Application of a ligature to tie a vessel or strangulate a part.
Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD).
Procedures that render the female sterile by interrupting the flow in the FALLOPIAN TUBE. These procedures generally are surgical, and may also use chemicals or physical means.
Swollen veins in the lower part of the RECTUM or ANUS. Hemorrhoids can be inside the anus (internal), under the skin around the anus (external), or protruding from inside to outside of the anus. People with hemorrhoids may or may not exhibit symptoms which include bleeding, itching, and pain.
An enzyme that catalyzes the conversion of linear RNA to a circular form by the transfer of the 5'-phosphate to the 3'-hydroxyl terminus. It also catalyzes the covalent joining of two polyribonucleotides in phosphodiester linkage. EC 6.5.1.3.
The 31 paired peripheral nerves formed by the union of the dorsal and ventral spinal roots from each spinal cord segment. The spinal nerve plexuses and the spinal roots are also included.
The channels that collect and transport the bile secretion from the BILE CANALICULI, the smallest branch of the BILIARY TRACT in the LIVER, through the bile ductules, the bile ducts out the liver, and to the GALLBLADDER for storage.
The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX.
Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Incision of tissues for injection of medication or for other diagnostic or therapeutic procedures. Punctures of the skin, for example may be used for diagnostic drainage; of blood vessels for diagnostic imaging procedures.
Catalyze the joining of preformed ribonucleotides or deoxyribonucleotides in phosphodiester linkage during genetic processes. EC 6.5.1.
A member of the tumor necrosis factor receptor superfamily with specificity for CD40 LIGAND. It is found on mature B-LYMPHOCYTES and some EPITHELIAL CELLS, lymphoid DENDRITIC CELLS. Evidence suggests that CD40-dependent activation of B-cells is important for generation of memory B-cells within the germinal centers. Mutations of the gene for CD40 antigen result in HYPER-IGM IMMUNODEFICIENCY SYNDROME, TYPE 3. Signaling of the receptor occurs through its association with TNF RECEPTOR-ASSOCIATED FACTORS.
Impairment of bile flow due to obstruction in small bile ducts (INTRAHEPATIC CHOLESTASIS) or obstruction in large bile ducts (EXTRAHEPATIC CHOLESTASIS).
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
The internal fragments of precursor proteins (INternal proTEINS) that are autocatalytically removed by PROTEIN SPLICING. The flanking fragments (EXTEINS) are ligated forming mature proteins. The nucleic acid sequences coding for inteins are considered to be MOBILE GENETIC ELEMENTS. Inteins are composed of self-splicing domains and an endonuclease domain which plays a role in the spread of the intein's genomic sequence. Mini-inteins are composed of the self-splicing domains only.
The largest bile duct. It is formed by the junction of the CYSTIC DUCT and the COMMON HEPATIC DUCT.
Dilated blood vessels in the ESOPHAGUS or GASTRIC FUNDUS that shunt blood from the portal circulation (PORTAL SYSTEM) to the systemic venous circulation. Often they are observed in individuals with portal hypertension (HYPERTENSION, PORTAL).
Elements of limited time intervals, contributing to particular results or situations.
NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION).
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A congenital heart defect characterized by the persistent opening of fetal DUCTUS ARTERIOSUS that connects the PULMONARY ARTERY to the descending aorta (AORTA, DESCENDING) allowing unoxygenated blood to bypass the lung and flow to the PLACENTA. Normally, the ductus is closed shortly after birth.
Intense or aching pain that occurs along the course or distribution of a peripheral or cranial nerve.
IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
Impairment of bile flow in the large BILE DUCTS by mechanical obstruction or stricture due to benign or malignant processes.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Enlarged and tortuous VEINS.
A tumor necrosis factor receptor subtype found in a variety of tissues and on activated LYMPHOCYTES. It has specificity for FAS LIGAND and plays a role in regulation of peripheral immune responses and APOPTOSIS. Multiple isoforms of the protein exist due to multiple ALTERNATIVE SPLICING. The activated receptor signals via a conserved death domain that associates with specific TNF RECEPTOR-ASSOCIATED FACTORS in the CYTOPLASM.
A membrane glycoprotein and differentiation antigen expressed on the surface of T-cells that binds to CD40 ANTIGENS on B-LYMPHOCYTES and induces their proliferation. Mutation of the gene for CD40 ligand is a cause of HYPER-IGM IMMUNODEFICIENCY SYNDROME, TYPE 1.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The geometric and structural changes that the HEART VENTRICLES undergo, usually following MYOCARDIAL INFARCTION. It comprises expansion of the infarct and dilatation of the healthy ventricle segments. While most prevalent in the left ventricle, it can also occur in the right ventricle.
Bleeding in any segment of the GASTROINTESTINAL TRACT from ESOPHAGUS to RECTUM.
A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
The vein accompanying the femoral artery in the same sheath; it is a continuation of the popliteal vein and becomes the external iliac vein.
The excision of in-frame internal protein sequences (INTEINS) of a precursor protein, coupled with ligation of the flanking sequences (EXTEINS). Protein splicing is an autocatalytic reaction and results in the production of two proteins from a single primary translation product: the intein and the mature protein.
Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed)
Glycoproteins found on the membrane or surface of cells.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
The largest lymphatic vessel that passes through the chest and drains into the SUBCLAVIAN VEIN.
Treatment of varicose veins, hemorrhoids, gastric and esophageal varices, and peptic ulcer hemorrhage by injection or infusion of chemical agents which cause localized thrombosis and eventual fibrosis and obliteration of the vessels.
The presence of chyle in the thoracic cavity. (Dorland, 27th ed)
A group of compounds with an 8-carbon ring. They may be saturated or unsaturated.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
Antibodies produced by a single clone of cells.
Maintenance of blood flow to an organ despite obstruction of a principal vessel. Blood flow is maintained through small vessels.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Disease or damage involving the SCIATIC NERVE, which divides into the PERONEAL NERVE and TIBIAL NERVE (see also PERONEAL NEUROPATHIES and TIBIAL NEUROPATHY). Clinical manifestations may include SCIATICA or pain localized to the hip, PARESIS or PARALYSIS of posterior thigh muscles and muscles innervated by the peroneal and tibial nerves, and sensory loss involving the lateral and posterior thigh, posterior and lateral leg, and sole of the foot. The sciatic nerve may be affected by trauma; ISCHEMIA; COLLAGEN DISEASES; and other conditions. (From Adams et al., Principles of Neurology, 6th ed, p1363)
Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (ANTIGENS, CD3). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains.
A CELL LINE derived from human T-CELL LEUKEMIA and used to determine the mechanism of differential susceptibility to anti-cancer drugs and radiation.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Experimentally induced chronic injuries to the parenchymal cells in the liver to achieve a model for LIVER CIRRHOSIS.
Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73)
The rate dynamics in chemical or physical systems.
Costimulatory T-LYMPHOCYTE receptors that have specificity for CD80 ANTIGEN and CD86 ANTIGEN. Activation of this receptor results in increased T-cell proliferation, cytokine production and promotion of T-cell survival.
A short thick vein formed by union of the superior mesenteric vein and the splenic vein.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
Established cell cultures that have the potential to propagate indefinitely.
A branch of the celiac artery that distributes to the stomach, pancreas, duodenum, liver, gallbladder, and greater omentum.
The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.
The veins and arteries of the HEART.
An increased sensation of pain or discomfort produced by mimimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins.
RNA that has catalytic activity. The catalytic RNA sequence folds to form a complex surface that can function as an enzyme in reactions with itself and other molecules. It may function even in the absence of protein. There are numerous examples of RNA species that are acted upon by catalytic RNA, however the scope of this enzyme class is not limited to a particular type of substrate.
Ducts that collect PANCREATIC JUICE from the PANCREAS and supply it to the DUODENUM.
Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
A generic term for all substances having the properties of stretching under tension, high tensile strength, retracting rapidly, and recovering their original dimensions fully. They are generally POLYMERS.
Procedures of applying ENDOSCOPES for disease diagnosis and treatment. Endoscopy involves passing an optical instrument through a small incision in the skin i.e., percutaneous; or through a natural orifice and along natural body pathways such as the digestive tract; and/or through an incision in the wall of a tubular structure or organ, i.e. transluminal, to examine or perform surgery on the interior parts of the body.
Organic chemistry methodology that mimics the modular nature of various biosynthetic processes. It uses highly reliable and selective reactions designed to "click" i.e., rapidly join small modular units together in high yield, without offensive byproducts. In combination with COMBINATORIAL CHEMISTRY TECHNIQUES, it is used for the synthesis of new compounds and combinatorial libraries.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The main artery of the thigh, a continuation of the external iliac artery.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
Surgical removal of the ductus deferens, or a portion of it. It is done in association with prostatectomy, or to induce infertility. (Dorland, 28th ed)
The vein which drains the foot and leg.
An enzyme that catalyzes the transfer of a phosphate group to the 5'-terminal hydroxyl groups of DNA and RNA. EC 2.7.1.78.
A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE.
The vessels carrying blood away from the capillary beds.
Complex of at least five membrane-bound polypeptides in mature T-lymphocytes that are non-covalently associated with one another and with the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL). The CD3 complex includes the gamma, delta, epsilon, zeta, and eta chains (subunits). When antigen binds to the T-cell receptor, the CD3 complex transduces the activating signals to the cytoplasm of the T-cell. The CD3 gamma and delta chains (subunits) are separate from and not related to the gamma/delta chains of the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA).
The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.
Operative procedures for the treatment of vascular disorders.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
The largest branch of the celiac trunk with distribution to the spleen, pancreas, stomach and greater omentum.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
The flow of BLOOD through or around an organ or region of the body.
INFLAMMATION of the PERITONEUM lining the ABDOMINAL CAVITY as the result of infectious, autoimmune, or chemical processes. Primary peritonitis is due to infection of the PERITONEAL CAVITY via hematogenous or lymphatic spread and without intra-abdominal source. Secondary peritonitis arises from the ABDOMINAL CAVITY itself through RUPTURE or ABSCESS of intra-abdominal organs.
A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties.
A condition characterized by the dilated tortuous veins of the SPERMATIC CORD with a marked left-sided predominance. Adverse effect on male fertility occurs when varicocele leads to an increased scrotal (and testicular) temperature and reduced testicular volume.
Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A ubiquitously expressed membrane glycoprotein. It interacts with a variety of INTEGRINS and mediates responses to EXTRACELLULAR MATRIX PROTEINS.
Injuries to the PERIPHERAL NERVES.

