Partial or total replacement of all layers of a central portion of the cornea.
A surgical procedure or KERATOPLASTY involving selective stripping and replacement of diseased host DESCEMET MEMBRANE and CORNEAL ENDOTHELIUM with a suitable and healthy donor posterior lamella. The advantage to this procedure is that the normal corneal surface of the recipient is retained, thereby avoiding corneal surface incisions and sutures.
Partial or total replacement of the CORNEA from one human or animal to another.
Diseases of the cornea.
A noninflammatory, usually bilateral protrusion of the cornea, the apex being displaced downward and nasally. It occurs most commonly in females at about puberty. The cause is unknown but hereditary factors may play a role. The -conus refers to the cone shape of the corneal protrusion. (From Dorland, 27th ed)
A layer of the cornea. It is the basal lamina of the CORNEAL ENDOTHELIUM (from which it is secreted) separating it from the CORNEAL STROMA. It is a homogeneous structure composed of fine collagenous filaments, and slowly increases in thickness with age.
Disorder caused by loss of endothelium of the central cornea. It is characterized by hyaline endothelial outgrowths on Descemet's membrane, epithelial blisters, reduced vision, and pain.
The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed)
An excessive amount of fluid in the cornea due to damage of the epithelium or endothelium causing decreased visual acuity.
Centers for storing various parts of the eye for future use.
Single layer of large flattened cells covering the surface of the cornea.
Disorder occurring in the central or peripheral area of the cornea. The usual degree of transparency becomes relatively opaque.
Loss of CORNEAL ENDOTHELIUM usually following intraocular surgery (e.g., cataract surgery) or due to FUCHS' ENDOTHELIAL DYSTROPHY; ANGLE-CLOSURE GLAUCOMA; IRITIS; or aging.
Unequal curvature of the refractive surfaces of the eye. Thus a point source of light cannot be brought to a point focus on the retina but is spread over a more or less diffuse area. This results from the radius of curvature in one plane being longer or shorter than the radius at right angles to it. (Dorland, 27th ed)
Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast.
The lamellated connective tissue constituting the thickest layer of the cornea between the Bowman and Descemet membranes.
The measurement of curvature and shape of the anterior surface of the cornea using techniques such as keratometry, keratoscopy, photokeratoscopy, profile photography, computer-assisted image processing and videokeratography. This measurement is often applied in the fitting of contact lenses and in diagnosing corneal diseases or corneal changes including keratoconus, which occur after keratotomy and keratoplasty.
Inflammation of the cornea.
Bilateral hereditary disorders of the cornea, usually autosomal dominant, which may be present at birth but more frequently develop during adolescence and progress slowly throughout life. Central macular dystrophy is transmitted as an autosomal recessive defect.
Infection by a variety of fungi, usually through four possible mechanisms: superficial infection producing conjunctivitis, keratitis, or lacrimal obstruction; extension of infection from neighboring structures - skin, paranasal sinuses, nasopharynx; direct introduction during surgery or accidental penetrating trauma; or via the blood or lymphatic routes in patients with underlying mycoses.
Gas lasers with excited dimers (i.e., excimers) as the active medium. The most commonly used are rare gas monohalides (e.g., argon fluoride, xenon chloride). Their principal emission wavelengths are in the ultraviolet range and depend on the monohalide used (e.g., 193 nm for ArF, 308 nm for Xe Cl). These lasers are operated in pulsed and Q-switched modes and used in photoablative decomposition involving actual removal of tissue. (UMDNS, 2005)
Techniques for securing together the edges of a wound, with loops of thread or similar materials (SUTURES).
Loss of epithelial tissue from the surface of the cornea due to progressive erosion and necrosis of the tissue; usually caused by bacterial, fungal, or viral infection.
A puncture or hole through the CORNEAL STROMA resulting from various diseases or trauma.
The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host.
The process by which a tissue or aggregate of cells is kept alive outside of the organism from which it was derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism).
Lenses designed to be worn on the front surface of the eyeball. (UMDNS, 1999)
New blood vessels originating from the corneal veins and extending from the limbus into the adjacent CORNEAL STROMA. Neovascularization in the superficial and/or deep corneal stroma is a sequel to numerous inflammatory diseases of the ocular anterior segment, such as TRACHOMA, viral interstitial KERATITIS, microbial KERATOCONJUNCTIVITIS, and the immune response elicited by CORNEAL TRANSPLANTATION.
Refraction of LIGHT effected by the media of the EYE.
Surgical techniques on the CORNEA employing LASERS, especially for reshaping the CORNEA to correct REFRACTIVE ERRORS.
Presence of an intraocular lens after cataract extraction.
Pathologic processes that affect patients after a surgical procedure. They may or may not be related to the disease for which the surgery was done, and they may or may not be direct results of the surgery.
A procedure to surgically correct REFRACTIVE ERRORS by cutting radial slits into the CORNEA to change its refractive properties.
Individuals supplying living tissue, organs, cells, blood or blood components for transfer or transplantation to histocompatible recipients.
Materials used in closing a surgical or traumatic wound. (From Dorland, 28th ed)
Artificial implanted lenses.
Injury to any part of the eye by extreme heat, chemical agents, or ultraviolet radiation.
An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient.
The removal of a circular disk of the cranium.
Asymmetries in the topography and refractive index of the corneal surface that affect visual acuity.
A type of refractive surgery of the CORNEA to correct MYOPIA and ASTIGMATISM. An EXCIMER LASER is used directly on the surface of the EYE to remove some of the CORNEAL EPITHELIUM thus reshaping the anterior curvature of the cornea.
Substances used to cause adherence of tissue to tissue or tissue to non-tissue surfaces, as for prostheses.
'Chemical burns' is a medical term that refers to injuries resulting from skin or eye contact with harmful substances, such as acids, alkalis, or irritants, which can cause damage ranging from mild irritation to severe necrosis and scarring.
Diseases, dysfunctions, or disorders of or located in the iris.
Insertion of an artificial lens to replace the natural CRYSTALLINE LENS after CATARACT EXTRACTION or to supplement the natural lens which is left in place.
Stratified squamous epithelium that covers the outer surface of the CORNEA. It is smooth and contains many free nerve endings.
Fibroblasts which occur in the CORNEAL STROMA.
A superficial, epithelial Herpesvirus hominis infection of the cornea, characterized by the presence of small vesicles which may break down and coalesce to form dendritic ulcers (KERATITIS, DENDRITIC). (Dictionary of Visual Science, 3d ed)
Devices intended to replace non-functioning organs. They may be temporary or permanent. Since they are intended always to function as the natural organs they are replacing, they should be differentiated from PROSTHESES AND IMPLANTS and specific types of prostheses which, though also replacements for body parts, are frequently cosmetic (EYE, ARTIFICIAL) as well as functional (ARTIFICIAL LIMBS).
A scientific tool based on ULTRASONOGRAPHY and used not only for the observation of microstructure in metalwork but also in living tissue. In biomedical application, the acoustic propagation speed in normal and abnormal tissues can be quantified to distinguish their tissue elasticity and other properties.
Devices, usually incorporating unidirectional valves, which are surgically inserted in the sclera to maintain normal intraocular pressure.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
Pathologic process consisting of a partial or complete disruption of the layers of a surgical wound.
The process by which organs are kept viable outside of the organism from which they were removed (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism).
An ocular disease, occurring in many forms, having as its primary characteristics an unstable or a sustained increase in the intraocular pressure which the eye cannot withstand without damage to its structure or impairment of its function. The consequences of the increased pressure may be manifested in a variety of symptoms, depending upon type and severity, such as excavation of the optic disk, hardness of the eyeball, corneal anesthesia, reduced visual acuity, seeing of colored halos around lights, disturbed dark adaptation, visual field defects, and headaches. (Dictionary of Visual Science, 4th ed)
Absence of the crystalline lens resulting from cataract extraction.
The pressure of the fluids in the eye.
Damage or trauma inflicted to the eye by external means. The concept includes both surface injuries and intraocular injuries.
The removal of a cataractous CRYSTALLINE LENS from the eye.
An annular transitional zone, approximately 1 mm wide, between the cornea and the bulbar conjunctiva and sclera. It is highly vascular and is involved in the metabolism of the cornea. It is ophthalmologically significant in that it appears on the outer surface of the eyeball as a slight furrow, marking the line between the clear cornea and the sclera. (Dictionary of Visual Science, 3d ed)
The space in the eye, filled with aqueous humor, bounded anteriorly by the cornea and a small portion of the sclera and posteriorly by a small portion of the ciliary body, the iris, and that part of the crystalline lens which presents through the pupil. (Cline et al., Dictionary of Visual Science, 4th ed, p109)
A sensory branch of the trigeminal (5th cranial) nerve. The ophthalmic nerve carries general afferents from the superficial division of the face including the eyeball, conjunctiva, upper eyelid, upper nose, nasal mucosa, and scalp.
The period following a surgical operation.
A refractive error in which rays of light entering the eye parallel to the optic axis are brought to a focus behind the retina, as a result of the eyeball being too short from front to back. It is also called farsightedness because the near point is more distant than it is in emmetropia with an equal amplitude of accommodation. (Dorland, 27th ed)
Suppurative inflammation of the tissues of the internal structures of the eye frequently associated with an infection.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
The procedure of removing TISSUES, organs, or specimens from DONORS for reuse, such as TRANSPLANTATION.
Polymers where the main polymer chain comprises recurring amide groups. These compounds are generally formed from combinations of diamines, diacids, and amino acids and yield fibers, sheeting, or extruded forms used in textiles, gels, filters, sutures, contact lenses, and other biomaterials.
The period of care beginning when the patient is removed from surgery and aimed at meeting the patient's psychological and physical needs directly after surgery. (From Dictionary of Health Services Management, 2d ed)
Measurement of the thickness of the CORNEA.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
'Lens diseases' is a broad term referring to various pathological conditions affecting the lens of the eye, including cataracts, subluxation, and dislocation, which can lead to visual impairment or blindness if not managed promptly.
A pair of ophthalmic lenses in a frame or mounting which is supported by the nose and ears. The purpose is to aid or improve vision. It does not include goggles or nonprescription sun glasses for which EYE PROTECTIVE DEVICES is available.
Surgical procedures employed to correct REFRACTIVE ERRORS such as MYOPIA; HYPEROPIA; or ASTIGMATISM. These may involve altering the curvature of the CORNEA; removal or replacement of the CRYSTALLINE LENS; or modification of the SCLERA to change the axial length of the eye.
Infection of the cornea by an ameboid protozoan which may cause corneal ulceration leading to blindness.
Virus infection of the Gasserian ganglion and its nerve branches characterized by pain and vesicular eruptions with much swelling. Ocular involvement is usually heralded by a vesicle on the tip of the nose. This area is innervated by the nasociliary nerve.
Opportunistic fungal infection by a member of ALTERNARIA genus.
Surgical insertion of a prosthesis.
Surgical removal of a section of the iris.
Infection, moderate to severe, caused by bacteria, fungi, or viruses, which occurs either on the external surface of the eye or intraocularly with probable inflammation, visual impairment, or blindness.
The administration of substances into the eye with a hypodermic syringe.
A procedure for removal of the crystalline lens in cataract surgery in which an anterior capsulectomy is performed by means of a needle inserted through a small incision at the temporal limbus, allowing the lens contents to fall through the dilated pupil into the anterior chamber where they are broken up by the use of ultrasound and aspirated out of the eye through the incision. (Cline, et al., Dictionary of Visual Science, 4th ed & In Focus 1993;1(1):1)
A dipolar ionic buffer.
Lenses, generally made of plastic or silicone, that are implanted into the eye in front of the natural EYE LENS, by the IRIS, to improve VISION, OCULAR. These intraocular lenses are used to supplement the natural lens instead of replacing it.
Surgery performed on the eye or any of its parts.
Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals.
Infections in the inner or external eye caused by microorganisms belonging to several families of bacteria. Some of the more common genera found are Haemophilus, Neisseria, Staphylococcus, Streptococcus, and Chlamydia.
The fitting and adjusting of artificial parts of the body. (From Stedman's, 26th ed)
Measurement of ocular tension (INTRAOCULAR PRESSURE) with a tonometer. (Cline, et al., Dictionary of Visual Science, 4th ed)
The use of photothermal effects of LASERS to coagulate, incise, vaporize, resect, dissect, or resurface tissue.
Sterile solutions that are intended for instillation into the eye. It does not include solutions for cleaning eyeglasses or CONTACT LENS SOLUTIONS.
The most anterior portion of the uveal layer, separating the anterior chamber from the posterior. It consists of two layers - the stroma and the pigmented epithelium. Color of the iris depends on the amount of melanin in the stroma on reflection from the pigmented epithelium.
An imaging method using LASERS that is used for mapping subsurface structure. When a reflective site in the sample is at the same optical path length (coherence) as the reference mirror, the detector observes interference fringes.

Zernike representation of corneal topography height data after nonmechanical penetrating keratoplasty. (1/299)

PURPOSE: To demonstrate a mathematical method for decomposition of discrete corneal topography height data into a set of Zernike polynomials and to demonstrate the clinical applicability of these computations in the postkeratoplasty cornea. METHODS: Fifty consecutive patients with either Fuchs' dystrophy (n = 20) or keratoconus (n = 30) were seen at 3 months, 6 months, and 1 year (before suture removal) and again after suture removal following nonmechanical trephination with the excimer laser. Patients were assessed using regular keratometry, corneal topography (TMS-1, simulated keratometry [SimK]), subjective refraction, and best-corrected visual acuity (VA) at each interval. A set of Zernike coefficients with radial degree 8 was calculated to fit two model surfaces: a complete representation (TOTAL) and a representation with parabolic terms only to define an approximate spherocylindrical surface (PARABOLIC). The root mean square error (RMS) was calculated comparing the corneal raw height data with TOTAL (TOTALRMS) and PARABOLIC (PARABOLICRMS). The cylinder of subjective refraction was correlated with the keratometric readings, the SimK, and the respective Zernike parameter. Visual acuity was correlated with the tilt components of the Zernike expansion. RESULTS: The measured corneal surface could be approximated by the composed surface 1 with TOTALRMS < or = 1.93 microm and by surface 2 with PARABOLICRMS < or = 3.66 microm. Mean keratometric reading after suture removal was 2.8+/-0.6 D. At all follow-up examinations, the SimK yielded higher values, whereas the keratometric reading and the refractive cylinder yielded lower values than the respective Zernike parameter. The correlation of the Zernike representation and the refractive cylinder (P = 0.02 at 3 months, P = 0.05 at 6 months and at 1 year, and P = 0.01 after suture removal) was much better than the correlation of the SimK and refractive cylinder (P = 0.3 at 3 months, P = 0.4 at 6 months, P = 0.2 at 1 year, and P = 0.1 after suture removal). Visual acuity increased from 0.23+/-0.10 at the 3-month evaluation to 0.54+/-0.19 after suture removal. After suture removal, there was a statistically significant inverse correlation between VA and tilt (P = 0.02 in patients with keratoconus and P = 0.05 in those with Fuchs' dystrophy). CONCLUSIONS: Zernike representation of corneal topography height data renders a reconstruction of clinically relevant corneal topography parameters with a marked reduction of redundance and a small error. Correlation of amount/axis of refractive cylinder with respective Zernike parameters is more accurate than with keratometry or respective SimK values of corneal topography analysis.  (+info)

Traumatic wound rupture after penetrating keratoplasty in Africa. (2/299)

