Enzymes that catalyze the transfer of mannose from a nucleoside diphosphate mannose to an acceptor molecule which is frequently another carbohydrate. The group includes EC 2.4.1.32, EC 2.4.1.48, EC 2.4.1.54, and EC 2.4.1.57.
A nucleoside diphosphate sugar which can be converted to the deoxy sugar GDPfucose, which provides fucose for lipopolysaccharides of bacterial cell walls. Also acts as mannose donor for glycolipid synthesis.
A hexose or fermentable monosaccharide and isomer of glucose from manna, the ash Fraxinus ornus and related plants. (From Grant & Hackh's Chemical Dictionary, 5th ed & Random House Unabridged Dictionary, 2d ed)
Polysaccharides consisting of mannose units.
A lipophilic glycosyl carrier of the monosaccharide mannose in the biosynthesis of oligosaccharide phospholipids and glycoproteins.
The chemical or biochemical addition of carbohydrate or glycosyl groups to other chemicals, especially peptides or proteins. Glycosyl transferases are used in this biochemical reaction.
The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS.
Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form.
The characteristic 3-dimensional shape of a carbohydrate.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990)
A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis).
Proteins found in any species of fungus.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.

The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complex. (1/463)

In the yeast Saccharomyces cerevisiae many of the N-linked glycans on cell wall and periplasmic proteins are modified by the addition of mannan, a large mannose-containing polysaccharide. Mannan comprises a backbone of approximately 50 alpha-1,6-linked mannoses to which are attached many branches consisting of alpha-1,2-linked and alpha-1,3-linked mannoses. The initiation and subsequent elongation of the mannan backbone is performed by two complexes of proteins in the cis Golgi. In this study we show that the product of the MNN10/BED1 gene is a component of one of these complexes, that which elongates the backbone. Analysis of interactions between the proteins in this complex shows that Mnn10p, and four previously characterized proteins (Anp1p, Mnn9p, Mnn11p, and Hoc1p) are indeed all components of the same large structure. Deletion of either Mnn10p, or its homologue Mnn11p, results in defects in mannan synthesis in vivo, and analysis of the enzymatic activity of the complexes isolated from mutant strains suggests that Mnn10p and Mnn11p are responsible for the majority of the alpha-1, 6-polymerizing activity of the complex.  (+info)

Transmembrane topology of pmt1p, a member of an evolutionarily conserved family of protein O-mannosyltransferases. (2/463)

The identification of the evolutionarily conserved family of dolichyl-phosphate-D-mannose:protein O-mannosyltransferases (Pmts) revealed that protein O-mannosylation plays an essential role in a number of physiologically important processes. Strikingly, all members of the Pmt protein family share almost identical hydropathy profiles; a central hydrophilic domain is flanked by amino- and carboxyl-terminal sequences containing several putative transmembrane helices. This pattern is of particular interest because it diverges from structural models of all glycosyltransferases characterized so far. Here, we examine the transmembrane topology of Pmt1p, an integral membrane protein of the endoplasmic reticulum, from Saccharomyces cerevisiae. Structural predictions were directly tested by site-directed mutagenesis of endogenous N-glycosylation sites, by fusing a topology-sensitive monitor protein domain to carboxyl-terminal truncated versions of the Pmt1 protein and, in addition, by N-glycosylation scanning. Based on our results we propose a seven-transmembrane helical model for the yeast Pmt1p mannosyltransferase. The Pmt1p amino terminus faces the cytoplasm, whereas the carboxyl terminus faces the lumen of the endoplasmic reticulum. A large hydrophilic segment that is oriented toward the lumen of the endoplasmic reticulum is flanked by five amino-terminal and two carboxyl-terminal membrane spanning domains. We could demonstrate that this central loop is essential for the function of Pmt1p.  (+info)

Differences between the trypanosomal and human GlcNAc-PI de-N-acetylases of glycosylphosphatidylinositol membrane anchor biosynthesis. (3/463)

