Janus Kinase 2: A Janus kinase subtype that is involved in signaling from GROWTH HORMONE RECEPTORS; PROLACTIN RECEPTORS; and a variety of CYTOKINE RECEPTORS such as ERYTHROPOIETIN RECEPTORS and INTERLEUKIN RECEPTORS. Dysregulation of Janus kinase 2 due to GENETIC TRANSLOCATIONS have been associated with a variety of MYELOPROLIFERATIVE DISORDERS.Janus Kinase 3: A Janus kinase subtype that is predominantly expressed in hematopoietic cell. It is involved in signaling from a broad variety of CYTOKINE RECEPTORS including ones that utilize the INTERLEUKIN RECEPTOR COMMON GAMMA SUBUNIT.Janus Kinases: A family of intracellular tyrosine kinases that participate in the signaling cascade of cytokines by associating with specific CYTOKINE RECEPTORS. They act upon STAT TRANSCRIPTION FACTORS in signaling pathway referred to as the JAK/STAT pathway. The name Janus kinase refers to the fact the proteins have two phosphate-transferring domains.Janus Kinase 1: A Janus kinase subtype that is involved in signaling from a broad variety of CYTOKINE RECEPTORS.Receptors, Vitronectin: Receptors such as INTEGRIN ALPHAVBETA3 that bind VITRONECTIN with high affinity and play a role in cell migration. They also bind FIBRINOGEN; VON WILLEBRAND FACTOR; osteopontin; and THROMBOSPONDINS.Phosphatidylinositol 3-Kinases: Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell.MAP Kinase Signaling System: An intracellular signaling system involving the MAP kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade.STAT3 Transcription Factor: A signal transducer and activator of transcription that mediates cellular responses to INTERLEUKIN-6 family members. STAT3 is constitutively activated in a variety of TUMORS and is a major downstream transducer for the CYTOKINE RECEPTOR GP130.STAT Transcription Factors: A family of transcription factors containing SH2 DOMAINS that are involved in CYTOKINE-mediated SIGNAL TRANSDUCTION. STAT transcription factors are recruited to the cytoplasmic region of CELL SURFACE RECEPTORS and are activated via PHOSPHORYLATION. Once activated they dimerize and translocate into the CELL NUCLEUS where they influence GENE expression. They play a role in regulating CELL GROWTH PROCESSES and CELL DIFFERENTIATION. STAT transcription factors are inhibited by SUPPRESSOR OF CYTOKINE SIGNALING PROTEINS and PROTEIN INHIBITORS OF ACTIVATED STAT.Protein-Serine-Threonine Kinases: A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.Protein Kinases: A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.TYK2 Kinase: A Janus kinase subtype that is involved in signaling from a broad variety of CYTOKINE RECEPTORS. The TYK2 kinase is considered the founding member of the janus kinase family and was initially discovered as a signaling partner for the INTERFERON ALPHA-BETA RECEPTOR. The kinase has since been shown to signal from several INTERLEUKIN RECEPTORS.Protein Kinase Inhibitors: Agents that inhibit PROTEIN KINASES.Phosphorylation: The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.Suppressor of Cytokine Signaling Proteins: A family of structurally related proteins that are induced by CYTOKINES and negatively regulate cytokine-mediated SIGNAL TRANSDUCTION PATHWAYS. SOCS proteins contain a central SH2 DOMAIN and a C-terminal region of homology known as the SOCS box.STAT1 Transcription Factor: A signal transducer and activator of transcription that mediates cellular responses to INTERFERONS. Stat1 interacts with P53 TUMOR SUPPRESSOR PROTEIN and regulates expression of GENES involved in growth control and APOPTOSIS.src-Family Kinases: A PROTEIN-TYROSINE KINASE family that was originally identified by homology to the Rous sarcoma virus ONCOGENE PROTEIN PP60(V-SRC). They interact with a variety of cell-surface receptors and participate in intracellular signal transduction pathways. Oncogenic forms of src-family kinases can occur through altered regulation or expression of the endogenous protein and by virally encoded src (v-src) genes.Calcium-Calmodulin-Dependent Protein Kinases: A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277)STAT5 Transcription Factor: A signal transducer and activator of transcription that mediates cellular responses to a variety of CYTOKINES. Stat5 activation is associated with transcription of CELL CYCLE regulators such as CYCLIN KINASE INHIBITOR P21 and anti-apoptotic genes such as BCL-2 GENES. Stat5 is constitutively activated in many patients with acute MYELOID LEUKEMIA.Proto-Oncogene Proteins: Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.Trans-Activators: Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.p38 Mitogen-Activated Protein Kinases: A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens.Tyrphostins: A family of synthetic protein tyrosine kinase inhibitors. They selectively inhibit receptor autophosphorylation and are used to study receptor function.Mitogen-Activated Protein Kinase 1: A proline-directed serine/threonine protein kinase which mediates signal transduction from the cell surface to the nucleus. Activation of the enzyme by phosphorylation leads to its translocation into the nucleus where it acts upon specific transcription factors. p40 MAPK and p41 MAPK are isoforms.Protein Kinase C: An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.Milk Proteins: The major protein constituents of milk are CASEINS and whey proteins such as LACTALBUMIN and LACTOGLOBULINS. IMMUNOGLOBULINS occur in high concentrations in COLOSTRUM and in relatively lower concentrations in milk. (Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed, p554)Tyrosine: A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.JNK Mitogen-Activated Protein Kinases: A subgroup of mitogen-activated protein kinases that activate TRANSCRIPTION FACTOR AP-1 via the phosphorylation of C-JUN PROTEINS. They are components of intracellular signaling pathways that regulate CELL PROLIFERATION; APOPTOSIS; and CELL DIFFERENTIATION.Cyclic AMP-Dependent Protein Kinases: A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.Mitogen-Activated Protein Kinase Kinases: A serine-threonine protein kinase family whose members are components in protein kinase cascades activated by diverse stimuli. These MAPK kinases phosphorylate MITOGEN-ACTIVATED PROTEIN KINASES and are themselves phosphorylated by MAP KINASE KINASE KINASES. JNK kinases (also known as SAPK kinases) are a subfamily.Mitogen-Activated Protein Kinase 3: A 44-kDa extracellular signal-regulated MAP kinase that may play a role the initiation and regulation of MEIOSIS; MITOSIS; and postmitotic functions in differentiated cells. It phosphorylates a number of TRANSCRIPTION FACTORS; and MICROTUBULE-ASSOCIATED PROTEINS.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Enzyme Activation: Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.p21-Activated Kinases: A family of serine-threonine kinases that bind to and are activated by MONOMERIC GTP-BINDING PROTEINS such as RAC GTP-BINDING PROTEINS and CDC42 GTP-BINDING PROTEIN. They are intracellular signaling kinases that play a role the regulation of cytoskeletal organization.Mitogen-Activated Protein Kinases: A superfamily of PROTEIN-SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES).Cell Line: Established cell cultures that have the potential to propagate indefinitely.Creatine Kinase: A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins.Extracellular Signal-Regulated MAP Kinases: A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS.CDC2 Protein Kinase: Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.Cyclin-Dependent Kinases: Protein kinases that control cell cycle progression in all eukaryotes and require physical association with CYCLINS to achieve full enzymatic activity. Cyclin-dependent kinases are regulated by phosphorylation and dephosphorylation events.Enzyme Inhibitors: Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.Mental Disorders Diagnosed in Childhood: Those psychiatric disorders usually first diagnosed in infancy, childhood, or adolescence. These disorders can also be first diagnosed during other life stages.Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.eIF-2 Kinase: A dsRNA-activated cAMP-independent protein serine/threonine kinase that is induced by interferon. In the presence of dsRNA and ATP, the kinase autophosphorylates on several serine and threonine residues. The phosphorylated enzyme catalyzes the phosphorylation of the alpha subunit of EUKARYOTIC INITIATION FACTOR-2, leading to the inhibition of protein synthesis.Casein Kinase II: A ubiquitous casein kinase that is comprised of two distinct catalytic subunits and dimeric regulatory subunit. Casein kinase II has been shown to phosphorylate a large number of substrates, many of which are proteins involved in the regulation of gene expression.Casein Kinases: A group of protein-serine-threonine kinases that was originally identified as being responsible for the PHOSPHORYLATION of CASEINS. They are ubiquitous enzymes that have a preference for acidic proteins. Casein kinases play a role in SIGNAL TRANSDUCTION by phosphorylating a variety of regulatory cytoplasmic and regulatory nuclear proteins.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Bulbar Palsy, Progressive: A motor neuron disease marked by progressive weakness of the muscles innervated by cranial nerves of the lower brain stem. Clinical manifestations include dysarthria, dysphagia, facial weakness, tongue weakness, and fasciculations of the tongue and facial muscles. The adult form of the disease is marked initially by bulbar weakness which progresses to involve motor neurons throughout the neuroaxis. Eventually this condition may become indistinguishable from AMYOTROPHIC LATERAL SCLEROSIS. Fazio-Londe syndrome is an inherited form of this illness which occurs in children and young adults. (Adams et al., Principles of Neurology, 6th ed, p1091; Brain 1992 Dec;115(Pt 6):1889-1900)Pyruvate Kinase: ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40.Ribosomal Protein S6 Kinases: A family of protein serine/threonine kinases which act as intracellular signalling intermediates. Ribosomal protein S6 kinases are activated through phosphorylation in response to a variety of HORMONES and INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS. Phosphorylation of RIBOSOMAL PROTEIN S6 by enzymes in this class results in increased expression of 5' top MRNAs. Although specific for RIBOSOMAL PROTEIN S6 members of this class of kinases can act on a number of substrates within the cell. The immunosuppressant SIROLIMUS inhibits the activation of ribosomal protein S6 kinases.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Blotting, Western: Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.Intracellular Signaling Peptides and Proteins: Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors.Proto-Oncogene Proteins c-akt: A protein-serine-threonine kinase that is activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. It plays a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells.Cell Line, Tumor: A cell line derived from cultured tumor cells.MAP Kinase Kinase 1: An abundant 43-kDa mitogen-activated protein kinase kinase subtype with specificity for MITOGEN-ACTIVATED PROTEIN KINASE 1 and MITOGEN-ACTIVATED PROTEIN KINASE 3.