AIM: To investigate risk factors, visual outcome, and graft survival for traumatic wound rupture after penetrating keratoplasty. METHODS: A retrospective analysis of 336 patients who underwent penetrating keratoplasty from 1988 to 1995. RESULTS: 19 patients (5.7%) suffered traumatic postoperative wound rupture requiring surgical repair. They were younger (mean age 16.6 years, 95% CI 13.2-20.6) and more frequently keratoconic (p = 0.01) than other patients (mean age 28.9 years, 95% CI 26.-31.0). Mean postoperative follow up was 37.7 (SD 22.9) months and 24.5 (18.9) months for the rupture and non-rupture patients. Mean interval between keratoplasty and rupture was 18 (21) weeks. The lens was damaged and removed in 37% of ruptured eyes. For keratoconics, the probability of graft survival at 5 years was lower (p = 0.03) in the ruptured eyes (75%) than in the non-ruptured eyes (90%). Endothelial failure was a more common (p <0.05) cause of graft opacification in ruptured grafts than in intact grafts. Of the ruptured eyes, 53% achieved a final corrected acuity of at least 6/18 and 63% achieved at least 6/60 compared with 48% and 71% of the intact eyes respectively (both p >0.1). The proportion of keratoconic eyes which achieved at least 6/60 was lower (p = 0.02) in the ruptured eyes (67%) than the non-ruptured eyes (87%). Eyes with wound ruptures of 5 clock hours or greater were less likely (p <0.05) to achieve an acuity of 6/18 and were more likely (p <0.05) to have an associated lens injury. CONCLUSIONS: Graft rupture is relatively common in African practice, particularly in young keratoconics. Visual outcome and graft survival are not significantly worse than for other grafted eyes, but are significantly worse than for other grafted keratoconic eyes.  (+info)

A new surgical technique for deep stromal, anterior lamellar keratoplasty. (3/299)

AIMS: To describe a new surgical technique for deep stromal anterior lamellar keratoplasty. METHODS: In eye bank eyes and sighted human eyes, aqueous was exchanged by air, to visualise the posterior corneal surface--that is, the "air to endothelium" interface. Through a 5.0 mm scleral incision, a deep stromal pocket was created across the cornea, using the air to endothelium interface as a reference plane for dissection depth. The pocket was filled with viscoelastic, and an anterior corneal lamella was excised. A full thickness donor button was sutured into the recipient bed after stripping its Descemet's membrane. RESULTS: In 25 consecutive human eye bank eyes, a 12% microperforation rate was found. Corneal dissection depth averaged 95.4% (SD 2.7%). Six patient eyes had uneventful surgeries; in a seventh eye, perforation of the lamellar bed occurred. All transplants cleared. Central pachymetry ranged from 0.62 to 0.73 mm. CONCLUSION: With this technique a deep stromal anterior lamellar keratoplasty can be performed with the donor to recipient interface just anterior to the posterior corneal surface. The technique has the advantage that the dissection can be completed in the event of inadvertent microperforation, or that the procedure can be aborted to perform a planned penetrating keratoplasty.  (+info)

Evidence of long-term survival of donor-derived cells after limbal allograft transplantation. (4/299)

PURPOSE: Severe destruction of the corneal limbus causes conjunctival invasion and subsequent visual loss. Limbal allograft transplantation (LAT) was recently proposed for the treatment of these disorders. However, whether the method functions as a stem cell transplantation of the corneal epithelium remains unclear. This study provided evidence that donor-derived corneal epithelial cells survive long after LAT. METHODS: Epithelial cells on the paracentral cornea in patients who have undergone LAT were subjected to fluorescence in situ hybridization (FISH) and polymerase chain reaction restriction fragment length polymorphism (RFLP) analysis. X and Y chromosomes were detected using sex chromosome-specific probes in the FISH analysis, and HLA-DPBI antigens were examined in the RFLP analysis. Eyes receiving conventional penetrating keratoplasty (PKP) served as controls. RESULTS: Donor-derived epithelial cells were detected in three of five eyes (60.0%) in the FISH analysis and in seven of nine eyes (77.8%) in the RFLP analysis. Among these eyes, one and three eyes in the FISH and RFLP analysis, respectively, had both donor- and recipient-derived cells. In control PKP eyes, none of the eyes in the FISH analysis and one of eight eyes (12.5%) in the RFLP analysis had donor-derived cells. CONCLUSIONS: These results suggest that donor-derived cells survive much longer after LAT than those after PKP, and that LAT may function as stem cell transplantation of the corneal epithelium.  (+info)

Proposed classification for topographic patterns seen after penetrating keratoplasty. (5/299)

AIMS: To create a clinically useful classification for post-keratoplasty corneas based on corneal topography. METHODS: A total of 360 topographic maps obtained with the TMS-1, from 95 eyes that had undergone penetrating keratoplasty (PKP), were reviewed independently by two examiners in a masked fashion, and were categorised according to a proposed classification scheme. RESULTS: A high interobserver agreement (88% in the first categorisation) was achieved. At 12 months post-PKP, a regular astigmatic pattern was observed in 20/85 cases (24%). This was subclassified as oval in three cases (4%), oblate symmetric bow tie in six cases (7%), prolate asymmetric bow tie in six cases (7%), and oblate asymmetric bow tie in five cases (6%). An irregular astigmatic pattern was observed in 61/85 cases (72%), subclassified as prolate irregular in five cases (6%), oblate irregular in four cases (5%), mixed in seven cases (8%), steep/flat in 11 cases (13%), localised steepness in 16 cases (19%), and triple pattern in three cases (4%). Regular astigmatic patterns were associated with significantly higher astigmatism measurements. The surface asymmetry index was significantly lower in the regular astigmatic patterns. CONCLUSIONS: In post-PKP corneas, the prevalence of irregular astigmatism is about double that of regular astigmatism, with a trend for increase of the irregular patterns over time.  (+info)

The triple procedure: in the bag placement versus ciliary sulcus placement of the intraocular lens. (6/299)

AIMS: To evaluate the influence of intraocular lens (IOL) placement on triple procedure clinical results and to investigate whether it is appropriate to use phacoemulsification in patients with large lens nucleus. METHODS: 40 consecutive penetrating keratoplasties combined with cataract extraction performed in a single institution were studied. Whenever possible a capsulorhexis was performed and the IOL was placed into the capsular bag. Phacoemulsification was used when the nucleus was too large to pass through the capsulorhexis. RESULTS: Out of 25 patients with an intact capsulorhexis phacoemulsification was used in 13 (52.0%) whereas the entire nucleus passed through the capsulorhexis in the remaining 12 patients (48%). The average 12 month visual acuity was 0.46 (SD 0.21) in patients with in the bag IOL (n = 23) and 0.29 (0.08) in patients with ciliary sulcus IOL (n = 13) (p = 0.04). Elevated intraocular pressure occurred in 26.1% (6/23) of patients with in the bag IOL and 61.5% (8/13) of patients with ciliary sulcus IOL (p = 0.08). The average postoperative graft thickness at 18 months was 552 (27) microns in the former group and 650 (29) microns in the latter group (p = 0.04). No significant difference in graft survival, postoperative endothelial cell density, astigmatism, and videokeratoscopic measurements was found between both groups. CONCLUSION: In the bag placement of the intraocular lens during the triple procedure results in better outcome of transplantation than ciliary sulcus placement of the IOL. Phacoemulsification allows removal of large nuclei through a 5 mm capsulorhexis without performing relaxing incisions out towards the periphery of the capsule.  (+info)

"Orientation teeth" in non-mechanical laser corneal trephination for penetrating keratoplasty: 2.94 microm Er:YAG v 193 nm ArF excimer laser. (7/299)

BACKGROUND/AIMS: "Orientation teeth" at the donor trephination margin and correspondent "notches" at the host margin facilitate graft orientation and avoid "horizontal torsion" induced by asymmetric suture placement. In this study the quality and reproducibility of these structures created by non-mechanical laser corneal trephination were compared using two laser emissions. METHODS: The procedure was performed in 20 enucleated pigs' eyes using open metal masks with eight "orientation teeth/notches" (0.3 x 0.15 mm, base x height), an automated globe rotation device, and either a 193 nm ArF excimer laser or a Q switched 2.94 microm Er:YAG laser. "Teeth/notches" were analysed by planimetry and scanning electron microscopy (SEM). RESULTS: Mean size was 0.30 (0.027) x 0. 16 (0.017) mm for "teeth" and 0.30 (0.035) x 0.15 (0.021) mm for "notches" (excimer), and 0.31 (0.022) x 0.16 (0.015) mm and 0.30 (0.031) x 0.14 (0.021) mm respectively (Er:YAG). Overall, variability of notches was higher than that of teeth. By SEM, comparable cut regularity and sustained ablation profile were observed with both lasers. However, the corneal surface at the cut edge appeared slightly elevated (+info)

LASIK for post penetrating keratoplasty astigmatism and myopia. (8/299)

AIMS: To report the results of a series of patients who were treated with LASIK to correct post penetrating keratoplasty ametropia. METHODS: 26 eyes of 24 patients underwent LASIK to correct astigmatism and myopia after corneal transplantation; 14 eyes also received arcuate cuts in the stromal bed at the time of surgery. The mean preoperative spherical equivalent was -5.20D and the mean preoperative astigmatism was 8.67D. RESULTS: The results of 25 eyes are reported. The mean 1 month values for spherical equivalent and astigmatism were -0.24D and 2.48D respectively. 18 eyes have been followed up for 6 months or more. The final follow up results for these eyes are -1.91D and 2.92D for spherical equivalent and astigmatism. The patients undergoing arcuate cuts were less myopic but had greater astigmatism than those not. The patients receiving arcuate cuts had a greater target induced astigmatism, surgically induced astigmatism, and astigmatism correction index than those eyes that did not. One eye suffered a surgical complication. No eyes lost more than one line of BSCVA and all eyes gained between 0 and 6 lines UCVA. CONCLUSIONS: LASIK after penetrating keratoplasty is a relatively safe and effective procedure. It reduces both the spherical error and the cylindrical component of the ametropia. Correction of high astigmatism may be augmented by performing arcuate cuts in the stromal bed.  (+info)

Penetrating keratoplasty (PK) is a type of corneal transplant surgery where the entire thickness of the host's damaged or diseased cornea is removed and replaced with a similar full-thickness portion of a healthy donor's cornea. The procedure aims to restore visual function, alleviate pain, and improve the structural integrity of the eye. It is typically performed for conditions such as severe keratoconus, corneal scarring, or corneal ulcers that cannot be treated with other, less invasive methods. Following the surgery, patients may require extended recovery time and rigorous postoperative care to minimize the risk of complications and ensure optimal visual outcomes.

Descemet Stripping Endothelial Keratoplasty (DSEK) is a type of corneal transplant surgery that involves replacing the damaged endothelium (inner layer) of the cornea with healthy endothelial cells from a donor. In this procedure, the surgeon removes the patient's Descemet's membrane (a thin, clear tissue beneath the endothelium) along with the damaged endothelium. Then, a thin disc of donor tissue, which includes both the endothelium and a small portion of the adjacent corneal stroma, is inserted into the eye and positioned using an air bubble. The new endothelial cells help to pump excess fluid out of the cornea, allowing it to become clear again. DSEK typically results in faster visual recovery and lower rejection rates compared to traditional full-thickness corneal transplantation.

Corneal transplantation, also known as keratoplasty, is a surgical procedure in which all or part of a damaged or diseased cornea is replaced with healthy corneal tissue from a deceased donor. The cornea is the clear, dome-shaped surface at the front of the eye that plays an important role in focusing vision. When it becomes cloudy or misshapen due to injury, infection, or inherited conditions, vision can become significantly impaired.

During the procedure, the surgeon carefully removes a circular section of the damaged cornea and replaces it with a similarly sized piece of donor tissue. The new cornea is then stitched into place using very fine sutures that are typically removed several months after surgery.

Corneal transplantation has a high success rate, with more than 90% of procedures resulting in improved vision. However, as with any surgical procedure, there are risks involved, including infection, rejection of the donor tissue, and bleeding. Regular follow-up care is essential to monitor for any signs of complications and ensure proper healing.

Corneal diseases are a group of disorders that affect the cornea, which is the clear, dome-shaped surface at the front of the eye. The cornea plays an important role in focusing vision, and any damage or disease can cause significant visual impairment or loss. Some common types of corneal diseases include:

1. Keratoconus: A progressive disorder in which the cornea thins and bulges outward into a cone shape, causing distorted vision.
2. Fuchs' dystrophy: A genetic disorder that affects the inner layer of the cornea called the endothelium, leading to swelling, cloudiness, and decreased vision.
3. Dry eye syndrome: A condition in which the eyes do not produce enough tears or the tears evaporate too quickly, causing discomfort, redness, and blurred vision.
4. Corneal ulcers: Open sores on the cornea that can be caused by infection, trauma, or other factors.
5. Herpes simplex keratitis: A viral infection of the cornea that can cause recurrent episodes of inflammation, scarring, and vision loss.
6. Corneal dystrophies: Inherited disorders that affect the structure and clarity of the cornea, leading to visual impairment or blindness.
7. Bullous keratopathy: A condition in which the endothelium fails to pump fluid out of the cornea, causing it to swell and form blisters.
8. Corneal trauma: Injury to the cornea caused by foreign objects, chemicals, or other factors that can lead to scarring, infection, and vision loss.

Treatment for corneal diseases varies depending on the specific condition and severity of the disease. Options may include eyedrops, medications, laser surgery, corneal transplantation, or other treatments.

Keratoconus is a degenerative non-inflammatory disorder of the eye, primarily affecting the cornea. It is characterized by a progressive thinning and steepening of the central or paracentral cornea, causing it to assume a conical shape. This results in irregular astigmatism, myopia, and scattering of light leading to blurred vision, visual distortions, and sensitivity to glare. The exact cause of keratoconus is unknown, but it may be associated with genetics, eye rubbing, and certain medical conditions. It typically starts in the teenage years and progresses into the third or fourth decade of life. Treatment options include glasses, contact lenses, cross-linking, and corneal transplantation in advanced cases.

The Descemet membrane is the thin, transparent basement membrane that is produced by the corneal endothelial cells. It is located between the corneal stroma and the corneal endothelium, which is the innermost layer of the cornea. The Descemet membrane provides structural support for the corneal endothelium and helps to maintain the proper hydration and clarity of the cornea. It is named after the French physician Jean Descemet, who first described it in 1752.

Fuchs' Endothelial Dystrophy is a medical condition that affects the eye's cornea. It is a slowly progressing disorder that causes the endothelium, a thin layer of cells lining the inner surface of the cornea, to deteriorate and eventually fail to function properly. This results in swelling of the cornea, leading to cloudy vision, distorted vision, and sensitivity to light.

The condition is typically inherited and tends to affect both eyes. It is more common in women than in men and usually becomes apparent after the age of 50. There is no cure for Fuchs' Endothelial Dystrophy, but treatments such as corneal transplantation can help improve vision and alleviate symptoms.

The cornea is the clear, dome-shaped surface at the front of the eye. It plays a crucial role in focusing vision. The cornea protects the eye from harmful particles and microorganisms, and it also serves as a barrier against UV light. Its transparency allows light to pass through and get focused onto the retina. The cornea does not contain blood vessels, so it relies on tears and the fluid inside the eye (aqueous humor) for nutrition and oxygen. Any damage or disease that affects its clarity and shape can significantly impact vision and potentially lead to blindness if left untreated.

Corneal edema is a medical condition characterized by the accumulation of fluid in the cornea, which is the clear, dome-shaped surface at the front of the eye. This buildup of fluid causes the cornea to swell and thicken, resulting in blurry or distorted vision. Corneal edema can be caused by various factors, including eye injuries, certain medications, eye surgeries, and diseases that affect the eye's ability to pump fluids out of the cornea. In some cases, corneal edema may resolve on its own or with treatment, but in severe cases, it may require a corneal transplant.

An Eye Bank is an organization that collects, stores, and distributes donated human eyes for corneal transplantation and other ocular medical research purposes. The eye bank's primary function is to ensure the quality of the donated tissue and make it available for those in need of sight-restoring procedures.

The cornea, the clear front part of the eye, can be surgically transplanted from a deceased donor to a recipient with corneal damage or disease, thereby improving or restoring their vision. The eye bank's role includes obtaining consent for donation, retrieving the eyes from the donor, evaluating the tissue for suitability, preserving it properly, and then allocating it to surgeons for transplantation.

