Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
Electrophoresis in which cellulose acetate is the diffusion medium.
A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins.
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC
Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins.
The rate dynamics in chemical or physical systems.
Analyses for a specific enzyme activity, or of the level of a specific enzyme that is used to assess health and disease risk, for early detection of disease or disease prediction, diagnosis, and change in disease status.
A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite.
An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
'Homoarginine' is a non-proteinogenic amino acid, meaning it is not used in the formation of proteins, and is primarily found in small quantities in certain foods and synthesized in the human body from the amino acid lysine.
Lectins purified from the germinating seeds of common wheat (Triticum vulgare); these bind to certain carbohydrate moieties on cell surface glycoproteins and are used to identify certain cell populations and inhibit or promote some immunological or physiological activities. There are at least two isoforms of this lectin.
A family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. They play an important role in the transport of CARBON DIOXIDE from the tissues to the LUNG. EC
Electrophoresis in which agar or agarose gel is used as the diffusion medium.
Electrophoresis in which a starch gel (a mixture of amylose and amylopectin) is used as the diffusion medium.
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Enzymes that catalyze the hydrolysis of N-acylhexosamine residues in N-acylhexosamides. Hexosaminidases also act on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The sum of the weight of all the atoms in a molecule.
An enzyme that hydrolyzes 1,6-alpha-glucosidic branch linkages in glycogen, amylopectin, and their beta-limit dextrins. It is distinguished from pullulanase (EC by its inability to attack pullulan and by the feeble action of alpha-limit dextrins. It is distinguished from amylopectin 6-glucanohydrolase (EC by its action on glycogen. With EC, it produces the activity called "debranching enzyme". EC
Peroxidases that utilize ASCORBIC ACID as an electron donor to reduce HYDROGEN PEROXIDE to WATER. The reaction results in the production of monodehydroascorbic acid and DEHYDROASCORBIC ACID.
The pH in solutions of proteins and related compounds at which the dipolar ions are at a maximum.
Contractile tissue that produces movement in animals.
An enzyme that catalyzes the conversion of 2-phospho-D-glycerate to 3-phospho-D-glycerate. EC
A mammalian beta-hexosaminidase isoform that is comprized of hexosaminidase beta subunits. Deficiency of hexosaminidase B due to mutations in the gene encoding the hexosaminidase beta subunit is a case of SANDHOFF DISEASE.
Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide to water, while oxidizing various organic and inorganic compounds, playing crucial roles in diverse biological processes including stress response, immune defense, and biosynthetic reactions.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
An antihelminthic drug that has been tried experimentally in rheumatic disorders where it apparently restores the immune response by increasing macrophage chemotaxis and T-lymphocyte function. Paradoxically, this immune enhancement appears to be beneficial in rheumatoid arthritis where dermatitis, leukopenia, and thrombocytopenia, and nausea and vomiting have been reported as side effects. (From Smith and Reynard, Textbook of Pharmacology, 1991, p435-6)
An enzyme that catalyzes the formation of 7-phospho-2-keto-3-deoxy-D-arabinoheptonate from phosphoenolpyruvate and D-erythrose-4-phosphate. It is one of the first enzymes in the biosynthesis of TYROSINE and PHENYLALANINE. This enzyme was formerly listed as EC
A hexosaminidase specific for non-reducing N-acetyl-D-hexosamine residues in N-acetyl-beta-D-hexosaminides. It acts on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Two specific mammalian isoenzymes of beta-N-acetylhexoaminidase are referred to as HEXOSAMINIDASE A and HEXOSAMINIDASE B. Deficiency of the type A isoenzyme causes TAY-SACHS DISEASE, while deficiency of both A and B isozymes causes SANDHOFF DISEASE. The enzyme has also been used as a tumor marker to distinguish between malignant and benign disease.
A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES).
A subclass of group I phospholipases A2 that includes enzymes isolated from PANCREATIC JUICE. Members of this group have specificity for PHOSPHOLIPASE A2 RECEPTORS.
A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-.
A mammalian beta-hexosaminidase isoform that is a heteromeric protein comprized of both hexosaminidase alpha and hexosaminidase beta subunits. Deficiency of hexosaminidase A due to mutations in the gene encoding the hexosaminidase alpha subunit is a case of TAY-SACHS DISEASE. Deficiency of hexosaminidase A and HEXOSAMINIDASE B due to mutations in the gene encoding the hexosaminidase beta subunit is a case of SANDHOFF DISEASE.
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
A family of bracket fungi, order POLYPORALES, living in decaying plant matter and timber.
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
A beta-N-Acetylhexosaminidase that catalyzes the hydrolysis of terminal, non-reducing 2-acetamido-2-deoxy-beta-glucose residues in chitobiose and higher analogs as well as in glycoproteins. Has been used widely in structural studies on bacterial cell walls and in the study of diseases such as MUCOLIPIDOSIS and various inflammatory disorders of muscle and connective tissue.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
A copper-containing oxidoreductase enzyme that catalyzes the oxidation of 4-benzenediol to 4-benzosemiquinone. It also has activity towards a variety of O-quinols and P-quinols. It primarily found in FUNGI and is involved in LIGNIN degradation, pigment biosynthesis and detoxification of lignin-derived products.
An enzyme that catalyzes the reduction of TESTOSTERONE to 5-ALPHA DIHYDROTESTOSTERONE.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units.
Method of analyzing chemicals using automation.
A plant species of the genus DATURA, family SOLANACEAE, that contains TROPANES and other SOLANACEOUS ALKALOIDS.
A hydro-lyase that catalyzes the dehydration of 2-phosphoglycerate to form PHOSPHOENOLPYRUVATE. Several different isoforms of this enzyme exist, each with its own tissue specificity.
Presence of warmth or heat or a temperature notably higher than an accustomed norm.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Conditions characterized by abnormal lipid deposition due to disturbance in lipid metabolism, such as hereditary diseases involving lysosomal enzymes required for lipid breakdown. They are classified either by the enzyme defect or by the type of lipid involved.
Electrophoresis in which discontinuities in both the voltage and pH gradients are introduced by using buffers of different composition and pH in the different parts of the gel column. The term 'disc' was originally used as an abbreviation for 'discontinuous' referring to the buffers employed, and does not have anything to do with the shape of the separated zones.
A class of compounds that reduces the secretion of H+ ions by the proximal kidney tubule through inhibition of CARBONIC ANHYDRASES.
The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE.
A cytoplasmic serine threonine kinase involved in regulating CELL DIFFERENTIATION and CELLULAR PROLIFERATION. Overexpression of this enzyme has been shown to promote PHOSPHORYLATION of BCL-2 PROTO-ONCOGENE PROTEINS and chemoresistance in human acute leukemia cells.
A cell wall-degrading enzyme found in microorganisms and higher plants. It catalyzes the random hydrolysis of 1,4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. EC
An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
Enzymes that catalyze a reverse aldol condensation. A molecule containing a hydroxyl group and a carbonyl group is cleaved at a C-C bond to produce two smaller molecules (ALDEHYDES or KETONES). EC 4.1.2.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A skin irritant that may cause dermatitis of both primary and allergic types. Contact sensitization with DNCB has been used as a measure of cellular immunity. DNCB is also used as a reagent for the detection and determination of pyridine compounds.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
An exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of terminal non-reducing residues in beta-D-glucosides with release of GLUCOSE.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C.
Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163)
A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain.
A form of creatine kinase found in the MITOCHONDRIA.
Organic compounds composed of tin and three ethyl groups. Affect mitochondrial metabolism and inhibit oxidative phosphorylation by acting directly on the energy conserving processes.
An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Proteins obtained from species of REPTILES.
Esterases are hydrolase enzymes that catalyze the hydrolysis of ester bonds, converting esters into alcohols and acids, playing crucial roles in various biological processes including metabolism and detoxification.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen.
An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC
Enzymes that catalyze the hydrolysis of CYCLIC AMP to form adenosine 5'-phosphate. The enzymes are widely distributed in animal tissue and control the level of intracellular cyclic AMP. Many specific enzymes classified under this heading demonstrate additional spcificity for 3',5'-cyclic IMP and CYCLIC GMP.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC
The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat.
A series of steps taken in order to conduct research.
The chemical and physical integrity of a pharmaceutical product.
Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
The measurement of the density of a material by measuring the amount of light or radiation passing through (or absorbed by) the material.
A CALCIUM and CALMODULIN-dependent cyclic nucleotide phosphodiesterase subfamily. The three members of this family are referred to as type 1A, type 1B, and type 1C and are each product of a distinct gene. In addition, multiple enzyme variants of each subtype can be produced due to multiple alternative mRNA splicing. Although the type 1 enzymes are classified as 3',5'-cyclic-AMP phosphodiesterases (EC, some members of this class have additional specificity for CYCLIC GMP.
An autosomal recessive neurodegenerative disorder characterized by an accumulation of G(M2) GANGLIOSIDE in neurons and other tissues. It is caused by mutation in the common beta subunit of HEXOSAMINIDASE A and HEXOSAMINIDASE B. Thus this disease is also known as the O variant since both hexosaminidase A and B are missing. Clinically, it is indistinguishable from TAY-SACHS DISEASE.
An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid.
A form of creatine kinase found in the BRAIN.
A plant division of GYMNOSPERMS consisting of cone-bearing trees and shrubs.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
Highly toxic compound which can cause skin irritation and sensitization. It is used in manufacture of azo dyes.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
PKC beta encodes two proteins (PKCB1 and PKCBII) generated by alternative splicing of C-terminal exons. It is widely distributed with wide-ranging roles in processes such as B-cell receptor regulation, oxidative stress-induced apoptosis, androgen receptor-dependent transcriptional regulation, insulin signaling, and endothelial cell proliferation.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
Proteins prepared by recombinant DNA technology.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
A genus of anaerobic, rod-shaped METHANOBACTERIACEAE. Its organisms are nonmotile and use ammonia as the sole source of nitrogen. These methanogens are found in aquatic sediments, soil, sewage, and the gastrointestinal tract of animals.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE.
A colorless liquid used as a solvent and an antiseptic. It is one of the ketone bodies produced during ketoacidosis.
Glucose-6-Phosphate Dehydrogenase (G6PD) is an enzyme that plays a critical role in the pentose phosphate pathway, catalyzing the oxidation of glucose-6-phosphate to 6-phosphoglucono-δ-lactone while reducing nicotinamide adenine dinucleotide phosphate (NADP+) to nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), thereby protecting cells from oxidative damage and maintaining redox balance.
A group of recessively inherited diseases characterized by the intralysosomal accumulation of G(M2) GANGLIOSIDE in the neuronal cells. Subtypes include mutations of enzymes in the BETA-N-ACETYLHEXOSAMINIDASES system or G(M2) ACTIVATOR PROTEIN leading to disruption of normal degradation of GANGLIOSIDES, a subclass of ACIDIC GLYCOSPHINGOLIPIDS.
The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution.
A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer.

Intracellular signalling: PDK1--a kinase at the hub of things. (1/22238)

Phosphoinositide-dependent kinase 1 (PDK1) is at the hub of many signalling pathways, activating PKB and PKC isoenzymes, as well as p70 S6 kinase and perhaps PKA. PDK1 action is determined by colocalization with substrate and by target site availability, features that may enable it to operate in both resting and stimulated cells.  (+info)

JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. (2/22238)

BACKGROUND: The Jun N-terminal kinase (JNK) signaling pathway has been implicated in cell proliferation and apoptosis, but its function seems to depend on the cell type and inducing signal. In T cells, JNK has been implicated in both antigen-induced activation and apoptosis. RESULTS: We generated mice lacking the JNK2 isozymes. The mutant mice were healthy and fertile but defective in peripheral T-cell activation induced by antibody to the CD3 component of the T-cell receptor (TCR) complex - proliferation and production of interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) were reduced. The proliferation defect was restored by exogenous IL-2. B-cell activation was normal in the absence of JNK2. Activation-induced peripheral T-cell apoptosis was comparable between mutant and wild-type mice, but immature (CD4(+) CD8(+)) thymocytes lacking JNK2 were resistant to apoptosis induced by administration of anti-CD3 antibody in vivo. The lack of JNK2 also resulted in partial resistance of thymocytes to anti-CD3 antibody in vitro, but had little or no effect on apoptosis induced by anti-Fas antibody, dexamethasone or ultraviolet-C (UVC) radiation. CONCLUSIONS: JNK2 is essential for efficient activation of peripheral T cells but not B cells. Peripheral T-cell activation is probably required indirectly for induction of thymocyte apoptosis resulting from administration of anti-CD3 antibody in vivo. JNK2 functions in a cell-type-specific and stimulus-dependent manner, being required for apoptosis of immature thymocytes induced by anti-CD3 antibody but not for apoptosis induced by anti-Fas antibody, UVC or dexamethasone. JNK2 is not required for activation-induced cell death of mature T cells.  (+info)

PKCdelta acts as a growth and tumor suppressor in rat colonic epithelial cells. (3/22238)

We have analysed the expression of three calcium-independent isoforms of protein kinase C (PKC), PKCdelta, PKCepsilon and PKCzeta, in an in vitro model of colon carcinogenesis consisting of the nontumorigenic rat colonic epithelial cell line D/WT, and a derivative src-transformed line D/src. While PKCzeta and PKCepsilon showed similar protein levels, PKCdelta was markedly decreased in D/src cells when compared to the D/WT line. To assess whether down-regulation of PKCdelta was causally involved in the neoplastic phenotype in D/src cells, we prepared a kinase-defective mutant of PKCdelta. Stable transfection of this sequence caused morphological and growth changes characteristic of partial transformation in D/WT cells. Moreover, to test whether PKCdelta was involved in growth control and transformation in this model, we overexpressed PKCdelta in D/src cells. Transfected cells underwent marked growth and morphological modifications toward the D/WT phenotype. In a late stage in culture, transfected cells ceased to proliferate, rounded up and degenerated into multinucleated, giant-like cells. We conclude that PKCdelta can reverse the transformed phenotype and act as a suppressor of cell growth in D/src cells. Moreover, our data show that downregulation of this isoenzyme of PKC may cooperate in the neoplastic transformation induced by the src oncogene in D/WT cells.  (+info)

Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. (4/22238)

