Stem cells from which B-LYMPHOCYTES; T-LYMPHOCYTES; NATURAL KILLER CELLS; and some DENDRITIC CELLS derive.
Progenitor cells from which all blood cells derive.
Formation of LYMPHOCYTES and PLASMA CELLS from the lymphoid stem cells which develop from the pluripotent HEMATOPOIETIC STEM CELLS in the BONE MARROW. These lymphoid stem cells differentiate into T-LYMPHOCYTES; B-LYMPHOCYTES; PLASMA CELLS; or NK-cells (KILLER CELLS, NATURAL) depending on the organ or tissues (LYMPHOID TISSUE) to which they migrate.
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
Stem cells derived from HEMATOPOIETIC STEM CELLS. Derived from these myeloid progenitor cells are the MEGAKARYOCYTES; ERYTHROID CELLS; MYELOID CELLS; and some DENDRITIC CELLS.
Lymphocyte progenitor cells that are restricted in their differentiation potential to the B lymphocyte lineage. The pro-B cell stage of B lymphocyte development precedes the pre-B cell stage.
Cell surface receptors that are specific for INTERLEUKIN-7. They are present on T-LYMPHOCYTES and B-LYMPHOCYTE precursors. The receptors are heterodimeric proteins consisting of the INTERLEUKIN-5 RECEPTOR ALPHA SUBUNIT and the CYTOKINE RECEPTOR COMMON BETA SUBUNIT.
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
A cytologic technique for measuring the functional capacity of stem cells by assaying their activity.
The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY).
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Specialized stem cells that are committed to give rise to cells that have a particular function; examples are MYOBLASTS; MYELOID PROGENITOR CELLS; and skin stem cells. (Stem Cells: A Primer [Internet]. Bethesda (MD): National Institutes of Health (US); 2000 May [cited 2002 Apr 5]. Available from: http://www.nih.gov/news/stemcell/primer.htm)
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
A transcription factor that is essential for CELL DIFFERENTIATION of B-LYMPHOCYTES. It functions both as a transcriptional activator and repressor to mediate B-cell commitment.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A cytokine produced by bone marrow stromal cells that promotes the growth of B-LYMPHOCYTE precursors and is co-mitogenic with INTERLEUKIN-2 for mature T-LYMPHOCYTE activation.
A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Formation of MYELOID CELLS from the pluripotent HEMATOPOIETIC STEM CELLS in the BONE MARROW via MYELOID STEM CELLS. Myelopoiesis generally refers to the production of leukocytes in blood, such as MONOCYTES and GRANULOCYTES. This process also produces precursor cells for MACROPHAGE and DENDRITIC CELLS found in the lymphoid tissue.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
A protein-tyrosine kinase receptor that is specific for STEM CELL FACTOR. This interaction is crucial for the development of hematopoietic, gonadal, and pigment stem cells. Genetic mutations that disrupt the expression of PROTO-ONCOGENE PROTEINS C-KIT are associated with PIEBALDISM, while overexpression or constitutive activation of the c-kit protein-tyrosine kinase is associated with tumorigenesis.
The classes of BONE MARROW-derived blood cells in the monocytic series (MONOCYTES and their precursors) and granulocytic series (GRANULOCYTES and their precursors).
Cell separation is the process of isolating and distinguishing specific cell types or individual cells from a heterogeneous mixture, often through the use of physical or biological techniques.
A receptor tyrosine kinase that is involved in HEMATOPOIESIS. It is closely related to FMS PROTO-ONCOGENE PROTEIN and is commonly mutated in acute MYELOID LEUKEMIA.
Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery.
Self-renewing cells that generate the main phenotypes of the nervous system in both the embryo and adult. Neural stem cells are precursors to both NEURONS and NEUROGLIA.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
Connective tissue cells of an organ found in the loose connective tissue. These are most often associated with the uterine mucosa and the ovary as well as the hematopoietic system and elsewhere.
A group of lymphocyte surface antigens located on mouse LYMPHOCYTES. Specific Ly antigens are useful markers for distinguishing subpopulations of lymphocytes.
Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).
The process of generating white blood cells (LEUKOCYTES) from the pluripotent HEMATOPOIETIC STEM CELLS of the BONE MARROW. There are two significant pathways to generate various types of leukocytes: MYELOPOIESIS, in which leukocytes in the blood are derived from MYELOID STEM CELLS, and LYMPHOPOIESIS, in which leukocytes of the lymphatic system (LYMPHOCYTES) are generated from lymphoid stem cells.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Differentiation antigens expressed on pluripotential hematopoietic cells, most human thymocytes, and a major subset of peripheral blood T-lymphocytes. They have been implicated in integrin-mediated cellular adhesion and as signalling receptors on T-cells.
A notch receptor that interacts with a variety of ligands and regulates SIGNAL TRANSDUCTION PATHWAYS for multiple cellular processes. It is widely expressed during EMBRYOGENESIS and is essential for EMBRYONIC DEVELOPMENT.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry.
A classification of lymphocytes based on structurally or functionally different populations of cells.
The transfer of STEM CELLS from one individual to another within the same species (TRANSPLANTATION, HOMOLOGOUS) or between species (XENOTRANSPLANTATION), or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). The source and location of the stem cells determines their potency or pluripotency to differentiate into various cell types.
The cells in the erythroid series derived from MYELOID PROGENITOR CELLS or from the bi-potential MEGAKARYOCYTE-ERYTHROID PROGENITOR CELLS which eventually give rise to mature RED BLOOD CELLS. The erythroid progenitor cells develop in two phases: erythroid burst-forming units (BFU-E) followed by erythroid colony-forming units (CFU-E); BFU-E differentiate into CFU-E on stimulation by ERYTHROPOIETIN, and then further differentiate into ERYTHROBLASTS when stimulated by other factors.
A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN repeats in their cytoplasmic domains. The cytoplasmic domain of notch receptors is released upon ligand binding and translocates to the CELL NUCLEUS where it acts as transcription factor.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Techniques used to add in exogenous gene sequence such as mutated genes; REPORTER GENES, to study mechanisms of gene expression; or regulatory control sequences, to study effects of temporal changes to GENE EXPRESSION.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
A classification of B-lymphocytes based on structurally or functionally different populations of cells.
The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION.
Formation of NEURONS which involves the differentiation and division of STEM CELLS in which one or both of the daughter cells become neurons.
The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN.
Differentiation antigens expressed on B-lymphocytes and B-cell precursors. They are involved in regulation of B-cell proliferation.
Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms.
A group of differentiation surface antigens, among the first to be discovered on thymocytes and T-lymphocytes. Originally identified in the mouse, they are also found in other species including humans, and are expressed on brain neurons and other cells.
A technique of culturing mixed cell types in vitro to allow their synergistic or antagonistic interactions, such as on CELL DIFFERENTIATION or APOPTOSIS. Coculture can be of different types of cells, tissues, or organs from normal or disease states.
Cells with high proliferative and self renewal capacities derived from adults.
Specialized tissues that are components of the lymphatic system. They provide fixed locations within the body where a variety of LYMPHOCYTES can form, mature and multiply. The lymphoid tissues are connected by a network of LYMPHATIC VESSELS.
Mouse strains constructed to possess identical genotypes except for a difference at a single gene locus.
The release of stem cells from the bone marrow into the peripheral blood circulation for the purpose of leukapheresis, prior to stem cell transplantation. Hematopoietic growth factors or chemotherapeutic agents often are used to stimulate the mobilization.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
A type VI intermediate filament protein expressed mostly in nerve cells where it is associated with the survival, renewal and mitogen-stimulated proliferation of neural progenitor cells.
A glycoprotein of MW 25 kDa containing internal disulfide bonds. It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
Recombinases involved in the rearrangement of immunity-related GENES such as IMMUNOGLOBULIN GENES and T-CELL RECEPTOR GENES.
A hematopoietic growth factor and the ligand of the cell surface c-kit protein (PROTO-ONCOGENE PROTEINS C-KIT). It is expressed during embryogenesis and is a growth factor for a number of cell types including the MAST CELLS and the MELANOCYTES in addition to the HEMATOPOIETIC STEM CELLS.
Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system.
The physiological renewal, repair, or replacement of tissue.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Mice bearing mutant genes which are phenotypically expressed in the animals.
Established cell cultures that have the potential to propagate indefinitely.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
A CXC chemokine that is chemotactic for T-LYMPHOCYTES and MONOCYTES. It has specificity for CXCR4 RECEPTORS. Two isoforms of CXCL12 are produced by alternative mRNA splicing.
Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS.
A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells.
The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Enzyme that is a major constituent of kidney brush-border membranes and is also present to a lesser degree in the brain and other tissues. It preferentially catalyzes cleavage at the amino group of hydrophobic residues of the B-chain of insulin as well as opioid peptides and other biologically active peptides. The enzyme is inhibited primarily by EDTA, phosphoramidon, and thiorphan and is reactivated by zinc. Neprilysin is identical to common acute lymphoblastic leukemia antigen (CALLA Antigen), an important marker in the diagnosis of human acute lymphocytic leukemia. There is no relationship with CALLA PLANT.
A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF.
Methods for maintaining or growing CELLS in vitro.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Cells derived from a FETUS that retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
Bone-marrow-derived, non-hematopoietic cells that support HEMATOPOETIC STEM CELLS. They have also been isolated from other organs and tissues such as UMBILICAL CORD BLOOD, umbilical vein subendothelium, and WHARTON JELLY. These cells are considered to be a source of multipotent stem cells because they include subpopulations of mesenchymal stem cells.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
The parent cells that give rise to both cells of the GRANULOCYTE lineage and cells of the monocyte/macrophage lineage.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors.
An encapsulated lymphatic organ through which venous blood filters.
Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION).
The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction.
The number of LYMPHOCYTES per unit volume of BLOOD.
Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
Very large BONE MARROW CELLS which release mature BLOOD PLATELETS.
Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
These growth factors comprise a family of hematopoietic regulators with biological specificities defined by their ability to support proliferation and differentiation of blood cells of different lineages. ERYTHROPOIETIN and the COLONY-STIMULATING FACTORS belong to this family. Some of these factors have been studied and used in the treatment of chemotherapy-induced neutropenia, myelodysplastic syndromes, and bone marrow failure syndromes.
The preparation of leukocyte concentrates with the return of red cells and leukocyte-poor plasma to the donor.
Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.
A particular zone of tissue composed of a specialized microenvironment where stem cells are retained in a undifferentiated, self-renewable state.
The cells found in the body fluid circulating throughout the CARDIOVASCULAR SYSTEM.
The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Elements of limited time intervals, contributing to particular results or situations.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages.
Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice.
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES.
A neoplasm characterized by abnormalities of the lymphoid cell precursors leading to excessive lymphoblasts in the marrow and other organs. It is the most common cancer in children and accounts for the vast majority of all childhood leukemias.
Cavity in each of the CEREBRAL HEMISPHERES derived from the cavity of the embryonic NEURAL TUBE. They are separated from each other by the SEPTUM PELLUCIDUM, and each communicates with the THIRD VENTRICLE by the foramen of Monro, through which also the choroid plexuses (CHOROID PLEXUS) of the lateral ventricles become continuous with that of the third ventricle.