Eye banks follow strict medical guidelines and adhere to ethical standards to ensure the safety and quality of the donated tissues. The process involves screening potential donors for infectious diseases and other conditions that may affect the quality or safety of the cornea. Once deemed suitable, the corneas are carefully removed, preserved in specific solutions, and stored until they are needed for transplantation.

In addition to corneal transplants, eye banks also support research and education in ophthalmology by providing human eye tissues for various studies aimed at advancing our understanding of eye diseases and developing new treatments.

The endothelium of the cornea is the thin, innermost layer of cells that lines the inner surface of the cornea, which is the clear, dome-shaped structure at the front of the eye. This single layer of specialized cells is essential for maintaining the transparency and proper hydration of the cornea, allowing light to pass through it and focus on the retina.

The endothelial cells are hexagonal in shape and have tight junctions between them, creating a semi-permeable barrier that controls the movement of water and solutes between the corneal stroma (the middle layer of the cornea) and the anterior chamber (the space between the cornea and the iris). The endothelial cells actively pump excess fluid out of the cornea, maintaining a delicate balance of hydration that is critical for corneal clarity.

Damage to or dysfunction of the corneal endothelium can result in corneal edema (swelling), cloudiness, and loss of vision. Factors contributing to endothelial damage include aging, eye trauma, intraocular surgery, and certain diseases such as Fuchs' dystrophy and glaucoma.

Corneal opacity refers to a condition in which the cornea, the clear front part of the eye, becomes cloudy or opaque. This can occur due to various reasons such as injury, infection, degenerative changes, or inherited disorders. As a result, light is not properly refracted and vision becomes blurred or distorted. In some cases, corneal opacity can lead to complete loss of vision in the affected eye. Treatment options depend on the underlying cause and may include medication, corneal transplantation, or other surgical procedures.

Corneal endothelial cell loss refers to the decrease in the number of corneal endothelial cells, which is a layer of cells that line the inner surface of the cornea. These cells are essential for maintaining the clarity and health of the cornea, as they help to pump fluids out of the cornea and maintain its transparency.

Corneal endothelial cell loss can occur due to various reasons such as aging, eye trauma, surgery (such as cataract surgery), diseases (such as Fuchs' dystrophy), or inherited conditions. When the number of endothelial cells decreases below a certain threshold, it can lead to corneal swelling, cloudiness, and vision loss.

The rate of corneal endothelial cell loss varies from person to person, but on average, people lose about 0.6% of their endothelial cells per year. Factors such as age, certain medical conditions, and previous eye surgery can increase the rate of cell loss. In some cases, corneal transplantation may be necessary to replace damaged or lost endothelial cells and restore vision.

Astigmatism is a common eye condition that occurs when the cornea or lens has an irregular shape, causing blurred or distorted vision. The cornea and lens are typically smooth and curved uniformly in all directions, allowing light to focus clearly on the retina. However, if the cornea or lens is not smoothly curved and has a steeper curve in one direction than the other, it causes light to focus unevenly on the retina, leading to astigmatism.

Astigmatism can cause blurred vision at all distances, as well as eye strain, headaches, and fatigue. It is often present from birth and can be hereditary, but it can also develop later in life due to eye injuries or surgery. Astigmatism can be corrected with glasses, contact lenses, or refractive surgery such as LASIK.

Visual acuity is a measure of the sharpness or clarity of vision. It is usually tested by reading an eye chart from a specific distance, such as 20 feet (6 meters). The standard eye chart used for this purpose is called the Snellen chart, which contains rows of letters that decrease in size as you read down the chart.

Visual acuity is typically expressed as a fraction, with the numerator representing the testing distance and the denominator indicating the smallest line of type that can be read clearly. For example, if a person can read the line on the eye chart that corresponds to a visual acuity of 20/20, it means they have normal vision at 20 feet. If their visual acuity is 20/40, it means they must be as close as 20 feet to see what someone with normal vision can see at 40 feet.

It's important to note that visual acuity is just one aspect of overall vision and does not necessarily reflect other important factors such as peripheral vision, depth perception, color vision, or contrast sensitivity.

The corneal stroma, also known as the substantia propria, is the thickest layer of the cornea, which is the clear, dome-shaped surface at the front of the eye. The cornea plays a crucial role in focusing vision.

The corneal stroma makes up about 90% of the cornea's thickness and is composed of parallel bundles of collagen fibers that are arranged in regular, repeating patterns. These fibers give the cornea its strength and transparency. The corneal stroma also contains a small number of cells called keratocytes, which produce and maintain the collagen fibers.

Disorders that affect the corneal stroma can cause vision loss or other eye problems. For example, conditions such as keratoconus, in which the cornea becomes thin and bulges outward, can distort vision and make it difficult to see clearly. Other conditions, such as corneal scarring or infection, can also affect the corneal stroma and lead to vision loss or other eye problems.

Corneal topography is a non-invasive medical imaging technique used to create a detailed map of the surface curvature of the cornea, which is the clear, dome-shaped surface at the front of the eye. This procedure provides valuable information about the shape and condition of the cornea, helping eye care professionals assess various eye conditions such as astigmatism, keratoconus, and other corneal abnormalities. It can also be used in contact lens fitting, refractive surgery planning, and post-surgical evaluation.

Keratitis is a medical condition that refers to inflammation of the cornea, which is the clear, dome-shaped surface at the front of the eye. The cornea plays an essential role in focusing vision, and any damage or infection can cause significant visual impairment. Keratitis can result from various causes, including bacterial, viral, fungal, or parasitic infections, as well as trauma, allergies, or underlying medical conditions such as dry eye syndrome. Symptoms of keratitis may include redness, pain, tearing, sensitivity to light, blurred vision, and a feeling of something foreign in the eye. Treatment for keratitis depends on the underlying cause but typically includes antibiotics, antivirals, or anti-fungal medications, as well as measures to alleviate symptoms and promote healing.

Corneal dystrophies, hereditary are a group of genetic disorders that affect the cornea, which is the clear, outermost layer at the front of the eye. These conditions are characterized by the buildup of abnormal material in the cornea, leading to decreased vision, pain, or cloudiness in the eye.

There are many different types of corneal dystrophies, each affecting a specific layer of the cornea and having its own pattern of inheritance. Some common types include:

1. Fuchs' endothelial dystrophy: This affects the inner lining of the cornea (endothelium) and causes swelling and cloudiness in the cornea. It is typically inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the condition if one parent has it.
2. Granular dystrophy: This affects the stroma, which is the middle layer of the cornea. It causes the formation of opaque, grayish-white deposits in the cornea that can affect vision. It is typically inherited in an autosomal dominant or recessive manner.
3. Lattice dystrophy: This also affects the stroma and is characterized by the formation of a lattice-like pattern of fine, whitish lines in the cornea. It is typically inherited in an autosomal dominant manner.
4. Macular dystrophy: This affects the central part of the cornea (macula) and can cause cloudiness, leading to decreased vision. It is typically inherited in an autosomal recessive manner.

Treatment for corneal dystrophies may include eyedrops, medications, or surgery, depending on the severity of the condition and its impact on vision. In some cases, a corneal transplant may be necessary to restore vision.

Fungal eye infections, also known as fungal keratitis or ocular fungal infections, are caused by the invasion of fungi into the eye. The most common types of fungi that cause these infections include Fusarium, Aspergillus, and Candida. These infections can affect any part of the eye, including the cornea, conjunctiva, sclera, and vitreous humor.

Fungal eye infections often present with symptoms such as redness, pain, sensitivity to light, tearing, blurred vision, and discharge. In severe cases, they can lead to corneal ulcers, perforation of the eye, and even blindness if left untreated. Risk factors for fungal eye infections include trauma to the eye, contact lens wear, immunosuppression, and pre-existing eye conditions such as dry eye or previous eye surgery.

Diagnosis of fungal eye infections typically involves a thorough eye examination, including visual acuity testing, slit lamp examination, and sometimes corneal scrapings for microbiological culture and sensitivity testing. Treatment usually involves topical antifungal medications, such as natamycin or amphotericin B, and in some cases may require oral or intravenous antifungal therapy. In severe cases, surgical intervention may be necessary to remove infected tissue or repair any damage caused by the infection.

An excimer laser is a type of laser that is used in various medical procedures, particularly in ophthalmology and dermatology. The term "excimer" is derived from "excited dimer," which refers to a short-lived molecule formed when two atoms combine in an excited state.

Excimer lasers emit light at a specific wavelength that is determined by the type of gas used in the laser. In medical applications, excimer lasers typically use noble gases such as argon, krypton, or xenon, combined with halogens such as fluorine or chlorine. The most commonly used excimer laser in medical procedures is the excimer laser that uses a mixture of argon and fluoride gas to produce light at a wavelength of 193 nanometers (nm).

In ophthalmology, excimer lasers are primarily used for refractive surgery, such as LASIK and PRK, to correct vision problems like myopia, hyperopia, and astigmatism. The laser works by vaporizing tiny amounts of tissue from the cornea, reshaping its curvature to improve the way light is focused onto the retina.

In dermatology, excimer lasers are used for various skin conditions, including psoriasis, vitiligo, and atopic dermatitis. The laser works by emitting high-energy ultraviolet (UV) light that selectively targets and destroys the abnormal cells responsible for these conditions while leaving surrounding healthy tissue intact.

Excimer lasers are known for their precision, accuracy, and minimal side effects, making them a popular choice in medical procedures where fine detail and tissue preservation are critical.

Suture techniques refer to the various methods used by surgeons to sew or stitch together tissues in the body after an injury, trauma, or surgical incision. The main goal of suturing is to approximate and hold the edges of the wound together, allowing for proper healing and minimizing scar formation.

There are several types of suture techniques, including:

1. Simple Interrupted Suture: This is one of the most basic suture techniques where the needle is passed through the tissue at a right angle, creating a loop that is then tightened to approximate the wound edges. Multiple stitches are placed along the length of the incision or wound.
2. Continuous Locking Suture: In this technique, the needle is passed continuously through the tissue in a zigzag pattern, with each stitch locking into the previous one. This creates a continuous line of sutures that provides strong tension and support to the wound edges.
3. Running Suture: Similar to the continuous locking suture, this technique involves passing the needle continuously through the tissue in a straight line. However, instead of locking each stitch, the needle is simply passed through the previous loop before being tightened. This creates a smooth and uninterrupted line of sutures that can be easily removed after healing.
4. Horizontal Mattress Suture: In this technique, two parallel stitches are placed horizontally across the wound edges, creating a "mattress" effect that provides additional support and tension to the wound. This is particularly useful in deep or irregularly shaped wounds.
5. Vertical Mattress Suture: Similar to the horizontal mattress suture, this technique involves placing two parallel stitches vertically across the wound edges. This creates a more pronounced "mattress" effect that can help reduce tension and minimize scarring.
6. Subcuticular Suture: In this technique, the needle is passed just below the surface of the skin, creating a smooth and barely visible line of sutures. This is particularly useful in cosmetic surgery or areas where minimizing scarring is important.

The choice of suture technique depends on various factors such as the location and size of the wound, the type of tissue involved, and the patient's individual needs and preferences. Proper suture placement and tension are crucial for optimal healing and aesthetic outcomes.

A corneal ulcer is a medical condition that affects the eye, specifically the cornea. It is characterized by an open sore or lesion on the surface of the cornea, which can be caused by various factors such as bacterial or fungal infections, viruses, or injury to the eye.

The cornea is a transparent tissue that covers the front part of the eye and protects it from harmful particles, bacteria, and other foreign substances. When the cornea becomes damaged or infected, it can lead to the development of an ulcer. Symptoms of a corneal ulcer may include pain, redness, tearing, sensitivity to light, blurred vision, and a white spot on the surface of the eye.

Corneal ulcers require prompt medical attention to prevent further damage to the eye and potential loss of vision. Treatment typically involves antibiotics or antifungal medications to eliminate the infection, as well as pain management and measures to protect the eye while it heals. In severe cases, surgery may be necessary to repair the damage to the cornea.

Corneal perforation is a serious eye condition that refers to a hole or rupture in the cornea, which is the clear, dome-shaped surface at the front of the eye. The cornea plays an important role in protecting the eye and focusing light onto the retina. A perforation can result from trauma, infection, degenerative conditions, or surgical complications. It can lead to severe vision loss or blindness if not treated promptly and properly. Treatment typically involves surgery to repair or replace the damaged cornea.

Graft survival, in medical terms, refers to the success of a transplanted tissue or organ in continuing to function and integrate with the recipient's body over time. It is the opposite of graft rejection, which occurs when the recipient's immune system recognizes the transplanted tissue as foreign and attacks it, leading to its failure.

Graft survival depends on various factors, including the compatibility between the donor and recipient, the type and location of the graft, the use of immunosuppressive drugs to prevent rejection, and the overall health of the recipient. A successful graft survival implies that the transplanted tissue or organ has been accepted by the recipient's body and is functioning properly, providing the necessary physiological support for the recipient's survival and improved quality of life.

Tissue preservation is the process of preventing decomposition or autolysis (self-digestion) of tissues after they have been removed from a living organism. This is typically achieved through the use of fixatives, such as formaldehyde or glutaraldehyde, which stabilize proteins and other cellular structures by creating cross-links between them. Other methods of tissue preservation include freezing, dehydration, and embedding in paraffin or plastic resins. Properly preserved tissues can be stored for long periods of time and used for various research and diagnostic purposes, such as histology, immunohistochemistry, and molecular biology studies.

Contact lenses are thin, curved plastic or silicone hydrogel devices that are placed on the eye to correct vision, replace a missing or damaged cornea, or for cosmetic purposes. They rest on the surface of the eye, called the cornea, and conform to its shape. Contact lenses are designed to float on a thin layer of tears and move with each blink.

There are two main types of contact lenses: soft and rigid gas permeable (RGP). Soft contact lenses are made of flexible hydrophilic (water-absorbing) materials that allow oxygen to pass through the lens to the cornea. RGP lenses are made of harder, more oxygen-permeable materials.

Contact lenses can be used to correct various vision problems, including nearsightedness, farsightedness, astigmatism, and presbyopia. They come in different shapes, sizes, and powers to suit individual needs and preferences. Proper care, handling, and regular check-ups with an eye care professional are essential for maintaining good eye health and preventing complications associated with contact lens wear.

Corneal neovascularization is a medical condition that refers to the growth of new, abnormal blood vessels in the cornea, which is the clear, dome-shaped surface at the front of the eye. The cornea typically receives its nutrients from tears and oxygen in the air, so it does not have its own blood vessels. However, when the cornea is damaged or inflamed, it may trigger the growth of new blood vessels from the surrounding tissue into the cornea to promote healing.

Corneal neovascularization can occur due to various eye conditions such as infection, injury, inflammation, degenerative diseases, or contact lens wear. Excessive growth of blood vessels in the cornea can interfere with vision, cause scarring, and increase the risk of corneal transplant rejection. Treatment for corneal neovascularization depends on the underlying cause and may include topical medications, surgery, or other therapies to reduce inflammation, prevent further growth of blood vessels, and preserve vision.

Ocular refraction is a medical term that refers to the bending of light as it passes through the optical media of the eye, including the cornea and lens. This process allows the eye to focus light onto the retina, creating a clear image. The refractive power of the eye is determined by the curvature and transparency of these structures.

In a normal eye, light rays are bent or refracted in such a way that they converge at a single point on the retina, producing a sharp and focused image. However, if the curvature of the cornea or lens is too steep or too flat, the light rays may not converge properly, resulting in a refractive error such as myopia (nearsightedness), hyperopia (farsightedness), or astigmatism.

Ocular refraction can be measured using a variety of techniques, including retinoscopy, automated refraction, and subjective refraction. These measurements are used to determine the appropriate prescription for corrective lenses such as eyeglasses or contact lenses. In some cases, ocular refractive errors may be corrected surgically through procedures such as LASIK or PRK.

