromonas gingivalis to biosynthesize tetrapyrroles de novo has been investigated. Extracts of the bacterium do not possess activity for 5- aminolevulinic-acid dehydratase or porphobilinogen deaminase, two key enzymes involved in the synthesis of uroporphyrinogen III. Similarly, it was not possible to detect any genetic evidence for these early enzymes with the use of degenerate polymerase chain reaction. However, the bacterium does appear to harbor some of the enzymes for cobalamin biosynthesis since cobyric acid, a pathway intermediate, was converted into cobinamide. Furthermore, degenerate polymerase chain reaction with primers to cbiP, which encodes cobyric-acid synthase, produced a fragment with a high degree of identity to Salmonella typhimurium cbiP. Indeed, the recently released genome sequence data confirmed the presence of cbiP together with 14 other genes of the cobalamin pathway. A number of these genes were cloned and functionally characterized. Although P. gingivalis harbors all the genes necessary to convert precorrin-2 into cobalamin, it is missing the genes for the synthesis of precorrin-2. Either the organism has a novel pathway for the synthesis of precorrin-2, or more likely, it has lost this early part of the pathway. The remainder of the pathway may be being maintained to act as a salvage route for corrin synthesis.  (+info)

The coenzyme b12 analog 5'-deoxyadenosylcobinamide-gdp supports catalysis by methylmalonyl-coa mutase in the absence of trans-ligand coordination. (7/130)

Methylmalonyl-CoA mutase is an 5'-adenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the rearrangement of methylmalonyl-CoA to succinyl-CoA. The crystal structure of this protein revealed that binding of the cofactor is accompanied by a significant conformational change in which dimethylbenzimidazole, the lower axial ligand to cobalt in solution, is replaced by His(610) donated by the active site. The role of the lower axial ligand in the trillion-fold labilization of the upper axial cobalt-carbon bond has been the subject of enduring debate in the model inorganic literature. In this study, we have used a cofactor analog, 5'deoxyadenosylcobinamide GDP (AdoCbi-GDP), which reconstitutes the enzyme in a "histidine-off" form and which allows us to evaluate the contribution of the lower axial ligand to catalysis. The k(cat) for the enzyme in the presence of AdoCbi-GDP is reduced by a factor of 4 compared with the native cofactor AdoCbl. The overall deuterium isotope effect in the presence of AdoCbi-GDP ((D)V = 7.2 +/- 0.8) is comparable with that observed in the presence of AdoCbl (5.0 +/- 0.6) and indicates that the hydrogen transfer steps in this reaction are not significantly affected by the change in coordination state of the bound cofactor. These surprising results are in marked contrast to the effects ascribed to the corresponding lower axial histidine ligands in the cobalamin-dependent enzymes glutamate mutase and methionine synthase.  (+info)

N219Y, a new frequent mutation among mut(degree) forms of methylmalonic acidemia in Caucasian patients. (8/130)

Mutations in the MUT locus encoding for the methylmalonyl-CoA mutase (MCM) apoenzyme are responsible for the mut forms of methylmalonic acidemia (MMA). To date, 49 different mutations have been identified in mut MMA. Only two frequent mutations have been reported in the Japanese population and in African-Americans. Here we report a new missense mutation N219Y (731 A-->T) which we found in five unrelated families of French and Turkish descent. All the patients exhibited a severe mut(degree) phenotype and three of them were homozygotes for N219Y. Direct involvement of the mutation in the loss of enzyme activity was demonstrated by mutagenesis and transient expression study. Mapping of the mutation onto a three-dimensional model of human MCM constructed by homology with the Propionibacterium shermanii enzyme shows that it lies in a highly conserved secondary structure motif and might suggest impaired folding and/or poor stability compatible with the mut(degree) phenotype. Finally, a 1% N219Y carrier frequency was observed in a French anonymous control population. Thus, N219Y is the first frequent mut mutation to be reported in the Caucasian population.  (+info)

Methylmalonyl-CoA mutase is a mitochondrial enzyme that plays a crucial role in the metabolism of certain amino acids and fatty acids. Specifically, it catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA, which is an important step in the catabolic pathways of valine, isoleucine, threonine, methionine, odd-chain fatty acids, and cholesterol.

