Dioxygenases that catalyze the peroxidation of methylene-interrupted UNSATURATED FATTY ACIDS.
An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives.
Enzymes catalyzing the oxidation of arachidonic acid to hydroperoxyarachidonates. These products are then rapidly converted by a peroxidase to hydroxyeicosatetraenoic acids. The positional specificity of the enzyme reaction varies from tissue to tissue. The final lipoxygenase pathway leads to the leukotrienes. EC 1.13.11.- .
An enzyme that catalyzes the oxidation of arachidonic acid to yield 15-hydroperoxyarachidonate (15-HPETE) which is rapidly converted to 15-hydroxy-5,8,11,13-eicosatetraenoate (15-HETE). The 15-hydroperoxides are preferentially formed in NEUTROPHILS and LYMPHOCYTES.
An enzyme that catalyzes the oxidation of arachidonic acid to yield 12-hydroperoxyarachidonate (12-HPETE) which is itself rapidly converted by a peroxidase to 12-hydroxy-5,8,10,14-eicosatetraenoate (12-HETE). The 12-hydroperoxides are preferentially formed in PLATELETS.
Compounds that bind to and inhibit that enzymatic activity of LIPOXYGENASES. Included under this category are inhibitors that are specific for lipoxygenase subtypes and act to reduce the production of LEUKOTRIENES.
A lipoxygenase metabolite of ARACHIDONIC ACID. It is a highly selective ligand used to label mu-opioid receptors in both membranes and tissue sections. The 12-S-HETE analog has been reported to augment tumor cell metastatic potential through activation of protein kinase C. (J Pharmacol Exp Ther 1995; 274(3):1545-51; J Natl Cancer Inst 1994; 86(15):1145-51)
An enzyme that catalyzes the oxidation of arachidonic acid to yield 5-hydroperoxyarachidonate (5-HPETE) which is rapidly converted by a peroxidase to 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE). The 5-hydroperoxides are preferentially formed in leukocytes.
Eighteen-carbon essential fatty acids that contain two double bonds.
Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension.
Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes.
A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils.
An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS.
An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes.
A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system.
A plant genus of the family BETULACEAE known for the edible nuts.
Trihydroxy derivatives of eicosanoic acids. They are primarily derived from arachidonic acid, however eicosapentaenoic acid derivatives also exist. Many of them are naturally occurring mediators of immune regulation.
A class of compounds named after and generally derived from C20 fatty acids (EICOSANOIC ACIDS) that includes PROSTAGLANDINS; LEUKOTRIENES; THROMBOXANES, and HYDROXYEICOSATETRAENOIC ACIDS. They have hormone-like effects mediated by specialized receptors (RECEPTORS, EICOSANOID).
Arachidonic acids are polyunsaturated fatty acids, specifically a type of omega-6 fatty acid, that are essential for human nutrition and play crucial roles in various biological processes, including inflammation, immunity, and cell signaling. They serve as precursors to eicosanoids, which are hormone-like substances that mediate a wide range of physiological responses.
A 20-carbon unsaturated fatty acid containing 4 alkyne bonds. It inhibits the enzymatic conversion of arachidonic acid to prostaglandins E(2) and F(2a).
A doubly unsaturated fatty acid, occurring widely in plant glycosides. It is an essential fatty acid in mammalian nutrition and is used in the biosynthesis of prostaglandins and cell membranes. (From Stedman, 26th ed)
A plant species of the genus SOLANUM, family SOLANACEAE. The starchy roots are used as food. SOLANINE is found in green parts.
FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes.
Eighteen-carbon essential fatty acids that contain three double bonds.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Eighteen-carbon cyclopentyl polyunsaturated fatty acids derived from ALPHA-LINOLENIC ACID via an oxidative pathway analogous to the EICOSANOIDS in animals. Biosynthesis is inhibited by SALICYLATES. A key member, jasmonic acid of PLANTS, plays a similar role to ARACHIDONIC ACID in animals.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A class in the phylum CNIDARIA, comprised mostly of corals and anemones. All members occur only as polyps; the medusa stage is completely absent.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
The facilitation of biochemical reactions with the aid of naturally occurring catalysts such as ENZYMES.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor.
A group of FLAVONOIDS characterized with a 4-ketone.
Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
A group of alicyclic hydrocarbons with the general formula R-C5H9.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The rate dynamics in chemical or physical systems.
Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A constitutively-expressed subtype of prostaglandin-endoperoxide synthase. It plays an important role in many cellular processes.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Proteins prepared by recombinant DNA technology.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.

Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. (1/24)

 (+info)

Regulation of endothelial cell functions by basement membrane- and arachidonic acid-derived products. (2/24)

 (+info)

Signaling and cytotoxic functions of 4-hydroxyalkenals. (3/24)

 (+info)

Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. (4/24)

 (+info)

Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. (5/24)

 (+info)

Lipoxygenase-mediated modification of insect elicitors: generating chemical diversity on the leaf wound surface. (6/24)

Plants can distinguish mechanical damage from larval folivory through the recognition of specific constituents of larval oral secretions (OS) which are deposited on the surface of leaf wounds during feeding. Fatty acid-amino acid conjugates (FACs) are major constituents of the OS of Lepidopteran larvae and they are strong elicitors of herbivore-induced defense responses in several plant species, including the wild tobacco Nicotiana attenuata. When OS from Manduca sexta larvae is deposited on N. attenuata wounded leaves, the major FAC N-linolenoyl-glutamic acid (18:3-Glu) is modified within seconds by a heat labile process. Some of the major modified forms are oxygenated products derived from 13-lipoxygenase activity and one of these derivatives, 13-oxo-13:2-Glu, is an active elicitor of enhanced JA biosynthesis and differential monoterpene emission in N. attenuata leaves.  (+info)

Lipoxygenases and poly(ADP-ribose) polymerase in amyloid beta cytotoxicity. (7/24)

 (+info)

Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling. (8/24)

 (+info)

Lipoxygenases (LOX) are a group of enzymes that catalyze the dioxygenation of polyunsaturated fatty acids, forming hydroperoxides. These enzymes play a role in various physiological and pathophysiological processes, including inflammation, immunity, and cancer. They are widely distributed in nature and can be found in animals, plants, and microorganisms. In humans, LOXs are involved in the biosynthesis of leukotrienes and lipoxins, which are important mediators of inflammation and resolution of inflammation, respectively.