Site of myocardial infarction. A determinant of the cardiovascular changes induced in the cat by coronary occlusion. (1/2428)

The influence of site of acute myocardial infarction on heart rate, blood pressure, cardiac output, total peripheral resistance (TPR), cardiac rhythm, and mortality was determined in 58 anesthetized cats by occlusion of either the left anterior descending (LAD), left circumflex or right coronary artery. LAD occlusion resulted in immediate decrease in cardiac output, heart rate, and blood pressure, an increase in TPR, and cardiac rhythm changes including premature ventricular beats, ventricular tachycardia, and occasionally ventricular fibrillation. The decrease in cardiac output and increase in TPR persisted in the cats surviving a ventricular arrhythmia. In contrast, right coronary occlusion resulted in a considerably smaller decrease in cardiac output. TPR did not increase, atrioventricular condition disturbances were common, and sinus bradycardia and hypotension persisted in the cats recovering from an arrhythmia. Left circumflex ligation resulted in cardiovascular changes intermediate between those produced by occlusion of the LAD or the right coronary artery. Mortality was similar in each of the three groups. We studied the coronary artery anatomy in 12 cats. In 10, the blood supply to the sinus node was from the right coronary artery and in 2, from the left circumflex coronary artery. The atrioventricular node artery arose from the right in 9 cats, and from the left circumflex in 3. The right coronary artery was dominant in 9 cats and the left in 3. In conclusion, the site of experimental coronary occlusion in cats is a major determinant of the hemodynamic and cardiac rhythm changes occurring after acute myocardial infarction. The cardiovascular responses evoked by ligation are related in part to the anatomical distribution of the occluded artery.  (+info)

Control of ketogenesis from amino acids. IV. Tissue specificity in oxidation of leucine, tyrosine, and lysine. (2/2428)

In vitro and in vivo studies were made on the tissue specificity of oxidation of the ketogenic amino acids, leucine, tyrosine, and lysine. In in vitro studies the abilities of slices of various tissues of rats to form 14CO2 from 14C-amino acids were examined. With liver, but not kidney slices, addition of alpha-ketoglutarate was required for the maximum activities with these amino acids. Among the various tissues tested, kidney had the highest activity for lysine oxidation, followed by liver; other tissues showed very low activity. Kidney also had the highest activity for leucine oxidation, followed by diaphragm; liver and adipose tissue had lower activities. Liver had the highest activity for tyrosine oxidation, but kidney also showed considerable activity; other tissues had negligible activity. In in vivo studies the blood flow through the liver or kidney was stopped by ligation of the blood vessels. Then labeled amino acids were injected and recovery of radioactivity in respiratory 14CO2 was measured. In contrast to results with slices, no difference was found in the respiratory 14CO2 when the renal blood vessels were or were not ligated. On the contrary ligation of the hepatic vessels suppressed the oxidations of lysine and tyrosine completely and that of leucine partially. Thus in vivo, lysine and tyrosine seem to be metabolized mainly in the liver, whereas leucine is metabolized mostly in extrahepatic tissues and partly in liver. Use of tissue slices seems to be of only limited value in elucidating the metabolisms of these amino acids.  (+info)

Pulsed Doppler ultrasonographic evaluation of portal blood flow in dogs with experimental portal vein branch ligation. (3/2428)

Portal blood flow was measured using pulsed Doppler ultrasound in 6 dogs before and after left portal vein branch ligation. Mean portal vein blood flow velocity and mean portal vein blood flow were significantly reduced after ligation and the congestion index was increased (p < 0.01). Pulsed Doppler ultrasound studies provide valuable physiological information which may assist the clinician with the diagnosis of canine hepatic circulatory disorders.  (+info)

Effects of chronic nitric oxide activation or inhibition on early hepatic fibrosis in rats with bile duct ligation. (4/2428)

Hepatic fibrosis or increased liver collagen contents drive functional abnormalities that, when extensive, may be life threatening. The purpose of this study was to assess the effects of the chronic stimulation or inhibition of nitric oxide synthesis in rats with hepatic fibrosis induced by permanent common bile duct ligation (3 weeks) and the role of expression of the different nitric oxide synthase isoforms. Bile duct ligation led to an important accumulation of collagen in the hepatic parenchyma, as shown both histologically and by the hydroxyproline contents of livers. Bilirubin and serum enzyme activities (measured as markers of cholestasis) increased several-fold after bile duct ligation. The area of fibrotic tissue, liver hydroxyproline content and serum markers of cholestasis were clearly related in obstructed rats. The absence of modifications in haemodynamic parameters excludes circulatory changes from being responsible for the development of liver alterations. In animals treated with NG-nitro-L-arginine methyl ester (L-NAME) the area of fibrosis was similar to that of untreated animals, the signs of cholestasis and cellular injury being more evident. In rats treated with L-arginine the area of fibrosis was almost three times larger than that found in bile duct ligated rats and in L-NAME-treated bile duct ligated rats, although the observed biochemical changes were similar to those seen in rats treated with L-NAME. Our results with inducible nitric oxide synthase, obtained by Western blots and immunohistochemistry, indicate a greater expression of the inducible enzyme in bile duct ligated and L-arginine-treated animals and a lower expression in the L-NAME and control groups. Constitutive nitric oxide synthase expression, obtained by Western blots, was very similar in all groups, except for the L-arginine-treated rats in which it was lower. These results suggest that nitric oxide production may be a key factor in the development of fibrosis in bile duct ligated rats. They also support the hypothesis of a dual role for nitric oxide; one beneficial, mediated by its circulatory effects, and the second negative, through its local toxic effects.  (+info)

Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. (5/2428)

We investigated whether uninjured cutaneous C-fiber nociceptors in primates develop abnormal responses after partial denervation of the skin. Partial denervation was induced by tightly ligating spinal nerve L6 that innervates the dorsum of the foot. Using an in vitro skin-nerve preparation, we recorded from uninjured single afferent nerve fibers in the superficial peroneal nerve. Recordings were made from 32 C-fiber nociceptors 2-3 wk after ligation and from 29 C-fiber nociceptors in control animals. Phenylephrine, a selective alpha1-adrenergic agonist, and UK14304 (UK), a selective alpha2-adrenergic agonist, were applied to the receptive field for 5 min in increasing concentrations from 0.1 to 100 microM. Nociceptors from in vitro control experiments were not significantly different from nociceptors recorded by us previously in in vivo experiments. In comparison to in vitro control animals, the afferents found in lesioned animals had 1) a significantly higher incidence of spontaneous activity, 2) a significantly higher incidence of response to phenylephrine, and 3) a higher incidence of response to UK. In lesioned animals, the peak response to phenylephrine was significantly greater than to UK, and the mechanical threshold of phenylephrine-sensitive afferents was significantly lower than for phenylephrine-insensitive afferents. Staining with protein gene product 9.5 revealed an approximately 55% reduction in the number of unmyelinated terminals in the epidermis of the lesioned limb compared with the contralateral limb. Thus uninjured cutaneous C-fiber nociceptors that innervate skin partially denervated by ligation of a spinal nerve acquire two abnormal properties: spontaneous activity and alpha-adrenergic sensitivity. These abnormalities in nociceptor function may contribute to neuropathic pain.  (+info)

Hypothermic neuroprotection of peripheral nerve of rats from ischaemia-reperfusion injury. (6/2428)

Although there is much information on experimental ischaemic neuropathy, there are only scant data on neuroprotection. We evaluated the effectiveness of hypothermia in protecting peripheral nerve from ischaemia-reperfusion injury using the model of experimental nerve ischaemia. Forty-eight male Sprague-Dawley rats were divided into six groups. We used a ligation-reperfusion model of nerve ischaemia where each of the supplying arteries to the sciatic-tibial nerves of the right hind limb was ligated and the ligatures were released after a predetermined period of ischaemia. The right hind limbs of one group (24 rats) were made ischaemic for 5 h and those of the other group (24 rats) for 3 h. Each group was further divided into three and the limbs were maintained at 37 degrees C (36 degrees C for 5 h of ischaemia) in one, 32 degrees C in the second and 28 degrees C in the third of these groups for the final 2 h of the ischaemic period and an additional 2 h of the reperfusion period. A behavioural score was recorded and nerve electrophysiology of motor and sensory nerves was undertaken 1 week after surgical procedures. At that time, entire sciatic-tibial nerves were harvested and fixed in situ. Four portions of each nerve were examined: proximal sciatic nerve, distal sciatic nerve, mid-tibial nerve and distal tibial nerve. To determine the degree of fibre degeneration, each section was studied by light microscopy, and we estimated an oedema index and a fibre degeneration index. The groups treated at 36-37 degrees C underwent marked fibre degeneration, associated with a reduction in action potential and impairment in behavioural score. The groups treated at 28 degrees C (for both 3 and 5 h) showed significantly less (P < 0.01; ANOVA, Bonferoni post hoc test) reperfusion injury for all indices (behavioural score, electrophysiology and neuropathology), and the groups treated at 32 degrees C had scores intermediate between the groups treated at 36-37 degrees C and 28 degrees C. Our results showed that cooling the limbs dramatically protects the peripheral nerve from ischaemia-reperfusion injury.  (+info)

Mid-term results of endoscopic perforator vein interruption for chronic venous insufficiency: lessons learned from the North American subfascial endoscopic perforator surgery registry. The North American Study Group. (7/2428)

PURPOSE: The safety, feasibility, and early efficacy of subfascial endoscopic perforator surgery (SEPS) for the treatment of chronic venous insufficiency were established in a preliminary report. The long-term clinical outcome and the late complications after SEPS are as yet undetermined. METHODS: The North American Subfascial Endoscopic Perforator Surgery registry collected information on 148 SEPS procedures that were performed in 17 centers in the United States and Canada between August 1, 1993, and February 15, 1996. The data analysis in this study focused on mid-term outcome in 146 patients. RESULTS: One hundred forty-six patients (79 men and 67 women; mean age, 56 years; range, 27 to 87 years) underwent SEPS. One hundred and one patients (69%) had active ulcers (class 6), and 21 (14%) had healed ulcers (class 5). One hundred and three patients (71%) underwent concomitant venous procedures (stripping, 70; high ligation, 17; varicosity avulsion alone, 16). There were no deaths or pulmonary embolisms. One deep venous thrombosis occurred at 2 months. The follow-up periods averaged 24 months (range, 1 to 53 months). Cumulative ulcer healing at 1 year was 88% (median time to healing, 54 days). Concomitant ablation of superficial reflux and lack of deep venous obstruction predicted ulcer healing (P <.05). Clinical score improved from 8.93 to 3.98 at the last follow-up (P <. 0001). Cumulative ulcer recurrence at 1 year was 16% and at 2 years was 28% (standard error, < 10%). Post-thrombotic limbs had a higher 2-year cumulative recurrence rate (46%) than did those limbs with primary valvular incompetence (20%; P <.05). Twenty-eight of the 122 patients (23%) who had class 5 or class 6 ulcers before surgery had an active ulcer at the last follow-up examination. CONCLUSIONS: The interruption of perforators with ablation of superficial reflux is effective in decreasing the symptoms of chronic venous insufficiency and rapidly healing ulcers. Recurrence or new ulcer development, however, is still significant, particularly in post-thrombotic limbs. The reevaluation of the indications for SEPS is warranted because operations in patients without previous deep vein thrombosis are successful but operations in those patients with deep vein thrombosis are less successful. Operations on patients with deep vein occlusion have poor outcomes.  (+info)

Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. (8/2428)

The objective of this study was to determine the relative roles of arachnoid villi and cervical lymphatics in the clearance of a cerebrospinal fluid (CSF) tracer in rats. 125I-labeled human serum albumin (125I-HSA; 100 micrograms) was injected into one lateral ventricle, and an Evans blue dye-rat protein complex was injected intravenously. Arterial blood was sampled for 3 h. Immediately after this, multiple cervical vessels were ligated in the same animals, and plasma recoveries were monitored for a further 3 h after the intracerebroventricular injection of 100 micrograms 131I-HSA. Tracer recovery in plasma at 3 h averaged (%injected dose) 0.697 +/- 0.042 before lymphatic ligation and dropped significantly to 0.357 +/- 0. 060 after ligation. Estimates of the rate constant associated with the transport of the CSF tracer to plasma were also significantly lower after obstruction of cervical lymphatics (from 0.584 +/- 0. 072/h to 0.217 +/- 0.056/h). No significant changes were observed in sham-operated animals. Assuming that the movement of the CSF tracer to plasma in lymph-ligated animals was a result of arachnoid villi clearance, we conclude that arachnoid villi and extracranial lymphatic pathways contributed equally to the clearance of the CSF tracer from the cranial vault.  (+info)

Ligation, in the context of medical terminology, refers to the process of tying off a part of the body, usually blood vessels or tissue, with a surgical suture or another device. The goal is to stop the flow of fluids such as blood or other substances within the body. It is commonly used during surgeries to control bleeding or to block the passage of fluids, gases, or solids in various parts of the body.

DNA ligases are enzymes that catalyze the formation of a phosphodiester bond between two compatible ends of DNA molecules, effectively joining or "ligating" them together. There are several types of DNA ligases found in nature, each with specific functions and preferences for the type of DNA ends they can seal.

The most well-known DNA ligase is DNA ligase I, which plays a crucial role in replicating and repairing DNA in eukaryotic cells. It seals nicks or gaps in double-stranded DNA during replication and participates in the final step of DNA excision repair by rejoining the repaired strand to the original strand.

DNA ligase IV, another important enzyme, is primarily involved in the repair of double-strand breaks through a process called non-homologous end joining (NHEJ). This pathway is essential for maintaining genome stability and preventing chromosomal abnormalities.

Bacterial DNA ligases, such as T4 DNA ligase, are often used in molecular biology techniques due to their ability to join various types of DNA ends with high efficiency. These enzymes have been instrumental in the development of recombinant DNA technology and gene cloning methods.

Tubal sterilization, also known as female sterilization or tubal ligation, is a permanent form of birth control for women. It involves blocking, sealing, or removing the fallopian tubes, which prevents the sperm from reaching and fertilizing the egg. This procedure can be performed surgically through various methods such as cutting and tying the tubes, using clips or rings to block them, or removing a portion of the tube (known as a partial salpingectomy). Tubal sterilization is considered a highly effective form of contraception with a low failure rate. However, it does not protect against sexually transmitted infections and should be combined with condom use for that purpose. It's important to note that tubal sterilization is a permanent procedure and cannot be easily reversed.

Hemorrhoids are swollen veins in the rectum or anus that can cause pain, itching, bleeding, and bulging. They can be internal (inside the rectum) or external (under the skin around the anus). Internal hemorrhoids may protrude through the anus and become irritated, leading to bleeding. External hemorrhoids are more likely to cause pain and swelling, especially if they become thrombosed (formed a blood clot). Hemorrhoids can be caused by straining during bowel movements, pregnancy, obesity, chronic constipation or diarrhea, aging, and sitting for long periods of time. They are often treated with over-the-counter creams, suppositories, or warm sitz baths, but severe cases may require surgical intervention.

Spinal nerves are the bundles of nerve fibers that transmit signals between the spinal cord and the rest of the body. There are 31 pairs of spinal nerves in the human body, which can be divided into five regions: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each spinal nerve carries both sensory information (such as touch, temperature, and pain) from the periphery to the spinal cord, and motor information (such as muscle control) from the spinal cord to the muscles and other structures in the body. Spinal nerves also contain autonomic fibers that regulate involuntary functions such as heart rate, digestion, and blood pressure.

Bile ducts are tubular structures that carry bile from the liver to the gallbladder for storage or directly to the small intestine to aid in digestion. There are two types of bile ducts: intrahepatic and extrahepatic. Intrahepatic bile ducts are located within the liver and drain bile from liver cells, while extrahepatic bile ducts are outside the liver and include the common hepatic duct, cystic duct, and common bile duct. These ducts can become obstructed or inflamed, leading to various medical conditions such as cholestasis, cholecystitis, and gallstones.

The cecum is the first part of the large intestine, located at the junction of the small and large intestines. It is a pouch-like structure that connects to the ileum (the last part of the small intestine) and the ascending colon (the first part of the large intestine). The cecum is where the appendix is attached. Its function is to absorb water and electrolytes, and it also serves as a site for the fermentation of certain types of dietary fiber by gut bacteria. However, the exact functions of the cecum are not fully understood.

Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. It is characterized by a whole-body inflammatory state (systemic inflammation) that can lead to blood clotting issues, tissue damage, and multiple organ failure.

Sepsis happens when an infection you already have triggers a chain reaction throughout your body. Infections that lead to sepsis most often start in the lungs, urinary tract, skin, or gastrointestinal tract.

Sepsis is a medical emergency. If you suspect sepsis, seek immediate medical attention. Early recognition and treatment of sepsis are crucial to improve outcomes. Treatment usually involves antibiotics, intravenous fluids, and may require oxygen, medication to raise blood pressure, and corticosteroids. In severe cases, surgery may be required to clear the infection.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

A puncture, in medical terms, refers to a small hole or wound that is caused by a sharp object penetrating the skin or other body tissues. This can result in damage to underlying structures such as blood vessels, nerves, or organs, and may lead to complications such as bleeding, infection, or inflammation.

Punctures can occur accidentally, such as from stepping on a nail or getting pricked by a needle, or they can be inflicted intentionally, such as during medical procedures like injections or blood draws. In some cases, puncture wounds may require medical attention to clean and close the wound, prevent infection, and promote healing.

Polynucleotide ligases are enzymes that catalyze the formation of phosphodiester bonds between the 3'-hydroxyl and 5'-phosphate ends of two adjacent nucleotides in a polynucleotide chain, such as DNA. These enzymes play a crucial role in the repair and replication of DNA, by sealing breaks or gaps in the sugar-phosphate backbone of the DNA molecule. They are essential for maintaining genomic integrity and stability, and have been widely used in molecular biology research and biotechnological applications, including DNA sequencing, cloning, and genetic engineering. Polynucleotide ligases can be found in various organisms, from bacteria to humans, and they typically require ATP or NAD+ as a cofactor for the ligation reaction.

CD40 is a type of protein known as a tumor necrosis factor receptor that is found on the surface of various cells in the body, including B cells, dendritic cells, and activated T cells. It plays an important role in the immune system by interacting with another protein called CD154 (also known as CD40 ligand) to activate immune responses.

CD40 antigens are molecules that can stimulate an immune response when introduced into the body because they are recognized as foreign substances by the immune system. They may be used in vaccines or other immunotherapies to induce an immune response against specific targets, such as cancer cells or infectious agents.

CD40 antigens can also be found on some types of tumor cells, and activating CD40 with CD154 has been shown to enhance the anti-tumor immune response in preclinical models. Therefore, CD40 agonists are being investigated as potential cancer therapies.

In summary, CD40 antigens are proteins that can stimulate an immune response and are involved in activating immune cells. They have potential applications in vaccines, immunotherapies, and cancer treatments.

Cholestasis is a medical condition characterized by the interruption or reduction of bile flow from the liver to the small intestine. Bile is a digestive fluid produced by the liver that helps in the breakdown and absorption of fats. When the flow of bile is blocked or reduced, it can lead to an accumulation of bile components, such as bilirubin, in the blood, which can cause jaundice, itching, and other symptoms.

Cholestasis can be caused by various factors, including liver diseases (such as hepatitis, cirrhosis, or cancer), gallstones, alcohol abuse, certain medications, pregnancy, and genetic disorders. Depending on the underlying cause, cholestasis may be acute or chronic, and it can range from mild to severe in its symptoms and consequences. Treatment for cholestasis typically involves addressing the underlying cause and managing the symptoms with supportive care.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

An intein is a type of mobile genetic element that can be found within the proteins of various organisms, including bacteria, archaea, and eukaryotes. Inteins are intervening sequences of amino acids that are capable of self-excising from their host protein through a process called protein splicing.

Protein splicing involves the cleavage of the intein from the flanking sequences (known as exteins) and the formation of a peptide bond between the two exteins, resulting in a mature, functional protein. Inteins can also ligate themselves to form circular proteins or can be transferred horizontally between different organisms through various mechanisms.

Inteins have been identified as potential targets for drug development due to their essential role in the survival and virulence of certain pathogenic bacteria. Additionally, the protein splicing mechanism of inteins has been harnessed for various biotechnological applications, such as the production of recombinant proteins and the development of biosensors.

The common bile duct is a duct that results from the union of the cystic duct (which drains bile from the gallbladder) and the common hepatic duct (which drains bile from the liver). The common bile duct transports bile, a digestive enzyme, from the liver and gallbladder to the duodenum, which is the first part of the small intestine.

The common bile duct runs through the head of the pancreas before emptying into the second part of the duodenum, either alone or in conjunction with the pancreatic duct, via a small opening called the ampulla of Vater. The common bile duct plays a crucial role in the digestion of fats by helping to break them down into smaller molecules that can be absorbed by the body.

Esophageal varices and gastric varices are abnormal, enlarged veins in the lower part of the esophagus (the tube that connects the throat to the stomach) and in the stomach lining, respectively. They occur as a result of increased pressure in the portal vein, which is the large blood vessel that carries blood from the digestive organs to the liver. This condition is known as portal hypertension.

Esophageal varices are more common than gastric varices and tend to be more symptomatic. They can cause bleeding, which can be life-threatening if not treated promptly. Gastric varices may also bleed, but they are often asymptomatic until they rupture.