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Receptor Protein-Tyrosine Kinases: A class of cellular receptors that have an intrinsic PROTEIN-TYROSINE KINASE activity.Thymidine Kinase: An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21.Phosphotyrosine: An amino acid that occurs in endogenous proteins. Tyrosine phosphorylation and dephosphorylation plays a role in cellular signal transduction and possibly in cell growth control and carcinogenesis.MAP Kinase Kinase 4: A mitogen-activated protein kinase kinase with specificity for JNK MITOGEN-ACTIVATED PROTEIN KINASES; P38 MITOGEN-ACTIVATED PROTEIN KINASES and the RETINOID X RECEPTORS. It takes part in a SIGNAL TRANSDUCTION pathway that is activated in response to cellular stress.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.PhosphoproteinsReceptors, Interleukin-9: A cell surface receptor that specifically mediates the biological effects of INTERLEUKIN-9. The functional IL9 receptor signals through interaction of its cytoplasm domain with JANUS KINASES and requires the INTERLEUKIN RECEPTOR COMMON GAMMA SUBUNIT for activity.1-Phosphatidylinositol 4-Kinase: An enzyme that catalyzes the conversion of phosphatidylinositol (PHOSPHATIDYLINOSITOLS) to phosphatidylinositol 4-phosphate, the first committed step in the biosynthesis of phosphatidylinositol 4,5-bisphosphate.Apoptosis: One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.Phosphotransferases (Alcohol Group Acceptor): A group of enzymes that transfers a phosphate group onto an alcohol group acceptor. EC 2.7.1.Recombinant Proteins: Proteins prepared by recombinant DNA technology.Myeloproliferative Disorders: Conditions which cause proliferation of hemopoietically active tissue or of tissue which has embryonic hemopoietic potential. They all involve dysregulation of multipotent MYELOID PROGENITOR CELLS, most often caused by a mutation in the JAK2 PROTEIN TYROSINE KINASE.CDC2-CDC28 Kinases: A family of cell cycle-dependent kinases that are related in structure to CDC28 PROTEIN KINASE; S CEREVISIAE; and the CDC2 PROTEIN KINASE found in mammalian species.Receptors, Cytokine: Cell surface proteins that bind cytokines and trigger intracellular changes influencing the behavior of cells.Tumor Cells, Cultured: Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.I-kappa B Kinase: A protein serine-threonine kinase that catalyzes the PHOSPHORYLATION of I KAPPA B PROTEINS. This enzyme also activates the transcription factor NF-KAPPA B and is composed of alpha and beta catalytic subunits, which are protein kinases and gamma, a regulatory subunit.Cell Division: The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.Isoenzymes: Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.Glycogen Synthase Kinase 3: A glycogen synthase kinase that was originally described as a key enzyme involved in glycogen metabolism. It regulates a diverse array of functions such as CELL DIVISION, microtubule function and APOPTOSIS.Aurora Kinases: A family of highly conserved serine-threonine kinases that are involved in the regulation of MITOSIS. They are involved in many aspects of cell division, including centrosome duplication, SPINDLE APPARATUS formation, chromosome alignment, attachment to the spindle, checkpoint activation, and CYTOKINESIS.rho-Associated Kinases: A group of intracellular-signaling serine threonine kinases that bind to RHO GTP-BINDING PROTEINS. They were originally found to mediate the effects of rhoA GTP-BINDING PROTEIN on the formation of STRESS FIBERS and FOCAL ADHESIONS. Rho-associated kinases have specificity for a variety of substrates including MYOSIN-LIGHT-CHAIN PHOSPHATASE and LIM KINASES.Interleukin-6: A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Protein Kinase C-delta: A ubiquitously expressed protein kinase that is involved in a variety of cellular SIGNAL PATHWAYS. Its activity is regulated by a variety of signaling protein tyrosine kinase.Lambert-Eaton Myasthenic Syndrome: An autoimmune disease characterized by weakness and fatigability of proximal muscles, particularly of the pelvic girdle, lower extremities, trunk, and shoulder girdle. There is relative sparing of extraocular and bulbar muscles. CARCINOMA, SMALL CELL of the lung is a frequently associated condition, although other malignancies and autoimmune diseases may be associated. Muscular weakness results from impaired impulse transmission at the NEUROMUSCULAR JUNCTION. Presynaptic calcium channel dysfunction leads to a reduced amount of acetylcholine being released in response to stimulation of the nerve. (From Adams et al., Principles of Neurology, 6th ed, pp 1471)Protein Kinase C-alpha: A cytoplasmic serine threonine kinase involved in regulating CELL DIFFERENTIATION and CELLULAR PROLIFERATION. Overexpression of this enzyme has been shown to promote PHOSPHORYLATION of BCL-2 PROTO-ONCOGENE PROTEINS and chemoresistance in human acute leukemia cells.Proteins: Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Flavonoids: A group of phenyl benzopyrans named for having structures like FLAVONES.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Primary Myelofibrosis: A de novo myeloproliferation arising from an abnormal stem cell. It is characterized by the replacement of bone marrow by fibrous tissue, a process that is mediated by CYTOKINES arising from the abnormal clone.Precipitin Tests: Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.src Homology Domains: Regions of AMINO ACID SEQUENCE similarity in the SRC-FAMILY TYROSINE KINASES that fold into specific functional tertiary structures. The SH1 domain is a CATALYTIC DOMAIN. SH2 and SH3 domains are protein interaction domains. SH2 usually binds PHOSPHOTYROSINE-containing proteins and SH3 interacts with CYTOSKELETAL PROTEINS.Diacylglycerol Kinase: An enzyme of the transferase class that uses ATP to catalyze the phosphorylation of diacylglycerol to a phosphatidate. EC 2.7.1.107.Serine: A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids.AMP-Activated Protein Kinases: Intracellular signaling protein kinases that play a signaling role in the regulation of cellular energy metabolism. Their activity largely depends upon the concentration of cellular AMP which is increased under conditions of low energy or metabolic stress. AMP-activated protein kinases modify enzymes involved in LIPID METABOLISM, which in turn provide substrates needed to convert AMP into ATP.Dose-Response Relationship, Drug: The relationship between the dose of an administered drug and the response of the organism to the drug.STAT2 Transcription Factor: A signal transducer and activator of transcription that mediates cellular responses to TYPE I INTERFERONS. Stat2 protein is associated constitutively with INTERFERON REGULATORY FACTOR-9. After PHOSPHORYLATION Stat2 forms the IFN-STIMULATED GENE FACTOR 3 COMPLEX to regulate expression of target GENES.ChromonesReceptors, Erythropoietin: Cell surface proteins that bind erythropoietin with high affinity and trigger intracellular changes influencing the behavior of cells.Down-Regulation: A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.Receptors, Oncostatin M: Cell surface receptors with specificity for ONCOSTATIN M. Two subtypes of receptors have been identified and are defined by their subunit composition.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.STAT6 Transcription Factor: A signal transducer and activator of transcription that mediates cellular responses to INTERLEUKIN-4. Stat6 has been shown to partner with NF-KAPPA B and CCAAT-ENHANCER-BINDING PROTEINS to regulate GENETIC TRANSCRIPTION of interleukin-4 responsive GENES.Focal Adhesion Kinase 1: A non-receptor protein tyrosine kinase that is localized to FOCAL ADHESIONS and is a central component of integrin-mediated SIGNAL TRANSDUCTION PATHWAYS. Focal adhesion kinase 1 interacts with PAXILLIN and undergoes PHOSPHORYLATION in response to adhesion of cell surface integrins to the EXTRACELLULAR MATRIX. Phosphorylated p125FAK protein binds to a variety of SH2 DOMAIN and SH3 DOMAIN containing proteins and helps regulate CELL ADHESION and CELL MIGRATION.Polycythemia Vera: A myeloproliferative disorder of unknown etiology, characterized by abnormal proliferation of all hematopoietic bone marrow elements and an absolute increase in red cell mass and total blood volume, associated frequently with splenomegaly, leukocytosis, and thrombocythemia. Hematopoiesis is also reactive in extramedullary sites (liver and spleen). In time myelofibrosis occurs.Gene Expression Regulation, Enzymologic: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.MorpholinesCell Proliferation: All of the processes involved in increasing CELL NUMBER including CELL DIVISION.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.rho Guanine Nucleotide Dissociation Inhibitor beta: A rho GDP-dissociation inhibitor subtype that is highly expressed in hematopoietic cells and in LYMPHOCYTES. The expression of this subtype is associated with the regulation of CELL PROLIFERATION; TUMORIGENESIS; and APOPTOSIS.Myosin-Light-Chain Kinase: An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction.Models, Biological: Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.3T3 Cells: Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.Receptors, Interleukin-4: Receptors present on a wide variety of hematopoietic and non-hematopoietic cell types that are specific for INTERLEUKIN-4. They are involved in signaling a variety of immunological responses related to allergic INFLAMMATION including the differentiation of TH2 CELLS and the regulation of IMMUNOGLOBULIN E production. Two subtypes of receptors exist and are referred to as the TYPE I INTERLEUKIN-4 RECEPTOR and the TYPE II INTERLEUKIN-4 RECEPTOR. Each receptor subtype is defined by its unique subunit composition.Immunoblotting: Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.Adaptor Proteins, Signal Transducing: A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymesReceptors, Leptin: Cell surface receptors for obesity factor (LEPTIN), a hormone secreted by the WHITE ADIPOCYTES. Upon leptin-receptor interaction, the signal is mediated through the JAK2/STAT3 pathway to regulate food intake, energy balance and fat storage.Time Factors: Elements of limited time intervals, contributing to particular results or situations.Focal Adhesion Protein-Tyrosine Kinases: A family of non-receptor, PROLINE-rich protein-tyrosine kinases.RNA, Small Interfering: Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.Receptors, Prolactin: Labile proteins on or in prolactin-sensitive cells that bind prolactin initiating the cells' physiological response to that hormone. Mammary casein synthesis is one of the responses. The receptors are also found in placenta, liver, testes, kidneys, ovaries, and other organs and bind and respond to certain other hormones and their analogs and antagonists. This receptor is related to the growth hormone receptor.