Glutathione-S-Transferases (GSTs) comprise a family of isoenzymes that provide protection to mammalian cells against electrophilic metabolites of carcinogens and reactive oxygen species. Previous studies have shown that the CpG-rich promoter region of the pi-class gene GSTP1 is methylated at single restriction sites in the majority of prostate cancers. In order to understand the nature of abnormal methylation of the GSTP1 gene in prostate cancer we undertook a detailed analysis of methylation at 131 CpG sites spanning the promoter and body of the gene. Our results show that DNA methylation is not confined to specific CpG sites in the promoter region of the GSTP1 gene but is extensive throughout the CpG island in prostate cancer cells. Furthermore we found that both alleles are abnormally methylated in this region. In normal prostate tissue, the entire CpG island was unmethylated, but extensive methylation was found outside the island in the body of the gene. Loss of GSTP1 expression correlated with DNA methylation of the CpG island in both prostate cancer cell lines and cancer tissues whereas methylation outside the CpG island in normal prostate tissue appeared to have no effect on gene expression.  (+info)

The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. (5/22238)

We have previously found that epidermal growth factor (EGF) mediates growth through the Jun N-terminal kinase/stress-activated kinase (JNK/SAPK) pathway in A549 human lung carcinoma cells. As observed here, EGF treatment also greatly enhances the tumorigenicity of A549 cells, suggesting an important role for JNK in cancer cell growth (F. Bost, R. McKay, N. Dean, and D. Mercola, J. Biol. Chem. 272:33422-33429, 1997). Several isoforms families of JNK, JNK1, JNK2, and JNK3, have been isolated; they arise from alternative splicing of three different genes and have distinct substrate binding properties. Here we have used specific phosphorothioate oligonucleotides targeted against the two major isoforms, JNK1 and JNK2, to discriminate their roles in EGF-induced transformation. Multiple antisense sequences have been screened, and two high-affinity and specific candidates have been identified. Antisense JNK1 eliminated steady-state mRNA and JNK1 protein expression with a 50% effective concentration (EC50) of <0.1 microM but did not alter JNK2 mRNA or protein levels. Conversely, antisense JNK2 specifically eliminated JNK2 steady-state mRNA and protein expression with an EC50 of 0.1 microM. Antisense JNK1 and antisense JNK2 inhibited by 40 and 70%, respectively, EGF-induced total JNK activity, whereas sense and scrambled-sequence control oligonucleotides had no effect. The elimination of mRNA, protein, and JNK activities lasted 48 and 72 h following a single Lipofectin treatment with antisense JNK1 and JNK2, respectively, indicating sufficient duration for examining the impact of specific elimination on the phenotype. Direct proliferation assays demonstrated that antisense JNK2 inhibited EGF-induced doubling of growth as well as the combination of active antisense oligonucleotides did. EGF treatment also induced colony formation in soft agar. This effect was completely inhibited by antisense JNK2 and combined-antisense treatment but not altered by antisense JNK1 alone. These results show that EGF doubles the proliferation (growth in soft agar as well as tumorigenicity in athymic mice) of A549 lung carcinoma cells and that the JNK2 isoform but not JNK1 is utilized for mediating the effects of EGF. This study represents the first demonstration of a cellular phenotype regulated by a JNK isoform family, JNK2.  (+info)

Activation of IkappaB kinase beta by protein kinase C isoforms. (6/22238)

The atypical protein kinase C (PKC) isotypes (lambda/iotaPKC and zetaPKC) have been shown to be critically involved in important cell functions such as proliferation and survival. Previous studies have demonstrated that the atypical PKCs are stimulated by tumor necrosis factor alpha (TNF-alpha) and are required for the activation of NF-kappaB by this cytokine through a mechanism that most probably involves the phosphorylation of IkappaB. The inability of these PKC isotypes to directly phosphorylate IkappaB led to the hypothesis that zetaPKC may use a putative IkappaB kinase to functionally inactivate IkappaB. Recently several groups have molecularly characterized and cloned two IkappaB kinases (IKKalpha and IKKbeta) which phosphorylate the residues in the IkappaB molecule that serve to target it for ubiquitination and degradation. In this study we have addressed the possibility that different PKCs may control NF-kappaB through the activation of the IKKs. We report here that alphaPKC as well as the atypical PKCs bind to the IKKs in vitro and in vivo. In addition, overexpression of zetaPKC positively modulates IKKbeta activity but not that of IKKalpha, whereas the transfection of a zetaPKC dominant negative mutant severely impairs the activation of IKKbeta but not IKKalpha in TNF-alpha-stimulated cells. We also show that cell stimulation with phorbol 12-myristate 13-acetate activates IKKbeta, which is entirely dependent on the activity of alphaPKC but not that of the atypical isoforms. In contrast, the inhibition of alphaPKC does not affect the activation of IKKbeta by TNF-alpha. Interestingly, recombinant active zetaPKC and alphaPKC are able to stimulate in vitro the activity of IKKbeta but not that of IKKalpha. In addition, evidence is presented here that recombinant zetaPKC directly phosphorylates IKKbeta in vitro, involving Ser177 and Ser181. Collectively, these results demonstrate a critical role for the PKC isoforms in the NF-kappaB pathway at the level of IKKbeta activation and IkappaB degradation.  (+info)

Transformation of intestinal epithelial cells by chronic TGF-beta1 treatment results in downregulation of the type II TGF-beta receptor and induction of cyclooxygenase-2. (7/22238)

The precise role of TGF-beta in colorectal carcinogenesis is not clear. The purpose of this study was to determine the phenotypic alterations caused by chronic exposure to TGF-beta in non-transformed intestinal epithelial (RIE-1) cells. Growth of RIE-1 cells was inhibited by >75% following TGF-beta1 treatment for 7 days, after which the cells resumed a normal growth despite the presence of TGF-beta1. These 'TGF-beta-resistant' cells (RIE-Tr) were continuously exposed to TGF-beta for >50 days. Unlike the parental RIE cells, RIE-Tr cells lost contact inhibition, formed foci in culture, grew in soft agarose. RIE-Tr cells demonstrated TGF-beta-dependent invasive potential in an in vitro assay and were resistant to Matrigel and Na-butyrate-induced apoptosis. The RIE-Tr cells were also tumorigenic in nude mice. The transformed phenotype of RIE-Tr cells was associated with a 95% decrease in the level of the type II TGF-beta receptor (TbetaRII) protein, a 40-fold increase in cyclooxygenase-2 (COX-2) protein, and 5.9-fold increase in the production of prostacyclin. Most RIE-Tr subclones that expressed low levels of TbetaRII and high levels of COX-2 were tumorigenic. Those subclones that express abundant TbetaRII and low levels of COX-2 were not tumorigenic in nude mice. A selective COX-2 inhibitor inhibited RIE-Tr cell growth in culture and tumor growth in nude mice. The reduced expression of TbetaRII, increased expression of COX-2, and the ability to form colonies in Matrigel were all reversible upon withdrawal of exogenous TGF-beta1 for the RIE-Tr cells.  (+info)

BLNK required for coupling Syk to PLC gamma 2 and Rac1-JNK in B cells. (8/22238)

Signaling through the B cell receptor (BCR) is essential for B cell function and development. Despite the key role of Syk in BCR signaling, little is known about the mechanism by which Syk transmits downstream effectors. BLNK (B cell LiNKer protein), a substrate for Syk, is now shown to be essential in activating phospholipase C (PLC)gamma 2 and JNK. The BCR-induced PLC gamma 2 activation, but not the JNK activation, was restored by introduction of PLC gamma 2 membrane-associated form into BLNK-deficient B cells. As JNK activation requires both Rac1 and PLC gamma 2, our results suggest that BLNK regulates the Rac1-JNK pathway, in addition to modulating PLC gamma 2 localization.  (+info)

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Electrophoresis, cellulose acetate is a laboratory technique used to separate and analyze proteins or other charged molecules based on their size and charge. The sample is applied to a sheet of cellulose acetate, a type of porous plastic film, and an electric field is applied. The proteins migrate through the film towards the electrode with the opposite charge, with smaller and more negatively charged molecules moving faster than larger and less negatively charged ones. This allows for the separation and identification of different protein components in a mixture. It is a simple and rapid method for routine protein separations and is commonly used in biochemistry and molecular biology research.

Creatine kinase (CK) is a muscle enzyme that is normally present in small amounts in the blood. It is primarily found in tissues that require a lot of energy, such as the heart, brain, and skeletal muscles. When these tissues are damaged or injured, CK is released into the bloodstream, causing the levels to rise.

Creatine kinase exists in several forms, known as isoenzymes, which can be measured in the blood to help identify the location of tissue damage. The three main isoenzymes are:

1. CK-MM: Found primarily in skeletal muscle
2. CK-MB: Found primarily in heart muscle
3. CK-BB: Found primarily in the brain

Elevated levels of creatine kinase, particularly CK-MB, can indicate damage to the heart muscle, such as occurs with a heart attack. Similarly, elevated levels of CK-BB may suggest brain injury or disease. Overall, measuring creatine kinase levels is a useful diagnostic tool for assessing tissue damage and determining the severity of injuries or illnesses.

L-Lactate Dehydrogenase (LDH) is an enzyme found in various tissues within the body, including the heart, liver, kidneys, muscles, and brain. It plays a crucial role in the process of energy production, particularly during anaerobic conditions when oxygen levels are low.

In the presence of the coenzyme NADH, LDH catalyzes the conversion of pyruvate to lactate, generating NAD+ as a byproduct. Conversely, in the presence of NAD+, LDH can convert lactate back to pyruvate using NADH. This reversible reaction is essential for maintaining the balance between lactate and pyruvate levels within cells.

Elevated blood levels of LDH may indicate tissue damage or injury, as this enzyme can be released into the circulation following cellular breakdown. As a result, LDH is often used as a nonspecific biomarker for various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and certain types of cancer. However, it's important to note that an isolated increase in LDH does not necessarily pinpoint the exact location or cause of tissue damage, and further diagnostic tests are usually required for confirmation.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

Ion exchange chromatography is a type of chromatography technique used to separate and analyze charged molecules (ions) based on their ability to exchange bound ions in a solid resin or gel with ions of similar charge in the mobile phase. The stationary phase, often called an ion exchanger, contains fixed ated functional groups that can attract counter-ions of opposite charge from the sample mixture.

In this technique, the sample is loaded onto an ion exchange column containing the charged resin or gel. As the sample moves through the column, ions in the sample compete for binding sites on the stationary phase with ions already present in the column. The ions that bind most strongly to the stationary phase will elute (come off) slower than those that bind more weakly.

Ion exchange chromatography can be performed using either cation exchangers, which exchange positive ions (cations), or anion exchangers, which exchange negative ions (anions). The pH and ionic strength of the mobile phase can be adjusted to control the binding and elution of specific ions.

Ion exchange chromatography is widely used in various applications such as water treatment, protein purification, and chemical analysis.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Clinical enzyme tests are laboratory tests that measure the amount or activity of certain enzymes in biological samples, such as blood or bodily fluids. These tests are used to help diagnose and monitor various medical conditions, including organ damage, infection, inflammation, and genetic disorders.

Enzymes are proteins that catalyze chemical reactions in the body. Some enzymes are found primarily within specific organs or tissues, so elevated levels of these enzymes in the blood can indicate damage to those organs or tissues. For example, high levels of creatine kinase (CK) may suggest muscle damage, while increased levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) can indicate liver damage.

There are several types of clinical enzyme tests, including:

1. Serum enzyme tests: These measure the level of enzymes in the blood serum, which is the liquid portion of the blood after clotting. Examples include CK, AST, ALT, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH).
2. Urine enzyme tests: These measure the level of enzymes in the urine. An example is N-acetyl-β-D-glucosaminidase (NAG), which can indicate kidney damage.
3. Enzyme immunoassays (EIAs): These use antibodies to detect and quantify specific enzymes or proteins in a sample. They are often used for the diagnosis of infectious diseases, such as HIV or hepatitis.
4. Genetic enzyme tests: These can identify genetic mutations that cause deficiencies in specific enzymes, leading to inherited metabolic disorders like phenylketonuria (PKU) or Gaucher's disease.

It is important to note that the interpretation of clinical enzyme test results should be done by a healthcare professional, taking into account the patient's medical history, symptoms, and other diagnostic tests.

Glutathione transferases (GSTs) are a group of enzymes involved in the detoxification of xenobiotics and endogenous compounds. They facilitate the conjugation of these compounds with glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, which results in more water-soluble products that can be easily excreted from the body.

GSTs play a crucial role in protecting cells against oxidative stress and chemical injury by neutralizing reactive electrophilic species and peroxides. They are found in various tissues, including the liver, kidneys, lungs, and intestines, and are classified into several families based on their structure and function.

Abnormalities in GST activity have been associated with increased susceptibility to certain diseases, such as cancer, neurological disorders, and respiratory diseases. Therefore, GSTs have become a subject of interest in toxicology, pharmacology, and clinical research.

Electrophoresis is a laboratory technique used in the field of molecular biology and chemistry to separate charged particles, such as DNA, RNA, or proteins, based on their size and charge. This technique uses an electric field to drive the movement of these charged particles through a medium, such as gel or liquid.

In electrophoresis, the sample containing the particles to be separated is placed in a matrix, such as a gel or a capillary tube, and an electric current is applied. The particles in the sample have a net charge, either positive or negative, which causes them to move through the matrix towards the oppositely charged electrode.

The rate at which the particles move through the matrix depends on their size and charge. Larger particles move more slowly than smaller ones, and particles with a higher charge-to-mass ratio move faster than those with a lower charge-to-mass ratio. By comparing the distance that each particle travels in the matrix, researchers can identify and quantify the different components of a mixture.

Electrophoresis has many applications in molecular biology and medicine, including DNA sequencing, genetic fingerprinting, protein analysis, and diagnosis of genetic disorders.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Isoelectric focusing (IEF) is a technique used in electrophoresis, which is a method for separating proteins or other molecules based on their electrical charges. In IEF, a mixture of ampholytes (molecules that can carry both positive and negative charges) is used to create a pH gradient within a gel matrix. When an electric field is applied, the proteins or molecules migrate through the gel until they reach the point in the gradient where their net charge is zero, known as their isoelectric point (pI). At this point, they focus into a sharp band and stop moving, resulting in a highly resolved separation of the different components based on their pI. This technique is widely used in protein research for applications such as protein identification, characterization, and purification.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Aspartate aminotransferases (ASTs) are a group of enzymes found in various tissues throughout the body, including the heart, liver, and muscles. They play a crucial role in the metabolic process of transferring amino groups between different molecules.

In medical terms, AST is often used as a blood test to measure the level of this enzyme in the serum. Elevated levels of AST can indicate damage or injury to tissues that contain this enzyme, such as the liver or heart. For example, liver disease, including hepatitis and cirrhosis, can cause elevated AST levels due to damage to liver cells. Similarly, heart attacks can also result in increased AST levels due to damage to heart muscle tissue.

It is important to note that an AST test alone cannot diagnose a specific medical condition, but it can provide valuable information when used in conjunction with other diagnostic tests and clinical evaluation.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

DEAE-cellulose chromatography is a method of purification and separation of biological molecules such as proteins, nucleic acids, and enzymes. DEAE stands for diethylaminoethyl, which is a type of charged functional group that is covalently bound to cellulose, creating a matrix with positive charges.