The enzyme requires a cofactor called adenosylcobalamin (vitamin B12) for its activity. In the absence of this cofactor or due to mutations in the gene encoding the enzyme, methylmalonyl-CoA mutase deficiency can occur, leading to the accumulation of methylmalonic acid and other toxic metabolites, which can cause a range of symptoms including vomiting, dehydration, lethargy, hypotonia, developmental delay, and metabolic acidosis. This condition is typically inherited in an autosomal recessive manner and can be diagnosed through biochemical tests and genetic analysis.

Methylmalonic acid (MMA) is an organic compound that is produced in the human body during the metabolism of certain amino acids, including methionine and threonine. It is a type of fatty acid that is intermediate in the breakdown of these amino acids in the liver and other tissues.

Under normal circumstances, MMA is quickly converted to succinic acid, which is then used in the Krebs cycle to generate energy in the form of ATP. However, when there are deficiencies or mutations in enzymes involved in this metabolic pathway, such as methylmalonyl-CoA mutase, MMA can accumulate in the body and cause methylmalonic acidemia, a rare genetic disorder that affects approximately 1 in every 50,000 to 100,000 individuals worldwide.

Elevated levels of MMA in the blood or urine can be indicative of various metabolic disorders, including methylmalonic acidemia, vitamin B12 deficiency, and renal insufficiency. Therefore, measuring MMA levels is often used as a diagnostic tool to help identify and manage these conditions.

Vitamin B12, also known as cobalamin, is a water-soluble vitamin that plays a crucial role in the synthesis of DNA, formation of red blood cells, and maintenance of the nervous system. It is involved in the metabolism of every cell in the body, particularly affecting DNA regulation and neurological function.

Vitamin B12 is unique among vitamins because it contains a metal ion, cobalt, from which its name is derived. This vitamin can be synthesized only by certain types of bacteria and is not produced by plants or animals. The major sources of vitamin B12 in the human diet include animal-derived foods such as meat, fish, poultry, eggs, and dairy products, as well as fortified plant-based milk alternatives and breakfast cereals.

Deficiency in vitamin B12 can lead to various health issues, including megaloblastic anemia, fatigue, neurological symptoms such as numbness and tingling in the extremities, memory loss, and depression. Since vitamin B12 is not readily available from plant-based sources, vegetarians and vegans are at a higher risk of deficiency and may require supplementation or fortified foods to meet their daily requirements.

Phosphoglycerate Mutase (PGM) is an enzyme that plays a crucial role in the glycolytic pathway, which is a metabolic process that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell.

The enzyme catalyzes the interconversion of 3-phosphoglycerate (3-PG) and 2-phosphoglycerate (2-PG), which is the ninth step in glycolysis. Specifically, PGM transfers a phosphate group from the third carbon atom to the second carbon atom of 3-PG, resulting in the formation of 2-PG and inorganic phosphate.

There are two types of Phosphoglycerate Mutase isoenzymes in humans, including:

1. Phosphoglycerate Mutase 1 (PGAM1): This is a cytosolic enzyme that is widely expressed in various tissues, including skeletal muscle, heart, brain, and liver.
2. Phosphoglycerate Mutase 2 (PGAM2): This is a muscle-specific isoenzyme that is primarily found in cardiac and skeletal muscles.

Mutations in the PGAM1 gene have been associated with hemolytic anemia, neurodevelopmental disorders, and other metabolic abnormalities, while mutations in the PGAM2 gene have been linked to myopathies and other muscle-related disorders.

Acyl Coenzyme A (often abbreviated as Acetyl-CoA or Acyl-CoA) is a crucial molecule in metabolism, particularly in the breakdown and oxidation of fats and carbohydrates to produce energy. It is a thioester compound that consists of a fatty acid or an acetate group linked to coenzyme A through a sulfur atom.

Acyl CoA plays a central role in several metabolic pathways, including:

1. The citric acid cycle (Krebs cycle): In the mitochondria, Acyl-CoA is formed from the oxidation of fatty acids or the breakdown of certain amino acids. This Acyl-CoA then enters the citric acid cycle to produce high-energy electrons, which are used in the electron transport chain to generate ATP (adenosine triphosphate), the main energy currency of the cell.
2. Beta-oxidation: The breakdown of fatty acids occurs in the mitochondria through a process called beta-oxidation, where Acyl-CoA is sequentially broken down into smaller units, releasing acetyl-CoA, which then enters the citric acid cycle.
3. Ketogenesis: In times of low carbohydrate availability or during prolonged fasting, the liver can produce ketone bodies from acetyl-CoA to supply energy to other organs, such as the brain and heart.
4. Protein synthesis: Acyl-CoA is also involved in the modification of proteins by attaching fatty acid chains to them (a process called acetylation), which can influence protein function and stability.