Corneal surgery, laser refers to a type of surgical procedure performed on the cornea (the clear, dome-shaped surface at the front of the eye) using a laser. The most common type of laser used in corneal surgery is an excimer laser, which can be used to reshape the cornea and correct refractive errors such as nearsightedness, farsightedness, and astigmatism. This procedure is commonly known as LASIK (Laser-Assisted In Situ Keratomileusis).

Another type of laser corneal surgery is PRK (Photorefractive Keratectomy) which uses a laser to reshape the surface of the cornea. This procedure is typically used for patients who have thin corneas or other conditions that make them ineligible for LASIK.

Additionally, there are other types of laser corneal surgeries such as LASEK (Laser Epithelial Keratomileusis), Epi-LASIK (Epithelial Laser-Assisted Keratomileusis) and SBK (Sub Bowman's Keratomileusis) which are variations of the above procedures.

It is important to note that, as with any surgical procedure, laser corneal surgery has risks and potential complications, including dry eye, infection, and visual symptoms such as glare or halos around lights. It is essential for patients to have a thorough examination and consultation with an ophthalmologist before deciding if laser corneal surgery is the right choice for them.

Pseudophakia is a medical term that refers to the condition where a person's natural lens in the eye has been replaced with an artificial one. This procedure is typically performed during cataract surgery, where the cloudy, natural lens is removed and replaced with a clear, artificial lens to improve vision. The prefix "pseudo" means false or fake, and "phakia" refers to the natural lens of the eye, hence the term "Pseudophakia" implies a false or artificial lens.

Postoperative complications refer to any unfavorable condition or event that occurs during the recovery period after a surgical procedure. These complications can vary in severity and may include, but are not limited to:

1. Infection: This can occur at the site of the incision or inside the body, such as pneumonia or urinary tract infection.
2. Bleeding: Excessive bleeding (hemorrhage) can lead to a drop in blood pressure and may require further surgical intervention.
3. Blood clots: These can form in the deep veins of the legs (deep vein thrombosis) and can potentially travel to the lungs (pulmonary embolism).
4. Wound dehiscence: This is when the surgical wound opens up, which can lead to infection and further complications.
5. Pulmonary issues: These include atelectasis (collapsed lung), pneumonia, or respiratory failure.
6. Cardiovascular problems: These include abnormal heart rhythms (arrhythmias), heart attack, or stroke.
7. Renal failure: This can occur due to various reasons such as dehydration, blood loss, or the use of certain medications.
8. Pain management issues: Inadequate pain control can lead to increased stress, anxiety, and decreased mobility.
9. Nausea and vomiting: These can be caused by anesthesia, opioid pain medication, or other factors.
10. Delirium: This is a state of confusion and disorientation that can occur in the elderly or those with certain medical conditions.

Prompt identification and management of these complications are crucial to ensure the best possible outcome for the patient.

Radial Keratotomy (RK) is a type of refractive surgery used to correct vision problems such as nearsightedness and astigmatism. The procedure involves making small, precise incisions in the cornea in a radial pattern, like the spokes of a wheel. These incisions cause the cornea to change shape, which can help to improve the way that light is focused onto the retina and reduce the need for corrective lenses.

During the procedure, the surgeon uses a specialized blade or laser to make the incisions in the cornea. The incisions are typically made at the periphery of the cornea, leaving the central portion of the cornea untouched. This helps to preserve the strength and stability of the cornea while still allowing it to change shape enough to improve vision.

Radial keratotomy was first developed in the 1970s and was widely used in the 1980s and 1990s. However, it has largely been replaced by newer procedures such as LASIK and PRK, which are considered to be safer and more effective. RK is still occasionally performed in cases where other procedures are not an option or when a patient prefers this type of surgery.

It's important to note that any surgical procedure carries risks, including infection, scarring, and changes in vision. Patients considering radial keratotomy should discuss the potential benefits and risks with their eye care provider before making a decision.

A tissue donor is an individual who has agreed to allow organs and tissues to be removed from their body after death for the purpose of transplantation to restore the health or save the life of another person. The tissues that can be donated include corneas, heart valves, skin, bone, tendons, ligaments, veins, and cartilage. These tissues can enhance the quality of life for many recipients and are often used in reconstructive surgeries. It is important to note that tissue donation does not interfere with an open casket funeral or other cultural or religious practices related to death and grieving.

In medical terms, sutures are specialized surgical threads made from various materials such as absorbable synthetic or natural fibers, or non-absorbable materials like nylon or silk. They are used to approximate and hold together the edges of a wound or incision in the skin or other tissues during the healing process. Sutures come in different sizes, types, and shapes, each designed for specific uses and techniques depending on the location and type of tissue being sutured. Properly placed sutures help to promote optimal healing, minimize scarring, and reduce the risk of infection or other complications.

Intraocular lenses (IOLs) are artificial lens implants that are placed inside the eye during ophthalmic surgery, such as cataract removal. These lenses are designed to replace the natural lens of the eye that has become clouded or damaged, thereby restoring vision impairment caused by cataracts or other conditions.

There are several types of intraocular lenses available, including monofocal, multifocal, toric, and accommodative lenses. Monofocal IOLs provide clear vision at a single fixed distance, while multifocal IOLs offer clear vision at multiple distances. Toric IOLs are designed to correct astigmatism, and accommodative IOLs can change shape and position within the eye to allow for a range of vision.

The selection of the appropriate type of intraocular lens depends on various factors, including the patient's individual visual needs, lifestyle, and ocular health. The implantation procedure is typically performed on an outpatient basis and involves minimal discomfort or recovery time. Overall, intraocular lenses have become a safe and effective treatment option for patients with vision impairment due to cataracts or other eye conditions.

Eye burns typically refer to injuries or damage to the eyes caused by exposure to harmful substances, extreme temperatures, or radiation. This can result in a variety of symptoms, including redness, pain, tearing, swelling, and blurred vision.

Chemical eye burns can occur when the eyes come into contact with strong acids, alkalis, or other irritants. These substances can cause damage to the cornea, conjunctiva, and other structures of the eye. The severity of the burn will depend on the type and concentration of the chemical, as well as the length of time it was in contact with the eye.

Thermal eye burns can result from exposure to hot or cold temperatures, such as steam, flames, or extreme cold. These types of burns can cause damage to the surface of the eye and may require medical attention to prevent further complications.

Radiation eye burns can occur after exposure to high levels of ultraviolet (UV) light, such as from welding torches, sun lamps, or tanning beds. Prolonged exposure to these sources can cause damage to the cornea and other structures of the eye, leading to symptoms like pain, redness, and sensitivity to light.

If you experience symptoms of an eye burn, it is important to seek medical attention as soon as possible. Treatment may include flushing the eyes with water or saline solution, administering medication to relieve pain and inflammation, or in severe cases, surgery to repair damaged tissue.

Graft rejection is an immune response that occurs when transplanted tissue or organ (the graft) is recognized as foreign by the recipient's immune system, leading to the activation of immune cells to attack and destroy the graft. This results in the failure of the transplant and the need for additional medical intervention or another transplant. There are three types of graft rejection: hyperacute, acute, and chronic. Hyperacute rejection occurs immediately or soon after transplantation due to pre-existing antibodies against the graft. Acute rejection typically occurs within weeks to months post-transplant and is characterized by the infiltration of T-cells into the graft. Chronic rejection, which can occur months to years after transplantation, is a slow and progressive process characterized by fibrosis and tissue damage due to ongoing immune responses against the graft.

Trephination, also known as trepanation or burr hole surgery, is a surgical procedure that involves making a circular hole in the skull. This ancient medical practice was used in various cultures throughout history for various purposes, such as relieving pressure on the brain, treating mental disorders, or releasing evil spirits. In modern medicine, it is rarely performed and usually reserved for severe conditions like subdural hematomas or infection inside the skull.

Corneal wavefront aberration is a measurement of the irregularities in the shape and curvature of the cornea, which can affect the way light enters the eye and is focused on the retina. A wavefront aberration test uses a device to measure the refraction of light as it passes through the cornea and calculates the degree of any distortions or irregularities in the wavefront of the light. This information can be used to guide treatment decisions, such as the prescription for eyeglasses or contact lenses, or the planning of a surgical procedure to correct the aberration.

Corneal wavefront aberrations can be classified into two types: low-order and high-order aberrations. Low-order aberrations include myopia (nearsightedness), hyperopia (farsightedness), and astigmatism, which are common refractive errors that can be easily corrected with glasses or contact lenses. High-order aberrations are more complex irregularities in the wavefront of light that cannot be fully corrected with traditional eyeglasses or contact lenses. These may include coma, trefoil, and spherical aberration, among others.

High-order corneal wavefront aberrations can affect visual quality, causing symptoms such as glare, halos around lights, and decreased contrast sensitivity. They are often associated with conditions that cause changes in the shape of the cornea, such as keratoconus or corneal surgery. In some cases, high-order aberrations can be corrected with specialized contact lenses or refractive surgery procedures such as wavefront-guided LASIK or PRK.

Photorefractive Keratectomy (PRK) is a type of refractive surgery used to correct vision issues such as nearsightedness, farsightedness, and astigmatism. It works by reshaping the cornea using a laser, which alters how light enters the eye and focuses on the retina.

In PRK, the surgeon removes the thin outer layer of the cornea (epithelium) with an alcohol solution or a blunt surgical instrument before using the laser to reshape the underlying stromal layer. The epithelium then grows back during the healing process, which can take several days.

Compared to LASIK (another type of refractive surgery), PRK has a longer recovery time and may cause more discomfort in the first few days after surgery. However, it is an option for people who are not good candidates for LASIK due to thin corneas or other eye conditions.

It's important to note that while refractive surgeries like PRK can significantly improve vision and reduce dependence on glasses or contact lenses, they may not completely eliminate the need for corrective eyewear in all cases. Additionally, as with any surgical procedure, there are potential risks and complications associated with PRK, including infection, dry eye, and visual disturbances such as glare or halos around lights.

Tissue adhesives, also known as surgical glues or tissue sealants, are medical devices used to approximate and hold together tissues or wounds in place of traditional sutures or staples. They work by creating a bond between the tissue surfaces, helping to promote healing and reduce the risk of infection. Tissue adhesives can be synthetic or biologically derived and are often used in various surgical procedures, including ophthalmic, dermatological, and pediatric surgeries. Some common types of tissue adhesives include cyanoacrylate-based glues, fibrin sealants, and collagen-based sealants.

Chemical burns are a type of tissue injury that results from exposure to strong acids, bases, or other corrosive chemicals. These substances can cause damage by reacting chemically with the skin or other tissues, leading to destruction of cells and potentially serious harm. The severity of a chemical burn depends on several factors, including the type and concentration of the chemical, the duration of exposure, and the amount of body surface area affected.

Chemical burns can occur through direct contact with the skin or eyes, inhalation of toxic fumes, or ingestion of harmful substances. Symptoms may include redness, pain, blistering, swelling, and irritation at the site of contact. In severe cases, chemical burns can lead to scarring, disability, or even death.

Immediate medical attention is required for chemical burns, as they can continue to cause damage until the source of the injury is removed, and appropriate first aid measures are taken. Treatment typically involves thorough cleaning and irrigation of the affected area, followed by administration of pain medication and other supportive care as needed. In some cases, skin grafting or other surgical interventions may be required to promote healing and minimize scarring.

Iris diseases refer to a variety of conditions that affect the iris, which is the colored part of the eye that regulates the amount of light reaching the retina by adjusting the size of the pupil. Some common iris diseases include:

1. Iritis: This is an inflammation of the iris and the adjacent tissues in the eye. It can cause pain, redness, photophobia (sensitivity to light), and blurred vision.
2. Aniridia: A congenital condition characterized by the absence or underdevelopment of the iris. This can lead to decreased visual acuity, sensitivity to light, and an increased risk of glaucoma.
3. Iris cysts: These are fluid-filled sacs that form on the iris. They are usually benign but can cause vision problems if they grow too large or interfere with the function of the eye.
4. Iris melanoma: A rare type of eye cancer that develops in the pigmented cells of the iris. It can cause symptoms such as blurred vision, floaters, and changes in the appearance of the iris.
5. Iridocorneal endothelial syndrome (ICE): A group of rare eye conditions that affect the cornea and the iris. They are characterized by the growth of abnormal tissue on the back surface of the cornea and can lead to vision loss.

It is important to seek medical attention if you experience any symptoms of iris diseases, as early diagnosis and treatment can help prevent complications and preserve your vision.

Intraocular lens (IOL) implantation is a surgical procedure that involves placing a small artificial lens inside the eye to replace the natural lens that has been removed. This procedure is typically performed during cataract surgery, where the cloudy natural lens is removed and replaced with an IOL to restore clear vision.

During the procedure, a small incision is made in the eye, and the cloudy lens is broken up and removed using ultrasound waves or laser energy. Then, the folded IOL is inserted through the same incision and positioned in the correct place inside the eye. Once in place, the IOL unfolds and is secured into position.

There are several types of IOLs available, including monofocal, multifocal, toric, and accommodating lenses. Monofocal lenses provide clear vision at one distance, while multifocal lenses offer clear vision at multiple distances. Toric lenses correct astigmatism, and accommodating lenses can change shape to focus on objects at different distances.

Overall, intraocular lens implantation is a safe and effective procedure that can help restore clear vision in patients with cataracts or other eye conditions that require the removal of the natural lens.

The corneal epithelium is the outermost layer of the cornea, which is the clear, dome-shaped surface at the front of the eye. It is a stratified squamous epithelium, consisting of several layers of flat, scale-like cells that are tightly packed together. The corneal epithelium serves as a barrier to protect the eye from microorganisms, dust, and other foreign particles. It also provides a smooth surface for the refraction of light, contributes to the maintenance of corneal transparency, and plays a role in the eye's sensitivity to touch and pain. The corneal epithelium is constantly being renewed through the process of cell division and shedding, with new cells produced by stem cells located at the limbus, the border between the cornea and the conjunctiva.

Corneal keratocytes are specialized cells located within the stroma, which is the thickest layer of the cornea, which is the clear front "window" of the eye. These cells play a crucial role in maintaining the transparency and structural integrity of the cornea. Keratocytes are star-shaped cells that produce and maintain the extracellular matrix (ECM) of the corneal stroma, which consists mainly of collagen fibrils and proteoglycans.

In a healthy cornea, keratocytes exist in a quiescent state, but they can become activated and undergo phenotypic changes in response to injury or disease. Activated keratocytes can differentiate into fibroblasts or myofibroblasts, which participate in the wound healing process by synthesizing ECM components and contracting to help close wounds. However, an overactive or dysregulated wound healing response can lead to corneal opacity, scarring, and visual impairment.

Therefore, understanding the behavior and regulation of corneal keratocytes is essential for developing effective therapies and treatments for various corneal disorders and diseases.

Herpetic keratitis is a specific type of keratitis (inflammation of the cornea) that is caused by herpes simplex virus (HSV) infection. It is further divided into two types: dendritic and disciform keratitis. Dendritic keratitis is characterized by the development of branching ulcers on the surface of the cornea, while disciform keratitis involves inflammation and opacity in the stroma (middle layer) of the cornea. Both types of herpetic keratitis can cause symptoms such as eye pain, redness, sensitivity to light, tearing, and blurred vision. If left untreated, herpetic keratitis can lead to serious complications, including blindness.

Artificial organs are medical devices that are implanted in the human body to replace the function of a damaged, diseased, or failing organ. These devices can be made from a variety of materials, including metals, plastics, and synthetic biomaterials. They are designed to mimic the structure and function of natural organs as closely as possible, with the goal of improving the patient's quality of life and extending their lifespan.

Some examples of artificial organs include:

1. Artificial heart: A device that is implanted in the chest to replace the function of a failing heart. It can be used as a temporary or permanent solution for patients with end-stage heart failure.
2. Artificial pancreas: A device that is used to treat type 1 diabetes by regulating blood sugar levels. It consists of an insulin pump and a continuous glucose monitor, which work together to deliver insulin automatically based on the patient's needs.
3. Artificial kidney: A device that filters waste products from the blood, similar to a natural kidney. It can be used as a temporary or permanent solution for patients with end-stage renal disease.
4. Artificial lung: A device that helps patients with respiratory failure breathe by exchanging oxygen and carbon dioxide in the blood.
5. Artificial bladder: A device that is implanted in the body to help patients with bladder dysfunction urinate.
6. Artificial eyes: Prosthetic devices that are used to replace a missing or damaged eye, providing cosmetic and sometimes functional benefits.