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Mice, Knockout: Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.Ribosomal Protein S6 Kinases, 90-kDa: A family of ribosomal protein S6 kinases that are structurally distinguished from RIBOSOMAL PROTEIN S6 KINASES, 70-KDA by their apparent molecular size and the fact they contain two functional kinase domains. Although considered RIBOSOMAL PROTEIN S6 KINASES, members of this family are activated via the MAP KINASE SIGNALING SYSTEM and have been shown to act on a diverse array of substrates that are involved in cellular regulation such as RIBOSOMAL PROTEIN S6 and CAMP RESPONSE ELEMENT-BINDING PROTEIN.Cell Survival: The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.Protein Kinase C-epsilon: A protein kinase C subtype that was originally characterized as a CALCIUM-independent, serine-threonine kinase that is activated by PHORBOL ESTERS and DIACYLGLYCEROLS. It is targeted to specific cellular compartments in response to extracellular signals that activate G-PROTEIN-COUPLED RECEPTORS; TYROSINE KINASE RECEPTORS; and intracellular protein tyrosine kinase.Up-Regulation: A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.Mice, Inbred C57BLReverse Transcriptase Polymerase Chain Reaction: A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.Androstadienes: Derivatives of the steroid androstane having two double bonds at any site in any of the rings.MAP Kinase Kinase Kinase 1: A 195-kDa MAP kinase kinase kinase with broad specificity for MAP KINASE KINASES. It is found localized in the CYTOSKELETON and can activate a variety of MAP kinase-dependent pathways.Calcium-Calmodulin-Dependent Protein Kinase Type 2: A multifunctional calcium-calmodulin-dependent protein kinase subtype that occurs as an oligomeric protein comprised of twelve subunits. It differs from other enzyme subtypes in that it lacks a phosphorylatable activation domain that can respond to CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASE KINASE.Pyridines: Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Thrombocythemia, Essential: A clinical syndrome characterized by repeated spontaneous hemorrhages and a remarkable increase in the number of circulating platelets.Protein Kinase C beta: PKC beta encodes two proteins (PKCB1 and PKCBII) generated by alternative splicing of C-terminal exons. It is widely distributed with wide-ranging roles in processes such as B-cell receptor regulation, oxidative stress-induced apoptosis, androgen receptor-dependent transcriptional regulation, insulin signaling, and endothelial cell proliferation.Repressor Proteins: Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.Tetradecanoylphorbol Acetate: A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA.MAP Kinase Kinase 2: A 44 kDa mitogen-activated protein kinase kinase with specificity for MITOGEN-ACTIVATED PROTEIN KINASE 1 and MITOGEN-ACTIVATED PROTEIN KINASE 3.Cell Differentiation: Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.Calcium: A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.Cyclin-Dependent Kinase 2: A key regulator of CELL CYCLE progression. It partners with CYCLIN E to regulate entry into S PHASE and also interacts with CYCLIN A to phosphorylate RETINOBLASTOMA PROTEIN. Its activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P27 and CYCLIN-DEPENDENT KINASE INHIBITOR P21.Cyclic GMP-Dependent Protein Kinases: A group of cyclic GMP-dependent enzymes that catalyze the phosphorylation of SERINE or THREONINE residues of proteins.Interferon-Stimulated Gene Factor 3: A multimeric complex that functions as a ligand-dependent transcription factor. ISGF3 is assembled in the CYTOPLASM and translocated to the CELL NUCLEUS in response to INTERFERON signaling. It consists of ISGF3-GAMMA and ISGF3-ALPHA, and it regulates expression of many interferon-responsive GENES.Pyrroles: Azoles of one NITROGEN and two double bonds that have aromatic chemical properties.TOR Serine-Threonine Kinases: A serine threonine kinase that controls a wide range of growth-related cellular processes. The protein is referred to as the target of RAPAMYCIN due to the discovery that SIROLIMUS (commonly known as rapamycin) forms an inhibitory complex with TACROLIMUS BINDING PROTEIN 1A that blocks the action of its enzymatic activity.NF-kappa B: Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA.Cyclin-Dependent Kinase 5: A serine-threonine kinase that plays important roles in CELL DIFFERENTIATION; CELL MIGRATION; and CELL DEATH of NERVE CELLS. It is closely related to other CYCLIN-DEPENDENT KINASES but does not seem to participate in CELL CYCLE regulation.HeLa Cells: The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.Phosphoglycerate Kinase: An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3.Oncostatin M: A cytokine with both pro- and anti-inflammatory actions that depend upon the cellular microenvironment. Oncostatin M is a 28 kDa monomeric glycoprotein that is similar in structure to LEUKEMIA INHIBITORY FACTOR. Its name derives from the the observation that it inhibited the growth of tumor cells and augmented the growth of normal fibroblasts.Cell Line, Transformed: Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals.Rats, Sprague-Dawley: A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.Receptors, Somatotropin: Cell surface proteins that bind GROWTH HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. Activation of growth hormone receptors regulates amino acid transport through cell membranes, RNA translation to protein, DNA transcription, and protein and amino acid catabolism in many cell types. Many of these effects are mediated indirectly through stimulation of the release of somatomedins.Phosphorylase Kinase: An enzyme that catalyzes the conversion of ATP and PHOSPHORYLASE B to ADP and PHOSPHORYLASE A.Cytokines: Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.Fibroblasts: Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.Arginine Kinase: An enzyme that catalyzes the phosphorylation of the guanidine nitrogen of arginine in the presence of ATP and a divalent cation with formation of phosphorylarginine and ADP. EC 2.7.3.3.Affective Disorders, Psychotic: Disorders in which the essential feature is a severe disturbance in mood (depression, anxiety, elation, and excitement) accompanied by psychotic symptoms such as delusions, hallucinations, gross impairment in reality testing, etc.Receptor, Interferon alpha-beta: A ubiquitously expressed heterodimeric receptor that is specific for both INTERFERON-ALPHA and INTERFERON-BETA. It is composed of two subunits referred to as IFNAR1 and IFNAR2. The IFNAR2 subunit is believed to serve as the ligand-binding chain; however both chains are required for signal transduction. The interferon alpha-beta receptor signals through the action of JANUS KINASES such as the TYK2 KINASE.Nucleoside-Phosphate Kinase: An enzyme that catalyzes reversible reactions of a nucleoside triphosphate, e.g., ATP, with a nucleoside monophosphate, e.g., UMP, to form ADP and UDP. Many nucleoside monophosphates can act as acceptor while many ribo- and deoxyribonucleoside triphosphates can act as donor. EC 2.7.4.4.Receptors, Interleukin: Cell surface proteins that bind interleukins and trigger intracellular changes influencing the behavior of cells.MAP Kinase Kinase 6: A mitogen-activated protein kinase kinase with specificity for P38 MITOGEN-ACTIVATED PROTEIN KINASES.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.Transcriptional Activation: Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Interferon-gamma: The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.Casein Kinase I: A casein kinase that was originally described as a monomeric enzyme with a molecular weight of 30-40 kDa. Several ISOENZYMES of casein kinase I have been found which are encoded by separate genes. Many of the casein kinase I isoenzymes have been shown to play distinctive roles in intracellular SIGNAL TRANSDUCTION.Receptor, Epidermal Growth Factor: A cell surface receptor involved in regulation of cell growth and differentiation. It is specific for EPIDERMAL GROWTH FACTOR and EGF-related peptides including TRANSFORMING GROWTH FACTOR ALPHA; AMPHIREGULIN; and HEPARIN-BINDING EGF-LIKE GROWTH FACTOR. The binding of ligand to the receptor causes activation of its intrinsic tyrosine kinase activity and rapid internalization of the receptor-ligand complex into the cell.Interleukin-4: A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells.MAP Kinase Kinase 3: A mitogen-activated protein kinase kinase with specificity for a subset of P38 MITOGEN-ACTIVATED PROTEIN KINASES that includes MITOGEN-ACTIVATED PROTEIN KINASE 12; MITOGEN-ACTIVATED PROTEIN KINASE 13; and MITOGEN-ACTIVATED PROTEIN KINASE 14.Mitogen-Activated Protein Kinase 8: A c-jun amino-terminal kinase that is activated by environmental stress and pro-inflammatory cytokines. Several isoforms of the protein with molecular sizes of 43 and 48 KD exist due to multiple ALTERNATIVE SPLICING.Aurora Kinase A: An aurora kinase that localizes to the CENTROSOME during MITOSIS and is involved in centrosome regulation and formation of the MITOTIC SPINDLE. Aurora A overexpression in many malignant tumor types suggests that it may be directly involved in NEOPLASTIC CELL TRANSFORMATION.3-Phosphoinositide-Dependent Protein Kinases: Highly conserved protein-serine threonine kinases that phosphorylate and activate a group of AGC protein kinases, especially in response to the production of the SECOND MESSENGERS, phosphatidylinositol 3,4,-biphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P3).Mutagenesis, Site-Directed: Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.Focal Adhesion Kinase 2: A non-receptor protein-tyrosine kinase that is expressed primarily in the BRAIN; OSTEOBLASTS; and LYMPHOID CELLS. In the CENTRAL NERVOUS SYSTEM focal adhesion kinase 2 modulates ION CHANNEL function and MITOGEN-ACTIVATED PROTEIN KINASES activity.Cyclic AMP: An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.Cholesterol Oxidase: An enzyme that catalyzes the oxidation of cholesterol in the presence of molecular oxygen to 4-cholesten-3-one and hydrogen peroxide. The enzyme is not specific for cholesterol, but will also oxidize other 3-hydroxysteroids. EC 1.1.3.6.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.Phosphatidylinositol 3-Kinase: A phosphatidylinositol 3-kinase that catalyzes the conversion of 1-phosphatidylinositol into 1-phosphatidylinositol 3-phosphate.Genistein: An isoflavonoid derived from soy products. It inhibits PROTEIN-TYROSINE KINASE and topoisomerase-II (DNA TOPOISOMERASES, TYPE II); activity and is used as an antineoplastic and antitumor agent. Experimentally, it has been shown to induce G2 PHASE arrest in human and murine cell lines and inhibits PROTEIN-TYROSINE KINASE.Protein Processing, Post-Translational: Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.Adenosine Kinase: An enzyme that catalyzes the formation of ADP plus AMP from adenosine plus ATP. It can serve as a salvage mechanism for returning adenosine to nucleic acids. EC 2.7.1.20.Antineoplastic Agents: Substances that inhibit or prevent the proliferation of NEOPLASMS.Tumor Suppressor Proteins: Proteins that are normally involved in holding cellular growth in check. Deficiencies or abnormalities in these proteins may lead to unregulated cell growth and tumor development.Nitriles: Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE.Cell Cycle: The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.Lim Kinases: Serine protein kinases involved in the regulation of ACTIN polymerization and MICROTUBULE disassembly. Their activity is regulated by phosphorylation of a threonine residue within the activation loop by intracellular signaling kinases such as P21-ACTIVATED KINASES and by RHO KINASE.Apigenin: 5,7,4'-trihydroxy-flavone, one of the FLAVONES.Dimerization: The process by which two molecules of the same chemical composition form a condensation product or polymer.Cell Movement: The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.Leukemia Inhibitory Factor: An INTERLEUKIN-6 related cytokine that exhibits pleiotrophic effects on many physiological systems that involve cell proliferation, differentiation, and survival. Leukemia inhibitory factor binds to and acts through the lif receptor.Protein Transport: The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.Cell Membrane: The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Prolactin: A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate.

Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of Jak2 in the stimulation of phosphatidylinositol 3-kinase. (1/1765)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates many of the biological activities of human neutrophils. The signaling pathways via which these effects are mediated are not fully understood. We have shown previously that GM-CSF treatment of human neutrophils activates the Janus kinase/signal transducers and activators of transcription (Jak/STAT) pathway and, more specifically, Jak2, STAT3, and STAT5B in neutrophils. GM-CSF also stimulates the activity of the phosphatidylinositol 3-kinase (PI3-kinase) in a tyrosine kinase-dependent manner. Here we report that pretreating the cells with a Jak2 inhibitor (AG-490) abolishes tyrosine phosphorylation of the p85 subunit of PI3-kinase induced by GM-CSF. Furthermore, p85 was found to associate with Jak2, but not with Lyn, in stimulated cells in situ and with its autophosphorylated form in vitro; however, Jak2 did not bind to either of the two Src homology 2 (SH2) domains of the p85 subunit of PI3-kinase. Although STAT5B bound to the carboxyl-terminal SH2 domain of p85, it was absent from the complex containing PI3-kinase and Jak2. These results suggest that stimulation of the activity of PI3-kinase induced by GM-CSF is mediated by Jak2 and that the association between Jak2 and p85 depends on an adaptor protein yet to be identified.  (+info)

