Keratinocytes
Epidermis
Skin
Cells, Cultured
Keratins
Psoriasis
Ultraviolet Rays
Keratin-10
Keratin-14
Cell Differentiation
Skin, Artificial
Hair Follicle
Melanocytes
RNA, Messenger
Skin Physiological Phenomena
Oncogene Proteins, Viral
Cell Line, Transformed
Cell Division
Papillomavirus E7 Proteins
Papillomaviridae
Mouth Mucosa
Fibroblasts
Dermis
Desmosomes
Gene Expression
Gene Expression Regulation
Transglutaminases
Papilloma
Signal Transduction
Pemphigus
Apoptosis
Cell Movement
Fibroblast Growth Factor 7
Desmoglein 3
Hemidesmosomes
Hair
Up-Regulation
Dermatitis, Atopic
Intermediate Filament Proteins
Keratolytic Agents
Keratin-1
Sebaceous Glands
Immunohistochemistry
Non-Fibrillar Collagens
Skin Transplantation
Integrin beta4
Carcinoma, Squamous Cell
Acantholysis
Mice, Transgenic
Tetradecanoylphorbol Acetate
Promoter Regions, Genetic
Transfection
Calcium
Langerhans Cells
Cell Transformation, Neoplastic
Epidermolysis Bullosa Simplex
Human papillomavirus 16
Epithelium
Caspase 14
Coculture Techniques
Reverse Transcriptase Polymerase Chain Reaction
9,10-Dimethyl-1,2-benzanthracene
Epidermal Growth Factor
Blotting, Western
Pemphigus, Benign Familial
Desmoplakins
Cell Survival
DNA-Binding Proteins
Transcription Factors
Keratin-15
Keratin-17
Epidermolysis Bullosa, Junctional
Keratin-5
Base Sequence
Transcription, Genetic
Molecular Sequence Data
Down-Regulation
Phosphorylation
Integrin alpha6
Ichthyosis, Lamellar
Repressor Proteins
Desmogleins
Skin Aging
Interleukin-8
Epithelial Cells
Tumor Suppressor Protein p53
Dermatitis, Allergic Contact
Mice, Knockout
Enzyme Activation
Fluorescent Antibody Technique
Differential regulation of the human nidogen gene promoter region by a novel cell-type-specific silencer element. (1/6758)
Transfection analyses of the human nidogen promoter region in nidogen-producing fibroblasts from adult skin revealed multiple positive and negative cis-acting elements controlling nidogen gene expression. Characterization of the positive regulatory domains by gel mobility-shift assays and co-transfection studies in Drosophila SL2 cells unequivocally demonstrated that Sp1-like transcription factors are essential for a high expression of the human nidogen gene. Analysis of the negative regulatory domains identified a novel silencer element between nt -1333 and -1322, which is bound by a distinct nuclear factor, by using extracts from adult but not from embryonal fibroblasts. In embryonal fibroblasts, which express significantly higher amounts of nidogen mRNA as compared with adult fibroblasts, this inhibitory nidogen promoter region did not affect nidogen and SV40 promoter activities. The silencer element seems to be active only in nidogen-producing cells. Therefore this regulatory element might function in vivo to limit nidogen gene expression in response to external stimuli. However, none of the identified regulatory elements, including the silencer, contribute significantly to cell-specific expression of the human nidogen gene. Instead we provide evidence that gene expression in epidermal keratinocytes that are not producing nidogen is repressed by methylation-specific and chromatin-dependent mechanisms. (+info)The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. (2/6758)
Transforming growth factor beta (TGF beta) family members are secreted in inactive complexes with a latency-associated peptide (LAP), a protein derived from the N-terminal region of the TGF beta gene product. Extracellular activation of these complexes is a critical but incompletely understood step in regulation of TGF beta function in vivo. We show that TGF beta 1 LAP is a ligand for the integrin alpha v beta 6 and that alpha v beta 6-expressing cells induce spatially restricted activation of TGF beta 1. This finding explains why mice lacking this integrin develop exaggerated inflammation and, as we show, are protected from pulmonary fibrosis. These data identify a novel mechanism for locally regulating TGF beta 1 function in vivo by regulating expression of the alpha v beta 6 integrin. (+info)Murine matrix metalloproteinase 9 gene. 5'-upstream region contains cis-acting elements for expression in osteoclasts and migrating keratinocytes in transgenic mice. (3/6758)