It's important to note that while artificial organs can significantly improve the quality of life for many patients, they are not without risks. Complications such as infection, rejection, and device failure can occur, and ongoing medical care is necessary to monitor and manage these risks.

Acoustic microscopy is a non-invasive imaging technique that uses sound waves to visualize and analyze the structure and properties of various materials, including biological samples. In the context of medical diagnostics and research, acoustic microscopy can be used to examine tissues, cells, and cellular components with high resolution, providing valuable information about their mechanical and physical properties.

In acoustic microscopy, high-frequency sound waves are focused onto a sample using a transducer. The interaction between the sound waves and the sample generates echoes, which contain information about the sample's internal structure and properties. These echoes are then recorded and processed to create an image of the sample.

Acoustic microscopy offers several advantages over other imaging techniques, such as optical microscopy or electron microscopy. For example, it does not require staining or labeling of samples, which can be time-consuming and potentially damaging. Additionally, acoustic microscopy can provide high-resolution images of samples in their native state, allowing researchers to study the effects of various treatments or interventions on living cells and tissues.

In summary, acoustic microscopy is a non-invasive imaging technique that uses sound waves to visualize and analyze the structure and properties of biological samples with high resolution, providing valuable information for medical diagnostics and research.

A glaucoma drainage implant is a medical device used in the surgical management of glaucoma, a group of eye conditions that can lead to optic nerve damage and vision loss. The implant provides an alternative drainage pathway for the aqueous humor, the clear fluid inside the eye, to reduce intraocular pressure (IOP) when other treatment methods have been unsuccessful.

The glaucoma drainage implant typically consists of a small silicone or polypropylene plate with a tube attached. During surgery, the tube is carefully inserted into the anterior chamber of the eye, allowing the aqueous humor to flow through the tube and collect on the plate. The plate is placed underneath the conjunctiva, the clear membrane that covers the white part of the eye, where the fluid gets absorbed by the body.

There are various types of glaucoma drainage implants available, such as the Ahmed Glaucoma Valve, Baerveldt Glaucoma Implant, and Molteno Glaucoma Implant. Each type has its unique design features and may be more suitable for specific cases depending on the severity of glaucoma, previous surgical history, and individual patient factors.

Glaucoma drainage implant surgery is usually considered when other treatment options, such as medication or laser therapy, have failed to control IOP effectively. The procedure aims to prevent further optic nerve damage and preserve the patient's remaining vision. Potential complications of glaucoma drainage implant surgery include infection, bleeding, hypotony (abnormally low IOP), exposure of the tube, and failure of the device. Regular postoperative follow-up with an eye care professional is essential to monitor the implant's performance and manage any potential complications.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

Surgical wound dehiscence is a medical condition that refers to the partial or complete separation of layers of a surgical incision after a surgical procedure, leading to the disruption of the wound closure. This can occur due to various factors such as infection, poor nutrition, increased tension on the sutures, hematoma or seroma formation, and patient's underlying health conditions like diabetes or immunodeficiency. Dehiscence may result in the exposure of internal tissues and organs, potentially causing severe complications such as infection, bleeding, or organ dysfunction. Immediate medical attention is required to manage this condition and prevent further complications.

Organ preservation is a medical technique used to maintain the viability and functionality of an organ outside the body for a certain period, typically for transplantation purposes. This process involves cooling the organ to slow down its metabolic activity and prevent tissue damage, while using specialized solutions that help preserve the organ's structure and function. Commonly preserved organs include hearts, livers, kidneys, lungs, and pancreases. The goal of organ preservation is to ensure that the transplanted organ remains in optimal condition until it can be successfully implanted into a recipient.

Glaucoma is a group of eye conditions that damage the optic nerve, often caused by an abnormally high pressure in the eye (intraocular pressure). This damage can lead to permanent vision loss or even blindness if left untreated. The most common type is open-angle glaucoma, which has no warning signs and progresses slowly. Angle-closure glaucoma, on the other hand, can cause sudden eye pain, redness, nausea, and vomiting, as well as rapid vision loss. Other less common types of glaucoma also exist. While there is no cure for glaucoma, early detection and treatment can help slow or prevent further vision loss.

Aphakia, postcataract is a medical condition that refers to the absence of the lens in the eye after cataract surgery. A cataract is a clouding of the natural lens inside the eye that can cause vision loss. During cataract surgery, the cloudy lens is removed and replaced with an artificial lens implant. However, if there is a complication during the procedure and the artificial lens is not placed in the eye or if it becomes dislocated after surgery, then the patient will develop aphakia, postcataract.

Patients with aphakia, postcataract have poor vision and may experience symptoms such as blurry vision, glare, and halos around lights. They are also at an increased risk of developing glaucoma and retinal detachment. To correct the vision in patients with aphakia, they can wear special contact lenses or glasses with high-powered lenses, or undergo a secondary surgical procedure to implant an artificial lens in the eye.

Intraocular pressure (IOP) is the fluid pressure within the eye, specifically within the anterior chamber, which is the space between the cornea and the iris. It is measured in millimeters of mercury (mmHg). The aqueous humor, a clear fluid that fills the anterior chamber, is constantly produced and drained, maintaining a balance that determines the IOP. Normal IOP ranges from 10-21 mmHg, with average values around 15-16 mmHg. Elevated IOP is a key risk factor for glaucoma, a group of eye conditions that can lead to optic nerve damage and vision loss if not treated promptly and effectively. Regular monitoring of IOP is essential in diagnosing and managing glaucoma and other ocular health issues.

Eye injuries refer to any damage or trauma caused to the eye or its surrounding structures. These injuries can vary in severity and may include:

1. Corneal abrasions: A scratch or scrape on the clear surface of the eye (cornea).
2. Chemical burns: Occurs when chemicals come into contact with the eye, causing damage to the cornea and other structures.
3. Eyelid lacerations: Cuts or tears to the eyelid.
4. Subconjunctival hemorrhage: Bleeding under the conjunctiva, the clear membrane that covers the white part of the eye.
5. Hyphema: Accumulation of blood in the anterior chamber of the eye, which is the space between the cornea and iris.
6. Orbital fractures: Breaks in the bones surrounding the eye.
7. Retinal detachment: Separation of the retina from its underlying tissue, which can lead to vision loss if not treated promptly.
8. Traumatic uveitis: Inflammation of the uvea, the middle layer of the eye, caused by trauma.
9. Optic nerve damage: Damage to the optic nerve, which transmits visual information from the eye to the brain.

Eye injuries can result from a variety of causes, including accidents, sports-related injuries, violence, and chemical exposure. It is important to seek medical attention promptly for any suspected eye injury to prevent further damage and potential vision loss.

Cataract extraction is a surgical procedure that involves removing the cloudy lens (cataract) from the eye. This procedure is typically performed to restore vision impairment caused by cataracts and improve overall quality of life. There are two primary methods for cataract extraction:

1. Phacoemulsification: This is the most common method used today. It involves making a small incision in the front part of the eye (cornea), inserting an ultrasonic probe to break up the cloudy lens into tiny pieces, and then removing those pieces with suction. After removing the cataract, an artificial intraocular lens (IOL) is inserted to replace the natural lens and help focus light onto the retina.

2. Extracapsular Cataract Extraction: In this method, a larger incision is made on the side of the cornea, allowing the surgeon to remove the cloudy lens in one piece without breaking it up. The back part of the lens capsule is left intact to support the IOL. This technique is less common and typically reserved for more advanced cataracts or when phacoemulsification cannot be performed.

Recovery from cataract extraction usually involves using eye drops to prevent infection and inflammation, as well as protecting the eye with a shield or glasses during sleep for a few weeks after surgery. Most people experience improved vision within a few days to a week following the procedure.

The limbus cornea, also known as the corneoscleral junction, is the border between the transparent cornea and the opaque sclera in the eye. It's a circular, narrow region that contains cells called limbal stem cells, which are essential for maintaining the health and clarity of the cornea. These stem cells continuously regenerate and differentiate into corneal epithelial cells, replacing the outermost layer of the cornea. Any damage or disorder in this area can lead to vision impairment or loss.

The anterior chamber is the front portion of the eye, located between the cornea (the clear front "window" of the eye) and the iris (the colored part of the eye). It is filled with a clear fluid called aqueous humor that provides nutrients to the structures inside the eye and helps maintain its shape. The anterior chamber plays an important role in maintaining the overall health and function of the eye.

The ophthalmic nerve, also known as the first cranial nerve or CN I, is a sensory nerve that primarily transmits information about vision, including light intensity and color, and sensation in the eye and surrounding areas. It is responsible for the sensory innervation of the upper eyelid, conjunctiva, cornea, iris, ciliary body, and nasal cavity. The ophthalmic nerve has three major branches: the lacrimal nerve, frontal nerve, and nasociliary nerve. Damage to this nerve can result in various visual disturbances and loss of sensation in the affected areas.

The postoperative period is the time following a surgical procedure during which the patient's response to the surgery and anesthesia is monitored, and any complications or adverse effects are managed. This period can vary in length depending on the type of surgery and the individual patient's needs, but it typically includes the immediate recovery phase in the post-anesthesia care unit (PACU) or recovery room, as well as any additional time spent in the hospital for monitoring and management of pain, wound healing, and other aspects of postoperative care.

The goals of postoperative care are to ensure the patient's safety and comfort, promote optimal healing and rehabilitation, and minimize the risk of complications such as infection, bleeding, or other postoperative issues. The specific interventions and treatments provided during this period will depend on a variety of factors, including the type and extent of surgery performed, the patient's overall health and medical history, and any individualized care plans developed in consultation with the patient and their healthcare team.

Hyperopia, also known as farsightedness, is a refractive error in which the eye does not focus light directly on the retina when looking at a distant object. Instead, light is focused behind the retina, causing close-up objects to appear blurry. This condition usually results from the eyeball being too short or the cornea having too little curvature. It can be corrected with eyeglasses, contact lenses, or refractive surgery.

Endophthalmitis is a serious inflammatory eye condition that occurs when an infection develops inside the eyeball, specifically within the vitreous humor (the clear, gel-like substance that fills the space between the lens and the retina). This condition can be caused by bacteria, fungi, or other microorganisms that enter the eye through various means, such as trauma, surgery, or spread from another infected part of the body.

Endophthalmitis is often characterized by symptoms like sudden onset of pain, redness, decreased vision, and increased sensitivity to light (photophobia). If left untreated, it can lead to severe complications, including blindness. Treatment typically involves administering antibiotics or antifungal medications, either systemically or directly into the eye, and sometimes even requiring surgical intervention to remove infected tissues and relieve intraocular pressure.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Tissue and organ harvesting is the surgical removal of healthy tissues or organs from a living or deceased donor for the purpose of transplantation into another person in need of a transplant. This procedure is performed with great care, adhering to strict medical standards and ethical guidelines, to ensure the safety and well-being of both the donor and the recipient.

In the case of living donors, the harvested tissue or organ is typically removed from a site that can be safely spared, such as a kidney, a portion of the liver, or a segment of the lung. The donor must undergo extensive medical evaluation to ensure they are physically and psychologically suitable for the procedure.

For deceased donors, tissue and organ harvesting is performed in a manner that respects their wishes and those of their family, as well as adheres to legal and ethical requirements. Organs and tissues must be recovered promptly after death to maintain their viability for transplantation.

Tissue and organ harvesting is an essential component of the transplant process, allowing individuals with terminal illnesses or severe injuries to receive life-saving or life-enhancing treatments. It is a complex and highly regulated medical practice that requires specialized training, expertise, and coordination among healthcare professionals, donor families, and recipients.

I believe there may be some confusion in your question. "Nylons" is a common term for a type of synthetic fiber often used in clothing, hosiery, and other textile applications. It is not a medical term or concept. If you have any questions related to medical terminology or concepts, I would be happy to try and help clarify!

Postoperative care refers to the comprehensive medical treatment and nursing attention provided to a patient following a surgical procedure. The goal of postoperative care is to facilitate the patient's recovery, prevent complications, manage pain, ensure proper healing of the incision site, and maintain overall health and well-being until the patient can resume their normal activities.

This type of care includes monitoring vital signs, managing pain through medication or other techniques, ensuring adequate hydration and nutrition, helping the patient with breathing exercises to prevent lung complications, encouraging mobility to prevent blood clots, monitoring for signs of infection or other complications, administering prescribed medications, providing wound care, and educating the patient about postoperative care instructions.

The duration of postoperative care can vary depending on the type and complexity of the surgical procedure, as well as the individual patient's needs and overall health status. It may be provided in a hospital setting, an outpatient surgery center, or in the patient's home, depending on the level of care required.

Corneal pachymetry is a medical measurement of the thickness of the cornea, which is the clear, dome-shaped surface at the front of the eye. This measurement is typically taken using a specialized instrument called a pachymeter. The procedure is quick, painless, and non-invasive.

Corneal pachymetry is an essential test in optometry and ophthalmology for various reasons. For instance, it helps assess the overall health of the cornea, identify potential abnormalities or diseases, and determine the correct intraocular lens power during cataract surgery. Additionally, corneal thickness is a crucial factor in determining a person's risk for developing glaucoma and monitoring the progression of the disease.

In some cases, such as with contact lens fitting, corneal pachymetry can help ensure proper fit and minimize potential complications. Overall, corneal pachymetry is an essential diagnostic tool in eye care that provides valuable information for maintaining eye health and ensuring appropriate treatment.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Lens diseases refer to conditions that affect the lens of the eye, which is a transparent structure located behind the iris and pupil. The main function of the lens is to focus light onto the retina, enabling clear vision. Here are some examples of lens diseases:

1. Cataract: A cataract is a clouding of the lens that affects vision. It is a common age-related condition, but can also be caused by injury, disease, or medication.
2. Presbyopia: This is not strictly a "disease," but rather an age-related change in the lens that causes difficulty focusing on close objects. It typically becomes noticeable in people over the age of 40.
3. Lens dislocation: This occurs when the lens slips out of its normal position, usually due to trauma or a genetic disorder. It can cause vision problems and may require surgical intervention.
4. Lens opacity: This refers to any clouding or opacification of the lens that is not severe enough to be considered a cataract. It can cause visual symptoms such as glare or blurred vision.
5. Anterior subcapsular cataract: This is a type of cataract that forms in the front part of the lens, often as a result of injury or inflammation. It can cause significant visual impairment.
6. Posterior subcapsular cataract: This is another type of cataract that forms at the back of the lens, often as a result of diabetes or certain medications. It can also cause significant visual impairment.

Overall, lens diseases can have a significant impact on vision and quality of life, and may require medical intervention to manage or treat.

Eyeglasses are a medical device used to correct vision problems. Also known as spectacles, they consist of frames that hold one or more lenses through which a person looks to see clearly. The lenses may be made of glass or plastic and are designed to compensate for various visual impairments such as nearsightedness, farsightedness, astigmatism, or presbyopia. Eyeglasses can be custom-made to fit an individual's face and prescription, and they come in a variety of styles, colors, and materials. Some people wear eyeglasses all the time, while others may only need to wear them for certain activities such as reading or driving.

Refractive surgical procedures are a type of ophthalmic surgery aimed at improving the refractive state of the eye and reducing or eliminating the need for corrective eyewear. These procedures reshape the cornea or alter the lens of the eye to correct nearsightedness (myopia), farsightedness (hyperopia), presbyopia, or astigmatism.

