An enzyme that catalyzes the hydrolysis of a single fatty acid ester bond in lysoglycerophosphatidates with the formation of glyceryl phosphatidates and a fatty acid. EC 3.1.1.5.
A phosphoric diester hydrolase that removes 5'-nucleotides from the 3'-hydroxy termini of 3'-hydroxy-terminated OLIGONUCLEOTIDES. It has low activity towards POLYNUCLEOTIDES and the presence of 3'-phosphate terminus on the substrate may inhibit hydrolysis.
A phospholipase that hydrolyzes the acyl group attached to the 1-position of PHOSPHOGLYCERIDES.
A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-.
Derivatives of PHOSPHATIDYLCHOLINES obtained by their partial hydrolysis which removes one of the fatty acid moieties.
A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4.
Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal.
A group of enzymes within the class EC 3.6.1.- that catalyze the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates. They may liberate either a mono- or diphosphate. EC 3.6.1.-.
Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
An aldose-ketose isomerase that catalyzes the reversible interconversion of glucose 6-phosphate and fructose 6-phosphate. In prokaryotic and eukaryotic organisms it plays an essential role in glycolytic and gluconeogenic pathways. In mammalian systems the enzyme is found in the cytoplasm and as a secreted protein. This secreted form of glucose-6-phosphate isomerase has been referred to as autocrine motility factor or neuroleukin, and acts as a cytokine which binds to the AUTOCRINE MOTILITY FACTOR RECEPTOR. Deficiency of the enzyme in humans is an autosomal recessive trait, which results in CONGENITAL NONSPHEROCYTIC HEMOLYTIC ANEMIA.
Phospholipases that hydrolyze the acyl group attached to the 2-position of PHOSPHOGLYCERIDES.
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A subfamily of lysophospholipid receptors with specificity for LYSOPHOSPHATIDIC ACIDS.
A long-chain fatty acid ester of carnitine which facilitates the transfer of long-chain fatty acids from cytoplasm into mitochondria during the oxidation of fatty acids.
Halogenated anti-infective agent that is used against trematode and cestode infestations.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
The process of cleaving a chemical compound by the addition of a molecule of water.
Any of the enzymatically catalyzed modifications of the individual AMINO ACIDS of PROTEINS, and enzymatic cleavage or crosslinking of peptide chains that occur pre-translationally (on the amino acid component of AMINO ACYL TRNA), co-translationally (during the process of GENETIC TRANSLATION), or after translation is completed (POST-TRANSLATIONAL PROTEIN PROCESSING).
An organic mercurial used as a sulfhydryl reagent.
Plasmids encoding bacterial exotoxins (BACTERIOCINS).
A subclass of group I phospholipases A2 that includes enzymes isolated from PANCREATIC JUICE. Members of this group have specificity for PHOSPHOLIPASE A2 RECEPTORS.
Thiolester hydrolases are enzymes that catalyze the hydrolysis of thioester bonds, commonly found in acetyl-CoA and other coenzyme A derivatives, to produce free carboxylic acids and CoASH.
A species of gram-negative, aerobic bacteria that is the causative agent of LEGIONNAIRES' DISEASE. It has been isolated from numerous environmental sites as well as from human lung tissue, respiratory secretions, and blood.
Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins.
Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin.
Nonionic surfactant mixtures varying in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups. They are used as detergents, emulsifiers, wetting agents, defoaming agents, etc. Octoxynol-9, the compound with 9 repeating ethoxy groups, is a spermatocide.

Purification and characterization of phospholipase B from Kluyveromyces lactis, and cloning of phospholipase B gene. (1/222)

Phospholipase B (PLB) from the yeast Kluyveromyces lactis was purified to homogeneity from culture medium. The enzyme was highly glycosylated with apparent molecular mass of 160-250 kDa, and had two pH optima, at pH 2.0 and pH 7.5. At acidic pH the enzyme hydrolyzed all phospholipid substrates tested here without metal ion. On the other hand, at alkaline pH the enzyme showed substrate specificity for phosphatidylcholine and lysophosphatidylcholine and required Ca2+, Fe3+, or Al3+ for the activity. The alkaline activity was increased more than 20-fold in the presence of Al3+ compared to that in the presence of Ca2+. cDNA sequence of PLB (KlPLB) was analyzed by a combination of several PCR procedures. KlPLB encoded a protein consist of 640 amino acids and the deduced amino acid sequence showed 66.7% similarity with the T. delbrueckii PLB. The amino acid sequence contained the lipase consensus sequence (G-X-S-X-G) and the catalytic aspartic acid motif. Replacement of Arg-112 or Asp-406 with alanine caused loss of the enzymatic activity at both pH. These results suggested that PLB activity are dependent on a catalytic mechanism similar to that of cytosolic phospholipase A2.  (+info)