De-N-acetylation of N-acetylglucosaminyl-phosphatidylino-sitol (GlcNAc-PI) is the second step of glycosylphosphatidylino-sitol (GPI) membrane anchor biosynthesis in eukaryotes. This step is a prerequisite for the subsequent processing of glucosaminyl-phosphatidylinositol (GlcN-PI) that leads to mature GPI membrane anchor precursors, which are transferred to certain proteins in the endoplasmic reticulum. In this article, we used a direct de-N-acetylase assay, based on the release of [14C]acetate from synthetic GlcN[14C]Ac-PI and analogues thereof, and an indirect assay, based on the mannosylation of GlcNAc-PI analogues, to study the substrate specificities of the GlcNAc-PI de-N-acetylase activities of African trypanosomes and human (HeLa) cells. The HeLa enzyme was found to be more fastidious than the trypanosomal enzyme such that, unlike the trypanosomal enzyme, it was unable to act on a GlcNAc-PI analogue containing 2-O-octyl-d- myo -inositol or on the GlcNAc-PI diastereoisomer containing l- myo -inositol (GlcNAc-P(l)I). These results suggest thatselective inhibition of the trypanosomal de-N-acetylase may be possible and that this enzyme should be considered as a possible therapeutic target. The lack of strict stereospecificity of the trypanosomal de-N-acetylase for the d- myo -inositol component was also seen for the trypanosomal GPI alpha-manno-syltransferases when GlcNAc-P(l)I was added to the trypanosome cell-free system, but not when GlcN-P(l)I was used. In an attempt to rationalize these data, we modeled the structure and dynamics of d-GlcNAcalpha1-6d- myo -inositol-1-HPO4-( sn )-3-glycerol and its diastereoisomer d-GlcNAcalpha1-6l- myo -inositol-1-HPO4-( sn )-3-glycerol. These studies indicate that the latter compound visits two energy minima, one of which resembles the low-energy conformer of former compound. Thus, it is conceivable that the trypanosomal de-N-acetylase acts on GlcNAc-P(l)I when it occupies a GlcNAc-PI-likeconformation and that GlcN-P(l)I emerging from the de-N-acetylase may be channeled to the alpha-mannosyltransferases in this conformation.  (+info)

Functional analysis of O-linked oligosaccharides in threonine/serine-rich region of Aspergillus glucoamylase by expression in mannosyltransferase-disruptants of yeast. (4/463)

The glaA gene encoding glucoamylase I (GAI) of Aspergillus awamori var. kawachi was heterologously expressed in mannosyltransferase mutants of Saccharomyces cerevisiae, in which the pmt1 gene and the kre2 gene were disrupted. The GAI enzymes expressed in these yeast mutant cells exhibited a lesser extent of O-glycosylation. Secretion of GAI expressed in the pmt1-disruptant and in the kre2-disruptant, respectively, was almost the same as that of GAI expressed in wild type (wt) strains. The number of O-linked mannose in GAI from wt yeast strain ranged in size from one (Man1) to five (Man5). On the other hand, the O-linked oligosaccharides of GAI from the pmt1-disruptant ranged in size from Man1 to Man4. Man5 was not detected and Man2-Man4 were reduced in proportion to the reduction of Man1. The O-linked oligosaccharides of GAI from the kre2-disruptant ranged from Man1 to Man4, and the molar amount of Man4 was reduced to 27.3%, compared to that of the wt strain. The hydrolyzing abilities for soluble starch and the adsorbing abilities on raw starch were comparable between both disruptants and wt strains. However, the digesting abilities for raw starch of the disruptants were decreased to 70% of those of the wt strains. Stabilities of GAI of the disruptants were reduced toward extreme pH and high temperature, compared to those of the wt strains. These results demonstrate that the O-linked oligosaccharides of GAI are responsible for the enzyme stability and activity toward insoluble substrates but not for secretion.  (+info)

Recombinant human interleukin-12 is the second example of a C-mannosylated protein. (5/463)

The beta-chain of human interleukin 12 (IL-12) contains at position 319-322, the sequence Trp-x-x-Trp. In human RNase 2 this is the recognition motif for a new, recently discovered posttranslational modification, i.e., the C-glycosidic attachment of a mannosyl residue to the side chain of tryptophan. Analysis of C-terminal peptides of recombinant IL-12 (rHuIL-12) by mass spectrometry and NMR spectroscopy revealed that Trp-319beta is (partially) C-mannosylated. This finding was extended by in vitro mannosylation experiments, using a synthetic peptide derived from the same region of the protein as an acceptor. Furthermore, human B-lymphoblastoid cells, which secrete IL-12, were found to contain an enzyme that carries out the C-mannosylation reaction. This shows that nonrecombinant IL-12 is potentially C-mannosylated as well. This is only the second report on a C-mannosylated protein. However, the occurrence of the C-mannosyltransferase activity in a variety of cells and tissues, and the presence of the recognition motif in many proteins indicate that more C-mannosylated proteins may be found.  (+info)