Knowledge about the regulation of cell lineage-specific expression of extracellular matrix metalloproteinases is limited. In the present work, the murine matrix metalloproteinase 9 (MMP-9) gene was shown to contain 13 exons, and the 2.8-kilobase pair upstream region was found to contain several common promoter elements including a TATA box-like motif, three GC boxes, four AP-1-like binding sites, an AP-2 site, and three PEA3 consensus sequences that may be important for basic activity of the gene. In order to identify cell-specific regulatory elements, constructs containing varying lengths of the upstream region in front of a LacZ reporter gene were made and studied for expression in transgenic mice generated by microinjection into fertilized oocytes. Analyses of the mice revealed that the presence of sequences between -2722 and -7745 allowed for expression in osteoclasts and migrating keratinocytes, i. e. cells that have been shown to normally express the enzyme in vivo. The results represent the first in vivo demonstration of the location of cell-specific control elements in a matrix metalloproteinase gene and show that element(s) regulating most cell-specific activities of 92-kDa type collagenase are located in the -2722 to -7745 base pair region. (+info)The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. (4/6758)
The L1 major capsid protein of human papillomavirus (HPV) type 11, a 55-kDa polypeptide, forms particulate structures resembling native virus with an average particle diameter of 50-60 nm when expressed in the yeast Saccharomyces cerevisiae. We show in this report that these virus-like particles (VLPs) interact with heparin and with cell-surface glycosaminoglycans (GAGs) resembling heparin on keratinocytes and Chinese hamster ovary cells. The binding of VLPs to heparin is shown to exhibit an affinity comparable to that of other identified heparin-binding proteins. Immobilized heparin chromatography and surface plasmon resonance were used to show that this interaction can be specifically inhibited by free heparin and dextran sulfate and that the effectiveness of the inhibitor is related to its molecular weight and charge density. Sequence comparison of nine human L1 types revealed a conserved region of the carboxyl terminus containing clustered basic amino acids that bear resemblance to proposed heparin-binding motifs in unrelated proteins. Specific enzymatic cleavage of this region eliminated binding to both immobilized heparin and human keratinocyte (HaCaT) cells. Removal of heparan sulfate GAGs on keratinocytes by treatment with heparinase or heparitinase resulted in an 80-90% reduction of VLP binding, whereas treatment of cells with laminin, a substrate for alpha6 integrin receptors, provided minimal inhibition. Cells treated with chlorate or substituted beta-D-xylosides, resulting in undersulfation or secretion of GAG chains, also showed a reduced affinity for VLPs. Similarly, binding of VLPs to a Chinese hamster ovary cell mutant deficient in GAG synthesis was shown to be only 10% that observed for wild type cells. This report establishes for the first time that the carboxyl-terminal portion of HPV L1 interacts with heparin, and that this region appears to be crucial for interaction with the cell surface. (+info)C5a receptor and interleukin-6 are expressed in tissue macrophages and stimulated keratinocytes but not in pulmonary and intestinal epithelial cells. (5/6758)
The anaphylatoxin derived from the fifth component of the human complement system (C5a) mediates its effects by binding to a single high-affinity receptor (C5aR/CD88), the expression of which has been traditionally thought to be restricted to granulocytes, monocytes, macrophages (Mphi), and cell lines of myeloid origin. Recent immunohistochemical data suggested that human bronchial and alveolar cells express C5aR as well. To reexamine the tissue distribution of human C5aR expression, transcription of the C5aR gene was investigated in normal and pathologically affected human lung (bronchopneumonia, tuberculosis), large intestine (acute appendicitis, Crohn's disease), and skin (pyogenic granuloma, lichen planus) using in situ hybridization. In contrast to previous evidence, C5aR mRNA could not be detected in pulmonary or intestinal epithelial cells, whereas keratinocytes in inflamed but not in normal skin revealed detectable levels of C5aR transcripts. Additionally, it could be documented that only migrating Mphi express C5aR mRNA, whereas sessile Mphi in normal tissues and epithelioid/multinucleated Mphi found in granulomatous lesions do not. Because C5a has been demonstrated to upregulate the expression of interleukin (IL)-6 in human monocytes, we also studied IL-6 gene transcription in parallel to the C5aR. IL-6 mRNA was detectable in many tissue Mphi. Surprisingly, a tight co-expression of C5aR and IL-6 mRNA was observed in keratinocytes from lesions of pyogenic granuloma and lichen planus. These results point to an as yet unknown role for C5a in the pathogenesis of skin disorders beyond its well-defined function as a chemoattractant and activator of leukocytes. (+info)CCAAT/enhancer-binding proteins. A role in regulation of human involucrin promoter response to phorbol ester. (6/6758)