The most common causes of esophageal and gastric varices are cirrhosis (scarring of the liver) and portal hypertension due to other liver diseases such as schistosomiasis or Budd-Chiari syndrome. Treatment options for esophageal and gastric varices include medications to reduce bleeding, endoscopic therapies to treat active bleeding or prevent recurrent bleeding, and surgical procedures to relieve portal hypertension.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Myocardial infarction (MI), also known as a heart attack, is a medical condition characterized by the death of a segment of heart muscle (myocardium) due to the interruption of its blood supply. This interruption is most commonly caused by the blockage of a coronary artery by a blood clot formed on the top of an atherosclerotic plaque, which is a buildup of cholesterol and other substances in the inner lining of the artery.

The lack of oxygen and nutrients supply to the heart muscle tissue results in damage or death of the cardiac cells, causing the affected area to become necrotic. The extent and severity of the MI depend on the size of the affected area, the duration of the occlusion, and the presence of collateral circulation.

Symptoms of a myocardial infarction may include chest pain or discomfort, shortness of breath, nausea, lightheadedness, and sweating. Immediate medical attention is necessary to restore blood flow to the affected area and prevent further damage to the heart muscle. Treatment options for MI include medications, such as thrombolytics, antiplatelet agents, and pain relievers, as well as procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG).

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Patent Ductus Arteriosus (PDA) is a congenital heart defect in which the ductus arteriosus, a normal fetal blood vessel that connects the pulmonary artery and the aorta, fails to close after birth. The ductus arteriosus allows blood to bypass the lungs while the fetus is still in the womb, but it should close shortly after birth as the newborn begins to breathe and oxygenate their own blood.

If the ductus arteriosus remains open or "patent," it can result in abnormal blood flow between the pulmonary artery and aorta. This can lead to various cardiovascular complications, such as:

1. Pulmonary hypertension (high blood pressure in the lungs)
2. Congestive heart failure
3. Increased risk of respiratory infections

The severity of the symptoms and the need for treatment depend on the size of the PDA and the amount of blood flow that is shunted from the aorta to the pulmonary artery. Small PDAs may close on their own over time, while larger PDAs typically require medical intervention, such as medication or surgical closure.

Neuralgia is a type of pain that occurs along the pathway of a nerve, often caused by damage or irritation to the nerve. It is typically described as a sharp, stabbing, burning, or electric-shock like pain that can be severe and debilitating. Neuralgia can affect any nerve in the body, but it most commonly occurs in the facial area (trigeminal neuralgia) or in the nerves related to the spine (postherpetic neuralgia). The pain associated with neuralgia can be intermittent or constant and may be worsened by certain triggers such as touch, temperature changes, or movement. Treatment for neuralgia typically involves medications to manage pain, as well as other therapies such as nerve blocks, surgery, or lifestyle modifications.

1. Receptors: In the context of physiology and medicine, receptors are specialized proteins found on the surface of cells or inside cells that detect and respond to specific molecules, known as ligands. These interactions can trigger a variety of responses within the cell, such as starting a signaling cascade or changing the cell's metabolism. Receptors play crucial roles in various biological processes, including communication between cells, regulation of immune responses, and perception of senses.

2. Antigen: An antigen is any substance (usually a protein) that can be recognized by the adaptive immune system, specifically by B-cells and T-cells. Antigens can be derived from various sources, such as microorganisms (like bacteria, viruses, or fungi), pollen, dust mites, or even components of our own cells (for instance, in autoimmune diseases). An antigen's ability to stimulate an immune response is determined by its molecular structure and whether it can be recognized by the receptors on immune cells.

3. B-Cell: B-cells are a type of white blood cell that plays a critical role in the adaptive immune system, particularly in humoral immunity. They originate from hematopoietic stem cells in the bone marrow and are responsible for producing antibodies, which are proteins that recognize and bind to specific antigens. Each B-cell has receptors on its surface called B-cell receptors (BCRs) that can recognize a unique antigen. When a B-cell encounters its specific antigen, it becomes activated, undergoes proliferation, and differentiates into plasma cells that secrete large amounts of antibodies to neutralize or eliminate the antigen.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Extrahepatic cholestasis is a medical condition characterized by the impaired flow of bile outside of the liver. Bile is a digestive fluid produced by the liver that helps in the absorption and digestion of fats. When the flow of bile is obstructed or blocked, it can lead to an accumulation of bile components, such as bilirubin, in the bloodstream, resulting in jaundice, dark urine, light-colored stools, and itching.

Extrahepatic cholestasis can be caused by various factors, including gallstones, tumors, strictures, or inflammation of the bile ducts. It is essential to diagnose and treat extrahepatic cholestasis promptly to prevent further complications, such as liver damage or infection. Treatment options may include medications, endoscopic procedures, or surgery, depending on the underlying cause of the condition.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Varicose veins are defined as enlarged, swollen, and twisting veins often appearing blue or dark purple, which usually occur in the legs. They are caused by weakened valves and vein walls that can't effectively push blood back toward the heart. This results in a buildup of blood, causing the veins to bulge and become varicose.

The condition is generally harmless but may cause symptoms like aching, burning, muscle cramp, or a feeling of heaviness in the legs. In some cases, varicose veins can lead to more serious problems, such as skin ulcers, blood clots, or chronic venous insufficiency. Treatment options include lifestyle changes, compression stockings, and medical procedures like sclerotherapy, laser surgery, or endovenous ablation.

CD95 (also known as Fas or APO-1) is a type of cell surface receptor that can bind to specific proteins and trigger programmed cell death, also known as apoptosis. It is an important regulator of the immune system and helps to control the activation and deletion of immune cells. CD95 ligand (CD95L), the protein that binds to CD95, is expressed on activated T-cells and can induce apoptosis in other cells that express CD95, including other T-cells and tumor cells.

An antigen is any substance that can stimulate an immune response, leading to the production of antibodies or activation of immune cells. In the context of CD95, antigens may refer to substances that can induce the expression of CD95 on the surface of cells, making them susceptible to CD95L-mediated apoptosis. These antigens could include viral proteins, tumor antigens, or other substances that trigger an immune response.

Therefore, the medical definition of 'antigens, CD95' may refer to substances that can induce the expression of CD95 on the surface of cells and make them targets for CD95L-mediated apoptosis.

CD40 ligand (CD40L or CD154) is a type II transmembrane protein and a member of the tumor necrosis factor (TNF) superfamily. It is primarily expressed on activated CD4+ T cells, but can also be found on other immune cells such as activated B cells, macrophages, and dendritic cells.

CD40 ligand binds to its receptor, CD40, which is mainly expressed on the surface of antigen-presenting cells (APCs) such as B cells, dendritic cells, and macrophages. The interaction between CD40L and CD40 plays a crucial role in the activation and regulation of the immune response.

CD40L-CD40 signaling is essential for T cell-dependent B cell activation, antibody production, and class switching. It also contributes to the activation and maturation of dendritic cells, promoting their ability to stimulate T cell responses. Dysregulation of CD40L-CD40 signaling has been implicated in various autoimmune diseases, transplant rejection, and cancer.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Ventricular remodeling is a structural adaptation process of the heart in response to stress or injury, such as myocardial infarction (heart attack) or pressure overload. This process involves changes in size, shape, and function of the ventricles (the lower chambers of the heart).

In ventricular remodeling, the heart muscle may thicken, enlarge, or become more stiff, leading to alterations in the pumping ability of the heart. These changes can ultimately result in cardiac dysfunction, heart failure, and an increased risk of arrhythmias (irregular heart rhythms).

Ventricular remodeling is often classified into two types:

1. Concentric remodeling: This occurs when the ventricular wall thickens (hypertrophy) without a significant increase in chamber size, leading to a decrease in the cavity volume and an increase in the thickness of the ventricular wall.
2. Eccentric remodeling: This involves an increase in both the ventricular chamber size and wall thickness due to the addition of new muscle cells (hyperplasia) or enlargement of existing muscle cells (hypertrophy). As a result, the overall shape of the ventricle becomes more spherical and less elliptical.

Both types of remodeling can negatively impact heart function and contribute to the development of heart failure. Close monitoring and appropriate treatment are essential for managing ventricular remodeling and preventing further complications.

Gastrointestinal (GI) hemorrhage is a term used to describe any bleeding that occurs in the gastrointestinal tract, which includes the esophagus, stomach, small intestine, large intestine, and rectum. The bleeding can range from mild to severe and can produce symptoms such as vomiting blood, passing black or tarry stools, or having low blood pressure.

GI hemorrhage can be classified as either upper or lower, depending on the location of the bleed. Upper GI hemorrhage refers to bleeding that occurs above the ligament of Treitz, which is a point in the small intestine where it becomes narrower and turns a corner. Common causes of upper GI hemorrhage include gastritis, ulcers, esophageal varices, and Mallory-Weiss tears.

Lower GI hemorrhage refers to bleeding that occurs below the ligament of Treitz. Common causes of lower GI hemorrhage include diverticulosis, colitis, inflammatory bowel disease, and vascular abnormalities such as angiodysplasia.

The diagnosis of GI hemorrhage is often made based on the patient's symptoms, medical history, physical examination, and diagnostic tests such as endoscopy, CT scan, or radionuclide scanning. Treatment depends on the severity and cause of the bleeding and may include medications, endoscopic procedures, surgery, or a combination of these approaches.

Ischemia is the medical term used to describe a lack of blood flow to a part of the body, often due to blocked or narrowed blood vessels. This can lead to a shortage of oxygen and nutrients in the tissues, which can cause them to become damaged or die. Ischemia can affect many different parts of the body, including the heart, brain, legs, and intestines. Symptoms of ischemia depend on the location and severity of the blockage, but they may include pain, cramping, numbness, weakness, or coldness in the affected area. In severe cases, ischemia can lead to tissue death (gangrene) or organ failure. Treatment for ischemia typically involves addressing the underlying cause of the blocked blood flow, such as through medication, surgery, or lifestyle changes.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Lymphocyte activation is the process by which B-cells and T-cells (types of lymphocytes) become activated to perform effector functions in an immune response. This process involves the recognition of specific antigens presented on the surface of antigen-presenting cells, such as dendritic cells or macrophages.

The activation of B-cells leads to their differentiation into plasma cells that produce antibodies, while the activation of T-cells results in the production of cytotoxic T-cells (CD8+ T-cells) that can directly kill infected cells or helper T-cells (CD4+ T-cells) that assist other immune cells.

Lymphocyte activation involves a series of intracellular signaling events, including the binding of co-stimulatory molecules and the release of cytokines, which ultimately result in the expression of genes involved in cell proliferation, differentiation, and effector functions. The activation process is tightly regulated to prevent excessive or inappropriate immune responses that can lead to autoimmunity or chronic inflammation.

The femoral vein is the large vein that runs through the thigh and carries oxygen-depleted blood from the lower limbs back to the heart. It is located in the femoral triangle, along with the femoral artery and nerve. The femoral vein begins at the knee as the popliteal vein, which then joins with the deep vein of the thigh to form the femoral vein. As it moves up the leg, it is joined by several other veins, including the great saphenous vein, before it becomes the external iliac vein at the inguinal ligament in the groin.