Evidence that free GPI glycolipids are essential for growth of Leishmania mexicana. (6/463)

The cell surface of the parasitic protozoan Leishmania mexicana is coated by glycosylphosphatidylinositol (GPI)-anchored glycoproteins, a GPI-anchored lipophosphoglycan and a class of free GPI glycolipids. To investigate whether the anchor or free GPIs are required for parasite growth we cloned the L.mexicana gene for dolichol-phosphate-mannose synthase (DPMS) and attempted to create DPMS knockout mutants by targeted gene deletion. DPMS catalyzes the formation of dolichol-phosphate mannose, the sugar donor for all mannose additions in the biosynthesis of both the anchor and free GPIs, except for a alpha1-3-linked mannose residue that is added exclusively to the free GPIs and lipophosphoglycan anchor precursors. The requirement for dolichol-phosphate-mannose in other glycosylation pathways in L.mexicana is minimal. Deletion of both alleles of the DPMS gene (lmdpms) consistently resulted in amplification of the lmdpms chromosomal locus unless the promastigotes were first transfected with an episomal copy of lmdpms, indicating that lmdpms, and possibly GPI biosynthesis, is essential for parasite growth. As evidence presented in this and previous studies indicates that neither GPI-anchored glycoproteins nor lipophosphoglycan are required for growth of cultured parasites, it is possible that the abundant and functionally uncharacterized free GPIs are essential membrane components.  (+info)

Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. (7/463)

The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for N-linked glycosylation of proteins in the endoplasmic reticulum (ER), is catalyzed by different glycosyltransferases located at the membrane of the ER. We report on the identification and characterization of the ALG12 locus encoding a novel mannosyltransferase responsible for the addition of the alpha-1,6 mannose to dolichol-linked Man7GlcNAc2. The biosynthesis of the highly branched oligosaccharide follows an ordered pathway which ensures that only completely assembled oligosaccharide is transferred from the lipid anchor to proteins. Using the combination of mutant strains affected in the assembly pathway of lipid-linked oligosaccharides and overexpression of distinct glycosyltransferases, we were able to define the substrate specificities of the transferases that are critical for branching. Our results demonstrate that branched oligosaccharide structures can be specifically recognized by the ER glycosyltransferases. This substrate specificity of the different transferases explains the ordered assembly of the complex structure of lipid-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum.  (+info)

Overexpression of the Saccharomyces cerevisiae mannosylphosphodolichol synthase-encoding gene in Trichoderma reesei results in an increased level of protein secretion and abnormal cell ultrastructure. (8/463)

Production of extracellular proteins plays an important role in the physiology of Trichoderma reesei and has potential industrial application. To improve the efficiency of protein secretion, we overexpressed in T. reesei the DPM1 gene of Saccharomyces cerevisiae, encoding mannosylphosphodolichol (MPD) synthase, under homologous, constitutively acting expression signals. Four stable transformants, each with different copy numbers of tandemly integrated DPM1, exhibited roughly double the activity of MPD synthase in the respective endoplasmic reticulum membrane fraction. On a dry-weight basis, they secreted up to sevenfold-higher concentrations of extracellular proteins during growth on lactose, a carbon source promoting formation of cellulases. Northern blot analysis showed that the relative level of the transcript of cbh1, which encodes the major cellulase (cellobiohydrolase I [CBH I]), did not increase in the transformants. On the other hand, the amount of secreted CBH I and, in all but one of the transformants, intracellular CBH I was elevated. Our results suggest that posttranscriptional processes are responsible for the increase in CBH I production. The carbohydrate contents of the extracellular proteins were comparable in the wild type and in the transformants, and no hyperglycosylation was detected. Electron microscopy of the DPM1-amplified strains revealed amorphous structure of the cell wall and over three times as many mitochondria as in the control. Our data indicate that molecular manipulation of glycan biosynthesis in Trichoderma can result in improved protein secretion.  (+info)

Mannosyltransferases are a group of enzymes that catalyze the transfer of mannose (a type of sugar) to specific acceptor molecules during the process of glycosylation. Glycosylation is the attachment of carbohydrate groups, or glycans, to proteins and lipids, which plays a crucial role in various biological processes such as protein folding, quality control, trafficking, and cell-cell recognition.