The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is a potent inducer of keratinocyte differentiation and of involucrin gene expression. In the present study we show that a CCAAT/enhancer-binding protein (C/EBP) site in the proximal regulatory region is required for the phorbol ester response. Mutation of the C/EBP site results in the loss of basal and TPA-responsive activity. Gel mobility supershift analysis shows that C/EBPalpha binding to this site is increased by TPA treatment. Moreover, cotransfection of the human involucrin reporter plasmid with C/EBPalpha increases promoter activity to an extent comparable with TPA treatment. Mutation of the C/EBP-binding site eliminates these responses. Transfection experiments using GADD153 to create C/EBP-null conditions confirm that C/EBP factors are absolutely required for promoter activity and TPA responsiveness. C/EBPbeta and C/EBPdelta inhibit both TPA- and C/EBPalpha-dependent promoter activation, indicating functional differences among C/EBP family members. These results suggest that C/EBP transcription factor activity is necessary for basal promoter activity and TPA response of the involucrin gene. (+info)UV-A-induced decrease in nuclear factor-kappaB activity in human keratinocytes. (7/6758)
Previous reports have demonstrated an increase in nuclear factor-kappaB (NF-kappaB) activity in response to UV radiation. These studies have essentially focused on the DNA-damaging fraction of solar UV radiation (UV-B and UV-C). In contrast, the effects of UV-A radiation (320-400 nm) on NF-kappaB are not well known. In this study, we present evidence that UV-A radiation induces a marked decrease in NF-kappaB DNA-binding activity in NCTC 2544 human keratinocytes. In addition, NCTC 2544 keratinocytes pretreated with UV-A fail to respond to NF-kappaB inducers. Moreover, UV-A radiation induces a decrease in NF-kappaB-driven luciferase reporter gene expression in NCTC 2544 keratinocytes. The expression of the gene encoding IkappaBalpha (IkappaB is the NF-kappaB inhibitor), which is closely associated with NF-kappaB activity, is also reduced (3-fold) upon UV-A treatment. Our results indicate that the UV-A-induced decrease in NF-kappaB DNA-binding activity is associated with a decrease in the levels of the p50 and p65 protein subunits. This is the first evidence that an oxidative stress, such as UV-A radiation, may induce a specific decrease in NF-kappaB activity in mammalian cells, probably through degradation of NF-kappaB protein subunits. These findings suggest that UV-A could modulate the NF-kappaB-dependent gene expression. (+info)Psoriatic keratinocytes show reduced IRF-1 and STAT-1alpha activation in response to gamma-IFN. (8/6758)
Psoriasis is a chronic inflammatory dermatosis characterized by hyperproliferative keratinocytes (KC). The skin lesions are infiltrated by T cells, which secrete gamma interferon (gamma-IFN) and are believed to be necessary to maintain the psoriatic phenotype. In normal KC, gamma-IFN is a potent inhibitor of proliferation, but proliferation of KC persists in psoriatic plaques despite the presence of gamma-IFN. Immunostaining of interferon regulatory factor-1 (IRF-1) revealed that IRF-1 was localized to the basal cells of the epidermis in normal and in nonlesional psoriatic skin, but was suprabasal or completely absent in lesional psoriatic skin. This finding led to the hypothesis that abnormal signaling in the gamma-IFN pathway may occur in psoriatic KC. To test this hypothesis, we measured activation of IRF-1 and signal transducer and activator of transcription (STAT)-1alpha transcription factors in KC after stimulation with gamma-IFN. Primary cultures of KC from normal and nonlesional psoriatic skin were stimulated with gamma-IFN and subsequent transcription factor activation was measured by electrophoretic mobility shift assay. Psoriatic KC showed a reduced induction of IRF-1 and STAT-1alpha activation after stimulation with gamma-IFN, compared with normal KC. Reduced activation of IRF-1 and STAT-1alpha in response to gamma-IFN indicates a fundamental defect in the growth and differentiation control of psoriatic KC in the absence of the influence of other cell types. (+info)Psoriasis can affect any part of the body, including the scalp, elbows, knees, and lower back. The symptoms of psoriasis can vary in severity, and the condition can have a significant impact on quality of life. In addition to physical discomfort, psoriasis can also cause emotional distress and stigma.