Protein splicing is a post-translational modification process that involves the excision of an intervening polypeptide segment, called an intein, from a protein precursor and the ligation of the flanking sequences, called exteins. This reaction results in the formation of a mature, functional protein product. Protein splicing is mediated by a set of conserved amino acid residues within the intein and can occur autocatalytically or in conjunction with other cellular factors. It plays an important role in the regulation and diversification of protein functions in various organisms, including bacteria, archaea, and eukaryotes.

Oligonucleotides are short sequences of nucleotides, the building blocks of DNA and RNA. They typically contain fewer than 100 nucleotides, and can be synthesized chemically to have specific sequences. Oligonucleotides are used in a variety of applications in molecular biology, including as probes for detecting specific DNA or RNA sequences, as inhibitors of gene expression, and as components of diagnostic tests and therapies. They can also be used in the study of protein-nucleic acid interactions and in the development of new drugs.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

The thoracic duct is the largest lymphatic vessel in the human body. It is a part of the lymphatic system, which helps to regulate fluid balance and immune function. The thoracic duct originates from the cisterna chyli, a dilated sac located in the abdomen near the aorta.

The thoracic duct collects lymph from the lower extremities, abdomen, pelvis, and left side of the thorax (chest). It ascends through the diaphragm and enters the chest, where it passes through the mediastinum (the central part of the chest between the lungs) and eventually drains into the left subclavian vein.

The thoracic duct plays a crucial role in transporting lymphatic fluid, which contains white blood cells, fats, proteins, and other substances, back into the circulatory system. Any obstruction or damage to the thoracic duct can lead to lymph accumulation in the surrounding tissues, causing swelling and other symptoms.

Sclerotherapy is a medical procedure used to treat varicose veins and spider veins. It involves the injection of a solution (called a sclerosant) directly into the affected vein, which causes the vein to collapse and eventually fade away. The sclerosant works by irritating the lining of the vein, causing it to swell and stick together, which then leads to clotting and the eventual reabsorption of the vein by the body.

The procedure is typically performed in a doctor's office or outpatient setting and may require multiple sessions depending on the severity and number of veins being treated. Common side effects include bruising, swelling, and discomfort at the injection site, as well as the possibility of developing brownish pigmentation or small ulcers near the treatment area. However, these side effects are usually temporary and resolve on their own within a few weeks.

Sclerotherapy is considered a safe and effective treatment for varicose veins and spider veins, with high success rates and low complication rates. It is important to note that while sclerotherapy can improve the appearance of affected veins, it does not prevent new veins from developing in the future.

Chylothorax is a medical condition characterized by the accumulation of lymphatic fluid called chyle in the pleural space, which is the space between the lungs and the chest wall. Chyle is a milky-white fluid that contains nutrients, electrolytes, and immune cells, and it is normally transported through the thoracic duct to the bloodstream.

Chylothorax can occur due to various reasons, such as trauma, surgery, tumors, or congenital abnormalities that disrupt the normal flow of chyle. As a result, chyle leaks into the pleural space, causing symptoms such as cough, chest pain, difficulty breathing, and fever.

The diagnosis of chylothorax is usually made through imaging studies such as chest X-ray or CT scan, and confirmed by analyzing the fluid for the presence of chylomicrons, which are lipid particles found in chyle. The treatment options for chylothorax include dietary modifications, such as a low-fat diet with medium-chain triglycerides, chest tube drainage, and surgical interventions such as thoracic duct ligation or pleurodesis.

Cyclooctanes are a class of organic compounds that contain a cyclic octane structure, which is an eight-carbon ring. These molecules can exist in various conformations, including "crowded" or "eclipsed" conformations, where the carbon-hydrogen bonds are arranged in a way that leads to steric strain. This strain makes cyclooctanes less stable than other cycloalkanes, such as cyclohexane. The properties and behavior of cyclooctanes can be studied and applied in fields like chemistry, biochemistry, and materials science.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Collateral circulation refers to the alternate blood supply routes that bypass an obstructed or narrowed vessel and reconnect with the main vascular system. These collateral vessels can develop over time as a result of the body's natural adaptation to chronic ischemia (reduced blood flow) caused by various conditions such as atherosclerosis, thromboembolism, or vasculitis.

The development of collateral circulation helps maintain adequate blood flow and oxygenation to affected tissues, minimizing the risk of tissue damage and necrosis. In some cases, well-developed collateral circulations can help compensate for significant blockages in major vessels, reducing symptoms and potentially preventing the need for invasive interventions like revascularization procedures. However, the extent and effectiveness of collateral circulation vary from person to person and depend on factors such as age, overall health status, and the presence of comorbidities.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a key role in the immune system's response to infection. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as bacteria and viruses.

When a B-lymphocyte encounters a pathogen, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies specific to the antigens on the surface of the pathogen. These antibodies bind to the pathogen, marking it for destruction by other immune cells such as neutrophils and macrophages.

B-lymphocytes also have a role in presenting antigens to T-lymphocytes, another type of white blood cell involved in the immune response. This helps to stimulate the activation and proliferation of T-lymphocytes, which can then go on to destroy infected cells or help to coordinate the overall immune response.

Overall, B-lymphocytes are an essential part of the adaptive immune system, providing long-lasting immunity to previously encountered pathogens and helping to protect against future infections.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Sciatic neuropathy is a condition that results from damage or injury to the sciatic nerve, which is the largest nerve in the human body. The sciatic nerve originates from the lower spine (lumbar and sacral regions) and travels down through the buttocks, hips, and legs to the feet.

Sciatic neuropathy can cause various symptoms, including pain, numbness, tingling, weakness, or difficulty moving the affected leg or foot. The pain associated with sciatic neuropathy is often described as sharp, shooting, or burning and may worsen with movement, coughing, or sneezing.

The causes of sciatic neuropathy include compression or irritation of the nerve due to conditions such as herniated discs, spinal stenosis, bone spurs, tumors, or piriformis syndrome. Trauma or injury to the lower back, hip, or buttocks can also cause sciatic neuropathy.

Diagnosing sciatic neuropathy typically involves a physical examination and medical history, as well as imaging tests such as X-rays, MRI, or CT scans to visualize the spine and surrounding structures. Treatment options may include pain management, physical therapy, steroid injections, or surgery, depending on the severity and underlying cause of the condition.

1. Receptors: In the context of physiology and medicine, receptors are specialized proteins found on the surface of cells or inside cells that detect and respond to specific molecules, known as ligands. These interactions can trigger a range of responses within the cell, such as starting a signaling pathway or changing the cell's behavior. There are various types of receptors, including ion channels, G protein-coupled receptors, and enzyme-linked receptors.

2. Antigen: An antigen is any substance (usually a protein) that can be recognized by the immune system, specifically by antibodies or T-cells, as foreign and potentially harmful. Antigens can be derived from various sources, such as bacteria, viruses, fungi, parasites, or even non-living substances like pollen, chemicals, or toxins. An antigen typically contains epitopes, which are the specific regions that antibodies or T-cell receptors recognize and bind to.

3. T-Cell: Also known as T lymphocytes, T-cells are a type of white blood cell that plays a crucial role in cell-mediated immunity, a part of the adaptive immune system. They are produced in the bone marrow and mature in the thymus gland. There are several types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs). T-cells recognize antigens presented to them by antigen-presenting cells (APCs) via their surface receptors called the T-cell receptor (TCR). Once activated, T-cells can proliferate and differentiate into various effector cells that help eliminate infected or damaged cells.

Jurkat cells are a type of human immortalized T lymphocyte (a type of white blood cell) cell line that is commonly used in scientific research. They were originally isolated from the peripheral blood of a patient with acute T-cell leukemia. Jurkat cells are widely used as a model system to study T-cell activation, signal transduction, and apoptosis (programmed cell death). They are also used in the study of HIV infection and replication, as they can be infected with the virus and used to investigate viral replication and host cell responses.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Experimental liver cirrhosis refers to a controlled research setting where various factors and substances are intentionally introduced to induce liver cirrhosis in animals or cell cultures. The purpose is to study the mechanisms, progression, potential treatments, and prevention strategies for liver cirrhosis. This could involve administering chemicals, drugs, alcohol, viruses, or manipulating genes associated with liver damage and fibrosis. It's important to note that results from experimental models may not directly translate to human conditions, but they can provide valuable insights into disease pathophysiology and therapeutic development.

A hindlimb, also known as a posterior limb, is one of the pair of extremities that are located distally to the trunk in tetrapods (four-legged vertebrates) and include mammals, birds, reptiles, and amphibians. In humans and other primates, hindlimbs are equivalent to the lower limbs, which consist of the thigh, leg, foot, and toes.

The primary function of hindlimbs is locomotion, allowing animals to move from one place to another. However, they also play a role in other activities such as balance, support, and communication. In humans, the hindlimbs are responsible for weight-bearing, standing, walking, running, and jumping.

In medical terminology, the term "hindlimb" is not commonly used to describe human anatomy. Instead, healthcare professionals use terms like lower limbs or lower extremities to refer to the same region of the body. However, in comparative anatomy and veterinary medicine, the term hindlimb is still widely used to describe the corresponding structures in non-human animals.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

CD28 is a co-stimulatory molecule that plays an important role in the activation and regulation of T cells, which are key players in the immune response. It is a type of protein found on the surface of T cells and interacts with other proteins called B7-1 (also known as CD80) and B7-2 (also known as CD86) that are expressed on the surface of antigen-presenting cells (APCs).

When a T cell encounters an APC that is presenting an antigen, the T cell receptor (TCR) on the surface of the T cell recognizes and binds to the antigen. However, this interaction alone is not enough to fully activate the T cell. The engagement of CD28 with B7-1 or B7-2 provides a critical co-stimulatory signal that promotes T cell activation, proliferation, and survival.

CD28 is also an important target for immune checkpoint inhibitors, which are drugs used to treat cancer by blocking the inhibitory signals that prevent T cells from attacking tumor cells. By blocking CD28, these drugs can enhance the anti-tumor response of T cells and improve cancer outcomes.

The portal vein is the large venous trunk that carries blood from the gastrointestinal tract, spleen, pancreas, and gallbladder to the liver. It is formed by the union of the superior mesenteric vein (draining the small intestine and a portion of the large intestine) and the splenic vein (draining the spleen and pancreas). The portal vein then divides into right and left branches within the liver, where the blood flows through the sinusoids and gets enriched with oxygen and nutrients before being drained by the hepatic veins into the inferior vena cava. This unique arrangement allows the liver to process and detoxify the absorbed nutrients, remove waste products, and regulate metabolic homeostasis.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

The hepatic artery is a branch of the celiac trunk or abdominal aorta that supplies oxygenated blood to the liver. It typically divides into two main branches, the right and left hepatic arteries, which further divide into smaller vessels to supply different regions of the liver. The hepatic artery also gives off branches to supply other organs such as the gallbladder, pancreas, and duodenum.