Constitutive activation of JAK2 confers murine interleukin-3-independent survival and proliferation of BA/F3 cells. (2/1765)

The Janus tyrosine kinase 2 (JAK2) plays an essential role of cytokine receptor signaling, including that of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor. We reported earlier that the activation of JAK2 is essential for all the examined signals induced by human GM-CSF through the box1 region of betac, such as promotion of cell survival and proliferation. To elucidate the role of JAK2 in cell survival and proliferation, we generated an artificial activation system by constructing a chimeric molecule (beta/JAK2) consisting of betac extracellular and transmembrane regions fused with JAK2, and we analyzed various signaling events in interleukin-3-dependent mouse pro-B cell, BA/F3. The beta/JAK2 was constitutively phosphorylated in the absence of human GM-CSF and murine interleukin-3, and this led to proliferation and cell survival. Western blot analysis showed that STAT5, Shc, and SHP-2 were not phosphorylated in the cells, and the consistent activation of beta-casein and c-fos promoters was not enhanced. In contrast, c-myc transcription was constitutively activated. We propose that the activation of beta/JAK2 suffices for survival and proliferation and that the activation of STAT5 and mitogen-activated protein kinase cascade is not required for these activities in BA/F3 cells.  (+info)

Thrombopoietin-induced conformational change in p53 lies downstream of the p44/p42 mitogen activated protein kinase cascade in the human growth factor-dependent cell line M07e. (3/1765)