Lipoxygenase is an enzyme that catalyzes the dioxygenation of polyunsaturated fatty acids containing a cis,cis-1,4-pentadiene structure, forming hydroperoxides. This reaction is important in the biosynthesis of leukotrienes and lipoxins, which are involved in various inflammatory responses and immune functions. There are several isoforms of lipoxygenase found in different tissues and organisms, including arachidonate 5-lipoxygenase, arachidonate 12-lipoxygenase, and arachidonate 15-lipoxygenase.

Arachidonate lipoxygenases (ALOXs or ALOXE's) are a group of enzymes that catalyze the dioxygenation of polyunsaturated fatty acids, such as arachidonic acid, to form hydroperoxides. These enzymes play a crucial role in the biosynthesis of various eicosanoids, which are signaling molecules involved in inflammation, immunity, and other physiological processes.

There are several isoforms of ALOXs, including 5-lipoxygenase (5-LOX), 12-lipoxygenase (12-LOX), and 15-lipoxygenase (15-LOX), which differ in their substrate specificity and the position of the hydroperoxide group they introduce into the fatty acid. These enzymes are widely distributed in various tissues, including the lungs, liver, and brain, and have been implicated in a variety of diseases, such as cancer, cardiovascular disease, and neurodegenerative disorders.

Inhibition of ALOXs has been explored as a potential therapeutic strategy for the treatment of these diseases, although the development of selective and safe inhibitors has proven to be challenging.

Arachidonate 15-lipoxygenase is an enzyme that catalyzes the conversion of arachidonic acid to 15-hydroperoxyeicosatetraenoic acid (15-HPETE). This enzyme plays a role in the metabolism of arachidonic acid, which is a polyunsaturated fatty acid that is released from membrane phospholipids and is a precursor for eicosanoids, which are signaling molecules that play a role in inflammation and other physiological processes.

15-lipoxygenase is one of several lipoxygenases that are found in various tissues throughout the body. These enzymes are involved in the production of leukotrienes, which are signaling molecules that play a role in inflammation and allergic responses. 15-lipoxygenase has also been implicated in the development and progression of certain diseases, including cancer and cardiovascular disease.

Inhibitors of 15-lipoxygenase have been investigated as potential therapeutic agents for the treatment of various inflammatory conditions. However, more research is needed to fully understand the role of this enzyme in health and disease and to determine the safety and efficacy of inhibiting its activity.

Arachidonate 12-lipoxygenase (also known as ALOX12 or 12S-lipoxygenase) is an enzyme that catalyzes the conversion of arachidonic acid to 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE). This reaction is part of the lipoxygenase pathway, which contributes to the biosynthesis of eicosanoids, a group of signaling molecules that play important roles in inflammation and immune response.

The enzyme's function includes introducing molecular oxygen into arachidonic acid at position 12, creating a hydroperoxide group. The product, 12(S)-HPETE, can be further metabolized to various eicosanoids, such as 12-hydroxyeicosatetraenoic acid (12-HETE) and lipoxin A4, which have diverse biological activities in the body.

Arachidonate 12-lipoxygenase is expressed in various tissues, including the vascular endothelium, platelets, and immune cells like monocytes and macrophages. Its activity can contribute to the development of certain diseases, such as atherosclerosis, cancer, and inflammatory disorders. Therefore, inhibiting this enzyme has been considered as a potential therapeutic strategy for treating these conditions.

Lipoxygenase inhibitors are a class of compounds that block the activity of lipoxygenase enzymes. These enzymes are involved in the metabolism of arachidonic acid and other polyunsaturated fatty acids, leading to the production of leukotrienes and other inflammatory mediators. By inhibiting lipoxygenase, these compounds can help reduce inflammation and may have potential therapeutic applications in the treatment of various diseases, including asthma, atherosclerosis, and cancer. Some examples of lipoxygenase inhibitors include nordihydroguaiaretic acid (NDGA), zileuton, and baicalein.

12-Hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) is a type of fatty acid that is produced in the body as a result of the metabolism of arachidonic acid, which is an omega-6 fatty acid that is found in the membranes of cells throughout the body.

12-HETE is synthesized by the enzyme 12-lipoxygenase (12-LOX), which adds a hydroxyl group (-OH) to the twelfth carbon atom of arachidonic acid. This lipid mediator plays a role in various physiological and pathophysiological processes, including inflammation, immune response, and cancer development.

Increased levels of 12-HETE have been found in several diseases, such as atherosclerosis, asthma, and cancer, suggesting that it may contribute to the development and progression of these conditions. However, further research is needed to fully understand the role of 12-HETE in human health and disease.

Arachidonate 5-Lipoxygenase (also known as ALOX5 or 5-LO) is a type of enzyme involved in the biosynthesis of leukotrienes, which are important inflammatory mediators. It catalyzes the conversion of arachidonic acid, a polyunsaturated fatty acid, to 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which is then converted to leukotriene A4 (LTA4). LTA4 is a precursor for the synthesis of other leukotrienes, such as LTB4, LTC4, LTD4, and LTE4. These lipid mediators play key roles in various physiological and pathophysiological processes, including inflammation, immune response, and allergic reactions.

The gene encoding arachidonate 5-lipoxygenase is located on human chromosome 10 (10q11.2). Mutations in this gene have been associated with several diseases, such as severe congenital neutropenia, recurrent infections, and increased risk of developing asthma and other allergic disorders. Inhibitors of arachidonate 5-lipoxygenase are used as therapeutic agents for the treatment of inflammatory conditions, including asthma and rheumatoid arthritis.