There is no cure for psoriasis, but there are several treatment options available, including topical creams and ointments, light therapy, and systemic medications such as biologic drugs. With proper treatment, many people with psoriasis are able to manage their symptoms and improve their quality of life.
Psoriasis is relatively common, affecting approximately 2-3% of the global population, with a higher prevalence in Caucasians than in other races. It can occur at any age, but typically starts in the late teenage years or early adulthood. Psoriasis is often associated with other health conditions, such as diabetes, heart disease, and depression.
Overall, psoriasis is a complex and multifactorial condition that requires a comprehensive approach to management, including both physical and emotional support. With appropriate treatment and self-care, people with psoriasis can lead full and active lives.
There are several types of dermatitis, including:
1. Atopic dermatitis: a chronic condition characterized by dry, itchy skin and a tendency to develop allergies.
2. Contact dermatitis: a localized reaction to an allergen or irritant that comes into contact with the skin.
3. Seborrheic dermatitis: a condition characterized by redness, itching, and flaking skin on the scalp, face, or body.
4. Psoriasis: a chronic condition characterized by thick, scaly patches on the skin.
5. Cutaneous lupus erythematosus: a chronic autoimmune disorder that can cause skin rashes and lesions.
6. Dermatitis herpetiformis: a rare condition characterized by itchy blisters or rashes on the skin.
Dermatitis can be diagnosed through a physical examination, medical history, and sometimes laboratory tests such as patch testing or biopsy. Treatment options for dermatitis depend on the cause and severity of the condition, but may include topical creams or ointments, oral medications, phototherapy, or lifestyle changes such as avoiding allergens or irritants.
There are several types of skin neoplasms, including:
1. Basal cell carcinoma (BCC): This is the most common type of skin cancer, and it usually appears as a small, fleshy bump or a flat, scaly patch. BCC is highly treatable, but if left untreated, it can grow and invade surrounding tissue.
2. Squamous cell carcinoma (SCC): This type of skin cancer is less common than BCC but more aggressive. It typically appears as a firm, flat, or raised bump on sun-exposed areas. SCC can spread to other parts of the body if left untreated.
3. Melanoma: This is the most serious type of skin cancer, accounting for only 1% of all skin neoplasms but responsible for the majority of skin cancer deaths. Melanoma can appear as a new or changing mole, and it's essential to recognize the ABCDE signs (Asymmetry, Border irregularity, Color variation, Diameter >6mm, Evolving size, shape, or color) to detect it early.
4. Sebaceous gland carcinoma: This rare type of skin cancer originates in the oil-producing glands of the skin and can appear as a firm, painless nodule on the forehead, nose, or other oily areas.
5. Merkel cell carcinoma: This is a rare and aggressive skin cancer that typically appears as a firm, shiny bump on the skin. It's more common in older adults and those with a history of sun exposure.
6. Cutaneous lymphoma: This type of cancer affects the immune system and can appear as a rash, nodules, or tumors on the skin.
7. Kaposi sarcoma: This is a rare type of skin cancer that affects people with weakened immune systems, such as those with HIV/AIDS. It typically appears as a flat, red or purple lesion on the skin.