It's worth noting that there is significant variability in the anatomy of the hepatic artery, with some individuals having additional branches or variations in the origin of the vessel. This variability can have implications for surgical procedures involving the liver and surrounding organs.

Nucleic acid conformation refers to the three-dimensional structure that nucleic acids (DNA and RNA) adopt as a result of the bonding patterns between the atoms within the molecule. The primary structure of nucleic acids is determined by the sequence of nucleotides, while the conformation is influenced by factors such as the sugar-phosphate backbone, base stacking, and hydrogen bonding.

Two common conformations of DNA are the B-form and the A-form. The B-form is a right-handed helix with a diameter of about 20 Å and a pitch of 34 Å, while the A-form has a smaller diameter (about 18 Å) and a shorter pitch (about 25 Å). RNA typically adopts an A-form conformation.

The conformation of nucleic acids can have significant implications for their function, as it can affect their ability to interact with other molecules such as proteins or drugs. Understanding the conformational properties of nucleic acids is therefore an important area of research in molecular biology and medicine.

Coronary vessels refer to the network of blood vessels that supply oxygenated blood and nutrients to the heart muscle, also known as the myocardium. The two main coronary arteries are the left main coronary artery and the right coronary artery.

The left main coronary artery branches off into the left anterior descending artery (LAD) and the left circumflex artery (LCx). The LAD supplies blood to the front of the heart, while the LCx supplies blood to the side and back of the heart.

The right coronary artery supplies blood to the right lower part of the heart, including the right atrium and ventricle, as well as the back of the heart.

Coronary vessel disease (CVD) occurs when these vessels become narrowed or blocked due to the buildup of plaque, leading to reduced blood flow to the heart muscle. This can result in chest pain, shortness of breath, or a heart attack.

Hyperalgesia is a medical term that describes an increased sensitivity to pain. It occurs when the nervous system, specifically the nociceptors (pain receptors), become excessively sensitive to stimuli. This means that a person experiences pain from a stimulus that normally wouldn't cause pain or experiences pain that is more intense than usual. Hyperalgesia can be a result of various conditions such as nerve damage, inflammation, or certain medications. It's an important symptom to monitor in patients with chronic pain conditions, as it may indicate the development of tolerance or addiction to pain medication.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Heme is not a medical term per se, but it is a term used in the field of medicine and biology. Heme is a prosthetic group found in hemoproteins, which are proteins that contain a heme iron complex. This complex plays a crucial role in various biological processes, including oxygen transport (in hemoglobin), electron transfer (in cytochromes), and chemical catalysis (in peroxidases and catalases).

The heme group consists of an organic component called a porphyrin ring, which binds to a central iron atom. The iron atom can bind or release electrons, making it essential for redox reactions in the body. Heme is also vital for the formation of hemoglobin and myoglobin, proteins responsible for oxygen transport and storage in the blood and muscles, respectively.

In summary, heme is a complex organic-inorganic structure that plays a critical role in several biological processes, particularly in electron transfer and oxygen transport.

A catalytic RNA, often referred to as a ribozyme, is a type of RNA molecule that has the ability to act as an enzyme and catalyze chemical reactions. These RNA molecules contain specific sequences and structures that allow them to bind to other molecules and accelerate chemical reactions without being consumed in the process.

Ribozymes play important roles in various biological processes, such as RNA splicing, translation regulation, and gene expression. One of the most well-known ribozymes is the self-splicing intron found in certain RNA molecules, which can excise itself from the host RNA and then ligase the flanking exons together.

The discovery of catalytic RNAs challenged the central dogma of molecular biology, which held that proteins were solely responsible for carrying out biological catalysis. The finding that RNA could also function as an enzyme opened up new avenues of research and expanded our understanding of the complexity and versatility of biological systems.

The pancreatic ducts are a set of tubular structures within the pancreas that play a crucial role in the digestive system. The main pancreatic duct, also known as the duct of Wirsung, is responsible for transporting pancreatic enzymes and bicarbonate-rich fluid from the pancreas to the duodenum, which is the first part of the small intestine.

The exocrine portion of the pancreas contains numerous smaller ducts called interlobular ducts and intralobular ducts that merge and ultimately join the main pancreatic duct. This system ensures that the digestive enzymes and fluids produced by the pancreas are effectively delivered to the small intestine, where they aid in the breakdown and absorption of nutrients from food.

In addition to the main pancreatic duct, there is an accessory pancreatic duct, also known as Santorini's duct, which can sometimes join the common bile duct before emptying into the duodenum through a shared opening called the ampulla of Vater. However, in most individuals, the accessory pancreatic duct usually drains into the main pancreatic duct before entering the duodenum.

The carotid arteries are a pair of vital blood vessels in the human body that supply oxygenated blood to the head and neck. Each person has two common carotid arteries, one on each side of the neck, which branch off from the aorta, the largest artery in the body.

The right common carotid artery originates from the brachiocephalic trunk, while the left common carotid artery arises directly from the aortic arch. As they ascend through the neck, they split into two main branches: the internal and external carotid arteries.

The internal carotid artery supplies oxygenated blood to the brain, eyes, and other structures within the skull, while the external carotid artery provides blood to the face, scalp, and various regions of the neck.

Maintaining healthy carotid arteries is crucial for overall cardiovascular health and preventing serious conditions like stroke, which can occur when the arteries become narrowed or blocked due to the buildup of plaque or fatty deposits (atherosclerosis). Regular check-ups with healthcare professionals may include monitoring carotid artery health through ultrasound or other imaging techniques.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Elastomers are a type of polymeric material that exhibit elastic behavior when subjected to deforming forces. They have the ability to return to their original shape and size after being stretched or compressed, making them ideal for use in applications where flexibility, resilience, and durability are required.

Elastomers are composed of long chains of repeating molecular units called monomers, which are cross-linked together to form a three-dimensional network. This cross-linking gives elastomers their unique properties, such as high elasticity, low compression set, and resistance to heat, chemicals, and weathering.

Some common examples of elastomers include natural rubber, silicone rubber, neoprene, nitrile rubber, and polyurethane. These materials are used in a wide range of applications, from automotive parts and medical devices to footwear and clothing.

Endoscopy is a medical procedure that involves the use of an endoscope, which is a flexible tube with a light and camera at the end, to examine the interior of a body cavity or organ. The endoscope is inserted through a natural opening in the body, such as the mouth or anus, or through a small incision. The images captured by the camera are transmitted to a monitor, allowing the physician to visualize the internal structures and detect any abnormalities, such as inflammation, ulcers, or tumors. Endoscopy can also be used for diagnostic purposes, such as taking tissue samples for biopsy, or for therapeutic purposes, such as removing polyps or performing minimally invasive surgeries.

Click chemistry is a term used to describe a group of chemical reactions that are fast, high-yielding, and highly selective. These reactions typically involve the formation of covalent bonds between two molecules in a simple and efficient manner, often through the use of a catalyst. The concept of click chemistry was first introduced by K. B. Sharpless, who won the Nobel Prize in Chemistry in 2001 for his work on chiral catalysis.

In the context of medical research and drug development, click chemistry has emerged as a valuable tool for rapidly synthesizing and optimizing small molecule compounds with therapeutic potential. By using click chemistry reactions to quickly and efficiently link different chemical building blocks together, researchers can rapidly generate large libraries of potential drug candidates and then screen them for biological activity. This approach has been used to discover new drugs for a variety of diseases, including cancer, infectious diseases, and neurological disorders.

One common type of click chemistry reaction is the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, which involves the reaction between an azide and an alkyne to form a triazole ring. This reaction is highly selective and can be carried out under mild conditions, making it a popular choice for chemical synthesis in the life sciences. Other types of click chemistry reactions include the Diels-Alder cycloaddition, the thiol-ene reaction, and the Staudinger ligation.

Overall, click chemistry has had a significant impact on medical research and drug development by enabling the rapid and efficient synthesis of complex small molecule compounds with therapeutic potential. Its versatility and selectivity make it a powerful tool for researchers seeking to discover new drugs and better understand the molecular mechanisms underlying human disease.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

The femoral artery is the major blood vessel that supplies oxygenated blood to the lower extremity of the human body. It is a continuation of the external iliac artery and becomes the popliteal artery as it passes through the adductor hiatus in the adductor magnus muscle of the thigh.

The femoral artery is located in the femoral triangle, which is bound by the sartorius muscle anteriorly, the adductor longus muscle medially, and the biceps femoris muscle posteriorly. It can be easily palpated in the groin region, making it a common site for taking blood samples, measuring blood pressure, and performing surgical procedures such as femoral artery catheterization and bypass grafting.

The femoral artery gives off several branches that supply blood to the lower limb, including the deep femoral artery, the superficial femoral artery, and the profunda femoris artery. These branches provide blood to the muscles, bones, skin, and other tissues of the leg, ankle, and foot.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

A vasectomy is a surgical procedure for male sterilization or permanent contraception. It involves cutting and sealing the vas deferens, the tubes that carry sperm from the testicles to the prostate gland, to prevent the release of sperm during ejaculation. This procedure is typically performed in an outpatient setting, using local anesthesia, and takes about 20-30 minutes. It is considered a highly effective form of birth control with a low risk of complications. However, it does not protect against sexually transmitted infections (STIs), so additional protection such as condoms may still be necessary.

The saphenous vein is a term used in anatomical description to refer to the great or small saphenous veins, which are superficial veins located in the lower extremities of the human body.

The great saphenous vein (GSV) is the longest vein in the body and originates from the medial aspect of the foot, ascending along the medial side of the leg and thigh, and drains into the femoral vein at the saphenofemoral junction, located in the upper third of the thigh.

The small saphenous vein (SSV) is a shorter vein that originates from the lateral aspect of the foot, ascends along the posterior calf, and drains into the popliteal vein at the saphenopopliteal junction, located in the popliteal fossa.

These veins are often used as conduits for coronary artery bypass grafting (CABG) surgery due to their consistent anatomy and length.

Polynucleotide 5'-Hydroxyl-Kinase (PNK) is an enzyme that catalyzes the addition of a phosphate group to the 5'-hydroxyl end of a polynucleotide strand, such as DNA or RNA. This enzyme plays a crucial role in the repair and maintenance of DNA ends during various cellular processes, including DNA replication, recombination, and repair.

PNK has two distinct activities: 5'-kinase activity and 3'-phosphatase activity. The 5'-kinase activity adds a phosphate group to the 5'-hydroxyl end of a polynucleotide strand, while the 3'-phosphatase activity removes a phosphate group from the 3'-end of a strand. These activities enable PNK to process and repair DNA ends with missing or damaged phosphate groups, ensuring their proper alignment and ligation during DNA repair and recombination.