Linoleic acid is a type of polyunsaturated fatty acid (PUFA) that is essential for human health. It is one of the two essential fatty acids, meaning that it cannot be produced by the body and must be obtained through diet.

Linoleic acid is a member of the omega-6 fatty acid family and has a chemical structure with two double bonds at the sixth and ninth carbon atoms from the methyl end of the molecule. It is found in various plant sources, such as vegetable oils (e.g., soybean, corn, safflower, and sunflower oils), nuts, seeds, and whole grains.

Linoleic acid plays a crucial role in maintaining the fluidity and function of cell membranes, producing eicosanoids (hormone-like substances that regulate various bodily functions), and supporting skin health. However, excessive intake of linoleic acid can lead to an imbalance between omega-6 and omega-3 fatty acids, which may contribute to inflammation and chronic diseases. Therefore, it is recommended to maintain a balanced diet with appropriate amounts of both omega-6 and omega-3 fatty acids.

Lipid peroxides are chemical compounds that form when lipids (fats or fat-like substances) oxidize. This process, known as lipid peroxidation, involves the reaction of lipids with oxygen in a way that leads to the formation of hydroperoxides and various aldehydes, such as malondialdehyde.

Lipid peroxidation is a naturally occurring process that can also be accelerated by factors such as exposure to radiation, certain chemicals, or enzymatic reactions. It plays a role in many biological processes, including cell signaling and regulation of gene expression, but it can also contribute to the development of various diseases when it becomes excessive.

Examples of lipid peroxides include phospholipid hydroperoxides, cholesteryl ester hydroperoxides, and triglyceride hydroperoxides. These compounds are often used as markers of oxidative stress in biological systems and have been implicated in the pathogenesis of atherosclerosis, cancer, neurodegenerative diseases, and other conditions associated with oxidative damage.

Hydroxyeicosatetraenoic acids (HETEs) are a type of metabolite produced by the oxidation of arachidonic acid, a polyunsaturated fatty acid that is found in the membranes of cells in the human body. This oxidation process is catalyzed by enzymes called lipoxygenases (LOXs) and cytochrome P450 monooxygenases (CYP450).

HETEs are biologically active compounds that play a role in various physiological and pathophysiological processes, including inflammation, immune response, and cancer. They can act as signaling molecules, modulating the activity of various cell types, such as leukocytes, endothelial cells, and smooth muscle cells.

There are several different types of HETEs, depending on the position of the hydroxyl group (-OH) attached to the arachidonic acid molecule. For example, 5-HETE, 12-HETE, and 15-HETE are produced by 5-LOX, 12-LOX, and 15-LOX, respectively, while CYP450 can produce 20-HETE.

It's worth noting that HETEs have been implicated in various diseases, such as atherosclerosis, hypertension, and cancer, making them potential targets for therapeutic intervention. However, further research is needed to fully understand their roles and develop effective treatments.

Masoprocol is not a medication that has an established or widely accepted medical definition in the field of pharmacology or clinical medicine. It may refer to a chemical compound with the name 5-n-butyl-2-benzoxazolinone, which has been studied for its potential anti-cancer properties. However, it is not currently approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) for use in medical treatments.

Therefore, it's important to consult with healthcare professionals or reliable medical sources for information regarding medications and their uses, rather than relying on unverified or obscure sources.

I'm sorry for any confusion, but "soybeans" are not a medical term. They are a type of legume that is commonly used in agriculture and food production. The medical community might discuss soybeans in the context of nutrition or allergies, but there isn't a formal medical definition for this term.

Here's some general information: Soybeans, scientifically known as Glycine max, are native to East Asia and are now grown worldwide. They are a significant source of plant-based protein and oil. Soybeans contain various nutrients, including essential amino acids, fiber, B vitamins, and minerals like calcium, iron, magnesium, and zinc. They are used in various food products such as tofu, soy milk, tempeh, and miso. Additionally, soybeans are also used in the production of industrial products, including biodiesel, plastics, and inks. Some people may have allergic reactions to soybeans or soy products.

Arachidonic acid is a type of polyunsaturated fatty acid that is found naturally in the body and in certain foods. It is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet. Arachidonic acid is a key component of cell membranes and plays a role in various physiological processes, including inflammation and blood clotting.

In the body, arachidonic acid is released from cell membranes in response to various stimuli, such as injury or infection. Once released, it can be converted into a variety of bioactive compounds, including prostaglandins, thromboxanes, and leukotrienes, which mediate various physiological responses, including inflammation, pain, fever, and blood clotting.

Arachidonic acid is found in high concentrations in animal products such as meat, poultry, fish, and eggs, as well as in some plant sources such as certain nuts and seeds. It is also available as a dietary supplement. However, it is important to note that excessive intake of arachidonic acid can contribute to the development of inflammation and other health problems, so it is recommended to consume this fatty acid in moderation as part of a balanced diet.

Leukotrienes are a type of lipid mediator derived from arachidonic acid, which is a fatty acid found in the cell membranes of various cells in the body. They are produced by the 5-lipoxygenase (5-LO) pathway and play an essential role in the inflammatory response. Leukotrienes are involved in several physiological and pathophysiological processes, including bronchoconstriction, increased vascular permeability, and recruitment of immune cells to sites of injury or infection.

There are four main types of leukotrienes: LTB4, LTC4, LTD4, and LTE4. These molecules differ from each other based on the presence or absence of specific chemical groups attached to their core structure. Leukotrienes exert their effects by binding to specific G protein-coupled receptors (GPCRs) found on the surface of various cells.

LTB4 is primarily involved in neutrophil chemotaxis and activation, while LTC4, LTD4, and LTE4 are collectively known as cysteinyl leukotrienes (CysLTs). CysLTs cause bronchoconstriction, increased mucus production, and vascular permeability in the airways, contributing to the pathogenesis of asthma and other respiratory diseases.