Sequence, expression in Escherichia coli, and characterization of lysophospholipase II. (2/222)

Here we report the sequence, expression in Escherichia coli cells, and characterization of a new small-form lysophospholipase named lysophospholipase II from mouse embryo. The cDNA clone was found and identified among mouse expressed sequence tags in the database search for the homologue of lysophospholipase I previously cloned from rat liver (H. Sugimoto et al., J. Biol. Chem. 271 (1996) 7705-7711). The predicted amino acids sequence contained 231 residues with a calculated molecular weight of 24794, and showed 64% identity to that of lysophospholipase I with the Gly-X-Ser-X-Gly esterase/lipase consensus. The lacZ fusion protein expressed in E. coli cells exhibited lysophospholipase activity and reacted with antibody raised against previously purified pig gastric lysophospholipase II (H. Sunaga et al., Biochem. J. 308 (1995) 551-557), but not with antibody against rat liver lysophospholipase I. The expressed enzyme was purified to a specific activity of 0.15 micromol/min per mg by DEAE-Sepharose A-500 chromatography. The enzyme preferentially utilized zwitterionic lysophospholipids in the order of lysophosphatidylcholine>lysophosphatidylethanolamine, but poorly acidic lysophospholipids, such as lysophosphatidylserine, lysophosphatidylinositol, and lysophosphatidic acid. Not only the 1-acyl isomer, but also the 2-acyl isomer were deacylated. Northern blot analysis and reverse transcription-polymerase chain reaction revealed that lysophospholipase II transcript as well as lysophospholipase I transcript was widely distributed in mouse tissues.  (+info)

An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. (3/222)

Phosphatidylserine-specific phospholipase A1 (PS-PLA1), which acts specifically on phosphatidylserine (PS) and 1-acyl-2-lysophosphatidylserine (lyso-PS) to hydrolyze fatty acids at the sn-1 position of these phospholipids, was first identified in rat platelets (Sato, T., Aoki, J., Nagai, Y., Dohmae, N., Takio, K., Doi, T., Arai, H., and Inoue, K. (1997) J. Biol. Chem. 272, 2192-2198). In this study we isolated and sequenced cDNA clones encoding human PS-PLA1, which showed 80% homology with rat PS-PLA1 at the amino acid level. In addition to an mRNA encoding a 456-amino acid product (PS-PLA1), an mRNA with four extra bases inserted at the boundary of the exon-intron junction was detected in human tissues and various human cell lines. This mRNA is most probably produced via an alternative use of the 5'-splicing site (two consensus sequences for RNA splicing occur at the boundary of the exon-intron junction) and encodes a 376-amino acid product (PS-PLA1DeltaC) that lacks two-thirds of the C-terminal domain of PS-PLA1. Unlike PS-PLA1, PS-PLA1DeltaC hydrolyzed exclusively lyso-PS but not PS appreciably. Any other phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), and their lyso derivatives were not hydrolyzed at all. These data demonstrated that PS-PLA1DeltaC exhibits lyso-PS-specific lysophospholipase activity and that the C-terminal domain of PS-PLA1 is responsible for recognizing diacylphospholipids. In addition, human PS-PLA1 gene was mapped to chromosome 3q13.13-13.2 and was unexpectedly identical to the nmd gene, which is highly expressed in nonmetastatic melanoma cell lines but poorly expressed in metastatic cell lines (van Groningen, J. J., Bloemers, H. P., and Swart, G. W. (1995) Cancer Res. 55, 6237-6243).  (+info)

Sphingosine 1-phosphate stimulates fibronectin matrix assembly through a Rho-dependent signal pathway. (4/222)