PNK is involved in several essential cellular pathways, including base excision repair (BER), nucleotide excision repair (NER), and double-strand break (DSB) repair. Dysregulation or mutations in PNK can lead to genomic instability and contribute to the development of various diseases, such as cancer and neurodegenerative disorders.

The sciatic nerve is the largest and longest nerve in the human body, running from the lower back through the buttocks and down the legs to the feet. It is formed by the union of the ventral rami (branches) of the L4 to S3 spinal nerves. The sciatic nerve provides motor and sensory innervation to various muscles and skin areas in the lower limbs, including the hamstrings, calf muscles, and the sole of the foot. Sciatic nerve disorders or injuries can result in symptoms such as pain, numbness, tingling, or weakness in the lower back, hips, legs, and feet, known as sciatica.

Veins are blood vessels that carry deoxygenated blood from the tissues back to the heart. They have a lower pressure than arteries and contain valves to prevent the backflow of blood. Veins have a thin, flexible wall with a larger lumen compared to arteries, allowing them to accommodate more blood volume. The color of veins is often blue or green due to the absorption characteristics of light and the reduced oxygen content in the blood they carry.

CD3 antigens are a group of proteins found on the surface of T-cells, which are a type of white blood cell that plays a central role in the immune response. The CD3 antigens are composed of several different subunits (ε, δ, γ, and α) that associate to form the CD3 complex, which is involved in T-cell activation and signal transduction.

The CD3 complex is associated with the T-cell receptor (TCR), which recognizes and binds to specific antigens presented by antigen-presenting cells. When the TCR binds to an antigen, it triggers a series of intracellular signaling events that lead to T-cell activation and the initiation of an immune response.

CD3 antigens are important targets for immunotherapy in some diseases, such as certain types of cancer. For example, monoclonal antibodies that target CD3 have been developed to activate T-cells and enhance their ability to recognize and destroy tumor cells. However, CD3-targeted therapies can also cause side effects, such as cytokine release syndrome, which can be serious or life-threatening in some cases.

Physiologic neovascularization is the natural and controlled formation of new blood vessels in the body, which occurs as a part of normal growth and development, as well as in response to tissue repair and wound healing. This process involves the activation of endothelial cells, which line the interior surface of blood vessels, and their migration, proliferation, and tube formation to create new capillaries. Physiologic neovascularization is tightly regulated by a balance of pro-angiogenic and anti-angiogenic factors, ensuring that it occurs only when and where it is needed. It plays crucial roles in various physiological processes, such as embryonic development, tissue regeneration, and wound healing.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

Vascular surgical procedures are operations that are performed to treat conditions and diseases related to the vascular system, which includes the arteries, veins, and capillaries. These procedures can be invasive or minimally invasive and are often used to treat conditions such as peripheral artery disease, carotid artery stenosis, aortic aneurysms, and venous insufficiency.

Some examples of vascular surgical procedures include:

* Endarterectomy: a procedure to remove plaque buildup from the inside of an artery
* Bypass surgery: creating a new path for blood to flow around a blocked or narrowed artery
* Angioplasty and stenting: using a balloon to open a narrowed artery and placing a stent to keep it open
* Aneurysm repair: surgically repairing an aneurysm, a weakened area in the wall of an artery that has bulged out and filled with blood
* Embolectomy: removing a blood clot from a blood vessel
* Thrombectomy: removing a blood clot from a vein

These procedures are typically performed by vascular surgeons, who are trained in the diagnosis and treatment of vascular diseases.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

The splenic artery is the largest branch of the celiac trunk, which arises from the abdominal aorta. It supplies blood to the spleen and several other organs in the upper left part of the abdomen. The splenic artery divides into several branches that ultimately form a network of capillaries within the spleen. These capillaries converge to form the main venous outflow, the splenic vein, which drains into the hepatic portal vein.

The splenic artery is a vital structure in the human body, and any damage or blockage can lead to serious complications, including splenic infarction (reduced blood flow to the spleen) or splenic rupture (a surgical emergency that can be life-threatening).

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

Peritonitis is a medical condition characterized by inflammation of the peritoneum, which is the serous membrane that lines the inner wall of the abdominal cavity and covers the abdominal organs. The peritoneum has an important role in protecting the abdominal organs and providing a smooth surface for them to move against each other.

Peritonitis can occur as a result of bacterial or fungal infection, chemical irritation, or trauma to the abdomen. The most common cause of peritonitis is a rupture or perforation of an organ in the abdominal cavity, such as the appendix, stomach, or intestines, which allows bacteria from the gut to enter the peritoneal cavity.

Symptoms of peritonitis may include abdominal pain and tenderness, fever, nausea and vomiting, loss of appetite, and decreased bowel movements. In severe cases, peritonitis can lead to sepsis, a life-threatening condition characterized by widespread inflammation throughout the body.

Treatment for peritonitis typically involves antibiotics to treat the infection, as well as surgical intervention to repair any damage to the abdominal organs and remove any infected fluid or tissue from the peritoneal cavity. In some cases, a temporary or permanent drain may be placed in the abdomen to help remove excess fluid and promote healing.

Oligodeoxyribonucleotides (ODNs) are relatively short, synthetic single-stranded DNA molecules. They typically contain 15 to 30 nucleotides, but can range from 2 to several hundred nucleotides in length. ODNs are often used as tools in molecular biology research for various applications such as:

1. Nucleic acid detection and quantification (e.g., real-time PCR)
2. Gene regulation (antisense, RNA interference)
3. Gene editing (CRISPR-Cas systems)
4. Vaccine development
5. Diagnostic purposes

Due to their specificity and affinity towards complementary DNA or RNA sequences, ODNs can be designed to target a particular gene or sequence of interest. This makes them valuable tools in understanding gene function, regulation, and interaction with other molecules within the cell.

A varicocele is defined as an abnormal dilation and tortuosity (twisting or coiling) of the pampiniform plexus, which is a network of veins that surrounds the spermatic cord in the scrotum. This condition is most commonly found on the left side, and it's more prevalent in men of reproductive age.

The dilation of these veins can cause a decrease in the temperature around the testicle, leading to impaired sperm production, reduced sperm quality, and, in some cases, pain or discomfort. Varicoceles are often asymptomatic but may present as a scrotal mass, discomfort, or infertility issues. In severe cases or when accompanied by symptoms, treatment options include surgical ligation (tying off) or embolization of the affected veins to improve testicular function and alleviate symptoms.

Antigens are substances (usually proteins) on the surface of cells, viruses, fungi, or bacteria that can be recognized by the immune system and provoke an immune response. In the context of differentiation, antigens refer to specific markers that identify the developmental stage or lineage of a cell.

Differentiation antigens are proteins or carbohydrates expressed on the surface of cells during various stages of differentiation, which can be used to distinguish between cells at different maturation stages or of different cell types. These antigens play an essential role in the immune system's ability to recognize and respond to abnormal or infected cells while sparing healthy cells.

Examples of differentiation antigens include:

1. CD (cluster of differentiation) molecules: A group of membrane proteins used to identify and define various cell types, such as T cells, B cells, natural killer cells, monocytes, and granulocytes.
2. Lineage-specific antigens: Antigens that are specific to certain cell lineages, such as CD3 for T cells or CD19 for B cells.
3. Maturation markers: Antigens that indicate the maturation stage of a cell, like CD34 and CD38 on hematopoietic stem cells.

Understanding differentiation antigens is crucial in immunology, cancer research, transplantation medicine, and vaccine development.

RNA (Ribonucleic Acid) is a single-stranded, linear polymer of ribonucleotides. It is a nucleic acid present in the cells of all living organisms and some viruses. RNAs play crucial roles in various biological processes such as protein synthesis, gene regulation, and cellular signaling. There are several types of RNA including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), microRNA (miRNA), and long non-coding RNA (lncRNA). These RNAs differ in their structure, function, and location within the cell.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

CD47 is a cell surface protein that acts as a type of "marker" on certain cells in the body, including red blood cells and immune cells. It is sometimes referred to as an "antigen" because it can be recognized by other proteins called receptors, which can trigger various responses in the body.

CD47 plays a role in regulating the immune response and protecting healthy cells from being attacked by the immune system. It does this by binding to a receptor called SIRPα on certain immune cells, such as macrophages and dendritic cells. This interaction sends a "don't eat me" signal that helps prevent the immune cells from attacking and destroying the CD47-expressing cells.

CD47 has been studied in the context of various diseases, including cancer, because some cancer cells may overexpress CD47 as a way to evade the immune system. Inhibiting the interaction between CD47 and SIRPα has emerged as a potential strategy for enhancing the body's ability to fight off cancer cells.

Peripheral nerve injuries refer to damage or trauma to the peripheral nerves, which are the nerves outside the brain and spinal cord. These nerves transmit information between the central nervous system (CNS) and the rest of the body, including sensory, motor, and autonomic functions. Peripheral nerve injuries can result in various symptoms, depending on the type and severity of the injury, such as numbness, tingling, weakness, or paralysis in the affected area.

Peripheral nerve injuries are classified into three main categories based on the degree of damage:

1. Neuropraxia: This is the mildest form of nerve injury, where the nerve remains intact but its function is disrupted due to a local conduction block. The nerve fiber is damaged, but the supporting structures remain intact. Recovery usually occurs within 6-12 weeks without any residual deficits.
2. Axonotmesis: In this type of injury, there is damage to both the axons and the supporting structures (endoneurium, perineurium). The nerve fibers are disrupted, but the connective tissue sheaths remain intact. Recovery can take several months or even up to a year, and it may be incomplete, with some residual deficits possible.
3. Neurotmesis: This is the most severe form of nerve injury, where there is complete disruption of the nerve fibers and supporting structures (endoneurium, perineurium, epineurium). Recovery is unlikely without surgical intervention, which may involve nerve grafting or repair.

Peripheral nerve injuries can be caused by various factors, including trauma, compression, stretching, lacerations, or chemical exposure. Treatment options depend on the type and severity of the injury and may include conservative management, such as physical therapy and pain management, or surgical intervention for more severe cases.