Examples of refractive surgical procedures include:

1. Laser-assisted in situ keratomileusis (LASIK): A laser is used to create a thin flap in the cornea, which is then lifted to allow reshaping of the underlying tissue with another laser. The flap is replaced, and the procedure is completed.
2. Photorefractive keratectomy (PRK): This procedure involves removing the outer layer of the cornea (epithelium) and using a laser to reshape the underlying tissue. A bandage contact lens is placed over the eye to protect it during healing.
3. LASEK (laser-assisted subepithelial keratomileusis): Similar to LASIK, but instead of creating a flap, the epithelium is loosened with an alcohol solution and moved aside. The laser treatment is applied, and the epithelium is replaced.
4. Small Incision Lenticule Extraction (SMILE): A femtosecond laser creates a small lenticule within the cornea, which is then removed through a tiny incision. This procedure reshapes the cornea to correct refractive errors.
5. Refractive lens exchange (RLE): The eye's natural lens is removed and replaced with an artificial intraocular lens (IOL) to correct refractive errors, similar to cataract surgery.
6. Implantable contact lenses: A thin, foldable lens is placed between the iris and the natural lens or behind the iris to improve the eye's focusing power.

These procedures are typically performed on an outpatient basis and may require topical anesthesia (eye drops) or local anesthesia. Potential risks and complications include infection, dry eye, visual disturbances, and changes in night vision. It is essential to discuss these potential risks with your ophthalmologist before deciding on a refractive surgery procedure.

Acanthamoeba keratitis is a rare but serious infection of the cornea, which is the clear outer layer at the front of the eye. It's caused by a microscopic organism called Acanthamoeba, which is commonly found in water and soil.

The infection typically occurs in people who wear contact lenses, particularly those who do not clean and disinfect their lenses properly or who swim or shower while wearing their contacts. It can cause pain, redness, blurry vision, sensitivity to light, and a feeling like there's something in your eye.

If left untreated, Acanthamoeba keratitis can lead to serious complications, including corneal scarring, loss of vision, or even blindness. Treatment typically involves the use of specialized antimicrobial drops and sometimes requires a corneal transplant in severe cases. Prevention measures include proper contact lens hygiene, avoiding swimming or showering while wearing contacts, and regularly replacing contact lens storage cases.

Herpes Zoster Ophthalmicus (HZO) is a type of herpes zoster (shingles) infection that affects the ophthalmic division (V1) of the trigeminal nerve. It is caused by the varicella-zoster virus, which also causes chickenpox. After a person recovers from chickenpox, the virus remains inactive in the body and can reactivate later as shingles, often many years after the initial infection.

When the virus reactivates and affects the ophthalmic division of the trigeminal nerve, it can cause a painful rash on the forehead, nose, and around one eye. The rash may be accompanied by other symptoms such as headache, fever, and fatigue. In some cases, HZO can also affect the eye itself, causing inflammation, corneal ulcers, and vision loss if left untreated.

It is important to seek medical attention promptly if you suspect you have HZO, as early treatment with antiviral medications can help reduce the severity of symptoms and prevent complications.

'Alternariosis' is a medical term that refers to a fungal infection caused by the Alternaria species of fungi. This type of fungus is commonly found in the environment, particularly in soil, plants, and decaying organic matter. Infections caused by Alternaria are relatively uncommon in healthy individuals but can cause significant problems for people with weakened immune systems or underlying lung conditions.

Alternariosis can affect various parts of the body, including the skin, nails, respiratory system, and eyes. The symptoms of alternariosis depend on the location and severity of the infection. For instance, a respiratory infection may cause coughing, wheezing, shortness of breath, and chest pain, while a skin infection can result in redness, itching, and lesions.

Treatment for alternariosis typically involves antifungal medications, which can be administered orally, intravenously, or topically, depending on the location and severity of the infection. In severe cases, hospitalization may be necessary to monitor and manage the infection effectively. Preventing exposure to the fungus is crucial for individuals at risk of developing alternariosis, such as those with weakened immune systems or lung conditions.

Prosthesis implantation is a surgical procedure where an artificial device or component, known as a prosthesis, is placed inside the body to replace a missing or damaged body part. The prosthesis can be made from various materials such as metal, plastic, or ceramic and is designed to perform the same function as the original body part.

The implantation procedure involves making an incision in the skin to create a pocket where the prosthesis will be placed. The prosthesis is then carefully positioned and secured in place using screws, cement, or other fixation methods. In some cases, tissue from the patient's own body may be used to help anchor the prosthesis.

Once the prosthesis is in place, the incision is closed with sutures or staples, and the area is bandaged. The patient will typically need to undergo rehabilitation and physical therapy to learn how to use the new prosthesis and regain mobility and strength.

Prosthesis implantation is commonly performed for a variety of reasons, including joint replacement due to arthritis or injury, dental implants to replace missing teeth, and breast reconstruction after mastectomy. The specific procedure and recovery time will depend on the type and location of the prosthesis being implanted.

An iridectomy is a surgical procedure that involves removing a small portion of the iris, which is the colored part of the eye. This procedure is typically performed to treat conditions such as closed-angle glaucoma or to prevent the development of acute angle closure glaucoma. By creating an opening in the iris, the surgery helps to improve the flow of fluid within the eye and reduce pressure inside the eye. It is usually done using a laser (laser iridectomy) or with surgical instruments (surgical iridectomy).

Eye infections, also known as ocular infections, are conditions characterized by the invasion and multiplication of pathogenic microorganisms in any part of the eye or its surrounding structures. These infections can affect various parts of the eye, including the conjunctiva (conjunctivitis), cornea (keratitis), eyelid (blepharitis), or the internal structures of the eye (endophthalmitis, uveitis). The symptoms may include redness, pain, discharge, itching, blurred vision, and sensitivity to light. The cause can be bacterial, viral, fungal, or parasitic, and the treatment typically involves antibiotics, antivirals, or antifungals, depending on the underlying cause.

Intraocular injections are a type of medical procedure where medication is administered directly into the eye. This technique is often used to deliver drugs that treat various eye conditions, such as age-related macular degeneration, diabetic retinopathy, and endophthalmitis. The most common type of intraocular injection is an intravitreal injection, which involves injecting medication into the vitreous cavity, the space inside the eye filled with a clear gel-like substance called the vitreous humor. This procedure is typically performed by an ophthalmologist in a clinical setting and may be repeated at regular intervals depending on the condition being treated.

Phacoemulsification is a surgical procedure used in cataract removal. It involves using an ultrasonic device to emulsify (break up) the cloudy lens (cataract) into small pieces, which are then aspirated or sucked out through a small incision. This procedure allows for smaller incisions and faster recovery times compared to traditional cataract surgery methods. After the cataract is removed, an artificial intraocular lens (IOL) is typically implanted to replace the natural lens and restore vision.

HEPES (4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid) is not a medical term itself, but it is a chemical compound that is often used in biology and medicine. It is a type of buffer solution that is commonly used in cell culture and laboratory experiments to maintain a stable pH level. This is important for the survival and growth of cells and organisms in artificial environments. HEPES is a weak organic acid that can donate protons (H+) and accept them back, thus maintaining a stable pH. It has a pKa of 7.5, making it suitable for use in biological systems with a physiological pH range.

Phakic Intraocular Lenses (PIOLs) are a type of surgical implant used in refractive eye surgery to correct vision problems such as myopia (nearsightedness), hyperopia (farsightedness), and astigmatism. These lenses are placed inside the eye, specifically between the cornea and the natural lens (crystalline lens) of the eye, without removing the natural lens. This is why they are called "phakic," which means the natural lens remains in place.

PIOLs can provide an alternative to other refractive surgeries like LASIK or PRK, particularly for individuals with high levels of refractive error who may not be suitable candidates for those procedures. The procedure to implant a phakic intraocular lens is typically performed on an outpatient basis and takes only a few minutes.

There are two main types of PIOLs: anterior chamber phakic lenses, which are placed in front of the iris, and posterior chamber phakic lenses, which are placed behind the iris but in front of the natural lens. Both types of lenses have their own advantages and disadvantages, and the choice between them depends on various factors such as the patient's eye anatomy and the specific type and degree of refractive error.

It is important to note that, like any surgical procedure, there are potential risks associated with PIOL implantation, including infection, increased intraocular pressure, cataract formation, and changes in vision. Therefore, a thorough evaluation by an eye care professional is necessary before deciding if this type of surgery is appropriate for an individual patient.

Ophthalmologic surgical procedures refer to various types of surgeries performed on the eye and its surrounding structures by trained medical professionals called ophthalmologists. These procedures aim to correct or improve vision, diagnose and treat eye diseases or injuries, and enhance the overall health and functionality of the eye. Some common examples of ophthalmologic surgical procedures include:

1. Cataract Surgery: This procedure involves removing a cloudy lens (cataract) from the eye and replacing it with an artificial intraocular lens (IOL).
2. LASIK (Laser-Assisted In Situ Keratomileusis): A type of refractive surgery that uses a laser to reshape the cornea, correcting nearsightedness, farsightedness, and astigmatism.
3. Glaucoma Surgery: Several surgical options are available for treating glaucoma, including laser trabeculoplasty, traditional trabeculectomy, and various drainage device implantations. These procedures aim to reduce intraocular pressure (IOP) and prevent further optic nerve damage.
4. Corneal Transplant: This procedure involves replacing a damaged or diseased cornea with a healthy donor cornea to restore vision and improve the eye's appearance.
5. Vitreoretinal Surgery: These procedures focus on treating issues within the vitreous humor (gel-like substance filling the eye) and the retina, such as retinal detachment, macular holes, or diabetic retinopathy.
6. Strabismus Surgery: This procedure aims to correct misalignment of the eyes (strabismus) by adjusting the muscles responsible for eye movement.
7. Oculoplastic Surgery: These procedures involve reconstructive, cosmetic, and functional surgeries around the eye, such as eyelid repair, removal of tumors, or orbital fracture repairs.
8. Pediatric Ophthalmologic Procedures: Various surgical interventions are performed on children to treat conditions like congenital cataracts, amblyopia (lazy eye), or blocked tear ducts.

These are just a few examples of ophthalmic surgical procedures. The specific treatment plan will depend on the individual's condition and overall health.

Homologous transplantation is a type of transplant surgery where organs or tissues are transferred between two genetically non-identical individuals of the same species. The term "homologous" refers to the similarity in structure and function of the donated organ or tissue to the recipient's own organ or tissue.

For example, a heart transplant from one human to another is an example of homologous transplantation because both organs are hearts and perform the same function. Similarly, a liver transplant, kidney transplant, lung transplant, and other types of organ transplants between individuals of the same species are also considered homologous transplantations.

Homologous transplantation is in contrast to heterologous or xenogeneic transplantation, where organs or tissues are transferred from one species to another, such as a pig heart transplanted into a human. Homologous transplantation is more commonly performed than heterologous transplantation due to the increased risk of rejection and other complications associated with xenogeneic transplants.

Bacterial eye infections, also known as bacterial conjunctivitis or bacterial keratitis, are caused by the invasion of bacteria into the eye. The most common types of bacteria that cause these infections include Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae.

Bacterial conjunctivitis is an inflammation of the conjunctiva, the thin membrane that covers the white part of the eye and the inner surface of the eyelids. Symptoms include redness, swelling, pain, discharge, and a gritty feeling in the eye. Bacterial keratitis is an infection of the cornea, the clear front part of the eye. Symptoms include severe pain, sensitivity to light, tearing, and decreased vision.

Bacterial eye infections are typically treated with antibiotic eye drops or ointments. It is important to seek medical attention promptly if you suspect a bacterial eye infection, as untreated infections can lead to serious complications such as corneal ulcers and vision loss. Preventive measures include good hygiene practices, such as washing your hands frequently and avoiding touching or rubbing your eyes.

Prosthesis fitting is the process of selecting, designing, fabricating, and fitting a prosthetic device to replace a part of an individual's body that is missing due to congenital absence, illness, injury, or amputation. The primary goal of prosthesis fitting is to restore the person's physical function, mobility, and independence, as well as improve their overall quality of life.

The process typically involves several steps:

1. Assessment: A thorough evaluation of the patient's medical history, physical condition, and functional needs is conducted to determine the most appropriate type of prosthesis. This may include measurements, castings, or digital scans of the residual limb.

2. Design: Based on the assessment, a customized design plan is created for the prosthetic device, taking into account factors such as the patient's lifestyle, occupation, and personal preferences.

3. Fabrication: The prosthesis is manufactured using various materials, components, and techniques to meet the specific requirements of the patient. This may involve the use of 3D printing, computer-aided design (CAD), or traditional handcrafting methods.

4. Fitting: Once the prosthesis is fabricated, it is carefully fitted to the patient's residual limb, ensuring optimal comfort, alignment, and stability. Adjustments may be made as needed to achieve the best fit and function.

5. Training: The patient receives training on how to use and care for their new prosthetic device, including exercises to strengthen the residual limb and improve overall mobility. Follow-up appointments are scheduled to monitor progress, make any necessary adjustments, and provide ongoing support.

Ocular tonometry is a medical test used to measure the pressure inside the eye, also known as intraocular pressure (IOP). This test is an essential part of diagnosing and monitoring glaucoma, a group of eye conditions that can cause vision loss and blindness due to damage to the optic nerve from high IOP.

The most common method of ocular tonometry involves using a tonometer device that gently touches the front surface of the eye (cornea) with a small probe or prism. The device measures the amount of force required to flatten the cornea slightly, which correlates with the pressure inside the eye. Other methods of ocular tonometry include applanation tonometry, which uses a small amount of fluorescein dye and a blue light to measure the IOP, and rebound tonometry, which uses a lightweight probe that briefly touches the cornea and then bounces back to determine the IOP.

Regular ocular tonometry is important for detecting glaucoma early and preventing vision loss. It is typically performed during routine eye exams and may be recommended more frequently for individuals at higher risk of developing glaucoma, such as those with a family history of the condition or certain medical conditions like diabetes.

Laser therapy, also known as phototherapy or laser photobiomodulation, is a medical treatment that uses low-intensity lasers or light-emitting diodes (LEDs) to stimulate healing, reduce pain, and decrease inflammation. It works by promoting the increase of cellular metabolism, blood flow, and tissue regeneration through the process of photobiomodulation.

The therapy can be used on patients suffering from a variety of acute and chronic conditions, including musculoskeletal injuries, arthritis, neuropathic pain, and wound healing complications. The wavelength and intensity of the laser light are precisely controlled to ensure a safe and effective treatment.

During the procedure, the laser or LED device is placed directly on the skin over the area of injury or discomfort. The non-ionizing light penetrates the tissue without causing heat or damage, interacting with chromophores in the cells to initiate a series of photochemical reactions. This results in increased ATP production, modulation of reactive oxygen species, and activation of transcription factors that lead to improved cellular function and reduced pain.

In summary, laser therapy is a non-invasive, drug-free treatment option for various medical conditions, providing patients with an alternative or complementary approach to traditional therapies.

Ophthalmic solutions are sterile, single-use or multi-dose preparations in a liquid form that are intended for topical administration to the eye. These solutions can contain various types of medications, such as antibiotics, anti-inflammatory agents, antihistamines, or lubricants, which are used to treat or prevent ocular diseases and conditions.

The pH and osmolarity of ophthalmic solutions are carefully controlled to match the physiological environment of the eye and minimize any potential discomfort or irritation. The solutions may be packaged in various forms, including drops, sprays, or irrigations, depending on the intended use and administration route.

It is important to follow the instructions for use provided by a healthcare professional when administering ophthalmic solutions, as improper use can lead to eye injury or reduced effectiveness of the medication.

In medical terms, the iris refers to the colored portion of the eye that surrounds the pupil. It is a circular structure composed of thin, contractile muscle fibers (radial and circumferential) arranged in a regular pattern. These muscles are controlled by the autonomic nervous system and can adjust the size of the pupil in response to changes in light intensity or emotional arousal. By constricting or dilating the iris, the amount of light entering the eye can be regulated, which helps maintain optimal visual acuity under various lighting conditions.

