Muscular contractions characterized by increase in tension without change in length.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
A state arrived at through prolonged and strong contraction of a muscle. Studies in athletes during prolonged submaximal exercise have shown that muscle fatigue increases in almost direct proportion to the rate of muscle glycogen depletion. Muscle fatigue in short-term maximal exercise is associated with oxygen lack and an increased level of blood and muscle lactic acid, and an accompanying increase in hydrogen-ion concentration in the exercised muscle.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
Muscle contraction with negligible change in the force of contraction but shortening of the distance between the origin and insertion.
The rotational force about an axis that is equal to the product of a force times the distance from the axis where the force is applied.
Region of the body immediately surrounding and including the ELBOW JOINT.
The spread of response if stimulation is prolonged. (Campbell's Psychiatric Dictionary, 8th ed.)
Contractile tissue that produces movement in animals.
Use of electric potential or currents to elicit biological responses.
Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation.
A region of the lower extremity immediately surrounding and including the KNEE JOINT.
Contractile activity of the MYOCARDIUM.
Neurons which activate MUSCLE CELLS.
The amount of force generated by MUSCLE CONTRACTION. Muscle strength can be measured during isometric, isotonic, or isokinetic contraction, either manually or using a device such as a MUSCLE STRENGTH DYNAMOMETER.
Contraction of the UTERINE MUSCLE.
The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length.
Processes and properties of the MUSCULOSKELETAL SYSTEM.
That phase of a muscle twitch during which a muscle returns to a resting position.
The properties, processes, and behavior of biological systems under the action of mechanical forces.
The time span between the beginning of physical activity by an individual and the termination because of exhaustion.
Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed)
A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain.
A powerful flexor of the thigh at the hip joint (psoas major) and a weak flexor of the trunk and lumbar spinal column (psoas minor). Psoas is derived from the Greek "psoa", the plural meaning "muscles of the loin". It is a common site of infection manifesting as abscess (PSOAS ABSCESS). The psoas muscles and their fibers are also used frequently in experiments in muscle physiology.
Voluntary activity without external compulsion.
The quadriceps femoris. A collective name of the four-headed skeletal muscle of the thigh, comprised of the rectus femoris, vastus intermedius, vastus lateralis, and vastus medialis.
Elements of limited time intervals, contributing to particular results or situations.
Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae.
Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc.
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.
The joint that is formed by the inferior articular and malleolar articular surfaces of the TIBIA; the malleolar articular surface of the FIBULA; and the medial malleolar, lateral malleolar, and superior surfaces of the TALUS.
The recording of muscular movements. The apparatus is called a myograph, the record or tracing, a myogram. (From Stedman, 25th ed)
An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996)
The portion of the leg in humans and other animals found between the HIP and KNEE.
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
Resistance and recovery from distortion of shape.
Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS.
An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog".
The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES .
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
The nonstriated involuntary muscle tissue of blood vessels.
The inferior part of the lower extremity between the KNEE and the ANKLE.
An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent.
The electrical response evoked in a muscle or motor nerve by electrical or magnetic stimulation. Common methods of stimulation are by transcranial electrical and TRANSCRANIAL MAGNETIC STIMULATION. It is often used for monitoring during neurosurgery.
A device that measures MUSCLE STRENGTH during muscle contraction, such as gripping, pushing, and pulling. It is used to evaluate the health status of muscle in sports medicine or physical therapy.
Four or five slender jointed digits in humans and primates, attached to each HAND.
A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA.
Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures.
An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae.
The distal part of the arm beyond the wrist in humans and primates, that includes the palm, fingers, and thumb.
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex.
Part of the arm in humans and primates extending from the ELBOW to the WRIST.
Force exerted when gripping or grasping.
Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure.
The first digit on the radial side of the hand which in humans lies opposite the other four.
A synovial hinge connection formed between the bones of the FEMUR; TIBIA; and PATELLA.
A hinge joint connecting the FOREARM to the ARM.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
The superior part of the upper extremity between the SHOULDER and the ELBOW.
Reflex contraction of a muscle in response to stretching, which stimulates muscle proprioceptors.
The physical state of supporting an applied load. This often refers to the weight-bearing bones or joints that support the body's weight, especially those in the spine, hip, knee, and foot.
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
A nerve originating in the lumbar spinal cord (usually L2 to L4) and traveling through the lumbar plexus to provide motor innervation to extensors of the thigh and sensory innervation to parts of the thigh, lower leg, and foot, and to the hip and knee joints.
Drugs used to cause constriction of the blood vessels.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA.
The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior.
The smaller subunits of MYOSINS that bind near the head groups of MYOSIN HEAVY CHAINS. The myosin light chains have a molecular weight of about 20 KDa and there are usually one essential and one regulatory pair of light chains associated with each heavy chain. Many myosin light chains that bind calcium are considered "calmodulin-like" proteins.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi.
A masticatory muscle whose action is closing the jaws.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
A mechanism of communicating one's own sensory system information about a task, movement or skill.
Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73)
The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus.
An adrenergic-beta-2 antagonist that has been used for cardiac arrhythmia, angina pectoris, hypertension, glaucoma, and as an antithrombotic.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
A technique that involves the use of electrical coils on the head to generate a brief magnetic field which reaches the CEREBRAL CORTEX. It is coupled with ELECTROMYOGRAPHY response detection to assess cortical excitability by the threshold required to induce MOTOR EVOKED POTENTIALS. This method is also used for BRAIN MAPPING, to study NEUROPHYSIOLOGY, and as a substitute for ELECTROCONVULSIVE THERAPY for treating DEPRESSION. Induction of SEIZURES limits its clinical usage.
The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT.
The chemical reactions involved in the production and utilization of various forms of energy in cells.
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
The distal extremity of the leg in vertebrates, consisting of the tarsus (ANKLE); METATARSUS; phalanges; and the soft tissues surrounding these bones.
A vague complaint of debility, fatigue, or exhaustion attributable to weakness of various muscles. The weakness can be characterized as subacute or chronic, often progressive, and is a manifestation of many muscle and neuromuscular diseases. (From Wyngaarden et al., Cecil Textbook of Medicine, 19th ed, p2251)
An amino acid that occurs in vertebrate tissues and in urine. In muscle tissue, creatine generally occurs as phosphocreatine. Creatine is excreted as CREATININE in the urine.
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The region of the lower limb between the FOOT and the LEG.
The detailed examination of observable activity or behavior associated with the execution or completion of a required function or unit of work.
Freedom from activity.
Cyclical movement of a body part that can represent either a physiologic process or a manifestation of disease. Intention or action tremor, a common manifestation of CEREBELLAR DISEASES, is aggravated by movement. In contrast, resting tremor is maximal when there is no attempt at voluntary movement, and occurs as a relatively frequent manifestation of PARKINSON DISEASE.
Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.
The hollow, muscular organ that maintains the circulation of the blood.
The position or attitude of the body.
The distance and direction to which a bone joint can be extended. Range of motion is a function of the condition of the joints, muscles, and connective tissues involved. Joint flexibility can be improved through appropriate MUSCLE STRETCHING EXERCISES.
The rate dynamics in chemical or physical systems.
A continuing periodic change in displacement with respect to a fixed reference. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The flow of BLOOD through or around an organ or region of the body.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
Inorganic salts of phosphoric acid.
The state of activity or tension of a muscle beyond that related to its physical properties, that is, its active resistance to stretch. In skeletal muscle, tonus is dependent upon efferent innervation. (Stedman, 25th ed)
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
The processes of heating and cooling that an organism uses to control its temperature.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity.
The motor activity of the GASTROINTESTINAL TRACT.
Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A stable prostaglandin endoperoxide analog which serves as a thromboxane mimetic. Its actions include mimicking the hydro-osmotic effect of VASOPRESSIN and activation of TYPE C PHOSPHOLIPASES. (From J Pharmacol Exp Ther 1983;224(1): 108-117; Biochem J 1984;222(1):103-110)
A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION.
An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine.
The region of the lower limb in animals, extending from the gluteal region to the FOOT, and including the BUTTOCKS; HIP; and LEG.
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure.
A movement, caused by sequential muscle contraction, that pushes the contents of the intestines or other tubular organs in one direction.
The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling.
A protein complex of actin and MYOSINS occurring in muscle. It is the essential contractile substance of muscle.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
The vessels carrying blood away from the heart.
The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
The excretory duct of the testes that carries SPERMATOZOA. It rises from the SCROTUM and joins the SEMINAL VESICLES to form the ejaculatory duct.
A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator.
A group of intracellular-signaling serine threonine kinases that bind to RHO GTP-BINDING PROTEINS. They were originally found to mediate the effects of rhoA GTP-BINDING PROTEIN on the formation of STRESS FIBERS and FOCAL ADHESIONS. Rho-associated kinases have specificity for a variety of substrates including MYOSIN-LIGHT-CHAIN PHOSPHATASE and LIM KINASES.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
The physical activity of a human or an animal as a behavioral phenomenon.
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
A class of drugs that act by selective inhibition of calcium influx through cellular membranes.
The smooth muscle coat of the uterus, which forms the main mass of the organ.
Drugs used to cause dilation of the blood vessels.
A partial or complete return to the normal or proper physiologic activity of an organ or part following disease or trauma.
An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter.
Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Skeletal muscle fibers characterized by their expression of the Type II MYOSIN HEAVY CHAIN isoforms which have high ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Several fast types have been identified.
The artery formed by the union of the right and left vertebral arteries; it runs from the lower to the upper border of the pons, where it bifurcates into the two posterior cerebral arteries.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Drugs that selectively bind to and activate alpha adrenergic receptors.
A calcium channel blocker that is a class IV anti-arrhythmia agent.
The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION.
An inhibitor of nitric oxide synthetase which has been shown to prevent glutamate toxicity. Nitroarginine has been experimentally tested for its ability to prevent ammonia toxicity and ammonia-induced alterations in brain energy and ammonia metabolites. (Neurochem Res 1995:200(4):451-6)
A 21-amino acid peptide produced in a variety of tissues including endothelial and vascular smooth-muscle cells, neurons and astrocytes in the central nervous system, and endometrial cells. It acts as a modulator of vasomotor tone, cell proliferation, and hormone production. (N Eng J Med 1995;333(6):356-63)
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
The main trunk of the systemic arteries.

Evidence for beta3-adrenoceptor subtypes in relaxation of the human urinary bladder detrusor: analysis by molecular biological and pharmacological methods. (1/2703)

The purpose of the present study was to confirm the presence of beta3-adrenoceptor subtype in the relaxation of human urinary bladder detrusor tissue by reverse transcription-polymerase chain reaction (PCR); direct sequencing of the PCR product, in situ hybridization; and isometric contraction. Using reverse transcription-PCR, the mRNAs of three receptor subtypes (beta1, beta2, and beta3) were expressed in the human urinary bladder detrusor tissue. Direct sequencing of the PCR product of the above beta3-adrenoceptor revealed no mutation in the amplified regions. In situ hybridization with digoxygenin-labeled oligonucleotide probe revealed the presence of the mRNA of beta3-adrenoceptor subtype in the smooth muscle of the urinary bladder. The relaxant effects of isoproterenol (a nonselective beta-adrenoceptor agonist); ZD7114, BRL37344, and CGP12177A (putative selective beta3-adrenoceptor agonists); and SR59230A (a putative selective beta3-adrenoceptor antagonist) were tested using an isometric contraction technique. Isoproterenol in either the presence or absence of both atenolol (a beta1-adrenoceptor-selective antagonist) and butoxamine (a beta2-adrenoceptor-selective antagonist) revealed a relaxant effect on the carbachol-induced contraction of the human urinary bladder detrusor. Both BRL37344 and CGP12177A also revealed relaxant effects on the human urinary bladder detrusor, but ZD7114 did not elicit any relaxation. These results suggest that beta3-adrenoceptor may have some role in urine storage in the human urinary bladder.  (+info)

Optimality of position commands to horizontal eye muscles: A test of the minimum-norm rule. (2/2703)

Six muscles control the position of the eye, which has three degrees of freedom. Daunicht proposed an optimization rule for solving this redundancy problem, whereby small changes in eye position are maintained by the minimum possible change in motor commands to the eye (the minimum-norm rule). The present study sought to test this proposal for the simplified one-dimensional case of small changes in conjugate eye position in the horizontal plane. Assuming such changes involve only the horizontal recti, Daunicht's hypothesis predicts reciprocal innervation with the size of the change in command matched to the strength of the recipient muscle at every starting position of the eye. If the motor command to a muscle is interpreted as the summed firing rate of its oculomotor neuron (OMN) pool, the minimum-norm prediction can be tested by comparing OMN firing rates with forces in the horizontal recti. The comparison showed 1) for the OMN firing rates given by Van Gisbergen and Van Opstal and the muscle forces given by Robinson, there was good agreement between the minimum-norm prediction and experimental observation over about a +/-30 degrees range of eye positions. This fit was robust with respect to variations in muscle stiffness and in methods of calculating muscle innervation. 2) Other data sets gave different estimates for the range of eye-positions within which the minimum-norm prediction held. The main sources of variation appeared to be disagreement about the proportion of OMNs with very low firing-rate thresholds (i.e., less than approximately 35 degrees in the OFF direction) and uncertainty about eye-muscle behavior for extreme (>30 degrees ) positions of the eye. 3) For all data sets, the range of eye positions over which the minimum-norm rule applied was determined by the pattern of motor-unit recruitment inferred for those data. It corresponded to the range of eye positions over which the size principle of recruitment was obeyed by both agonist and antagonist muscles. It is argued that the current best estimate of the oculomotor range over which minimum-norm control could be used for conjugate horizontal eye position is approximately +/-30 degrees. The uncertainty associated with this estimate would be reduced by obtaining unbiased samples of OMN firing rates. Minimum-norm control may result from reduction of the image movement produced by noise in OMN firing rates.  (+info)

Nonlinear tension summation of different combinations of motor units in the anesthetized cat peroneus longus muscle. (3/2703)

The purpose of this study was to examine the linearity of summation of the forces produced by the stimulation of different combinations of type identified motor units (MUs) in the cat peroneus longus muscle (PL) under isometric conditions. The muscle was fixed at its twitch optimal length, and the tension produced by the single MU was recorded during 24- and 72-Hz stimulation. The summation analysis was first carried out for MUs belonging to the same functional group, and then different combinations of fast fatigable (FF) MUs were added to the nonfatigable slow (S) and fatigue resistant (FR) group. The tension resulting from the combined stimulation of increasing numbers of MUs (measured tension) was evaluated and compared with the linearly predicted value, calculated by adding algebraically the tension produced by the individual MUs assembled in the combination (calculated tension). Tension summation displayed deviations from linearity. S and FR MUs mainly showed marked more than linear summation; FF MUs yielded either more or less than linear summation; and, when the FF units were recruited after the S and FR MUs, less than linear summation always occurred. The magnitude of the nonlinear summation appeared stimulus frequency dependent for the fatigable FF and FI group. The relationship between measured tension and calculated tension for each MU combination was examined, and linear regression lines were fitted to each set of data. The high correlation coefficients and the different slope values for the different MU-type combinations suggested that the nonlinear summation was MU-type specific. The mechanisms of nonlinear summations are discussed by considering the consequences of internal shortening and thus the mechanical interactions among MUs and shifts in muscle fiber length to a more or less advantageous portion of single MU length-tension curves.  (+info)

Modulation of the thermoregulatory sweating response to mild hyperthermia during activation of the muscle metaboreflex in humans. (4/2703)

1. To investigate the effect of the muscle metaboreflex on the thermoregulatory sweating response in humans, eight healthy male subjects performed sustained isometric handgrip exercise in an environmental chamber (35 C and 50 % relative humidity) at 30 or 45 % maximal voluntary contraction (MVC), at the end of which the blood circulation to the forearm was occluded for 120 s. The environmental conditions were such as to produce sweating by increase in skin temperature without a marked change in oesophageal temperature. 2. During circulatory occlusion after handgrip exercise at 30 % MVC for 120 s or at 45 % MVC for 60 s, the sweating rate (SR) on the chest and forearm (hairy regions), and the mean arterial blood pressure were significantly above baseline values (P < 0.05). There were no changes from baseline values in the oesophageal temperature, mean skin temperature, or SR on the palm (hairless regions). 3. During the occlusion after handgrip exercise at 30 % MVC for 60 s and during the occlusion alone, none of the measured parameters differed from baseline values. 4. It is concluded that, under mildly hyperthermic conditions, the thermoregulatory sweating response on the hairy regions is modulated by afferent signals from muscle metaboreceptors.  (+info)

Shortening of muscle relaxation time after creatine loading. (5/2703)

The effect of creatine (Cr) supplementation on muscle isometric torque generation and relaxation was investigated in healthy male volunteers. Maximal torque (Tmax), contraction time (CT) from 0.25 to 0.75 of Tmax, and relaxation time (RT) from 0.75 to 0.25 of Tmax were measured during 12 maximal isometric 3-s elbow flexions interspersed by 10-s rest intervals. Between the pretest and the posttest, subjects ingested Cr monohydrate (4 x 5 g/day; n = 8) or placebo (n = 8) for 5 days. Pretest Tmax, CT, and RT were similar in Cr and placebo groups. Also in the posttest, Tmax and CT were similar between groups. However, posttest RT was decreased consistently by approximately 20% (P < 0.05) in the Cr group from the first to the last of the 12 contractions. In addition, the mean decrease in RT after Cr loading was positively correlated with pretest RT (r = 0.82). It is concluded that Cr loading facilitates the rate of muscle relaxation during brief isometric muscle contractions without affecting torque production.  (+info)

Modulation of temperature-induced tone by vasoconstrictor agents. (6/2703)