While skin cancers are generally curable when detected early, it's important to be aware of your skin and notice any changes or unusual spots, especially if you have a history of sun exposure or other risk factors. If you suspect anything suspicious, see a dermatologist for an evaluation and potential biopsy. Remember, prevention is key to avoiding the harmful effects of UV radiation and reducing your risk of developing skin cancer.
Some common types of skin diseases include:
1. Acne: a condition characterized by oil clogged pores, pimples, and other blemishes on the skin.
2. Eczema: a chronic inflammatory skin condition that causes dry, itchy, and scaly patches on the skin.
3. Psoriasis: a chronic autoimmune skin condition characterized by red, scaly patches on the skin.
4. Dermatitis: a term used to describe inflammation of the skin, often caused by allergies or irritants.
5. Skin cancer: a type of cancer that affects the skin cells, often caused by exposure to UV radiation from the sun or tanning beds.
6. Melanoma: the most serious type of skin cancer, characterized by a mole that changes in size, shape, or color.
7. Vitiligo: a condition in which white patches develop on the skin due to the loss of pigment-producing cells.
8. Alopecia: a condition characterized by hair loss, often caused by autoimmune disorders or genetics.
9. Nail diseases: conditions that affect the nails, such as fungal infections, brittleness, and thickening.
10. Mucous membrane diseases: conditions that affect the mucous membranes, such as ulcers, inflammation, and cancer.
Skin diseases can be diagnosed through a combination of physical examination, medical history, and diagnostic tests such as biopsies or blood tests. Treatment options vary depending on the specific condition and may include topical creams or ointments, oral medications, light therapy, or surgery.
Preventive measures to reduce the risk of skin diseases include protecting the skin from UV radiation, using sunscreen, wearing protective clothing, and avoiding exposure to known allergens or irritants. Early detection and treatment can help prevent complications and improve outcomes for many skin conditions.
Papillomas can occur anywhere on the body, but they are most commonly found on the face, neck, and scalp. They may appear as small bumps or growths that look like a wart. In some cases, papillomas may be associated with human papillomavirus (HPV) infection.
Papillomas are typically diagnosed through a physical examination of the affected area. In some cases, a biopsy may be performed to confirm the diagnosis and rule out other potential causes. Treatment for papillomas usually involves removal of the growth through a minor surgical procedure or cryotherapy (freezing).
Papillomas are not cancerous and do not typically pose any long-term health risks. However, they may be unsightly and can cause psychological distress for some people. In these cases, treatment may be sought for cosmetic reasons. It is important to note that papillomas should not be confused with squamous cell carcinoma, a type of skin cancer that can resemble a papilloma in appearance but has the potential to be more aggressive and harmful.
There are several types of pemphigus, including:
1. Pemphigus vulgaris: This is the most common form of the disease and is characterized by the formation of large, painful blisters on the skin and mucous membranes.
2. Pemphigus foliaceus: This type of pemphigus is characterized by the formation of smaller, crusting sores on the skin.
3. Pemphigus erythematosus: This type of pemphigus is characterized by the formation of flat, red sores on the skin.
4. Bullous pemphigoid: This is a rare form of pemphigus that is characterized by the formation of large, fluid-filled blisters on the skin.
Treatment for pemphigus typically involves the use of corticosteroids and immunosuppressive drugs to reduce inflammation and suppress the immune system. In severe cases, hospitalization may be necessary to manage complications such as infection and fluid loss.
Prevention of pemphigus is difficult, but avoiding exposure to known triggers such as certain medications and taking steps to maintain good skin care can help reduce the risk of developing the disease. Early diagnosis and treatment are important to prevent complications and improve outcomes for patients with pemphigus.
Blisters are caused by friction or rubbing against a surface, which causes the top layer of skin to separate from the underlying layer. This separation creates a space that fills with fluid, forming a blister. Blisters can also be caused by burns, chemical exposure, or other types of injury.
There are different types of blisters, including:
1. Friction blisters: These are the most common type of blister and are caused by friction or rubbing against a surface. They are often seen on the hands, feet, and buttocks.