Fibronectin matrix assembly is a cell-dependent process mediated by cell surface binding sites for the 70-kD N-terminal portion of fibronectin. We have shown that Rho-dependent cytoskeleton reorganization induced by lysophosphatidic acid (LPA) or the microtubule-disrupting agent nocodazole increases fibronectin binding (Zhang et al, Mol Biol Cell 8:1415, 1997). Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in mitogenesis and cytoskeletal remodelling. Both LPA and S1P are present in increased amounts in serum as compared with plasma as a result of platelet activation. Addition of S1P to human osteosarcoma MG63 cells or human foreskin fibroblasts increased cell-mediated binding and assembly of fibronectin. MG63 cells expressed the Edg-2 and Edg-4 G-protein-coupled receptors for bioactive lipids, whereas foreskin fibroblasts expressed Edg-2, Edg-3, and Edg-4. The stimulatory effect of S1P on the binding of fibronectin or the N-terminal 70-kD fragment of fibronectin was dynamic and due to increases in both the number and affinity of binding sites. The stimulation of 70-kD fragment binding by nanomolar S1P, like stimulation of binding by LPA or nocodazole, was blocked by inactivation of Rho with C3 exotoxin but not by pertussis toxin-mediated inactivation of Gi. These results indicate a common signal pathway leading to control of cellular fibronectin matrix assembly by bioactive lipids generated during blood coagulation.  (+info)

Evidence for two distinct lysophospholipase activities that degrade lysophosphatidylcholine and lysophosphatidic acid in neuronal nuclei of cerebral cortex. (5/222)

Neuronal nuclei were isolated from immature rabbit cerebral cortex and nuclear lysophospholipase activities studied using two different 1-acyl lysophospholipids: lysophosphatidylcholine (lysoPC) and lysophosphatidic acid (lysoPA). Our interest in these two lysolipids arose from the observation that lysoPA could promote the acetylation of lysoPC by substantially inhibiting a very active nuclear lysoPC lysophospholipase activity, in a competitive manner (R.R. Baker, H. -y. Chang, Mol. Cell. Biochem. (1999) in press). As there was also evidence for nuclear lysoPA deacylation, it was of interest to see whether one activity could possibly utilize both lysolipid substrates. We now have evidence for two separate lysophospholipase activities in neuronal nuclei. The lysoPC lysophospholipase activity was the more active, more highly enriched in the neuronal nuclei, and showed optimal activity at pH 8.4-9, while the lysoPA lysophospholipase activity was maintained over a much broader pH range. The lysoPC activity was substantially inhibited by free fatty acid, and showed considerable stimulation by serum albumin, while the activity utilizing lysoPA was much less affected by these agents. When lysoPC was added to incubations containing radioactive lysoPA, there was no significant inhibition found in rates of release of radioactive fatty acid, indicating that the lysoPA lysophospholipase activity did not utilize the lysoPC substrate. In incubations with lysoPC, MgATP and CoA brought about a sizable formation of phosphatidylcholine whose radioactivity was equally distributed between the sn-1 and sn-2 positions suggesting labelling both directly from the lysoPC substrate and from fatty acid produced by the lysophospholipase activity. By comparison, with the radioactive lysoPA substrate, MgATP and CoA promoted relatively lower levels of phosphatidic acid formation whose principal labelling came directly from the radioactive lysoPA. Largely because of the high activity of the nuclear lysoPC lysophospholipase, there is considerable potential in the neuronal nucleus to limit the use of lysoPC in other reactions, such as the formation of acylPAF (1-acyl analogue of platelet activating factor). It is of interest that conditions associated with brain ischaemia such as increased free fatty acid levels, falling pH and declines in MgATP may allow a preservation of neuronal nuclear lysoPC levels for acetylation. The existence of a separate lysophospholipase activity for lysoPA allows an independent control of lysoPA which can serve as an important regulator of the nuclear lysoPC lysophospholipase.  (+info)

Characterization of the transacylase activity of rat liver 60-kDa lysophospholipase-transacylase. Acyl transfer from the sn-2 to the sn-1 position. (6/222)

Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252-6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0.23 micromol/min/mg protein. Thus, 60-kDa lysophospholipase-transacylase may play a role in the synthesis of 1-arachidonoyl phosphatidylcholine needed for important cell functions, such as anandamide synthesis.  (+info)

Characterization of elicitin-like phospholipases isolated from Phytophthora capsici culture filtrate. (7/222)

The phytopathogenic oomycete Phytophthora capsici secretes in culture a phospholipase activity. Two enzyme isoforms exhibiting a high phospholipase B activity were isolated by chromatography and electrophoresis. They differ in their apparent molar masses (22 and 32 kDa). Both proteins are glycosylated and share the same N-terminal amino acid sequence up to the 39th residue with a high homology with capsicein, the P. capsici elicitin. Although devoid of phospholipase activity, capsicein was shown by circular dichroism to specifically interact with negatively charged phospholipids, suggesting that the membrane lipids could be a potential target for elicitins.  (+info)