In particular, mannosyltransferases are involved in the addition of mannose residues to the core oligosaccharide structure of N-linked glycans in the endoplasmic reticulum (ER) and Golgi apparatus of eukaryotic cells. These enzymes use a donor substrate, typically dolichol-phosphate-mannose (DPM), to add mannose molecules to the acceptor substrate, which is an asparagine residue within a growing glycan chain.

There are several classes of mannosyltransferases, each responsible for adding mannose to specific positions within the glycan structure. Defects in these enzymes can lead to various genetic disorders known as congenital disorders of glycosylation (CDG), which can affect multiple organ systems and result in a wide range of clinical manifestations.

Guanosine diphosphate mannose (GDP-mannose) is a nucleotide sugar that plays a crucial role in the biosynthesis of various glycans, including those found on proteins and lipids. It is formed from mannose-1-phosphate through the action of the enzyme mannose-1-phosphate guanylyltransferase, using guanosine triphosphate (GTP) as a source of energy.

GDP-mannose serves as a donor substrate for several glycosyltransferases involved in the biosynthesis of complex carbohydrates, such as those found in glycoproteins and glycolipids. It is also used in the synthesis of certain polysaccharides, like bacterial cell wall components.

Defects in the metabolism or utilization of GDP-mannose can lead to various genetic disorders, such as congenital disorders of glycosylation (CDG), which can affect multiple organ systems and present with a wide range of clinical manifestations.

Mannose is a simple sugar (monosaccharide) that is similar in structure to glucose. It is a hexose, meaning it contains six carbon atoms. Mannose is a stereoisomer of glucose, meaning it has the same chemical formula but a different structural arrangement of its atoms.

Mannose is not as commonly found in foods as other simple sugars, but it can be found in some fruits, such as cranberries, blueberries, and peaches, as well as in certain vegetables, like sweet potatoes and turnips. It is also found in some dietary fibers, such as those found in beans and whole grains.

In the body, mannose can be metabolized and used for energy, but it is also an important component of various glycoproteins and glycolipids, which are molecules that play critical roles in many biological processes, including cell recognition, signaling, and adhesion.

Mannose has been studied as a potential therapeutic agent for various medical conditions, including urinary tract infections (UTIs), because it can inhibit the attachment of certain bacteria to the cells lining the urinary tract. Additionally, mannose-binding lectins have been investigated for their potential role in the immune response to viral and bacterial infections.

Mannans are a type of complex carbohydrate, specifically a heteropolysaccharide, that are found in the cell walls of certain plants, algae, and fungi. They consist of chains of mannose sugars linked together, often with other sugar molecules such as glucose or galactose.

Mannans have various biological functions, including serving as a source of energy for microorganisms that can break them down. In some cases, mannans can also play a role in the immune response and are used as a component of vaccines to stimulate an immune response.

In the context of medicine, mannans may be relevant in certain conditions such as gut dysbiosis or allergic reactions to foods containing mannans. Additionally, some research has explored the potential use of mannans as a delivery vehicle for drugs or other therapeutic agents.

Dolichol monophosphate mannose (Dol-P-Man) is a type of glycosyl donor that plays a crucial role in the process of protein glycosylation within the endoplasmic reticulum (ER) of eukaryotic cells. Protein glycosylation is the enzymatic attachment of oligosaccharide chains to proteins, which can significantly affect their structure, stability, and function.

Dolichol monophosphate mannose consists of a dolichol molecule, a long-chain polyisoprenoid alcohol, linked to a mannose sugar via a phosphate group. The dolichol component serves as a lipid anchor, allowing Dol-P-Man to participate in the synthesis of oligosaccharides on the cytoplasmic side of the ER membrane.

In the first step of the process, mannose is transferred from a donor molecule, guanosine diphosphate mannose (GDP-Man), to dolichol phosphate (Dol-P) by the enzyme alpha-1,2-mannosyltransferase. This reaction forms Dol-P-Man, which then serves as a substrate for further glycosylation reactions in the ER lumen.