In this method, the mixture of biological molecules is applied to a column packed with DEAE-cellulose. The positively charged DEAE groups attract and bind negatively charged molecules in the mixture, such as nucleic acids and proteins, while allowing uncharged or neutrally charged molecules to pass through.

By adjusting the pH, ionic strength, or concentration of salt in the buffer solution used to elute the bound molecules from the column, it is possible to selectively elute specific molecules based on their charge and binding affinity to the DEAE-cellulose matrix. This makes DEAE-cellulose chromatography a powerful tool for purifying and separating biological molecules with high resolution and efficiency.

Homoarginine is not a medical condition, but it's a naturally occurring amino acid in the human body. It is considered a non-proteinogenic amino acid because it is not used in the synthesis of proteins. Homoarginine is formed from the essential amino acid lysine and has been studied for its potential role in cardiovascular health, kidney function, and other physiological processes. However, more research is needed to fully understand its functions and clinical significance.

Wheat germ agglutinins (WGA) are proteins found in wheat germ that have the ability to bind to specific carbohydrate structures, such as N-acetylglucosamine and sialic acid, which are present on the surface of many cells in the human body. WGA is a type of lectin, a group of proteins that can agglutinate, or clump together, red blood cells and bind to specific sugars on cell membranes.

WGA has been studied for its potential effects on various biological processes, including inflammation, immune response, and gut barrier function. Some research suggests that WGA may interact with the gut epithelium and affect intestinal permeability, potentially contributing to the development of gastrointestinal symptoms in some individuals. However, more research is needed to fully understand the clinical significance of these findings.

It's worth noting that while WGA has been studied for its potential biological effects, it is not currently recognized as a major allergen or toxic component of wheat. However, some people may still choose to avoid foods containing WGA due to personal dietary preferences or sensitivities.

Carbonic anhydrases (CAs) are a group of enzymes that catalyze the reversible reaction between carbon dioxide and water to form carbonic acid, which then quickly dissociates into bicarbonate and a proton. This reaction is crucial for maintaining pH balance and regulating various physiological processes in the body, including respiration, secretion of electrolytes, and bone resorption.

There are several isoforms of carbonic anhydrases found in different tissues and organelles, each with distinct functions and properties. For example, CA I and II are primarily found in red blood cells, while CA III is present in various tissues such as the kidney, lung, and eye. CA IV is a membrane-bound enzyme that plays a role in transporting ions across cell membranes.

Carbonic anhydrases have been targeted for therapeutic interventions in several diseases, including glaucoma, epilepsy, and cancer. Inhibitors of carbonic anhydrases can reduce the production of bicarbonate and lower the pH of tumor cells, which may help to slow down their growth and proliferation. However, these inhibitors can also have side effects such as kidney stones and metabolic acidosis, so they must be used with caution.

Electrophoresis, Agar Gel is a laboratory technique used to separate and analyze DNA, RNA, or proteins based on their size and electrical charge. In this method, the sample is mixed with agarose gel, a gelatinous substance derived from seaweed, and then solidified in a horizontal slab-like format. An electric field is applied to the gel, causing the negatively charged DNA or RNA molecules to migrate towards the positive electrode. The smaller molecules move faster through the gel than the larger ones, resulting in their separation based on size. This technique is widely used in molecular biology and genetics research, as well as in diagnostic testing for various genetic disorders.

Electrophoresis, starch gel is a type of electrophoretic technique used in laboratory settings for the separation and analysis of large biomolecules such as DNA, RNA, and proteins. In this method, a gel made from cooked starch is used as the supporting matrix for the molecules being separated.

The sample containing the mixture of biomolecules is loaded onto the gel and an electric field is applied, causing the negatively charged molecules to migrate towards the positive electrode. The starch gel acts as a molecular sieve, with smaller molecules moving more quickly through the gel than larger ones. This results in the separation of the mixture into individual components based on their size and charge.

Once the separation is complete, the gel can be stained to visualize the separated bands. Different staining techniques are used depending on the type of biomolecule being analyzed. For example, proteins can be stained with dyes such as Coomassie Brilliant Blue or silver nitrate, while nucleic acids can be stained with dyes such as ethidium bromide.

Starch gel electrophoresis is a relatively simple and inexpensive technique that has been widely used in molecular biology research and diagnostic applications. However, it has largely been replaced by other electrophoretic techniques, such as polyacrylamide gel electrophoresis (PAGE), which offer higher resolution and can be automated for high-throughput analysis.

Protein Kinase C (PKC) is a family of serine-threonine kinases that play crucial roles in various cellular signaling pathways. These enzymes are activated by second messengers such as diacylglycerol (DAG) and calcium ions (Ca2+), which result from the activation of cell surface receptors like G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs).

Once activated, PKC proteins phosphorylate downstream target proteins, thereby modulating their activities. This regulation is involved in numerous cellular processes, including cell growth, differentiation, apoptosis, and membrane trafficking. There are at least 10 isoforms of PKC, classified into three subfamilies based on their second messenger requirements and structural features: conventional (cPKC; α, βI, βII, and γ), novel (nPKC; δ, ε, η, and θ), and atypical (aPKC; ζ and ι/λ). Dysregulation of PKC signaling has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Hexosaminidases are a group of enzymes that play a crucial role in the breakdown of complex carbohydrates, specifically glycoproteins and glycolipids, in the human body. These enzymes are responsible for cleaving the terminal N-acetyl-D-glucosamine (GlcNAc) residues from these molecules during the process of glycosidase digestion.

There are several types of hexosaminidases, including Hexosaminidase A and Hexosaminidase B, which are encoded by different genes and have distinct functions. Deficiencies in these enzymes can lead to serious genetic disorders, such as Tay-Sachs disease and Sandhoff disease, respectively. These conditions are characterized by the accumulation of undigested glycolipids and glycoproteins in various tissues, leading to progressive neurological deterioration and other symptoms.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Isoamylase is not a medical term per se, but rather a biochemical term used to describe an enzyme. Medically, it may be relevant in the context of certain medical conditions or treatments that involve carbohydrate metabolism. Here's a general definition:

Isoamylase (EC is a type of amylase, a group of enzymes that break down complex carbohydrates, specifically starch and glycogen, into simpler sugars. Isoamylase is more precisely defined as an enzyme that hydrolyzes (breaks down) alpha-1,6 glucosidic bonds in isomaltose, panose, and dextrins, yielding mainly isomaltose and limit dextrin. It is found in various organisms, including bacteria, fungi, and plants. In humans, isoamylase is involved in the digestion of starch in the small intestine, where it helps convert complex carbohydrates into glucose for energy absorption.

Ascorbate peroxidases (AHPX) are a group of enzymes that use ascorbic acid (vitamin C) as a reducing cofactor to catalyze the conversion of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect cells from oxidative damage caused by the accumulation of H2O2, a byproduct of various metabolic processes. Ascorbate peroxidases are primarily found in plants, algae, and cyanobacteria, where they play a crucial role in the detoxification of reactive oxygen species generated during photosynthesis.

The isoelectric point (pI) is a term used in biochemistry and molecular biology to describe the pH at which a molecule, such as a protein or peptide, carries no net electrical charge. At this pH, the positive and negative charges on the molecule are equal and balanced. The pI of a protein can be calculated based on its amino acid sequence and is an important property that affects its behavior in various chemical and biological environments. Proteins with different pIs may have different solubilities, stabilities, and interactions with other molecules, which can impact their function and role in the body.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

Phosphoglycerate Mutase (PGM) is an enzyme that plays a crucial role in the glycolytic pathway, which is a metabolic process that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell.

The enzyme catalyzes the interconversion of 3-phosphoglycerate (3-PG) and 2-phosphoglycerate (2-PG), which is the ninth step in glycolysis. Specifically, PGM transfers a phosphate group from the third carbon atom to the second carbon atom of 3-PG, resulting in the formation of 2-PG and inorganic phosphate.

There are two types of Phosphoglycerate Mutase isoenzymes in humans, including:

1. Phosphoglycerate Mutase 1 (PGAM1): This is a cytosolic enzyme that is widely expressed in various tissues, including skeletal muscle, heart, brain, and liver.
2. Phosphoglycerate Mutase 2 (PGAM2): This is a muscle-specific isoenzyme that is primarily found in cardiac and skeletal muscles.

Mutations in the PGAM1 gene have been associated with hemolytic anemia, neurodevelopmental disorders, and other metabolic abnormalities, while mutations in the PGAM2 gene have been linked to myopathies and other muscle-related disorders.

Hexosaminidase B is a type of enzyme that is involved in the breakdown of complex lipids called gangliosides in the body. These enzymes are found in lysosomes, which are structures inside cells that break down and recycle various materials.

Hexosaminidase B specifically helps to break down a particular type of ganglioside called GM2 ganglioside, which is abundant in the nervous system. Mutations in the gene that provides instructions for making this enzyme can lead to a condition called Tay-Sachs disease, which is characterized by the accumulation of GM2 gangliosides in the nerve cells, leading to progressive neurological deterioration.

In summary, Hexosaminidase B is an essential enzyme for breaking down certain types of lipids in the body, and its deficiency can lead to serious health consequences.

Peroxidases are a group of enzymes that catalyze the oxidation of various substrates using hydrogen peroxide (H2O2) as the electron acceptor. These enzymes contain a heme prosthetic group, which plays a crucial role in their catalytic activity. Peroxidases are widely distributed in nature and can be found in plants, animals, and microorganisms. They play important roles in various biological processes, including defense against oxidative stress, lignin degradation, and host-pathogen interactions. Some common examples of peroxidases include glutathione peroxidase, which helps protect cells from oxidative damage, and horseradish peroxidase, which is often used in laboratory research.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

Levamisole is an anthelmintic medication used to treat parasitic worm infections. It works by paralyzing the worms, allowing the body to remove them from the system. In addition, levamisole has been used in veterinary medicine as an immunomodulator, a substance that affects the immune system.

In human medicine, levamisole was previously used in the treatment of colon cancer and autoimmune disorders such as rheumatoid arthritis. However, its use in these areas has largely been discontinued due to side effects and the availability of more effective treatments.

It is important to note that levamisole has also been identified as a common adulterant in cocaine, which can lead to various health issues, including agranulocytosis (a severe decrease in white blood cells), skin lesions, and neurological symptoms.

3-Deoxy-7-phosphoheptulonate synthase (DAH7PS) is an enzyme that catalyzes the first step in the synthesis of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan. The reaction it catalyzes is the condensation of erythrose-4-phosphate and phosphoenolpyruvate to form 3-deoxy-D-arabino-hept-2-ulose-7-phosphate (DAHP), also known as 3-deoxy-7-phosphoheptulonate.

The reaction catalyzed by DAH7PS is the first step in the shikimate pathway, which is a seven-step metabolic route used by bacteria, fungi, algae, parasites, and plants to produce aromatic amino acids and other important compounds. Mammals do not have this pathway, so enzymes of the shikimate pathway are potential targets for the development of antibiotics and herbicides.

DAH7PS is a regulatory enzyme in the shikimate pathway, and its activity is feedback inhibited by the aromatic amino acids phenylalanine and tyrosine. This helps to regulate the flow of carbon into the aromatic amino acid biosynthetic pathway based on the needs of the cell.

Beta-N-Acetylhexosaminidases are a group of enzymes that play a role in the breakdown and recycling of complex carbohydrates in the body. Specifically, they help to break down gangliosides, which are a type of molecule found in cell membranes.

There are several different isoforms of beta-N-Acetylhexosaminidases, including A, B, and S. These isoforms are formed by different combinations of subunits, which can affect their activity and substrate specificity.

Mutations in the genes that encode for these enzymes can lead to a variety of genetic disorders, including Tay-Sachs disease and Sandhoff disease. These conditions are characterized by an accumulation of gangliosides in the brain, which can cause progressive neurological deterioration and death.

Treatment for these conditions typically involves managing symptoms and providing supportive care, as there is currently no cure. Enzyme replacement therapy has been explored as a potential treatment option, but its effectiveness varies depending on the specific disorder and the age of the patient.

The placenta is an organ that develops in the uterus during pregnancy and provides oxygen and nutrients to the growing baby through the umbilical cord. It also removes waste products from the baby's blood. The placenta attaches to the wall of the uterus, and the baby's side of the placenta contains many tiny blood vessels that connect to the baby's circulatory system. This allows for the exchange of oxygen, nutrients, and waste between the mother's and baby's blood. After the baby is born, the placenta is usually expelled from the uterus in a process called afterbirth.

Group IB Phospholipases A2 (PLA2s) are a subclass of phospholipases A2, which are enzymes that hydrolyze the sn-2 acyl bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group IB PLA2s are secreted enzymes that require calcium ions for their activity and have a low molecular weight. They are produced by various tissues and cells, including pancreas, liver, and immune cells, and play important roles in various biological processes such as inflammation, host defense, and lipid metabolism. Group IB PLA2s have been implicated in several pathological conditions, including atherosclerosis, arthritis, and neurodegenerative diseases.

Amylases are enzymes that break down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, glucose, and maltotriose. There are several types of amylases found in various organisms, including humans.

In humans, amylases are produced by the pancreas and salivary glands. Pancreatic amylase is released into the small intestine where it helps to digest dietary carbohydrates. Salivary amylase, also known as alpha-amylase, is secreted into the mouth and begins breaking down starches in food during chewing.

Deficiency or absence of amylases can lead to difficulties in digesting carbohydrates and may cause symptoms such as bloating, diarrhea, and abdominal pain. Elevated levels of amylase in the blood may indicate conditions such as pancreatitis, pancreatic cancer, or other disorders affecting the pancreas.

Hexosaminidase A is an enzyme that is responsible for breaking down certain complex molecules in the body, specifically gangliosides. This enzyme is composed of two subunits, alpha and beta, which are encoded by the genes HEXA and HEXB, respectively.

Deficiency or mutation in the HEXA gene can lead to a genetic disorder called Tay-Sachs disease, which is characterized by an accumulation of gangliosides in the nerve cells, leading to progressive neurological degeneration. The function of hexosaminidase A is to break down these gangliosides into simpler molecules that can be eliminated from the body. Without sufficient levels of this enzyme, the gangliosides build up and cause damage to the nervous system.

The Cytochrome P-450 (CYP450) enzyme system is a group of enzymes found primarily in the liver, but also in other organs such as the intestines, lungs, and skin. These enzymes play a crucial role in the metabolism and biotransformation of various substances, including drugs, environmental toxins, and endogenous compounds like hormones and fatty acids.