The developmental program of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways. (1/116)

Two distinct dendritic cell (DC) subsets, conventional DCs (cDCs) and plasmacytoid DCs (pDCs), have been shown to develop via either the myeloid or the lymphoid pathway in murine hematopoiesis. Lineage-specific phenotypes or functions of "myeloid" and "lymphoid" DCs, however, still remain elusive. Furthermore, such analysis has been particularly difficult in humans, due to lack of an assay system appropriate for the analysis of human stem and progenitor cell differentiation. Here, using a highly efficient xenotransplantation model, we extensively analyze the origin and the molecular signature of human DCs. Purified human common myeloid progenitors (CMPs) and common lymphoid progenitors (CLPs) were intravenously transplanted into nonobese diabetic-severe combined immunodeficiency (NOD-scid)/IL2rgamma(null) newborn mice. CMPs and CLPs displayed significant expansion in the xenogeneic host, and human cDC and pDC progeny were isolatable. Strikingly, each human DC subset possessed indistinguishable expression patterns of surface phenotype and gene transcripts regardless of their CMP or CLP origin, even at the genome-wide level. Thus, cDC and pDC normally develop after cells have committed to the myeloid or the lymphoid lineage in human hematopoiesis, while their transcriptional signatures are well preserved irrespective of their lineage origin. We propose that human DCs use unique and flexible developmental programs that cannot be categorized into the conventional myeloid or lymphoid pathway.  (+info)

Increased TSLP availability restores T- and B-cell compartments in adult IL-7 deficient mice. (2/116)

Interleukin 7 (IL-7) plays a crucial role in adult lymphopoiesis, while in fetal life its effect can be partially compensated by TSLP. Whether adult hematopoietic progenitor cells are unresponsive to TSLP or whether TSLP is less available in adult microenvironments is still a matter of debate. Here, we show that increased TSLP availability through transgene (Tg) expression fully restored lymphopoiesis in IL-7-deficient mice: it rescued B-cell development, increased thymic and splenic cellularities, and restored double-negative (DN) thymocytes, alphabeta and gammadelta T-cell generation, and all peripheral lymphoid compartments. Analysis of bone marrow chimeras demonstrated that hematopoietic progenitor cells from adult wild-type mice efficiently differentiated toward B- and T-cell lineages in lethally irradiated IL-7 deficient mice provided TSLP Tg was expressed in these mice. In vitro, TSLP promoted the differentiation of uncommitted adult bone marrow progenitors toward B and T lineages and the further differentiation of DN1 and DN2 thymocytes. Altogether, our results show that adult hematopoietic cells are TSLP responsive and that TSLP can sustain long-term adult lymphopoiesis.  (+info)

The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. (3/116)

Aging is associated with reduced numbers of all thymocyte sub-populations, including early T-cell progenitors. However, it is unclear if this is due to inadequate recruitment of lymphohematopoietic progenitor cells (LPCs) to the aged thymus or to abnormal development of T cells within the thymus. We found that LPCs from young mice were recruited equally well to the thymi of young or aged mice and that thymic stromal cells (TSCs) from young and old mice expressed similar levels of P-selectin and CCL25, which are believed to mediate recruitment of LPCs to the adult thymus. However, the number of recruited thymocytes in old thymus was markedly reduced after two weeks, indicating that T-cell development or proliferation is defective in the aged thymus. We also found that LPCs from aged and young mice have similar capacities to seed a fetal thymus that was transplanted under the kidney capsule. Thymic epithelial cells (TECs) in aged mice had lower proliferative capacity and higher rate of apoptosis, compared with findings in young animals. In addition, immunofluorescence staining with antibodies to cortical and medullary TECs revealed that aged thymi had a disorganized thymic stromal architecture, combined with reduced cellularity of the medulla, and apoptosis of thymocyte sub-populations in the medullary microenvironment was increased, compared with that in young mice. We conclude that aging does not impair recruitment of LPCs to the thymus, but is characterized by abnormalities in thymic epithelial architecture, especially medullary TEC function that may provide sub-optimal support for thymic development of LPCs.  (+info)

Cbfbeta-SMMHC impairs differentiation of common lymphoid progenitors and reveals an essential role for RUNX in early B-cell development. (4/116)

The core-binding factor (CBF)-associated leukemia fusion protein CBFbeta-SMMHC impairs myeloid and lymphoid differentiation. By inhibiting RUNX function, the fusion oncoprotein predisposes specifically to acute myeloid leukemia in both patients and mouse models. We have shown that Cbfbeta-SMMHC expression leads to a sustained reduction of circulating B lymphocytes in the mouse. In this study, we demonstrate that the activation of Cbfbeta-SMMHC reduces pre-pro-B cells approximately 3-fold and pre-B cells more than 10-fold and that this differentiation block is cell-autonomous. The reduction of pre-pro-B cells coincided with an increase in apoptosis in this population. The number of common lymphoid progenitors (CLPs) were not affected; however, the expression of critical early B-cell factors Ebf1, Tcfe2a, and Pax5 was significantly reduced. In addition, Cbfbeta-SMMHC reduced Rag1 and Rag2 expression and impaired V(D)J recombination in the CLPs. Furthermore, CLPs expressing Cbfbeta-SMMHC also show inhibition of B cell-specific genes Cd79a, Igll1, VpreB1, and Blk. These results demonstrate that CBF/RUNX function is essential for the function of CLPs, the survival of pre-pro-B cells, and the establishment of a B lineage-specific transcriptional program. This study also provides a mechanistic basis for the myeloid-lineage bias of CBFbeta-SMMHC-associated leukemia.  (+info)

Identification of distinct prognostic subgroups in low- and intermediate-1-risk myelodysplastic syndromes by flow cytometry. (5/116)

The World Health Organization (WHO) classification contributes to refined classification and prognostication of myelodysplastic syndromes (MDSs). Flow cytometry might add significantly to diagnostic and prognostic criteria. Our analysis of bone marrow samples from 50 patients with MDS showed aberrant expression of differentiation antigens in the myelomonocytic lineage. This also accounted for refractory anemia (RA) with or without ringed sideroblasts (RS), indicating multilineage dysplasia. In 38% of patients, CD34(+) myeloid blasts expressed CD5, CD7, or CD56. Flow cytometry data were translated into a numerical MDS flow-score. Flow-scores increased significantly from RA with or without RS, refractory cytopenia with multilineage dysplasia (RCMD) with or without RS up to refractory anemia with excess of blasts-1 (RAEB-1) and RAEB-2. No significant differences were observed between WHO cytogenetic subgroups. Flow-scores were highly heterogeneous within International Prognostic Scoring System (IPSS) subgroups. Patients in progression to advanced MDS or acute myeloid leukemia had a significantly higher flow-score compared with non-transfusion-dependent patients. In 60% of patients with transfusion dependency or progressive disease, myeloid blasts expressed CD7 or CD56, in contrast to only 9% of non-transfusion-dependent patients. Moreover, all patients with pure RA with or without RS with aberrant myeloid blasts showed an adverse clinical course. In conclusion, flow cytometry in MDS identified aberrancies in the myelomonocytic lineage not otherwise determined by cytomorphology. In addition, flow cytometry identified patients at risk for transfusion dependency and/or progressive disease independent of known risk groups, which might have impact on treatment decisions and the prognostic scoring system in the near future.  (+info)

Constitutive Notch signalling promotes CD4 CD8 thymocyte differentiation in the absence of the pre-TCR complex, by mimicking pre-TCR signals. (6/116)

Notch1 signalling is essential for the commitment of multipotent lymphocyte precursors towards the alphabeta T-cell lineage and plays an important role in regulating beta-selection in CD4(-)CD8(-) double-negative (DN) thymocytes. However, the role played by Notch in promoting the development of CD4(+)CD8(+) double-positive (DP) thymocytes is poorly characterized. Here, we demonstrate that the introduction of a constitutively active Notch1 (ICN1) construct into RAG(-/-) lymphocyte precursors resulted in the generation of DP thymocytes in in vitro T-cell culture systems. Notably, developmental rescue was dependent not only on the presence of an intact Notch1 RAM domain but also on Delta-like signals, as ICN1-induced DP development in RAG(-/-) thymocytes occurred within an intact thymus or in OP9-DL1 co-cultures, but not in OP9-control co-cultures. Interestingly, ICN1 expression in SLP-76(-/-) precursors resulted in only a minimal developmental rescue to the immature CD8(+) single-positive stage, suggesting that Notch is utilizing the same signalling pathway as the pre-TCR complex. In support of this, ICN1 introduction resulted in the activation of the ERK-MAPK-signalling cascade in RAG(-/-) thymocytes. Taken together, these studies demonstrate that constitutive Notch signalling can bypass beta-selection during early T-cell development by inducing pre-TCR-like signals within a T-cell-promoting environment.  (+info)

The Y-box binding protein YB-1 is associated with progressive disease and mediates survival and drug resistance in multiple myeloma. (7/116)

Current knowledge about molecular mechanisms underlying disease progression and drug resistance in multiple myeloma (MM) is still limited. Here, we analyzed the potential pathogenetic role of the Y-box binding protein YB-1 in MM. YB-1 is a member of the cold-shock domain protein superfamily and involved in various cellular functions such as proliferation. Immunohistochemical analyses revealed that neither normal bone marrow (BM) plasma cells (PCs), premalignant PCs of patients with monoclonal gammopathy of unknown significance (MGUS), nor MM cells with a mature morphology showed expression of YB-1 in situ. In contrast, YB-1 was strongly expressed in situ in normal PC precursor blasts as well as in a MM subset and in vitro in all of the evaluated MM cell lines. The YB-1-expressing MM cells were characterized by an immature morphology and a highly proliferative phenotype as defined by Ki 67 expression. We observed that siRNA-mediated knockdown of YB-1 decreased proliferation and induced apoptosis in MM cells even in the presence of BM stromal cells. Furthermore, we found that overexpression of YB-1 mediated resistance toward doxorubicin-induced apoptosis in MM cells. Thus, YB-1 contributes to disease progression, survival, and drug resistance in MM and might therefore provide an attractive therapeutic target.  (+info)

Pregnancy allows the transfer and differentiation of fetal lymphoid progenitors into functional T and B cells in mothers. (8/116)

T lymphocytes of fetal origin found in maternal circulation after gestation have been reported as a possible cause for autoimmune diseases. During gestation, mothers acquire CD34+CD38+ cells of fetal origin that persist decades. In this study, we asked whether fetal T and B cells could develop from these progenitors in the maternal thymus and bone marrow during and after gestation. RAG-/--deficient female mice (Ly5.2) were mated to congenic wild-type Ly5.1 mice (RAG+/+). Fetal double-positive T cells (CD4+CD8+) with characteristic TCR and IL-7R expression patterns could be recovered in maternal thymus during the resulting pregnancies. We made similar observations in the thymus of immunocompetent mothers. Such phenomenon was observed overall in 12 of 68 tested mice compared with 0 of 51 controls (p=0.001). T cells could also be found in maternal spleen and produced IFN-gamma in the presence of an allogenic or an Ag-specific stimulus. Similarly, CD19+IgM+ fetal B cells as well as plasma Igs could be found in maternal RAG-/- bone marrow and spleen after similar matings. Our results suggest that during gestation mothers acquire fetal lymphoid progenitors that develop into functional T cells. This fetal cell microchimerism may have a direct impact on maternal health.  (+info)

Lymphoid progenitor cells are a type of hematopoietic (blood-forming) stem cells that give rise to lymphocytes, which are the white blood cells responsible for immune responses. These progenitor cells differentiate into precursors of B cells, T cells, and natural killer (NK) cells in the bone marrow and thymus. They have the ability to self-renew and generate multiple cell lineages, playing a crucial role in the development and maintenance of the immune system.

Hematopoietic stem cells (HSCs) are immature, self-renewing cells that give rise to all the mature blood and immune cells in the body. They are capable of both producing more hematopoietic stem cells (self-renewal) and differentiating into early progenitor cells that eventually develop into red blood cells, white blood cells, and platelets. HSCs are found in the bone marrow, umbilical cord blood, and peripheral blood. They have the ability to repair damaged tissues and offer significant therapeutic potential for treating various diseases, including hematological disorders, genetic diseases, and cancer.

Lymphopoiesis is the process of formation and development of lymphocytes, which are a type of white blood cell that plays a crucial role in the immune system. Lymphocytes include B cells, T cells, and natural killer (NK) cells, which are responsible for defending the body against infectious diseases and cancer.

Lymphopoiesis occurs in the bone marrow and lymphoid organs such as the spleen, lymph nodes, and tonsils. In the bone marrow, hematopoietic stem cells differentiate into common lymphoid progenitors (CLPs), which then give rise to B cells, T cells, and NK cells through a series of intermediate stages.

B cells mature in the bone marrow, while T cells mature in the thymus gland. Once matured, these lymphocytes migrate to the peripheral lymphoid organs where they can encounter foreign antigens and mount an immune response. The process of lymphopoiesis is tightly regulated by various growth factors, cytokines, and transcription factors that control the differentiation, proliferation, and survival of lymphocytes.

According to the National Institutes of Health (NIH), stem cells are "initial cells" or "precursor cells" that have the ability to differentiate into many different cell types in the body. They can also divide without limit to replenish other cells for as long as the person or animal is still alive.

There are two main types of stem cells: embryonic stem cells, which come from human embryos, and adult stem cells, which are found in various tissues throughout the body. Embryonic stem cells have the ability to differentiate into all cell types in the body, while adult stem cells have more limited differentiation potential.

Stem cells play an essential role in the development and repair of various tissues and organs in the body. They are currently being studied for their potential use in the treatment of a wide range of diseases and conditions, including cancer, diabetes, heart disease, and neurological disorders. However, more research is needed to fully understand the properties and capabilities of these cells before they can be used safely and effectively in clinical settings.

'Cell lineage' is a term used in biology and medicine to describe the developmental history or relationship of a cell or group of cells to other cells, tracing back to the original progenitor or stem cell. It refers to the series of cell divisions and differentiation events that give rise to specific types of cells in an organism over time.

In simpler terms, cell lineage is like a family tree for cells, showing how they are related to each other through a chain of cell division and specialization events. This concept is important in understanding the development, growth, and maintenance of tissues and organs in living beings.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Myeloid progenitor cells are a type of precursor cells that originate from hematopoietic stem cells (HSCs) in the bone marrow. These cells have the ability to differentiate into various types of blood cells, including red blood cells, platelets, and different kinds of white blood cells, specifically granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes. Myeloid progenitor cells are crucial for the maintenance of normal hematopoiesis and immune function. Abnormalities in myeloid progenitor cell differentiation or function can lead to various hematological disorders such as leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms.