In summary, Dolichol monophosphate mannose is an essential intermediate in the biosynthesis of N-linked oligosaccharides, contributing to the proper folding and functioning of proteins within eukaryotic cells.

Glycosylation is the enzymatic process of adding a sugar group, or glycan, to a protein, lipid, or other organic molecule. This post-translational modification plays a crucial role in modulating various biological functions, such as protein stability, trafficking, and ligand binding. The structure and composition of the attached glycans can significantly influence the functional properties of the modified molecule, contributing to cell-cell recognition, signal transduction, and immune response regulation. Abnormal glycosylation patterns have been implicated in several disease states, including cancer, diabetes, and neurodegenerative disorders.

A "carbohydrate sequence" refers to the specific arrangement or order of monosaccharides (simple sugars) that make up a carbohydrate molecule, such as a polysaccharide or an oligosaccharide. Carbohydrates are often composed of repeating units of monosaccharides, and the sequence in which these units are arranged can have important implications for the function and properties of the carbohydrate.

For example, in glycoproteins (proteins that contain carbohydrate chains), the specific carbohydrate sequence can affect how the protein is processed and targeted within the cell, as well as its stability and activity. Similarly, in complex carbohydrates like starch or cellulose, the sequence of glucose units can determine whether the molecule is branched or unbranched, which can have implications for its digestibility and other properties.

Therefore, understanding the carbohydrate sequence is an important aspect of studying carbohydrate structure and function in biology and medicine.

Oligosaccharides are complex carbohydrates composed of relatively small numbers (3-10) of monosaccharide units joined together by glycosidic linkages. They occur naturally in foods such as milk, fruits, vegetables, and legumes. In the body, oligosaccharides play important roles in various biological processes, including cell recognition, signaling, and protection against pathogens.

There are several types of oligosaccharides, classified based on their structures and functions. Some common examples include:

1. Disaccharides: These consist of two monosaccharide units, such as sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).
2. Trisaccharides: These contain three monosaccharide units, like maltotriose (glucose + glucose + glucose) and raffinose (galactose + glucose + fructose).
3. Oligosaccharides found in human milk: Human milk contains unique oligosaccharides that serve as prebiotics, promoting the growth of beneficial bacteria in the gut. These oligosaccharides also help protect infants from pathogens by acting as decoy receptors and inhibiting bacterial adhesion to intestinal cells.
4. N-linked and O-linked glycans: These are oligosaccharides attached to proteins in the body, playing crucial roles in protein folding, stability, and function.
5. Plant-derived oligosaccharides: Fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are examples of plant-derived oligosaccharides that serve as prebiotics, promoting the growth of beneficial gut bacteria.

Overall, oligosaccharides have significant impacts on human health and disease, particularly in relation to gastrointestinal function, immunity, and inflammation.

Carbohydrate conformation refers to the three-dimensional shape and structure of a carbohydrate molecule. Carbohydrates, also known as sugars, can exist in various conformational states, which are determined by the rotation of their component bonds and the spatial arrangement of their functional groups.

The conformation of a carbohydrate molecule can have significant implications for its biological activity and recognition by other molecules, such as enzymes or antibodies. Factors that can influence carbohydrate conformation include the presence of intramolecular hydrogen bonds, steric effects, and intermolecular interactions with solvent molecules or other solutes.

In some cases, the conformation of a carbohydrate may be stabilized by the formation of cyclic structures, in which the hydroxyl group at one end of the molecule forms a covalent bond with the carbonyl carbon at the other end, creating a ring structure. The most common cyclic carbohydrates are monosaccharides, such as glucose and fructose, which can exist in various conformational isomers known as anomers.

Understanding the conformation of carbohydrate molecules is important for elucidating their biological functions and developing strategies for targeting them with drugs or other therapeutic agents.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

The Golgi apparatus, also known as the Golgi complex or simply the Golgi, is a membrane-bound organelle found in the cytoplasm of most eukaryotic cells. It plays a crucial role in the processing, sorting, and packaging of proteins and lipids for transport to their final destinations within the cell or for secretion outside the cell.

The Golgi apparatus consists of a series of flattened, disc-shaped sacs called cisternae, which are stacked together in a parallel arrangement. These stacks are often interconnected by tubular structures called tubules or vesicles. The Golgi apparatus has two main faces: the cis face, which is closest to the endoplasmic reticulum (ER) and receives proteins and lipids directly from the ER; and the trans face, which is responsible for sorting and dispatching these molecules to their final destinations.