The name "Cytochrome P-450" refers to the unique property of these enzymes to bind to carbon monoxide (CO) and form a complex that absorbs light at a wavelength of 450 nm, which can be detected spectrophotometrically.

The CYP450 enzyme system is involved in Phase I metabolism of xenobiotics, where it catalyzes oxidation reactions such as hydroxylation, dealkylation, and epoxidation. These reactions introduce functional groups into the substrate molecule, which can then undergo further modifications by other enzymes during Phase II metabolism.

There are several families and subfamilies of CYP450 enzymes, each with distinct substrate specificities and functions. Some of the most important CYP450 enzymes include:

1. CYP3A4: This is the most abundant CYP450 enzyme in the human liver and is involved in the metabolism of approximately 50% of all drugs. It also metabolizes various endogenous compounds like steroids, bile acids, and vitamin D.
2. CYP2D6: This enzyme is responsible for the metabolism of many psychotropic drugs, including antidepressants, antipsychotics, and beta-blockers. It also metabolizes some endogenous compounds like dopamine and serotonin.
3. CYP2C9: This enzyme plays a significant role in the metabolism of warfarin, phenytoin, and nonsteroidal anti-inflammatory drugs (NSAIDs).
4. CYP2C19: This enzyme is involved in the metabolism of proton pump inhibitors, antidepressants, and clopidogrel.
5. CYP2E1: This enzyme metabolizes various xenobiotics like alcohol, acetaminophen, and carbon tetrachloride, as well as some endogenous compounds like fatty acids and prostaglandins.

Genetic polymorphisms in CYP450 enzymes can significantly affect drug metabolism and response, leading to interindividual variability in drug efficacy and toxicity. Understanding the role of CYP450 enzymes in drug metabolism is crucial for optimizing pharmacotherapy and minimizing adverse effects.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

I apologize for any confusion, but "Polyporaceae" is not a medical term. It is a taxonomic category in mycology, which is the branch of biology that deals with the study of fungi.

Polyporaceae is a family of fungi that includes various types of polypores, which are characterized by having pores on the underside of their fruiting bodies (the above-ground reproductive structures) instead of gills. These fungi are mostly saprotrophic, meaning they decompose dead or decaying organic matter to obtain nutrients. Some species can also be parasitic and cause diseases in living trees.

Examples of genera within Polyporaceae include Trametes, Ganoderma, Fomes, and Irpex, among others. If you have any questions related to medical terminology or concepts, please feel free to ask!

Immunodiffusion is a laboratory technique used in immunology to detect and measure the presence of specific antibodies or antigens in a sample. It is based on the principle of diffusion, where molecules move from an area of high concentration to an area of low concentration until they reach equilibrium. In this technique, a sample containing an unknown quantity of antigen or antibody is placed in a gel or agar medium that contains a known quantity of antibody or antigen, respectively.

The two substances then diffuse towards each other and form a visible precipitate at the point where they meet and reach equivalence, which indicates the presence and quantity of the specific antigen or antibody in the sample. There are several types of immunodiffusion techniques, including radial immunodiffusion (RID) and double immunodiffusion (Ouchterlony technique). These techniques are widely used in diagnostic laboratories to identify and measure various antigens and antibodies, such as those found in infectious diseases, autoimmune disorders, and allergic reactions.

Hexokinase is an enzyme that plays a crucial role in the initial step of glucose metabolism, which is the phosphorylation of glucose to form glucose-6-phosphate. This reaction is the first step in most glucose catabolic pathways, including glycolysis, pentose phosphate pathway, and glycogen synthesis.

Hexokinase has a high affinity for glucose, meaning it can bind and phosphorylate glucose even at low concentrations. This property makes hexokinase an important regulator of glucose metabolism in cells. There are four isoforms of hexokinase (I-IV) found in different tissues, with hexokinase IV (also known as glucokinase) being primarily expressed in the liver and pancreas.

In summary, hexokinase is a vital enzyme involved in glucose metabolism, catalyzing the conversion of glucose to glucose-6-phosphate, and playing a crucial role in regulating cellular energy homeostasis.

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

Acetylglucosaminidase (ACG) is an enzyme that catalyzes the hydrolysis of N-acetyl-beta-D-glucosaminides, which are found in glycoproteins and glycolipids. This enzyme plays a crucial role in the degradation and recycling of these complex carbohydrates within the body.

Deficiency or malfunction of Acetylglucosaminidase can lead to various genetic disorders, such as mucolipidosis II (I-cell disease) and mucolipidosis III (pseudo-Hurler polydystrophy), which are characterized by the accumulation of glycoproteins and glycolipids in lysosomes, resulting in cellular dysfunction and progressive damage to multiple organs.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Affinity chromatography is a type of chromatography technique used in biochemistry and molecular biology to separate and purify proteins based on their biological characteristics, such as their ability to bind specifically to certain ligands or molecules. This method utilizes a stationary phase that is coated with a specific ligand (e.g., an antibody, antigen, receptor, or enzyme) that selectively interacts with the target protein in a sample.

The process typically involves the following steps:

1. Preparation of the affinity chromatography column: The stationary phase, usually a solid matrix such as agarose beads or magnetic beads, is modified by covalently attaching the ligand to its surface.
2. Application of the sample: The protein mixture is applied to the top of the affinity chromatography column, allowing it to flow through the stationary phase under gravity or pressure.
3. Binding and washing: As the sample flows through the column, the target protein selectively binds to the ligand on the stationary phase, while other proteins and impurities pass through. The column is then washed with a suitable buffer to remove any unbound proteins and contaminants.
4. Elution of the bound protein: The target protein can be eluted from the column using various methods, such as changing the pH, ionic strength, or polarity of the buffer, or by introducing a competitive ligand that displaces the bound protein.
5. Collection and analysis: The eluted protein fraction is collected and analyzed for purity and identity, often through techniques like SDS-PAGE or mass spectrometry.

Affinity chromatography is a powerful tool in biochemistry and molecular biology due to its high selectivity and specificity, enabling the efficient isolation of target proteins from complex mixtures. However, it requires careful consideration of the binding affinity between the ligand and the protein, as well as optimization of the elution conditions to minimize potential damage or denaturation of the purified protein.

Alcohol dehydrogenase (ADH) is a group of enzymes responsible for catalyzing the oxidation of alcohols to aldehydes or ketones, and reducing equivalents such as NAD+ to NADH. In humans, ADH plays a crucial role in the metabolism of ethanol, converting it into acetaldehyde, which is then further metabolized by aldehyde dehydrogenase (ALDH) into acetate. This process helps to detoxify and eliminate ethanol from the body. Additionally, ADH enzymes are also involved in the metabolism of other alcohols, such as methanol and ethylene glycol, which can be toxic if allowed to accumulate in the body.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Laccase is an enzyme (specifically, a type of oxidoreductase) that is widely distributed in plants, fungi, and bacteria. It catalyzes the oxidation of various phenolic compounds, including polyphenols, methoxy-substituted phenols, aromatic amines, and some inorganic ions, while reducing molecular oxygen to water. This enzyme plays a crucial role in lignin degradation, as well as in the detoxification of xenobiotic compounds and in the synthesis of various pigments and polymers. The medical relevance of laccase is linked to its potential applications in bioremediation, biofuel production, and biotechnology.

3-Oxo-5-alpha-steroid 4-dehydrogenase is an enzyme that plays a role in steroid metabolism. It is involved in the conversion of certain steroids into others by removing hydrogen atoms and adding oxygen to create double bonds in the steroid molecule. Specifically, this enzyme catalyzes the dehydrogenation of 3-oxo-5-alpha-steroids at the 4th position, which results in the formation of a 4,5-double bond.

The enzyme is found in various tissues throughout the body and is involved in the metabolism of several important steroid hormones, including cortisol, aldosterone, and androgens. It helps to regulate the levels of these hormones in the body by converting them into their active or inactive forms as needed.

Deficiencies or mutations in the 3-oxo-5-alpha-steroid 4-dehydrogenase enzyme can lead to various medical conditions, such as congenital adrenal hyperplasia, which is characterized by abnormal hormone levels and development of sexual characteristics.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Alpha-amylases are a type of enzyme that breaks down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, maltotriose, and glucose. These enzymes catalyze the hydrolysis of alpha-1,4 glycosidic bonds in these complex carbohydrates, making them more easily digestible.

Alpha-amylases are produced by various organisms, including humans, animals, plants, and microorganisms such as bacteria and fungi. In humans, alpha-amylases are primarily produced by the salivary glands and pancreas, and they play an essential role in the digestion of dietary carbohydrates.

Deficiency or malfunction of alpha-amylases can lead to various medical conditions, such as diabetes, kidney disease, and genetic disorders like congenital sucrase-isomaltase deficiency. On the other hand, excessive production of alpha-amylases can contribute to dental caries and other oral health issues.

"Autoanalysis" is not a term that is widely used in the medical field. However, in psychology and psychotherapy, "autoanalysis" refers to the process of self-analysis or self-examination, where an individual analyzes their own thoughts, feelings, behaviors, and experiences to gain insight into their unconscious mind and understand their motivations, conflicts, and emotional patterns.

Self-analysis can involve various techniques such as introspection, journaling, meditation, dream analysis, and reflection on past experiences. While autoanalysis can be a useful tool for personal growth and self-awareness, it is generally considered less reliable and comprehensive than professional psychotherapy or psychoanalysis, which involves a trained therapist or analyst who can provide objective feedback, interpretation, and guidance.

'Datura stramonium' is a plant species also known as Jimson weed or thorn apple. It belongs to the Solanaceae family, which includes other plants like nightshade and belladonna. All parts of this plant contain dangerous levels of toxic tropane alkaloids, such as scopolamine and atropine.

Here's a brief medical definition of 'Datura stramonium':

A plant species (Solanaceae family) containing toxic tropane alkaloids, including scopolamine and atropine, in all its parts. Common names include Jimson weed or thorn apple. Ingestion can lead to severe anticholinergic symptoms like delirium, tachycardia, dry mouth, blurred vision, and potentially life-threatening complications.

Phosphopyruvate Hydratase is an enzyme also known as Enolase. It plays a crucial role in the glycolytic pathway, which is a series of reactions that occur in the cell to break down glucose into pyruvate, producing ATP and NADH as energy-rich intermediates.

Specifically, Phosphopyruvate Hydratase catalyzes the conversion of 2-phospho-D-glycerate (2-PG) to phosphoenolpyruvate (PEP), which is the second to last step in the glycolytic pathway. This reaction includes the removal of a water molecule from 2-PG, resulting in the formation of PEP and the release of a molecule of water.

The enzyme requires magnesium ions as a cofactor for its activity, and it is inhibited by fluoride ions. Deficiency or dysfunction of Phosphopyruvate Hydratase can lead to various metabolic disorders, including some forms of muscular dystrophy and neurodegenerative diseases.

In a medical context, "hot temperature" is not a standard medical term with a specific definition. However, it is often used in relation to fever, which is a common symptom of illness. A fever is typically defined as a body temperature that is higher than normal, usually above 38°C (100.4°F) for adults and above 37.5-38°C (99.5-101.3°F) for children, depending on the source.

Therefore, when a medical professional talks about "hot temperature," they may be referring to a body temperature that is higher than normal due to fever or other causes. It's important to note that a high environmental temperature can also contribute to an elevated body temperature, so it's essential to consider both the body temperature and the environmental temperature when assessing a patient's condition.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Lipidoses are a group of genetic disorders characterized by abnormal accumulation of lipids (fats or fat-like substances) in various tissues and cells of the body due to defects in lipid metabolism. These disorders include conditions such as Gaucher's disease, Tay-Sachs disease, Niemann-Pick disease, Fabry disease, and Wolman disease, among others. The accumulation of lipids can lead to progressive damage in multiple organs, resulting in a range of symptoms and health complications. Early diagnosis and management are essential for improving the quality of life and prognosis of affected individuals.

Disc electrophoresis is a type of electrophoresis technique used to separate and analyze DNA, RNA, or proteins based on their size and electrical charge. In this method, the samples are placed in a gel matrix (usually agarose or polyacrylamide) and an electric field is applied. The smaller and/or more negatively charged molecules migrate faster through the gel and separate from larger and/or less charged molecules, creating a pattern of bands that can be visualized and analyzed.

The term "disc" refers to the characteristic disc-shaped pattern that is often seen in the separated protein bands when using this technique. This pattern is created by the interaction between the size, charge, and shape of the proteins, resulting in a distinct banding pattern that can be used for identification and analysis.

Disc electrophoresis is widely used in molecular biology and genetics research, as well as in diagnostic testing and forensic science.

Carbonic anhydrase inhibitors are a class of medications that work by blocking the action of carbonic anhydrase, an enzyme that is responsible for converting carbon dioxide and water into carbonic acid. This enzyme is found in various tissues throughout the body, including the eyes, kidneys, and nervous system.

By inhibiting the activity of carbonic anhydrase, these medications can reduce the production of bicarbonate ions in the body, which helps to lower the rate of fluid buildup in certain tissues. As a result, carbonic anhydrase inhibitors are often used to treat conditions such as glaucoma, epilepsy, and altitude sickness.

In glaucoma, for example, these medications can help to reduce pressure within the eye by promoting the drainage of fluid from the eye. In epilepsy, carbonic anhydrase inhibitors can help to reduce the frequency and severity of seizures by reducing the acidity of the blood and brain. And in altitude sickness, these medications can help to alleviate symptoms such as headache, nausea, and shortness of breath by reducing the buildup of fluid in the lungs.

Some common examples of carbonic anhydrase inhibitors include acetazolamide, methazolamide, and dorzolamide. These medications are available in various forms, including tablets, capsules, and eye drops, and are typically prescribed by a healthcare professional.

The intestines, also known as the bowel, are a part of the digestive system that extends from the stomach to the anus. They are responsible for the further breakdown and absorption of nutrients from food, as well as the elimination of waste products. The intestines can be divided into two main sections: the small intestine and the large intestine.

The small intestine is a long, coiled tube that measures about 20 feet in length and is lined with tiny finger-like projections called villi, which increase its surface area and enhance nutrient absorption. The small intestine is where most of the digestion and absorption of nutrients takes place.

The large intestine, also known as the colon, is a wider tube that measures about 5 feet in length and is responsible for absorbing water and electrolytes from digested food, forming stool, and eliminating waste products from the body. The large intestine includes several regions, including the cecum, colon, rectum, and anus.

Together, the intestines play a critical role in maintaining overall health and well-being by ensuring that the body receives the nutrients it needs to function properly.