The color of the iris is determined by the concentration and distribution of melanin pigments within the iris stroma. The iris also contains blood vessels, nerves, and connective tissue that support its structure and function. Anatomically, the iris is continuous with the ciliary body and the choroid, forming part of the uveal tract in the eye.

Optical coherence tomography (OCT) is a non-invasive imaging technique that uses low-coherence light to capture high-resolution cross-sectional images of biological tissues, particularly the retina and other ocular structures. OCT works by measuring the echo time delay of light scattered back from different depths within the tissue, creating a detailed map of the tissue's structure. This technique is widely used in ophthalmology to diagnose and monitor various eye conditions such as macular degeneration, diabetic retinopathy, and glaucoma.

Beckingsale P; Mavrikakis I; Al-Yousuf N; Mavrikakis E & Daya SM (June 2006). "Penetrating keratoplasty: outcomes from a ... Comer RM; Daya SM & O'Keefe M (October 2001). "Penetrating keratoplasty in infants". Journal of American Association for ... Nanavaty MA, Daya SM (October 2012). "Outcomes of deep anterior lamellar keratoplasty in keratoconic eyes with previous hydrops ...
"Deep anterior lamellar keratoplasty versus penetrating keratoplasty for treating keratoconus" (PDF). Cochrane Database Syst Rev ... Keratoconus is the most common grounds for conducting a penetrating keratoplasty, generally accounting for around a quarter of ... The National Keratoconus Foundation reports that penetrating keratoplasty has the most successful outcome of all transplant ... Retrieved 16 April 2010.[dead link] Al-Mezaine H, Wagoner MD (March 2006). "Repeat penetrating keratoplasty: indications, graft ...
A technique in penetrating keratoplasty". Cornea. 13 (1): 16-9. doi:10.1097/00003226-199401000-00004. PMID 8131401. S2CID ... "Anterior synechiolysis after keratoplasty". Ophthalmic Surg. 26 (3): 264-6. PMID 7651699.{{cite journal}}: CS1 maint: multiple ... "Combined keratoplasty, cataract extraction, and intraocular lens implantation after corneolenticular laceration in children". ...
Thompson, RW Jr; Price, MO; Bowers, PJ; Price, FW Jr (2003-06-01). "Long-term graft survival after penetrating keratoplasty". ... Meyer, RF; Sugar, A (1980-11-01). "Penetrating keratoplasty in pseudophakic bullous keratopathy". Am J Ophthalmol. 90 (5): 677- ... Pre Descemet's endothelial keratoplasty (PDEK) is a kind of endothelial keratoplasty, where the pre descemet's layer (PDL) ... If the endothelium is bad the cornea starts having lot of water and gets damaged which is called Bullous Keratoplasty. Thus ...
Penetrating Keratoplasty for Severe Complications of Radial Keratotomy. Cornea 1991;10:170-174. Kenyon KR, Starck T & Hersh PS ... Corneal edema and penetrating keratoplasty after anterior chamber phakic intraocular lens implantation. J Cat Refract Surg 2005 ... Penetrating keratoplasty and anterior segment reconstruction for severe ocular trauma. German Journal of Ophthal. 1994;3:90-99 ... Penetrating Keratoplasty and Anterior Segment Reconstruction for Severe Ocular Trauma. Ophthal. 1992;99:396-402. Hersh PS, ...
One of the largest causes for issue in penetrating keratoplasty is the natural immune rejection of a transplanted corneal ... Traditionally, the most common procedure for corneal transplantation was penetrating keratoplasty whereby an entire corneal ... also known as penetrating keratoplasty. Greek physician Galen is said to have first consider the possibility of corneal ... Penetrating keratoplasty using 37 C organ cultured cornea. Transactions of the American Academy of Ophthalmology and ...
Penetrating keratoplasty Anterior and posterior lamellar keratoplasty (DSAEK; DMEK, DALK) Other areas with subspecialist ...
Primarily, large size penetrating keratoplasty has been advocated. Recent additions of techniques specifically for keratoglobus ... Kaushal S, Jhanji V, Sharma N, Tandon R, Titiyal JS, Vajpayee RB (February 2008). ""Tuck In" Lamellar Keratoplasty (TILK) for ...
Ficker LA, Kirkness CM, Steele AD, Rice NS, Gilvarry AM (1990). "Intraocular surgery following penetrating keratoplasty: the ...
Penetrating keratoplasty is commonly performed for extensive corneal dystrophy. Corneal endothelial dystrophy is an age-related ...
"Early Results of Penetrating Keratoplasty After Cultivated Limbal Epithelium Transplantation". Arch. Ophthalmol. 123 (3): 334- ...
Ma JJ, Graney JM, Dohlman CH (2005). "Repeat penetrating keratoplasty versus the Boston keratoprosthesis in graft failure". ... The Boston KPro is a treatment option for corneal disorders not amenable to standard penetrating keratoplasty (corneal ... positioned between the front and back plate which is then sutured into place in a similar fashion to penetrating keratoplasty ( ... for severe end stage dry eye conditions and is similar to the type I except it has a 2 mm anterior nub designed to penetrate ...
"Mooren's Ulcer and Evidence of Stromal Graft Rejection After Penetrating Keratoplasty". American Journal of Ophthalmology. 113 ...
Depending on type and density of corneal opacity different types of keratoplasty may be used such as: Penetrating keratoplasty ... Treatment options for significant opacities include penetrating keratoplasty and DALK. Keratoplasty also known as corneal ... descemet's membrane endothelial keratoplasty or penetrating keratoplasty are the treatments of choice to improve vision and to ... In case of severe vision loss, treatment of choice is penetrating keratoplasty. Peters anomaly: Peters anomaly, also known as ...
Transpalpebral tonometry with a digital tonometer in healthy eyes and after penetrating keratoplasty.]". Ophthalmologe. 102 (1 ...
Penetrating karatoplasty and endothelial keratoplasty can be used as treatments for severe cases of ICE. Because glaucoma and ... Herpesvirus DNA has been identified in some patients following keratoplasty, suggesting the possibility that herpes simplex ... Price, Marianne O; Price, Francis W (2007). "Descemet Stripping With Endothelial Keratoplasty for Treatment of Iridocorneal ...
Penetrating keratoplasty, a common type of corneal transplantation, is commonly performed for extensive corneal dystrophy.[ ... Superficial corneal dystrophies do not need a penetrating keratoplasty as the deeper corneal tissue is unaffected, therefore a ... citation needed] With penetrating keratoplasty (corneal transplant), the long-term results are good to excellent. Recent ... lamellar keratoplasty may be used instead.[citation needed] Phototherapeutic keratectomy (PTK) can be used to excise or ablate ...
"Descemet's stripping automated endothelial keratoplasty outcomes compared with penetrating keratoplasty from the Cornea Donor ... The small incision offers several benefits over traditional methods of corneal transplant such as penetrating keratoplasty. ... it is known as penetrating keratoplasty and when only part of the cornea is replaced it is known as lamellar keratoplasty. ... "Immunosuppressants for the prophylaxis of corneal graft rejection after penetrating keratoplasty". Cochrane Database of ...
Surgery in the form of corneal transplantation (penetrating keratoplasty) is usually necessary to save the eye. Corneal ulcers ...
Penetrating keratoplasty is preferred when the disease process involves irreversible damage not just to the corneal endothelium ... Historically, penetrating keratoplasty, or full thickness corneal transplantation, was the treatment of choice for irreversible ... Compared to full-thickness keratoplasty, endokeratoplasty techniques are associated with shorter recovery times, improved ... Investigational methods of corneal endothelial surgical replacement include Descemet's Membrane Endothelial Keratoplasty (DMEK ...
"Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront ...
The risk for CNV is elevated in certain instances for patients following penetrating keratoplasty without active inflammation ... Some major acquired inflammatory conditions include graft rejection following keratoplasty, graft or host diseases of the new ... negatively impacting the prognosis for individuals undergoing keratoplasty procedures. In advanced stages, corneal ...
... penetrating keratoplasty, lamellar keratoplasty, epikeratoplasty and intracorneal segments. Transplantation of the entire ... penetrating keratoplasty) may be performed if there is enough normal tissue present. However, if there is not enough normal ... Guindolet D, Petrovic A, Doan S, Cochereau I, Gabison EE (June 2016). "Sclerocorneal Intrastromal Lamellar Keratoplasty for ... Jabbarvand M, Hashemian H, Khodaparast M, Hassanpour N, Mohebbi M (January 2015). "Intrastromal lamellar keratoplasty in people ...
... lamellar keratoplasty, or penetrating keratoplasty. Patients may relapse in symptoms but surgery prolongs the reoccurrence and ...
... for managing severe ocular surface disease and many corneal disorders that would otherwise require penetrating keratoplasty". ...
Penetrating keratoplasty Keratoprosthesis Phototherapeutic keratectomy Pterygium excision Corneal tattooing Osteo-odonto- ... Epi-LASIK Photorefractive keratectomy Laser thermal keratoplasty Conductive keratoplasty uses radio-frequency waves to shrink ... Automated lamellar keratoplasty Laser-assisted in situ keratomileusis (LASIK) Laser assisted subepithelial keratomileusis ( ...
... including penetrating keratoplasty, and understanding of corneal dystrophies and pathologies, such as acute hydrops. "Acute ...
... for managing severe ocular surface disease and many corneal disorders that would otherwise require penetrating keratoplasty." ...
... rate of eye donation in India for Neemuch and the facilities provided by the institute for performing penetrating keratoplasty ...
Fankhauser F Lamellar corneal resection with LDV Crystal line femtosecond laser after penetrating keratoplasty, in Femtosecond ... 6. Hafezi F, Iseli HP, Seiler T Automated anterior lamellar keratoplasty for the management of complications in refractive ...
The management of penetrating keratoplasty and glaucoma (PKPG) remains controversial mainly because of the high risk of graft ... Glaucoma following penetrating keratoplasty (PKP) is one of the most common causes for irreversible visual loss and the second ... encoded search term (Penetrating Keratoplasty and Glaucoma (PKPG)) and Penetrating Keratoplasty and Glaucoma (PKPG) What to ... Comparison of intraocular pressure post penetrating keratoplasty vs Descemets stripping endothelial keratoplasty. Can J ...
The simple observation reported in this paper⇓ was that, in patients who have undergone penetrating keratoplasty, the axis of ... and topographic determination of astigmatic axis on suture removal after penetrating keratoplasty. Br J Ophthalmol 84:837-841. ... and topography might occur as part of the natural evolution of the cornea after penetrating keratoplasty. This is correct but ... keratometric and topographic determination of astigmatic axis on suture removal after penetrating keratoplasty. Br J Ophthalmol ...
Deep anterior lamellar keratoplasty versus penetrating keratoplasty for treating keratoconus. Cochrane Database Syst Rev 2014: ... Deep anterior lamellar keratoplasty (DALK) and penetrating keratoplasty (PK) provide high mid-term graft survival and visual ... Refractive outcomes of penetrating keratoplasty and deep anterior lamellar keratoplasty in fellow eyes for keratoconus. Int ... Compared with penetrating keratoplasty (PK), deep anterior lamellar keratoplasty (DALK) presents several advantages that make ...
Penetrating Keratoplasty Surgery abroad in India info on cost Penetrating Keratoplasty Surgeons India,Penetrating Keratoplasty ... Penetrating Keratoplasty Surgery, Penetrating Keratoplasty India, India Cornea Care, Cornea Care, Penetrating Keratoplasty, ... Penetrating Keratoplasty Surgery, Penetrating Keratoplasty Surgery Hospitals India, Hospitals Of Penetrating Keratoplasty, Eye ... Home , Eye Surgery , Treatment Available , Cornea Transplant , Penetrating Keratoplasty. Penetrating Keratoplasty (PK). ...
Simultaneous amniotic membrane transplantation in emergency penetrating keratoplasty: a therapeutic option for severe corneal ...
Leflunomide therapy following penetrating keratoplasty in the rat. Sarah E. Coupland, Sonja Klebe, Anne Christine Karow, Lothar ... Leflunomide therapy following penetrating keratoplasty in the rat. / Coupland, Sarah E.; Klebe, Sonja; Karow, Anne Christine et ... Leflunomide therapy following penetrating keratoplasty in the rat. Graefes Archive For Clinical and Experimental Ophthalmology ... Leflunomide therapy following penetrating keratoplasty in the rat. In: Graefes Archive For Clinical and Experimental ...
Para pedir artículos agotados por favor contáctenos (+511) 692-3500 o [email protected]. ...
Penetrating Keratoplasty. Postoperative Care and Complications. The long-term success of a PK depends on appropriate ... Section 3, Penetrating Keratoplasty: Postoperative Management. In: Mannis MJ, Holland EJ, eds. Cornea. Vol 2. 4th ed. ... Figure 15-3 Slit-lamp photograph of primary donor failure after penetrating keratoplasty (PK).. ...
The management of penetrating keratoplasty and glaucoma (PKPG) remains controversial mainly because of the high risk of graft ... Glaucoma following penetrating keratoplasty (PKP) is one of the most common causes for irreversible visual loss and the second ... Endothelial Keratoplasty after Failed Penetrating Keratoplasty: An Alternative to Repeat Penetrating Keratoplasty. Am J ... encoded search term (Glaucoma and Penetrating Keratoplasty) and Glaucoma and Penetrating Keratoplasty What to Read Next on ...
Corneal Transplant or Keratoplasty or Penetrating Keratoplasty. Definition:. A cornea transplant or keratoplasty is a surgical ... Corneal Transplant or Keratoplasty or Penetrating Keratoplasty. By : angry-hypatiaon : July 15, 2019 comments : (Comments Off ... Traditional, full thickness cornea transplant also known as penetrating keratoplasty, or PK, involves replacement of a circular ... on Corneal Transplant or Keratoplasty or Penetrating Keratoplasty) ...
Suture abscesses after penetrating keratoplasty. Cornea 1993;12:489-492. 5. Vajpayee RB, Sharma N, Sinha R, et al. Infectious ... Microbial keratitis after penetrating keratoplasty: impact of sutures. Am J Ophthalmol 2011;152:189-194.e2. ... Bacterial keratitis after penetrating keratoplasty. Ophthalmology 1988;95:1504-1508. 14. Constantinou M, Jhanji V, Vajpayee RB ... Microbial keratitis complicating penetrating keratoplasty. Ophthalmology 1988;95:1269-1275. 11. Harris DJ Jr, Stulting RD, ...
Deep anterior lamellar keratoplasty versus penetrating keratoplasty for treating keratoconus. Overview of attention for article ...
... PubMed, SCI, Scopus, ESCI, PMC ... Keratoplasty surgery is a procedure in which the damaged cornea is replaced entirely (penetrating keratoplasty) or partially ( ... Alipour F, Behrouz MJ, Samet B. Mini-scleral lenses in the visual rehabilitation of patients after penetrating keratoplasty and ... Contact lenses and special back surface design after penetrating keratoplasty to improve contact lens fit and visual outcome. ...
Recurrence of posterior polymorphous corneal dystrophy after penetrating keratoplasty. S. A. Boruchoff, M. J. Weiner, D. M. ... Recurrence of posterior polymorphous corneal dystrophy after penetrating keratoplasty. / Boruchoff, S. A.; Weiner, M. J.; ... Recurrence of posterior polymorphous corneal dystrophy after penetrating keratoplasty. American journal of ophthalmology. 1990; ... title = "Recurrence of posterior polymorphous corneal dystrophy after penetrating keratoplasty",. abstract = "Recurrence of a ...
Penetrating Keratoplasty for Keratoconus in Vietnamese Patients Authors. * Le Xuan Cung Vietnam National Institute of ... Keratoconus, Penetrating keratoplasty, Donor-recipient disparity Abstract. BACKGROUND: Keratoconus is an ectatic corneal ... Up to now, penetrating keratoplasty (PK) remains the most common surgical procedure to treat severe keratoconus. In Vietnam, ... Penetrating Keratoplasty for Keratoconus in Vietnamese Patients. Open Access Maced J Med Sci [Internet]. 2019 Dec. 20 [cited ...
PURPOSE: Ocular hypertension is a potentially serious complication after penetrating keratoplasty (PKP). Our objective is to ...
Beckingsale P; Mavrikakis I; Al-Yousuf N; Mavrikakis E & Daya SM (June 2006). "Penetrating keratoplasty: outcomes from a ... Comer RM; Daya SM & OKeefe M (October 2001). "Penetrating keratoplasty in infants". Journal of American Association for ... Nanavaty MA, Daya SM (October 2012). "Outcomes of deep anterior lamellar keratoplasty in keratoconic eyes with previous hydrops ...