The Escherichia coli pldC gene encoding lysophospholipase L(1) is identical to the apeA and tesA genes encoding protease I and thioesterase I, respectively. (8/222)

We deduced the amino acid sequence of Escherichia coli lysophospholipase L(1) by determining the nucleotide sequence of the pldC gene encoding this enzyme. The translated protein was found to contain 208 amino acid residues with a hydrophobic leader sequence of 26 amino acid residues. The molecular weight of the purified enzyme (20,500) was in good agreement with the predicted size (20,399) of the processed protein. A search involving a data bank showed that the nucleotide sequence of the pldC gene was identical to those of the apeA and tesA genes encoding protease I and thioesterase I, respectively. Consistent with the identity of the pldC gene with these two genes, the enzyme purified from E. coli overexpressing the pldC gene showed both protease I and thioesterase I activities.  (+info)

Lysophospholipase is an enzyme that catalyzes the hydrolysis of a single fatty acid from lysophospholipids, producing a glycerophosphocholine and free fatty acid. This enzyme plays a role in the metabolism of lipids and membrane homeostasis. There are several types of lysophospholipases that differ based on their specificity for the head group of the lysophospholipid substrate, such as lysophosphatidylcholine-specific phospholipase or lysophospholipase 1 (LPLA1), and lysophosphatidic acid-specific phospholipase D or autotaxin (ATX).

Deficiency or mutations in lysophospholipases can lead to various diseases, such as LPI (lysophosphatidylinositol lipidosis) caused by a deficiency of the lysophospholipase superfamily member called Ptdlns-specific phospholipase C (PLC).

Note: This definition is for general information purposes only and may not include all the latest findings or medical terminologies. For accurate and comprehensive understanding, it's recommended to consult authoritative medical textbooks or resources.

Phosphodiesterase I (PDE1) is an enzyme that belongs to the family of phosphodiesterase enzymes, which are responsible for breaking down cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), into their inactive forms. These cyclic nucleotides act as second messengers in various cellular signaling pathways, and their levels are tightly regulated by the balance between synthesis and degradation by enzymes like PDE1.

PDE1 is further classified into three subtypes: PDE1A, PDE1B, and PDE1C. These subtypes have different expression patterns and functions in various tissues and organs. For example, PDE1 is found in the brain, heart, smooth muscle, and other tissues, where it plays a role in regulating vascular tone, neurotransmission, and other physiological processes.

Inhibition of PDE1 has been explored as a potential therapeutic strategy for various conditions, including cardiovascular diseases, neurological disorders, and erectile dysfunction. However, the development of selective and specific PDE1 inhibitors has proven to be challenging due to the high degree of homology among different PDE subtypes.

Phospholipase A1 (PLA1) is an enzyme that catalyzes the hydrolysis of the ester bond at the sn-1 position of glycerophospholipids, resulting in the production of free fatty acids and lysophospholipids. This enzyme plays a crucial role in various biological processes, including cell signaling, membrane remodeling, and inflammation. PLA1 is widely distributed in nature and can be found in different organisms, such as bacteria, plants, and animals. In humans, PLA1 is involved in several physiological and pathological conditions, including lipid metabolism, atherosclerosis, neurodegenerative diseases, and cancer.

Phospholipases are a group of enzymes that catalyze the hydrolysis of phospholipids, which are major components of cell membranes. Phospholipases cleave specific ester bonds in phospholipids, releasing free fatty acids and other lipophilic molecules. Based on the site of action, phospholipases are classified into four types:

1. Phospholipase A1 (PLA1): This enzyme hydrolyzes the ester bond at the sn-1 position of a glycerophospholipid, releasing a free fatty acid and a lysophospholipid.
2. Phospholipase A2 (PLA2): PLA2 cleaves the ester bond at the sn-2 position of a glycerophospholipid, releasing a free fatty acid (often arachidonic acid) and a lysophospholipid. Arachidonic acid is a precursor for eicosanoids, which are signaling molecules involved in inflammation and other physiological processes.
3. Phospholipase C (PLC): PLC hydrolyzes the phosphodiester bond in the headgroup of a glycerophospholipid, releasing diacylglycerol (DAG) and a soluble head group, such as inositol trisphosphate (IP3). DAG acts as a secondary messenger in intracellular signaling pathways, while IP3 mediates the release of calcium ions from intracellular stores.
4. Phospholipase D (PLD): PLD cleaves the phosphoester bond between the headgroup and the glycerol moiety of a glycerophospholipid, releasing phosphatidic acid (PA) and a free head group. PA is an important signaling molecule involved in various cellular processes, including membrane trafficking, cytoskeletal reorganization, and cell survival.