One of the primary cardiovascular adjustments to hyperthermia is a sympathetically mediated increase in vascular resistance in the viscera. Nonneural factors such as a change in vascular tone or reactivity may also contribute to this response. Therefore, the aim of this study was to determine whether vascular smooth muscle tone is altered during heating to physiologically relevant temperatures >37 degrees C. Gradually increasing bath temperature from 37 degrees C (normothermia) to 43 degrees C (severe hyperthermia) produced graded contractions in vascular ring segments from rat mesenteric arteries and thoracic aortae. In untreated rings these contractions were relatively small, whereas hyperthermia elicited near-maximal increases in tension when rings were constricted with phenylephrine or KCl before heating. In phenylephrine-treated mesenteric arterial rings, the contractile responses to heating were markedly attenuated by the Ca2+ channel antagonists nifedipine and diltiazem. Diltiazem also blocked the contractile responses to heating in thoracic aortic rings. These results demonstrate that hyperthermia has a limited effect on tension generation in rat vascular smooth muscle in the absence of vascular tone. However, in the presence of agonist-induced tone, tension generation during heating is markedly enhanced and dependent on extracellular Ca2+. In conclusion, these data suggest that local regulation of vascular tone can contribute to the hemodynamic adjustments to hyperthermia.  (+info)

Alterations in diaphragm contractility after nandrolone administration: an analysis of potential mechanisms. (7/2703)

The aim of this study was to evaluate the potential mechanisms underlying the improved contractility of the diaphragm (Dia) in adult intact male hamsters after nandrolone (Nan) administration, given subcutaneously over 4 wk via a controlled-release capsule (initial dose: 4.5 mg. kg-1. day-1; with weight gain, final dose: 2.7 mg. kg-1. day-1). Control (Ctl) animals received blank capsules. Isometric contractile properties of the Dia were determined in vitro after 4 wk. The maximum velocity of unloaded shortening (Vo) was determined in vitro by means of the slack test. Dia fibers were classified histochemically on the basis of myofibrillar ATPase staining and fiber cross-sectional area (CSA), and the relative interstitial space was quantitated. Ca2+-activated myosin ATPase activity was determined by quantitative histochemistry in individual diaphragm fibers. Myosin heavy chain (MHC) isoforms were identified electrophoretically, and their proportions were determined by using scanning densitometry. Peak twitch and tetanic forces, as well as Vo, were significantly greater in Nan animals compared with Ctl. The proportion of type IIa Dia fibers was significantly increased in Nan animals. Nan increased the CSA of all fiber types (26-47%), whereas the relative interstitial space decreased. The relative contribution of fiber types to total costal Dia area was preserved between the groups. Proportions of MHC isoforms were similar between the groups. There was a tendency for increased expression of MHC2B with Nan. Ca2+-activated myosin ATPase activity was increased 35-39% in all fiber types in Nan animals. We conclude that, after Nan administration, the increase in Dia specific force results from the relatively greater Dia CSA occupied by hypertrophied muscle fibers, whereas the increased ATPase activity promotes a higher rate of cross-bridge turnover and thus increased Vo. We speculate that Nan in supraphysiological doses have the potential to offset or ameliorate conditions associated with enhanced proteolysis and disordered protein turnover.  (+info)

Peptide toxin blockers of voltage-sensitive K+ channels: inotropic effects on diaphragm. (8/2703)

Agents that block many types of K+ channels (e.g., the aminopyridines) have substantial inotropic effects in skeletal muscle. Specific blockers of ATP-sensitive and Ca2+-activated K+ channels, on the other hand, do not, or minimally, alter the force of nonfatigued muscle, consistent with a predominant role for voltage-gated K+ channels in regulating muscle force. To test this more directly, we examined the effects of peptide toxins, which in other tissues specifically block voltage-gated K+ channels, on rat diaphragm in vitro. Twitch force was increased in response to alpha-, beta-, and gamma-dendrotoxin and tityustoxin Kalpha (17 +/- 6, 22 +/- 5, 42 +/- 14, and 13 +/- 5%; P < 0.05, < 0.01, < 0.05, < 0.05, respectively) but not in response to delta-dendrotoxin or BSA (in which toxins were dissolved). Force during 20-Hz stimulation was also increased significantly by alpha-, beta-, and gamma-dendrotoxin and tityustoxin Kalpha. Among agents, increases in twitch force correlated with the degree to which contraction time was prolonged (r = 0.88, P < 0.02). To determine whether inotropic effects could be maintained during repeated contractions, muscle strips underwent intermittent 20-Hz train stimulation for a duration of 2 min in presence or absence of gamma-dendrotoxin. Force was significantly greater with than without gamma-dendrotoxin during repetitive stimulation for the first 60 s of repetitive contractions. Despite the approximately 55% higher value for initial force in the presence vs. absence of gamma-dendrotoxin, the rate at which fatigue occurred was not accelerated by the toxin, as assessed by the amount of time over which force declined by 25 and 50%. These data suggest that blocking voltage-activated K+ channels may be a useful therapeutic strategy for augmenting diaphragm force, provided less toxic blockers of these channels can be found.  (+info)

Isometric contraction is a type of muscle activation where the muscle contracts without any change in the length of the muscle or movement at the joint. This occurs when the force generated by the muscle matches the external force opposing it, resulting in a balanced state with no visible movement. It is commonly experienced during activities such as holding a heavy object in static position or trying to push against an immovable object. Isometric contractions are important in maintaining posture and providing stability to joints.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

Muscle fatigue is a condition characterized by a reduction in the ability of a muscle to generate force or power, typically after prolonged or strenuous exercise. It is often accompanied by sensations of tiredness, weakness, and discomfort in the affected muscle(s). The underlying mechanisms of muscle fatigue are complex and involve both peripheral factors (such as changes in muscle metabolism, ion handling, and neuromuscular transmission) and central factors (such as changes in the nervous system's ability to activate muscles). Muscle fatigue can also occur as a result of various medical conditions or medications that impair muscle function.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

An isotonic contraction in physiology and medicine refers to a type of muscle contraction where the muscle shortens while maintaining a constant tension. "Isotonic" comes from two Greek words: "iso," meaning equal, and "tonos," meaning tone or tension. During an isotonic contraction, the force generated by the muscle remains constant even as it changes length.

In the context of exercise and physiology, isotonic contractions are often discussed in relation to weightlifting or resistance training exercises. For example, when you lift a dumbbell and then lower it in a controlled manner, your muscles are performing isotonic contractions. The tension in the muscle remains relatively constant throughout the range of motion, even though the length of the muscle changes as you lift and lower the weight.

It's worth noting that there is some debate among experts about the precise definition and classification of different types of muscle contractions, including isotonic contractions. Some sources may use slightly different definitions or terminology depending on the context and their specific area of expertise.

"Torque" is not a term that has a specific medical definition. It is a physical concept used in the fields of physics and engineering, referring to a twisting force that causes rotation around an axis. However, in certain medical contexts, such as in discussions of spinal or joint biomechanics, the term "torque" may be used to describe a rotational force applied to a body part. But generally speaking, "torque" is not a term commonly used in medical terminology.

The elbow is a joint formed by the articulation between the humerus bone of the upper arm and the radius and ulna bones of the forearm. It allows for flexion, extension, and rotation of the forearm. The medical definition of "elbow" refers to this specific anatomical structure and its associated functions in human anatomy.

Neurophysiological recruitment refers to the phenomenon where there is an increase in the number of neurons or nerve fibers involved in generating a response to a stimulus. This can occur due to various physiological or pathological conditions that affect the nervous system. In a healthy nervous system, recruitment allows for the gradual and controlled activation of muscles during movement, with more nerve fibers being recruited as force is needed. However, in certain neurological disorders such as motor neuron disease, there may be abnormal neurophysiological recruitment patterns due to the loss of lower motor neurons, leading to weakness and muscle wasting. Neurophysiological tests like electromyography (EMG) can be used to assess recruitment patterns and help diagnose neurological conditions.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

Skeletal muscle fibers, also known as striated muscle fibers, are the type of muscle cells that make up skeletal muscles, which are responsible for voluntary movements of the body. These muscle fibers are long, cylindrical, and multinucleated, meaning they contain multiple nuclei. They are surrounded by a connective tissue layer called the endomysium, and many fibers are bundled together into fascicles, which are then surrounded by another layer of connective tissue called the perimysium.

Skeletal muscle fibers are composed of myofibrils, which are long, thread-like structures that run the length of the fiber. Myofibrils contain repeating units called sarcomeres, which are responsible for the striated appearance of skeletal muscle fibers. Sarcomeres are composed of thick and thin filaments, which slide past each other during muscle contraction to shorten the sarcomere and generate force.

Skeletal muscle fibers can be further classified into two main types based on their contractile properties: slow-twitch (type I) and fast-twitch (type II). Slow-twitch fibers have a high endurance capacity and are used for sustained, low-intensity activities such as maintaining posture. Fast-twitch fibers, on the other hand, have a higher contractile speed and force generation capacity but fatigue more quickly and are used for powerful, explosive movements.

In medical terms, the knee is referred to as the largest and one of the most complex joints in the human body. It is a hinge joint that connects the thigh bone (femur) to the shin bones (tibia and fibula), enabling movements like flexion, extension, and a small amount of rotation. The knee also contains several other components such as menisci, ligaments, tendons, and bursae, which provide stability, cushioning, and protection during movement.

Myocardial contraction refers to the rhythmic and forceful shortening of heart muscle cells (myocytes) in the myocardium, which is the muscular wall of the heart. This process is initiated by electrical signals generated by the sinoatrial node, causing a wave of depolarization that spreads throughout the heart.

During myocardial contraction, calcium ions flow into the myocytes, triggering the interaction between actin and myosin filaments, which are the contractile proteins in the muscle cells. This interaction causes the myofilaments to slide past each other, resulting in the shortening of the sarcomeres (the functional units of muscle contraction) and ultimately leading to the contraction of the heart muscle.

Myocardial contraction is essential for pumping blood throughout the body and maintaining adequate circulation to vital organs. Any impairment in myocardial contractility can lead to various cardiac disorders, such as heart failure, cardiomyopathy, and arrhythmias.

Motor neurons are specialized nerve cells in the brain and spinal cord that play a crucial role in controlling voluntary muscle movements. They transmit electrical signals from the brain to the muscles, enabling us to perform actions such as walking, talking, and swallowing. There are two types of motor neurons: upper motor neurons, which originate in the brain's motor cortex and travel down to the brainstem and spinal cord; and lower motor neurons, which extend from the brainstem and spinal cord to the muscles. Damage or degeneration of these motor neurons can lead to various neurological disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).

Muscle strength, in a medical context, refers to the amount of force a muscle or group of muscles can produce during contraction. It is the maximum amount of force that a muscle can generate through its full range of motion and is often measured in units of force such as pounds or newtons. Muscle strength is an important component of physical function and mobility, and it can be assessed through various tests, including manual muscle testing, dynamometry, and isokinetic testing. Factors that can affect muscle strength include age, sex, body composition, injury, disease, and physical activity level.

A uterine contraction is a rhythmic, involuntary muscle tightening that occurs in the uterus. These contractions are primarily caused by the activation of smooth muscle cells within the uterine wall, known as myometrial cells. They play a crucial role in various reproductive processes, including menstruation, implantation of a fertilized egg, and childbirth (labor).

During labor, strong and frequent uterine contractions help to dilate the cervix and efface (thin) the lower part of the uterus. As the contractions become more intense and regular, they assist in moving the baby down through the birth canal, ultimately resulting in delivery. Uterine contractions are regulated by a complex interplay of hormones, neurotransmitters, and other signaling molecules, ensuring proper coordination and timing throughout the reproductive process.

A sarcomere is the basic contractile unit in a muscle fiber, and it's responsible for generating the force necessary for muscle contraction. It is composed of several proteins, including actin and myosin, which slide past each other to shorten the sarcomere during contraction. The sarcomere extends from one Z-line to the next in a muscle fiber, and it is delimited by the Z-discs where actin filaments are anchored. Sarcomeres play a crucial role in the functioning of skeletal, cardiac, and smooth muscles.

Musculoskeletal physiological phenomena refer to the various functions, processes, and responses that occur in the musculoskeletal system. This system includes the muscles, bones, joints, cartilages, tendons, ligaments, and other connective tissues that work together to support the body's structure, enable movement, and protect vital organs.

Musculoskeletal physiological phenomena can be categorized into several areas:

1. Muscle contraction and relaxation: This involves the conversion of chemical energy into mechanical energy through the sliding of actin and myosin filaments in muscle fibers, leading to muscle shortening or lengthening.
2. Bone homeostasis: This includes the maintenance of bone mass, density, and strength through a balance between bone formation by osteoblasts and bone resorption by osteoclasts.
3. Joint movement and stability: The movement of joints is enabled by the interaction between muscles, tendons, ligaments, and articular cartilage, while stability is maintained through the passive tension provided by ligaments and the active contraction of muscles.
4. Connective tissue repair and regeneration: This involves the response of tissues such as tendons, ligaments, and muscles to injury or damage, including inflammation, cell proliferation, and matrix remodeling.
5. Neuromuscular control: The coordination of muscle activity through the integration of sensory information from proprioceptors (e.g., muscle spindles, Golgi tendon organs) and motor commands from the central nervous system.
6. Skeletal development and growth: This includes the processes of bone formation, mineralization, and modeling during fetal development and childhood, as well as the maintenance of bone mass and strength throughout adulthood.
7. Aging and degeneration: The progressive decline in musculoskeletal function and structure with age, including sarcopenia (loss of muscle mass), osteoporosis (brittle bones), and joint degeneration (osteoarthritis).

Understanding these physiological phenomena is essential for the diagnosis, treatment, and prevention of musculoskeletal disorders and injuries.

Muscle relaxation, in a medical context, refers to the process of reducing tension and promoting relaxation in the skeletal muscles. This can be achieved through various techniques, including progressive muscle relaxation (PMR), where individuals consciously tense and then release specific muscle groups in a systematic manner.

PMR has been shown to help reduce anxiety, stress, and muscle tightness, and improve overall well-being. It is often used as a complementary therapy in conjunction with other treatments for conditions such as chronic pain, headaches, and insomnia.

Additionally, muscle relaxation can also be facilitated through pharmacological interventions, such as the use of muscle relaxant medications. These drugs work by inhibiting the transmission of signals between nerves and muscles, leading to a reduction in muscle tone and spasticity. They are commonly used to treat conditions such as multiple sclerosis, cerebral palsy, and spinal cord injuries.

Biomechanics is the application of mechanical laws to living structures and systems, particularly in the field of medicine and healthcare. A biomechanical phenomenon refers to a observable event or occurrence that involves the interaction of biological tissues or systems with mechanical forces. These phenomena can be studied at various levels, from the molecular and cellular level to the tissue, organ, and whole-body level.

Examples of biomechanical phenomena include:

1. The way that bones and muscles work together to produce movement (known as joint kinematics).
2. The mechanical behavior of biological tissues such as bone, cartilage, tendons, and ligaments under various loads and stresses.
3. The response of cells and tissues to mechanical stimuli, such as the way that bone tissue adapts to changes in loading conditions (known as Wolff's law).
4. The biomechanics of injury and disease processes, such as the mechanisms of joint injury or the development of osteoarthritis.
5. The use of mechanical devices and interventions to treat medical conditions, such as orthopedic implants or assistive devices for mobility impairments.

Understanding biomechanical phenomena is essential for developing effective treatments and prevention strategies for a wide range of medical conditions, from musculoskeletal injuries to neurological disorders.

Physical endurance is the ability of an individual to withstand and resist physical fatigue over prolonged periods of strenuous activity, exercise, or exertion. It involves the efficient functioning of various body systems, including the cardiovascular system (heart, blood vessels, and blood), respiratory system (lungs and airways), and musculoskeletal system (muscles, bones, tendons, ligaments, and cartilage).

Physical endurance is often measured in terms of aerobic capacity or stamina, which refers to the body's ability to supply oxygen to muscles during sustained physical activity. It can be improved through regular exercise, such as running, swimming, cycling, or weightlifting, that challenges the body's major muscle groups and raises the heart rate for extended periods.

Factors that influence physical endurance include genetics, age, sex, fitness level, nutrition, hydration, sleep quality, stress management, and overall health status. It is essential to maintain good physical endurance to perform daily activities efficiently, reduce the risk of chronic diseases, and enhance overall well-being.

Smooth muscle, also known as involuntary muscle, is a type of muscle that is controlled by the autonomic nervous system and functions without conscious effort. These muscles are found in the walls of hollow organs such as the stomach, intestines, bladder, and blood vessels, as well as in the eyes, skin, and other areas of the body.

Smooth muscle fibers are shorter and narrower than skeletal muscle fibers and do not have striations or sarcomeres, which give skeletal muscle its striped appearance. Smooth muscle is controlled by the autonomic nervous system through the release of neurotransmitters such as acetylcholine and norepinephrine, which bind to receptors on the smooth muscle cells and cause them to contract or relax.

Smooth muscle plays an important role in many physiological processes, including digestion, circulation, respiration, and elimination. It can also contribute to various medical conditions, such as hypertension, gastrointestinal disorders, and genitourinary dysfunction, when it becomes overactive or underactive.

Myosins are a large family of motor proteins that play a crucial role in various cellular processes, including muscle contraction and intracellular transport. They consist of heavy chains, which contain the motor domain responsible for generating force and motion, and light chains, which regulate the activity of the myosin. Based on their structural and functional differences, myosins are classified into over 35 classes, with classes II, V, and VI being the most well-studied.

Class II myosins, also known as conventional myosins, are responsible for muscle contraction in skeletal, cardiac, and smooth muscles. They form filaments called thick filaments, which interact with actin filaments to generate force and movement during muscle contraction.

Class V myosins, also known as unconventional myosins, are involved in intracellular transport and organelle positioning. They have a long tail that can bind to various cargoes, such as vesicles, mitochondria, and nuclei, and a motor domain that moves along actin filaments to transport the cargoes to their destinations.