Protein Kinase C-alpha (PKC-α) is a specific isoform of the Protein Kinase C (PKC) family, which are serine/threonine protein kinases that play crucial roles in various cellular processes such as proliferation, differentiation, and apoptosis. PKC-α is activated by diacylglycerol (DAG) and calcium ions (Ca2+). It is involved in signal transduction pathways related to cell growth, differentiation, and oncogenic transformation. Mutations or dysregulation of PKC-alpha have been implicated in several diseases including cancer, diabetes, and neurological disorders.

Polygalacturonase is an enzyme that catalyzes the hydrolysis of 1,4-beta-D-glycosidic linkages in polygalacturonic acid, which is a major component of pectin in plant cell walls. This enzyme is involved in various processes such as fruit ripening, plant defense response, and pathogenesis by breaking down the pectin, leading to softening and breakdown of plant tissues. It is also used in industrial applications for fruit juice extraction, tea fermentation, and textile processing.

Phosphofructokinase-1 (PFK-1) is a rate-limiting enzyme in the glycolytic pathway, which is the metabolic pathway that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. PFK-1 plays a crucial role in regulating the rate of glycolysis by catalyzing the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, using ATP as the phosphate donor.

PFK-1 is allosterically regulated by various metabolites, such as AMP, ADP, and ATP, which act as positive or negative effectors of the enzyme's activity. For example, an increase in the intracellular concentration of AMP or ADP can activate PFK-1, promoting glycolysis and energy production, while an increase in ATP levels can inhibit the enzyme's activity, conserving glucose for use under conditions of low energy demand.

Deficiencies in PFK-1 can lead to a rare genetic disorder called Tarui's disease or glycogen storage disease type VII, which is characterized by exercise intolerance, muscle cramps, and myoglobinuria (the presence of myoglobin in the urine due to muscle damage).

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Microsomes, liver refers to a subcellular fraction of liver cells (hepatocytes) that are obtained during tissue homogenization and subsequent centrifugation. These microsomal fractions are rich in membranous structures known as the endoplasmic reticulum (ER), particularly the rough ER. They are involved in various important cellular processes, most notably the metabolism of xenobiotics (foreign substances) including drugs, toxins, and carcinogens.

The liver microsomes contain a variety of enzymes, such as cytochrome P450 monooxygenases, that are crucial for phase I drug metabolism. These enzymes help in the oxidation, reduction, or hydrolysis of xenobiotics, making them more water-soluble and facilitating their excretion from the body. Additionally, liver microsomes also host other enzymes involved in phase II conjugation reactions, where the metabolites from phase I are further modified by adding polar molecules like glucuronic acid, sulfate, or acetyl groups.

In summary, liver microsomes are a subcellular fraction of liver cells that play a significant role in the metabolism and detoxification of xenobiotics, contributing to the overall protection and maintenance of cellular homeostasis within the body.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Aldehyde-lyases are a class of enzymes that catalyze the breakdown or synthesis of molecules involving an aldehyde group through a reaction known as lyase cleavage. This type of reaction results in the removal of a molecule, typically water or carbon dioxide, from the substrate.

In the case of aldehyde-lyases, these enzymes specifically catalyze reactions that involve the conversion of an aldehyde into a carboxylic acid or vice versa. These enzymes are important in various metabolic pathways and play a crucial role in the biosynthesis and degradation of several biomolecules, including carbohydrates, amino acids, and lipids.

The systematic name for this class of enzymes is "ald(e)hyde-lyases." They are classified under EC number 4.3.1 in the Enzyme Commission (EC) system.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Dinitrochlorobenzene (DNCB) is a chemical compound that is classified as an aromatic organic compound. Its medical definition relates to its use as a topical immunotherapy for the treatment of certain skin conditions. DNCB is a potent sensitizer and hapten, which means that it can cause an immune response when it comes into contact with the skin.

When applied to the skin, DNCB can stimulate the production of antibodies and activate immune cells, leading to an inflammatory reaction. This property has been exploited in the treatment of conditions such as alopecia areata, a type of hair loss that is thought to be caused by an autoimmune response. By sensitizing the patient's immune system to DNCB, it may be possible to modulate the immune response and promote hair growth.

However, the use of DNCB as a therapeutic agent is not without risks. It can cause significant local reactions, including redness, swelling, and blistering, and there is a risk of systemic toxicity if it is absorbed into the bloodstream. As such, its use is generally restricted to specialized medical settings where it can be administered under close supervision.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Beta-glucosidase is an enzyme that breaks down certain types of complex sugars, specifically those that contain a beta-glycosidic bond. This enzyme is found in various organisms, including humans, and plays a role in the digestion of some carbohydrates, such as cellulose and other plant-based materials.

In the human body, beta-glucosidase is produced by the lysosomes, which are membrane-bound organelles found within cells that help break down and recycle various biological molecules. Beta-glucosidase is involved in the breakdown of glycolipids and gangliosides, which are complex lipids that contain sugar molecules.

Deficiencies in beta-glucosidase activity can lead to certain genetic disorders, such as Gaucher disease, in which there is an accumulation of glucocerebrosidase, a type of glycolipid, within the lysosomes. This can result in various symptoms, including enlargement of the liver and spleen, anemia, and bone pain.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Fructose-bisphosphate aldolase is a crucial enzyme in the glycolytic pathway, which is a metabolic process that breaks down glucose to produce energy. This enzyme catalyzes the conversion of fructose-1,6-bisphosphate into two triose sugars: dihydroxyacetone phosphate and glyceraldehyde-3-phosphate.

There are two main types of aldolase isoenzymes in humans, classified as aldolase A (or muscle type) and aldolase B (or liver type). Fructose-bisphosphate aldolase refers specifically to aldolase A, which is primarily found in the muscles, brain, and red blood cells. Aldolase B, on the other hand, is predominantly found in the liver, kidney, and small intestine.

Deficiency or dysfunction of fructose-bisphosphate aldolase can lead to metabolic disorders, such as hereditary fructose intolerance, which results from a deficiency in another enzyme called aldolase B. However, it is essential to note that the term "fructose-bisphosphate aldolase" typically refers to aldolase A and not aldolase B.

Subcellular fractions refer to the separation and collection of specific parts or components of a cell, including organelles, membranes, and other structures, through various laboratory techniques such as centrifugation and ultracentrifugation. These fractions can be used in further biochemical and molecular analyses to study the structure, function, and interactions of individual cellular components. Examples of subcellular fractions include nuclear extracts, mitochondrial fractions, microsomal fractions (membrane vesicles), and cytosolic fractions (cytoplasmic extracts).

Myosins are a large family of motor proteins that play a crucial role in various cellular processes, including muscle contraction and intracellular transport. They consist of heavy chains, which contain the motor domain responsible for generating force and motion, and light chains, which regulate the activity of the myosin. Based on their structural and functional differences, myosins are classified into over 35 classes, with classes II, V, and VI being the most well-studied.

Class II myosins, also known as conventional myosins, are responsible for muscle contraction in skeletal, cardiac, and smooth muscles. They form filaments called thick filaments, which interact with actin filaments to generate force and movement during muscle contraction.

Class V myosins, also known as unconventional myosins, are involved in intracellular transport and organelle positioning. They have a long tail that can bind to various cargoes, such as vesicles, mitochondria, and nuclei, and a motor domain that moves along actin filaments to transport the cargoes to their destinations.

Class VI myosins are also unconventional myosins involved in intracellular transport and organelle positioning. They have two heads connected by a coiled-coil tail, which can bind to various cargoes. Class VI myosins move along actin filaments in a unique hand-over-hand motion, allowing them to transport their cargoes efficiently.

Overall, myosins are essential for many cellular functions and have been implicated in various diseases, including cardiovascular diseases, neurological disorders, and cancer.

Creatine kinase (CK), also known as creatine phosphokinase (CPK), is an enzyme found in various tissues in the body, including the heart, brain, and skeletal muscles. It plays a crucial role in energy metabolism by catalyzing the conversion of creatine and adenosine triphosphate (ATP) to phosphocreatine and adenosine diphosphate (ADP). This reaction helps regenerate ATP, which is the primary source of energy for cellular functions.

There are three main forms of CK found in the body: CK-MM (muscle form), CK-BB (brain form), and CK-MB (mixture of muscle and brain forms). Additionally, there is a mitochondrial form of creatine kinase called CKmt or CK-MT, which is primarily located within the mitochondria.

Mitochondrial creatine kinase (CKmt) has two main isoforms: ubiquitous CKmt1 and sarcomeric CKmt2. These isoforms are responsible for catalyzing the transfer of high-energy phosphates between ATP and phosphocreatine within the mitochondria, which helps maintain energy homeostasis in the cell.

Abnormal levels of creatine kinase, including the mitochondrial form, can indicate tissue damage or disease. For example, increased CKmt levels may be associated with mitochondrial disorders, neurodegenerative diseases, or muscle-wasting conditions. However, measuring CKmt specifically is not as common in clinical practice as measuring other CK isoforms, and its interpretation requires specialized knowledge and context.

Triethyltin compounds refer to organotin substances that contain the triethyltin (C2H5)3Sn- group. These compounds have been used in various industrial applications, such as biocides and polyvinyl chloride stabilizers. However, they are highly toxic and can cause neurological damage in humans and animals. Long-term exposure to triethyltin compounds has been linked to symptoms including headaches, memory loss, tremors, and seizures.

Adenylate kinase is an enzyme (EC that catalyzes the reversible transfer of a phosphate group between adenine nucleotides, specifically between ATP and AMP to form two ADP molecules. This reaction plays a crucial role in maintaining the energy charge of the cell by interconverting these important energy currency molecules.

The general reaction catalyzed by adenylate kinase is:


This enzyme is widely distributed in various organisms and tissues, including mammalian cells. In humans, there are several isoforms of adenylate kinase, located in different cellular compartments such as the cytosol, mitochondria, and nucleus. These isoforms have distinct roles in maintaining energy homeostasis and protecting cells under stress conditions. Dysregulation of adenylate kinase activity has been implicated in several pathological processes, including neurodegenerative diseases, ischemia-reperfusion injury, and cancer.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

I'm sorry for any confusion, but the term "Reptilian Proteins" does not have a specific or established medical or scientific meaning. The term "reptilian" generally refers to characteristics of reptiles, and proteins are complex molecules that perform various functions within all living organisms, including reptiles. However, there isn't a recognized category or classification called "Reptilian Proteins" in the field of medicine or biology. If you have any questions about specific reptile-related proteins or reptile physiology, I would be happy to try and help with those!

Esterases are a group of enzymes that catalyze the hydrolysis of ester bonds in esters, producing alcohols and carboxylic acids. They are widely distributed in plants, animals, and microorganisms and play important roles in various biological processes, such as metabolism, digestion, and detoxification.

Esterases can be classified into several types based on their substrate specificity, including carboxylesterases, cholinesterases, lipases, and phosphatases. These enzymes have different structures and mechanisms of action but all share the ability to hydrolyze esters.

Carboxylesterases are the most abundant and diverse group of esterases, with a wide range of substrate specificity. They play important roles in the metabolism of drugs, xenobiotics, and lipids. Cholinesterases, on the other hand, specifically hydrolyze choline esters, such as acetylcholine, which is an important neurotransmitter in the nervous system. Lipases are a type of esterase that preferentially hydrolyzes triglycerides and plays a crucial role in fat digestion and metabolism. Phosphatases are enzymes that remove phosphate groups from various molecules, including esters, and have important functions in signal transduction and other cellular processes.

Esterases can also be used in industrial applications, such as in the production of biodiesel, detergents, and food additives. They are often produced by microbial fermentation or extracted from plants and animals. The use of esterases in biotechnology is an active area of research, with potential applications in biofuel production, bioremediation, and medical diagnostics.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

Malate Dehydrogenase (MDH) is an enzyme that plays a crucial role in the Krebs cycle, also known as the citric acid cycle or tricarboxylic acid (TCA) cycle. It catalyzes the reversible oxidation of malate to oxaloacetate, while simultaneously reducing NAD+ to NADH. This reaction is essential for energy production in the form of ATP and NADH within the cell.

There are two main types of Malate Dehydrogenase:

1. NAD-dependent Malate Dehydrogenase (MDH1): Found primarily in the cytoplasm, this isoform plays a role in the malate-aspartate shuttle, which helps transfer reducing equivalents between the cytoplasm and mitochondria.
2. FAD-dependent Malate Dehydrogenase (MDH2): Located within the mitochondrial matrix, this isoform is involved in the Krebs cycle for energy production.

Abnormal levels of Malate Dehydrogenase enzyme can be indicative of certain medical conditions or diseases, such as myocardial infarction (heart attack), muscle damage, or various types of cancer. Therefore, MDH enzyme activity is often assessed in diagnostic tests to help identify and monitor these health issues.

3',5'-Cyclic-AMP (cyclic adenosine monophosphate) phosphodiesterases are a group of enzymes that catalyze the breakdown of cyclic AMP to 5'-AMP. These enzymes play a crucial role in regulating the levels of intracellular second messengers, such as cyclic AMP, which are involved in various cellular signaling pathways.

There are several subtypes of phosphodiesterases (PDEs) that specifically target cyclic AMP, including PDE1, PDE2, PDE3, PDE4, PDE7, PDE8, and PDE10. Each subtype has distinct regulatory and catalytic properties, allowing for specific regulation of cyclic AMP levels in different cellular compartments and signaling pathways.

Inhibition of these enzymes can lead to an increase in intracellular cyclic AMP levels, which can have therapeutic effects in various diseases, such as cardiovascular disease, pulmonary hypertension, and central nervous system disorders. Therefore, PDE inhibitors are a valuable class of drugs for the treatment of these conditions.

Acid phosphatase is a type of enzyme that is found in various tissues and organs throughout the body, including the prostate gland, red blood cells, bone, liver, spleen, and kidneys. This enzyme plays a role in several biological processes, such as bone metabolism and the breakdown of molecules like nucleotides and proteins.

Acid phosphatase is classified based on its optimum pH level for activity. Acid phosphatases have an optimal activity at acidic pH levels (below 7.0), while alkaline phosphatases have an optimal activity at basic or alkaline pH levels (above 7.0).

In clinical settings, measuring the level of acid phosphatase in the blood can be useful as a tumor marker for prostate cancer. Elevated acid phosphatase levels may indicate the presence of metastatic prostate cancer or disease progression. However, it is important to note that acid phosphatase is not specific to prostate cancer and can also be elevated in other conditions, such as bone diseases, liver disorders, and some benign conditions. Therefore, acid phosphatase should be interpreted in conjunction with other diagnostic tests and clinical findings for a more accurate diagnosis.

Enzyme stability refers to the ability of an enzyme to maintain its structure and function under various environmental conditions, such as temperature, pH, and the presence of denaturants or inhibitors. A stable enzyme retains its activity and conformation over time and across a range of conditions, making it more suitable for industrial and therapeutic applications.