Phospholipases have diverse roles in normal physiology and pathophysiological conditions, such as inflammation, immunity, and neurotransmission. Dysregulation of phospholipase activity can contribute to the development of various diseases, including cancer, cardiovascular disease, and neurological disorders.

Lysophosphatidylcholines (LPCs) are a type of glycerophospholipids, which are major components of cell membranes. They are formed by the hydrolysis of phosphatidylcholines, another type of glycerophospholipids, catalyzed by the enzyme phospholipase A2. LPCs contain a single fatty acid chain attached to a glycerol backbone and a choline headgroup.

In medical terms, LPCs have been implicated in various physiological and pathological processes, such as cell signaling, membrane remodeling, and inflammation. Elevated levels of LPCs have been found in several diseases, including cardiovascular disease, neurodegenerative disorders, and cancer. They can also serve as biomarkers for the diagnosis and prognosis of these conditions.

Phosphoric diester hydrolases are a class of enzymes that catalyze the hydrolysis of phosphoric diester bonds. These enzymes are also known as phosphatases or nucleotidases. They play important roles in various biological processes, such as signal transduction, metabolism, and regulation of cellular activities.

Phosphoric diester hydrolases can be further classified into several subclasses based on their substrate specificity and catalytic mechanism. For example, alkaline phosphatases (ALPs) are a group of phosphoric diester hydrolases that preferentially hydrolyze phosphomonoester bonds in a variety of organic molecules, releasing phosphate ions and alcohols. On the other hand, nucleotidases are a subclass of phosphoric diester hydrolases that specifically hydrolyze the phosphodiester bonds in nucleotides, releasing nucleosides and phosphate ions.

Overall, phosphoric diester hydrolases are essential for maintaining the balance of various cellular processes by regulating the levels of phosphorylated molecules and nucleotides.

Lysophospholipids are a type of glycerophospholipid, which is a major component of cell membranes. They are characterized by having only one fatty acid chain attached to the glycerol backbone, as opposed to two in regular phospholipids. This results in a more polar and charged molecule, which can play important roles in cell signaling and regulation.

Lysophospholipids can be derived from the breakdown of regular phospholipids through the action of enzymes such as phospholipase A1 or A2. They can also be synthesized de novo in the cell. Some lysophospholipids, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), have been found to act as signaling molecules that bind to specific G protein-coupled receptors and regulate various cellular processes, including proliferation, survival, and migration.

Abnormal levels of lysophospholipids have been implicated in several diseases, such as cancer, inflammation, and neurological disorders. Therefore, understanding the biology of lysophospholipids has important implications for developing new therapeutic strategies.

Pyrophosphatases are enzymes that catalyze the hydrolysis or cleavage of pyrophosphate (PPi) into two inorganic phosphate (Pi) molecules. This reaction is essential for many biochemical processes, such as energy metabolism and biosynthesis pathways, where pyrophosphate is generated as a byproduct. By removing the pyrophosphate, pyrophosphatases help drive these reactions forward and maintain the thermodynamic equilibrium.

There are several types of pyrophosphatases found in various organisms and cellular compartments, including:

1. Inorganic Pyrophosphatase (PPiase): This enzyme is widely distributed across all kingdoms of life and is responsible for hydrolyzing inorganic pyrophosphate into two phosphates. It plays a crucial role in maintaining the cellular energy balance by ensuring that the reverse reaction, the formation of pyrophosphate from two phosphates, does not occur spontaneously.
2. Nucleotide Pyrophosphatases: These enzymes hydrolyze the pyrophosphate bond in nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs), converting them into nucleoside monophosphates (NMPs) or deoxynucleoside monophosphates (dNMPs). This reaction is important for regulating the levels of NTPs and dNTPs in cells, which are necessary for DNA and RNA synthesis.
3. ATPases and GTPases: These enzymes belong to a larger family of P-loop NTPases that use the energy released from pyrophosphate bond hydrolysis to perform mechanical work or transport ions across membranes. Examples include the F1F0-ATP synthase, which synthesizes ATP using a proton gradient, and various molecular motors like myosin, kinesin, and dynein, which move along cytoskeletal filaments.

Overall, pyrophosphatases are essential for maintaining cellular homeostasis by regulating the levels of nucleotides and providing energy for various cellular processes.