B-lymphoid precursor cells, also known as progenitor B cells, are hematopoietic stem cells that have committed to the B-cell lineage and are in the process of differentiating into mature B cells. These cells originate in the bone marrow and undergo a series of developmental stages, including commitment to the B-cell lineage, rearrangement of immunoglobulin genes, expression of surface immunoglobulins, and selection for a functional B cell receptor.

B-lymphoid precursor cells can be further divided into several subsets based on their stage of differentiation and the expression of specific cell surface markers. These subsets include early pro-B cells, late pro-B cells, pre-B cells, and immature B cells. Each subset represents a distinct stage in B-cell development and is characterized by unique genetic and epigenetic features that regulate its differentiation and function.

Abnormalities in the development and differentiation of B-lymphoid precursor cells can lead to various hematological disorders, including leukemias and lymphomas. Therefore, understanding the biology of these cells is crucial for developing new therapeutic strategies for the treatment of these diseases.

Interleukin-7 (IL-7) receptors are a type of cell surface receptor that play a crucial role in the development and functioning of the immune system. The IL-7 receptor is a heterodimer, consisting of two subunits: the alpha chain (CD127) and the common gamma chain (CD132).

IL-7 is a cytokine that is involved in the survival, proliferation, and differentiation of T cells, B cells, and other immune cells. The binding of IL-7 to its receptor leads to the activation of several signaling pathways, including the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway, which regulates gene expression and cellular responses.

Mutations in the genes encoding the IL-7 receptor subunits have been associated with various immune disorders, such as severe combined immunodeficiency (SCID), autoimmune diseases, and certain types of cancer. For example, loss-of-function mutations in the CD127 gene can lead to T cell deficiencies, while gain-of-function mutations in the common gamma chain gene have been linked to leukemia and lymphoma.

Therefore, a proper understanding of IL-7 receptors and their signaling pathways is essential for developing targeted therapies for various immune-related diseases.

CD34 is a type of antigen that is found on the surface of certain cells in the human body. Specifically, CD34 antigens are present on hematopoietic stem cells, which are immature cells that can develop into different types of blood cells. These stem cells are found in the bone marrow and are responsible for producing red blood cells, white blood cells, and platelets.

CD34 antigens are a type of cell surface marker that is used in medical research and clinical settings to identify and isolate hematopoietic stem cells. They are also used in the development of stem cell therapies and transplantation procedures. CD34 antigens can be detected using various laboratory techniques, such as flow cytometry or immunohistochemistry.

It's important to note that while CD34 is a useful marker for identifying hematopoietic stem cells, it is not exclusive to these cells and can also be found on other cell types, such as endothelial cells that line blood vessels. Therefore, additional markers are often used in combination with CD34 to more specifically identify and isolate hematopoietic stem cells.

A Colony-Forming Units (CFU) assay is a type of laboratory test used to measure the number of viable, or living, cells in a sample. It is commonly used to enumerate bacteria, yeast, and other microorganisms. The test involves placing a known volume of the sample onto a nutrient-agar plate, which provides a solid growth surface for the cells. The plate is then incubated under conditions that allow the cells to grow and form colonies. Each colony that forms on the plate represents a single viable cell from the original sample. By counting the number of colonies and multiplying by the known volume of the sample, the total number of viable cells in the sample can be calculated. This information is useful in a variety of applications, including monitoring microbial populations, assessing the effectiveness of disinfection procedures, and studying microbial growth and survival.

Hematopoiesis is the process of forming and developing blood cells. It occurs in the bone marrow and includes the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis). This process is regulated by various growth factors, hormones, and cytokines. Hematopoiesis begins early in fetal development and continues throughout a person's life. Disorders of hematopoiesis can result in conditions such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Multipotent stem cells are a type of stem cell that have the ability to differentiate into multiple cell types, but are more limited than pluripotent stem cells. These stem cells are found in various tissues and organs throughout the body, including bone marrow, adipose tissue, and dental pulp. They can give rise to a number of different cell types within their own germ layer (endoderm, mesoderm, or ectoderm), but cannot cross germ layer boundaries. For example, multipotent stem cells found in bone marrow can differentiate into various blood cells such as red and white blood cells, but they cannot differentiate into nerve cells or liver cells. These stem cells play important roles in tissue repair and regeneration, and have potential therapeutic applications in regenerative medicine.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a key role in the immune system's response to infection. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as bacteria and viruses.

When a B-lymphocyte encounters a pathogen, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies specific to the antigens on the surface of the pathogen. These antibodies bind to the pathogen, marking it for destruction by other immune cells such as neutrophils and macrophages.

B-lymphocytes also have a role in presenting antigens to T-lymphocytes, another type of white blood cell involved in the immune response. This helps to stimulate the activation and proliferation of T-lymphocytes, which can then go on to destroy infected cells or help to coordinate the overall immune response.

Overall, B-lymphocytes are an essential part of the adaptive immune system, providing long-lasting immunity to previously encountered pathogens and helping to protect against future infections.

B-cell-specific activator protein, also known as BASP1, is a protein that belongs to the family of intracellular signaling molecules called "activator proteins." It is specifically expressed in B cells, which are a type of white blood cell that plays a central role in the immune system.

BASP1 has been shown to interact with several other proteins involved in signal transduction pathways and regulation of gene expression. It has been implicated in various cellular processes, including cell proliferation, differentiation, and survival. Dysregulation of BASP1 has been associated with certain diseases, such as cancer and autoimmune disorders.

In B cells, BASP1 is involved in regulating the activation and differentiation of these cells in response to antigen stimulation. It has been shown to interact with the B-cell receptor (BCR) complex and modulate its signaling pathways. Additionally, BASP1 may play a role in the development and progression of certain B-cell malignancies, such as lymphomas and leukemias.

Overall, while further research is needed to fully understand the functions and mechanisms of BASP1 in B cells, it is clear that this protein plays an important role in regulating immune responses and maintaining homeostasis in the body.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Interleukin-7 (IL-7) is a small signaling protein that is involved in the development and function of immune cells, particularly T cells and B cells. It is produced by stromal cells found in the bone marrow, thymus, and lymphoid organs. IL-7 binds to its receptor, IL-7R, which is expressed on the surface of immature T cells and B cells, as well as some mature immune cells.

IL-7 plays a critical role in the survival, proliferation, and differentiation of T cells and B cells during their development in the thymus and bone marrow, respectively. It also helps to maintain the homeostasis of these cell populations in peripheral tissues by promoting their survival and preventing apoptosis.

In addition to its role in immune cell development and homeostasis, IL-7 has been shown to have potential therapeutic applications in the treatment of various diseases, including cancer, infectious diseases, and autoimmune disorders. However, further research is needed to fully understand its mechanisms of action and potential side effects before it can be widely used in clinical settings.

The thymus gland is an essential organ of the immune system, located in the upper chest, behind the sternum and surrounding the heart. It's primarily active until puberty and begins to shrink in size and activity thereafter. The main function of the thymus gland is the production and maturation of T-lymphocytes (T-cells), which are crucial for cell-mediated immunity, helping to protect the body from infection and cancer.

The thymus gland provides a protected environment where immune cells called pre-T cells develop into mature T cells. During this process, they learn to recognize and respond appropriately to foreign substances while remaining tolerant to self-tissues, which is crucial for preventing autoimmune diseases.

Additionally, the thymus gland produces hormones like thymosin that regulate immune cell activities and contribute to the overall immune response.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Myelopoiesis is the process of formation and development of myeloid cells (a type of blood cell) within the bone marrow. This includes the production of red blood cells (erythropoiesis), platelets (thrombopoiesis), and white blood cells such as granulocytes (neutrophils, eosinophils, basophils), monocytes, and mast cells. Myelopoiesis is a continuous process that is regulated by various growth factors and hormones to maintain the normal levels of these cells in the body. Abnormalities in myelopoiesis can lead to several hematological disorders like anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Proto-oncogene proteins c-kit, also known as CD117 or stem cell factor receptor, are transmembrane receptor tyrosine kinases that play crucial roles in various biological processes, including cell survival, proliferation, differentiation, and migration. They are encoded by the c-KIT gene located on human chromosome 4q12.

These proteins consist of an extracellular ligand-binding domain, a transmembrane domain, and an intracellular tyrosine kinase domain. The binding of their ligand, stem cell factor (SCF), leads to receptor dimerization, autophosphorylation, and activation of several downstream signaling pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT.

Abnormal activation or mutation of c-kit proto-oncogene proteins has been implicated in the development and progression of various malignancies, including gastrointestinal stromal tumors (GISTs), acute myeloid leukemia (AML), mast cell diseases, and melanoma. Targeted therapies against c-kit, such as imatinib mesylate (Gleevec), have shown promising results in the treatment of these malignancies.

Myeloid cells are a type of immune cell that originate from the bone marrow. They develop from hematopoietic stem cells, which can differentiate into various types of blood cells. Myeloid cells include monocytes, macrophages, granulocytes (such as neutrophils, eosinophils, and basophils), dendritic cells, and mast cells. These cells play important roles in the immune system, such as defending against pathogens, modulating inflammation, and participating in tissue repair and remodeling.

Myeloid cell development is a tightly regulated process that involves several stages of differentiation, including the commitment to the myeloid lineage, proliferation, and maturation into specific subtypes. Dysregulation of myeloid cell development or function can contribute to various diseases, such as infections, cancer, and autoimmune disorders.

Cell separation is a process used to separate and isolate specific cell types from a heterogeneous mixture of cells. This can be accomplished through various physical or biological methods, depending on the characteristics of the cells of interest. Some common techniques for cell separation include:

1. Density gradient centrifugation: In this method, a sample containing a mixture of cells is layered onto a density gradient medium and then centrifuged. The cells are separated based on their size, density, and sedimentation rate, with denser cells settling closer to the bottom of the tube and less dense cells remaining near the top.

2. Magnetic-activated cell sorting (MACS): This technique uses magnetic beads coated with antibodies that bind to specific cell surface markers. The labeled cells are then passed through a column placed in a magnetic field, which retains the magnetically labeled cells while allowing unlabeled cells to flow through.

3. Fluorescence-activated cell sorting (FACS): In this method, cells are stained with fluorochrome-conjugated antibodies that recognize specific cell surface or intracellular markers. The stained cells are then passed through a laser beam, which excites the fluorophores and allows for the detection and sorting of individual cells based on their fluorescence profile.

4. Filtration: This simple method relies on the physical size differences between cells to separate them. Cells can be passed through filters with pore sizes that allow smaller cells to pass through while retaining larger cells.

5. Enzymatic digestion: In some cases, cells can be separated by enzymatically dissociating tissues into single-cell suspensions and then using various separation techniques to isolate specific cell types.

These methods are widely used in research and clinical settings for applications such as isolating immune cells, stem cells, or tumor cells from biological samples.

FMS-like tyrosine kinase 3 (FLT3) is a type of receptor tyrosine kinase, which is a type of enzyme that plays a role in signal transduction within cells. FLT3 is found on the surface of certain types of blood cells, including hematopoietic stem cells and some types of leukemia cells.

FLT3 is activated when it binds to its ligand, FLT3L, leading to activation of various signaling pathways that are involved in cell survival, proliferation, and differentiation. Mutations in the FLT3 gene can lead to constitutive activation of the receptor, even in the absence of its ligand, resulting in uncontrolled cell growth and division. Such mutations are commonly found in certain types of leukemia, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), and are associated with a poor prognosis.

FLT3 inhibitors are a class of drugs that are being developed to target FLT3 mutations in leukemia cells, with the goal of blocking the abnormal signaling pathways that contribute to the growth and survival of these cancer cells.

Fetal blood refers to the blood circulating in a fetus during pregnancy. It is essential for the growth and development of the fetus, as it carries oxygen and nutrients from the placenta to the developing tissues and organs. Fetal blood also removes waste products, such as carbon dioxide, from the fetal tissues and transports them to the placenta for elimination.

Fetal blood has several unique characteristics that distinguish it from adult blood. For example, fetal hemoglobin (HbF) is the primary type of hemoglobin found in fetal blood, whereas adults primarily have adult hemoglobin (HbA). Fetal hemoglobin has a higher affinity for oxygen than adult hemoglobin, which allows it to more efficiently extract oxygen from the maternal blood in the placenta.

Additionally, fetal blood contains a higher proportion of reticulocytes (immature red blood cells) and nucleated red blood cells compared to adult blood. These differences reflect the high turnover rate of red blood cells in the developing fetus and the need for rapid growth and development.

Examination of fetal blood can provide important information about the health and well-being of the fetus during pregnancy. For example, fetal blood sampling (also known as cordocentesis or percutaneous umbilical blood sampling) can be used to diagnose genetic disorders, infections, and other conditions that may affect fetal development. However, this procedure carries risks, including preterm labor, infection, and fetal loss, and is typically only performed when there is a significant risk of fetal compromise or when other diagnostic tests have been inconclusive.