In summary, Acyl Coenzyme A is a vital molecule in metabolism that connects various pathways related to energy production, fatty acid breakdown, and protein modification.

Propionates, in a medical context, most commonly refer to a group of medications that are used as topical creams or gels to treat fungal infections of the skin. Propionic acid and its salts, such as propionate, are the active ingredients in these medications. They work by inhibiting the growth of fungi, which causes the infection. Common examples of propionate-containing medications include creams used to treat athlete's foot, ringworm, and jock itch.

It is important to note that there are many different types of medications and compounds that contain the word "propionate" in their name, as it refers to a specific chemical structure. However, in a medical context, it most commonly refers to antifungal creams or gels.

Isomerases are a class of enzymes that catalyze the interconversion of isomers of a single molecule. They do this by rearranging atoms within a molecule to form a new structural arrangement or isomer. Isomerases can act on various types of chemical bonds, including carbon-carbon and carbon-oxygen bonds.

There are several subclasses of isomerases, including:

1. Racemases and epimerases: These enzymes interconvert stereoisomers, which are molecules that have the same molecular formula but different spatial arrangements of their atoms in three-dimensional space.
2. Cis-trans isomerases: These enzymes interconvert cis and trans isomers, which differ in the arrangement of groups on opposite sides of a double bond.
3. Intramolecular oxidoreductases: These enzymes catalyze the transfer of electrons within a single molecule, resulting in the formation of different isomers.
4. Mutases: These enzymes catalyze the transfer of functional groups within a molecule, resulting in the formation of different isomers.
5. Tautomeres: These enzymes catalyze the interconversion of tautomers, which are isomeric forms of a molecule that differ in the location of a movable hydrogen atom and a double bond.

Isomerases play important roles in various biological processes, including metabolism, signaling, and regulation.

Bisphosphoglycerate mutase (BPGM) is an enzyme that plays a crucial role in the regulation of oxygen transport in red blood cells. The main function of BPGM is to convert 1,3-bisphosphoglycerate (1,3-BPG) into 2,3-bisphosphoglycerate (2,3-BPG), also known as 2,3-diphosphoglycerate (2,3-DPG).

2,3-BPG is essential for modulating the affinity of hemoglobin for oxygen. By increasing the concentration of 2,3-BPG in red blood cells, BPGM reduces the ability of hemoglobin to bind to oxygen, allowing more oxygen to be released from hemoglobin and made available to tissues, particularly under low-oxygen conditions. This is especially important for individuals living at high altitudes or those with chronic lung diseases who may have impaired oxygen transport.

Defects in the BPGM gene can lead to a rare disorder called 2,3-bisphosphoglycerate deficiency, which results in an increased affinity of hemoglobin for oxygen and reduced oxygen delivery to tissues. This condition is characterized by symptoms such as shortness of breath, fatigue, and headaches, particularly during exercise or at high altitudes.

Propionibacterium is a genus of gram-positive, rod-shaped bacteria that are commonly found on the skin and in the mouth, intestines, and genitourinary tract of humans and animals. They are named after their ability to produce propionic acid as a major metabolic end product. Some species of Propionibacterium, such as P. acnes, are associated with skin conditions like acne vulgaris, where they contribute to the inflammatory response that leads to the formation of pimples and lesions. Other species, such as P. freudenreichii, are used in the food industry for the production of dairy products like Swiss cheese and yogurt. Propionibacterium species are generally considered to be non-pathogenic or opportunistic pathogens, meaning that they can cause infection under certain circumstances, such as when the immune system is compromised.

Inborn errors of amino acid metabolism refer to genetic disorders that affect the body's ability to properly break down and process individual amino acids, which are the building blocks of proteins. These disorders can result in an accumulation of toxic levels of certain amino acids or their byproducts in the body, leading to a variety of symptoms and health complications.