Phospholipases A are a group of enzymes that hydrolyze phospholipids into fatty acids and lysophospholipids by cleaving the ester bond at the sn-1 or sn-2 position of the glycerol backbone. There are three main types of Phospholipases A:

* Phospholipase A1 (PLA1): This enzyme specifically hydrolyzes the ester bond at the sn-1 position, releasing a free fatty acid and a lysophospholipid.
* Phospholipase A2 (PLA2): This enzyme specifically hydrolyzes the ester bond at the sn-2 position, releasing a free fatty acid (often arachidonic acid, which is a precursor for eicosanoids) and a lysophospholipid.
* Phospholipase A/B (PLA/B): This enzyme has both PLA1 and PLA2 activity and can hydrolyze the ester bond at either the sn-1 or sn-2 position.

Phospholipases A play important roles in various biological processes, including cell signaling, membrane remodeling, and host defense. They are also involved in several diseases, such as atherosclerosis, neurodegenerative disorders, and cancer.

Glucose-6-phosphate isomerase (GPI) is an enzyme involved in the glycolytic and gluconeogenesis pathways. It catalyzes the interconversion of glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P), which are key metabolic intermediates in these pathways. This reaction is a reversible step that helps maintain the balance between the breakdown and synthesis of glucose in the cell.

In glycolysis, GPI converts G6P to F6P, which subsequently gets converted to fructose-1,6-bisphosphate (F1,6BP) by the enzyme phosphofructokinase-1 (PFK-1). In gluconeogenesis, the reaction is reversed, and F6P is converted back to G6P.

Deficiency or dysfunction of Glucose-6-phosphate isomerase can lead to various metabolic disorders, such as glycogen storage diseases and hereditary motor neuropathies.

Phospholipase A2 (PLA2) is a type of enzyme that catalyzes the hydrolysis of the sn-2 ester bond in glycerophospholipids, releasing free fatty acids, such as arachidonic acid, and lysophospholipids. These products are important precursors for the biosynthesis of various signaling molecules, including eicosanoids, platelet-activating factor (PAF), and lipoxins, which play crucial roles in inflammation, immunity, and other cellular processes.

Phospholipases A2 are classified into several groups based on their structure, mechanism of action, and cellular localization. The secreted PLA2s (sPLA2s) are found in extracellular fluids and are characterized by a low molecular weight, while the calcium-dependent cytosolic PLA2s (cPLA2s) are larger proteins that reside within cells.

Abnormal regulation or activity of Phospholipase A2 has been implicated in various pathological conditions, such as inflammation, neurodegenerative diseases, and cancer. Therefore, understanding the biology and function of these enzymes is essential for developing novel therapeutic strategies to target these disorders.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Lysophosphatidic acid (LPA) receptors are a group of G protein-coupled receptors that play a crucial role in various cellular responses, including cell proliferation, survival, migration, and differentiation. LPA is a bioactive phospholipid that acts as a signaling molecule and binds to these receptors, leading to the activation of downstream signaling pathways.

There are six known subtypes of LPA receptors, designated as LPA1-6, which belong to the endothelial differentiation gene (EDG) family or the non-EDG family. These receptors have distinct expression patterns in various tissues and mediate specific cellular responses upon activation by LPA.

Abnormal regulation of LPA signaling has been implicated in several pathological conditions, including cancer, fibrosis, inflammation, and neurological disorders. Therefore, targeting LPA receptors has emerged as a potential therapeutic strategy for the treatment of these diseases.

Palmitoylcarnitine is a type of acylcarnitine, which is an ester formed from carnitine and a fatty acid. Specifically, palmitoylcarnitine consists of the long-chain fatty acid palmitate (a 16-carbon saturated fatty acid) linked to carnitine through an ester bond.

In the human body, palmitoylcarnitine plays a crucial role in the transport and metabolism of long-chain fatty acids within mitochondria, the energy-producing organelles found in cells. The process involves converting palmitate into palmitoylcarnitine by an enzyme called carnitine palmitoyltransferase I (CPT-I) in the outer mitochondrial membrane. Palmitoylcarnitine is then transported across the inner mitochondrial membrane via a specific transporter, where it is converted back to palmitate by another enzyme called carnitine palmitoyltransferase II (CPT-II). The palmitate can then undergo beta-oxidation, a process that generates energy in the form of ATP.

Abnormal levels of palmitoylcarnitine in blood or other bodily fluids may indicate an underlying metabolic disorder, such as defects in fatty acid oxidation or carnitine transport. These conditions can lead to various symptoms, including muscle weakness, cardiomyopathy, and developmental delays.