Neural stem cells (NSCs) are a type of undifferentiated cells found in the central nervous system, including the brain and spinal cord. They have the ability to self-renew and generate the main types of cells found in the nervous system, such as neurons, astrocytes, and oligodendrocytes. NSCs are capable of dividing symmetrically to increase their own population or asymmetrically to produce one stem cell and one differentiated cell. They play a crucial role in the development and maintenance of the nervous system, and have the potential to be used in regenerative medicine and therapies for neurological disorders and injuries.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

Stromal cells, also known as stromal/stroma cells, are a type of cell found in various tissues and organs throughout the body. They are often referred to as the "connective tissue" or "supporting framework" of an organ because they play a crucial role in maintaining the structure and function of the tissue. Stromal cells include fibroblasts, adipocytes (fat cells), and various types of progenitor/stem cells. They produce and maintain the extracellular matrix, which is the non-cellular component of tissues that provides structural support and biochemical cues for other cells. Stromal cells also interact with immune cells and participate in the regulation of the immune response. In some contexts, "stromal cells" can also refer to cells found in the microenvironment of tumors, which can influence cancer growth and progression.

I'm assuming you are asking for information about "Ly" antigens in the context of human immune system and immunology.

Ly (Lymphocyte) antigens are a group of cell surface markers found on human leukocytes, including T cells, NK cells, and some B cells. These antigens were originally identified through serological analysis and were historically used to distinguish different subsets of lymphocytes based on their surface phenotype.

The "Ly" nomenclature has been largely replaced by the CD (Cluster of Differentiation) system, which is a more standardized and internationally recognized classification system for cell surface markers. However, some Ly antigens are still commonly referred to by their historical names, such as:

* Ly-1 or CD5: A marker found on mature T cells, including both CD4+ and CD8+ subsets.
* Ly-2 or CD8: A marker found on cytotoxic T cells, which are a subset of CD8+ T cells that can directly kill infected or damaged cells.
* Ly-3 or CD56: A marker found on natural killer (NK) cells, which are a type of immune cell that can recognize and destroy virus-infected or cancerous cells without the need for prior activation.

It's worth noting that while these antigens were originally identified through serological analysis, they are now more commonly detected using flow cytometry, which allows for the simultaneous measurement of multiple surface markers on individual cells. This has greatly expanded our ability to identify and characterize different subsets of immune cells and has led to a better understanding of their roles in health and disease.

Homeodomain proteins are a group of transcription factors that play crucial roles in the development and differentiation of cells in animals and plants. They are characterized by the presence of a highly conserved DNA-binding domain called the homeodomain, which is typically about 60 amino acids long. The homeodomain consists of three helices, with the third helix responsible for recognizing and binding to specific DNA sequences.

Homeodomain proteins are involved in regulating gene expression during embryonic development, tissue maintenance, and organismal growth. They can act as activators or repressors of transcription, depending on the context and the presence of cofactors. Mutations in homeodomain proteins have been associated with various human diseases, including cancer, congenital abnormalities, and neurological disorders.

Some examples of homeodomain proteins include PAX6, which is essential for eye development, HOX genes, which are involved in body patterning, and NANOG, which plays a role in maintaining pluripotency in stem cells.

Leukopoiesis is the process of formation and development of leukocytes or white blood cells in the body. It occurs in the bone marrow, where immature cells known as hematopoietic stem cells differentiate and mature into various types of white blood cells, including neutrophils, lymphocytes, monocytes, eosinophils, and basophils. These cells play a crucial role in the body's immune system by helping to fight infections and diseases. Leukopoiesis is regulated by various growth factors and hormones that stimulate the production and differentiation of hematopoietic stem cells into mature white blood cells.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Endothelial cells are the type of cells that line the inner surface of blood vessels, lymphatic vessels, and heart chambers. They play a crucial role in maintaining vascular homeostasis by controlling vasomotor tone, coagulation, platelet activation, and inflammation. Endothelial cells also regulate the transport of molecules between the blood and surrounding tissues, and contribute to the maintenance of the structural integrity of the vasculature. They are flat, elongated cells with a unique morphology that allows them to form a continuous, nonthrombogenic lining inside the vessels. Endothelial cells can be isolated from various tissues and cultured in vitro for research purposes.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

CD7 is a type of protein found on the surface of certain cells in the human body, including some immune cells like T-cells and natural killer cells. It is a type of antigen that can be recognized by other immune cells and their receptors, and it plays a role in the regulation of the immune response.

CD7 antigens are often used as targets for immunotherapy in certain types of cancer, as they are overexpressed on the surface of some cancer cells. For example, anti-CD7 monoclonal antibodies have been developed to target and kill CD7-positive cancer cells, or to deliver drugs or radiation directly to those cells.

It's important to note that while CD7 is a well-established target for immunotherapy in certain types of cancer, it is not a specific disease or condition itself. Rather, it is a molecular marker that can be used to identify and target certain types of cells in the body.

Notch 1 is a type of receptor that belongs to the family of single-transmembrane receptors known as Notch receptors. It is a heterodimeric transmembrane protein composed of an extracellular domain and an intracellular domain, which play crucial roles in cell fate determination, proliferation, differentiation, and apoptosis during embryonic development and adult tissue homeostasis.

The Notch 1 receptor is activated through a conserved mechanism of ligand-receptor interaction, where the extracellular domain of the receptor interacts with the membrane-bound ligands Jagged 1 or 2 and Delta-like 1, 3, or 4 expressed on adjacent cells. This interaction triggers a series of proteolytic cleavages that release the intracellular domain of Notch 1 (NICD) from the membrane. NICD then translocates to the nucleus and interacts with the DNA-binding protein CSL (CBF1/RBPJκ in mammals) and coactivators Mastermind-like proteins to regulate the expression of target genes, including members of the HES and HEY families.

Mutations in NOTCH1 have been associated with various human diseases, such as T-cell acute lymphoblastic leukemia (T-ALL), a type of cancer that affects the immune system's T cells, and vascular diseases, including arterial calcification, atherosclerosis, and aneurysms.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Immunophenotyping is a medical laboratory technique used to identify and classify cells, usually in the context of hematologic (blood) disorders and malignancies (cancers), based on their surface or intracellular expression of various proteins and antigens. This technique utilizes specific antibodies tagged with fluorochromes, which bind to the target antigens on the cell surface or within the cells. The labeled cells are then analyzed using flow cytometry, allowing for the detection and quantification of multiple antigenic markers simultaneously.

Immunophenotyping helps in understanding the distribution of different cell types, their subsets, and activation status, which can be crucial in diagnosing various hematological disorders, immunodeficiencies, and distinguishing between different types of leukemias, lymphomas, and other malignancies. Additionally, it can also be used to monitor the progression of diseases, evaluate the effectiveness of treatments, and detect minimal residual disease (MRD) during follow-up care.

Lymphocyte subsets refer to distinct populations of white blood cells called lymphocytes, which are crucial components of the adaptive immune system. There are two main types of lymphocytes: T cells and B cells, and each type has several subsets based on their surface receptors, functions, and activation status.

1. T cell subsets: These include CD4+ T helper cells (Th cells), CD8+ cytotoxic T cells (Tc cells), regulatory T cells (Tregs), and memory T cells. Th cells are further divided into Th1, Th2, Th17, and Tfh cells based on their cytokine production profiles and functions.
* CD4+ T helper cells (Th cells) play a central role in orchestrating the immune response by producing various cytokines that activate other immune cells.
* CD8+ cytotoxic T cells (Tc cells) directly kill virus-infected or malignant cells upon recognition of specific antigens presented on their surface.
* Regulatory T cells (Tregs) suppress the activation and proliferation of other immune cells to maintain self-tolerance and prevent autoimmunity.
* Memory T cells are long-lived cells that remain in the body after an initial infection or immunization, providing rapid protection upon subsequent encounters with the same pathogen.
2. B cell subsets: These include naïve B cells, memory B cells, and plasma cells. Upon activation by antigens, B cells differentiate into antibody-secreting plasma cells that produce specific antibodies to neutralize or eliminate pathogens.
* Naïve B cells are resting cells that have not yet encountered their specific antigen.
* Memory B cells are long-lived cells generated after initial antigen exposure, which can quickly differentiate into antibody-secreting plasma cells upon re-exposure to the same antigen.
* Plasma cells are terminally differentiated B cells that secrete large amounts of specific antibodies.

Analyzing lymphocyte subsets is essential for understanding immune system function and dysfunction, as well as monitoring the effectiveness of immunotherapies and vaccinations.

Stem cell transplantation is a medical procedure where stem cells, which are immature and unspecialized cells with the ability to differentiate into various specialized cell types, are introduced into a patient. The main purpose of this procedure is to restore the function of damaged or destroyed tissues or organs, particularly in conditions that affect the blood and immune systems, such as leukemia, lymphoma, aplastic anemia, and inherited metabolic disorders.

There are two primary types of stem cell transplantation: autologous and allogeneic. In autologous transplantation, the patient's own stem cells are collected, stored, and then reinfused back into their body after high-dose chemotherapy or radiation therapy to destroy the diseased cells. In allogeneic transplantation, stem cells are obtained from a donor (related or unrelated) whose human leukocyte antigen (HLA) type closely matches that of the recipient.

The process involves several steps: first, the patient undergoes conditioning therapy to suppress their immune system and make space for the new stem cells. Then, the harvested stem cells are infused into the patient's bloodstream, where they migrate to the bone marrow and begin to differentiate and produce new blood cells. This procedure requires close monitoring and supportive care to manage potential complications such as infections, graft-versus-host disease, and organ damage.

Erythroid precursor cells, also known as erythroblasts or normoblasts, are early stage cells in the process of producing mature red blood cells (erythrocytes) in the bone marrow. These cells are derived from hematopoietic stem cells and undergo a series of maturation stages, including proerythroblast, basophilic erythroblast, polychromatophilic erythroblast, and orthochromatic erythroblast, before becoming reticulocytes and then mature red blood cells. During this maturation process, the cells lose their nuclei and become enucleated, taking on the biconcave shape and flexible membrane that allows them to move through small blood vessels and deliver oxygen to tissues throughout the body.

Notch receptors are a type of transmembrane receptor proteins that play crucial roles in cell-cell communication and regulation of various biological processes, including cell fate determination, differentiation, proliferation, and apoptosis. These receptors are highly conserved across species and are essential for normal development and tissue homeostasis.

The Notch signaling pathway is initiated when the extracellular domain of a Notch receptor on one cell interacts with its ligand (such as Delta or Jagged) on an adjacent cell. This interaction triggers a series of proteolytic cleavage events that release the intracellular domain of the Notch receptor, which then translocates to the nucleus and regulates gene expression by interacting with transcription factors like CSL (CBF1/RBP-Jκ/Su(H)/Lag-1).

There are four known Notch receptors in humans (Notch1-4) that share a similar structure, consisting of an extracellular domain containing multiple epidermal growth factor (EGF)-like repeats, a transmembrane domain, and an intracellular domain. Mutations or dysregulation of the Notch signaling pathway have been implicated in various human diseases, including cancer, cardiovascular disorders, and developmental abnormalities.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

"Gene knock-in techniques" refer to a group of genetic engineering methods used in molecular biology to precisely insert or "knock-in" a specific gene or DNA sequence into a specific location within the genome of an organism. This is typically done using recombinant DNA technology and embryonic stem (ES) cells, although other techniques such as CRISPR-Cas9 can also be used.

The goal of gene knock-in techniques is to create a stable and heritable genetic modification in which the introduced gene is expressed at a normal level and in the correct spatial and temporal pattern. This allows researchers to study the function of individual genes, investigate gene regulation, model human diseases, and develop potential therapies for genetic disorders.

In general, gene knock-in techniques involve several steps: first, a targeting vector is constructed that contains the desired DNA sequence flanked by homologous regions that match the genomic locus where the insertion will occur. This vector is then introduced into ES cells, which are cultured and allowed to undergo homologous recombination with the endogenous genome. The resulting modified ES cells are selected for and characterized to confirm the correct integration of the DNA sequence. Finally, the modified ES cells are used to generate chimeric animals, which are then bred to produce offspring that carry the genetic modification in their germline.

Overall, gene knock-in techniques provide a powerful tool for studying gene function and developing new therapies for genetic diseases.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a central role in the humoral immune response. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as viruses and bacteria.