There are many different types of inborn errors of amino acid metabolism, each affecting a specific amino acid or group of amino acids. Some examples include:

* Phenylketonuria (PKU): This disorder affects the breakdown of the amino acid phenylalanine, leading to its accumulation in the body and causing brain damage if left untreated.
* Maple syrup urine disease: This disorder affects the breakdown of the branched-chain amino acids leucine, isoleucine, and valine, leading to their accumulation in the body and causing neurological problems.
* Homocystinuria: This disorder affects the breakdown of the amino acid methionine, leading to its accumulation in the body and causing a range of symptoms including developmental delay, intellectual disability, and cardiovascular problems.

Treatment for inborn errors of amino acid metabolism typically involves dietary restrictions or supplementation to manage the levels of affected amino acids in the body. In some cases, medication or other therapies may also be necessary. Early diagnosis and treatment can help prevent or minimize the severity of symptoms and health complications associated with these disorders.

"Malonates" is not a recognized medical term. However, in chemistry, malonates refer to salts or esters of malonic acid, a dicarboxylic acid with the formula CH2(COOH)2. Malonic acid and its derivatives have been used in the synthesis of various pharmaceuticals and chemicals, but they are not typically associated with any specific medical condition or treatment. If you have encountered the term "malonates" in a medical context, it may be helpful to provide more information or seek clarification from the source.

Analytical chemistry is a branch of chemistry that focuses on the identification and quantification of chemical components within a sample. This field involves developing and using various analytical techniques and methods to determine the presence, concentration, structure, and purity of different chemicals or compounds in a mixture.

Some common analytical techniques include:

1. Spectroscopy: Using light or other electromagnetic radiation to study the interaction between matter and energy, providing information about the composition, structure, and properties of a sample. Examples include UV-Vis, IR, NMR, and mass spectrometry.
2. Chromatography: A separation technique that separates components in a mixture based on their interactions with a mobile phase (gas or liquid) and a stationary phase (solid or liquid). Common methods include gas chromatography (GC), liquid chromatography (LC), and thin-layer chromatography (TLC).
3. Electrochemical analysis: Measuring the electrical properties of a sample, such as potential, current, or resistance, to determine its composition or concentration. Examples include potentiometry, voltammetry, and conductometry.
4. Thermal analysis: Examining the physical and chemical changes that occur in a sample when it is heated or cooled, providing information about its composition, structure, and properties. Techniques include differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA).
5. Spectrometry: Measuring the intensity of light dispersed by a sample as a function of wavelength or frequency to determine its composition, structure, or properties. Examples include atomic absorption spectroscopy (AAS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence spectrometry (XRF).

Analytical chemists often work in various industries, such as pharmaceuticals, food, environmental testing, and forensics, to ensure product quality, safety, and compliance with regulations. They may also contribute to research and development efforts by developing new analytical methods or improving existing ones.

I'm sorry for any confusion, but "Michigan" is not a medical term or concept. It is a geographical location, referring to the state of Michigan in the United States. If you have any questions related to medical topics, I would be happy to try and help answer those for you!

Hydrogen sulfide (H2S) is a colorless, flammable, and extremely toxic gas with a strong odor of rotten eggs. It is a naturally occurring compound that is produced in various industrial processes and is also found in some natural sources like volcanoes, hot springs, and swamps.

In the medical context, hydrogen sulfide is known to have both toxic and therapeutic effects on the human body. At high concentrations, it can cause respiratory failure, unconsciousness, and even death. However, recent studies have shown that at low levels, hydrogen sulfide may act as a signaling molecule in the human body, playing a role in various physiological processes such as regulating blood flow, reducing inflammation, and protecting against oxidative stress.

It's worth noting that exposure to high levels of hydrogen sulfide can be life-threatening, and immediate medical attention is required in case of exposure.

Heme proteins are a type of protein that contain a heme group, which is a prosthetic group composed of an iron atom contained in the center of a large organic ring called a porphyrin. The heme group gives these proteins their characteristic red color. Hemeproteins have various important functions in biological systems, including oxygen transport (e.g., hemoglobin), electron transfer (e.g., cytochromes), and enzymatic catalysis (e.g., peroxidases and catalases). The heme group can bind and release gases, such as oxygen and carbon monoxide, and can participate in redox reactions due to the ease with which iron can change its oxidation state.