Enzymes can be stabilized through various methods, including chemical modification, immobilization, and protein engineering. Understanding the factors that affect enzyme stability is crucial for optimizing their use in biotechnology, medicine, and research.

In the context of medical research, "methods" refers to the specific procedures or techniques used in conducting a study or experiment. This includes details on how data was collected, what measurements were taken, and what statistical analyses were performed. The methods section of a medical paper allows other researchers to replicate the study if they choose to do so. It is considered one of the key components of a well-written research article, as it provides transparency and helps establish the validity of the findings.

Drug stability refers to the ability of a pharmaceutical drug product to maintain its physical, chemical, and biological properties during storage and use, under specified conditions. A stable drug product retains its desired quality, purity, strength, and performance throughout its shelf life. Factors that can affect drug stability include temperature, humidity, light exposure, and container compatibility. Maintaining drug stability is crucial to ensure the safety and efficacy of medications for patients.

Chromatography is a technique used in analytical chemistry for the separation, identification, and quantification of the components of a mixture. It is based on the differential distribution of the components of a mixture between a stationary phase and a mobile phase. The stationary phase can be a solid or liquid, while the mobile phase is a gas, liquid, or supercritical fluid that moves through the stationary phase carrying the sample components.

The interaction between the sample components and the stationary and mobile phases determines how quickly each component will move through the system. Components that interact more strongly with the stationary phase will move more slowly than those that interact more strongly with the mobile phase. This difference in migration rates allows for the separation of the components, which can then be detected and quantified.

There are many different types of chromatography, including paper chromatography, thin-layer chromatography (TLC), gas chromatography (GC), liquid chromatography (LC), and high-performance liquid chromatography (HPLC). Each type has its own strengths and weaknesses, and is best suited for specific applications.

In summary, chromatography is a powerful analytical technique used to separate, identify, and quantify the components of a mixture based on their differential distribution between a stationary phase and a mobile phase.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Enzyme induction is a process by which the activity or expression of an enzyme is increased in response to some stimulus, such as a drug, hormone, or other environmental factor. This can occur through several mechanisms, including increasing the transcription of the enzyme's gene, stabilizing the mRNA that encodes the enzyme, or increasing the translation of the mRNA into protein.

In some cases, enzyme induction can be a beneficial process, such as when it helps the body to metabolize and clear drugs more quickly. However, in other cases, enzyme induction can have negative consequences, such as when it leads to the increased metabolism of important endogenous compounds or the activation of harmful procarcinogens.

Enzyme induction is an important concept in pharmacology and toxicology, as it can affect the efficacy and safety of drugs and other xenobiotics. It is also relevant to the study of drug interactions, as the induction of one enzyme by a drug can lead to altered metabolism and effects of another drug that is metabolized by the same enzyme.

Alcohol oxidoreductases are a class of enzymes that catalyze the oxidation of alcohols to aldehydes or ketones, while reducing nicotinamide adenine dinucleotide (NAD+) to NADH. These enzymes play an important role in the metabolism of alcohols and other organic compounds in living organisms.

The most well-known example of an alcohol oxidoreductase is alcohol dehydrogenase (ADH), which is responsible for the oxidation of ethanol to acetaldehyde in the liver during the metabolism of alcoholic beverages. Other examples include aldehyde dehydrogenases (ALDH) and sorbitol dehydrogenase (SDH).

These enzymes are important targets for the development of drugs used to treat alcohol use disorder, as inhibiting their activity can help to reduce the rate of ethanol metabolism and the severity of its effects on the body.

Densitometry is a medical technique used to measure the density or degree of opacity of various structures, particularly bones and tissues. It is often used in the diagnosis and monitoring of osteoporosis, a condition characterized by weak and brittle bones. Bone densitometry measures the amount of calcium and other minerals in a segment of bone to determine its strength and density. This information can help doctors assess a patient's risk of fractures and make treatment recommendations. Densitometry is also used in other medical fields, such as mammography, where it is used to measure the density of breast tissue to detect abnormalities and potential signs of cancer.

Cyclic nucleotide phosphodiesterases (PDEs) are a family of enzymes that regulate intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are important second messengers involved in various cellular processes.

Type 1 PDEs (PDE1A, PDE1B, PDE1C) are calcium/calmodulin-regulated enzymes that hydrolyze both cAMP and cGMP with similar catalytic efficiency. They play a crucial role in the regulation of vascular smooth muscle contraction, platelet aggregation, and neuronal excitability.

Dysregulation of PDE1 activity has been implicated in various pathological conditions, including hypertension, cardiovascular diseases, and neurological disorders. Therefore, PDE1 inhibitors have emerged as potential therapeutic agents for the treatment of these conditions.

Sandhoff disease is a rare inherited disorder that affects the nervous system. It's a type of GM2 gangliosidosis, which is a group of conditions characterized by the body's inability to break down certain fats (lipids) called gangliosides.

In Sandhoff disease, deficiencies in the enzymes hexosaminidase A and B lead to an accumulation of GM2 ganglioside in various cells, particularly in nerve cells of the brain. This accumulation results in progressive damage to the nervous system.

The symptoms of Sandhoff disease typically appear between 6 months and 2 years of age and can include developmental delay, seizures, an exaggerated startle response, muscle weakness, loss of motor skills, and vision and hearing loss. The condition is often fatal by around age 3. It's caused by mutations in the HEXB gene, and it's inherited in an autosomal recessive manner, meaning an individual must inherit two copies of the mutated gene (one from each parent) to develop the disease.

Gamma-glutamyltransferase (GGT), also known as gamma-glutamyl transpeptidase, is an enzyme found in many tissues, including the liver, bile ducts, and pancreas. GGT is involved in the metabolism of certain amino acids and plays a role in the detoxification of various substances in the body.

GGT is often measured as a part of a panel of tests used to evaluate liver function. Elevated levels of GGT in the blood may indicate liver disease or injury, bile duct obstruction, or alcohol consumption. However, it's important to note that several other factors can also affect GGT levels, so abnormal results should be interpreted in conjunction with other clinical findings and diagnostic tests.

Creatine kinase (CK) is an enzyme found in various tissues in the body, including the heart, brain, and skeletal muscles. It plays a crucial role in energy metabolism by catalyzing the conversion of creatine and adenosine triphosphate (ATP) to phosphocreatine and adenosine diphosphate (ADP). This reaction helps regenerate ATP, which is the primary source of energy for cellular functions.

There are three main isoforms of CK in the human body: CK-MM, CK-MB, and CK-BB. The BB form of creatine kinase (CK-BB) is primarily found in the brain and is present in very low concentrations in other tissues. It is mainly located in the cytosol of neurons and glial cells.

An elevated level of CK-BB in the blood can indicate damage to the central nervous system, particularly in cases of stroke, traumatic brain injury, brain tumors, or neurodegenerative disorders like multiple sclerosis and Alzheimer's disease. However, it is essential to note that CK-BB levels alone are not considered a definitive diagnostic marker for these conditions, as other factors can influence its concentration in the bloodstream. Measurement of CK-BB, along with other biomarkers and clinical assessments, contributes to a more comprehensive understanding of the patient's condition.

Coniferophyta is a division of vascular plants that includes the conifers. It is an informal name and not commonly used in modern taxonomy, but it can still be found in some older textbooks and resources. The more widely accepted classification system places conifers within the gymnosperms, which are a group of seed-bearing plants characterized by the absence of fruits or flowers.

Conifers are a diverse group of woody plants that include trees and shrubs such as pines, firs, spruces, hemlocks, cedars, and redwoods. They are known for their cone-bearing seeds and needle-shaped leaves, which are often evergreen. Conifers are widely distributed throughout the world and play important ecological roles in many ecosystems, particularly in temperate and boreal forests.

In summary, while "Coniferophyta" is an outdated term for the division that includes conifers, it refers to a group of plants characterized by their cone-bearing seeds and needle-shaped leaves. Modern classification systems place conifers within the gymnosperms.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Dianisidine is a chemical compound that is primarily used in laboratory research as a reagent for detecting and measuring the presence of iron (Fe) in various substances. It is an aromatic amine with the molecular formula C10H12N2O2. Dianisidine is known for its ability to form a colored complex when it reacts with iron, which can be measured and used to determine the amount of iron present in a sample.

In a medical context, dianisidine may be used in diagnostic tests to detect and measure iron levels in biological samples such as blood or tissue. However, dianisidine itself is not a medication or therapeutic agent and does not have a direct medical application for treating diseases or conditions.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Aldehyde dehydrogenase (ALDH) is a class of enzymes that play a crucial role in the metabolism of alcohol and other aldehydes in the body. These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using nicotinamide adenine dinucleotide (NAD+) as a cofactor.

There are several isoforms of ALDH found in different tissues throughout the body, with varying substrate specificities and kinetic properties. The most well-known function of ALDH is its role in alcohol metabolism, where it converts the toxic aldehyde intermediate acetaldehyde to acetate, which can then be further metabolized or excreted.

Deficiencies in ALDH activity have been linked to a number of clinical conditions, including alcohol flush reaction, alcohol-induced liver disease, and certain types of cancer. Additionally, increased ALDH activity has been associated with chemotherapy resistance in some cancer cells.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

Immunoelectrophoresis (IEP) is a laboratory technique used in the field of clinical pathology and immunology. It is a method for separating and identifying proteins, particularly immunoglobulins or antibodies, in a sample. This technique combines the principles of electrophoresis, which separates proteins based on their electric charge and size, with immunological reactions, which detect specific proteins using antigen-antibody interactions.

In IEP, a protein sample is first separated by electrophoresis in an agarose or agar gel matrix on a glass slide or in a test tube. After separation, an antibody specific to the protein of interest is layered on top of the gel and allowed to diffuse towards the separated proteins. This creates a reaction between the antigen (protein) and the antibody, forming a visible precipitate at the point where they meet. The precipitate line's position and intensity can then be analyzed to identify and quantify the protein of interest.

Immunoelectrophoresis is particularly useful in diagnosing various medical conditions, such as immunodeficiency disorders, monoclonal gammopathies (like multiple myeloma), and other plasma cell dyscrasias. It can help detect abnormal protein patterns, quantify specific immunoglobulins, and identify the presence of M-proteins or Bence Jones proteins, which are indicative of monoclonal gammopathies.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Protein Kinase C beta (PKCβ) is a serine-threonine protein kinase that belongs to the family of Protein Kinase C (PKC) enzymes. It plays a crucial role in various cellular processes, including signal transduction, cell survival, differentiation, and apoptosis. PKCβ is activated by diacylglycerol (DAG) and calcium ions (Ca2+), which results in its translocation from the cytosol to the plasma membrane, where it phosphorylates downstream target proteins.

There are two isoforms of PKCβ, PKCβI and PKCβII, which differ in their regulatory domains but have similar catalytic domains. PKCβ has been implicated in several diseases, including cancer, diabetes, and inflammatory disorders, making it a potential therapeutic target for drug development.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme that plays a crucial role in the metabolic pathway of glycolysis. Its primary function is to convert glyceraldehyde-3-phosphate (a triose sugar phosphate) into D-glycerate 1,3-bisphosphate, while also converting nicotinamide adenine dinucleotide (NAD+) into its reduced form NADH. This reaction is essential for the production of energy in the form of adenosine triphosphate (ATP) during cellular respiration. GAPDH has also been implicated in various non-metabolic processes, including DNA replication, repair, and transcription regulation, due to its ability to interact with different proteins and nucleic acids.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Methanobacterium is a genus of archaea belonging to the order Methanobacteriales and the family Methanobacteriaceae. They are commonly known as methanogenic bacteria, but they are not true bacteria; instead, they belong to the domain Archaea. These organisms are characterized by their ability to produce methane as a metabolic end-product in anaerobic conditions. They are typically found in environments like swamps, wetlands, digestive tracts of animals, and sewage sludge. The cells of Methanobacterium are usually rod-shaped and may appear gram-positive or gram-variable. Some species are capable of forming endospores.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Phenylalanine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet or supplementation. It's one of the building blocks of proteins and is necessary for the production of various molecules in the body, such as neurotransmitters (chemical messengers in the brain).

Phenylalanine has two forms: L-phenylalanine and D-phenylalanine. L-phenylalanine is the form found in proteins and is used by the body for protein synthesis, while D-phenylalanine has limited use in humans and is not involved in protein synthesis.

Individuals with a rare genetic disorder called phenylketonuria (PKU) must follow a low-phenylalanine diet or take special medical foods because they are unable to metabolize phenylalanine properly, leading to its buildup in the body and potential neurological damage.

Acetone is a colorless, volatile, and flammable liquid organic compound with the chemical formula (CH3)2CO. It is the simplest and smallest ketone, and its molecules consist of a carbonyl group linked to two methyl groups. Acetone occurs naturally in the human body and is produced as a byproduct of normal metabolic processes, particularly during fat burning.

In clinical settings, acetone can be measured in breath or blood to assess metabolic status, such as in cases of diabetic ketoacidosis, where an excess production of acetone and other ketones occurs due to insulin deficiency and high levels of fatty acid breakdown. High concentrations of acetone can lead to a sweet, fruity odor on the breath, often described as "fruity acetone" or "acetone breath."

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), also known as Glucosephosphate Dehydrogenase, is an enzyme that plays a crucial role in cellular metabolism, particularly in the glycolytic pathway. It catalyzes the conversion of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG), while also converting nicotinamide adenine dinucleotide (NAD+) to its reduced form NADH. This reaction is essential for the production of energy in the form of adenosine triphosphate (ATP) during cellular respiration. GAPDH has been widely used as a housekeeping gene in molecular biology research due to its consistent expression across various tissues and cells, although recent studies have shown that its expression can vary under certain conditions.

GM2 gangliosidoses are a group of inherited metabolic disorders caused by the accumulation of harmful amounts of GM2 gangliosides in the body's cells, particularly in the nerve cells of the brain. There are three main types of GM2 gangliosidoses: Tay-Sachs disease, Sandhoff disease, and AB variant of GM2 gangliosidosis. These conditions are characterized by progressive neurological degeneration, which can lead to severe physical and mental disabilities, and ultimately death in childhood or early adulthood.

The underlying cause of GM2 gangliosides is a deficiency in the enzyme hexosaminidase A (Tay-Sachs and AB variant) or both hexosaminidase A and B (Sandhoff disease), which are responsible for breaking down GM2 gangliosides. Without sufficient enzyme activity, GM2 gangliosides accumulate in the lysosomes of cells, leading to cell dysfunction and death.

Symptoms of GM2 gangliosidoses can vary depending on the specific type and severity of the disorder, but often include developmental delay, muscle weakness, loss of motor skills, seizures, blindness, and dementia. There is currently no cure for GM2 gangliosidoses, and treatment is focused on managing symptoms and improving quality of life.