B-lymphocyte subsets refer to distinct populations of B-cells that can be identified based on their surface receptors and functional characteristics. Some common B-lymphocyte subsets include:

1. Naive B-cells: These are mature B-cells that have not yet been exposed to an antigen. They express surface receptors called immunoglobulin M (IgM) and immunoglobulin D (IgD).
2. Memory B-cells: These are B-cells that have previously encountered an antigen and mounted an immune response. They express high levels of surface immunoglobulins and can quickly differentiate into antibody-secreting plasma cells upon re-exposure to the same antigen.
3. Plasma cells: These are fully differentiated B-cells that secrete large amounts of antibodies in response to an antigen. They lack surface immunoglobulins and do not undergo further division.
4. Regulatory B-cells: These are a subset of B-cells that modulate the immune response by producing anti-inflammatory cytokines and suppressing the activation of other immune cells.
5. B-1 cells: These are a population of B-cells that are primarily found in the peripheral blood and mucosal tissues. They produce natural antibodies that provide early protection against pathogens and help to maintain tissue homeostasis.

Understanding the different B-lymphocyte subsets and their functions is important for diagnosing and treating immune-related disorders, including autoimmune diseases, infections, and cancer.

Bone marrow transplantation (BMT) is a medical procedure in which damaged or destroyed bone marrow is replaced with healthy bone marrow from a donor. Bone marrow is the spongy tissue inside bones that produces blood cells. The main types of BMT are autologous, allogeneic, and umbilical cord blood transplantation.

In autologous BMT, the patient's own bone marrow is used for the transplant. This type of BMT is often used in patients with lymphoma or multiple myeloma who have undergone high-dose chemotherapy or radiation therapy to destroy their cancerous bone marrow.

In allogeneic BMT, bone marrow from a genetically matched donor is used for the transplant. This type of BMT is often used in patients with leukemia, lymphoma, or other blood disorders who have failed other treatments.

Umbilical cord blood transplantation involves using stem cells from umbilical cord blood as a source of healthy bone marrow. This type of BMT is often used in children and adults who do not have a matched donor for allogeneic BMT.

The process of BMT typically involves several steps, including harvesting the bone marrow or stem cells from the donor, conditioning the patient's body to receive the new bone marrow or stem cells, transplanting the new bone marrow or stem cells into the patient's body, and monitoring the patient for signs of engraftment and complications.

BMT is a complex and potentially risky procedure that requires careful planning, preparation, and follow-up care. However, it can be a life-saving treatment for many patients with blood disorders or cancer.

Neurogenesis is the process by which new neurons (nerve cells) are generated in the brain. It occurs throughout life in certain areas of the brain, such as the hippocampus and subventricular zone, although the rate of neurogenesis decreases with age. Neurogenesis involves the proliferation, differentiation, and integration of new neurons into existing neural circuits. This process plays a crucial role in learning, memory, and recovery from brain injury or disease.

A fetus is the developing offspring in a mammal, from the end of the embryonic period (approximately 8 weeks after fertilization in humans) until birth. In humans, the fetal stage of development starts from the eleventh week of pregnancy and continues until childbirth, which is termed as full-term pregnancy at around 37 to 40 weeks of gestation. During this time, the organ systems become fully developed and the body grows in size. The fetus is surrounded by the amniotic fluid within the amniotic sac and is connected to the placenta via the umbilical cord, through which it receives nutrients and oxygen from the mother. Regular prenatal care is essential during this period to monitor the growth and development of the fetus and ensure a healthy pregnancy and delivery.

CD19 is a type of protein found on the surface of B cells, which are a type of white blood cell that plays a key role in the body's immune response. CD19 is a marker that helps identify and distinguish B cells from other types of cells in the body. It is also a target for immunotherapy in certain diseases, such as B-cell malignancies.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. In the context of CD19, antigens refer to substances that can bind to CD19 and trigger a response from the immune system. This can include proteins, carbohydrates, or other molecules found on the surface of bacteria, viruses, or cancer cells.

Therefore, 'antigens, CD19' refers to any substances that can bind to the CD19 protein on B cells and trigger an immune response. These antigens may be used in the development of immunotherapies for the treatment of B-cell malignancies or other diseases.

Hematopoietic Stem Cell Transplantation (HSCT) is a medical procedure where hematopoietic stem cells (immature cells that give rise to all blood cell types) are transplanted into a patient. This procedure is often used to treat various malignant and non-malignant disorders affecting the hematopoietic system, such as leukemias, lymphomas, multiple myeloma, aplastic anemia, inherited immune deficiency diseases, and certain genetic metabolic disorders.

The transplantation can be autologous (using the patient's own stem cells), allogeneic (using stem cells from a genetically matched donor, usually a sibling or unrelated volunteer), or syngeneic (using stem cells from an identical twin).

The process involves collecting hematopoietic stem cells, most commonly from the peripheral blood or bone marrow. The collected cells are then infused into the patient after the recipient's own hematopoietic system has been ablated (or destroyed) using high-dose chemotherapy and/or radiation therapy. This allows the donor's stem cells to engraft, reconstitute, and restore the patient's hematopoietic system.

HSCT is a complex and potentially risky procedure with various complications, including graft-versus-host disease, infections, and organ damage. However, it offers the potential for cure or long-term remission in many patients with otherwise fatal diseases.

Thy-1, also known as Thy-1 antigen or CD90, is a glycosylphosphatidylinositol (GPI)-anchored protein found on the surface of various cells in the body. It was first discovered as a cell surface antigen on thymocytes, hence the name Thy-1.

Thy-1 is a member of the immunoglobulin superfamily and is widely expressed in different tissues, including the brain, where it is found on the surface of neurons and glial cells. In the immune system, Thy-1 is expressed on the surface of T lymphocytes, natural killer (NK) cells, and some subsets of dendritic cells.

The function of Thy-1 is not fully understood, but it has been implicated in various biological processes, including cell adhesion, signal transduction, and regulation of immune responses. Thy-1 has also been shown to play a role in the development and maintenance of the nervous system, as well as in the pathogenesis of certain neurological disorders.

As an antigen, Thy-1 can be recognized by specific antibodies, which can be used in various research and clinical applications, such as immunohistochemistry, flow cytometry, and cell sorting.

Coculture techniques refer to a type of experimental setup in which two or more different types of cells or organisms are grown and studied together in a shared culture medium. This method allows researchers to examine the interactions between different cell types or species under controlled conditions, and to study how these interactions may influence various biological processes such as growth, gene expression, metabolism, and signal transduction.

Coculture techniques can be used to investigate a wide range of biological phenomena, including the effects of host-microbe interactions on human health and disease, the impact of different cell types on tissue development and homeostasis, and the role of microbial communities in shaping ecosystems. These techniques can also be used to test the efficacy and safety of new drugs or therapies by examining their effects on cells grown in coculture with other relevant cell types.

There are several different ways to establish cocultures, depending on the specific research question and experimental goals. Some common methods include:

1. Mixed cultures: In this approach, two or more cell types are simply mixed together in a culture dish or flask and allowed to grow and interact freely.
2. Cell-layer cultures: Here, one cell type is grown on a porous membrane or other support structure, while the second cell type is grown on top of it, forming a layered coculture.
3. Conditioned media cultures: In this case, one cell type is grown to confluence and its culture medium is collected and then used to grow a second cell type. This allows the second cell type to be exposed to any factors secreted by the first cell type into the medium.
4. Microfluidic cocultures: These involve growing cells in microfabricated channels or chambers, which allow for precise control over the spatial arrangement and flow of nutrients, waste products, and signaling molecules between different cell types.

Overall, coculture techniques provide a powerful tool for studying complex biological systems and gaining insights into the mechanisms that underlie various physiological and pathological processes.

Adult stem cells, also known as somatic stem cells, are undifferentiated cells found in specialized tissues or organs throughout the body of a developed organism. Unlike embryonic stem cells, which are derived from blastocysts and have the ability to differentiate into any cell type in the body (pluripotency), adult stem cells are typically more limited in their differentiation potential, meaning they can only give rise to specific types of cells within the tissue or organ where they reside.

Adult stem cells serve to maintain and repair tissues by replenishing dying or damaged cells. They can divide and self-renew over time, producing one daughter cell that remains a stem cell and another that differentiates into a mature, functional cell type. The most well-known adult stem cells are hematopoietic stem cells, which give rise to all types of blood cells, and mesenchymal stem cells, which can differentiate into various connective tissue cells such as bone, cartilage, fat, and muscle.

The potential therapeutic use of adult stem cells has been explored in various medical fields, including regenerative medicine and cancer therapy. However, their limited differentiation capacity and the challenges associated with isolating and expanding them in culture have hindered their widespread application. Recent advances in stem cell research, such as the development of techniques to reprogram adult cells into induced pluripotent stem cells (iPSCs), have opened new avenues for studying and harnessing the therapeutic potential of these cells.

Lymphoid tissue is a specialized type of connective tissue that is involved in the immune function of the body. It is composed of lymphocytes (a type of white blood cell), which are responsible for producing antibodies and destroying infected or cancerous cells. Lymphoid tissue can be found throughout the body, but it is particularly concentrated in certain areas such as the lymph nodes, spleen, tonsils, and Peyer's patches in the small intestine.

Lymphoid tissue provides a site for the activation, proliferation, and differentiation of lymphocytes, which are critical components of the adaptive immune response. It also serves as a filter for foreign particles, such as bacteria and viruses, that may enter the body through various routes. The lymphatic system, which includes lymphoid tissue, helps to maintain the health and integrity of the body by protecting it from infection and disease.

Congenic mice are strains that have been developed through a specific breeding process to be genetically identical, except for a small region of interest (ROI) that has been introgressed from a donor strain. This is achieved by repeatedly backcrossing the donor ROI onto the genetic background of a recipient strain for many generations, followed by intercrossing within the resulting congenic line to ensure homozygosity of the ROI.

The goal of creating congenic mice is to study the effects of a specific gene or genomic region while minimizing the influence of other genetic differences between strains. This allows researchers to investigate the relationship between genotype and phenotype more accurately, which can be particularly useful in biomedical research for understanding complex traits, diseases, and potential therapeutic targets.

Hematopoietic Stem Cell Mobilization is the process of mobilizing hematopoietic stem cells (HSCs) from the bone marrow into the peripheral blood. HSCs are immature cells that have the ability to differentiate into all types of blood cells, including red and white blood cells and platelets.

Mobilization is often achieved through the use of medications such as granulocyte-colony stimulating factor (G-CSF) or plerixafor, which stimulate the release of HSCs from the bone marrow into the peripheral blood. This allows for the collection of HSCs from the peripheral blood through a procedure called apheresis.

Mobilized HSCs can be used in stem cell transplantation procedures to reconstitute a patient's hematopoietic system after high-dose chemotherapy or radiation therapy. It is an important process in the field of regenerative medicine and has been used to treat various diseases such as leukemia, lymphoma, and sickle cell disease.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Nestin is a type of class VI intermediate filament protein that is primarily expressed in various types of undifferentiated or progenitor cells in the nervous system, including neural stem cells and progenitor cells. It is often used as a marker for these cells due to its expression during stages of active cell division and migration. Nestin is also expressed in some other tissues undergoing regeneration or injury.

Granulocyte Colony-Stimulating Factor (G-CSF) is a type of growth factor that specifically stimulates the production and survival of granulocytes, a type of white blood cell crucial for fighting off infections. G-CSF works by promoting the proliferation and differentiation of hematopoietic stem cells into mature granulocytes, primarily neutrophils, in the bone marrow.

Recombinant forms of G-CSF are used clinically as a medication to boost white blood cell production in patients undergoing chemotherapy or radiation therapy for cancer, those with congenital neutropenia, and those who have had a bone marrow transplant. By increasing the number of circulating neutrophils, G-CSF helps reduce the risk of severe infections during periods of intense immune suppression.

Examples of recombinant G-CSF medications include filgrastim (Neupogen), pegfilgrastim (Neulasta), and lipegfilgrastim (Lonquex).

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

VDJ Recombinases are a set of enzymes that play a crucial role in the adaptive immune system, specifically in the diversification of antigen receptors in vertebrates. The name "VDJ" refers to the variable (V), diversity (D), and joining (J) gene segments that undergo recombination to generate a vast array of unique antigen receptor genes.

The VDJ Recombinases are composed of two main enzymatic components: RAG1 and RAG2, which are responsible for initiating the recombination process, and Artemis, which is involved in the cleavage and joining of the gene segments. The recombination process mediated by these enzymes occurs during the development of B and T lymphocytes, allowing for the generation of a diverse repertoire of antigen receptors that can recognize and respond to a wide range of pathogens.

The RAG1 and RAG2 proteins recognize specific DNA sequences called recombination signal sequences (RSSs) that flank the V, D, and J gene segments. They introduce double-stranded breaks at the junctions between these gene segments, creating a hairpin structure at one end of each break. The hairpins are then cleaved by Artemis, and the resulting overhangs are joined together by another set of enzymes to form a functional antigen receptor gene.

Overall, VDJ Recombinases play a critical role in the adaptive immune system's ability to generate diverse and specific responses to pathogens, making them an essential component of vertebrate immunity.

Stem Cell Factor (SCF), also known as Kit Ligand or Steel Factor, is a growth factor that plays a crucial role in the regulation of hematopoiesis, which is the process of producing various blood cells. It is a glycoprotein that binds to the c-Kit receptor found on hematopoietic stem cells and progenitor cells, promoting their survival, proliferation, and differentiation into mature blood cells.