Sulfur is not typically referred to in the context of a medical definition, as it is an element found in nature and not a specific medical condition or concept. However, sulfur does have some relevance to certain medical topics:

* Sulfur is an essential element that is a component of several amino acids (the building blocks of proteins) and is necessary for the proper functioning of enzymes and other biological processes in the body.
* Sulfur-containing compounds, such as glutathione, play important roles in antioxidant defense and detoxification in the body.
* Some medications and supplements contain sulfur or sulfur-containing compounds, such as dimethyl sulfoxide (DMSO), which is used topically for pain relief and inflammation.
* Sulfur baths and other forms of sulfur-based therapies have been used historically in alternative medicine to treat various conditions, although their effectiveness is not well-established by scientific research.

It's important to note that while sulfur itself is not a medical term, it can be relevant to certain medical topics and should be discussed with a healthcare professional if you have any questions or concerns about its use in medications, supplements, or therapies.

A large ribosomal subunit in eukaryotic cells is a complex macromolecular structure composed of ribosomal RNA (rRNA) and proteins. It is one of the two subunits that make up the eukaryotic ribosome, which is the site of protein synthesis in the cell. The large subunit is responsible for catalyzing the formation of peptide bonds between amino acids during protein synthesis.

In eukaryotes, the large ribosomal subunit is composed of three rRNA molecules (5S, 5.8S, and 28S) and approximately 49 proteins. The large subunit has a characteristic shape with a prominent protuberance called the "stalk" that contains proteins involved in binding translation factors and messenger RNA (mRNA).

The large ribosomal subunit plays a critical role in the elongation phase of protein synthesis, where it binds to the small ribosomal subunit and mRNA to form a functional ribosome. The large subunit moves along the mRNA, reading the genetic code and catalyzing the formation of peptide bonds between amino acids as they are brought to the ribosome by transfer RNA (tRNA) molecules.

"Coprinus" is a genus of fungi in the family Agaricaceae. It includes several species commonly known as "ink caps" or "shaggy manes." These mushrooms are characterized by their slimy, shaggy caps and the dark ink-like liquid that oozes from the gills when they mature. Some species of Coprinus are edible and considered delicacies, while others can cause adverse reactions if consumed with alcohol. It's important to note that proper identification is necessary before consuming any wild mushrooms.