Chemical precipitation is a process in which a chemical compound becomes a solid, insoluble form, known as a precipitate, from a liquid solution. This occurs when the concentration of the compound in the solution exceeds its solubility limit and forms a separate phase. The reaction that causes the formation of the precipitate can be a result of various factors such as changes in temperature, pH, or the addition of another chemical reagent.

In the medical field, chemical precipitation is used in diagnostic tests to detect and measure the presence of certain substances in body fluids, such as blood or urine. For example, a common test for kidney function involves adding a chemical reagent to a urine sample, which causes the excess protein in the urine to precipitate out of solution. The amount of precipitate formed can then be measured and used to diagnose and monitor kidney disease.

Chemical precipitation is also used in the treatment of certain medical conditions, such as heavy metal poisoning. In this case, a chelating agent is administered to bind with the toxic metal ions in the body, forming an insoluble compound that can be excreted through the urine or feces. This process helps to reduce the amount of toxic metals in the body and alleviate symptoms associated with poisoning.

A buffer in the context of physiology and medicine refers to a substance or system that helps to maintain stable or neutral conditions, particularly in relation to pH levels, within the body or biological fluids.

Buffers are weak acids or bases that can react with strong acids or bases to minimize changes in the pH level. They do this by taking up excess hydrogen ions (H+) when acidity increases or releasing hydrogen ions when alkalinity increases, thereby maintaining a relatively constant pH.

In the human body, some of the key buffer systems include:

1. Bicarbonate buffer system: This is the major buffer in blood and extracellular fluids. It consists of bicarbonate ions (HCO3-) and carbonic acid (H2CO3). When there is an increase in acidity, the bicarbonate ion accepts a hydrogen ion to form carbonic acid, which then dissociates into water and carbon dioxide. The carbon dioxide can be exhaled, helping to remove excess acid from the body.
2. Phosphate buffer system: This is primarily found within cells. It consists of dihydrogen phosphate (H2PO4-) and monohydrogen phosphate (HPO42-) ions. When there is an increase in alkalinity, the dihydrogen phosphate ion donates a hydrogen ion to form monohydrogen phosphate, helping to neutralize the excess base.
3. Protein buffer system: Proteins, particularly histidine-rich proteins, can also act as buffers due to the presence of ionizable groups on their surfaces. These groups can bind or release hydrogen ions in response to changes in pH, thus maintaining a stable environment within cells and organelles.

Maintaining appropriate pH levels is crucial for various biological processes, including enzyme function, cell membrane stability, and overall homeostasis. Buffers play a vital role in preserving these balanced conditions despite internal or external challenges that might disrupt them.