The Golgi apparatus performs several essential functions in the cell:

1. Protein processing: After proteins are synthesized in the ER, they are transported to the cis face of the Golgi apparatus, where they undergo various post-translational modifications, such as glycosylation (the addition of sugar molecules) and sulfation. These modifications help determine the protein's final structure, function, and targeting.
2. Lipid modification: The Golgi apparatus also modifies lipids by adding or removing different functional groups, which can influence their properties and localization within the cell.
3. Protein sorting and packaging: Once proteins and lipids have been processed, they are sorted and packaged into vesicles at the trans face of the Golgi apparatus. These vesicles then transport their cargo to various destinations, such as lysosomes, plasma membrane, or extracellular space.
4. Intracellular transport: The Golgi apparatus serves as a central hub for intracellular trafficking, coordinating the movement of vesicles and other transport carriers between different organelles and cellular compartments.
5. Cell-cell communication: Some proteins that are processed and packaged in the Golgi apparatus are destined for secretion, playing crucial roles in cell-cell communication and maintaining tissue homeostasis.

In summary, the Golgi apparatus is a vital organelle involved in various cellular processes, including post-translational modification, sorting, packaging, and intracellular transport of proteins and lipids. Its proper functioning is essential for maintaining cellular homeostasis and overall organismal health.

'Candida albicans' is a species of yeast that is commonly found in the human body, particularly in warm and moist areas such as the mouth, gut, and genital region. It is a part of the normal microbiota and usually does not cause any harm. However, under certain conditions like a weakened immune system, prolonged use of antibiotics or steroids, poor oral hygiene, or diabetes, it can overgrow and cause infections known as candidiasis. These infections can affect various parts of the body including the skin, nails, mouth (thrush), and genital area (yeast infection).

The medical definition of 'Candida albicans' is:

A species of yeast belonging to the genus Candida, which is commonly found as a commensal organism in humans. It can cause opportunistic infections when there is a disruption in the normal microbiota or when the immune system is compromised. The overgrowth of C. albicans can lead to various forms of candidiasis, such as oral thrush, vaginal yeast infection, and invasive candidiasis.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

The endoplasmic reticulum (ER) is a network of interconnected tubules and sacs that are present in the cytoplasm of eukaryotic cells. It is a continuous membranous organelle that plays a crucial role in the synthesis, folding, modification, and transport of proteins and lipids.

The ER has two main types: rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER). RER is covered with ribosomes, which give it a rough appearance, and is responsible for protein synthesis. On the other hand, SER lacks ribosomes and is involved in lipid synthesis, drug detoxification, calcium homeostasis, and steroid hormone production.

In summary, the endoplasmic reticulum is a vital organelle that functions in various cellular processes, including protein and lipid metabolism, calcium regulation, and detoxification.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