SCF is involved in the development and function of several types of blood cells, including red blood cells, white blood cells, and platelets. It also plays a role in the maintenance and self-renewal of hematopoietic stem cells, which are essential for the continuous production of new blood cells throughout an individual's lifetime.

In addition to its role in hematopoiesis, SCF has been implicated in various other biological processes, such as melanogenesis, gametogenesis, and tissue repair and regeneration. Dysregulation of SCF signaling has been associated with several diseases, including certain types of cancer, bone marrow failure disorders, and autoimmune diseases.

Natural Killer (NK) cells are a type of lymphocyte, which are large granular innate immune cells that play a crucial role in the host's defense against viral infections and malignant transformations. They do not require prior sensitization to target and destroy abnormal cells, such as virus-infected cells or tumor cells. NK cells recognize their targets through an array of germline-encoded activating and inhibitory receptors that detect the alterations in the cell surface molecules of potential targets. Upon activation, NK cells release cytotoxic granules containing perforins and granzymes to induce target cell apoptosis, and they also produce a variety of cytokines and chemokines to modulate immune responses. Overall, natural killer cells serve as a critical component of the innate immune system, providing rapid and effective responses against infected or malignant cells.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Oligodendroglia are a type of neuroglial cell found in the central nervous system (CNS) of vertebrates, including humans. These cells play a crucial role in providing support and insulation to nerve fibers (axons) in the CNS, which includes the brain and spinal cord.

More specifically, oligodendroglia produce a fatty substance called myelin that wraps around axons, forming myelin sheaths. This myelination process helps to increase the speed of electrical impulse transmission (nerve impulses) along the axons, allowing for efficient communication between different neurons.

In addition to their role in myelination, oligodendroglia also contribute to the overall health and maintenance of the CNS by providing essential nutrients and supporting factors to neurons. Dysfunction or damage to oligodendroglia has been implicated in various neurological disorders, such as multiple sclerosis (MS), where demyelination of axons leads to impaired nerve function and neurodegeneration.

Regeneration in a medical context refers to the process of renewal, restoration, and growth that replaces damaged or missing cells, tissues, organs, or even whole limbs in some organisms. This complex biological process involves various cellular and molecular mechanisms, such as cell proliferation, differentiation, and migration, which work together to restore the structural and functional integrity of the affected area.

In human medicine, regeneration has attracted significant interest due to its potential therapeutic applications in treating various conditions, including degenerative diseases, trauma, and congenital disorders. Researchers are actively studying the underlying mechanisms of regeneration in various model organisms to develop novel strategies for promoting tissue repair and regeneration in humans.

Examples of regeneration in human medicine include liver regeneration after partial hepatectomy, where the remaining liver lobes can grow back to their original size within weeks, and skin wound healing, where keratinocytes migrate and proliferate to close the wound and restore the epidermal layer. However, the regenerative capacity of humans is limited compared to some other organisms, such as planarians and axolotls, which can regenerate entire body parts or even their central nervous system.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

A "mutant strain of mice" in a medical context refers to genetically engineered mice that have specific genetic mutations introduced into their DNA. These mutations can be designed to mimic certain human diseases or conditions, allowing researchers to study the underlying biological mechanisms and test potential therapies in a controlled laboratory setting.

Mutant strains of mice are created through various techniques, including embryonic stem cell manipulation, gene editing technologies such as CRISPR-Cas9, and radiation-induced mutagenesis. These methods allow scientists to introduce specific genetic changes into the mouse genome, resulting in mice that exhibit altered physiological or behavioral traits.

These strains of mice are widely used in biomedical research because their short lifespan, small size, and high reproductive rate make them an ideal model organism for studying human diseases. Additionally, the mouse genome has been well-characterized, and many genetic tools and resources are available to researchers working with these animals.

Examples of mutant strains of mice include those that carry mutations in genes associated with cancer, neurodegenerative disorders, metabolic diseases, and immunological conditions. These mice provide valuable insights into the pathophysiology of human diseases and help advance our understanding of potential therapeutic interventions.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Chemokine (C-X-C motif) ligand 12 (CXCL12), also known as stromal cell-derived factor 1 (SDF-1), is a small signaling protein belonging to the chemokine family. Chemokines are a group of cytokines, or signaling molecules, that play important roles in immune responses and inflammation by recruiting and activating various immune cells.

CXCL12 is produced by several types of cells, including stromal cells, endothelial cells, and certain immune cells. It exerts its effects by binding to a specific receptor called C-X-C chemokine receptor type 4 (CXCR4), which is found on the surface of various cell types, including immune cells, stem cells, and some cancer cells.

The CXCL12-CXCR4 axis plays crucial roles in various physiological processes, such as embryonic development, tissue homeostasis, hematopoiesis (the formation of blood cells), and neurogenesis (the formation of neurons). Additionally, this signaling pathway has been implicated in several pathological conditions, including cancer metastasis, inflammatory diseases, and HIV infection.

In summary, Chemokine CXCL12 is a small signaling protein that binds to the CXCR4 receptor and plays essential roles in various physiological processes and pathological conditions.

Granulocytes are a type of white blood cell that plays a crucial role in the body's immune system. They are called granulocytes because they contain small granules in their cytoplasm, which are filled with various enzymes and proteins that help them fight off infections and destroy foreign substances.

There are three types of granulocytes: neutrophils, eosinophils, and basophils. Neutrophils are the most abundant type and are primarily responsible for fighting bacterial infections. Eosinophils play a role in defending against parasitic infections and regulating immune responses. Basophils are involved in inflammatory reactions and allergic responses.

Granulocytes are produced in the bone marrow and released into the bloodstream, where they circulate and patrol for any signs of infection or foreign substances. When they encounter a threat, they quickly move to the site of infection or injury and release their granules to destroy the invading organisms or substances.

Abnormal levels of granulocytes in the blood can indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder.

Interleukin-3 (IL-3) is a type of cytokine, which is a small signaling protein that modulates the immune response, cell growth, and differentiation. IL-3 is primarily produced by activated T cells and mast cells. It plays an essential role in the survival, proliferation, and differentiation of hematopoietic stem cells, which give rise to all blood cell types. Specifically, IL-3 supports the development of myeloid lineage cells, including basophils, eosinophils, mast cells, megakaryocytes, and erythroid progenitors.

IL-3 binds to its receptor, the interleukin-3 receptor (IL-3R), which consists of two subunits: CD123 (the alpha chain) and CD131 (the beta chain). The binding of IL-3 to its receptor triggers a signaling cascade within the cell that ultimately leads to changes in gene expression, promoting cell growth and differentiation. Dysregulation of IL-3 production or signaling has been implicated in several hematological disorders, such as leukemia and myelodysplastic syndromes.

Physiologic neovascularization is the natural and controlled formation of new blood vessels in the body, which occurs as a part of normal growth and development, as well as in response to tissue repair and wound healing. This process involves the activation of endothelial cells, which line the interior surface of blood vessels, and their migration, proliferation, and tube formation to create new capillaries. Physiologic neovascularization is tightly regulated by a balance of pro-angiogenic and anti-angiogenic factors, ensuring that it occurs only when and where it is needed. It plays crucial roles in various physiological processes, such as embryonic development, tissue regeneration, and wound healing.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Neprilysin (NEP), also known as membrane metallo-endopeptidase or CD10, is a type II transmembrane glycoprotein that functions as a zinc-dependent metalloprotease. It is widely expressed in various tissues, including the kidney, brain, heart, and vasculature. Neprilysin plays a crucial role in the breakdown and regulation of several endogenous bioactive peptides, such as natriuretic peptides, bradykinin, substance P, and angiotensin II. By degrading these peptides, neprilysin helps maintain cardiovascular homeostasis, modulate inflammation, and regulate neurotransmission. In the context of heart failure, neprilysin inhibitors have been developed to increase natriuretic peptide levels, promoting diuresis and vasodilation, ultimately improving cardiac function.

Basic Helix-Loop-Helix (bHLH) transcription factors are a type of proteins that regulate gene expression through binding to specific DNA sequences. They play crucial roles in various biological processes, including cell growth, differentiation, and apoptosis. The bHLH domain is composed of two amphipathic α-helices separated by a loop region. This structure allows the formation of homodimers or heterodimers, which then bind to the E-box DNA motif (5'-CANNTG-3') to regulate transcription.

The bHLH family can be further divided into several subfamilies based on their sequence similarities and functional characteristics. Some members of this family are involved in the development and function of the nervous system, while others play critical roles in the development of muscle and bone. Dysregulation of bHLH transcription factors has been implicated in various human diseases, including cancer and neurodevelopmental disorders.

Cell culture is a technique used in scientific research to grow and maintain cells from plants, animals, or humans in a controlled environment outside of their original organism. This environment typically consists of a sterile container called a cell culture flask or plate, and a nutrient-rich liquid medium that provides the necessary components for the cells' growth and survival, such as amino acids, vitamins, minerals, and hormones.

There are several different types of cell culture techniques used in research, including:

1. Adherent cell culture: In this technique, cells are grown on a flat surface, such as the bottom of a tissue culture dish or flask. The cells attach to the surface and spread out, forming a monolayer that can be observed and manipulated under a microscope.
2. Suspension cell culture: In suspension culture, cells are grown in liquid medium without any attachment to a solid surface. These cells remain suspended in the medium and can be agitated or mixed to ensure even distribution of nutrients.
3. Organoid culture: Organoids are three-dimensional structures that resemble miniature organs and are grown from stem cells or other progenitor cells. They can be used to study organ development, disease processes, and drug responses.
4. Co-culture: In co-culture, two or more different types of cells are grown together in the same culture dish or flask. This technique is used to study cell-cell interactions and communication.
5. Conditioned medium culture: In this technique, cells are grown in a medium that has been conditioned by previous cultures of other cells. The conditioned medium contains factors secreted by the previous cells that can influence the growth and behavior of the new cells.

Cell culture techniques are widely used in biomedical research to study cellular processes, develop drugs, test toxicity, and investigate disease mechanisms. However, it is important to note that cell cultures may not always accurately represent the behavior of cells in a living organism, and results from cell culture experiments should be validated using other methods.

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Fetal stem cells are a type of stem cell that are derived from fetal tissue, which is tissue obtained from an elective abortion or a spontaneous miscarriage. These stem cells have the ability to differentiate into various cell types, including neurons, cardiac muscle cells, and hepatocytes (liver cells). Fetal stem cells are unique in that they have a greater capacity for self-renewal and can generate a larger number of differentiated cells compared to adult stem cells. They also have the potential to be less immunogenic than other types of stem cells, making them a promising candidate for cell-based therapies and regenerative medicine. However, the use of fetal stem cells is a subject of ethical debate due to their source.

Embryonic stem cells are a type of pluripotent stem cell that are derived from the inner cell mass of a blastocyst, which is a very early-stage embryo. These cells have the ability to differentiate into any cell type in the body, making them a promising area of research for regenerative medicine and the study of human development and disease. Embryonic stem cells are typically obtained from surplus embryos created during in vitro fertilization (IVF) procedures, with the consent of the donors. The use of embryonic stem cells is a controversial issue due to ethical concerns surrounding the destruction of human embryos.

Mesenchymal Stromal Cells (MSCs) are a type of adult stem cells found in various tissues, including bone marrow, adipose tissue, and umbilical cord blood. They have the ability to differentiate into multiple cell types, such as osteoblasts, chondrocytes, and adipocytes, under specific conditions. MSCs also possess immunomodulatory properties, making them a promising tool in regenerative medicine and therapeutic strategies for various diseases, including autoimmune disorders and tissue injuries. It is important to note that the term "Mesenchymal Stem Cells" has been replaced by "Mesenchymal Stromal Cells" in the scientific community to better reflect their biological characteristics and potential functions.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

Granulocyte-macrophage progenitor cells (GMPs) are a type of hematopoietic progenitor cell that is capable of giving rise to two major types of white blood cells: granulocytes and macrophages. These cells play crucial roles in the immune system, with granulocytes being primarily involved in the defense against bacterial and fungal infections, while macrophages are responsible for phagocytosing (ingesting) and destroying foreign particles, microorganisms, and cancer cells.

GMPs are found in the bone marrow and are produced from more immature hematopoietic stem cells through a process called differentiation. GMPs can further differentiate into more mature progenitor cells, such as granulocyte progenitors and macrophage-dendritic cell progenitors, which then give rise to the final differentiated cells of the granulocyte and macrophage lineages.

Abnormalities in GMPs can lead to various hematological disorders, including leukemias and myelodysplastic syndromes. Therefore, understanding the biology and regulation of GMPs is important for developing new therapies for these diseases.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Bromodeoxyuridine (BrdU) is a synthetic thymidine analog that can be incorporated into DNA during cell replication. It is often used in research and medical settings as a marker for cell proliferation or as a tool to investigate DNA synthesis and repair. When cells are labeled with BrdU and then examined using immunofluorescence or other detection techniques, the presence of BrdU can indicate which cells have recently divided or are actively synthesizing DNA.