Class VI myosins are also unconventional myosins involved in intracellular transport and organelle positioning. They have two heads connected by a coiled-coil tail, which can bind to various cargoes. Class VI myosins move along actin filaments in a unique hand-over-hand motion, allowing them to transport their cargoes efficiently.

Overall, myosins are essential for many cellular functions and have been implicated in various diseases, including cardiovascular diseases, neurological disorders, and cancer.

The psoas muscles are a pair of muscles that are located in the lower lumbar region of the spine and run through the pelvis to attach to the femur (thigh bone). They are deep muscles, meaning they are located close to the body's core, and are surrounded by other muscles, bones, and organs.

The psoas muscles are composed of two separate muscles: the psoas major and the psoas minor. The psoas major is the larger of the two muscles and originates from the lumbar vertebrae (T12 to L5) and runs through the pelvis to attach to the lesser trochanter of the femur. The psoas minor, which is smaller and tends to be absent in some people, originates from the lower thoracic vertebrae (T12) and upper lumbar vertebrae (L1-L3) and runs down to attach to the iliac fascia and the pectineal line of the pubis.

The primary function of the psoas muscles is to flex the hip joint, which means they help to bring the knee towards the chest. They also play a role in stabilizing the lumbar spine and pelvis during movement. Tightness or weakness in the psoas muscles can contribute to lower back pain, postural issues, and difficulty with mobility and stability.

In medical terms, "volition" refers to the conscious and deliberate process of making decisions and initiating actions based on personal choice. It is the ability to choose or decide on a course of action and then carry it out willfully. Volition involves the integration of cognitive, emotional, and motor functions to achieve a specific goal-oriented behavior.

Volitional processes are often impaired in certain neurological and psychiatric conditions, such as dementia, Parkinson's disease, schizophrenia, and depression, among others. Assessing volition is important for evaluating an individual's capacity to make informed decisions and take responsibility for their actions.

The Quadriceps muscle, also known as the Quadriceps Femoris, is a large muscle group located in the front of the thigh. It consists of four individual muscles - the Rectus Femoris, Vastus Lateralis, Vastus Intermedius, and Vastus Medialis. These muscles work together to extend the leg at the knee joint and flex the thigh at the hip joint. The Quadriceps muscle is crucial for activities such as walking, running, jumping, and kicking.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Papillary muscles are specialized muscle structures located in the heart, specifically in the ventricles (the lower chambers of the heart). They are attached to the tricuspid and mitral valves' leaflets via tendinous cords, also known as chordae tendineae. The main function of papillary muscles is to prevent the backflow of blood during contraction by providing tension to the valve leaflets through these tendinous cords.

There are two sets of papillary muscles in the heart:

1. Anterior and posterior papillary muscles in the left ventricle, which are attached to the mitral (bicuspid) valve.
2. Three smaller papillary muscles in the right ventricle, which are attached to the tricuspid valve.

These muscle structures play a crucial role in maintaining proper blood flow through the heart and ensuring efficient cardiac function.

Physical exertion is defined as the act of applying energy to physically demandable activities or tasks, which results in various body systems working together to produce movement and maintain homeostasis. It often leads to an increase in heart rate, respiratory rate, and body temperature, among other physiological responses. The level of physical exertion can vary based on the intensity, duration, and frequency of the activity.

It's important to note that engaging in regular physical exertion has numerous health benefits, such as improving cardiovascular fitness, strengthening muscles and bones, reducing stress, and preventing chronic diseases like obesity, diabetes, and heart disease. However, it is also crucial to balance physical exertion with adequate rest and recovery time to avoid overtraining or injury.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

"Rana temporaria" is the scientific name for the common European frog, also known as the grass frog. It's a widespread species found throughout Europe and into western Asia. These frogs are typically brown or green in color with darker spots, and they can change their color to some extent based on their environment. They are semi-aquatic, spending time both in water and on land, and are known for their distinctive mating call.

However, if you're looking for a medical definition, there isn't one for "Rana temporaria." The term is strictly biological and refers to this specific species of frog.

Vasoconstriction is a medical term that refers to the narrowing of blood vessels due to the contraction of the smooth muscle in their walls. This process decreases the diameter of the lumen (the inner space of the blood vessel) and reduces blood flow through the affected vessels. Vasoconstriction can occur throughout the body, but it is most noticeable in the arterioles and precapillary sphincters, which control the amount of blood that flows into the capillary network.

The autonomic nervous system, specifically the sympathetic division, plays a significant role in regulating vasoconstriction through the release of neurotransmitters like norepinephrine (noradrenaline). Various hormones and chemical mediators, such as angiotensin II, endothelin-1, and serotonin, can also induce vasoconstriction.

Vasoconstriction is a vital physiological response that helps maintain blood pressure and regulate blood flow distribution in the body. However, excessive or prolonged vasoconstriction may contribute to several pathological conditions, including hypertension, stroke, and peripheral vascular diseases.

The ankle joint, also known as the talocrural joint, is the articulation between the bones of the lower leg (tibia and fibula) and the talus bone in the foot. It is a synovial hinge joint that allows for dorsiflexion and plantarflexion movements, which are essential for walking, running, and jumping. The ankle joint is reinforced by strong ligaments on both sides to provide stability during these movements.

I'm sorry for any confusion, but "myography" is not a recognized term in the field of medicine or medical terminology. It may be possible that you have misspelled or misremembered a related term. If you meant "myology," that refers to the study of muscles, their structure, function, and disorders. If you had a different term in mind, please provide it so I can give you a more accurate response.

Phosphocreatine (PCr) is a high-energy phosphate compound found in the skeletal muscles, cardiac muscle, and brain. It plays a crucial role in energy metabolism and storage within cells. Phosphocreatine serves as an immediate energy reserve that helps regenerate ATP (adenosine triphosphate), the primary source of cellular energy, during short bursts of intense activity or stress. This process is facilitated by the enzyme creatine kinase, which catalyzes the transfer of a phosphate group from phosphocreatine to ADP (adenosine diphosphate) to form ATP.

In a medical context, phosphocreatine levels may be assessed in muscle biopsies or magnetic resonance spectroscopy (MRS) imaging to evaluate muscle energy metabolism and potential mitochondrial dysfunction in conditions such as muscular dystrophies, mitochondrial disorders, and neuromuscular diseases. Additionally, phosphocreatine depletion has been implicated in various pathological processes, including ischemia-reperfusion injury, neurodegenerative disorders, and heart failure.

In the context of human anatomy, the thigh is the part of the lower limb that extends from the hip to the knee. It is the upper and largest portion of the leg and is primarily composed of the femur bone, which is the longest and strongest bone in the human body, as well as several muscles including the quadriceps femoris (front thigh), hamstrings (back thigh), and adductors (inner thigh). The major blood vessels and nerves that supply the lower limb also pass through the thigh.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

In medicine, elasticity refers to the ability of a tissue or organ to return to its original shape after being stretched or deformed. This property is due to the presence of elastic fibers in the extracellular matrix of the tissue, which can stretch and recoil like rubber bands.

Elasticity is an important characteristic of many tissues, particularly those that are subjected to repeated stretching or compression, such as blood vessels, lungs, and skin. For example, the elasticity of the lungs allows them to expand and contract during breathing, while the elasticity of blood vessels helps maintain normal blood pressure by allowing them to expand and constrict in response to changes in blood flow.

In addition to its role in normal physiology, elasticity is also an important factor in the diagnosis and treatment of various medical conditions. For example, decreased elasticity in the lungs can be a sign of lung disease, while increased elasticity in the skin can be a sign of aging or certain genetic disorders. Medical professionals may use techniques such as pulmonary function tests or skin biopsies to assess elasticity and help diagnose these conditions.

Muscle spindles are specialized sensory organs found within the muscle belly, which primarily function as proprioceptors, providing information about the length and rate of change in muscle length. They consist of small, encapsulated bundles of intrafusal muscle fibers that are interspersed among the extrafusal muscle fibers (the ones responsible for force generation).

Muscle spindles have two types of sensory receptors called primary and secondary endings. Primary endings are located near the equatorial region of the intrafusal fiber, while secondary endings are situated more distally. These endings detect changes in muscle length and transmit this information to the central nervous system (CNS) through afferent nerve fibers.

The activation of muscle spindles plays a crucial role in reflexive responses, such as the stretch reflex (myotatic reflex), which helps maintain muscle tone and joint stability. Additionally, they contribute to our sense of body position and movement awareness, known as kinesthesia.

"Rana esculenta" is not a medical term. It is the scientific name for a species of frog, also known as the edible frog or the common water frog. This species is native to Europe and has been introduced to other parts of the world. They are often farmed for their meat, which is considered a delicacy in some cultures.

If you have any confusion with a medical term or a topic, please provide it so I can give you an accurate information.

Myofibrils are the basic contractile units of muscle fibers, composed of highly organized arrays of thick and thin filaments. They are responsible for generating the force necessary for muscle contraction. The thick filaments are primarily made up of the protein myosin, while the thin filaments are mainly composed of actin. Myofibrils are surrounded by a membrane called the sarcolemma and are organized into repeating sections called sarcomeres, which are the functional units of muscle contraction.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

In medical terms, the leg refers to the lower portion of the human body that extends from the knee down to the foot. It includes the thigh (femur), lower leg (tibia and fibula), foot, and ankle. The leg is primarily responsible for supporting the body's weight and enabling movements such as standing, walking, running, and jumping.

The leg contains several important structures, including bones, muscles, tendons, ligaments, blood vessels, nerves, and joints. These structures work together to provide stability, support, and mobility to the lower extremity. Common medical conditions that can affect the leg include fractures, sprains, strains, infections, peripheral artery disease, and neurological disorders.

Phenylephrine is a medication that belongs to the class of drugs known as sympathomimetic amines. It primarily acts as an alpha-1 adrenergic receptor agonist, which means it stimulates these receptors, leading to vasoconstriction (constriction of blood vessels). This effect can be useful in various medical situations, such as:

1. Nasal decongestion: When applied topically in the nose, phenylephrine causes constriction of the blood vessels in the nasal passages, which helps to relieve congestion and swelling. It is often found in over-the-counter (OTC) cold and allergy products.
2. Ocular circulation: In ophthalmology, phenylephrine is used to dilate the pupils before eye examinations. The increased pressure from vasoconstriction helps to open up the pupil, allowing for a better view of the internal structures of the eye.
3. Hypotension management: In some cases, phenylephrine may be given intravenously to treat low blood pressure (hypotension) during medical procedures like spinal anesthesia or septic shock. The vasoconstriction helps to increase blood pressure and improve perfusion of vital organs.

It is essential to use phenylephrine as directed, as improper usage can lead to adverse effects such as increased heart rate, hypertension, arrhythmias, and rebound congestion (when used as a nasal decongestant). Always consult with a healthcare professional for appropriate guidance on using this medication.

Evoked potentials, motor, are a category of tests used in clinical neurophysiology to measure the electrical activity generated by the nervous system in response to a stimulus that specifically activates the motor pathways. These tests can help assess the integrity and function of the motor neurons, which are responsible for controlling voluntary muscle movements.

During a motor evoked potentials test, electrodes are placed on the scalp or directly on the surface of the brain or spinal cord. A stimulus is then applied to the motor cortex or peripheral nerves, causing the muscles to contract. The resulting electrical signals are recorded and analyzed to evaluate the conduction velocity, amplitude, and latency of the motor responses.

Motor evoked potentials tests can be useful in diagnosing various neurological conditions, such as multiple sclerosis, spinal cord injuries, and motor neuron diseases. They can also help monitor the progression of these conditions and assess the effectiveness of treatments.

A muscle strength dynamometer is a medical device used to measure the force or strength of a muscle or group of muscles. It typically consists of a handheld handle connected to a spring scale or digital force gauge, which measures the amount of force applied by the individual being tested. The person being tested pushes or pulls against the handle with as much force as possible, and the dynamometer provides an objective measurement of their muscle strength in units such as pounds or kilograms.

Muscle strength dynamometers are commonly used in clinical settings to assess muscle weakness or dysfunction, monitor changes in muscle strength over time, and evaluate the effectiveness of rehabilitation interventions. They can be used to test various muscle groups, including the handgrip, quadriceps, hamstrings, biceps, triceps, and shoulder muscles.

When using a muscle strength dynamometer, it is important to follow standardized testing protocols to ensure accurate and reliable measurements. This may include positioning the individual in a specific way, providing standardized instructions, and averaging multiple trials to obtain an accurate measure of their muscle strength.

In medical terms, fingers are not specifically defined as they are common anatomical structures. However, I can provide you with a general anatomy definition:

Fingers are the terminal parts of the upper limb in primates, including humans, consisting of four digits (thumb, index, middle, and ring fingers) and one opposable thumb. They contain bones called phalanges, connected by joints that allow for movement and flexibility. Each finger has a nail, nerve endings for sensation, and blood vessels to supply nutrients and oxygen. Fingers are crucial for various activities such as grasping, manipulating objects, and tactile exploration of the environment.

Potassium chloride is an essential electrolyte that is often used in medical settings as a medication. It's a white, crystalline salt that is highly soluble in water and has a salty taste. In the body, potassium chloride plays a crucial role in maintaining fluid and electrolyte balance, nerve function, and muscle contraction.

Medically, potassium chloride is commonly used to treat or prevent low potassium levels (hypokalemia) in the blood. Hypokalemia can occur due to various reasons such as certain medications, kidney diseases, vomiting, diarrhea, or excessive sweating. Potassium chloride is available in various forms, including tablets, capsules, and liquids, and it's usually taken by mouth.

It's important to note that potassium chloride should be used with caution and under the supervision of a healthcare provider, as high levels of potassium (hyperkalemia) can be harmful and even life-threatening. Hyperkalemia can cause symptoms such as muscle weakness, irregular heartbeat, and cardiac arrest.

A tendon is the strong, flexible band of tissue that connects muscle to bone. It helps transfer the force produced by the muscle to allow various movements of our body parts. Tendons are made up of collagen fibers arranged in parallel bundles and have a poor blood supply, making them prone to injuries and slow to heal. Examples include the Achilles tendon, which connects the calf muscle to the heel bone, and the patellar tendon, which connects the kneecap to the shinbone.

"Anura" is a term used in the field of zoology, particularly in the study of amphibians. It refers to a order that includes frogs and toads. The name "Anura" comes from the Greek language, with "an-" meaning "without," and "oura" meaning "tail." This is a reference to the fact that members of this order lack tails in their adult form.

The Anura order is characterized by several distinct features:

1. They have short, powerful legs that are well adapted for jumping or leaping.
2. Their forelimbs are smaller and less specialized than their hind limbs.
3. Most anurans have a moist, glandular skin, which helps them to breathe and absorb water.
4. Anura includes both aquatic and terrestrial species, with varying degrees of adaptations for each environment.
5. They lay their eggs in water, and their larvae (tadpoles) are aquatic, undergoing a process called metamorphosis to transform into the adult form.

Anura contains approximately 7,000 known species, making it one of the largest orders of vertebrates. They have a cosmopolitan distribution and can be found on every continent except Antarctica. Anurans play essential roles in many ecosystems as both predators and prey, contributing to the regulation of insect populations and serving as indicators of environmental health.

In medical terms, a hand is the part of the human body that is attached to the forearm and consists of the carpus (wrist), metacarpus, and phalanges. It is made up of 27 bones, along with muscles, tendons, ligaments, and other soft tissues. The hand is a highly specialized organ that is capable of performing a wide range of complex movements and functions, including grasping, holding, manipulating objects, and communicating through gestures. It is also richly innervated with sensory receptors that provide information about touch, temperature, pain, and proprioception (the sense of the position and movement of body parts).

An action potential is a brief electrical signal that travels along the membrane of a nerve cell (neuron) or muscle cell. It is initiated by a rapid, localized change in the permeability of the cell membrane to specific ions, such as sodium and potassium, resulting in a rapid influx of sodium ions and a subsequent efflux of potassium ions. This ion movement causes a brief reversal of the electrical potential across the membrane, which is known as depolarization. The action potential then propagates along the cell membrane as a wave, allowing the electrical signal to be transmitted over long distances within the body. Action potentials play a crucial role in the communication and functioning of the nervous system and muscle tissue.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

The motor cortex is a region in the frontal lobe of the brain that is responsible for controlling voluntary movements. It is involved in planning, initiating, and executing movements of the limbs, body, and face. The motor cortex contains neurons called Betz cells, which have large cell bodies and are responsible for transmitting signals to the spinal cord to activate muscles. Damage to the motor cortex can result in various movement disorders such as hemiplegia or paralysis on one side of the body.

The forearm is the region of the upper limb between the elbow and the wrist. It consists of two bones, the radius and ulna, which are located side by side and run parallel to each other. The forearm is responsible for movements such as flexion, extension, supination, and pronation of the hand and wrist.

Hand strength refers to the measure of force or power that an individual can generate using the muscles of the hand and forearm. It is often assessed through various tests, such as grip strength dynamometry, which measures the maximum force exerted by the hand when squeezing a device called a handgrip dynanometer. Hand strength is important for performing daily activities, maintaining independence, and can be indicative of overall health and well-being. Reduced hand strength may be associated with conditions such as neuromuscular disorders, arthritis, or injuries.

Exercise is defined in the medical context as a physical activity that is planned, structured, and repetitive, with the primary aim of improving or maintaining one or more components of physical fitness. Components of physical fitness include cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, and body composition. Exercise can be classified based on its intensity (light, moderate, or vigorous), duration (length of time), and frequency (number of times per week). Common types of exercise include aerobic exercises, such as walking, jogging, cycling, and swimming; resistance exercises, such as weightlifting; flexibility exercises, such as stretching; and balance exercises. Exercise has numerous health benefits, including reducing the risk of chronic diseases, improving mental health, and enhancing overall quality of life.