Methylmalonyl-CoA mutase catalyzes the following reaction: The substrate of methylmalonyl-CoA mutase, methylmalonyl-CoA, is ... encodes methylmalonyl-CoA mutase), or MMAA (encodes a chaperone protein of methylmalonyl-CoA mutase, MMAA protein) can lead to ... Pr-CoA) to a common compound - methylmalonyl-CoA (MMl-CoA). MCM catalyzes the reversible isomerisation of l‐methylmalonylCoA ... Methylmalonyl-CoA mutase (EC 5.4.99.2, MCM), mitochondrial, also known as methylmalonyl-CoA isomerase, is a protein that in ...
MMUT: methylmalonyl-CoA mutase. *MN1: MN1 proto-oncogene, transcriptional regulator. *MOCOS: molybdenum cofactor sulfurase ...
Molecular, Biochemical, and Structural Analysis of a Novel Mutation in Patients with Methylmalonyl-CoA Mutase Deficiency. 30 ... Molecular, Biochemical, and Structural Analysis of a Novel Mutation in Patients with Methylmalonyl-CoA Mutase Deficiency. ... is an inborn error of metabolism resulting from genetic defects in methylmalonyl-CoA mutase (MCM). This enzyme is encoded by ...
Methylmalonyl-CoA mutase (EC 5.4.99.2) catalyzes a reversible isomerization between L-methylmalonyl-CoA and succinyl-CoA. The ... respectively of known methylmalonyl-CoA mutases. This model describes the C-terminal domain subfamily. In a neighbor-joining ... CoA_mut_C, Methylmalonyl-CoA mutase (EC 5 ... TIGR00640: acid_CoA_mut_C Download alignment. .summary-large- ... tree (methylaspartate mutase S chain as the outgroup), AF2219 branches with a coenzyme B12-dependent enzyme known not to be 5.4 ...
L-methylmalonyl-CoA mutase. Many patients take vitamin B12 supplements in an attempt to boost their energy levels. One possible ...
CoA) to succinyl-CoA. Patients typically present at the age of 1 month to 1 year with neurologic manifestations, such as ... involving a defect in the conversion of methylmalonyl-coenzyme A ( ... Conversion of methylmalonyl-CoA to succinyl-CoA requires the enzyme methylmalonyl-CoA mutase and the cofactor 5- ... The rationale is that adenosylcobalamin acts as a cofactor for methylmalonyl-CoA mutase, which converts methylmalonyl-CoA to ...
... deficiency in the activity of the mitochondrial enzyme methylmalonyl-CoA mutase. This deficiency is caused by mutations in the ... by measurement of methylmalonate in amniotic fluid and maternal urine at mid-trimester and by studies of functional mutase ... Methylmalonyl-CoA mutase deficiency. *Methylmalonyl-Coenzyme A mutase deficiency. *Vitamin B12-unresponsive methylmalonic ...
Ado-B12 functions as a cofactor for methylmalonyl-CoA mutase in which methylmalonyl-CoA, a product of amino acid and odd-chain ... Role of vitamin B12 on methylmalonyl-CoA mutase activity. J. Zhejiang Univ. Sci. B 2012, 13, 423-437. [Google Scholar] [ ... while Ado-B12 is a cofactor of methylmalonyl-CoA mutase. However, plants contain no cobalamin-dependent enzymes [31] and ... Biological activity of pseudovitamin B12 on cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase in mammalian ...
to succinyl-CoA. *Methylmalonyl-CoA mutase. to oxaloacetate. *Pyruvate carboxylase. *Aspartate transaminase ... to acetyl-CoA. *Pyruvate dehydrogenase complex (E1, E2, E3). *(regulated by Pyruvate dehydrogenase kinase and Pyruvate ...
Plasma or urine: methylmalonic acid using mass spectrometry reflects the adequacy of B12 for methylmalonyl CoA mutase function. ... Reflects the adequacy of B12 function of methylmalonyl mutase. Expensive instrument set-up needed (LC-MC). Increased if poor ...
Methylmalonyl-CoA mutase from Propionibacterium shermanii. Evidence for the presence of two masked cysteine residues. ... Conformational changes on substrate binding to methylmalonyl CoA mutase and new insights into the free radical mechanism. ... Cloning and structural characterization of the genes coding for adenosylcobalamin-dependent methylmalonyl-CoA mutase from ... Stabilization of radical intermediates by an active-site tyrosine residue in methylmalonyl-CoA mutase. ...
YES: Enters as succinyl CoA so it needs another Carbon - Enzymes = PROPIONYL COA CARBOXYLASE and METHYLMALONYL COA MUTASE. ... Acetoacetyl CoA + Acetyl CoA + H2O -> HMG CoA. 3) Cleavage:. HMG CoA -> Acetoacetate + Acetyl CoA. Sum so far: 2 Acetyl CoA + ... thiol group of a second CoA cleaves off and Acetyl CoA. - reactant is Coa. - products are Acetyl CoA and Acyl-(less 2-C) CoA. ... succinyl CoA + acetoacetate -> Acetoacetyl CoA + succinate. 2) THIOLASE Cleavage:. Acetoacetyl CoA + CoA -> 2 Acetyl CoA. ...
MUT) Methylmalonic Acidemia (methylmalonyl-CoA mutase)*. *(PROP) Propionic acidemia*. *(MCD) Holocarboxylase synthetase* ...