Thrombopoietin is a cytokine with potent megakaryocytopoietic and thrombopoietic activities in vivo. Wild-type p53 is a conformationally flexible, anti-oncogenic transcription factor that plays a principal role in mediating growth factor withdrawal-induced apoptosis in factor-dependent hematopoietic cells. We recently reported that Tpo induces a conformational change in and functional inactivation of p53, coincident with its anti-apoptotic effects, in the human factor-dependent cell line M07e. In an effort to identify potential signaling cascades through which Tpo illicits these effects on p53, we report here that treating M07e cells with MAPK kinase inhibitor PD98059 dramatically suppressed Tpo-induced conformational change in p53 as well as Tpo-enhanced viability in M07e cells in a p53-dependent manner. Furthermore, the expression of constitutively active Raf1 in M07e cells induced conformational change in p53 independent of Tpo stimulation. Inhibition of the JAK/STAT pathway revealed that JAK/STAT signaling plays an insignificant role in conformational modulation of p53 and apoptosis suppression. Inhibition of phosphatidylinositol-3 kinase did not have a significant effect on p53 conformation but did have a weak but significant effect on Tpo-enhanced viability. Cytokine-induced activation of the MAPK pathway and the subsequent functional neutralization of p53, may be an event by which apoptosis is commonly suppressed in hematopoiesis.  (+info)

The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. (4/1765)

The Janus family of protein tyrosine kinases (JAKs) regulate cellular processes involved in cell growth, differentiation and transformation through their association with cytokine receptors. However, compared with other kinases, little is known about cellular regulators of the JAKs. We have recently identified a JAK-binding protein (JAB) that inhibits JAK signaling in cells. In the studies presented here we demonstrate that JAB specifically binds to the tyrosine residue (Y1007) in the activation loop of JAK2, whose phosphorylation is required for activation of kinase activity. Binding to the phosphorylated activation loop requires the JAB SH2 domain and an additional N-terminal 12 amino acids (extended SH2 subdomain) containing two residues (Ile68 and Leu75) that are conserved in JAB-related proteins. An additional N-terminal 12-amino-acid region (kinase inhibitory region) of JAB also contributes to high-affinity binding to the JAK2 tyrosine kinase domain and is required for inhibition of JAK2 signaling and kinase activity. Our studies define a novel type of regulation of tyrosine kinases and might provide a basis for the design of specific tyrosine kinase inhibitors.  (+info)

TGF-beta does not inhibit IL-12- and IL-2-induced activation of Janus kinases and STATs. (5/1765)

The immune system is an important target for the cytokine TGF-beta1, whose actions on lymphocytes are largely inhibitory. TGF-beta has been reported to inhibit IL-12- and IL-2-induced cell proliferation and IFN-gamma production by T cells and NK cells; however, the mechanisms of inhibition have not been clearly defined. It has been suggested by some studies that TGF-beta blocks cytokine-induced Janus kinase (JAK) and STAT activation, as in the case of IL-2. In contrast, other studies with cytokines like IFN-gamma have not found such an inhibition. The effect of TGF-beta on the IL-12-signaling pathway has not been addressed. We examined this and found that TGF-beta1 did not have any effect on IL-12-induced phosphorylation of JAK2, TYK2, and STAT4 although TGF-beta1 inhibited IL-2- and IL-12-induced IFN-gamma production. Similarly, but in contrast to previous reports, we found that TGF-beta1 did not inhibit IL-2-induced phosphorylation of JAK1, JAK3, and STAT5A. Furthermore, gel shift analysis showed that TGF-beta1 did not prevent activated STAT4 and STAT5A from binding to DNA. Our results demonstrate that the inhibitory effects of TGF-beta on IL-2- and IL-12-induced biological activities are not attributable to inhibition of activation of JAKs and STATs. Rather, our data suggest the existence of alternative mechanisms of inhibition by TGF-beta.  (+info)