2. Burn blisters: These are caused by burns and can be more severe than friction blisters.
3. Chemical blisters: These are caused by exposure to chemicals and can be very painful.
4. Blisters caused by medical conditions: Certain medical conditions, such as epidermolysis bullosa (a genetic disorder that affects the skin), can cause blisters to form easily.
Blisters can be treated in several ways, depending on their size and location. Small blisters may not require treatment and can heal on their own within a few days. Larger blisters may need to be drained and covered with a bandage to prevent infection. In severe cases, surgical intervention may be necessary.
Preventing blisters is key to avoiding the discomfort and pain they can cause. To prevent blisters, it is important to:
1. Wear properly fitting shoes and clothing to reduce friction.
2. Use lubricating creams or powders to reduce friction.
3. Take regular breaks to rest and allow the skin to recover.
4. Avoid using harsh chemicals or detergents that can cause irritation.
5. Keep the affected area clean and dry to prevent infection.
In conclusion, blisters are a common and uncomfortable condition that can be caused by a variety of factors. While they can be treated and managed, prevention is key to avoiding the discomfort and pain they can cause. By taking steps to prevent blisters and seeking medical attention if they do occur, individuals can reduce their risk of developing this uncomfortable condition.
Also known as eczema or atopic eczema.
Dermatitis, Atopic is a common condition that affects people of all ages but is most prevalent in children. It is often associated with other atopic conditions such as asthma and allergies. The exact cause of dermatitis, atopic is not known, but it is thought to involve a combination of genetic and environmental factors.
Symptoms of Dermatitis, Atopic:
* Redness and dryness of the skin
* Scaling and flaking of the skin
* Itching and burning sensations
* Thickening and pigmentation of the skin
* Small blisters or weeping sores
Atopic dermatitis can occur anywhere on the body but is most commonly found on the face, neck, hands, and feet.
Treatment for Dermatitis, Atopic:
* Moisturizers to keep the skin hydrated and reduce dryness
* Topical corticosteroids to reduce inflammation
* Antihistamines to relieve itching
* Phototherapy with ultraviolet light
* Oral immunomodulators for severe cases
It is important to note that dermatitis, atopic is a chronic condition, and treatment should be ongoing. Flare-ups may occur, and adjustments to the treatment plan may be necessary.
Prevention of Dermatitis, Atopic:
* Avoiding triggers such as soaps, detergents, and stress
* Keeping the skin well-moisturized
* Avoiding extreme temperatures and humidity
* Wearing soft, breathable clothing
* Using mild cleansers and avoiding harsh chemicals
Early diagnosis and treatment of dermatitis, atopic can help improve the quality of life for those affected. It is important to work with a healthcare professional to develop an appropriate treatment plan and manage symptoms effectively.
SCC typically appears as a firm, flat, or raised bump on the skin, and may be pink, red, or scaly. The cancer cells are usually well-differentiated, meaning they resemble normal squamous cells, but they can grow rapidly and invade surrounding tissues if left untreated.
SCC is more common in fair-skinned individuals and those who spend a lot of time in the sun, as UV radiation can damage the skin cells and increase the risk of cancer. The cancer can also spread to other parts of the body, such as lymph nodes or organs, and can be life-threatening if not treated promptly and effectively.
Treatment for SCC usually involves surgery to remove the cancerous tissue, and may also include radiation therapy or chemotherapy to kill any remaining cancer cells. Early detection and treatment are important to improve outcomes for patients with SCC.
Acantholysis is caused by a variety of factors, including genetic mutations, autoimmune disorders, and exposure to certain medications or chemicals. It can affect any area of the body, but it most commonly occurs on the skin of the face, neck, and hands.
The symptoms of acantholysis can vary depending on the underlying cause of the condition. Common symptoms include:
* Thin, fragile skin that is prone to tearing or breaking
* Formation of small, flat scars or lesions on the skin
* Skin that is sensitive to touch or pressure
* Redness and inflammation around the affected area
Acantholysis can be diagnosed through a combination of physical examination, medical history, and laboratory tests. Treatment for acantholysis depends on the underlying cause of the condition and may include topical medications, oral medications, or injectable treatments. In severe cases, surgery may be necessary to repair damaged skin tissue.