In summary, leukotrienes are potent lipid mediators that play a crucial role in inflammation and immune responses. Their dysregulation has been implicated in several disease states, making them an important target for therapeutic intervention.

'Corylus' is the medical term for the genus of plants that includes hazelnuts and filberts. These trees and shrubs are part of the Betulaceae family, which also includes birch and alder trees. The nuts produced by Corylus species are a valuable food source for both humans and wildlife.

The most commonly cultivated species of Corylus is the European hazelnut (Corylus avellana), which is native to Europe and western Asia. This species is grown commercially in many parts of the world for its sweet, edible nuts. The North American beaked hazelnut (Corylus cornuta) and the North American round-leaf hazelnut (Corylus americana) are also cultivated to a lesser extent for their nuts.

In addition to their nutritional value, Corylus species have been used in traditional medicine for centuries. The bark, leaves, and nuts of these plants contain various compounds that have been found to have anti-inflammatory, antioxidant, and antimicrobial properties. However, more research is needed to fully understand the potential health benefits of Corylus species and their active constituents.

Lipoxins are a group of naturally occurring, short-lived signaling molecules called eicosanoids that are derived from arachidonic acid, a type of omega-6 fatty acid. They were first discovered in the 1980s and are produced by cells involved in the inflammatory response, such as white blood cells (leukocytes).

Lipoxins have potent anti-inflammatory effects and play a crucial role in regulating and resolving the inflammatory response. They work by modulating the activity of various immune cells, including neutrophils, monocytes, and lymphocytes, and promoting the resolution of inflammation through the activation of anti-inflammatory pathways.

Lipoxins have been shown to have potential therapeutic applications in a variety of inflammatory diseases, such as asthma, arthritis, and inflammatory bowel disease. However, further research is needed to fully understand their mechanisms of action and therapeutic potential.

Eicosanoids are a group of signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid and other polyunsaturated fatty acids with 20 carbon atoms. They include prostaglandins, thromboxanes, leukotrienes, and lipoxins, which are involved in a wide range of physiological and pathophysiological processes, such as inflammation, immune response, blood clotting, and smooth muscle contraction. Eicosanoids act as local hormones or autacoids, affecting the function of cells near where they are produced. They are synthesized by various cell types, including immune cells, endothelial cells, and neurons, in response to different stimuli, such as injury, infection, or stress. The balance between different eicosanoids can have significant effects on health and disease.

Arachidonic acids are a type of polyunsaturated fatty acid that is primarily found in the phospholipids of cell membranes. They contain 20 carbon atoms and four double bonds (20:4n-6), with the first double bond located at the sixth carbon atom from the methyl end.

Arachidonic acids are derived from linoleic acid, an essential fatty acid that cannot be synthesized by the human body and must be obtained through dietary sources such as meat, fish, and eggs. Once ingested, linoleic acid is converted to arachidonic acid in a series of enzymatic reactions.

Arachidonic acids play an important role in various physiological processes, including inflammation, immune response, and cell signaling. They serve as precursors for the synthesis of eicosanoids, which are signaling molecules that include prostaglandins, thromboxanes, and leukotrienes. These eicosanoids have diverse biological activities, such as modulating blood flow, platelet aggregation, and pain perception, among others.

However, excessive production of arachidonic acid-derived eicosanoids has been implicated in various pathological conditions, including inflammation, atherosclerosis, and cancer. Therefore, the regulation of arachidonic acid metabolism is an important area of research for the development of new therapeutic strategies.

5,8,11,14-Eicosatetraynoic acid (ETYA) is a polyunsaturated fatty acid that contains four double bonds in its chemical structure. It is a non-methylene interrupted fatty acid, which means that the double bonds are separated by three methylene bridges. ETYA is not a naturally occurring fatty acid and is typically synthesized in the laboratory for research purposes.

ETYA has been used as a tool to study the biochemical mechanisms of inflammation and cancer. It can inhibit the activity of enzymes called lipoxygenases and cyclooxygenases, which are involved in the production of inflammatory mediators such as prostaglandins and leukotrienes. ETYA can also induce the formation of reactive oxygen species, which can contribute to cell damage and death.

While ETYA has been used in research to better understand the biochemical pathways involved in inflammation and cancer, it is not used as a therapeutic agent in clinical medicine due to its potential toxicity and lack of specificity for targeting disease processes.

Linoleic acid is an essential polyunsaturated fatty acid, specifically an omega-6 fatty acid. It is called "essential" because our bodies cannot produce it; therefore, it must be obtained through our diet. Linoleic acid is a crucial component of cell membranes and is involved in the production of prostaglandins, which are hormone-like substances that regulate various bodily functions such as inflammation, blood pressure, and muscle contraction.

Foods rich in linoleic acid include vegetable oils (such as soybean, corn, and sunflower oil), nuts, seeds, and some fruits and vegetables. It is important to maintain a balance between omega-6 and omega-3 fatty acids in the diet, as excessive consumption of omega-6 fatty acids can contribute to inflammation and other health issues.

"Solanum tuberosum" is the scientific name for a plant species that is commonly known as the potato. According to medical and botanical definitions, Solanum tuberosum refers to the starchy, edible tubers that grow underground from this plant. Potatoes are native to the Andes region of South America and are now grown worldwide. They are an important food source for many people and are used in a variety of culinary applications.

Potatoes contain several essential nutrients, including carbohydrates, fiber, protein, vitamin C, and some B vitamins. However, they can also be high in calories, especially when prepared with added fats like butter or oil. Additionally, potatoes are often consumed in forms that are less healthy, such as French fries and potato chips, which can contribute to weight gain and other health problems if consumed excessively.

In a medical context, potatoes may also be discussed in relation to food allergies or intolerances. While uncommon, some people may have adverse reactions to potatoes, including skin rashes, digestive symptoms, or difficulty breathing. These reactions are typically caused by an immune response to proteins found in the potato plant, rather than the tubers themselves.