... (abbreviation: GPBB) is an isoenzyme of glycogen phosphorylase. This isoform of the enzyme ...
Doonan S, Barra D, Bossa F (1985). "Structural and genetic relationships between cytosolic and mitochondrial isoenzymes". Int. ... "Aspartate aminotransferase isoenzymes". Clin. Biochem. 23 (4): 311-9. doi:10.1016/0009-9120(90)80062-N. PMID 2225456. ...
Use of isoenzymes. Suggestions for a new classification". Annales de Parasitologie Humaine et Comparée. 65 (3): 111-125. doi: ...
the first trial of colchicine in PBC); Alkaline phosphatase isoenzymes; Hepatitis B & C; Tumour markers of primary liver cancer ... isoenzymes in blood and duodenal juice; 2) The first demonstration of a hormonal action on an enzyme from the same tissue ( ...
Classes of regulatory isoenzymes in mammalian tissues". European Journal of Biochemistry. 37 (1): 148-56. doi:10.1111/j.1432- ... ISBN 978-0-12-373975-9. Muirhead H (April 1990). "Isoenzymes of pyruvate kinase". Biochemical Society Transactions. 18 (2): 193 ...
Koster JF, Slee RG, Van Berkel TJ (Apr 1980). "Isoenzymes of human phosphofructokinase". Clinica Chimica Acta; International ... "Alternative splicing of the transcript encoding the human muscle isoenzyme of phosphofructokinase". The Journal of Biological ...
Zeitschel U, Bigl M, Eschrich K, Bigl V (December 1996). "Cellular distribution of 6-phosphofructo-1-kinase isoenzymes in rat ... Koster JF, Slee RG, Van Berkel TJ (April 1980). "Isoenzymes of human phosphofructokinase". Clinica Chimica Acta; International ... Koster JF, Slee RG, Van Berkel TJ (April 1980). "Isoenzymes of human phosphofructokinase". Clinica Chimica Acta; International ...
Isoenzymes of fructosephosphate aldolase. 8". Zeitschrift für klinische Chemie und klinische Biochemie. 7 (6): 606-13. PMID ...
Skrha J, Stepan J, Sixtova E (October 1979). "Amylase isoenzymes in mumps". Eur J Pediatr. 132 (2): 99-105. doi:10.1007/ ...
Huang B, Gudi R, Wu P, Harris RA, Hamilton J, Popov KM (Jul 1998). "Isoenzymes of pyruvate dehydrogenase phosphatase. DNA- ...
Roberts, R.; Sobel, B. E.; Parker, C. W. (1976-11-19). "Radioimmunoassay for creatine kinase isoenzymes". Science. 194 (4267): ... "Radioimmunoassay for creatine kinase isoenzymes". Science. 194 (4267): 855-857. doi:10.1126/science.982049. ISSN 0036-8075. ...
Each isoenzymes is a dimer of 2 subunits M (muscle), B (brain) or both 3.) Isoenzymes of alkaline phosphatase: Six isoenzymes ... Isoenzymes differ in kinetics (they have different KM and Vmax values). Population genetics is essentially a study of the ... The enzyme is a monomer, the isoenzymes are due to the differences in the carbohydrate content (sialic acid residues). The most ... In biochemistry, isozymes (also known as isoenzymes or more generally as multiple forms of enzymes) are enzymes that differ in ...
... has tissue-specific isoenzymes. Glutaminase has an important role in glial cells. Glutaminase catalyzes the ...
The action on carbonic anhydrase isoenzymes may contribute to the drug's side-effects, including its propensity to cause ... carbonic anhydrase isoenzymes. There is evidence that topiramate may alter the activity of its targets by modifying their ...
McKenna MJ, Hamilton TA, Sussman HH (July 1979). "Comparison of human alkaline phosphatase isoenzymes. Structural evidence for ...
"Shikimate kinase isoenzymes in Salmonella typhimurium". The Journal of Biological Chemistry. 243 (3): 676-7. PMID 4866525. ...
Schaub MC, Tuchschmid CR, Srihari T, Hirzel HO (December 1984). "Myosin isoenzymes in human hypertrophic hearts. Shift in ...
"ALP isoenzyme test". MedlinePlus Medical Encyclopedia. U.S. National Library of Medicine. "ALP: The Test - Alkaline Phosphatase ... If it is unclear why the level of alkaline phosphatase is elevated, isoenzyme studies using electrophoresis can confirm the ... Value of the study of total alkaline phosphatases and bone isoenzyme in a population of subjects with osteoporosis]". Annales ... All mammalian alkaline phosphatase isoenzymes except placental (PALP and SEAP) are inhibited by homoarginine, and, in similar ...
by isoenzyme analysis". The Journal of Parasitology. 70 (3): 378-384. doi:10.2307/3281567. JSTOR 3281567. PMID 6238140. ...
Dyck, Lillian E. (1990). "Isoenzymes of aldehyde dehydrogenase in human lymphocytes". Alcoholism: Clinical and Experimental ...
Classes of regulatory isoenzymes in mammalian tissues". European Journal of Biochemistry. 37 (1): 148-156. doi:10.1111/j.1432- ... Often these enzymes are Isoenzymes, of traditional glycolysis enzymes, that vary in their susceptibility to traditional ...
Mammals have two isoenzymes that are chemically very different, Thymidine Kinase 1 (TK1) and Thymidine Kinase 2 (TK2). The ... Ellims PH, Van der Weyden MB, Medley G (1981). "Thymidine kinase isoenzymes in human malignant lymphoma". Cancer Res. 41 (2): ...
O'Connor, ML; Hanson, RS (November 1975). "Serine transhydroxymethylase isoenzymes from a facultative methylotroph". Journal of ...
"Regulation and function of ascorbate peroxidase isoenzymes". Journal of Experimental Botany. 53 (372): 1305-19. doi:10.1093/ ...
Kam PC, See AU (May 2000). "Cyclo-oxygenase isoenzymes: physiological and pharmacological role". Anaesthesia. 55 (5): 442-449. ...
"Regulation and function of ascorbate peroxidase isoenzymes". Journal of Experimental Botany. 53 (372): 1305-1319. doi:10.1093/ ...
The Regan isoenzyme[clarification needed] is one of the best studies[clarification needed] of these isoenzymes that is linked ... In experiential studies, isoenzymes, which are distinct forms of alkaline phosphatase generated by these tumors, can raise the ... L Tibi; A W Patrick; P Leslie; A D Toft; A F Smith (1989-07-01). "Alkaline phosphatase isoenzymes in plasma in hyperthyroidism ... It is possible to distinguish between the different forms (isoenzymes) of ALP produced by different types of body tissues, in ...
The two isoenzymes take on various duties. During an active state, HSD-11β promotes the increase in glucocorticoids in the ...
sphingosine is then phosphorylated by sphingosine kinase (SK) isoenzymes. There are two identified isoenzymes, SK1 and SK2. ... sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism". The Journal of Biological Chemistry. 280 (44 ...
... isoenzymes, and HLA determinants". American Journal of Medical Genetics. 6 (1): 61-73. doi:10.1002/ajmg.1320060106. PMID ...
Glycogen phosphorylase isoenzyme BB (abbreviation: GPBB) is an isoenzyme of glycogen phosphorylase. This isoform of the enzyme ...
... isoenzymes in the blood. High levels may be a sign of tissue damage from disease or injury. Learn more. ... An LDH isoenzyme test measures the amount of each type of isoenzyme in your blood. This information helps your health care ... Why do I need an LDH isoenzymes test?. An LDH isoenzyme testing may be used for many conditions, so its best to ask your ... The type of disease or damage depends on which LDH isoenzymes are high and how your isoenzyme levels compare with each other. ...
PDE isoenzymes as targets for anti-asthma drugs. C Schudt, H Tenor, A Hatzelmann ... PDE isoenzymes as targets for anti-asthma drugs Message Subject (Your Name) has sent you a message from European Respiratory ... Corresponding to isoenzyme analysis, it was demonstrated that both PDE III and PDE IV have to be inhibited for complete ... Phophodiesterase (PDE) isoenzyme profiles of human cell preparations and tissues have been analysed by a semiquantitative ...
CPK isoenzymes test. Creatine phosphokinase - isoenzymes; Creatine kinase - isoenzymes; CK - isoenzymes; Heart attack - CPK; ... CPK isoenzyme testing can help find the exact source of the damaged tissue.. CPK test. Creatine phosphokinase (CPK) is an ... A significant rise or fall in the total CPK or CPK isoenzymes can help your health care provider diagnose certain conditions. ... The creatine phosphokinase (CPK) isoenzymes test measures the different forms of CPK in the blood. CPK is an enzyme found ...
Article Time Changes of Creatine Kinase and Creatine Kinase-MB Isoenzyme versus Discrimination Values in the Diagnosis of Acute ... Lott, John A., Heinz, John W. and Reger, Kathleen A.. "Time Changes of Creatine Kinase and Creatine Kinase-MB Isoenzyme versus ... Lott, John A., Heinz, John W. and Reger, Kathleen A.. "Time Changes of Creatine Kinase and Creatine Kinase-MB Isoenzyme versus ... Lott J, Heinz J, Reger K. Time Changes of Creatine Kinase and Creatine Kinase-MB Isoenzyme versus Discrimination Values in the ...
For example, a new Cu/ZnSOD isoenzyme was induced in plants treated with 0 μM Mg. Cotton plants adapt to Mg deficiency by ... The most striking results were the changes in isoenzyme patterns of SOD, NOX, POX, and GST. ... The aim of this work was to investigate changes in isoenzyme patterns of enzymes related to reactive oxygen species (ROS) ... changing the intensity of existing isoenzymes or inducing new ones. ...
Expression of the two 5α-reductase isoenzymes was measured in placental samples, whereas cortisol concentrations were measured ... Placental expression of both isoenzymes increased with advancing gestation and there were marked sex differences in levels of 5 ... Changes in human placental 5α-reductase isoenzyme expression with advancing gestation: effects of fetal sex and glucocorticoid ... Expression of the two 5α-reductase isoenzymes was measured in placental samples, whereas cortisol concentrations were measured ...
Serum Levels of Creatine Kinase Isoenzyme MB and Cardiac Troponin I (CTnI) in Dogs with Normal Electrocardiogram and in those ...
Study of serum creatine kinase isoenzyme CKMB in endurance horses after prolonged physical exercise Authors. * Lilian Emy dos ... Michima, L. E. dos S., Mirandola, R. M. S., & Fernandes, W. R. (2010). Study of serum creatine kinase isoenzyme CKMB in ... to determine the serum concentration of the isoenzyme MB (CKMB), the serum activity of creatine kinase (CK), and the CKMB/CK ...
isoenzymes. Значение термина isoenzymes в knolik. isoenzymes - isoenzymes (isozymes). isoenzymes - Variants of a given enzyme, ... Several isoenzymes of an enzyme may occur within a single cell.. Рядом со словом isoenzymes в knolik. isobilateral. В начало. ...
Isoenzymes. Pyruvate kinase exists as 4 isoenzymes. Two isoenzymes (PKM1 and PKM2) are encoded by a genetic locus on band 15q22 ... Early in maturation, erythroid precursors use the PKM2 isoenzyme. As the cell matures, however, the PKR isoenzyme replaces the ... it cannot compensate by increasing the quantity of isoenzyme or by using residual PKM2 isoenzyme. ... The other 2 isoenzymes (PKL and PKR) are encoded by a genetic locus on band 1q21 and are found in the liver, normoblasts, ...
DISCLAIMER: The Articles and information on Medchrome are NOT intended as a Medical advice. Any information, protocols, illustrations and products contained in this website is for INFORMATION and EDUCATION PURPOSE only. Please consult a healthcare profession for any medical advice.. ...
The two isoenzymes also showed a high level of specific activity toward ABTS, where the Km values of LacA and LacB were 0.100 ... The two isoenzymes had their optimum activities at the same temperature (50 °C), but at slightly different pH values (pH ... Two laccase isoenzymes (LacA and LacB) were isolated from a novel Trichoderma harzianum S7113 isolate employing ammonium ... Metal ions effects on the activity of laccase isoenzymes. The two laccase isoenzymes from T. harzianum S7113 were tested for ...
This test is used to find out whether you have muscle damage, including damage to your heart muscle.
This test is used to find out whether you have muscle damage, including damage to your heart muscle.
Isoenzyme studies in human leukemia-lymphoma cells lines--II. Acid phosphatase.. scientific article published in January 1985 ... Isoenzyme studies in human leukemia-lymphoma cells lines--II. Acid phosphatase. (English) ...
This test is used to find out whether you have muscle damage, including damage to your heart muscle.
hCA I and II isoenzymes were obtained with a yield of 57.9% and 67.2% and 76.5- and 509.3-fold puri cation of each isoenzyme, ... In order to show the purity of the isoenzymes, SDS-PAGE was performed and one band was observed. In vitro inhibition of both ... In this research, we determined the inhibition property of rosmarinic acid on carbonic anhydrase isoenzymes I and II (hCA I and ... hCA I and II isoenzymes by rosmarinic acid using CO2 -esterase activity gave Ki values of 86.0 M and 57.0 M, respectively. ...
Background: There is uncertainty regarding the prognostic value of troponin and creatine kinase muscle and brain isoenzyme ... Prognostic value of troponin and creatine kinase muscle and brain isoenzyme measurement after noncardiac surgery: A systematic ... Prognostic value of troponin and creatine kinase muscle and brain isoenzyme measurement after noncardiac surgery: A systematic ... Background: There is uncertainty regarding the prognostic value of troponin and creatine kinase muscle and brain isoenzyme ...
Drugs that Inhibit Cytochrome P450 Isoenzymes. CYP2D6 Inhibitors: In vitro and in vivo studies indicate that venlafaxine is ... Drugs Metabolized by Cytochrome P450 Isoenzymes. CYP2D6: In vitro studies indicate that venlafaxine is a relatively weak ... metabolized to its active metabolite, ODV, by CYP2D6, the isoenzyme that is responsible for the genetic polymorphism seen in ...
"Isoenzymes-therapeutic targets in cancer." AssignBuster, 17 Nov. 2022, ... Targeting Isoenzymes of Pentose Phosphate Pathway (PPP). Cancer cells are in a constant demand for more amounts of purines and ... Targeting Isoenzymes of glutamine metabolism The discovery of utilization of glutamine as a carbon source for TCA cycle [24] in ... This work, titled "Isoenzymes-therapeutic targets in cancer" was written and willingly shared by a fellow student. This sample ...
Different LDH isoenzymes are found in different body tissues. The areas of highest concentration for each type of isoenzyme are ... High levels of more than one isoenzyme may indicate more than one cause of tissue damage. For example, a patient with pneumonia ... There are five different forms of LDH that are called isoenzymes. They are distinguished by slight differences in their ... The isoenzymes of LDH are LDH-1, LDH-2, LDH-3, LDH-4, and LDH-5. ... Lactatedehydrogenase isoenzymes. (n.d.).. https://www.urmc. ...
... "isoenzymes."1 Isoenzymes act on the same substrate and produce the same end products but differ from each other in certain ... Distinctive isoenzyme patterns have been delineated for at least 30 enzymes, but relatively few of these have direct clinical ... Materials and Methods Enzymoelectrophoresis of the isoenzymes of LDH has been done in the clinical laboratories (Section of ... Batsakis JG, Siders D. Enzyme Molecular Heterogeneity (Isoenzymes) in Surgical Diagnosis. Arch Surg. 1967;95(1):138-143. doi: ...
The Linked Data Service provides access to commonly found standards and vocabularies promulgated by the Library of Congress. This includes data values and the controlled vocabularies that house them. Datasets available include LCSH, BIBFRAME, LC Name Authorities, LC Classification, MARC codes, PREMIS vocabularies, ISO language codes, and more.
The roles of prostaglandin E2, prostaglandin F2alpha and aldo-keto reductase 1C isoenzymes in endometriosis and breast cancer. ... Therefore, the main hypothesis was that the aldo-keto reductase (AKR) 1C isoenzymes are responsible for controlling the ... The roles of prostaglandin E2, prostaglandin F2alpha and aldo-keto reductase 1C isoenzymes in endometriosis and breast cancer. ... The roles of prostaglandin E2, prostaglandin F2alpha and aldo-keto reductase 1C isoenzymes in endometriosis and breast cancer ...
This test is used to find out whether you have muscle damage, including damage to your heart muscle.
LDH Isoenzymes by Gel Electrophoresis Near Me. Book pathology lab test at best price in Delhi NCR, India from GDIC. NABL ... Theyre referred to as isoenzymes. The bodys tissues have various concentrations of the five isoenzymes. ... How is an LDH isoenzymes test conducted?. An arm vein will be accessed by a medical expert using a tiny needle to get a blood ... LDH Isoenzymes by Gel Electrophoresis LDH Lactate Dehydrogenase Tetramers of either heart (H) or muscle subunits make up the ...
Rhymes for isoenzymes. Found with a strict rhyme search. Searched for rhymes at the end of the words. Rhymebox - the rhyming ... More about isoenzymes. Knowledge Wikipedia Wiktionary Google English corpus Images Google Yahoo! Flickr Videos Google Yahoo! ...
  • Foremost among the latter are the isoenzymes of lactic dehydrogenase (LDH), amylase, and alkaline phosphatase. (
  • In this research, we determined the inhibition property of rosmarinic acid on carbonic anhydrase isoenzymes I and II (hCA I and II) puri ed from human erythrocytes by using Sepharose-4B a nity column chromatography. (
  • Human carbonic anhydrases (CAs) play essential roles in many pathological processes and several CA isoenzymes thus represent diagnostic and therapeutic targets. (
  • We have developed selective CAIX inhibitors with anticancer properties based on carborane scaffold to the structure-assisted design of novel and original inhibitors targeting therapeutically relevant isoenzymes of human carbonic anhydrase. (
  • There are five forms of the LDH enzyme which are called LDH isoenzymes. (
  • isoenzymes - isoenzymes (isozymes) isoenzymes - Variants of a given enzyme, occurring within a single organism, having the same specificity for substrate, hence catalysing the same reaction, but with slight differences in molecular structure which make it possible to separate them. (
  • Several isoenzymes of an enzyme may occur within a single cell. (
  • Batsakis JG , Siders D. Enzyme Molecular Heterogeneity (Isoenzymes) in Surgical Diagnosis. (
  • Examination of the enzymatic properties of the pineal gland α3 isoform suggests that this enzyme is a ouabain-sensitive ATPase whose activity is dependent upon Na + and K + . This ATPase exhibited a lower apparent K m for Na + than the kidney α1 isoenzyme and did not show positive cooperative Na + activation. (
  • Phophodiesterase (PDE) isoenzyme profiles of human cell preparations and tissues have been analysed by a semiquantitative method using selective PDE inhibitors and activators. (
  • Novelty, in brief, is represented by the intended elaboration of carborane, heteroborane and metalloborane compounds as active-site inhibitors of CA isoenzymes. (
  • MANY enzymes formerly considered to be single entities are now known to be composed of a varying number of molecular forms-"isoenzymes. (
  • 1 Isoenzymes act on the same substrate and produce the same end products but differ from each other in certain physicochemical characteristics determined by their molecular heterogeneity. (
  • With the purpose of studying the influence of prolonged phyisical exercise causing myocardial lesion and disqualifying horses in endurance competitions, 87 blood samples were collected from adult Arabian and crossbred horses, to determine the serum concentration of the isoenzyme MB (CKMB), the serum activity of creatine kinase (CK), and the CKMB/CK index. (
  • The present report, based primarily on clinicopathological data from the clinical laboratories of the University of Michigan Medical Center, is a contemporary assessment of the clinical usefulness of isoenzymes in serum as they relate to surgical diagnosis and treatment. (
  • A decrease in activities of isoenzymes of aryl-, carboxyl esterases and alkaline phosphatase was shown, by means of agar gel electrophoresis, in blood serum and in most the isoforms of perinephric adipose tissue of rats within 3 days after partial pancreatectomy. (
  • Surinov B.P., Sheyanov G.G. (1975) Isoenzymes of esterase and alkaline phosphatase in blood serum and adipose tissue of rats after partial pancreatectomy. (
  • Two laccase isoenzymes (LacA and LacB) were isolated from a novel Trichoderma harzianum S7113 isolate employing ammonium sulfate precipitation, Sephadex G100, and DEAE Sepharose ion exchange chromatography. (
  • Hydroxysteroid 11-beta dehydrogenase (HSD11B) isoenzymes regulate which ligand will bind to MR. In this study we aimed to evaluate the expression of the MR and the HSD11B isozymes in peripheral polymorphonuclear cells (PMNs) in critical illness for a 13-day period. (
  • Therefore, PDE isoenzyme profiles represent dynamic patterns, which apparently adapt to pathological and environmental conditions. (
  • The aim of this work was to investigate changes in isoenzyme patterns of enzymes related to reactive oxygen species (ROS) detoxification such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR), and glutathione-S-transferase (GST) in cotton under Mg deficiency. (
  • The most striking results were the changes in isoenzyme patterns of SOD, NOX, POX, and GST. (
  • Distinctive isoenzyme patterns have been delineated for at least 30 enzymes, but relatively few of these have direct clinical applicability of this time. (
  • This test measures lactate dehydrogenase (LDH) isoenzymes in a sample of your blood. (
  • This examination determines the blood's concentration of several lactate dehydrogenase (LDH) isoenzymes. (
  • But if disease or injury damages tissues that contain LDH, the cells release LDH isoenzymes into your bloodstream and your LDH levels will rise above normal. (
  • An LDH isoenzymes test may be used to show which organs and other tissues are likely to be damaged, but other more specific tests may be used instead. (
  • Different LDH isoenzymes are found in different body tissues. (
  • M). The five LDH isoenzymes are established in varying concentrations throughout all tissues, but muscle, liver, and red blood cells (hemolysis) are the. (
  • The body's tissues have various concentrations of the five isoenzymes. (
  • Depending on which tissues are injured, different LDH isoenzymes are released. (
  • Therefore, the main hypothesis was that the aldo-keto reductase (AKR) 1C isoenzymes are responsible for controlling the availability of 17β-oestradiol, progesterone and prostaglandins in the microenvironment of the endometrium, and surrounding adipose tissues of endometriotic lesions and breast tumours. (
  • An LDH isoenzyme test measures the amount of each type of isoenzyme in your blood. (
  • The creatine phosphokinase (CPK) isoenzymes test measures the different forms of CPK in the blood. (
  • Expression of the two 5α-reductase isoenzymes was measured in placental samples, whereas cortisol concentrations were measured in cord blood, from two cohorts. (
  • Background: There is uncertainty regarding the prognostic value of troponin and creatine kinase muscle and brain isoenzyme measurements after noncardiac surgery. (
  • The study used six search strategies and included noncardiac surgery studies that provided data from a multivariable analysis assessing whether a postoperative troponin or creatine kinase muscle and brain isoenzyme measurement was an independent predictor of mortality or a major cardiovascular event. (
  • Time Changes of Creatine Kinase and Creatine Kinase-MB Isoenzyme versus Discrimination Values in the Diagnosis of Acute Myocardial Infarction: What is the Optimal Method for Displaying the Data? (
  • Changes in human placental 5α-reductase isoenzyme expression with adva" by Thi T. Vu, Jonathan J. Hirst et al. (
  • Isoenzyme studies in human leukemia-lymphoma cells lines--II. (
  • Down-Regulation of the Mineralocorticoid Receptor (MR) and Up-Regulation of Hydroxysteroid 11-Beta Dehydrogenase Type 2 (HSD11B2) Isoenzyme in Critically Ill Patients. (
  • An LDH isoenzymes test is mainly used as a general test to check for tissue damage. (
  • High levels of more than one isoenzyme may indicate more than one cause of tissue damage. (
  • Placental expression of both isoenzymes increased with advancing gestation and there were marked sex differences in levels of 5α-reductase I (P (
  • If your tests revealed abnormally high or low levels of one or more LDH isoenzymes, you most likely have some form of tissue illness or damage. (
  • Depending on which LDH isoenzymes had aberrant levels, the type of sickness or damage will result. (
  • But an LDH isoenzymes test alone cannot diagnose what's causing the damage. (
  • An LDH isoenzyme test may be used with other tests to help diagnose and monitor many types of acute (sudden) and chronic (long-lasting) conditions. (
  • A significant rise or fall in the total CPK or CPK isoenzymes can help your health care provider diagnose certain conditions. (
  • Because each LDH isoenzyme is found in more than one type of tissue, other more specific tests are often used with or instead of an LDH isoenzymes test. (
  • In healthy and diseased roots of two different strawberry genotypes seven peroxidase isoenzymes were found. (
  • Moreover the activity of these isoenzymes was increased and three new isoenzymes (3, 4, and 7) were found in infected roots. (
  • Our results suggest that the activity of the Na + ,K + -ATPase α3 isoenzyme may be adapted to function under conditions of hyperpolarizing transmembrane potentials. (
  • There are five different forms of LDH that are called isoenzymes. (
  • The two isoenzymes had their optimum activities at the same temperature (50 °C), but at slightly different pH values (pH 3.0 for LacA and pH 2.5 for LacB). (
  • The presence of Lac isoenzymes also depended on the pH, temperature, and time of cultivation for the different tested fungi. (
  • An LDH isoenzyme testing may be used for many conditions, so it's best to ask your provider why you need this test. (
  • What happens during an LDH isoenzymes test? (
  • The site, kind, and degree of tissue injury are identified using an LDH isoenzymes test. (
  • How is an LDH isoenzymes test conducted? (
  • Theophylline inhibits PDE isoenzyme activities and functions of inflammatory cells with similar potency, and exhibits higher functional efficacy as compared to rolipram. (
  • In order to show the purity of the isoenzymes, SDS-PAGE was performed and one band was observed. (
  • This ATPase exhibited a lower apparent Km for Na+ than the kidney α1 isoenzyme and did not show positive cooperative Na+ activation. (
  • LDH isoenzyme tests may also be used to find out if treatment for many conditions is working. (
  • Corresponding to isoenzyme analysis, it was demonstrated that both PDE III and PDE IV have to be inhibited for complete suppression of either tumour necrosis factor-alpha (TNF-alpha) release from macrophages, or lymphocyte proliferation (PDE III/IV cells). (
  • Recent evidence in literature suggests the a key role of pyruvate kinase (PK) isoenzyme- pyruvate kinase M2 (PKM2) in mediating the Warburg effect in cancer cells [8] signifies its prospective as an enzymatic target against cancer cells. (
  • British Library EThOS: Isoenzymes as markers for malignancy in serious effusions. (