Bithionol is an oral antiparasitic medication that has been used to treat infections caused by certain types of tapeworms, such as Paragonimus westermani (lung fluke) and Fasciolopsis buski (intestinal fluke). It works by inhibiting the metabolic processes of the parasites, which helps to eliminate them from the body.

Bithionol is no longer commonly used due to the availability of safer and more effective antiparasitic drugs. Its use may be associated with several side effects, including nausea, vomiting, diarrhea, abdominal pain, dizziness, and skin rashes. In some cases, it may also cause liver damage or allergic reactions.

It is important to note that bithionol should only be used under the supervision of a healthcare professional, as its use requires careful monitoring and dosage adjustment based on the patient's response to treatment.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Translational protein modification refers to the covalent alteration of a protein during or shortly after its synthesis on the ribosome. This process is an essential mechanism for regulating protein function and can have a significant impact on various aspects of protein biology, including protein stability, localization, activity, and interaction with other molecules.

During translation, as the nascent polypeptide chain emerges from the ribosome, it can be modified by enzymes that recognize specific sequences or motifs within the protein. These modifications can include the addition of chemical groups such as phosphate, acetyl, methyl, ubiquitin, or SUMO (small ubiquitin-like modifier) groups, among others.

Examples of translational protein modifications include:

1. N-terminal acetylation: The addition of an acetyl group to the alpha-amino group of the first amino acid in a polypeptide chain. This modification can affect protein stability and localization.
2. Ubiquitination: The covalent attachment of ubiquitin molecules to lysine residues within a protein, which can target it for degradation by the proteasome or regulate its activity and interactions with other proteins.
3. SUMOylation: The addition of a SUMO group to a lysine residue in a protein, which can modulate protein-protein interactions, subcellular localization, and stability.
4. Phosphorylation: The addition of a phosphate group to serine, threonine, or tyrosine residues within a protein, which can regulate enzymatic activity, protein-protein interactions, and signal transduction pathways.

Translational protein modifications play crucial roles in various cellular processes, including gene expression regulation, DNA repair, cell cycle control, stress response, and apoptosis. Dysregulation of these modifications has been implicated in numerous diseases, such as cancer, neurodegenerative disorders, and metabolic disorders.

P-Chloromercuribenzoic acid (CMB) is not primarily considered a medical compound, but rather an organic chemical one. However, it has been used in some medical research and diagnostic procedures due to its ability to bind to proteins and enzymes. Here's the chemical definition:

P-Chloromercuribenzoic acid (CMB) is an organomercury compound with the formula C6H4ClHgO2. It is a white crystalline powder, soluble in water, and has a melting point of 208-210 °C. It is used as a reagent to study protein structure and function, as it can react with sulfhydryl groups (-SH) in proteins, forming a covalent bond and inhibiting their activity. This property has been exploited in various research and diagnostic applications. However, due to its toxicity and environmental concerns related to mercury, its use is now limited and regulated.

Bacteriocin plasmids are autonomously replicating extrachromosomal genetic elements that carry the genes required for the biosynthesis, immunity, and regulation of bacteriocins. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria to inhibit the growth of competing or closely related strains. These plasmids play a crucial role in the ecology and evolution of bacterial communities by providing a competitive advantage to the producing strain and promoting genetic diversity through horizontal gene transfer. Bacteriocin plasmids can be conjugative, mobilizable, or non-mobilizable, depending on their ability to self-transfer or require helper plasmids for transfer. They often contain additional genes encoding various functions, such as resistance to heavy metals, antibiotics, or other bacteriocins, which contribute to the fitness and adaptability of the host strain in diverse environments.

Group IB Phospholipases A2 (PLA2s) are a subclass of phospholipases A2, which are enzymes that hydrolyze the sn-2 acyl bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group IB PLA2s are secreted enzymes that require calcium ions for their activity and have a low molecular weight. They are produced by various tissues and cells, including pancreas, liver, and immune cells, and play important roles in various biological processes such as inflammation, host defense, and lipid metabolism. Group IB PLA2s have been implicated in several pathological conditions, including atherosclerosis, arthritis, and neurodegenerative diseases.

Thiol esters are chemical compounds that contain a sulfur atom (from a mercapto group, -SH) linked to a carbonyl group (a carbon double-bonded to an oxygen atom, -CO-) through an ester bond. Thiolester hydrolases are enzymes that catalyze the hydrolysis of thiol esters, breaking down these compounds into a carboxylic acid and a thiol (a compound containing a mercapto group).