Lineage-specific activation of STAT3 by interferon-gamma in human neutrophils. (6/1765)

Binding of interferon-gamma (IFN-gamma) to its heterodimeric receptor induces activation of the tyrosine kinases JAK1 and JAK2 followed by tyrosine phosphorylation of STAT1alpha. Selective activation of STAT1alpha at the IFN-gamma receptor is achieved by specific interaction between a cytosolic tyrosine motif including Y440 in the IFN-gamma receptor alpha-chain and the SH2 domain of STAT1alpha. We demonstrate that, in addition to STAT1alpha, STAT3 is also activated by IFN-gamma in human neutrophils. The activation of STAT3 was not found in human eosinophils, monocytes, and HL-60 cells, although the STAT3 protein was expressed in these cells. The cell type-specific activation of STAT3 by IFN-gamma was also observed in neutrophils that are differentiated in vitro from human CD34+ hematopoietic stem cells. These results indicate that a single cytokine receptor can activate different STAT family members in a cell-specific manner, which might result in cell-specific gene transcription.  (+info)

Growth hormone-dependent differentiation of 3T3-F442A preadipocytes requires Janus kinase/signal transducer and activator of transcription but not mitogen-activated protein kinase or p70 S6 kinase signaling. (7/1765)

The signals mediating growth hormone (GH)-dependent differentiation of 3T3-F442A preadipocytes under serum-free conditions have been studied. GH priming of cells was required before the induction of terminal differentiation by a combination of epidermal growth factor, tri-iodothyronine, and insulin. Cellular depletion of Janus kinase-2 (JAK-2) using antisense oligodeoxynucleotides (ODNs) prevented GH-stimulated JAK-2 and signal transducer and activator of transcription (STAT)-5 tyrosine phosphorylation and severely attenuated the ability of GH to promote differentiation. Although p42(MAPK)/p44(MAPK) mitogen-activated protein kinases were activated during GH priming, treatment of cells with PD 098059, which prevented activation of these kinases, did not block GH priming. However, antisense ODN-mediated depletion of mitogen-activated protein kinases from the cells showed that their expression was necessary for terminal differentiation. Similarly, although p70(s6k) was activated during GH priming, pretreatment of cells with rapamycin, which prevented the activation of p70(s6k), had no effect on GH priming. However, rapamycin did partially block epidermal growth factor, tri-iodothyronine, and insulin-stimulated terminal differentiation. By contrast, cellular depletion of STAT-5 with antisense ODNs completely abolished the ability of GH to promote differentiation. These results indicate that JAK-2, acting specifically via STAT-5, is necessary for GH-dependent differentiation of 3T3-F442A preadipocytes. Activation of p42(MAPK)/p44(MAPK) and p70(s6k) is not essential for the promotion of differentiation by GH, although these signals are required for GH-independent terminal differentiation.  (+info)

Constitutive activation of the JAK2/STAT5 signal transduction pathway correlates with growth factor independence of megakaryocytic leukemic cell lines. (8/1765)

The factor-independent Dami/HEL and Meg-01 and factor-dependent Mo7e leukemic cell lines were used as models to investigate JAK/STAT signal transduction pathways in leukemic cell proliferation. Although Dami/HEL and Meg-01 cell proliferation in vitro was independent of and unresponsive to exogenous cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), and tumor necrosis factor-alpha (TNF-alpha), the growth of Mo7e cells was dependent on hematopoietic growth factors. When these cell lines were cultured in medium without cytokines, a constitutively activated STAT-like DNA-binding factor was detected in nuclear extracts from both Dami/HEL and Meg-01 cells. However, the STAT-like factor was not detectable in untreated Mo7e cells, but was activated transiently in Mo7e cells in response to cytokine treatments. The constitutively activated and cytokine-induced STAT-like DNA-binding factor in these three cell lines was identified as STAT5 by oligonucleotide competition gel mobility assays and by specific anti-STAT antibody gel supershift assays. Constitutive activation of JAK2 also was detected in the factor-independent cell lines, but not in Mo7e cells without cytokine exposure. Meg-01 cells express a p185 BCR/ABL oncogene, which may be responsible for the constitutive activation of STAT5. Dami/HEL cells do not express the BCR/ABL oncogene, but increased constitutive phosphorylation of Raf-1 oncoprotein was detected. In cytokine bioassays using growth factor-dependent Mo7e and TF-1 cells as targets, conditioned media from Dami/HEL and Meg-01 cells did not show stimulatory effects on cell proliferation. Our results indicate that the constitutive activation of JAK2/STAT5 correlates with the factor-independent growth of Dami/HEL and Meg-01 cells. The constitutive activation of JAK2/STAT5 in Dami/HEL cells is triggered by a mechanism other than autocrine cytokines or the BCR/ABL oncoprotein.  (+info)