Unsaturated fatty acids are a type of fatty acid that contain one or more double bonds in their carbon chain. These double bonds can be either cis or trans configurations, although the cis configuration is more common in nature. The presence of these double bonds makes unsaturated fatty acids more liquid at room temperature and less prone to spoilage than saturated fatty acids, which do not have any double bonds.

Unsaturated fatty acids can be further classified into two main categories: monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). MUFAs contain one double bond in their carbon chain, while PUFAs contain two or more.

Examples of unsaturated fatty acids include oleic acid (a MUFA found in olive oil), linoleic acid (a PUFA found in vegetable oils), and alpha-linolenic acid (an omega-3 PUFA found in flaxseed and fish). Unsaturated fatty acids are essential nutrients for the human body, as they play important roles in various physiological processes such as membrane structure, inflammation, and blood clotting. It is recommended to consume a balanced diet that includes both MUFAs and PUFAs to maintain good health.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Reticulocytes are immature red blood cells that still contain remnants of organelles, such as ribosomes and mitochondria, which are typically found in developing cells. These organelles are involved in the process of protein synthesis and energy production, respectively. Reticulocytes are released from the bone marrow into the bloodstream, where they continue to mature into fully developed red blood cells called erythrocytes.

Reticulocytes can be identified under a microscope by their staining characteristics, which reveal a network of fine filaments or granules known as the reticular apparatus. This apparatus is composed of residual ribosomal RNA and other proteins that have not yet been completely eliminated during the maturation process.

The percentage of reticulocytes in the blood can be used as a measure of bone marrow function and erythropoiesis, or red blood cell production. An increased reticulocyte count may indicate an appropriate response to blood loss, hemolysis, or other conditions that cause anemia, while a decreased count may suggest impaired bone marrow function or a deficiency in erythropoietin, the hormone responsible for stimulating red blood cell production.

Linolenic acids are a type of polyunsaturated fatty acids (PUFAs) that are essential to the human body, meaning they cannot be produced by the body and must be obtained through diet. There are two main types of linolenic acids: alpha-linolenic acid (ALA), an omega-3 fatty acid, and gamma-linolenic acid (GLA), an omega-6 fatty acid.

Alpha-linolenic acid is found in plant-based sources such as flaxseeds, chia seeds, hemp seeds, walnuts, and soybeans. It is a precursor to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two other important omega-3 fatty acids that are found in fatty fish and are associated with numerous health benefits.

Gamma-linolenic acid is found in smaller amounts in certain plant-based oils such as borage oil, black currant seed oil, and evening primrose oil. It has been studied for its potential anti-inflammatory effects and may be beneficial for conditions such as rheumatoid arthritis, eczema, and premenstrual syndrome (PMS).

It is important to maintain a balance between omega-3 and omega-6 fatty acids in the diet, as excessive intake of omega-6 fatty acids can contribute to inflammation and chronic disease. ALA and GLA are both important components of a healthy diet and have been associated with numerous health benefits, including reduced inflammation, improved heart health, and reduced risk of chronic diseases such as cancer and diabetes.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Oxylipins are a class of bioactive lipid molecules derived from the oxygenation of polyunsaturated fatty acids (PUFAs). They play crucial roles in various physiological and pathophysiological processes, including inflammation, immunity, and cellular signaling. Oxylipins can be further categorized based on their precursor PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA). These oxylipins are involved in the regulation of vascular tone, platelet aggregation, neurotransmission, and pain perception. They exert their effects through various receptors and downstream signaling pathways, making them important targets for therapeutic interventions in several diseases, such as cardiovascular disorders, cancer, and neurological conditions.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Anthozoa is a major class of marine animals, which are exclusively aquatic and almost entirely restricted to shallow waters. They are classified within the phylum Cnidaria, which also includes corals, jellyfish, sea anemones, and hydroids. Anthozoans are characterized by their lack of medusa stage in their life cycle, as they exist solely as polyps.

This class is divided into two main subclasses: Hexacorallia (also known as Zoantharia) and Octocorallia (also known as Alcyonaria). The primary differences between these subclasses lie in the structure of their polyps and the composition of their skeletons.

1. Hexacorallia: These are commonly referred to as 'stony' or 'hard' corals, due to their calcium carbonate-based skeletons. They have a simple polyp structure with six-fold symmetry (hence the name Hexacorallia), featuring 6 tentacles around the mouth opening. Examples of Hexacorallia include reef-building corals, sea fans, and black corals.
2. Octocorallia: These are also called 'soft' corals or 'leather' corals because they lack a calcium carbonate skeleton. Instead, their supporting structures consist of proteins and other organic compounds. Octocorallia polyps exhibit eight-fold symmetry (hence the name Octocorallia), with eight tentacles around the mouth opening. Examples of Octocorallia include sea fans, sea whips, and blue corals.

Anthozoa species are primarily found in tropical and subtropical oceans, but some can be found in colder, deeper waters as well. They play a crucial role in marine ecosystems by providing habitats and shelter for various other marine organisms, particularly on coral reefs. Additionally, they contribute to the formation of limestone deposits through their calcium carbonate-based skeletons.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

Biocatalysis is the use of living organisms or their components, such as enzymes, to accelerate chemical reactions. In other words, it is the process by which biological systems, including cells, tissues, and organs, catalyze chemical transformations. Biocatalysts, such as enzymes, can increase the rate of a reaction by lowering the activation energy required for the reaction to occur. They are highly specific and efficient, making them valuable tools in various industries, including pharmaceuticals, food and beverage, and biofuels.