Preventing acantholysis can be challenging, but there are some steps that can help reduce the risk of developing the condition. These include:
* Avoiding exposure to harsh chemicals or medications
* Protecting the skin from excessive sun exposure and using sunscreen when necessary
* Using gentle skincare products and avoiding scrubbing or rubbing the skin excessively
* Managing underlying medical conditions, such as autoimmune disorders or hormonal imbalances, that can contribute to acantholysis.
Overall, acantholysis is a rare and complex condition that requires careful diagnosis and management to prevent complications and improve quality of life for individuals affected by the condition.
Explanation: Neoplastic cell transformation is a complex process that involves multiple steps and can occur as a result of genetic mutations, environmental factors, or a combination of both. The process typically begins with a series of subtle changes in the DNA of individual cells, which can lead to the loss of normal cellular functions and the acquisition of abnormal growth and reproduction patterns.
Over time, these transformed cells can accumulate further mutations that allow them to survive and proliferate despite adverse conditions. As the transformed cells continue to divide and grow, they can eventually form a tumor, which is a mass of abnormal cells that can invade and damage surrounding tissues.
In some cases, cancer cells can also break away from the primary tumor and travel through the bloodstream or lymphatic system to other parts of the body, where they can establish new tumors. This process, known as metastasis, is a major cause of death in many types of cancer.
It's worth noting that not all transformed cells will become cancerous. Some forms of cellular transformation, such as those that occur during embryonic development or tissue regeneration, are normal and necessary for the proper functioning of the body. However, when these transformations occur in adult tissues, they can be a sign of cancer.
See also: Cancer, Tumor
Word count: 190
There are three main types of EBS, each with different severity and symptoms:
1. Epidermolysis Bullosa Simplex (EBS) - the mildest form, characterized by minor skin blistering and scarring.
2. Epidermolysis Bullosa Junctional (EBJ) - a more severe form, involving the skin and mucous membranes, with more extensive blistering and scarring.
3. Epidermolysis Bullosa Dystrophic (EBD) - the most severe form, with widespread blistering, scarring, and disfigurement, as well as a high risk of squamous cell carcinoma.
EBS is caused by mutations in one of several genes that are responsible for creating proteins important for skin strength and stability. The disorder is usually inherited in an autosomal dominant pattern, meaning that a single copy of the mutated gene is enough to cause the condition.
Treatment for EBS typically focuses on managing symptoms and preventing complications, such as infection and scarring. This may include:
1. Wound care - keeping wounds clean and covered to promote healing and prevent infection.
2. Pain management - using medication to manage pain associated with blistering and scarring.
3. Physical therapy - exercises and stretches to improve joint mobility and reduce the risk of contractures.
4. Phototherapy - exposure to specific wavelengths of light to help heal skin and reduce inflammation.
5. Surgery - in severe cases, surgery may be necessary to remove scar tissue or repair damaged skin.
There is currently no cure for EBS, but researchers are working to develop new treatments and therapies to improve quality of life for people with the disorder.
1. Alopecia areata: This is an autoimmune disorder that causes patchy hair loss on the scalp or body.
2. Androgenetic alopecia (male pattern baldness): This is a common condition in which men experience hair loss due to hormonal changes.
3. Telogen effluvium: This is a condition where there is an increase in the number of hair follicles that stop growing and enter the resting phase, leading to excessive hair shedding.
4. Alopecia totalis: This is a condition where all hair on the scalp is lost, including eyebrows and lashes.
5. Alopecia universalis: This is a condition where all body hair is lost.
Alopecia can be caused by a variety of factors, including genetics, hormonal imbalances, autoimmune disorders, and certain medications. Treatment options for alopecia depend on the underlying cause and may include medications, hair transplantation, or other therapies.
In medical literature, alopecia is often used as a term to describe the loss of hair in specific contexts, such as in the treatment of cancer patients or in the management of autoimmune disorders. It is also used to describe the side effects of certain medications, such as chemotherapy drugs that can cause hair loss.