In medical terms, the thumb is referred to as "pollex" and it's the first digit of the hand, located laterally to the index finger. It's opposable, meaning it can move opposite to the other fingers, allowing for powerful gripping and precise manipulation. The thumb contains two phalanges bones - the distal and proximal - and is connected to the hand by the carpometacarpal joint, which provides a wide range of motion.

The knee joint, also known as the tibiofemoral joint, is the largest and one of the most complex joints in the human body. It is a synovial joint that connects the thighbone (femur) to the shinbone (tibia). The patella (kneecap), which is a sesamoid bone, is located in front of the knee joint and helps in the extension of the leg.

The knee joint is made up of three articulations: the femorotibial joint between the femur and tibia, the femoropatellar joint between the femur and patella, and the tibiofibular joint between the tibia and fibula. These articulations are surrounded by a fibrous capsule that encloses the synovial membrane, which secretes synovial fluid to lubricate the joint.

The knee joint is stabilized by several ligaments, including the medial and lateral collateral ligaments, which provide stability to the sides of the joint, and the anterior and posterior cruciate ligaments, which prevent excessive forward and backward movement of the tibia relative to the femur. The menisci, which are C-shaped fibrocartilaginous structures located between the femoral condyles and tibial plateaus, also help to stabilize the joint by absorbing shock and distributing weight evenly across the articular surfaces.

The knee joint allows for flexion, extension, and a small amount of rotation, making it essential for activities such as walking, running, jumping, and sitting.

The elbow joint, also known as the cubitus joint, is a hinge joint that connects the humerus bone of the upper arm to the radius and ulna bones of the forearm. It allows for flexion and extension movements of the forearm, as well as some degree of rotation. The main articulation occurs between the trochlea of the humerus and the trochlear notch of the ulna, while the radial head of the radius also contributes to the joint's stability and motion. Ligaments, muscles, and tendons surround and support the elbow joint, providing strength and protection during movement.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

In medical terms, the arm refers to the upper limb of the human body, extending from the shoulder to the wrist. It is composed of three major bones: the humerus in the upper arm, and the radius and ulna in the lower arm. The arm contains several joints, including the shoulder joint, elbow joint, and wrist joint, which allow for a wide range of motion. The arm also contains muscles, blood vessels, nerves, and other soft tissues that are essential for normal function.

A stretch reflex, also known as myotatic reflex, is a rapid muscle contraction in response to stretching within the muscle itself. It is a type of reflex that helps to maintain muscle tone, protect muscles and tendons from injury, and assists in coordinating movements.

The stretch reflex is mediated by the stretch (or length) receptors called muscle spindles, which are located within the muscle fibers. When a muscle is stretched suddenly or rapidly, the muscle spindles detect the change in muscle length and activate a rapid motor neuron response, leading to muscle contraction. This reflex helps to stabilize the joint and prevent further stretching or injury.

The most common example of a stretch reflex is the knee-jerk reflex (also known as the patellar reflex), which is elicited by tapping the patellar tendon just below the knee, causing the quadriceps muscle to stretch and contract. This results in a quick extension of the lower leg. Other examples of stretch reflexes include the ankle jerk reflex (Achilles reflex) and the biceps reflex.

"Weight-bearing" is a term used in the medical field to describe the ability of a body part or limb to support the weight or pressure exerted upon it, typically while standing, walking, or performing other physical activities. In a clinical setting, healthcare professionals often use the term "weight-bearing exercise" to refer to physical activities that involve supporting one's own body weight, such as walking, jogging, or climbing stairs. These exercises can help improve bone density, muscle strength, and overall physical function, particularly in individuals with conditions affecting the bones, joints, or muscles.

In addition, "weight-bearing" is also used to describe the positioning of a body part during medical imaging studies, such as X-rays or MRIs. For example, a weight-bearing X-ray of the foot or ankle involves taking an image while the patient stands on the affected limb, allowing healthcare providers to assess any alignment or stability issues that may not be apparent in a non-weight-bearing position.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

The femoral nerve is a major nerve in the thigh region of the human body. It originates from the lumbar plexus, specifically from the ventral rami (anterior divisions) of the second, third, and fourth lumbar nerves (L2-L4). The femoral nerve provides motor and sensory innervation to various muscles and areas in the lower limb.

Motor Innervation:
The femoral nerve is responsible for providing motor innervation to several muscles in the anterior compartment of the thigh, including:

1. Iliacus muscle
2. Psoas major muscle
3. Quadriceps femoris muscle (consisting of four heads: rectus femoris, vastus lateralis, vastus medialis, and vastus intermedius)

These muscles are involved in hip flexion, knee extension, and stabilization of the hip joint.

Sensory Innervation:
The sensory distribution of the femoral nerve includes:

1. Anterior and medial aspects of the thigh
2. Skin over the anterior aspect of the knee and lower leg (via the saphenous nerve, a branch of the femoral nerve)

The saphenous nerve provides sensation to the skin on the inner side of the leg and foot, as well as the medial malleolus (the bony bump on the inside of the ankle).

In summary, the femoral nerve is a crucial component of the lumbar plexus that controls motor functions in the anterior thigh muscles and provides sensory innervation to the anterior and medial aspects of the thigh and lower leg.

Vasoconstrictor agents are substances that cause the narrowing of blood vessels by constricting the smooth muscle in their walls. This leads to an increase in blood pressure and a decrease in blood flow. They work by activating the sympathetic nervous system, which triggers the release of neurotransmitters such as norepinephrine and epinephrine that bind to alpha-adrenergic receptors on the smooth muscle cells of the blood vessel walls, causing them to contract.

Vasoconstrictor agents are used medically for a variety of purposes, including:

* Treating hypotension (low blood pressure)
* Controlling bleeding during surgery or childbirth
* Relieving symptoms of nasal congestion in conditions such as the common cold or allergies

Examples of vasoconstrictor agents include phenylephrine, oxymetazoline, and epinephrine. It's important to note that prolonged use or excessive doses of vasoconstrictor agents can lead to rebound congestion and other adverse effects, so they should be used with caution and under the guidance of a healthcare professional.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

The thoracic aorta is the segment of the largest artery in the human body (the aorta) that runs through the chest region (thorax). The thoracic aorta begins at the aortic arch, where it branches off from the ascending aorta, and extends down to the diaphragm, where it becomes the abdominal aorta.

The thoracic aorta is divided into three parts: the ascending aorta, the aortic arch, and the descending aorta. The ascending aorta rises from the left ventricle of the heart and is about 2 inches (5 centimeters) long. The aortic arch curves backward and to the left, giving rise to the brachiocephalic trunk, the left common carotid artery, and the left subclavian artery. The descending thoracic aorta runs downward through the chest, passing through the diaphragm to become the abdominal aorta.

The thoracic aorta supplies oxygenated blood to the upper body, including the head, neck, arms, and chest. It plays a critical role in maintaining blood flow and pressure throughout the body.

In the context of medicine and healthcare, "movement" refers to the act or process of changing physical location or position. It involves the contraction and relaxation of muscles, which allows for the joints to move and the body to be in motion. Movement can also refer to the ability of a patient to move a specific body part or limb, which is assessed during physical examinations. Additionally, "movement" can describe the progression or spread of a disease within the body.

Myosin light chains are regulatory proteins that bind to the myosin head region of myosin molecules, which are involved in muscle contraction. There are two types of myosin light chains, essential and regulatory, that have different functions. The essential light chains are necessary for the assembly and stability of the myosin filaments, while the regulatory light chains control the calcium-sensitive activation of the myosin ATPase activity during muscle contraction. Phosphorylation of the regulatory light chains plays a critical role in regulating muscle contraction and relaxation.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

The masseter muscle is a strong chewing muscle in the jaw. It is a broad, thick, quadrilateral muscle that extends from the zygomatic arch (cheekbone) to the lower jaw (mandible). The masseter muscle has two distinct parts: the superficial part and the deep part.

The superficial part of the masseter muscle originates from the lower border of the zygomatic process of the maxilla and the anterior two-thirds of the inferior border of the zygomatic arch. The fibers of this part run almost vertically downward to insert on the lateral surface of the ramus of the mandible and the coronoid process.

The deep part of the masseter muscle originates from the deep surface of the zygomatic arch and inserts on the medial surface of the ramus of the mandible, blending with the temporalis tendon.

The primary function of the masseter muscle is to elevate the mandible, helping to close the mouth and clench the teeth together during mastication (chewing). It also plays a role in stabilizing the jaw during biting and speaking. The masseter muscle is one of the most powerful muscles in the human body relative to its size.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Sensory feedback refers to the information that our senses (such as sight, sound, touch, taste, and smell) provide to our nervous system about our body's interaction with its environment. This information is used by our brain and muscles to make adjustments in movement, posture, and other functions to maintain balance, coordination, and stability.

For example, when we walk, our sensory receptors in the skin, muscles, and joints provide feedback to our brain about the position and movement of our limbs. This information is used to adjust our muscle contractions and make small corrections in our gait to maintain balance and avoid falling. Similarly, when we touch a hot object, sensory receptors in our skin send signals to our brain that activate the withdrawal reflex, causing us to quickly pull away our hand.

In summary, sensory feedback is an essential component of our nervous system's ability to monitor and control our body's movements and responses to the environment.

A hindlimb, also known as a posterior limb, is one of the pair of extremities that are located distally to the trunk in tetrapods (four-legged vertebrates) and include mammals, birds, reptiles, and amphibians. In humans and other primates, hindlimbs are equivalent to the lower limbs, which consist of the thigh, leg, foot, and toes.

The primary function of hindlimbs is locomotion, allowing animals to move from one place to another. However, they also play a role in other activities such as balance, support, and communication. In humans, the hindlimbs are responsible for weight-bearing, standing, walking, running, and jumping.

In medical terminology, the term "hindlimb" is not commonly used to describe human anatomy. Instead, healthcare professionals use terms like lower limbs or lower extremities to refer to the same region of the body. However, in comparative anatomy and veterinary medicine, the term hindlimb is still widely used to describe the corresponding structures in non-human animals.

Neural conduction is the process by which electrical signals, known as action potentials, are transmitted along the axon of a neuron (nerve cell) to transmit information between different parts of the nervous system. This electrical impulse is generated by the movement of ions across the neuronal membrane, and it propagates down the length of the axon until it reaches the synapse, where it can then stimulate the release of neurotransmitters to communicate with other neurons or target cells. The speed of neural conduction can vary depending on factors such as the diameter of the axon, the presence of myelin sheaths (which act as insulation and allow for faster conduction), and the temperature of the environment.

Bupranolol is a beta-blocker medication that is primarily used to treat high blood pressure, angina (chest pain), and certain types of irregular heartbeats. It works by blocking the action of certain natural substances in your body, such as epinephrine, that affect the heart and blood vessels. This helps to reduce heart rate, lower blood pressure, and improve blood flow, which can help prevent heart attacks and strokes.

Bupranolol may also be used for other purposes, such as preventing migraines or treating anxiety disorders. It is available in immediate-release and extended-release tablets, and the dosage may vary depending on the specific condition being treated. As with any medication, bupranolol can have side effects, including dizziness, fatigue, and gastrointestinal symptoms. It is important to follow your doctor's instructions carefully when taking this medication and to report any unusual or bothersome side effects promptly.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Transcranial Magnetic Stimulation (TMS) is a non-invasive form of brain stimulation where a magnetic field is generated via an electromagnetic coil placed on the scalp. This magnetic field induces an electric current in the underlying brain tissue, which can lead to neuronal activation or inhibition, depending on the frequency and intensity of the stimulation. TMS has been used as a therapeutic intervention for various neurological and psychiatric conditions, such as depression, migraine, and tinnitus, among others. It is also used in research settings to investigate brain function and connectivity.

Physiological adaptation refers to the changes or modifications that occur in an organism's biological functions or structures as a result of environmental pressures or changes. These adaptations enable the organism to survive and reproduce more successfully in its environment. They can be short-term, such as the constriction of blood vessels in response to cold temperatures, or long-term, such as the evolution of longer limbs in animals that live in open environments.

In the context of human physiology, examples of physiological adaptation include:

1. Acclimatization: The process by which the body adjusts to changes in environmental conditions, such as altitude or temperature. For example, when a person moves to a high-altitude location, their body may produce more red blood cells to compensate for the lower oxygen levels, leading to improved oxygen delivery to tissues.

2. Exercise adaptation: Regular physical activity can lead to various physiological adaptations, such as increased muscle strength and endurance, enhanced cardiovascular function, and improved insulin sensitivity.

3. Hormonal adaptation: The body can adjust hormone levels in response to changes in the environment or internal conditions. For instance, during prolonged fasting, the body releases stress hormones like cortisol and adrenaline to help maintain energy levels and prevent muscle wasting.

4. Sensory adaptation: Our senses can adapt to different stimuli over time. For example, when we enter a dark room after being in bright sunlight, it takes some time for our eyes to adjust to the new light level. This process is known as dark adaptation.

5. Aging-related adaptations: As we age, various physiological changes occur that help us adapt to the changing environment and maintain homeostasis. These include changes in body composition, immune function, and cognitive abilities.

Energy metabolism is the process by which living organisms produce and consume energy to maintain life. It involves a series of chemical reactions that convert nutrients from food, such as carbohydrates, fats, and proteins, into energy in the form of adenosine triphosphate (ATP).

The process of energy metabolism can be divided into two main categories: catabolism and anabolism. Catabolism is the breakdown of nutrients to release energy, while anabolism is the synthesis of complex molecules from simpler ones using energy.

There are three main stages of energy metabolism: glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative phosphorylation. Glycolysis occurs in the cytoplasm of the cell and involves the breakdown of glucose into pyruvate, producing a small amount of ATP and nicotinamide adenine dinucleotide (NADH). The citric acid cycle takes place in the mitochondria and involves the further breakdown of pyruvate to produce more ATP, NADH, and carbon dioxide. Oxidative phosphorylation is the final stage of energy metabolism and occurs in the inner mitochondrial membrane. It involves the transfer of electrons from NADH and other electron carriers to oxygen, which generates a proton gradient across the membrane. This gradient drives the synthesis of ATP, producing the majority of the cell's energy.

Overall, energy metabolism is a complex and essential process that allows organisms to grow, reproduce, and maintain their bodily functions. Disruptions in energy metabolism can lead to various diseases, including diabetes, obesity, and neurodegenerative disorders.

Heart rate is the number of heartbeats per unit of time, often expressed as beats per minute (bpm). It can vary significantly depending on factors such as age, physical fitness, emotions, and overall health status. A resting heart rate between 60-100 bpm is generally considered normal for adults, but athletes and individuals with high levels of physical fitness may have a resting heart rate below 60 bpm due to their enhanced cardiovascular efficiency. Monitoring heart rate can provide valuable insights into an individual's health status, exercise intensity, and response to various treatments or interventions.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

A reflex is an automatic, involuntary and rapid response to a stimulus that occurs without conscious intention. In the context of physiology and neurology, it's a basic mechanism that involves the transmission of nerve impulses between neurons, resulting in a muscle contraction or glandular secretion.

Reflexes are important for maintaining homeostasis, protecting the body from harm, and coordinating movements. They can be tested clinically to assess the integrity of the nervous system, such as the knee-j jerk reflex, which tests the function of the L3-L4 spinal nerve roots and the sensitivity of the stretch reflex arc.

In medical terms, the foot is the part of the lower limb that is distal to the leg and below the ankle, extending from the tarsus to the toes. It is primarily responsible for supporting body weight and facilitating movement through push-off during walking or running. The foot is a complex structure made up of 26 bones, 33 joints, and numerous muscles, tendons, ligaments, and nerves that work together to provide stability, balance, and flexibility. It can be divided into three main parts: the hindfoot, which contains the talus and calcaneus (heel) bones; the midfoot, which includes the navicular, cuboid, and cuneiform bones; and the forefoot, which consists of the metatarsals and phalanges that form the toes.

Muscle weakness is a condition in which muscles cannot develop the expected level of physical force or power. This results in reduced muscle function and can be caused by various factors, including nerve damage, muscle diseases, or hormonal imbalances. Muscle weakness may manifest as difficulty lifting objects, maintaining posture, or performing daily activities. It is essential to consult a healthcare professional for proper diagnosis and treatment of muscle weakness.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Creatine is a organic acid that is produced naturally in the liver, kidneys and pancreas. It is also found in small amounts in certain foods such as meat and fish. The chemical formula for creatine is C4H9N3O2. In the body, creatine is converted into creatine phosphate, which is used to help produce energy during high-intensity exercise, such as weightlifting or sprinting.

Creatine can also be taken as a dietary supplement, in the form of creatine monohydrate, with the goal of increasing muscle creatine and phosphocreatine levels, which may improve athletic performance and help with muscle growth. However, it is important to note that while some studies have found that creatine supplementation can improve exercise performance and muscle mass in certain populations, others have not found significant benefits.

Creatine supplements are generally considered safe when used as directed, but they can cause side effects such as weight gain, stomach discomfort, and muscle cramps in some people. It is always recommended to consult a healthcare professional before starting any new supplement regimen.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

"Rana pipiens" is not a medical term. It is the scientific name for the Northern Leopard Frog, a species of frog that is native to North America. This frog is commonly found in wetlands and near bodies of water in fields and forests. The Northern Leopard Frog is a smooth-skinned frog with large, well-defined spots on its back and legs. It is a common subject of study in biology and ecology due to its widespread distribution and adaptability to different habitats.

If you have any medical concerns or questions, it's best to consult with a healthcare professional for accurate information.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

The ankle, also known as the talocrural region, is the joint between the leg and the foot. It is a synovial hinge joint that allows for dorsiflexion and plantarflexion movements. The ankle is composed of three bones: the tibia and fibula of the lower leg, and the talus of the foot. The bottom portion of the tibia and fibula, called the malleoli, form a mortise that surrounds and articulates with the talus.