In medicine, biocatalysis is used in the production of drugs, such as antibiotics and hormones, as well as in diagnostic tests. Enzymes are also used in medical treatments, such as enzyme replacement therapy for genetic disorders that affect enzyme function. Overall, biocatalysis plays a critical role in many areas of medicine and healthcare.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Prostaglandin-Endoperoxide Synthases (PTGS), also known as Cyclooxygenases (COX), are a group of enzymes that catalyze the conversion of arachidonic acid into prostaglandin G2 and H2, which are further metabolized to produce various prostaglandins and thromboxanes. These lipid mediators play crucial roles in several physiological processes such as inflammation, pain, fever, and blood clotting. There are two major isoforms of PTGS: PTGS-1 (COX-1) and PTGS-2 (COX-2). While COX-1 is constitutively expressed in most tissues and involved in homeostatic functions, COX-2 is usually induced during inflammation and tissue injury. Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their therapeutic effects by inhibiting these enzymes, thereby reducing the production of prostaglandins and thromboxanes.

Flavanones are a type of flavonoid, which is a class of plant pigments widely found in fruits, vegetables, and other plants. Flavanones are known for their antioxidant properties and potential health benefits. They are typically found in citrus fruits such as oranges, lemons, and grapefruits. Some common flavanones include hesperetin, naringenin, and eriodictyol. These compounds have been studied for their potential effects on cardiovascular health, cancer prevention, and neuroprotection, although more research is needed to fully understand their mechanisms of action and therapeutic potential.

Cyclooxygenase (COX) inhibitors are a class of drugs that work by blocking the activity of cyclooxygenase enzymes, which are involved in the production of prostaglandins. Prostaglandins are hormone-like substances that play a role in inflammation, pain, and fever.

There are two main types of COX enzymes: COX-1 and COX-2. COX-1 is produced continuously in various tissues throughout the body and helps maintain the normal function of the stomach and kidneys, among other things. COX-2, on the other hand, is produced in response to inflammation and is involved in the production of prostaglandins that contribute to pain, fever, and inflammation.

COX inhibitors can be non-selective, meaning they block both COX-1 and COX-2, or selective, meaning they primarily block COX-2. Non-selective COX inhibitors include drugs such as aspirin, ibuprofen, and naproxen, while selective COX inhibitors are often referred to as coxibs and include celecoxib (Celebrex) and rofecoxib (Vioxx).

COX inhibitors are commonly used to treat pain, inflammation, and fever. However, long-term use of non-selective COX inhibitors can increase the risk of gastrointestinal side effects such as ulcers and bleeding, while selective COX inhibitors may be associated with an increased risk of cardiovascular events such as heart attack and stroke. It is important to talk to a healthcare provider about the potential risks and benefits of COX inhibitors before using them.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Cyclopentanes are a class of hydrocarbons that contain a cycloalkane ring of five carbon atoms. The chemical formula for cyclopentane is C5H10. It is a volatile, flammable liquid that is used as a solvent and in the production of polymers. Cyclopentanes are also found naturally in petroleum and coal tar.

Cyclopentanes have a unique structure in which the carbon atoms are arranged in a pentagonal shape, with each carbon atom bonded to two other carbon atoms and one or two hydrogen atoms. This structure gives cyclopentane its characteristic "bowl-shaped" geometry, which allows it to undergo various chemical reactions, such as ring-opening reactions, that can lead to the formation of other chemicals.

Cyclopentanes have a variety of industrial and commercial applications. For example, they are used in the production of plastics, resins, and synthetic rubbers. They also have potential uses in the development of new drugs and medical technologies, as their unique structure and reactivity make them useful building blocks for the synthesis of complex molecules.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Lipid peroxidation is a process in which free radicals, such as reactive oxygen species (ROS), steal electrons from lipids containing carbon-carbon double bonds, particularly polyunsaturated fatty acids (PUFAs). This results in the formation of lipid hydroperoxides, which can decompose to form a variety of compounds including reactive carbonyl compounds, aldehydes, and ketones.

Malondialdehyde (MDA) is one such compound that is commonly used as a marker for lipid peroxidation. Lipid peroxidation can cause damage to cell membranes, leading to changes in their fluidity and permeability, and can also result in the modification of proteins and DNA, contributing to cellular dysfunction and ultimately cell death. It is associated with various pathological conditions such as atherosclerosis, neurodegenerative diseases, and cancer.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Cyclooxygenase-1 (COX-1) is a type of enzyme belonging to the cyclooxygenase family, which is responsible for the production of prostaglandins, thromboxanes, and prostacyclins. These are important signaling molecules that play a role in various physiological processes such as inflammation, pain perception, blood clotting, and gastric acid secretion.

COX-1 is constitutively expressed in most tissues, including the stomach, kidneys, and platelets, where it performs housekeeping functions. For example, in the stomach, COX-1 produces prostaglandins that protect the stomach lining from acid and digestive enzymes. In the kidneys, COX-1 helps regulate blood flow and sodium balance. In platelets, COX-1 produces thromboxane A2, which promotes blood clotting.

COX-1 is a target of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, ibuprofen, and naproxen. These medications work by inhibiting the activity of COX enzymes, reducing the production of prostaglandins and thromboxanes, and thereby alleviating pain, inflammation, and fever. However, long-term use of NSAIDs can lead to side effects such as stomach ulcers and bleeding due to the inhibition of COX-1 in the stomach lining.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

Blood platelets, also known as thrombocytes, are small, colorless cell fragments in our blood that play an essential role in normal blood clotting. They are formed in the bone marrow from large cells called megakaryocytes and circulate in the blood in an inactive state until they are needed to help stop bleeding. When a blood vessel is damaged, platelets become activated and change shape, releasing chemicals that attract more platelets to the site of injury. These activated platelets then stick together to form a plug, or clot, that seals the wound and prevents further blood loss. In addition to their role in clotting, platelets also help to promote healing by releasing growth factors that stimulate the growth of new tissue.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