... may refer to: Ligation (molecular biology), the covalent linking of two ends of DNA or RNA molecules Chemical ligation ... a method of attaching the archwires to the brackets KAHA Ligation Ligation-independent cloning Typographic ligature forming ... Look up ligation in Wiktionary, the free dictionary. ... Tubal ligation, a method of female sterilization Rubber band ... ligation, a treatment for hemorrhoids In coordination chemistry, making a bond between a ligand and a Lewis acid In ...
Partial tubal ligation or full salpingectomy (a tubal ligation method that relies upon the physical removal of the fallopian ... Tubal ligation is considered a permanent method of sterilization and birth control. Female sterilization through tubal ligation ... Since most forms of tubal ligation require abdominal surgery under regional or general anesthesia, tubal ligation is also ... "postabortion tubal ligation", or more than six weeks after the end of a pregnancy, termed an "interval tubal ligation". The ...
It is an alternative to the Native Chemical Ligation (NCL). KAHA Ligation was developed by Jeffrey W. Bode group at ETH Zürich ... The first reported protein synthesized by KAHA ligation was human GLP-1 (7-36). Since then, a variety of small proteins (up to ... The most commonly used N-terminal hydroxylamine is the 5-oxaproline, which results in a homoserine residue after ligation and O ... The α-Ketoacid-Hydroxylamine (KAHA) Amide-Forming Ligation is a chemical reaction that is used to join two unprotected ...
The Staudinger ligation continues to be developed but has not yet found widespread use. Ser/Thr ligation was introduced into ... The original chemical ligation methods involved the formation of a non-native bond at the ligation site. Subsequently, native ... Native chemical ligation relies on the presence of a cysteine residue at the ligation site. Methods using removable auxiliary ... Chemical ligation is usually carried out in aqueous solution. Multiple consecutive chemical ligation reactions can be used to ...
... (LIC) is a form of molecular cloning that is able to be performed without the use of restriction ... "Ligation Independent Cloning (LIC)". New England BioLabs (NEB). Retrieved 15 January 2016. "Get Your Clone 90% Of The Time with ... Haun, RS; Serventi, IM; Moss, J (1992). "Rapid, reliable ligation-independent cloning of PCR products using modified plasmid ...
Intein KAHA Ligation Peptide synthesis Protein synthesis SEA Native Peptide Ligation Dawson, P. E.; Muir, T. W.; Clark-Lewis, I ... Alternatively, thiol-containing ligation auxiliaries can be used that mimic an N-terminal cysteine for the ligation reaction, ... Native Chemical Ligation (NCL) is an important extension of the chemical ligation concept for constructing a larger polypeptide ... Native chemical ligation of this kind using a recombinant polypeptide segment is known as Expressed Protein Ligation. Similarly ...
... is a DNA sequencing method that uses the enzyme DNA ligase to identify the nucleotide present at a given ... Sequencing by ligation relies upon the sensitivity of DNA ligase for base-pairing mismatches. The target molecule to be ... Sequencing by ligation can proceed in either direction (either 5'-3' or 3'-5') depending on which end of the probe ... This sequencing by ligation method has been reported to have problems sequencing palindromic sequences. Sequencing by ...
"Haemorrhoidal artery ligation versus rubber band ligation for the management of symptomatic second-degree and third-degree ... The CRH O'Regan ligation system also eliminates the use of forceps. It is much more expensive on a per-case basis than the ... Rubber band ligation is a popular procedure for the treatment of hemorrhoids, as it involves a much lower risk of pain than ... With rubber band ligation, a small band is applied to the base of the hemorrhoid, stopping the blood supply to the hemorrhoidal ...
TA ligation is therefore a form of sticky end ligation. Blunt-ended vectors may be turned into vector for TA ligation with ... Ligation is complicated by the fact that the desired ligation products for most ligation reactions should be between two ... Blunt-end ligation is much less efficient than sticky end ligation, so a higher concentration of ligase is used in blunt-end ... For the ligation reaction to proceed efficiently, the ends should be stably annealed, and in ligation experiments, the Tm of ...
In situ proximity ligation assays (isPLA) has been applied to antibody validation in human tissues with various advantages over ... Proximity ligation assay (in situ PLA) is a technology that extends the capabilities of traditional immunoassays to include ... Roussis IM, Guille M, Myers FA, Scarlett GP (2016). "RNA Whole-Mount In situ Hybridisation Proximity Ligation Assay (rISH-PLA ... Leuchowius KJ, Weibrecht I, Landegren U, Gedda L, Söderberg O (October 2009). "Flow cytometric in situ proximity ligation ...
The overall process of SEA native peptide ligation involves first an N,S-acyl shift for in in situ formation of a peptide ... SEA is an abbreviation of bis(2-sulfanylethyl)amido (Scheme 1). SEA ligation involves the reaction of a peptide featuring a C- ... The first peer reviewed publication describing SEA native peptide ligation was published in Organic Letters by Melnyk, O. et al ... Ollivier, N.; Dheur, J.; Mhidia, R.; Blanpain, A.; Melnyk, O., Bis(2-sulfanylethyl)amino native peptide ligation. Org. Lett. ...
... (MLPA) is a variation of the multiplex polymerase chain reaction that permits ... Multiplex ligation-dependent probe amplification was invented by Jan Schouten, a Dutch scientist. The method was first ... "Multiplex Ligation-dependent Probe Amplification (MLPA)". Bitesize Bio. 2018-12-27. Retrieved 2021-06-07. Yau SC, Bobrow M, ... X and Y based on multiplex ligation-dependent probe amplification (MLPA)". Eur. J. Hum. Genet. 13 (2): 171-175. doi:10.1038/sj. ...
... (DRIL) is a surgical method of treating vascular access steal syndrome. DRIL was ... by arteriovenous fistula with distal artery ligation and revascularization". J Vasc Surg. 7 (6): 770-3. doi:10.1016/0741-5214( ...
... (SICLOPPS) is a biotechnology technique that permits the creation of ...
"Tubal Ligation". Johns Hopkins Medicine. "Vasectomy". Johns Hopkins Medicine. Lin, Luo; Wu Shi-Zhong; Zhu Changmin; Fan Qifu; ... There are multiple ways of having sterilization done, but the two that are used most frequently are tubal ligation for women ... This method is considered more effective than tubal ligation, as there is no chance of tubal reconnection or clip failure, and ... A 1996 Chinese study found that "risk for depression was 2.34 times greater after tubal ligation, and 3.97 times greater after ...
One such method employs the technique of partial ligation. DNA ligation is the process by which linear DNA pieces are connected ... Bowen, R (20 October 1999). "DNA Ligation". Biotechnology and Genetic Engineering. Retrieved 12 November 2013. Lan, Vo Thi ...
1959 Aug;66:640-8. Tubal ligation. Green GH. N Z Med J. 1958 Oct;57(321):470-7. Foetal renal hypoplasia and the origin of ...
In traceless Staudinger ligation, the organophosphorus group dissociates giving a phosphorus-free bioconjugate. Gololobov, Y. G ... In classical Staudinger ligation, the organophosphorus compound becomes incorporated into the peptide. Typically, appended to ... Of interest in chemical biology is the Staudinger ligation, which has been called one of the most important bioconjugation ... Two versions of the Staudinger ligation have been developed. Both begin with the classic iminophosphorane reaction. ...
... the tetrazine ligation, the isocyanide-based click reaction, and most recently, the quadricyclane ligation. The use of ... The Staudinger ligation has been used in both live cells and live mice. The azide can act as a soft electrophile that prefers ... The Staudinger ligation is a reaction developed by the Bertozzi group in 2000 that is based on the classic Staudinger reaction ... The quadricyclane ligation utilizes a highly strained quadricyclane to undergo [2+2+2] cycloaddition with π systems. ...
Glal hydrolysis and Ligation Adapter Dependent PCR assay (GLAD-PCR assay) is the novel method to determine R(5mC)GY sites ... The universal adapter ligation. As an adapter an oligonucleotide duplex 5'-CCTGCTCTTTCATCG-3'/3'-pGGACGAGAAAGTAGCp-5' is used, ...
In native chemical ligation, a peptide C-terminal thioester reacts with a second peptide that has a cysteine residue at its N- ... Peptide and protein ligation. 25 (18): 4953-4965. doi:10.1016/j.bmc.2017.05.020. PMID 28705433. Bunker RD, Mandal K, Bashiri G ... Native chemical ligation of unprotected peptide segments is used to prepare the protein's polypeptide chain, which is then ... The hydrazide is stable to native chemical ligation reaction conditions, and can be converted in situ to a reactive peptide- ...
ISBN 978-4-431-55823-1. Nuijens T, Schmidt M (2019). Enzyme-mediated ligation methods. Humana, New York, NY. ISBN 978-1-4939- ...
... the tetrazine ligation, the isocyanide-based click reaction, and most recently, the quadricyclane ligation. In supramolecular ... A number of chemical ligation strategies have been developed that fulfill the requirements of bioorthogonality, including the 1 ... Blackman, Melissa L.; Royzen, Maksim; Fox, Joseph M. (2008). "The Tetrazine Ligation: Fast Bioconjugation based on Inverse- ... Sletten, Ellen M.; Bertozzi, Carolyn R. (2011). "A Bioorthogonal Quadricyclane Ligation". Journal of the American Chemical ...
Their suturing ligation without excision]". Khirurgiia (in Bulgarian). 43 (4): 65-8. PMID 2097429. Serdev N (1991). "[Free ...
The oxime ligation can then occur readily, and it has been reported that the rate increased up to 400 times under mild acidic ... The Staudinger ligation of azides and phosphine has been used extensively in field of chemical biology. Because it is able to ... Even though Staudinger ligation is a suitable bioconjugation in living cells without major toxicity, the phosphine's ... Lemieux GA, De Graffenried CL, Bertozzi CR (April 2003). "A fluorogenic dye activated by the staudinger ligation". Journal of ...
Endonucleolytic cleavage and ligation "Ptc1". Saccharomyces Genome Database. SGD Project. Retrieved 21 March 2014. Malleshaiah ...
"Multiplex Ligation-Dependent Probe Amplification". The Journal of Molecular Diagnostics. 8 (4): 433-443. doi:10.2353/jmoldx. ... multiplex ligation-dependent probe amplification (MLPA), array comparative genomic hybridization (aCGH), and EHMT1 sequencing. ...
Additional ligation of the intersphincteric fistula tract did not improve the outcome after endorectal advancement flap. ... ligation of intersphincteric fistula tract) procedure. LIFT procedure is based on secure closure of the internal opening and ... the ligation of intersphincteric fistula tract". J Med Assoc Thai. 90 (3): 581-6. PMID 17427539. van Onkelen, RS; Gosselink, MP ... ligation of intersphincteric tract close to the internal opening and removal of intersphincteric tract, scraping out all ...
"Multiplex Ligation-dependent Probe Amplification (MLPA)". bitesizebio.com. 2018-12-27. Retrieved 2022-03-24. "Nablus mask-like ... and multiplex ligation-dependent probe amplification (MLPA) based techniques. Post-natal diagnoses are more common, but ...
He, Ye; Hinklin, Ronald; Chang, Jiyoung; Kiessling, Laura (2004). "Stereoselective N-Glycosylation by Staudinger Ligation". ...

No FAQ available that match "ligation"

No images available that match "ligation"