This compound is a substrate for enzymes called mannosyltransferases. Known as donor of activated mannose in all glycolytic ...
Family of a-mannosyltransferases using Dol-P-Man as the likely donor; first described by Larsen and colleagues [Proc Natl Acad ...
The C. auris genome contains C. albicans gene orthologs, such as secreted proteinases and mannosyl transferases, which might ...
CG4050 is a mammalian ortholog of TMTC3, one of a family of ER proteins recently shown to be O-mannosyltransferases; deletion ...
2005) Mnt1p and Mnt2p of Candida albicans are partially redundant a-1,2-mannosyltransferases that participate in O-linked ...
The lumen GTs are related to the protein O-mannosyl transferases (PMTs). Once translocated to the lumen side of the ER membrane ... Incidentally, AglS is an archaeal protein which shares with the mannosyltransferases Alg3, Alg9 and Alg12 a Dol-P-mannose ... Gao X-D, Nishikawa A, Dean N. Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic ... 1b). These modifications are catalyzed by the mannosyltransferases Alg3, Alg9 and Alg12 and the glucosyltransferases Alg6, Alg8 ...
Mannosyltransferases. Enzymes that catalyze the transfer of mannose from a nucleoside diphosphate mannose to an acceptor ... ProteinsChromogenic CompoundsAnti-Infective AgentsPolystyrenesMembrane Transport ProteinsChlorhexidineMannosyltransferases ...
Mannosyltransferases are also important in the immune system, where they play a role in the recognition and clearance of ... Mannosyltransferases are a group of enzymes that transfer mannose sugar molecules from a donor molecule to a receptor molecule ... Overall, mannosyltransferases are a diverse group of enzymes that play important roles in many biological processes, and their ... Mannosyltransferases. Enzymes that catalyze the transfer of mannose from a nucleoside diphosphate mannose to an acceptor ...
GALNT19 was reported by Nakamura (Kurosaka). This isozyme belongs to the Y-subfamily, together with T8, T9 and T18. This does not exhibit significant enzyme activity, probably an activator or regulator for other ppGalNAcTs (Li et al. 2012). , GALNT19はNakamura (Kurosaka)によって報告され T8, T9およびT18同様Y-subfamityに属す。 本酵素は目立った酵素
Binding Sites, Catalysis, Hydrocarbons, Aromatic, Mannosyltransferases, Models, Molecular, Palladium, Protein Conformation, ...
family of both gap O-mannosyl-transferases 1 and 2( POMT1 and POMT2; CAZy Vitamin GT39) is ventricular for scale -B, that is ...
kinase of both transport O-mannosyl-transferases 1 and 2( POMT1 and POMT2; CAZy cytokine GT39) is non-canonical for aim ...
The KRE2/MNT1 family encode a set of multifunctional mannosyltransferases that participate in O-, N- and phosphomannosylation. ... Biochemical characterization of recombinant Candida albicans mannosyltransferases Mnt1, Mnt2 and Mnt5 reveals new functions in ... suggesting than Mnt1 and Mnt2 could be the mannosyltransferases adding the fourth and fifth mannose residue to the O-mannans in ...
This gene is thought to encode a member of a family of dolichol-phosphate-mannose (Dol-P-Man) dependent mannosyltransferases. [ ...
... mannosyltransferases, sialidases and neuramindases. These results sufficiently indicate that altered expression of certain ...
Farka V., Vagabov V.M., Bauer S. Biosynthesis of yeast mannan diversity of mannosyltransferases in the mannan-synthesizing ...
2). To examine the contribution of mannose residues for Mincle activation, lipids from mycobacteria lacking mannosyl transferases ...
Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked ...
Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases ...
6-mannosyltransferases that can transfer the third mannose residue, via an α1,6-linkage, to minor O-glycans containing xylose ... 6-mannosyltransferases that can transfer the third mannose residue, via an α1,6-linkage, to minor O-glycans containing xylose ... 6-mannosyltransferases that can transfer the third mannose residue, via an α1,6-linkage, to minor O-glycans containing xylose ... 6-mannosyltransferases that can transfer the third mannose residue, via an α1,6-linkage, to minor O-glycans containing xylose ...
... into moraprenyl pyrophosphate derivatives and their use for investigation of substrate specificity of mannosyltransferases from ...
Mannosyltransferases [D08.811.913.400.450.560] Mannosyltransferases * Peptidoglycan Glycosyltransferase [D08.811.913.400. ...
Regulation of the transport and protein levels of the inositol phosphorylceramide mannosyltransferases Csg1 and Csh1 by the ...
Physical and functional association of human protein O-mannosyltransferases 1 and 2 Keiko Akasaka-Manya 1 , Hiroshi Manya, Ai ... Physical and functional association of human protein O-mannosyltransferases 1 and 2 Keiko Akasaka-Manya et al. J Biol Chem. ...
Mannosyltransferases / genetics * Membrane Proteins / genetics * Membrane Proteins / metabolism * Protein Processing, Post- ...