The ankle joint is strengthened by several ligaments, including the medial (deltoid) ligament and lateral ligament complex. The ankle also contains important nerves and blood vessels that provide sensation and circulation to the foot.

Damage to the ankle joint, such as sprains or fractures, can result in pain, swelling, and difficulty walking. Proper care and rehabilitation are essential for maintaining the health and function of the ankle joint.

'Task Performance and Analysis' is not a commonly used medical term, but it can be found in the field of rehabilitation medicine and ergonomics. It refers to the process of evaluating and understanding how a specific task is performed, in order to identify any physical or cognitive demands placed on an individual during the performance of that task. This information can then be used to inform the design of interventions, such as workplace modifications or rehabilitation programs, aimed at improving task performance or reducing the risk of injury.

In a medical context, task performance and analysis may be used in the assessment and treatment of individuals with disabilities or injuries, to help them return to work or other activities of daily living. The analysis involves breaking down the task into its component parts, observing and measuring the physical and cognitive demands of each part, and evaluating the individual's ability to perform those demands. Based on this analysis, recommendations may be made for modifications to the task or the environment, training or education, or assistive devices that can help the individual perform the task more safely and efficiently.

Overall, task performance and analysis is a valuable tool in promoting safe and effective task performance, reducing the risk of injury, and improving functional outcomes for individuals with disabilities or injuries.

Medical Definition of Rest:

1. A state of motionless, inactivity, or repose of the body.
2. A period during which such a state is experienced, usually as a result of sleep or relaxation.
3. The cessation of mental or physical activity; a pause or interval of rest is a period of time in which one does not engage in work or exertion.
4. In medical contexts, rest may also refer to the treatment or management strategy that involves limiting physical activity or exertion in order to allow an injury or illness to heal, reduce pain or prevent further harm. This can include bed rest, where a person is advised to stay in bed for a certain period of time.
5. In physiology, rest refers to the state of the body when it is not engaged in physical activity and the muscles are at their resting length and tension. During rest, the body's systems have an opportunity to recover from the demands placed on them during activity, allowing for optimal functioning and overall health.

A tremor is an involuntary, rhythmic muscle contraction and relaxation that causes a shaking movement. It's a type of motion disorder that can affect any part of your body, but it most often occurs in your hands. Tremors can be harmless, but they can also be a symptom of a more serious neurological disorder. The cause of tremors isn't always known, but they can be the result of damage to the brain from a stroke, multiple sclerosis, or trauma. Certain medications, alcohol abuse, and drug withdrawal can also cause tremors. In some cases, tremors may be inherited and run in families.

Tremors can be classified based on their cause, appearance, and the situation in which they occur. The two most common types of tremors are:

* Resting tremors, which occur when your muscles are relaxed, such as when your hands are resting on your lap. Parkinson's disease is a common cause of this type of tremor.
* Action tremors, which occur with purposeful movement, such as when you're trying to hold something or when you're using a utensil. Essential tremor, the most common type of tremor, is an action tremor.

Tremors can also be classified based on their frequency (how often they occur) and amplitude (the size of the movement). High-frequency tremors are faster and smaller in amplitude, while low-frequency tremors are slower and larger in amplitude.

In general, tremors are not a life-threatening condition, but they can be embarrassing or make it difficult to perform daily activities. In some cases, tremors may indicate a more serious underlying condition that requires treatment. If you're concerned about tremors or have any questions about your symptoms, it's important to speak with a healthcare provider for an accurate diagnosis and appropriate treatment.

Isoproterenol is a medication that belongs to a class of drugs called beta-adrenergic agonists. Medically, it is defined as a synthetic catecholamine with both alpha and beta adrenergic receptor stimulating properties. It is primarily used as a bronchodilator to treat conditions such as asthma and chronic obstructive pulmonary disease (COPD) by relaxing the smooth muscles in the airways, thereby improving breathing.

Isoproterenol can also be used in the treatment of bradycardia (abnormally slow heart rate), cardiac arrest, and heart blocks by increasing the heart rate and contractility. However, due to its non-selective beta-agonist activity, it may cause various side effects such as tremors, palpitations, and increased blood pressure. Its use is now limited due to the availability of more selective and safer medications.

Vasodilation is the widening or increase in diameter of blood vessels, particularly the involuntary relaxation of the smooth muscle in the tunica media (middle layer) of the arteriole walls. This results in an increase in blood flow and a decrease in vascular resistance. Vasodilation can occur due to various physiological and pathophysiological stimuli, such as local metabolic demands, neural signals, or pharmacological agents. It plays a crucial role in regulating blood pressure, tissue perfusion, and thermoregulation.

In medical terms, the heart is a muscular organ located in the thoracic cavity that functions as a pump to circulate blood throughout the body. It's responsible for delivering oxygen and nutrients to the tissues and removing carbon dioxide and other wastes. The human heart is divided into four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body and pumps it to the lungs, while the left side receives oxygenated blood from the lungs and pumps it out to the rest of the body. The heart's rhythmic contractions and relaxations are regulated by a complex electrical conduction system.

Posture is the position or alignment of body parts supported by the muscles, especially the spine and head in relation to the vertebral column. It can be described as static (related to a stationary position) or dynamic (related to movement). Good posture involves training your body to stand, walk, sit, and lie in positions where the least strain is placed on supporting muscles and ligaments during movement or weight-bearing activities. Poor posture can lead to various health issues such as back pain, neck pain, headaches, and respiratory problems.

Articular Range of Motion (AROM) is a term used in physiotherapy and orthopedics to describe the amount of movement available in a joint, measured in degrees of a circle. It refers to the range through which synovial joints can actively move without causing pain or injury. AROM is assessed by measuring the degree of motion achieved by active muscle contraction, as opposed to passive range of motion (PROM), where the movement is generated by an external force.

Assessment of AROM is important in evaluating a patient's functional ability and progress, planning treatment interventions, and determining return to normal activities or sports participation. It is also used to identify any restrictions in joint mobility that may be due to injury, disease, or surgery, and to monitor the effectiveness of rehabilitation programs.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

In the context of medicine and physiology, vibration refers to the mechanical oscillation of a physical body or substance with a periodic back-and-forth motion around an equilibrium point. This motion can be produced by external forces or internal processes within the body.

Vibration is often measured in terms of frequency (the number of cycles per second) and amplitude (the maximum displacement from the equilibrium position). In clinical settings, vibration perception tests are used to assess peripheral nerve function and diagnose conditions such as neuropathy.

Prolonged exposure to whole-body vibration or hand-transmitted vibration in certain occupational settings can also have adverse health effects, including hearing loss, musculoskeletal disorders, and vascular damage.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

Muscle tonus, also known as muscle tone, refers to the continuous and passive partial contraction of the muscles, which helps to maintain posture and stability. It is the steady state of slight tension that is present in resting muscles, allowing them to quickly respond to stimuli and move. This natural state of mild contraction is maintained by the involuntary activity of the nervous system and can be affected by factors such as injury, disease, or exercise.

It's important to note that muscle tone should not be confused with muscle "tone" in the context of physical appearance or body sculpting, which refers to the amount of muscle definition and leanness seen in an individual's physique.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Body temperature regulation, also known as thermoregulation, is the process by which the body maintains its core internal temperature within a narrow range, despite varying external temperatures. This is primarily controlled by the hypothalamus in the brain, which acts as a thermostat and receives input from temperature receptors throughout the body. When the body's temperature rises above or falls below the set point, the hypothalamus initiates responses to bring the temperature back into balance. These responses can include shivering to generate heat, sweating to cool down, vasodilation or vasoconstriction of blood vessels to regulate heat loss, and changes in metabolic rate. Effective body temperature regulation is crucial for maintaining optimal physiological function and overall health.

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

Electrophysiology is a branch of medicine that deals with the electrical activities of the body, particularly the heart. In a medical context, electrophysiology studies (EPS) are performed to assess abnormal heart rhythms (arrhythmias) and to evaluate the effectiveness of certain treatments, such as medication or pacemakers.

During an EPS, electrode catheters are inserted into the heart through blood vessels in the groin or neck. These catheters can record the electrical activity of the heart and stimulate it to help identify the source of the arrhythmia. The information gathered during the study can help doctors determine the best course of treatment for each patient.

In addition to cardiac electrophysiology, there are also other subspecialties within electrophysiology, such as neuromuscular electrophysiology, which deals with the electrical activity of the nervous system and muscles.

X-ray diffraction (XRD) is not strictly a medical definition, but it is a technique commonly used in the field of medical research and diagnostics. XRD is a form of analytical spectroscopy that uses the phenomenon of X-ray diffraction to investigate the crystallographic structure of materials. When a beam of X-rays strikes a crystal, it is scattered in specific directions and with specific intensities that are determined by the arrangement of atoms within the crystal. By measuring these diffraction patterns, researchers can determine the crystal structures of various materials, including biological macromolecules such as proteins and viruses.

In the medical field, XRD is often used to study the structure of drugs and drug candidates, as well as to analyze the composition and structure of tissues and other biological samples. For example, XRD can be used to investigate the crystal structures of calcium phosphate minerals in bone tissue, which can provide insights into the mechanisms of bone formation and disease. Additionally, XRD is sometimes used in the development of new medical imaging techniques, such as phase-contrast X-ray imaging, which has the potential to improve the resolution and contrast of traditional X-ray images.

Computer-assisted signal processing is a medical term that refers to the use of computer algorithms and software to analyze, interpret, and extract meaningful information from biological signals. These signals can include physiological data such as electrocardiogram (ECG) waves, electromyography (EMG) signals, electroencephalography (EEG) readings, or medical images.

The goal of computer-assisted signal processing is to automate the analysis of these complex signals and extract relevant features that can be used for diagnostic, monitoring, or therapeutic purposes. This process typically involves several steps, including:

1. Signal acquisition: Collecting raw data from sensors or medical devices.
2. Preprocessing: Cleaning and filtering the data to remove noise and artifacts.
3. Feature extraction: Identifying and quantifying relevant features in the signal, such as peaks, troughs, or patterns.
4. Analysis: Applying statistical or machine learning algorithms to interpret the extracted features and make predictions about the underlying physiological state.
5. Visualization: Presenting the results in a clear and intuitive way for clinicians to review and use.

Computer-assisted signal processing has numerous applications in healthcare, including:

* Diagnosing and monitoring cardiac arrhythmias or other heart conditions using ECG signals.
* Assessing muscle activity and function using EMG signals.
* Monitoring brain activity and diagnosing neurological disorders using EEG readings.
* Analyzing medical images to detect abnormalities, such as tumors or fractures.

Overall, computer-assisted signal processing is a powerful tool for improving the accuracy and efficiency of medical diagnosis and monitoring, enabling clinicians to make more informed decisions about patient care.

Gastrointestinal motility refers to the coordinated muscular contractions and relaxations that propel food, digestive enzymes, and waste products through the gastrointestinal tract. This process involves the movement of food from the mouth through the esophagus into the stomach, where it is mixed with digestive enzymes and acids to break down food particles.

The contents are then emptied into the small intestine, where nutrients are absorbed, and the remaining waste products are moved into the large intestine for further absorption of water and electrolytes and eventual elimination through the rectum and anus.

Gastrointestinal motility is controlled by a complex interplay between the autonomic nervous system, hormones, and local reflexes. Abnormalities in gastrointestinal motility can lead to various symptoms such as bloating, abdominal pain, nausea, vomiting, diarrhea, or constipation.

Adenosine diphosphate (ADP) is a chemical compound that plays a crucial role in energy transfer within cells. It is a nucleotide, which consists of a adenosine molecule (a sugar molecule called ribose attached to a nitrogenous base called adenine) and two phosphate groups.

In the cell, ADP functions as an intermediate in the conversion of energy from one form to another. When a high-energy phosphate bond in ADP is broken, energy is released and ADP is converted to adenosine triphosphate (ATP), which serves as the main energy currency of the cell. Conversely, when ATP donates a phosphate group to another molecule, it is converted back to ADP, releasing energy for the cell to use.

ADP also plays a role in blood clotting and other physiological processes. In the coagulation cascade, ADP released from damaged red blood cells can help activate platelets and initiate the formation of a blood clot.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

The urinary bladder is a muscular, hollow organ in the pelvis that stores urine before it is released from the body. It expands as it fills with urine and contracts when emptying. The typical adult bladder can hold between 400 to 600 milliliters of urine for about 2-5 hours before the urge to urinate occurs. The wall of the bladder contains several layers, including a mucous membrane, a layer of smooth muscle (detrusor muscle), and an outer fibrous adventitia. The muscles of the bladder neck and urethra remain contracted to prevent leakage of urine during filling, and they relax during voiding to allow the urine to flow out through the urethra.

Atropine is an anticholinergic drug that blocks the action of the neurotransmitter acetylcholine in the central and peripheral nervous system. It is derived from the belladonna alkaloids, which are found in plants such as deadly nightshade (Atropa belladonna), Jimson weed (Datura stramonium), and Duboisia spp.

In clinical medicine, atropine is used to reduce secretions, increase heart rate, and dilate the pupils. It is often used before surgery to dry up secretions in the mouth, throat, and lungs, and to reduce salivation during the procedure. Atropine is also used to treat certain types of nerve agent and pesticide poisoning, as well as to manage bradycardia (slow heart rate) and hypotension (low blood pressure) caused by beta-blockers or calcium channel blockers.

Atropine can have several side effects, including dry mouth, blurred vision, dizziness, confusion, and difficulty urinating. In high doses, it can cause delirium, hallucinations, and seizures. Atropine should be used with caution in patients with glaucoma, prostatic hypertrophy, or other conditions that may be exacerbated by its anticholinergic effects.

The term "lower extremity" is used in the medical field to refer to the portion of the human body that includes the structures below the hip joint. This includes the thigh, lower leg, ankle, and foot. The lower extremities are responsible for weight-bearing and locomotion, allowing individuals to stand, walk, run, and jump. They contain many important structures such as bones, muscles, tendons, ligaments, nerves, and blood vessels.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Nifedipine is an antihypertensive and calcium channel blocker medication. It works by relaxing the muscles of the blood vessels, which helps to lower blood pressure and improve the supply of oxygen and nutrients to the heart. Nifedipine is used to treat high blood pressure (hypertension), angina (chest pain), and certain types of heart rhythm disorders.

In medical terms, nifedipine can be defined as: "A dihydropyridine calcium channel blocker that is used in the treatment of hypertension, angina pectoris, and Raynaud's phenomenon. It works by inhibiting the influx of calcium ions into vascular smooth muscle and cardiac muscle, which results in relaxation of the vascular smooth muscle and decreased workload on the heart."

Peristalsis is an involuntary muscular movement that occurs in the digestive tract, including the esophagus, stomach, and intestines. It is characterized by alternate contraction and relaxation of the smooth muscles in the walls of these organs, which creates a wave-like motion that helps propel food, fluids, and waste through the digestive system.

The process of peristalsis begins with a narrowing or constriction of the muscle in one area of the digestive tract, followed by a relaxation of the muscle in the adjacent area. This creates a localized contraction that moves along the length of the organ, pushing its contents forward. The wave of contractions continues to move along the digestive tract until it reaches the anus, where waste is eliminated from the body.

Peristalsis plays a crucial role in maintaining proper digestion and absorption of nutrients, as well as in the elimination of waste products from the body. Disorders that affect peristalsis, such as gastrointestinal motility disorders, can lead to symptoms such as abdominal pain, bloating, constipation, or diarrhea.

I'm sorry for any confusion, but there seems to be a misunderstanding. Mathematics is not a medical term; it is a branch of science dedicated to the study of numbers, shapes, and structures. However, mathematics does have many applications in medicine, such as in modeling disease spread, analyzing medical images, or designing clinical trials. If you have any questions related to mathematics in a medical context, I'd be happy to help clarify those for you!

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Carbachol is a cholinergic agonist, which means it stimulates the parasympathetic nervous system by mimicking the action of acetylcholine, a neurotransmitter that is involved in transmitting signals between nerves and muscles. Carbachol binds to both muscarinic and nicotinic receptors, but its effects are more pronounced on muscarinic receptors.

Carbachol is used in medical treatments to produce miosis (pupil constriction), lower intraocular pressure, and stimulate gastrointestinal motility. It can also be used as a diagnostic tool to test for certain conditions such as Hirschsprung's disease.

Like any medication, carbachol can have side effects, including sweating, salivation, nausea, vomiting, diarrhea, bradycardia (slow heart rate), and bronchoconstriction (narrowing of the airways in the lungs). It should be used with caution and under the supervision of a healthcare professional.

Caffeine is a central nervous system stimulant that occurs naturally in the leaves, seeds, or fruits of some plants. It can also be produced artificially and added to various products, such as food, drinks, and medications. Caffeine has a number of effects on the body, including increasing alertness, improving mood, and boosting energy levels.

In small doses, caffeine is generally considered safe for most people. However, consuming large amounts of caffeine can lead to negative side effects, such as restlessness, insomnia, rapid heart rate, and increased blood pressure. It is also possible to become dependent on caffeine, and withdrawal symptoms can occur if consumption is suddenly stopped.

Caffeine is found in a variety of products, including coffee, tea, chocolate, energy drinks, and some medications. The amount of caffeine in these products can vary widely, so it is important to pay attention to serving sizes and labels to avoid consuming too much.