In medical contexts, BrdU has been used in cancer research to study tumor growth and response to treatment. It has also been explored as a potential therapeutic agent for certain conditions, such as neurodegenerative diseases, where promoting cell proliferation and replacement of damaged cells may be beneficial. However, its use as a therapeutic agent is still experimental and requires further investigation.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

Dendritic cells (DCs) are a type of immune cell that play a critical role in the body's defense against infection and cancer. They are named for their dendrite-like projections, which they use to interact with and sample their environment. DCs are responsible for processing antigens (foreign substances that trigger an immune response) and presenting them to T cells, a type of white blood cell that plays a central role in the immune system's response to infection and cancer.

DCs can be found throughout the body, including in the skin, mucous membranes, and lymphoid organs. They are able to recognize and respond to a wide variety of antigens, including those from bacteria, viruses, fungi, and parasites. Once they have processed an antigen, DCs migrate to the lymph nodes, where they present the antigen to T cells. This interaction activates the T cells, which then go on to mount a targeted immune response against the invading pathogen or cancerous cells.

DCs are a diverse group of cells that can be divided into several subsets based on their surface markers and function. Some DCs, such as Langerhans cells and dermal DCs, are found in the skin and mucous membranes, where they serve as sentinels for invading pathogens. Other DCs, such as plasmacytoid DCs and conventional DCs, are found in the lymphoid organs, where they play a role in activating T cells and initiating an immune response.

Overall, dendritic cells are essential for the proper functioning of the immune system, and dysregulation of these cells has been implicated in a variety of diseases, including autoimmune disorders and cancer.

Erythropoiesis is the process of forming and developing red blood cells (erythrocytes) in the body. It occurs in the bone marrow and is regulated by the hormone erythropoietin (EPO), which is produced by the kidneys. Erythropoiesis involves the differentiation and maturation of immature red blood cell precursors called erythroblasts into mature red blood cells, which are responsible for carrying oxygen to the body's tissues. Disorders that affect erythropoiesis can lead to anemia or other blood-related conditions.

A lymphocyte count is a laboratory test that measures the number of white blood cells called lymphocytes in a sample of blood. Lymphocytes are a vital part of the immune system and help fight off infections and diseases. A normal lymphocyte count ranges from 1,000 to 4,800 cells per microliter (µL) of blood for adults.

An abnormal lymphocyte count can indicate an infection, immune disorder, or blood cancer. A low lymphocyte count is called lymphopenia, while a high lymphocyte count is called lymphocytosis. The cause of an abnormal lymphocyte count should be investigated through further testing and clinical evaluation.

Erythropoietin (EPO) is a hormone that is primarily produced by the kidneys and plays a crucial role in the production of red blood cells in the body. It works by stimulating the bone marrow to produce more red blood cells, which are essential for carrying oxygen to various tissues and organs.

EPO is a glycoprotein that is released into the bloodstream in response to low oxygen levels in the body. When the kidneys detect low oxygen levels, they release EPO, which then travels to the bone marrow and binds to specific receptors on immature red blood cells called erythroblasts. This binding triggers a series of events that promote the maturation and proliferation of erythroblasts, leading to an increase in the production of red blood cells.

In addition to its role in regulating red blood cell production, EPO has also been shown to have neuroprotective effects and may play a role in modulating the immune system. Abnormal levels of EPO have been associated with various medical conditions, including anemia, kidney disease, and certain types of cancer.

EPO is also used as a therapeutic agent for the treatment of anemia caused by chronic kidney disease, chemotherapy, or other conditions that affect red blood cell production. Recombinant human EPO (rhEPO) is a synthetic form of the hormone that is produced using genetic engineering techniques and is commonly used in clinical practice to treat anemia. However, misuse of rhEPO for performance enhancement in sports has been a subject of concern due to its potential to enhance oxygen-carrying capacity and improve endurance.

Megakaryocytes are large, specialized bone marrow cells that are responsible for the production and release of platelets (also known as thrombocytes) into the bloodstream. Platelets play an essential role in blood clotting and hemostasis, helping to prevent excessive bleeding during injuries or trauma.

Megakaryocytes have a unique structure with multilobed nuclei and abundant cytoplasm rich in organelles called alpha-granules and dense granules, which store various proteins, growth factors, and enzymes necessary for platelet function. As megakaryocytes mature, they extend long cytoplasmic processes called proplatelets into the bone marrow sinuses, where these extensions fragment into individual platelets that are released into circulation.

Abnormalities in megakaryocyte number, size, or function can lead to various hematological disorders, such as thrombocytopenia (low platelet count), thrombocytosis (high platelet count), and certain types of leukemia.

Neoplastic stem cells, also known as cancer stem cells (CSCs), are a subpopulation of cells within a tumor that are capable of self-renewal and generating the heterogeneous lineages of cells that comprise the tumor. These cells are believed to be responsible for the initiation, maintenance, and progression of cancer, as well as its recurrence and resistance to therapy.

CSCs share some similarities with normal stem cells, such as their ability to divide asymmetrically and give rise to differentiated progeny. However, they also have distinct characteristics that distinguish them from their normal counterparts, including aberrant gene expression, altered signaling pathways, and increased resistance to apoptosis (programmed cell death).

The existence of CSCs has important implications for cancer diagnosis, treatment, and prevention. Targeting these cells specifically may be necessary to achieve durable remissions and prevent relapse, as they are thought to survive conventional therapies that target the bulk of the tumor. Further research is needed to better understand the biology of CSCs and develop effective strategies for their elimination.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

Hematopoietic cell growth factors are a group of glycoproteins that stimulate the proliferation, differentiation, and survival of hematopoietic cells, which are the precursor cells that give rise to all blood cells. These growth factors include colony-stimulating factors (CSFs) such as granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and macrophage colony-stimulating factor (M-CSF), as well as erythropoietin (EPO) and thrombopoietin (TPO).

G-CSF primarily stimulates the production of neutrophils, a type of white blood cell that plays a crucial role in the immune response to bacterial infections. GM-CSF stimulates the production of both granulocytes and monocytes/macrophages, while M-CSF specifically stimulates the production of monocytes/macrophages. EPO stimulates the production of red blood cells, while TPO stimulates the production of platelets.

Hematopoietic cell growth factors are used clinically to treat a variety of conditions associated with impaired hematopoiesis, such as chemotherapy-induced neutropenia, aplastic anemia, and congenital disorders of hematopoiesis. They can also be used to mobilize hematopoietic stem cells from the bone marrow into the peripheral blood for collection and transplantation.

Leukapheresis is a medical procedure that involves the separation and removal of white blood cells (leukocytes) from the blood. It is performed using a specialized machine called an apheresis instrument, which removes the desired component (in this case, leukocytes) and returns the remaining components (red blood cells, platelets, and plasma) back to the donor or patient. This procedure is often used in the treatment of certain blood disorders, such as leukemia and lymphoma, where high white blood cell counts can cause complications. It may also be used to collect stem cells for transplantation purposes. Leukapheresis is generally a safe procedure with minimal side effects, although it may cause temporary discomfort or bruising at the site of needle insertion.

Intermediate filament proteins (IFPs) are a type of cytoskeletal protein that form the intermediate filaments (IFs), which are one of the three major components of the cytoskeleton in eukaryotic cells, along with microtubules and microfilaments. These proteins have a unique structure, characterized by an alpha-helical rod domain flanked by non-helical head and tail domains.

Intermediate filament proteins are classified into six major types based on their amino acid sequence: Type I (acidic) and Type II (basic) keratins, Type III (desmin, vimentin, glial fibrillary acidic protein, and peripherin), Type IV (neurofilaments), Type V (lamins), and Type VI (nestin). Each type of IFP has a distinct pattern of expression in different tissues and cell types.

Intermediate filament proteins play important roles in maintaining the structural integrity and mechanical strength of cells, providing resilience to mechanical stress, and regulating various cellular processes such as cell division, migration, and signal transduction. Mutations in IFP genes have been associated with several human diseases, including cancer, neurodegenerative disorders, and genetic skin fragility disorders.

A mammalian embryo is the developing offspring of a mammal, from the time of implantation of the fertilized egg (blastocyst) in the uterus until the end of the eighth week of gestation. During this period, the embryo undergoes rapid cell division and organ differentiation to form a complex structure with all the major organs and systems in place. This stage is followed by fetal development, which continues until birth. The study of mammalian embryos is important for understanding human development, evolution, and reproductive biology.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

A stem cell niche is a specific microenvironment in which stem cells reside, interact with surrounding cells and receive molecular signals that regulate their self-renewal, proliferation, differentiation, and survival. This specialized niche provides the necessary conditions for maintaining the undifferentiated state of stem cells and controlling their fate decisions. The components of a stem cell niche typically include various cell types (such as supporting cells, immune cells, and blood vessels), extracellular matrix proteins, signaling molecules, and physical factors like oxygen tension and mechanical stress. Together, these elements create a unique microenvironment that helps to preserve the functional integrity and potential of stem cells for tissue repair, regeneration, and homeostasis.

Blood cells are the formed elements in the blood, including red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). These cells are produced in the bone marrow and play crucial roles in the body's functions. Red blood cells are responsible for carrying oxygen to tissues and carbon dioxide away from them, while white blood cells are part of the immune system and help defend against infection and disease. Platelets are cell fragments that are essential for normal blood clotting.

Neuroglia, also known as glial cells or simply glia, are non-neuronal cells that provide support and protection for neurons in the nervous system. They maintain homeostasis, form myelin sheaths around nerve fibers, and provide structural support. They also play a role in the immune response of the central nervous system. Some types of neuroglia include astrocytes, oligodendrocytes, microglia, and ependymal cells.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a type of cytokine, which is a small signaling protein involved in immune response and hematopoiesis (the formation of blood cells). GM-CSF's specific role is to stimulate the production, proliferation, and activation of granulocytes (a type of white blood cell that fights against infection) and macrophages (large white blood cells that eat foreign substances, bacteria, and dead or dying cells).

In medical terms, GM-CSF is often used in therapeutic settings to boost the production of white blood cells in patients undergoing chemotherapy or radiation treatment for cancer. This can help to reduce the risk of infection during these treatments. It can also be used to promote the growth and differentiation of stem cells in bone marrow transplant procedures.

SCID mice is an acronym for Severe Combined Immunodeficiency mice. These are genetically modified mice that lack a functional immune system due to the mutation or knockout of several key genes required for immunity. This makes them ideal for studying the human immune system, infectious diseases, and cancer, as well as testing new therapies and treatments in a controlled environment without the risk of interference from the mouse's own immune system. SCID mice are often used in xenotransplantation studies, where human cells or tissues are transplanted into the mouse to study their behavior and interactions with the human immune system.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

A "Blood Cell Count" is a medical laboratory test that measures the number of red blood cells (RBCs), white blood cells (WBCs), and platelets in a sample of blood. This test is often used as a part of a routine check-up or to help diagnose various medical conditions, such as anemia, infection, inflammation, and many others.

The RBC count measures the number of oxygen-carrying cells in the blood, while the WBC count measures the number of immune cells that help fight infections. The platelet count measures the number of cells involved in clotting. Abnormal results in any of these counts may indicate an underlying medical condition and further testing may be required for diagnosis and treatment.

Precursor Cell Lymphoblastic Leukemia-Lymphoma (previously known as Precursor T-lymphoblastic Leukemia/Lymphoma) is a type of cancer that affects the early stages of T-cell development. It is a subtype of acute lymphoblastic leukemia (ALL), which is characterized by the overproduction of immature white blood cells called lymphoblasts in the bone marrow, blood, and other organs.

In Precursor Cell Lymphoblastic Leukemia-Lymphoma, these abnormal lymphoblasts accumulate primarily in the lymphoid tissues such as the thymus and lymph nodes, leading to the enlargement of these organs. This subtype is more aggressive than other forms of ALL and has a higher risk of spreading to the central nervous system (CNS).

The medical definition of Precursor Cell Lymphoblastic Leukemia-Lymphoma includes:

1. A malignant neoplasm of immature T-cell precursors, also known as lymphoblasts.
2. Characterized by the proliferation and accumulation of these abnormal cells in the bone marrow, blood, and lymphoid tissues such as the thymus and lymph nodes.
3. Often associated with chromosomal abnormalities, genetic mutations, or aberrant gene expression that contribute to its aggressive behavior and poor prognosis.
4. Typically presents with symptoms related to bone marrow failure (anemia, neutropenia, thrombocytopenia), lymphadenopathy (swollen lymph nodes), hepatosplenomegaly (enlarged liver and spleen), and potential CNS involvement.
5. Diagnosed through a combination of clinical evaluation, imaging studies, and laboratory tests, including bone marrow aspiration and biopsy, immunophenotyping, cytogenetic analysis, and molecular genetic testing.
6. Treated with intensive multi-agent chemotherapy regimens, often combined with radiation therapy and/or stem cell transplantation to achieve remission and improve survival outcomes.