Mannosyltransferases/metabolism*; Molecular Sequence Data; Oligosaccharides/biosynthesis*; Polyisoprenyl Phosphate ...
Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are ... and to mannosyltransferases PIG-B, PIG-M, PIG-V and PIG-Z. We conclude that this new, membrane-embedded domain named BindGPILA ...
Mannosyltransferases / deficiency Actions. * Search in PubMed * Search in MeSH * Add to Search ...
Mannosyltransferases / genetics Actions. * Search in PubMed * Search in MeSH * Add to Search ...
In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis ...
Physical and functional association of human protein O-mannosyltransferases 1 and 2. J Biol Chem. 2006 Jul 14;281(28):19339-45 ...
Recognition of the Saturated Alpha-Isoprene Unit of the Mannosyl Donor by Pig Brain Mannosyltransferases." Journal of ...
... in a reaction catalyzed by the mannosyltransferases MppH and MppI [34]. The cao cluster lacks MppH/I homologues, but contains ...
In yeast, steady-state Golgi localization of multiple mannosyltransferases requires recognition of their cytosolic domains by ...
2007). Regulation of the transport and protein levels of the inositol phosphorylceramide mannosyltransferases Csg1 and Csh1 by ...
Mannosyltransferases. GGDB Symbol. POMT1 Alias HGNC Symbol :. POMT1 clone name :. FLJ37239 related terminology :. LGMD2K MDDGA1 ...
mannosyltransferases, POMT1 and POMT2, in the ER [23]. GlcNAc is then transferred by a protein O. -mannose β1,2-. N. - ...
Mannosyltransferases Preferred Term Term UI T024888. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1975). ... Mannosyltransferases Preferred Concept UI. M0013007. Registry Number. EC 2.4.1.-. Related Numbers. 9055-06-5. Scope Note. ... Mannosyltransferases. Tree Number(s). D08.811.913.400.450.560. Unique ID. D008364. RDF Unique Identifier. http://id.nlm.nih.gov ...
Mannosyltransferases Preferred Term Term UI T024888. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1975). ... Mannosyltransferases Preferred Concept UI. M0013007. Registry Number. EC 2.4.1.-. Related Numbers. 9055-06-5. Scope Note. ... Mannosyltransferases. Tree Number(s). D08.811.913.400.450.560. Unique ID. D008364. RDF Unique Identifier. http://id.nlm.nih.gov ...
Our analysis indicated that the family of mannosyl transferases is conserved in C. auris 6684 with many predicted orthologs. ... In all, our analysis revealed that enzyme families implicated in invasiveness like mannosyl transferases, secreted aspartyl ... The genome of the pathogen harbours gene families such as lipases, oligopeptide transporters, mannosyl transferases and ... secreted proteinases and mannosyl transferases which may play a role in virulence and drug resistance. However most of the ...
Novel repeats in ryanodine and IP3 receptors and protein O-mannosyltransferases. Trends Biochem Sci. 2000;25:48-50. ...
295.Svp26 facilitates endoplasmic reticulum to golgi transport of a set of mannosyltransferases in Saccharomyces cerevisiae.. ... 295.Svp26 facilitates endoplasmic reticulum to golgi transport of a set of mannosyltransferases in Saccharomyces cerevisiae. ... 295.Svp26 facilitates endoplasmic reticulum to golgi transport of a set of mannosyltransferases in Saccharomyces cerevisiae. ...
Mannosyltransferases Medicine & Life Sciences 36% * lipid-linked oligosaccharides Medicine & Life Sciences 32% ...
Novel prenyl-linked benzophenone substrate analogues of mycobacterial mannosyltransferases. Guy, MR, Illarionov, PA, Gurcha, SS ...
N0000168445 Mannosides N0000167716 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase N0000168326 Mannosyltransferases ...
It has regions of similarity to hydrophilic segments of yeast mannosyltransferases. Its expression is ubiquitous and the gene ... It has regions of similarity to hydrophilic segments of yeast mannosyltransferases. Its expression is ubiquitous and the gene ...
A conserved acidic motif is crucial for enzymatic activity of protein O-mannosyltransferases. 2012, Pubmed Lommel, Protein O- ... Novel repeats in ryanodine and IP3 receptors and protein O-mannosyltransferases. 2000, Pubmed Price, N-glycosylation of ... Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. 2017, Pubmed ...
Protein O-mannosyltransferases (PMTs) initiate O-mannosylation of proteins in the ER. Trichoderma reesei strains displayed a ...
A detailed view of protein mannosyltransferases from eukaryotes as well as prokaryotes. Implications of O- mannosylation in ...
We hypothesized that deletion of these two mannosyltransferases would improve secretory production in Sb. Deletion of OCH1 or ...
The C. auris genome contains C. albicans gene orthologs, such as secreted proteinases and mannosyl transferases, which might ...

No FAQ available that match "mannosyltransferases"

No images available that match "mannosyltransferases"