... soybean lipoxygenase L1 and L3, coral 8-lipoxygenase, human 5-lipoxygenase, rabbit 15-lipoxygenase and porcine leukocyte 12- ... erythrocyte type 15-lipoxygenase (or 15-lipoxygenase, erythrocyte type), reticulocyte type 15-lipoxygenase (or 15-lipoxygenase ... LOX-DB - LipOXygenases DataBase Lipoxygenases iron-binding region in PROSITE PDB: 1YGE​ - structure of lipoxygenase-1 from ... Certain types of the lipoxygenases, e.g. human and murine 15-lipoxygenase 1, 12-lipoxygenase B, and ALOXE3, are capable of ...
15-Lipoxygenase-1 (15-LO-1) is involved in many pathological processes. The purpose of this study was to determine the ... 15-Lipoxygenase-1 (15-LO-1) belongs to a lipoxygenase family of enzymes that catalyze the stereospecific addition of molecular ... Expression of 5-lipoxygenase and 15-lipoxygenase in rheumatoid arthritis synovium and effects of intraarticular glucocorticoids ... Increased 15-lipoxygenase-1 expression in chondrocytes contributes to the pathogenesis of osteoarthritis. *Kaizhe Chen1,2 na1, ...
These concept validation studies identify 12-lipoxygenase as a promising target in the prevention of loss of functional beta ... Selective inhibition of 12-lipoxygenase activity confers protection to beta cells during exposure to inflammatory cytokines. ... GSIS was preserved in the presence of the 12-lipoxygenase inhibitors. 12-Lipoxygenase inhibition preserved survival of primary ... This study evaluates new specific small-molecule inhibitors of 12-lipoxygenase for protecting rodent and human beta cells from ...
Lim CS, Veltri B, Kashon M, Porter, DW, and Ma Q (2023) Multi-Walled Carbon Nanotubes Induce Arachidonate 5-Lipoxygenase ... Multi-Walled Carbon Nanotubes Induce Arachidonate 5-Lipoxygenase Expression and Enhance the Polarization and Function of M1 ...
Protein target information for Polyunsaturated fatty acid 5-lipoxygenase (golden hamster). Find diseases associated with this ...
Fatty acids are regulated in part by 12-lipoxygenase (12-LOX) and our recent work has suggested inhibiting 12-LOX may be one ... Project Title: Role of 12-lipoxygenase in platelet reactivity and type 2 diabetes mellitus. Abstract: Type 2 diabetes (T2DM), ... Grant Abstract: Role of 12-lipoxygenase in platelet reactivity and type 2 diabetes mellitus. ...
Lipoxygenases are involved in ferroptosis by system xc− inhibition. (A) Dioxygenation reaction induced by lipoxygenases. (B) G- ... Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis Wan Seok Yang 1 , Katherine J Kim 2 , Michael M ... Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis Wan Seok Yang et al. Proc Natl Acad Sci U S A. ... Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Probst L, Dächert J, Schenk B, ...
You have to enable JavaScript in your browsers settings in order to use the eReader.. Or try downloading the content offline. DOWNLOAD ...
... DSpace/Manakin Repository. ...
Fluoride in low concentration modifies expression and activity of 15 lipoxygenase in human PBMC differentiated monocyte/ ... using RT PCT and immunoblotting methods respectively whereas HPLC method was used to measure the levels of 15 lipoxygenases end ...
The 5-Lipoxygenase pathway results in the formation of leukotrienes, including leukotriene B(4) (LTB(4)), 5-oxo-6E,8Z,11Z,14Z- ... Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease W Berger 1 , M T M De Chandt, C B Cairns ... Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease W Berger et al. Int J Clin Pract. 2007 ... The 5-Lipoxygenase pathway results in the formation of leukotrienes, including leukotriene B(4) (LTB(4)), 5-oxo-6E,8Z,11Z,14Z- ...
Lipoxygenase activity. 5LOX (EC 1.13.11.12) catalyses the second stage of the GLVs synthesis. Several isoenzymes from the LOX ... Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, Cotesia ... The lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles. Cédric Gigot ... Lipoxygenase activity increment in infected tomato leaves and oxidation product of linolenic acid by its in vitro enzyme ...
A suitable 5-lipoxygenase inhibitor might be useful for preventing and improving the symptoms of leukotriene-related ... 5-lipoxygenase is a key enzyme in the synthesis of leukotrienes from arachidonic acid. The produced leukotrienes are involved ... 5-lipoxygenase is a key enzyme in the synthesis of leukotrienes from arachidonic acid. The produced leukotrienes are involved ... A suitable 5-lipoxygenase inhibitor might be useful for preventing and improving the symptoms of leukotriene-related ...
5-Lipoxygenase is the key enzyme in the synthesis of leukotriens (LT), bioactive metabolits of the arachidonic acid (AA). 5-LO ... Das Enzym 5-Lipoxygenase (5-LO) spielt eine essentielle Rolle in der Biosynthese der Leukotriene, bioaktiver Metabolite der ... Regulation der 5-Lipoxygenase durch Caspase-6. Regulation of 5-lipoxygenase by caspase-6. ... 5-Lipoxygenase is the key enzyme in the synthesis of leukotriens (LT), bioactive metabolits of the arachidonic acid (AA). 5-LO ...
Cannabidiol-2′,6′-Dimethyl Ether, a Cannabidiol Derivative, Is a Highly Potent and Selective 15-Lipoxygenase Inhibitor. Shuso ... Cannabidiol-2′,6′-Dimethyl Ether, a Cannabidiol Derivative, Is a Highly Potent and Selective 15-Lipoxygenase Inhibitor. Shuso ... Cannabidiol-2′,6′-Dimethyl Ether, a Cannabidiol Derivative, Is a Highly Potent and Selective 15-Lipoxygenase Inhibitor. Shuso ... Cannabidiol-2′,6′-Dimethyl Ether, a Cannabidiol Derivative, Is a Highly Potent and Selective 15-Lipoxygenase Inhibitor ...