The lateral ventricles are a pair of fluid-filled cavities located within the brain. They are part of the ventricular system, which is a series of interconnected spaces filled with cerebrospinal fluid (CSF). The lateral ventricles are situated in the left and right hemispheres of the brain and are among the largest of the ventricles.

Each lateral ventricle has a complex structure and can be divided into several parts:

1. Anterior horn: This is the front part of the lateral ventricle, located in the frontal lobe of the brain.
2. Body: The central part of the lateral ventricle, which is continuous with the anterior horn and posterior horn.
3. Posterior horn: The back part of the lateral ventricle, located in the occipital lobe of the brain.
4. Temporal horn: An extension that projects into the temporal lobe of the brain.

The lateral ventricles are lined with ependymal cells, which produce cerebrospinal fluid. CSF circulates through the ventricular system, providing buoyancy and protection to the brain, and is eventually absorbed into the bloodstream. Abnormalities in the size or shape of the lateral ventricles can be associated with various neurological conditions, such as hydrocephalus, brain tumors, or neurodegenerative diseases.

... including liver type 1 innate lymphoid cells (ILC1s), remain unclear. We show here that the adult mouse liver contains Lin,sup ... sup,Sca-1,sup,+,/sup,Mac-1,sup,+,/sup, hematopoietic stem cells derived from the fetal liver. Th … ... This population includes Lin-CD122+CD49a+ progenitors that can generate liver ILC1s but not conventional natural killer cells. ... Liver type 1 innate lymphoid cells develop locally via an interferon-γ-dependent loop Science. 2021 Mar 26;371(6536):eaba4177. ...
... and sustain in the long-term B cells, polyclonal T cells, as well as short-lived B-cell progenitors and thymic T-cell ... identified lymphoid-primed multipotent progenitors are superior to hematopoietic stem cells in providing rapid lymphoid ... Consequently, there is need for further exploring the application of purified stem and progenitor cells to overcome this ... We further provide evidence for IUHCT of hematopoietic stem cells giving superior B- and T-cell reconstitution in fetal X-SCID ...
Plasmacytoid dendritic cells (pDCs) differentiate from lymphoid progenitor cells in the lymphoid tissues. They express CD123 ... Dendritic cells (DCs) are antigen presenting cells for the induction of antigen specific T cell response. DC-based ... Mature DCs have ability to present antigens in the lymphoid tissues, and to prime, activate, and expand immune effector cells ... Myeloid or conventional DCs (cDCs) are derived from myeloid progenitor cells in the bone marrow and are characterized by ...
... lymphoid progenitor cells; skin exposures; and photooxidation. ...
involved_in lymphoid progenitor cell differentiation IEA Inferred from Electronic Annotation. more info ... involved_in hematopoietic progenitor cell differentiation IBA Inferred from Biological aspect of Ancestor. more info ... involved_in myeloid progenitor cell differentiation IEA Inferred from Electronic Annotation. more info ... located_in cell-cell junction IEA Inferred from Electronic Annotation. more info ...
Exploring differentiation potential of common lymphoid progenitor-like cell in the human thymus. Authors: C. Onuegbu; K. ... Importance of SMARCAL-1 in Endothelial Cell Differentiation from Pluripotent Stem Cells. Authors: A. Abdela; D. Lewis ... His-Tag Protein Purification of Transcription Factors for Mouse Embryonic Stem Cell Differentiation Authors: E. Phi; A. Gloyn. ... Identifying Gaps in CAR T-cell Therapy Patients Education to Improve the Patient Experience. Authors: S. Acharya; A. Ong; L. ...
Diane Krause,br /,Professor of Laboratory Medicine, Pathology and Cell Biology, Yale University,br /,Blood and Bone ... 00:48split into common lymphoid progenitors,. *00:50which will make the B&T cells and NK cells ... Hematopoietic Stem/Progenitor Cell Fate Specification in Health and Disease. September 25, 2020*. ... Professor of Laboratory Medicine, Pathology and Cell Biology, Yale University. Blood and Bone Webinar. March 23, 2020 ...
However, experimental evidence suggests these cells are important for thymus function by either directly influencing T-cell ... However, experimental evidence suggests these cells are important for thymus function by either directly influencing T-cell ... Extensive research on thymic epithelial cells (TEC) within the cortex and medulla has defined their essential roles during T- ... cell development. Significantly, there are additional non-epithelial stromal cells (NES) that exist alongside TEC within thymic ...
The occurrence of an immunologically mediated and injurious set of reactions by cells genetically disparate to their host, ... GVHD can develop in the course of (1) BMT or peripheral blood progenitor (hematopoietic stem cell) transplantation; (2) ... "Secondary disease" of radiation chimeras: a syndrome due to lymphoid aplasia. Ann N Y Acad Sci. 1962 Oct 24. 99:374-85. [QxMD ... and dendritic cells, further stimulating the activation of T cells and NK cells. ...
Although most clinicians would agree that hematopoietic progenitor cell transplantation after reinduction therapy is frontline ... there is no consensus as to what type of hematopoietic progenitor cell transplantation promises the best event-free and overall ... This review outlines the disparate types of stem cell therapy that have been used in this difficult-to-treat population as well ... as the role of maintenance and CAR T-cell therapy in conjunction with stem cell therapy. ...
B-cells arise from a lymphoid progenitor, while macrophages come from a myeloid progenitor. ... Like all blood cells, B-cells and macrophages descend from hematopoeitic stem cells; however, as members of different families ... Pushing mature cells into other lineages may offer a new way to replace cells involved in blood diseases and neurodegenerative ... Moreover, the cells could continue oscillating between B-cells and macrophages indefinitely, as many times as they were ...
... and macrophage progenitors in fetal liver. The CD45R antigen has been reported not to be on hematopoietic stem cells, naive T ... but it is decreased on plasma cells and a subset of memory B cells. The levels of CD45R expression on the B-cell lineage appear ... but it is decreased on plasma cells and a subset of memory B cells. The levels of CD45R expression on the B-cell lineage appear ... The CD45 isoforms play complex roles in T-cell and B-cell antigen receptor signal transduction. CD45R is commonly used as a pan ...
A conceptual illustration of a lymphoid progenitor cell.. BOSTON-In an overview of human innate lymphoid cells subsets, Hergen ... one which defines a family of lymphoid cell subsets with properties that parallel T-helper cell subsets, said Dr. Spits. This ... 2014 ACR/ARHP Annual Meeting: Immunology Update on Innate Lymphoid Cells. Mary Beth Nierengarten , Issue: March 2015 , March 1 ... A better understanding of the role of innate lymphoid cells (ILCs) has emerged over the past six years, ...
The image below depicts bone marrow aspirate from a child with T-cell acute lymphoblastic leukemia. ... In acute lymphoblastic leukemia (ALL), a lymphoid progenitor cell becomes genetically altered and subsequently undergoes ... lymphoid cells reflect the altered expression of genes usually involved in the normal development of B cells and T cells. ... but different study groups still approach the management of T-cell ALL differently. Mature B-cell ALL is treated in the same ...
It is arise from hematopoietic stem and progenitor cells in the bone marrow. Hematologic Malignancie are cancers that begin in ... A malignancy in the lymphoid lineage that includes white blood cells such as T lymphocytes and B lymphocytes. For examples ... A malignancy in the myeloid lineage that includes precursor cells to red blood cells, platelets and white blood cells such as ... The many distinct sorts of mature blood cells, like red blood cells for carrying oxygen, white blood cells for immune ...
CD27 is a tumor necrosis factor receptor family member expressed on T and B cells ... The expression of CD27 in lymphoid and myeloid progenitor cells is tightly controlled. The expression pattern of CD27 is ... On hematologic progenitor cells and leukemic stem cells, CD27 leads to Wnt pathway activation and promotes cell growth (J Clin ... CD27 is highly expressed in high risk B cell progenitor acute lymphoblastic leukemia and associated with decreased survival ( ...
Diseases, B-Cell Lymphoma, Technology and Procedures, Plasma Cell Disorders, Lymphoid Malignancies, flow cytometry, RNA ... B cell precursors, residual normal B cells (if detectable), WM B cells, plasma cells (PCs) and T cells (germline control). ... Single-cell RNA and B-cell receptor sequencing (scRNA/BCRseq) was performed in total BM B cells and PCs (n=32,720) from 3 IgM ... Recently, shared mutations between clonal B cells in MBL/CLL and CD34+ hematopoietic progenitor cells (HPC) have been ...
... for B-lymphoid differentiation after murine leukemia virus infection in vivo and in EML hematopoietic progenitor cells. J Virol ...
The Lymphopoiesis Unit identified within the first cells that seed the thymus a unique population of lymphoid progenitors. ... The organization of mesenchymal stromal cells elucidated Cells in vivo organize into 3D structures that underlie the shape and ...
... stromal cell-derived factor-1α and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in ... Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP+ cells in chimera mice and revealed a ... progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM ... injection caused large numbers of GFP+ cells to appear in active fibrotic lesions, while only a few GFP+ cells could be ...
... was a significant step forward in the specific analysis of platelet and megakaryocyte cell biology. However, in the present ... we show for the first time that Pf4 transcripts are present in adult HSCs and primitive hematopoietic progenitor cells. These ... we demonstrate that Pf4-Cre activity is not megakaryocyte lineage-specific but extends to other myeloid and lymphoid lineages ... Lineage tracing of Pf4-Cre marks hematopoietic stem cells and their progeny PLoS One. 2012;7(12):e51361. doi: 10.1371/journal. ...
It will therefore help evaluate heterogeneity in the capacity to monitor and eradicate malignant cells and/or their progenitors ... Gincy will apply the new method to epidemiological data collected on lymphoid stress surveillance to predict progression of ...
In the context of cancer, appropriately activated DCs can induce anti-tumor immunity by activating innate immune cells and ... Many reports thus far have studied oncolytic viruses (OVs), viruses that preferentially target and kill cancer cells, for their ... are specialized antigen-presenting cells that have a notable role in the initiation and regulation of innate and adaptive ... tumor-specific lymphocytes that target cancer cells. However, the tumor microenvironment (TME) imposes different mechanisms ...
Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses ... Qualitative and quantitative analysis of changes in the ubiquitin pathway in human cells using LC-MS/MS. Mol Cell Proteomics ... Toxicity and metabolism of subcytotoxic inorganic arsenic in human renal proximal tubule epithelial cells (HK-2). Cell Biol ... Immortalized human urothelial cells as a model of arsenic-induced bladder cancer. Toxicology 248(2-3):67-76. doi:10.1016/j.tox. ...
Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair ... Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of ... The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines ... and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular ...
... known as the common lymphoid progenitor (CLP), later differentiates into T and B cells. According to this model, T and B cells ... Model of T cell lineage determination. During regular hematopoiesis, multipotent progenitors (myeloid-T-B progenitors) first ... While varying widely in function, all blood cells share a common origin in progenitors known as hematopoietic stem cells (HSC ... the researchers found that progenitors developing toward T cells were arrested in the absence of so-called feeder cells, which ...
... lymphoid progenitor cells, macrophage, monocyte, myeloid progenitor cells, non-small cell lung cancer, NSCLC, PD-1 inhibitors, ... These cells arise from myeloid progenitor cells in the bone marrow, while T cells arise from the marrows lymphoid progenitor ... Tags: beige cells, brown fat, browning, cachexia, cancer, colon cancer, muscle atrophy, non-small cell lung cancer, obesity, ... Because cancer cells within a tumor can vary greatly, a single biopsy taken at a single site in the tumor may miss cells with ...
... and these variants were routinely lost in the tumor cells by chromosomal deletions (e.g., monosomy 7) or copy number neutral ... given that it is possible for somatic mutations to arise in progenitor compartments affecting both myeloid and lymphoid cells, ... EdU cell cycle assays. Following a 24-48 h transfection with SAMD9/L 293 T cells were treated with 10uM EdU for 2 h. Following ... Dye dilution cell proliferation assays. Prior to SAMD9/SAMD9L transfection 293 T cells were stained with either CellTrace™ ...
Induced Pluripotent Stem Cells/immunology, Lymphoid Progenitor Cells/immunology, Receptors, Antigen, T-Cell/genetics, ... which include virus-specific or T cell receptor-less allogeneic T cells, expanded lymphoid progenitors, and induced pluripotent ... which include virus-specific or T cell receptor-less allogeneic T cells, expanded lymphoid progenitors, and induced pluripotent ... which include virus-specific or T cell receptor-less allogeneic T cells, expanded lymphoid progenitors, and induced pluripotent ...

No FAQ available that match "lymphoid progenitor cells"

No images available that match "lymphoid progenitor cells"