  • An interesting note is that only one of these carboxy-terminal JH domains retains full kinase function (JH1) while the other (JH2), previously thought to have no kinase functionality and accordingly termed a pseudokinase domain, has since been found to be catalytically active, albeit at only 10% that of the JH1 domain. (wikipedia.org)
  • JH2 is a "pseudokinase domain", a domain structurally similar to a tyrosine kinase and essential for a normal kinase activity, yet lacks enzymatic activity. (wikipedia.org)
  • Epo-R, Tpo-R, GH-R, PRL-R). The distinguishing feature between janus kinase 2 and other JAK kinases is the lack of Src homology binding domains (SH2/SH3) and the presence of up to seven JAK homology domains (JH1-JH7). (wikipedia.org)
  • It is a member of the Janus kinase family and has been implicated in signaling by members of the type II cytokine receptor family (e.g. interferon receptors), the GM-CSF receptor family (IL-3R, IL-5R and GM-CSF-R), the gp130 receptor family (e.g. (wikipedia.org)
  • The Jak2 VF targeting vector was designed to insert an inverted mutated exon 14 downstream of endogenous exon 14 of the Janus kinase 2 ( Jak2 ) gene. (jax.org)
  • Mice with hepatocyte -specific deletion of Janus kinase 2 (L-JAK2 KO mice ) develop spontaneous steatosis as early as 2 weeks of age. (bvs.br)
  • Pulse amplitudes that decline to ∼2% or less of normal become incapable of inducing CYP2C11 expression ( Agrawal and Shapiro, 2000 ). (aspetjournals.org)
  • Fc receptor-mediated opsonization also enhances expression of costimulatory molecules such as CD40, B7-1 (CD80), and B7-2 (CD86) on the DC surface, promoting T cell activation. (nih.gov)
  • It has been shown that the ectopic expression of EPOR confers EPO-dependent proliferation on an interleukin 3 (IL3)-dependent cell line, Ba/F3, whereas the IL2-dependent T cell line, CTLL-2 expressing the EPOR (T-ER), fails to proliferate in response to EPO. (biomedsearch.com)
  • Expression of Janus Kinase 1 in vitiligo & psoriasis before and after narrow band UVB: a case-control study. (nih.gov)
  • Several cytokines and growth factors that stimulate the proliferation of acute myelogenous leukemia (AML) cells transduce their signals by activating the transcription factor Janus-activated kinase 2 (JAK2). (aacrjournals.org)
  • Janus kinase 2 (JAK2) is associated with the embryonic development of normal individuals and is widely expressed in various types of cell, catalyzing the immune responses induced by cytokines ( 7 ). (spandidos-publications.com)
  • These cytokines are secreted by activated T cells and macrophages that infiltrate the islets (referred to as the insulitis lesion) during the autoimmune reaction ( 2 ). (jimmunol.org)
  • Myocardial I/R can induce local myocardial inflammation, including promoting the release of various cytokines, including interleukin (IL)-17A, tumor necrosis factor-α (TNF-α) and IL-6, and promoting the activation of inflammatory cells, including neutrophils, which is one of the crucial pathophysiological processes in myocardial I/R injury ( 2 - 4 ). (spandidos-publications.com)
  • Increasing evidence has indicated that pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, have an important role in the pathological mechanisms of SAP and SAP-associated organ failure ( 2 - 4 ). (spandidos-publications.com)
Plus it
Plus it (jpet.aspetjournals.org)
JAK3_克拉玛尔
JAK3_克拉玛尔 (fortunebio-tech.com)
JAK2 gene: MedlinePlus Genetics
JAK2 gene: MedlinePlus Genetics (medlineplus.gov)
CD109 and squamous cell carcinoma | SpringerLink
CD109 and squamous cell carcinoma | SpringerLink (link.springer.com)
Cerebral Sinus Thrombosis in a 22-Year-Old Obese Woman
Cerebral Sinus Thrombosis in a 22-Year-Old Obese Woman (medscape.com)
Molecules  | Free Full-Text | Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts |...
Molecules | Free Full-Text | Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts |... (mdpi.com)
Frontiers | A Novel Selective JAK2 Inhibitor Identified Using Pharmacological Interactions | Pharmacology
Frontiers | A Novel Selective JAK2 Inhibitor Identified Using Pharmacological Interactions | Pharmacology (frontiersin.org)
Frontiers | Novel Actions of Growth Hormone in Podocytes: Implications for Diabetic Nephropathy | Medicine
Frontiers | Novel Actions of Growth Hormone in Podocytes: Implications for Diabetic Nephropathy | Medicine (frontiersin.org)
Janus Kinase 2 | Profiles RNS
Janus Kinase 2 | Profiles RNS (profiles.umassmed.edu)
Integrative analysis reveals functional and regulatory roles of H3K79me2 in mediating alternative splicing | SpringerLink
Integrative analysis reveals functional and regulatory roles of H3K79me2 in mediating alternative splicing | SpringerLink (link.springer.com)
Treatment Tracker   - Pathologists Biomedical Laboratories Llp
Treatment Tracker - Pathologists Biomedical Laboratories Llp (projects.propublica.org)
Expression of JAK2 in cancer - Summary - The Human Protein Atlas
Expression of JAK2 in cancer - Summary - The Human Protein Atlas (proteinatlas.org)
D1Bda61 Marker Search Result - Rat Genome Database
D1Bda61 Marker Search Result - Rat Genome Database (rgd.mcw.edu)
GO Gene List
GO Gene List (cgap.nci.nih.gov)
LongevityMap variant group
LongevityMap variant group (genomics.senescence.info)
CNS Involvement in HLH (CNS-HLH) | Springer for Research & Development
CNS Involvement in HLH (CNS-HLH) | Springer for Research & Development (rd.springer.com)
Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and...
Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and... (bloodjournal.org)
Films Media Group - Interpretation of Lab Tests
Films Media Group - Interpretation of Lab Tests (films.com)
Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus | G3: Genes | Genomes...
Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus | G3: Genes | Genomes... (g3journal.org)
Curcumin protects against acute renal injury by suppressing JAK2/STAT3 pathway in severe acute pancreatitis in rats
Curcumin protects against acute renal injury by suppressing JAK2/STAT3 pathway in severe acute pancreatitis in rats (spandidos-publications.com)
Drug Metabolism Letters, Volume 9 - Number 1
Drug Metabolism Letters, Volume 9 - Number 1 (benthamscience.com)
Anticipating mechanisms of resistance to PI3K inhibition in breast cancer: a challenge in the era of precision medicine |...
Anticipating mechanisms of resistance to PI3K inhibition in breast cancer: a challenge in the era of precision medicine |... (biochemsoctrans.org)
Loss of Angiotensin-Converting Enzyme-2 Exacerbates Diabetic Cardiovascular Complications and Leads to Systolic and Vascular...
Loss of Angiotensin-Converting Enzyme-2 Exacerbates Diabetic Cardiovascular Complications and Leads to Systolic and Vascular... (circres.ahajournals.org)
Fuelcell Tec
Fuelcell Tec (wn.com)
Irene Lorand-Metze's Research on Refractory Anemia with Excess of Blasts (RAEM)
     | CureHunter
Irene Lorand-Metze's Research on Refractory Anemia with Excess of Blasts (RAEM) | CureHunter (curehunter.com)
Alchemical Grid Dock (AlGDock) calculations in the D3R Grand Challenge 3 | SpringerLink
Alchemical Grid Dock (AlGDock) calculations in the D3R Grand Challenge 3 | SpringerLink (link.springer.com)
Renoprotective capacities of non-erythropoietic EPO derivative, ARA290, following renal ischemia/reperfusion injury | Journal...
Renoprotective capacities of non-erythropoietic EPO derivative, ARA290, following renal ischemia/reperfusion injury | Journal... (translational-medicine.biomedcentral.com)