Actomyosin is a contractile protein complex that consists of actin and myosin filaments. It plays an essential role in muscle contraction, cell motility, and cytokinesis (the process of cell division where the cytoplasm is divided into two daughter cells). The interaction between actin and myosin generates force and movement through a mechanism called sliding filament theory. In this process, myosin heads bind to actin filaments and then undergo a power stroke, which results in the sliding of one filament relative to the other and ultimately leads to muscle contraction or cellular movements. Actomyosin complexes are also involved in various non-muscle cellular processes such as cytoplasmic streaming, intracellular transport, and maintenance of cell shape.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Arteries are blood vessels that carry oxygenated blood away from the heart to the rest of the body. They have thick, muscular walls that can withstand the high pressure of blood being pumped out of the heart. Arteries branch off into smaller vessels called arterioles, which further divide into a vast network of tiny capillaries where the exchange of oxygen, nutrients, and waste occurs between the blood and the body's cells. After passing through the capillary network, deoxygenated blood collects in venules, then merges into veins, which return the blood back to the heart.

The ileum is the third and final segment of the small intestine, located between the jejunum and the cecum (the beginning of the large intestine). It plays a crucial role in nutrient absorption, particularly for vitamin B12 and bile salts. The ileum is characterized by its thin, lined walls and the presence of Peyer's patches, which are part of the immune system and help surveil for pathogens.

Potassium is a essential mineral and an important electrolyte that is widely distributed in the human body. The majority of potassium in the body (approximately 98%) is found within cells, with the remaining 2% present in blood serum and other bodily fluids. Potassium plays a crucial role in various physiological processes, including:

1. Regulation of fluid balance and maintenance of normal blood pressure through its effects on vascular tone and sodium excretion.
2. Facilitation of nerve impulse transmission and muscle contraction by participating in the generation and propagation of action potentials.
3. Protein synthesis, enzyme activation, and glycogen metabolism.
4. Regulation of acid-base balance through its role in buffering systems.

The normal serum potassium concentration ranges from 3.5 to 5.0 mEq/L (milliequivalents per liter) or mmol/L (millimoles per liter). Potassium levels outside this range can have significant clinical consequences, with both hypokalemia (low potassium levels) and hyperkalemia (high potassium levels) potentially leading to serious complications such as cardiac arrhythmias, muscle weakness, and respiratory failure.

Potassium is primarily obtained through the diet, with rich sources including fruits (e.g., bananas, oranges, and apricots), vegetables (e.g., leafy greens, potatoes, and tomatoes), legumes, nuts, dairy products, and meat. In cases of deficiency or increased needs, potassium supplements may be recommended under the guidance of a healthcare professional.

The vas deferens is a muscular tube that carries sperm from the epididymis to the urethra during ejaculation in males. It is a part of the male reproductive system and is often targeted in surgical procedures like vasectomy, which is a form of permanent birth control.

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter that is found primarily in the gastrointestinal (GI) tract, blood platelets, and the central nervous system (CNS) of humans and other animals. It is produced by the conversion of the amino acid tryptophan to 5-hydroxytryptophan (5-HTP), and then to serotonin.

In the CNS, serotonin plays a role in regulating mood, appetite, sleep, memory, learning, and behavior, among other functions. It also acts as a vasoconstrictor, helping to regulate blood flow and blood pressure. In the GI tract, it is involved in peristalsis, the contraction and relaxation of muscles that moves food through the digestive system.

Serotonin is synthesized and stored in serotonergic neurons, which are nerve cells that use serotonin as their primary neurotransmitter. These neurons are found throughout the brain and spinal cord, and they communicate with other neurons by releasing serotonin into the synapse, the small gap between two neurons.

Abnormal levels of serotonin have been linked to a variety of disorders, including depression, anxiety, schizophrenia, and migraines. Medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs), are commonly used to treat these conditions.

Rho-associated kinases (ROCKs) are serine/threonine kinases that are involved in the regulation of various cellular processes, including actin cytoskeleton organization, cell migration, and gene expression. They are named after their association with the small GTPase RhoA, which activates them upon binding.

ROCKs exist as two isoforms, ROCK1 and ROCK2, which share a high degree of sequence homology and have similar functions. They contain several functional domains, including a kinase domain, a coiled-coil region that mediates protein-protein interactions, and a Rho-binding domain (RBD) that binds to active RhoA.

Once activated by RhoA, ROCKs phosphorylate a variety of downstream targets, including myosin light chain (MLC), LIM kinase (LIMK), and moesin, leading to the regulation of actomyosin contractility, stress fiber formation, and focal adhesion turnover. Dysregulation of ROCK signaling has been implicated in various pathological conditions, such as cancer, cardiovascular diseases, neurological disorders, and fibrosis. Therefore, ROCKs have emerged as promising therapeutic targets for the treatment of these diseases.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that is commonly used to reduce pain, inflammation, and fever. It works by inhibiting the activity of certain enzymes in the body, including cyclooxygenase (COX), which plays a role in producing prostaglandins, chemicals involved in the inflammatory response.

Indomethacin is available in various forms, such as capsules, suppositories, and injectable solutions, and is used to treat a wide range of conditions, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, gout, and bursitis. It may also be used to relieve pain and reduce fever in other conditions, such as dental procedures or after surgery.

Like all NSAIDs, indomethacin can have side effects, including stomach ulcers, bleeding, and kidney damage, especially when taken at high doses or for long periods of time. It may also increase the risk of heart attack and stroke. Therefore, it is important to use indomethacin only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

Calcium channel blockers (CCBs) are a class of medications that work by inhibiting the influx of calcium ions into cardiac and smooth muscle cells. This action leads to relaxation of the muscles, particularly in the blood vessels, resulting in decreased peripheral resistance and reduced blood pressure. Calcium channel blockers also have anti-arrhythmic effects and are used in the management of various cardiovascular conditions such as hypertension, angina, and certain types of arrhythmias.

Calcium channel blockers can be further classified into two main categories based on their chemical structure: dihydropyridines (e.g., nifedipine, amlodipine) and non-dihydropyridines (e.g., verapamil, diltiazem). Dihydropyridines are more selective for vascular smooth muscle and have a greater effect on blood pressure than heart rate or conduction. Non-dihydropyridines have a more significant impact on cardiac conduction and contractility, in addition to their vasodilatory effects.

It is important to note that calcium channel blockers may interact with other medications and should be used under the guidance of a healthcare professional. Potential side effects include dizziness, headache, constipation, and peripheral edema.

The myometrium is the middle and thickest layer of the uterine wall, composed mainly of smooth muscle cells. It is responsible for the strong contractions during labor and can also contribute to bleeding during menstruation or childbirth. The myometrium is able to stretch and expand to accommodate a growing fetus and then contract during labor to help push the baby out. It also plays a role in maintaining the structure and shape of the uterus, and in protecting the internal organs within the pelvic cavity.

Vasodilator agents are pharmacological substances that cause the relaxation or widening of blood vessels by relaxing the smooth muscle in the vessel walls. This results in an increase in the diameter of the blood vessels, which decreases vascular resistance and ultimately reduces blood pressure. Vasodilators can be further classified based on their site of action:

1. Systemic vasodilators: These agents cause a generalized relaxation of the smooth muscle in the walls of both arteries and veins, resulting in a decrease in peripheral vascular resistance and preload (the volume of blood returning to the heart). Examples include nitroglycerin, hydralazine, and calcium channel blockers.
2. Arterial vasodilators: These agents primarily affect the smooth muscle in arterial vessel walls, leading to a reduction in afterload (the pressure against which the heart pumps blood). Examples include angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct vasodilators like sodium nitroprusside.
3. Venous vasodilators: These agents primarily affect the smooth muscle in venous vessel walls, increasing venous capacitance and reducing preload. Examples include nitroglycerin and other organic nitrates.

Vasodilator agents are used to treat various cardiovascular conditions such as hypertension, heart failure, angina, and pulmonary arterial hypertension. It is essential to monitor their use carefully, as excessive vasodilation can lead to orthostatic hypotension, reflex tachycardia, or fluid retention.

"Recovery of function" is a term used in medical rehabilitation to describe the process in which an individual regains the ability to perform activities or tasks that were previously difficult or impossible due to injury, illness, or disability. This can involve both physical and cognitive functions. The goal of recovery of function is to help the person return to their prior level of independence and participation in daily activities, work, and social roles as much as possible.

Recovery of function may be achieved through various interventions such as physical therapy, occupational therapy, speech-language therapy, and other rehabilitation strategies. The specific approach used will depend on the individual's needs and the nature of their impairment. Recovery of function can occur spontaneously as the body heals, or it may require targeted interventions to help facilitate the process.

It is important to note that recovery of function does not always mean a full return to pre-injury or pre-illness levels of ability. Instead, it often refers to the person's ability to adapt and compensate for any remaining impairments, allowing them to achieve their maximum level of functional independence and quality of life.

Histamine is defined as a biogenic amine that is widely distributed throughout the body and is involved in various physiological functions. It is derived primarily from the amino acid histidine by the action of histidine decarboxylase. Histamine is stored in granules (along with heparin and proteases) within mast cells and basophils, and is released upon stimulation or degranulation of these cells.

Once released into the tissues and circulation, histamine exerts a wide range of pharmacological actions through its interaction with four types of G protein-coupled receptors (H1, H2, H3, and H4 receptors). Histamine's effects are diverse and include modulation of immune responses, contraction and relaxation of smooth muscle, increased vascular permeability, stimulation of gastric acid secretion, and regulation of neurotransmission.

Histamine is also a potent mediator of allergic reactions and inflammation, causing symptoms such as itching, sneezing, runny nose, and wheezing. Antihistamines are commonly used to block the actions of histamine at H1 receptors, providing relief from these symptoms.

An exercise test, also known as a stress test or an exercise stress test, is a medical procedure used to evaluate the heart's function and response to physical exertion. It typically involves walking on a treadmill or pedaling a stationary bike while being monitored for changes in heart rate, blood pressure, electrocardiogram (ECG), and sometimes other variables such as oxygen consumption or gas exchange.

During the test, the patient's symptoms, such as chest pain or shortness of breath, are also closely monitored. The exercise test can help diagnose coronary artery disease, assess the severity of heart-related symptoms, and evaluate the effectiveness of treatments for heart conditions. It may also be used to determine a person's safe level of physical activity and fitness.

There are different types of exercise tests, including treadmill stress testing, stationary bike stress testing, nuclear stress testing, and stress echocardiography. The specific type of test used depends on the patient's medical history, symptoms, and overall health status.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Fast-twitch muscle fibers, also known as type II fibers, are a type of skeletal muscle fiber that are characterized by their rapid contraction and relaxation rates. These fibers have a larger diameter and contain a higher concentration of glycogen, which serves as a quick source of energy for muscle contractions. Fast-twitch fibers are further divided into two subcategories: type IIa and type IIb (or type IIx). Type IIa fibers have a moderate amount of mitochondria and can utilize both aerobic and anaerobic metabolic pathways, making them fatigue-resistant. Type IIb fibers, on the other hand, have fewer mitochondria and primarily use anaerobic metabolism, leading to faster fatigue. Fast-twitch fibers are typically used in activities that require quick, powerful movements such as sprinting or weightlifting.

The basilar artery is a major blood vessel that supplies oxygenated blood to the brainstem and cerebellum. It is formed by the union of two vertebral arteries at the lower part of the brainstem, near the junction of the medulla oblongata and pons.

The basilar artery runs upward through the center of the brainstem and divides into two posterior cerebral arteries at the upper part of the brainstem, near the midbrain. The basilar artery gives off several branches that supply blood to various parts of the brainstem, including the pons, medulla oblongata, and midbrain, as well as to the cerebellum.

The basilar artery is an important part of the circle of Willis, a network of arteries at the base of the brain that ensures continuous blood flow to the brain even if one of the arteries becomes blocked or narrowed.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

In medical terms, pressure is defined as the force applied per unit area on an object or body surface. It is often measured in millimeters of mercury (mmHg) in clinical settings. For example, blood pressure is the force exerted by circulating blood on the walls of the arteries and is recorded as two numbers: systolic pressure (when the heart beats and pushes blood out) and diastolic pressure (when the heart rests between beats).

Pressure can also refer to the pressure exerted on a wound or incision to help control bleeding, or the pressure inside the skull or spinal canal. High or low pressure in different body systems can indicate various medical conditions and require appropriate treatment.

Adrenergic alpha-agonists are a type of medication that binds to and activates adrenergic alpha receptors, which are found in the nervous system and other tissues throughout the body. These receptors are activated naturally by chemicals called catecholamines, such as norepinephrine and epinephrine (also known as adrenaline), that are released in response to stress or excitement.

When adrenergic alpha-agonists bind to these receptors, they mimic the effects of catecholamines and cause various physiological responses, such as vasoconstriction (constriction of blood vessels), increased heart rate and force of heart contractions, and relaxation of smooth muscle in the airways.

Adrenergic alpha-agonists are used to treat a variety of medical conditions, including hypertension (high blood pressure), glaucoma, nasal congestion, and attention deficit hyperactivity disorder (ADHD). Examples of adrenergic alpha-agonists include phenylephrine, clonidine, and guanfacine.

It's important to note that adrenergic alpha-agonists can have both beneficial and harmful effects, depending on the specific medication, dosage, and individual patient factors. Therefore, they should only be used under the guidance of a healthcare professional.

Verapamil is a calcium channel blocker medication that is primarily used to treat hypertension (high blood pressure), angina (chest pain), and certain types of cardiac arrhythmias (irregular heart rhyats). It works by relaxing the smooth muscle cells in the walls of blood vessels, which causes them to dilate or widen, reducing the resistance to blood flow and thereby lowering blood pressure. Verapamil also slows down the conduction of electrical signals within the heart, which can help to regulate the heart rate and rhythm.

In addition to its cardiovascular effects, verapamil is sometimes used off-label for the treatment of other conditions such as migraine headaches, Raynaud's phenomenon, and certain types of tremors. It is available in various forms, including immediate-release tablets, extended-release capsules, and intravenous (IV) injection.

It is important to note that verapamil can interact with other medications, so it is essential to inform your healthcare provider about all the drugs you are taking before starting this medication. Additionally, verapamil should be used with caution in people with certain medical conditions, such as heart failure, liver disease, and low blood pressure.

A diaphragm is a thin, dome-shaped muscle that separates the chest cavity from the abdominal cavity. It plays a vital role in the process of breathing as it contracts and flattens to draw air into the lungs (inhalation) and relaxes and returns to its domed shape to expel air out of the lungs (exhalation).

In addition, a diaphragm is also a type of barrier method of birth control. It is a flexible dome-shaped device made of silicone that fits over the cervix inside the vagina. When used correctly and consistently, it prevents sperm from entering the uterus and fertilizing an egg, thereby preventing pregnancy.

**Prazosin** is an antihypertensive drug, which belongs to the class of medications called alpha-blockers. It works by relaxing the muscles in the blood vessels, which helps to lower blood pressure and improve blood flow. Prazosin is primarily used to treat high blood pressure (hypertension), but it may also be used for the management of symptoms related to enlarged prostate (benign prostatic hyperplasia).

In a medical definition context:

Prazosin: A selective α1-adrenergic receptor antagonist, used in the treatment of hypertension and benign prostatic hyperplasia. It acts by blocking the action of norepinephrine on the smooth muscle of blood vessels, resulting in vasodilation and decreased peripheral vascular resistance. This leads to a reduction in blood pressure and an improvement in urinary symptoms associated with an enlarged prostate.

Nitro-L-arginine or Nitroarginine is not a medical term per se, but it is a chemical compound that is sometimes used in medical research and experiments. It is a salt of nitric acid and L-arginine, an amino acid that is important for the functioning of the body.

Nitroarginine is known to inhibit the production of nitric oxide, a molecule that plays a role in various physiological processes such as blood flow regulation, immune response, and neurotransmission. As a result, nitroarginine has been used in research to study the effects of reduced nitric oxide levels on different systems in the body.

It's worth noting that nitroarginine is not approved for use as a medication in humans, and its use is generally limited to laboratory settings.

Endothelin-1 is a small peptide (21 amino acids) and a potent vasoconstrictor, which means it narrows blood vessels. It is primarily produced by the endothelial cells that line the interior surface of blood vessels. Endothelin-1 plays a crucial role in regulating vascular tone, cell growth, and inflammation. Its dysregulation has been implicated in various cardiovascular diseases, such as hypertension and heart failure. It exerts its effects by binding to specific G protein-coupled receptors (ETA and ETB) on the surface of target cells.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

The aorta is the largest artery in the human body, which originates from the left ventricle of the heart and carries oxygenated blood to the rest of the body. It can be divided into several parts, including the ascending aorta, aortic arch, and descending aorta. The ascending aorta gives rise to the coronary arteries that supply blood to the heart muscle. The aortic arch gives rise to the brachiocephalic, left common carotid, and left subclavian arteries, which supply blood to the head, neck, and upper extremities. The descending aorta travels through the thorax and abdomen, giving rise to various intercostal, visceral, and renal arteries that supply blood to the chest wall, organs, and kidneys.