We investigated whether 35 SNPs in oxylipin metabolism genes such as cyclooxygenase (PTGS) and lipoxygenase (ALOX), as well as ... Polymorphisms in Cyclooxygenase, Lipoxygenase, and TP53 Genes Predict Colorectal Polyp Risk Reduction by Aspirin in the seAFOod ... Lipoxygenase, and TP53 Genes Predict Colorectal Polyp Risk Reduction by Aspirin in the seAFOod Polyp Prevention Trial. Cancer ... aspirin inhibition of COX activity leads to substrate diversion of AA toward lipoxygenase (LOX; encoded by ALOX genes)-mediated ...
Arachidonate 5-lipoxygenase (5-LOX) is a member of the lipoxygenase family of enzymes that plays a key role in arachidonic acid ... Peptides derived from the longest loop region (L159-M325) of PEDF-R were screened for the effect on soybean lipoxygenase-V (LOX ... Identification of a novel inhibitor of 5-Lipoxygenase. Wednesday, September 16, 2015. - Poster Session I ...
12/15-Lipoxygenases Role in AD Prevention. By Jessica Girdwain. Aging Well. Vol. 5 No. 3 P. 30 ... Researchers have uncovered the role a specific brain enzyme called 12/15-lipoxygenase (12/15 LO) plays in Alzheimers disease ( ... Now, we can go to the source-the 12/15 lipoxygenase-to stop the disease," Praticò says. ...
Keywords: ADME studies, Azinane-oxadiazoles, Expression analysis, in silico studies, Lipoxygenase inhibition, MTT assay, ... Identification of phenylcarbamoylazinane-1,3,4-oxadiazole amides as lipoxygenase inhibitors with expression analysis and in ... 4-oxadiazole analogues against lipoxygenase (LOX) enzyme. The work is based on the synthesis of new N-alkyl/aralky/aryl ...
Purchase Lipoxygenases and Their Products - 1st Edition. E-Book. ISBN 9780323156530 ... The Role of Products of 5-Lipoxygenase. III. The Role of 5-Lipoxygenase. IV. Development of Drugs That Inhibit 5-Lipoxygenase ... I. Purification of 5-Lipoxygenase. II. Selective Inhibitors of 5-Lipoxygenase. III. Catalytic Properties of 5-Lipoxygenase. IV ... Lipoxin Synthesis by 5-Lipoxygenase. V. Enzyme Immunoassays for Lipoxygenase. VI. Subcellular Localization of Lipoxygenase. VII ...
Cyclooxygenase & Lipoxygenase COX-1 and COX-2 are the key enzymes in the conversion of arachidonic acid to the precursors of ... Leukotrienes, generated from arachidonic acid through the action of 5-lipoxygenase (5-LO), have been known for over two decades ...
Indexed and Abstracted in : SCOPUS, Scimago Journal Ranking, Chemical Abstracts, Excerpta Medica / EMBASE, Google Scholar, CABI Full Text, Index Copernicus, Ulrichs International Periodical Directory, ProQuest, Journalseek & Genamics, PhcogBase, EBSCOHost, Academic Search Complete, Open J-Gate, SciACCESS ...
Pharmacognosy Reviews (Phcog Rev.). [ISSN: Print -0973-7847, Online - 0976-2787] [http://www.phcogrev.com], a publication of Phcog.Net, Bangalore, INDIA. It is published Semi-annual, serves the need of different scientists and others involved in medicinal plant research and development. Each issue covers different reviews on related topics of natural product drug discovery, Biotechnology, Marine Pharmacognosy and Medicinal Plants. Review articles that are of broad readership interest to users in industry, academia, and government. Phcog Rev. is an important and most cited review journal for medicinal Plant researchers -and its an Open Access Publication.. Abstracting and Indexing Information. The journal is registered with the following abstracting partners ...
5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp ... Novel 5-lipoxygenase isoforms affect the biosynthesis of 5-lipoxygenase products. FASEB J. 2011 Mar;25(3):1097-105. doi: ... synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein. Biochem Biophys Res Commun. 2009 Apr 17;381(4):518 ... Dixon RA, Jones RE, Diehl RE, Bennett CD, Kargman S, Rouzer CA: Cloning of the cDNA for human 5-lipoxygenase. Proc Natl Acad ...
Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. ... "Arachidonate 5-Lipoxygenase" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH ( ... 5-Lipoxygenase, a marker for early pancreatic intraepithelial neoplastic lesions. Cancer Res. 2005 Jul 15; 65(14):6011-6. ... This graph shows the total number of publications written about "Arachidonate 5-Lipoxygenase" by people in this website by year ...
Inhibitor of 5-lipoxygenase, which inhibits formation of leukotrienes (LTB4, LTC4, LTD4, & LTE4). Inhibition of leukotriene ...
SEARCH RESULTS for: 5-Lipoxygenase Inhibitor [Drug Class] (7 results) *Share : JavaScript needed for Sharing tools. Bookmark & ...
5-Lipoxygenase-Activating Protein Inhibitors*5-Lipoxygenase-Activating Protein Inhibitors. *5 Lipoxygenase Activating Protein ... "5-Lipoxygenase-Activating Protein Inhibitors" is a descriptor in the National Library of Medicines controlled vocabulary ... This graph shows the total number of publications written about "5-Lipoxygenase-Activating Protein Inhibitors" by people in ... Below are the most recent publications written about "5-Lipoxygenase-Activating Protein Inhibitors" by people in Profiles. ...
8(R)-lipoxygenase, 8-lipoxygenase, 8-LOX, 8R-lipoxygenase, 8R-LOX, 8S-lipoxygenase, 8S-LOX, allene oxide synthase-lipoxygenase ... 1.13.11.40: arachidonate 8-lipoxygenase. This is an abbreviated version!. For detailed information about arachidonate 8- ... protein, arachidonic acid C-8 lipoxygenase, eicosapentaenoic 8R-lipoxygenase, LOX-1, More ...

No FAQ available that match "lipoxygenases"

No images available that match "lipoxygenases"