Keratoplasty - discharge; Penetrating keratoplasty - discharge; Lamellar keratoplasty - discharge; DSEK - discharge; DMEK - ... In one (penetrating or PK), most of the tissue of your cornea (the clear surface on the front of your eye) was replaced with ... In the other (lamellar or Descemet stripping and endothelial keratoplasty - DSEK), only the inner layers of the cornea are ...
Corneal Graft; Penetrating Keratoplasty; Endothelial Keratoplasty). By Melvin I. Roat , MD, FACS, Sidney Kimmel Medical College ... Use of a rigid corneal lens can result in earlier and better vision for many patients who have had penetrating keratoplasty. ... Graft rejection rates for penetrating keratoplasty are usually < 10% (eg, in patients with early bullous keratopathy), but they ... If transplantation involves the full thickness of the cornea (as in penetrating keratoplasty, or PKP), achievement of full ...
Penetrating Keratoplasty. Penetrating keratoplasty (PKP), also referred to as a corneal transplant or corneal graft, is the ...
Intervention: Penetrating keratoplasty combined with implantation of an iris-sutured posterior chamber intraocular lens ... Intervention: Penetrating keratoplasty combined with implantation of an iris-sutured posterior chamber intraocular lens ... Intervention: Penetrating keratoplasty combined with implantation of an iris-sutured posterior chamber intraocular lens ... Intervention: Penetrating keratoplasty combined with implantation of an iris-sutured posterior chamber intraocular lens ...
Since this initial description, vitreous wick syndrome has been reported to occur after penetrating keratoplasty, discission of ... reported as the etiologic agent in bacterial endophthalmitis associated with a vitreous wick after penetrating keratoplasty. ...
... presented case of a pseudophakic bullous keratopathy with descemets membrane detachment treated by penetrating keratoplasty ...
Refractive error management in patients with corneal ectasia post penetrating keratoplasty should aim to achieve a best- ... Case Study: Contact Lens Fitting in the Presence of Corneal Ectasia Post Penetrating Keratoplasty and Cataract Surgery ...
Watson SL, Ramsay A, Dart JKG, Bunce C, Craig E. Comparison of deep lamellar keratoplasty and penetrating keratoplasty in ... Watson SL, Ramsay A, Dart JKG, Bunce C, Craig E. Comparison of deep lamellar keratoplasty and penetrating keratoplasty in ... Globe rupture following penetrating keratoplasty: how often, why, and what can we do to prevent it? Cornea. 2004;23(8):776-780. ... Globe rupture following penetrating keratoplasty: how often, why, and what can we do to prevent it? Cornea. 2004;23(8):776-780. ...
Return to Article Details Comparison of penetrating keratoplasty versus lamellar keratoplasty for macular corneal dystrophy: a ...
Penetrating Keratoplasty in Infectious Keratitis. The webinar will be 45 minutes with an additional 15 minutes for Q&A live ... In certain cases, therapeutic keratoplasty is needed to control the disease or treat a perforation. In cases that can be ... This webinar will discuss the indications, techniques and outcomes of therapeutic keratoplasty in infectious keratitis. It will ... controlled medically, residual corneal scarring may require keratoplasty for optical reasons. ...
Penetrating Keratoplasty (PK) PK is another full-thickness transplant procedure in which the surgeon removes and replaces all ... Intralase Enabled Keratoplasty (IEK). IEK is a full-thickness transplant approach that utilizes a laser to prepare both the ... Descemets Stripping Endothelial Keratoplasty (DSEK). DSEK removes and replaces diseased tissue from the deepest of the three ... Descemets Membrane Endothelial Keratoplasty (DMEK). The DMEK procedure removes and replaces diseased tissue from the deepest ...
Ten patients had previously undergone failed penetrating keratoplasty. The mean follow-up time was 41.3 ± 5.5 months (range 36- ... Late numerical grading of alkali burns to determine keratoplasty prognosis. Trans Am Ophthalmol Soc. 1983;81:97-106. ... Clinical outcomes of penetrating keratoplastyafterautologouscultivatedlimbalepithelialtransplantation for ocular surface burns ...
  • Aims To compare the long-term outcomes of deep anterior lamellar keratoplasty (DALK) with penetrating keratoplasty (PK) in keratoconus. (bmj.com)
  • Deep anterior lamellar keratoplasty (DALK) and penetrating keratoplasty (PK) provide high mid-term graft survival and visual recovery in keratoconus eyes. (bmj.com)
  • Compared with penetrating keratoplasty (PK), deep anterior lamellar keratoplasty (DALK) presents several advantages that make it currently considered by many corneal surgeons as the first-choice surgical procedure in patients with keratoconus. (bmj.com)
  • Keratoplasty surgery is a procedure in which the damaged cornea is replaced entirely (penetrating keratoplasty) or partially (lamellar keratoplasty) with a donated corneal graft [1,2]. (fortunejournals.com)
  • in a corneal transplant technique known as deep anterior lamellar keratoplasty (DALK) the donated corneal tissue replaces the corneal stroma and epithelium only. (merckmanuals.com)
  • It can take up to two years for the eye to fully stabilize and vision to settle down after deep anterior lamellar keratoplasty (DALK). (health-tourism.com)
  • There have been many modifications of the penetrating keratoplasty technique over the decades in an attempt to reduce refractive error and astigmatism (both regular and irregular) after corneal transplantation, whether it is penetrating keratoplasty or deep anterior lamellar keratoplasty (which is often done for eyes with keratoconus). (medscape.com)
  • Some other common procedures for corneal transplant include Descemet membrane endothelial keratoplasty and Descemet stripping automated endothelial keratoplasty. (medscape.com)
  • Back layer cornea transplant also known as endothelial keratoplasty, or EK , involves the replacement of the abnormal inner lining of the cornea with a thin disc of donor tissue containing the healthy endothelial cell layer. (krishnaeyecentre.com)
  • Keratoconus was the main indication for keratoplasty (9 eyes, 40.9%), followed by corneal opacities (5 eyes), and Fuchs endothelial dystrophy (4 eyes). (fortunejournals.com)
  • The main indication for keratoplasty is keratoconus, followed by Fuchs endothelial dystrophy, pseudophakic bullous keratopathy, fungal keratitis, corneal scarring and others [2,3]. (fortunejournals.com)
  • In the other (lamellar or Descemet stripping and endothelial keratoplasty - DSEK), only the inner layers of the cornea are transplanted. (medlineplus.gov)
  • In corneal endothelium transplantation, there are 2 techniques: Descemet stripping endothelial keratoplasty (DSEK) and the newest technique, Descemet membrane endothelial keratoplasty (DMEK). (merckmanuals.com)
  • Develop a silk fibroin (SF)-based artificial endothelial graft for its use in a rabbit Descemet membrane endothelial keratoplasty (DMEK). (arvojournals.org)
  • To report the long-term outcomes of Descemet stripping automated endothelial keratoplasty (DSAEK). (nih.gov)
  • Descemet stripping automated endothelial keratoplasty (DSAEK, 46%, n = 5918) was the most commonly performed technique, followed by penetrating keratoplasty (30%, n = 3886) and Descemet membrane endothelial keratoplasty (9%, n = 1838). (lu.se)
  • Diseases surgical technique developed since the start of the involving the corneal endothelium can be controlled twentieth century for the realization of corneal with endothelial or penetrating keratoplasties, and transplantation (CT). (bvsalud.org)
  • Up to now, penetrating keratoplasty (PK) remains the most common surgical procedure to treat severe keratoconus. (oamjms.eu)
  • de Toledo JA, de la Paz MF, Barraquer RI, Barraquer J. Long-term progression of astigmatism after penetrating keratoplasty for keratoconus: evidence of late recurrence. (jamanetwork.com)
  • Investigators analyzed visual outcomes after cataract surgery and toric IOL implantation in eyes with keratoconus, a history of keratoplasty, or a history of pterygium excision. (crstoday.com)
  • Investigators evaluated the 1-year results of cataract surgery with toric IOL implantation in eyes with keratoconus, a history of keratoplasty, or a history of pterygium excision. (crstoday.com)
  • Eyes with keratoconus undergoing corneal transplantation have among the highest success rates as far as graft clarity and longevity of all eyes undergoing keratoplasty. (medscape.com)
  • They performed a fairly standard corneal crosslinking procedure on donor tissue and used it in a randomized fashion, comparing it with noncrosslinked donor tissue for penetrating keratoplasties in eyes with keratoconus. (medscape.com)
  • While 3 years may seem like a long-term study, it really is not that long in these eyes, as the expected longevity of penetrating keratoplasties for keratoconus is on the order of decades. (medscape.com)
  • While this study was on transplants in eyes with keratoconus, my guess is that the encouraging results might hold true for all penetrating keratoplasties. (medscape.com)
  • DSAEK was performed for Fuchs corneal dystrophy, pseudophakic or aphakic bullous keratopathy, or failed penetrating keratoplasty (PKP). (nih.gov)
  • [ 3 ] Thus, the management of penetrating keratoplasty and glaucoma (PKPG) remains controversial mainly because of the high risk for graft failure associated with the treatment. (medscape.com)
  • Glaucoma following penetrating keratoplasty (PKP) is one of the most common causes for irreversible visual loss and the second leading cause for graft failure after rejection. (medscape.com)
  • The management of penetrating keratoplasty and glaucoma (PKPG) remains controversial mainly because of the high risk of graft failure associated with the treatment. (medscape.com)
  • Preexisting clinical conditions for penetrating keratoplasty were found, such as changes in vascularization, glaucoma, previous surgery, aphakic and pseudophakic eyes and keratoplasties combined with other types of surgeries. (bvsalud.org)
  • To analyse the efficacy and patient satisfaction of fitting a mini-scleral lens (SL) after keratoplasty surgery in patients unsatisfied with their visual outcomes. (fortunejournals.com)
  • Despite good graft clarity that can be achieved after keratoplasty, some patients can still present unsatisfactory visual outcomes. (fortunejournals.com)
  • Purpose: To evaluate the long-term outcomes of combined penetrating keratoplasty with iris-sutured posterior chamber intraocular lens implantation. (johnshopkins.edu)
  • This webinar will discuss the indications, techniques and outcomes of therapeutic keratoplasty in infectious keratitis. (uic.edu)
  • Clinical outcomes of penetrating keratoplastyafterautologouscultivatedlimbalepithelialtransplantation for ocular surface burns. (springer.com)
  • Both groups underwent the same penetrating keratoplasty technique and postoperative care. (medscape.com)
  • There are several surgical approaches to cornea transplants (known as corneal keratoplasty). (assileye.com)
  • The management of post-keratoplasty astigmatism remains an important subject and further work is needed. (bmj.com)
  • Endophthalmitis after penetrating keratoplasty. (aao.org)
  • Participants in this study undergo either an unprotected or protected partial penetrating keratoplasty to treat chronic pseudophakic corneal edema. (who.int)
  • Ocular hypertension is a potentially serious complication after penetrating keratoplasty (PKP). (glaucoma.org.il)
  • Knowledge of the clinical profile of patients who underwent penetrating keratoplasty enabled identification of the main ocular diagnoses that result in this type of transplant as a therapeutic indication. (bvsalud.org)
  • A cornea transplant or keratoplasty is a surgical procedure that replaces the diseased or scarred corneal tissue with healthy corneal tissue from an organ donor. (krishnaeyecentre.com)
  • The surgical procedure involves general anesthesia, insertion of a lid speculum, application of a Flieringa scleral fixation ring, corneal incisions and keratoplasty. (who.int)
  • Intervention: Penetrating keratoplasty combined with implantation of an iris-sutured posterior chamber intraocular lens performed by a single surgeon. (johnshopkins.edu)
  • Conclusions: Combined penetrating keratoplasty with iris-sutured posterior chamber intraocular lens implantation offers significant vision benefits in this patient group. (johnshopkins.edu)
  • This procedure is called a KERATOPLASTY and, for many people, it improves vision, lessens pain, and increases their quality of life. (assileye.com)
  • Retropupillaire fixatie maakt een gemakkelijke en snelle procedure mogelijk. (ophtec.com)
  • Penetrating keratoplasty (PK) was the first or subsequent procedure will be indicated. (bvsalud.org)
  • If transplantation involves the full thickness of the cornea (as in penetrating keratoplasty, or PKP), achievement of full visual potential may take up to 18 months because of changing refraction with wound healing and after suture removal. (merckmanuals.com)
  • This is an epidemiological, cross-sectional, descriptive study performed using data from medical records of 241 patients who underwent keratoplasty between January/2010 and December/2014. (bvsalud.org)
  • Often patients who have had a penetrating keratoplasty require glasses or contact lenses for visual correction. (indiahospitaltour.com)
  • Other factors that are peculiar to patients who have undergone keratoplasty exist. (medscape.com)
  • Refractive error management in patients with corneal ectasia post penetrating keratoplasty should aim to achieve a best-corrected visual acuity better than 6/12. (noajournal.org)
  • Ten patients had previously undergone failed penetrating keratoplasty. (springer.com)
  • The goal of using a KPro is to attempt to restore vision in patients who would otherwise have a very poor prognosis with penetrating keratoplasty. (hindawi.com)
  • With the development of new surgical techniques, instrumentation and pharmacological advances, corneal transplant procedures can undergo changes directly in the clinical profile of patients with the indication for penetrating keratoplasty technique. (bvsalud.org)
  • Late numerical grading of alkali burns to determine keratoplasty prognosis. (springer.com)
  • From the total keratoplasties performed in the hospital during the study period, 88.37% were carried out by penetrating technique. (bvsalud.org)
  • From this, it is possible to point out the main pre-existing medical conditions of penetrating keratoplasty that may represent potential risk factors for complications in the postoperative period and even lead to graft failure. (bvsalud.org)
  • Olson and Kaufman, using a mathematical model, proposed that the elevated IOP following keratoplasty in an aphakic patient might be the result of angle distortion secondary to a roll of excess compressed tissue in the angle. (medscape.com)
  • In certain cases, therapeutic keratoplasty is needed to control the disease or treat a perforation. (uic.edu)
  • In one (penetrating or PK), most of the tissue of your cornea (the clear surface on the front of your eye) was replaced with tissue from a donor. (medlineplus.gov)
  • Recurrence of a corneal dystrophy after keratoplasty can occur in multiple dystrophies, including macular, granular, and lattice dystrophies. (elsevierpure.com)
  • Has been used for prophylaxis after penetrating keratoplasty for herpetic keratitis. (drugs.com)
  • Traditional, full thickness cornea transplant also known as penetrating keratoplasty, or PK , involves replacement of a circular central portion of the diseased cornea with matching circular central portion of healthy, clear donor cornea using sutures. (krishnaeyecentre.com)
  • Histologic examination of the keratoplasty specimen showed changes typical of posterior polymorphous dystrophy. (elsevierpure.com)
  • Previous studies have described different types of rigid gas-permeable lenses (corneal, semi-scleral, and mini or large scleral lenses) fitted on eyes after keratoplasty [6-23]. (fortunejournals.com)
  • E ditor ,-We read with interest the article by Sarhan et al 1 on the effect of disagreement between refractive, keratometric, and topographic determination of astigmatic axis on suture removal after penetrating keratoplasty. (bmj.com)
  • 2000 ) Effect of disagreement between refractive, keratometric, and topographic determination of astigmatic axis on suture removal after penetrating keratoplasty. (bmj.com)
  • Section 3, Penetrating Keratoplasty: Postoperative Management. (aao.org)