"Cortical control of human motoneuron firing during isometric contraction". Journal of Neurophysiology. 77 (6): 3401-5. doi: ... A tremor is an involuntary, somewhat rhythmic, muscle contraction and relaxation involving to-and-fro movements of one or more ... Although all of the heart's cells have the ability to generate action potentials that trigger cardiac contraction, the ...
Salenius, S. (1997). "Cortical control of human motoneuron firing during isometric contraction". Journal of Neurophysiology. 77 ... electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions ...
... then the contraction is a tetanus. Length-tension relationship relates the strength of an isometric contraction to the length ... Contractions can be described as isometric if the muscle tension changes but the muscle length remains the same. In contrast, a ... An isometric contraction of a muscle generates tension without changing length. An example can be found when the muscles of the ... In eccentric contraction, the tension generated while isometric is insufficient to overcome the external load on the muscle and ...
The Involuntary Contraction Follow Isometric Contraction of Skeletal Muscle in Man, A. Forbes, P.C. Baird, and A. McH. Hopkins ... 1926-09-01). "The involuntary contraction following isometric contraction of skeletal muscle in man". American Journal of ... 1, 81-103, September, 1926 The Relative Duration of Contraction in Flexors And Extensors, P.C. Baird, Jr., and J.F. Fulton. The ...
The patient performs an isometric flexion contraction against resistance of the therapist (Speed's Test). When the therapist's ...
6-bisphosphate in human skeletal muscle during isometric contraction". Biochem. J. 258 (3): 915-8. doi:10.1042/bj2580915. PMC ... 6. It increases in concentration during skeletal muscle contraction. 7. Its dephosphorylation yields glucose-6-phosphate, which ... 6-bisphosphate content in rat skeletal muscle during contraction". Biochem. J. 240 (3): 747-51. doi:10.1042/bj2400747. PMC ...
Physiological Contraction speed in Isometric contractions Rate of rise of force Time to peak of a twitch contraction (response ... This is tested by determining the recruitment threshold of a motor unit during isometric contraction in which the force is ... "The orderly recruitment of human motor units during voluntary isometric contractions". J. Physiol. 230 (2): 359-70. doi:10.1113 ... "Some Properties of Motor Unit Action Potential Trains Recorded during Constant Force Isometric Contractions in Man". Kybernetik ...
... though contraction strength may be varied. This is in contrast to isotonic contractions, in which the contraction strength does ... On this basis, an overcoming isometric may additionally be referred to as being an isometric press or an isometric pull. In ... An isometric exercise is an exercise involving the static contraction of a muscle without any visible movement in the angle of ... Examples of preparatory isometric presses in sport The jumper on the left performs a distinctive isometric press, primarily by ...
Thus the tension is reduced.[citation needed] Isometric exercise (contraction, no movement) Stretching (passive, no contraction ... A near isotonic contraction is known as Auxotonic contraction. There are two types of isotonic contractions: (1) concentric and ... Isotonic contractions differ from isokinetic contractions in that in isokinetic contractions the muscle speed remains constant ... an isotonic contraction will keep force constant while velocity changes, but an isokinetic contraction will keep velocity ...
The frequency content of common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. The ...
Gwin JT, Ferris DP (June 2012). "An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions". ... Electrocortical dynamics were studied in relation to isotonic and isometric lower limb muscle contractions. EEG in combination ...
Flexibility may be increased when isometrics are performed at joint range of motion extremes. These isometric contractions ... Public domain pamphlets on isometric exercises Isometric exercises tutorial Alexander Zass Example of an isometric exercise ... Isometric exercise tools perform exercises or strength test using static contraction of a muscle without any visible movement ... Isometric exercises have some differences in training effect as compared to dynamic exercises. While isometric training ...
Oct 2008). "Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions". J Appl ... Isometric strength and physical cross-sectional area of the elbow flexors and elbow extensors are reduced in old compared with ... Compared to the young group, the old group has lower dorsiflexors isometric torque at all angles, has lower knee extensors ... However, for the maximal effort contractions, there is an appreciable difference in discharge rates between the two age groups ...
Isometric contractions are skeletal muscle contractions that do not cause movement of the muscle. However, isotonic ... There are four main types of muscle contraction: twitch, treppe, tetanus, and isometric/isotonic. Twitch contraction is the ... The contraction of all the sarcomeres results in the contraction of the whole muscle fiber. This contraction of the myocyte is ... In twitch contraction, the length of the contraction may vary depending on the size of the muscle cell. During treppe (or ...
"Intra-ocular pressure changes during maximal isometric contraction: does this reflect intra-cranial pressure or retinal venous ... Movaffaghy, A.; Chamot, S.R.; Petrig, B.L.; Riva, C.E. (1998). "Blood Flow in the Human Optic Nerve Head during Isometric ... Marcus, DF; Edelhauser, HF; Maksud, MG; Wiley, RL (September 1974). "Effects of a sustained muscular contraction on human ... "The Comparison of Intraocular Pressure Reductions after Isometric and Isokinetic Exercises in Normal Individuals". ...
... concentric contraction). It also functions to 'lock' the ankle, as in toe-kicking a ball, when held in an isometric contraction ... It functions to stabilize the ankle as the foot hits the ground during the contact phase of walking (eccentric contraction) and ...
Maganaris, Constantinos N.; Baltzopoulos, Vasilios (2000). "In Vivo Mechanics of Maximum Isometric Muscle Contraction in Man: ... It was originally thought that the distance between aponeuroses did not change during the contraction of a pennate muscle, thus ...
Maganaris C.N., Baltzopoulos V. (2000). In vivo mechanics of maximum isometric muscle contraction in man: Implications for ... It is typically used to describe the contraction properties of pennate muscles. It is not the same as the anatomical cross- ...
Moreover, usage of the work loop technique as opposed to other modes of contraction, such as isometric, isotonic and ... For example, a muscle that generates force without changing length (isometric contraction) will show a vertical line 'work loop ... To elicit muscle contraction, the muscle is stimulated by a series of electrical pulses delivered by an electrode to stimulate ... In 1960, the work loop method was introduced to explore muscle contractions of both variable speed and variable force. These ...
Contraction of muscle under isometric conditions results in a muscle belly displacement. A tensiomyography sensor is connected ... Delay time (Td) as a time between the electrical impulse and 10% of the contraction; Contraction time (Tc) as a time between 10 ... The sensor contains a tip designed to register muscle's contraction. Muscle contraction is induced with twitch type (one ... evidence-based measurement method that precisely measures the speed of muscle contraction under isometric conditions. It is ...
"Influence of structure on the tissue dynamics of the human soleus muscle observed in MRI studies during isometric contractions ... "Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions ...
Isotonic contractions place muscles in a constant tension but the muscle length changes, while isometric contractions hold a ... Tetanic contraction can exist in a variety of states, including isotonic and isometric forms-for example, lifting a heavy box ... In comparison with tetanic contraction in an isometric state (such as holding up a heavy box for several minutes), it differs ... A fused tetanic contraction is the strongest single-unit twitch in contraction. When tetanized, the contracting tension in the ...
The exercise even performed at maximum voluntary isometric contraction did not increase pain in one study in people with ...
In the case of fatigue in a 30-second isometric contraction, the first window may be the first second, the second window might ... After a period of maximum contraction, the nerve's signal reduces in frequency and the force generated by the contraction ... and isometric contractions), vertical jump heights, other field tests of lower body power, reduced throwing velocities, reduced ... reducing their inhibition of contraction and leaving potassium ions as the only restricting influence on muscle contractions, ...
In cardiac physiology, isometric contraction is an event occurring in early systole during which the ventricles contract with ... 274-275, Oxford University Press, Oxford Isovolumetric Contraction on Isovolumetric Contraction on medical- ... The isovolumetric contraction phase lasts about 0.05 seconds, but this short period of time is enough to build up a ... Therefore, an isovolumetric contraction is one in which the volume of fluid remains constant.[citation needed] Isovolumetric ...
... the concept of isometric contraction, during which the length of the muscle remains the same during contraction, is important ... Local intra-articular hip pain has been shown to inhibit gluteal contraction potential, meaning that hip pain could be a main ... ISBN 978-0-9876504-0-5. Choi, Sil-ah (April 2015). "Isometric hip abduction using a Thera-Band alters gluteus maximus muscle ... Being less common than lumbar hyperlordosis[citation needed], hypolordosis (also known as flatback) occurs when there's less of ...
The patient's isometric contraction has the correct amount of force, the correct direction of effort (away from the restrictive ... As the patient performs an isometric contraction, the following physiologic changes occur: Golgi tendon organ activation ... For example, contraction of a muscle on the right side leads to relaxation of the same muscle on the left side. A 2015 Cochrane ... Joint mobilization using muscle force: Use muscle contraction to restore range of motion in a joint. Oculocephalogyric reflex: ...
The murmur increases with squatting and decreases with standing and isometric muscular contraction such as the Valsalva ... As a consequence of this stenosis, the left ventricle must generate a higher pressure with each contraction to effectively move ...
were able to maintain isometric peak torque in subjects who performed daily maximal isometric contractions of the knee ... Eccentric contractions are actions of the muscle in which force is generated while the muscle is lengthening, as opposed to the ... After 17 days of spaceflight or bed rest, no significant measurable changes occurred in maximal isometric calf strength, force- ... Bamman and colleagues observed losses of 18, 17, and 13% in concentric, eccentric, and isometric plantar flexor peak torque, ...
... they include isometric contraction (no movement), isotonic contraction, and concentric contraction (shortening). Eccentric ... Eccentric contraction may result in delayed onset muscle soreness however; the contraction itself does not cause muscle damage ... the biceps are in a state of contraction to control the rate of descent of the dumbbell). An eccentric contraction is one of ... Eccentric contractions are a frequent cause of muscle injury when engaging in unaccustomed exercise. But a single bout of such ...
MEPs were found to be significantly lower (P , 0.05) during lengthening contractions compared to isometric contractions at 40 ... The aim of this study was to assess differences in motor control between isometric and lengthening contractions of the soleus ... Evoked responses to transcranial and electrical stimulation during isometric and lengthening contractions of the soleus muscle ... the H-reflex-to-Mmax ratio was similar between isometric and lengthening modes of contraction. Torque production during passive ...
Thirteen healthy volunteers were exposed to both ULV superimposed to fatiguing isometric contractions (V) and isometric ... Vibration superimposed on isometric contraction not only seems to alter the neuromuscular function during fatiguing efforts by ... Our results show that near maximal isometric fatiguing contractions superimposed on vibration stimulation lead to a higher rate ... Data from: Fatiguing effects of indirect vibration stimulation in upper limb muscles- post and during isometric contractions ...
Recent data obtained from Rana temporaria sartorius muscles during an isometric tetanus indicate that the time-course of ... Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions. E Homsher, E ... Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions.. J Gen Physiol 1 ... The time-course of energy balance in an isometric tetanus. J Gen Physiol (May,1979) ...
Phillips D, Karduna A. Deltoid electromyography is reliable during submaximal isometric ramp contractions. Journal of Applied ... Phillips, D & Karduna, A 2017, Deltoid electromyography is reliable during submaximal isometric ramp contractions, Journal of ... The EMG and load relationship is commonly measured with multiple submaximal isometric contractions. This method is both time ... N2 - The EMG and load relationship is commonly measured with multiple submaximal isometric contractions. This method is both ...
Neurally mediated renal vasoconstriction during isometric muscle contraction in cats. K. Matsukawa, P. T. Wall, L. B. Wilson, J ... Renal denervation abolished the decrease in MRBV during isometric contraction but only attenuated the rise in MAP. Cutting the ... Neurally mediated renal vasoconstriction during isometric muscle contraction in cats. / Matsukawa, K.; Wall, P. T.; Wilson, L. ... Renal denervation abolished the decrease in MRBV during isometric contraction but only attenuated the rise in MAP. Cutting the ...
... muscle during isometric index finger abduction. The right side remained at rest or performed isometric voluntary contraction ... The present results indicate that an isometric voluntary contraction with either a distal or a proximal arm muscle, but not a ... Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans. Lookup NU author(s): Dr ... IHI10 and IHI40 were decreased during contraction of the right biceps and triceps brachii compared with contraction of the ...
Ultrasonic measurement of in-vivo strain of surgically repaired achilles tendon under isometric contraction. / Chan, J.; Zheng ... Ultrasonic measurement of in-vivo strain of surgically repaired achilles tendon under isometric contraction. 2004. Paper ... title = "Ultrasonic measurement of in-vivo strain of surgically repaired achilles tendon under isometric contraction", ... Ultrasonic measurement of in-vivo strain of surgically repaired achilles tendon under isometric contraction. ...
In addition, the stress distribution in the muscle-tendon complex during isometric, shortening and lengthening contractions was ... Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. ... Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. Bio- ... The isometric force-length relationship, force-strain relations of the muscle-tendon complex during both shortening and ...
Eight subjects completed 3 months of isometric knee extension training and detraining for another 3 months. At beginning a … ... was to investigate the time course of changes in mechanical and morphological properties of muscle and tendon during isometric ... Isometric Contraction / physiology * Knee Joint / physiology* * Male * Muscle Strength / physiology* * Muscle, Skeletal / ... Eight subjects completed 3 months of isometric knee extension training and detraining for another 3 months. At beginning and on ...
Cross-sectional studies indicate that isometric and concentric strengt … ... Isometric Contraction / physiology * Longitudinal Studies * Male * Middle Aged * Motor Activity / physiology * Muscle ... Cross-sectional studies indicate that isometric and concentric strength levels peak between the second and third decade, remain ...
Using the ratios between the MVIC EMGs and submaximal isometric voluntary contraction EMG data values established on day 1, and ... safety perspective.This study developed a technique to predict the MVIC EMG from submaximal isometric voluntary contraction EMG ... the day 2 submaximal isometric voluntary contraction EMG data values, the day 2 MVIC EMGs were predicted. The average absolute ... often to maximum voluntary isometric contraction [MVIC]) is used to control for interparticipant and day-to-day variations. ...
... amplitudes and contraction levels on lower limb muscles during graded isometric contractions superimposed on whole body ... amplitudes and contraction levels on lower limb muscles during graded isometric contractions superimposed on whole body ...
Effect of Hip Abduction Maximal Voluntary Isometric Contraction on Lumbar Motion and Power Output During the Back Squat ... Effect of Hip Abduction Maximal Voluntary Isometric Contraction on Lumbar Motion and Power Output During the Back Squat. ... Kubo, K., Kanehisa, H. and Fukunaga, T. (2001). Effects of different duration isometric contractions on tendon elasticity in ... The purpose of this study was to examine the potential PAP effect of a hip abduction maximal voluntary isometric contraction ( ...
"Cortical control of human motoneuron firing during isometric contraction". Journal of Neurophysiology. 77 (6): 3401-5. doi: ... A tremor is an involuntary, somewhat rhythmic, muscle contraction and relaxation involving to-and-fro movements of one or more ... Although all of the hearts cells have the ability to generate action potentials that trigger cardiac contraction, the ...
Isometric - Muscle contraction without length change * Isokinetic - Change in muscle length at constant speed with constant ...
Isometric Contractions. Isometric contractions involve holding a static position for an extended period of time. This type of ... To perform an isometric contraction, hold a plank or other static position for as long as you can, focusing on keeping your ... Incorporating exercises like planks, compound exercises, isometric contractions, and push-ups into your workout routine can ... This is because the longer your muscles are under tension, the more they have to work to maintain the contraction, leading to ...
Maximal voluntary isometric contraction of the knee extensors (MVC) in the dominant limb was measured immediately before and ... Maximal isometric knee extension force was unchanged after running (ES [95% CI] = − 0.04 [− 0.80-0.8], p = 0.726) compared to a ... the lower body is more likely to be closer to its individual maximal oxygen consumption and its maximal voluntary contraction ( ...
keywords = "Animals, Isometric Contraction, MAP Kinase Signaling System, Male, Mitogen-Activated Protein Kinase 3, Mitogen- ... Differential activation of mitogen-activated protein kinase signalling pathways by isometric contractions in isolated slow- and ... Differential activation of mitogen-activated protein kinase signalling pathways by isometric contractions in isolated slow- and ... Differential activation of mitogen-activated protein kinase signalling pathways by isometric contractions in isolated slow- and ...
Fourteen young adults (6 men and 8 women; 27.1 +/- 9.1 years) performed three sets of 16-s isometric contractions with the ... isometric) lower limb target-matching contractions at low and high intensities. ... Isometric contraction; Lower limb muscles; Force fluctuations; Sex differences ... Control of steady lower limb contractions involves cortical and subcortical motor areas in both men and women and provides ...
Characterization of laplacian surface electromyographic signals during isometric contraction in biceps brachii.  Estrada, Luis ...
Forearm maximum isometric contraction (MVC) with visual feedback.. NS: MVC overall. Those with ,2%↓ MVC had greater weight ... 26.1%. repeated contractions at 85% MVC (P , 0.05). Core temp elevated to 39°C with RWL (P , 0.05). All other outcomes NS (P , ... Isometric grip strength. • Vertical jump flight time and number in 7 s and 30 s. • Single standing jump (SJ) and counter- ... Maximum isometric hand grip strength. anaerobic capacity test of upper body (rowing). ↓ in performance with cumulative matches ...
Isometric and Isotonic Contraction - Isolate a wide range of muscle groups and evaluate contraction characteristics. For ... 261 - TSD250 (BPS-II) VMG transducer in the assessment of isometric absolute muscle effort ...
Isometric paraspinal contraction combining adduction/abduction of the scapulas. C) Isometric lateral shoulder raises with ... A) Sorenson type exercise with isometric contraction to keep the shoulder in extension and the scapulas in adduction. B) ...
... and SSC contractions on an isokinetic dynamometer. We measured the net knee-joint torque, rotational mechanical work, knee ... increased in the SSC compared to the SHO contractions (in the range of 8.1-17.9%). No significant difference of joint torque ... was found in the steady-state for all SSC-magnitudes compared to the corresponding SHO contractions in session 1. In session 2 ... In two sessions, 25 healthy participants performed isometric reference (ISO), shortening hold (SHO) ...
... peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ... peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ... Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric ... Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric ...
Lab for Week 7: October 19-23 : Muscle Physiology Experiments I: Isometric Contractions in Frog Muscles. Bring your textbook to ... Theres a printable version of the five cases here. Lab for Week 4: September 21-25: Creating Case Studies for Digestive System ... Heres our webpage for this lab which lists the sections of the text to read and instructions for conducting the experiments.. ... Students will stimulate frog muscles to produce isometric twitch, summation, wave summation, tetanus, and measure time to ...
15 min of moderate intensity daily, increasing to 30min of 3 days/week; 12-15 erps; avoid isometric contractions. avoid ...