In biological systems, thiolester bonds play important roles in various metabolic pathways. For example, acetyl-CoA, a crucial molecule in energy metabolism, is a thiol ester that forms between coenzyme A and an acetyl group. Thiolester hydrolases help regulate the formation and breakdown of these thiol esters, allowing cells to control various biochemical reactions.

Examples of thiolester hydrolases include:

1. CoA thioesterases (CoATEs): These enzymes hydrolyze thiol esters between coenzyme A and fatty acids, releasing free coenzyme A and a fatty acid. This process is essential for fatty acid metabolism.
2. Acetyl-CoA hydrolase: This enzyme specifically breaks down the thiol ester bond in acetyl-CoA, releasing acetic acid and coenzyme A.
3. Thioesterases involved in non-ribosomal peptide synthesis (NRPS): These enzymes hydrolyze thiol esters during the biosynthesis of complex peptides, allowing for the formation of unique amino acid sequences and structures.

Understanding the function and regulation of thiolester hydrolases can provide valuable insights into various metabolic processes and potential therapeutic targets in disease treatment.

"Legionella pneumophila" is a species of Gram-negative, aerobic bacteria that are commonly found in freshwater environments such as lakes and streams. It can also be found in man-made water systems like hot tubs, cooling towers, and decorative fountains. This bacterium is the primary cause of Legionnaires' disease, a severe form of pneumonia, and Pontiac fever, a milder illness resembling the flu. Infection typically occurs when people inhale tiny droplets of water containing the bacteria. It is not transmitted from person to person.

Ion exchange chromatography is a type of chromatography technique used to separate and analyze charged molecules (ions) based on their ability to exchange bound ions in a solid resin or gel with ions of similar charge in the mobile phase. The stationary phase, often called an ion exchanger, contains fixed ated functional groups that can attract counter-ions of opposite charge from the sample mixture.

In this technique, the sample is loaded onto an ion exchange column containing the charged resin or gel. As the sample moves through the column, ions in the sample compete for binding sites on the stationary phase with ions already present in the column. The ions that bind most strongly to the stationary phase will elute (come off) slower than those that bind more weakly.

Ion exchange chromatography can be performed using either cation exchangers, which exchange positive ions (cations), or anion exchangers, which exchange negative ions (anions). The pH and ionic strength of the mobile phase can be adjusted to control the binding and elution of specific ions.

Ion exchange chromatography is widely used in various applications such as water treatment, protein purification, and chemical analysis.

Eosinophils are a type of white blood cell that play an important role in the body's immune response. They are produced in the bone marrow and released into the bloodstream, where they can travel to different tissues and organs throughout the body. Eosinophils are characterized by their granules, which contain various proteins and enzymes that are toxic to parasites and can contribute to inflammation.

Eosinophils are typically associated with allergic reactions, asthma, and other inflammatory conditions. They can also be involved in the body's response to certain infections, particularly those caused by parasites such as worms. In some cases, elevated levels of eosinophils in the blood or tissues (a condition called eosinophilia) can indicate an underlying medical condition, such as a parasitic infection, autoimmune disorder, or cancer.

Eosinophils are named for their staining properties - they readily take up eosin dye, which is why they appear pink or red under the microscope. They make up only about 1-6% of circulating white blood cells in healthy individuals, but their numbers can increase significantly in response to certain triggers.

Octoxynol is a type of surfactant, which is a compound that lowers the surface tension between two substances, such as oil and water. It is a synthetic chemical that is composed of repeating units of octylphenoxy polyethoxy ethanol.

Octoxynol is commonly used in medical applications as a spermicide, as it is able to disrupt the membrane of sperm cells and prevent them from fertilizing an egg. It is found in some contraceptive creams, gels, and films, and is also used as an ingredient in some personal care products such as shampoos and toothpastes.

In addition to its use as a spermicide, octoxynol has been studied for its potential antimicrobial properties, and has been shown to have activity against certain viruses, bacteria, and fungi. However, its use as an antimicrobial agent is not widely established.

It's important to note that octoxynol can cause irritation and allergic reactions in some people, and should be used with caution. Additionally, there is some concern about the potential for octoxynol to have harmful effects on the environment, as it has been shown to be toxic to aquatic organisms at high concentrations.

No FAQ available that match "lysophospholipase"

No images available that match "lysophospholipase"