This gene provides instructions for producing an enzyme called methylmalonyl CoA epimerase. Like methylmalonyl CoA mutase, this ... Variants in the MMUT gene that prevent the production of any functional methylmalonyl-CoA mutase result in a form of the ... Proteins produced from the MMAA, MMAB, and MMADHC genes are required for the proper function of methylmalonyl-CoA mutase. ... Variants that change the structure of methylmalonyl-CoA mutase but do not eliminate its activity cause a form of the condition ...
Distinct genotypic and phenotypic forms of methylmalonyl CoA mutase (MCM) apoenzyme deficiency can be delineated by biochemical ... Cloning and expression of a mutant methylmalonyl coenzyme A mutase with altered cobalamin affinity that causes mut- ... Cloning and expression of a mutant methylmalonyl coenzyme A mutase with altered cobalamin affinity that causes mut- ... calcium and potassium also prevented the characteristic increase in 3-hydroxy-3-glutaryl CoA reductase activity that occurs ...
Vitamin B12, under the catalysis of the enzyme l-methyl-malonyl-CoA mutase, synthesizes succinyl-CoA from methylmalonyl-CoA in ... Vitamin B12, under the catalysis of the enzyme methylmalonyl-CoA mutase, synthesizes succinyl-CoA from methylmalonyl-CoA in the ... methionine synthase and L-methyl-malonyl-coenzyme. A mutase in intracellular enzymatic reactions related to DNA synthesis, as ...
CoA) to succinyl-CoA. Patients typically present at the age of 1 month to 1 year with neurologic manifestations, such as ... involving a defect in the conversion of methylmalonyl-coenzyme A ( ... Conversion of methylmalonyl-CoA to succinyl-CoA requires the enzyme methylmalonyl-CoA mutase and the cofactor 5- ... The rationale is that adenosylcobalamin acts as a cofactor for methylmalonyl-CoA mutase, which converts methylmalonyl-CoA to ...
L-methylmalonyl-CoA mutase converts L-methylmalonyl-CoA to succinyl-CoA in the metabolism of propionate, a short-chain fatty ... methionine synthase and L-methylmalonyl-CoA mutase [1-3,5]. Methionine synthase catalyzes the conversion of homocysteine to the ...
Smoking standing was based mostly on self-reported smoking habits adenosylcobalamin-dependent methylmalonyl-CoA mutase (5). ...
Vitamin B12 (B12) is an essential cofactor for two enzymes involved in one-carbon metabolism: methylmalonyl CoA mutase (reduced ...
It is a key cofactor in carbohydrate metabolism for the enzyme methylmalonyl-CoA mutase used to produce succinyl-CoA. Optimal ...
... and fatty acid/amino acid metabolism in mitochondria by methylmalonyl-CoA mutase (MCM). While the molecular nature of ...
Deficiency of methylmalonyl CoA mutase, an enzyme responsible for conversion of methylmalonic CoA to succinyl CoA, results in ...
Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B12 delivery and repair.. Mascarenhas R, Ruetz M ...
In bacteria and archaea, these include methionine synthase, ribonucleotide reductase, glutamate and methylmalonyl-CoA mutases, ... and is required for methionine synthase and methylmalonyl-CoA mutase [ (PUBMED:17163662) ]. ...
... including methionine synthase and l-methyl-malonyl-CoA mutase. Vitamin B12 is also essential for energy production and DNA ... To receive a copy of these test results or any other PureBulk supplement please fill out the COA request form found here. ...
... catalyzed by ribonucleotide reductase or carbon chain rearrangements catalyzed by methylmalonyl CoA mutase or glutamate mutase ... pimeloyl CoA, CO2, and NH3 (from AdoMet). The final step in the pathway requires the substitution of sulfur for hydrogen at the ...
Isolated methylmalonic acidemia (MMA), caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT), is ... methylmalonyl-CoA mutase (MUT). The main treatment for MMA patients is the dietary restriction of propiogenic amino acids and ... is most frequently caused by mutations in methylmalonyl-CoA mutase (MUT). To define the metabolic adaptations in MMA in acute ... Pathway analysis of metabolomic data revealed reductions in CoA synthesis, and long chain fatty acyl CoA and carnitine species ...
O Decreased methylmalonyl-CoA mutase activity,O Decreased miniature endplate potentials,O Decreased mitochondrial complex III ... O Defective dehydrogenation of isovaleryl CoA and butyryl CoA,O Defective interstrand cross-link repair,O Defective production ... O Propionyl-CoA carboxylase deficiency,O Proportionate short stature,O Proportionate shortening of all digits,O Proportionate ... O Mitochondrial propionyl-CoA carboxylase defect,O Mitochondrial respiratory chain defects,O Mitochondrial swelling,O Mitral ...
... mutase, which converts L-methylmalonyl-Coa into succinyl-CoA. If adenosylcobalamin is lacking, excess D-methylmalonyl-CoA ( ... Adenosylcobalamin - one of the two active forms of B12 - is a cofactor of the enzyme L-methylmalonyl-CoA- ... precursor of L-methylmalonyl-CoA) is converted into methylmalonic acid(MMA) which causes raised blood levels of MMA. In short: ...

No FAQ available that match "methylmalonyl coa mutase"

No images available that match "methylmalonyl coa mutase"