The symptoms of BFP typically appear in early adulthood and can include:
* Blisters and sores on the skin and mucous membranes
* Pain and discomfort
* Scarring and disfigurement
* Difficulty swallowing (in severe cases)
BFP is diagnosed through a combination of clinical evaluation, family history, and genetic testing. Treatment for the condition typically involves managing the symptoms and preventing complications. This may include:
* Topical medications to reduce inflammation and promote healing
* Oral medications to suppress the immune system and prevent further blistering
* Physical therapy to improve mobility and reduce pain
While there is no cure for BFP, early diagnosis and appropriate treatment can help to manage the symptoms and improve quality of life. The condition is typically inherited in an autosomal dominant pattern, which means that a single copy of the mutated gene is enough to cause the condition. However, some cases may be caused by spontaneous mutations rather than inheritance.
Junctional EB (JEB) is a type of EB that affects the space between cells in the skin, known as the basement membrane zone. This condition is caused by mutations in the genes that encode proteins involved in the structure and function of the basement membrane.
Symptoms of JEB typically appear at birth or in early childhood and may include:
* Skin blisters and sores, often on the hands, feet, and other areas exposed to friction
* Thickening and scarring of the skin
* Delayed healing of wounds
* Skin cancer risk
JEB is diagnosed through a combination of clinical evaluation, genetic testing, and histopathological analysis of skin biopsies. There is no cure for JEB, but various treatments can help manage symptoms and prevent complications. These may include:
* Wound care and dressing
* Pain management with medication
* Physical therapy to maintain joint mobility and prevent contractures
* Surgery to remove scar tissue or repair damaged skin
The prognosis for JEB varies depending on the severity of the condition. Some individuals with mild forms of JEB may lead relatively normal lives, while those with more severe forms of the condition may experience significant disability and reduced life expectancy.
A rare inherited disorder characterized by thick, plate-like scales on the skin, especially on the limbs and torso. These scales can be darker or lighter than normal skin color and may crack and split, leading to infection and other complications. The condition is caused by mutations in the filaggrin gene and tends to run in families. Treatment includes topical medications, phototherapy, and systemic medications such as corticosteroids or retinoids. Also known as ichthyosis lamellar, this disorder affects approximately 1 in 185,000 people worldwide.
Note: Ichthyosis, Lamellar is a type of ichthyosis, a group of genetic disorders that affect the skin's ability to produce natural oils and cause dry, scaly skin.
The symptoms of dermatitis, allergic contact can vary depending on the severity of the reaction, but may include:
* Redness and swelling of the affected area
* Itching, burning, or stinging sensations
* Small blisters or hives
* Thickening or scaling of the skin
* Crusting or oozing of fluid
Dermatitis, allergic contact can be caused by a variety of substances, including:
* Metals, such as nickel, chrome, and mercury
* Plastics, such as latex and polyethylene
* Certain chemicals, such as perfumes, dyes, and preservatives
* Plant extracts, such as poison ivy or poison oak
* Insect bites or stings
The diagnosis of dermatitis, allergic contact is typically made through a combination of physical examination, medical history, and patch testing. Patch testing involves applying small amounts of potential allergens to the skin and observing for any signs of an allergic reaction over a period of time.
Treatment for dermatitis, allergic contact typically focuses on removing the allergen from the affected area and providing relief from symptoms. This may include:
* Avoiding exposure to the allergen
* Applying topical creams or ointments to reduce inflammation and itching
* Taking oral medications, such as antihistamines or corticosteroids, to reduce symptoms
* In severe cases, hospitalization may be necessary to manage the reaction.
Preventative measures for dermatitis, allergic contact include:
* Avoiding exposure to potential allergens
* Wearing protective clothing or gloves when handling suspected allergens
* Using hypoallergenic products and avoiding fragrances and dyes
* Performing patch testing before introducing new substances into the environment.
It is important to seek medical attention if symptoms persist or worsen over time, as dermatitis, allergic contact can lead to complications such as infection or scarring. Early diagnosis and treatment can help prevent these complications and improve outcomes for patients with this condition.