Neural control of the healthy pectoralis major from low-to-moderate isometric contractions  Lulic-Kuryllo, Tea; Thompson, ...
But theres a whole set of other unique benefits to isometric training that work on a subtler level. Isometrics require us to ... A 2002 study had two groups of subjects practice isometric exercises, one at 100% maximum voluntary isometric contractions, and ... Yuri Verkhoshansky, supposed that a six second isometric contraction is equivalent to numerous dynamic contractions. When you ... Isometric exercises take advantage of these tone contractions to build strength. Believe it or not, theyre in some cases even ...
... and in off-axis isometric contraction; the relationship between force and speed is defined as:. ... We assume that the contraction speed of the muscle will be little affected by the viscous effect of the muscle, while the ... The hedgehog muscle model consists of three elements: an active contraction element, a parallel elastic element, and a series ... Among them, the active contraction element is described by three relational expressions: longitudinal tension ratio, velocity ...
  • The electromyographic (EMG) normalization (often to maximum voluntary isometric contraction [MVIC]) is used to control for interparticipant and day-to-day variations. (
  • Repeated MVIC exertions may be inadvisable from participants' safety perspective.This study developed a technique to predict the MVIC EMG from submaximal isometric voluntary contraction EMG. (
  • Using the ratios between the MVIC EMGs and submaximal isometric voluntary contraction EMG data values established on day 1, and the day 2 submaximal isometric voluntary contraction EMG data values, the day 2 MVIC EMGs were predicted. (
  • The purpose of this study was to examine the potential PAP effect of a hip abduction maximal voluntary isometric contraction (MVIC) on lumbar motion and power output during the barbell back squat. (
  • BACKGROUND: Neuromuscular fatigue following maximal voluntary isometric contractions (MVIC) dampens both rate of torque development (RTD) and rate of muscle activation (RMA), but the influence of contraction speed (i.e., rapid vs. slow) is less clear. (
  • All muscles displayed significantly higher reduction in MEFs and corresponding significant increase in EMGrms with the V than the Control, during fatiguing contractions (P (
  • Our results show that near maximal isometric fatiguing contractions superimposed on vibration stimulation lead to a higher rate of fatigue development compared to the isometric contraction alone in the upper limb muscles. (
  • Recent data obtained from Rana temporaria sartorius muscles during an isometric tetanus indicate that the time-course of phosphocreatine (PC) splitting cannot account for the total energy (heat + work) liberation (Gilbert et al. (
  • As this conclusion is important to an understanding of the chemical energetics of contraction, similar experments were performed on unpoisoned, oxygenated Rana pipiens sartorius muscles. (
  • This is because the longer your muscles are under tension, the more they have to work to maintain the contraction , leading to greater muscle fatigue and ultimately, more muscle growth. (
  • In the present study, we investigated whether contractions of isolated muscles induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38 MAPK in a fibre-type dependent manner. (
  • Compared with the contralateral non-stimulated muscle, contractions increased ERK1/2 phosphorylation to the same extent in fast- and slow-twitch muscles. (
  • 27.1 +/- 9.1 years) performed three sets of 16-s isometric contractions with the ankle dorsiflexor muscles at 10, 30, 50, and 70 % of maximal voluntary contraction (MVC). (
  • There's more than one way for the muscles to adapt, however. (
  • Isotonic contractions are how we do all those little things that require lengthening and shortening muscles, like walking and picking up objects. (
  • Isometric training goes full-throttle, working muscles at their maximum and for extended periods of time. (
  • The objective was to investigate the effects of functional (FT) and traditional (TT) training on trunk muscles maximal isometric strength, rate of force development and endurance with trained elderly women. (
  • Isometric movements are a great low-impact way to work your muscles, says sports medicine specialist Michael Dakkak, DO . (
  • But with isometric exercises, you hold a position that maintains the same muscle length, causing your muscles to fatigue (tire out). (
  • It can be helpful for people with osteoarthritis to use isometrics to activate muscles and maintain strength before loading them with more resistance," adds Dr. Dakkak. (
  • Structural neural correlates of physiological mirror activity during isometric contractions of non-dominant hand muscles. (
  • Anodal tDCS of the ipsilateral primary motor cortex prolongs the latency of physiological mirror activity during unilateral isometric contractions of intrinsic hand muscles. (
  • Isometric exercises are contractions of a particular muscle or group of muscles. (
  • For instance, if you injure your rotator cuff, your doctor or physical therapist might initially recommend isometric exercises involving the group of muscles that helps stabilize the shoulder to maintain shoulder strength during recovery. (
  • Isometric training may also be helpful to someone who has arthritis , which could be aggravated by using muscles to move a joint through the full range of motion. (
  • Normalization procedures using maximum voluntary isometric contractions for the serratus anterior e trapezius muscles during surface EMG analysis. (
  • 2 sec ramp-up) maximal voluntary isometric knee extensions. (
  • The EMG and load relationship is commonly measured with multiple submaximal isometric contractions. (
  • Surface EMG was measured at 3 shoulder elevation angles during IRCs at 4 submaximal levels of maximum voluntary contraction (MVC). (
  • Phillips, D & Karduna, A 2017, ' Deltoid electromyography is reliable during submaximal isometric ramp contractions ', Journal of Applied Biomechanics , vol. 33, no. 3, pp. 237-240. (
  • When a submaximal muscular contraction is followed by stretching of the same muscle, autogenic inhibition occurs, whereas reciprocal inhibition occurs when a submaximal muscular contraction is followed by stretching of the opposite muscle. (
  • Thirteen healthy volunteers were exposed to both ULV superimposed to fatiguing isometric contractions (V) and isometric contractions alone- Control (C). Both Vibration (V) and Control (C) exercises were performed at 80% of the maximum voluntary contractions. (
  • Isometric exercises take advantage of these tone contractions to build strength. (
  • Because intramuscular tension is greater and held for longer than in dynamic exercises, isometric training achieves unique results. (
  • Note - if you are working with a client who is suffers from documented high blood pressure, an isometric exercise may be contraindicated as those types of exercises are known to increase blood pressure. (
  • Dr. Dakkak explains five isometric exercises you can try today, their benefits and how to get the most out of incorporating them into your fitness routine. (
  • Because you can exercise at a lower intensity with little or no resistance, isometric exercises are a great starting point for your fitness journey. (
  • Research has shown that isometric exercises strengthen joints better than traditional strength training. (
  • A 2023 study has shown that isometric exercises - especially the wall squat - may be an effective way to lower blood pressure . (
  • Thus, these exercises improved respiratory efficiency by the maximum isometric muscle contraction while they maintained natural breathing. (
  • During isometric exercises, the muscle doesn't noticeably change length and the affected joint doesn't move. (
  • Isometric exercises help maintain strength. (
  • Because isometric exercises are done in one position without movement, they'll improve strength in only one particular position. (
  • You'd have to do various isometric exercises through your limb's whole range of motion to improve muscle strength across the range. (
  • In addition, since isometric exercises are done in a static position, they won't help improve speed or athletic performance. (
  • Isometric exercises may be helpful to someone who has an injury , which could make movement painful. (
  • As people with arthritis perform isometric exercises and their strength improves, they may progress to other types of strength training. (
  • Cross-sectional studies indicate that isometric and concentric strength levels peak between the second and third decade, remain unchanged until the fourth or fifth decade, and start to decline from about the fifth decade at a rate of 12% to 15% per decade until the eighth decade in men. (
  • A concentric contraction is when a muscle shortens while contracting. (
  • These effects were seen in all four types of contractions (isometric, concentric, eccentric and isotonic-dynamic) studied. (
  • Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. (
  • Though the physiological underpinnings cannot be completely elucidated, the impairment in RMA after slow contractions may be due to greater inhibitory feedback resulting from peripheral fatigue. (
  • Inverse relationship between amplitude and latency of physiological mirror activity during repetitive isometric contractions. (
  • Here, we used transcranial magnetic stimulation to examine motor-evoked potentials (MEPs), interhemispheric inhibition at a conditioning-test interval of 10 (IHI10) and 40 ms (IHI40), and short-interval intracortical inhibition (SICI) in the left first dorsal interosseous (FDI) muscle during isometric index finger abduction. (
  • Isometric paraspinal contraction combining adduction/abduction of the scapulas. (
  • In one nine-week study, participants got a little lopsided , working one set of quadriceps with isometrics, and the other with a dynamic workout. (
  • Use of the NK table or a similar one for isometric quadriceps strengthening of the weakened or injured knee is not an efficient use of time if the physical therapist or athletic trainer must hold the weights for his patient during the rest phase between each isometric contraction. (
  • Maximal incremental cycling tests, involuntary electrically stimulated isometric quadriceps-muscle contractions, and biopsy of vastus lateralis muscle. (
  • Although maintenance of steady contractions is required for many daily tasks, there is little understanding of brain areas that modulate lower limb force accuracy. (
  • Functional magnetic resonance imaging was used to determine brain areas associated with steadiness and force during static (isometric) lower limb target-matching contractions at low and high intensities. (
  • Control of steady lower limb contractions involves cortical and subcortical motor areas in both men and women and provides insight into key areas for potential cortical plasticity with impaired or enhanced leg function. (
  • During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. (
  • An eccentric contraction is when a contracting muscle lengthens. (
  • Energy liberation and chemical change in frog skeletal muscle during single isometric tetanic contractions. (
  • An active finite element model was developed to predict the mechanical behaviors of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. (
  • RSNA, renal blood flow velocity, and arterial pressure were measured simultaneously during isometric contraction of the hindlimb triceps surae muscle in eight chloralose-anesthetized cats. (
  • The right side remained at rest or performed isometric voluntary contraction with the FDI, biceps or triceps brachii, or the tibialis anterior. (
  • Left FDI MEPs were suppressed to a similar extent during contraction of the right FDI and biceps and triceps brachii but remained unchanged during contraction of the right tibialis anterior. (
  • IHI10 and IHI40 were decreased during contraction of the right biceps and triceps brachii compared with contraction of the right FDI. (
  • Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms) and iMVC of the plantar flexors. (
  • A) Sorenson type exercise with isometric contraction to keep the shoulder in extension and the scapulas in adduction. (
  • You've just had your first introduction to "Palm Pushes", an isometric exercise. (
  • Look no further than isometric exercise. (
  • What is isometric exercise? (
  • To understand isometric exercise, it helps to compare it to the most well-known form of strength training: isotonic exercise. (
  • But if you can't or you're rehabbing from an injury, isometrics are usually the first form of exercise we introduce. (
  • A wall squat (or wall sit) is an isometric leg exercise where you hold a squat while your back and shoulders lean against a wall behind you. (
  • While anyone can benefit from this form of exercise, Dr. Dakkak says isometrics are very beneficial for people who have recently had an injury or surgery. (
  • There's an isometric exercise to target every muscle in your body. (
  • Statin use attenuated substrate use during maximal exercise performance, induced muscle fatigue during repeated muscle contractions, and decreased muscle mitochondrial oxidative capacity. (
  • 0.05) compared to the corresponding torque produced in isometric conditions. (
  • This, however, could not be considered as neural inhibition, since recorded torque during muscle lengthening was similar or higher compared to the torque recorded during isometric muscle actions. (
  • No significant difference of joint torque was found in the steady-state for all SSC-magnitudes compared to the corresponding SHO contractions in session 1. (
  • It has long been identified that this leads to increased force, torque, mechanical work and power during the shortening phase of the SSC compared to a pure shortening contraction, which is not preceded by active stretching ("SSC-effect") 2 , 3 . (
  • In stretch-hold experiments, the force or torque during active stretch but also in the isometric hold phase after active stretch is enhanced compared to a fixed-end reference contraction. (
  • The steady-state force or torque is decreased after shortening-hold (SHO) experiments compared to an isometric hold phase of a fixed-end contraction at the same muscle length and activation level. (
  • CONCLUSIONS: These results suggest that early rapid torque production and RMA is reduced more after slow fatiguing contractions than fast. (
  • During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. (
  • The purpose of this study was to determine if the electromyography (EMG) amplitude from the middle deltoid was reliable during isometric ramp contractions (IRCs) at different angles of elevation and rates of force application. (
  • The aim of this study was to assess differences in motor control between isometric and lengthening contractions of the soleus muscle. (
  • Evoked responses to TMS (MEPs) and electrical stimulation of the peripheral nerve (H-reflexes) where recorded at rest and during isometric and lengthening contractions of the soleus muscle at 20%, 40%, 60% and 80% MVC. (
  • 0.05) during passive lengthening compared to the passive isometric condition (2.5 ± 1.11 mV vs 1.4 ±0.88 mV). (
  • In an active muscle, the H-reflex-to-Mmax ratio was similar between isometric and lengthening modes of contraction. (
  • Therefore, it was concluded that the motor cortex generates a descending command of lower amplitude in the case of lengthening contractions. (
  • The isometric force-length relationship, force-strain relations of the muscle-tendon complex during both shortening and lengthening contraction and muscle relaxation response were predicted using the proposed finite element model. (
  • In addition, the stress distribution in the muscle-tendon complex during isometric, shortening and lengthening contractions was simulated. (
  • tendons also act as mechanical buffers to accommodate rapid stretches of the muscle-tendon unit (MTU) and thus contribute to mechanical energy dissipation via lengthening contractions. (
  • Some experts argue that longer TUT can be beneficial for building abdominal strength, while others believe that shorter, more intense contractions are more effective. (
  • and abdominal isometric contractions. (
  • This, combined with simultaneous abdominal and back contraction, maintains the solid core to lift heavy weights. (
  • Vibration superimposed on isometric contraction not only seems to alter the neuromuscular function during fatiguing efforts by inducing higher neuromuscular load but also post vibration treatment. (
  • The purpose of this study was to determine responses in explosive neuromuscular function and peripheral fatigue after fatiguing, rapid and ramp maximal isometric contractions. (
  • Previously published studies on the effect of short-term endurance training on neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. (
  • In two sessions, 25 healthy participants performed isometric reference (ISO), shortening hold (SHO) and SSC contractions on an isokinetic dynamometer. (
  • Ng, K.H. / Ultrasonic measurement of in-vivo strain of surgically repaired achilles tendon under isometric contraction . (
  • Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. (
  • Eight subjects completed 3 months of isometric knee extension training and detraining for another 3 months. (
  • Data calculations of Maximum voluntary contractions' mean and median frequencies. (
  • However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC) and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. (
  • In addition, Shaolin Internal Qigong was considered to influence the reflex system because it inhibited both blood pressure increase and respiratory rate change which are usually observed during the maximum isometric muscle contraction. (
  • Cerebellar transcranial direct current stimulation improves maximum isometric force production during isometric Barbell squats. (
  • Since maximum force cannot be developed with fast movements, any increase in the rate of force developed in the early phase of contraction becomes vital. (
  • The primary purpose is to strengthen the abdominals and back using an isometric contraction. (
  • However, other research has shown that shorter, more intense contractions (such as those used in high-intensity interval training) can be just as effective for building core strength. (
  • For those of you who haven't heard of isometrics, this strength building concept is going to make you think I've officially walked off the deep end. (
  • In an isotonic contraction, the contraction strength (the tone of "tonic") stays the same ("iso"), and the length changes. (
  • Here the contraction strength changes, while the length ("metric") stays the same. (
  • While both legs had a similar increase in dynamic strength, the isometrically trained leg had a significantly higher increase in isometric strength. (
  • There's certainly more efficient and effective ways to build strength, but anyone can benefit from them," he notes. (
  • Conversely, explosive strength is affected by the speed of contraction , regardless of movement speed or the type of contraction. (
  • Explosive strength can be high in a contraction where no movement ( isometric ) is taking place. (
  • The distinction between speed of movement and speed of contraction will help clarify power and explosive strength. (
  • Increases in both speed of movement (effects power) and speed of contraction (affects explosive strength) would be beneficial for any athlete regardless of skill level, sport or weight of external load. (
  • Explosive strength is defined as the rate of force development (RFD) at the onset of contraction. (
  • These data suggest this isometric upright row assessment is a reliable, portable, and cost-effective measure of UB strength to assess and monitor LEOs in field settings. (
  • Mean PSC increased with contraction intensity in the contralateral primary motor area (M1), supplementary motor area, putamen, pallidum cingulate cortex, and ipsilateral cerebellum (p (
  • Calculated renal vascular resistance increased 73 ± 20% during the contraction. (
  • C) Isometric lateral shoulder raises with elastic resistance. (
  • Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion ( n = 11) or to a non-training control group ( n = 10). (
  • abstract = "The aim of this study was to determine if the reflex increase in renal sympathetic nerve activity (RSNA) during static (isometric) muscle contraction evokes renal vasoconstriction and decreases renal blood flow. (
  • The purpose of this study was to investigate the time course of changes in mechanical and morphological properties of muscle and tendon during isometric training and detraining. (
  • Brain areas associated with force steadiness and intensity during isometric ankle dorsiflexion in men and women. (
  • In the present study, the best directions of SMUs in human biceps (both heads) and deltoid (anterior, medial, and posterior portions) were determined by measuring the firing rate and threshold force of units for recruitment during isometric force ramps in many different directions. (
  • In an isometric contraction (no movement), force can be developed quickly, therefore RFD can be high. (
  • We investigated the effects of ULV stimulation superimposed on fatiguing isometric contractions using a purpose developed upper limb stimulation device. (
  • Despite a similar total time under tension between protocols, the longer ramp-up during SLOW contractions likely allowed for greater peripheral disturbance. (
  • The examination starts with inspection, followed by active and passive mobilization and isometric muscle testing. (
  • But in this review of 270 previous studies, researchers found that isometric movements were the most effective. (
  • Fast movements such as sprinting and rapid jumps typically involve contraction times of 50-250 milliseconds. (
  • A 1-min contraction was evoked by stimulating the peripheral ends of the cut L 7 and S 1 ventral roots. (
  • As a measure of autonomic nerve function the response of the heart rate was determined to isometric muscle contraction and deep breathing. (
  • Under continuous tension return the plates back to your chest never relaxing the contraction throughout the entire set. (