Enzymes of the isomerase class that catalyze the oxidation of one part of a molecule with a corresponding reduction of another part of the same molecule. They include enzymes converting aldoses to ketoses (ALDOSE-KETOSE ISOMERASES), enzymes shifting a carbon-carbon double bond (CARBON-CARBON DOUBLE BOND ISOMERASES), and enzymes transposing S-S bonds (SULFUR-SULFUR BOND ISOMERASES). (From Enzyme Nomenclature, 1992) EC 5.3.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
An enzyme that catalyzes the reduction of a protein-disulfide in the presence of glutathione, forming a protein-dithiol. Insulin is one of its substrates. EC 1.8.4.2.
A ferredoxin-containing enzyme that catalyzes the COENZYME A-dependent oxidative decarboxylation of PYRUVATE to acetyl-COENZYME A and CARBON DIOXIDE.
A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
Oxidoreductases that are specific for KETONES.
A family of thioltransferases that contain two active site CYSTEINE residues, which either form a disulfide (oxidized form) or a dithiol (reduced form). They function as an electron carrier in the GLUTHIONE-dependent synthesis of deoxyribonucleotides by RIBONUCLEOTIDE REDUCTASES and may play a role in the deglutathionylation of protein thiols. The oxidized forms of glutaredoxins are directly reduced by the GLUTATHIONE.
Sulfur-sulfur bond isomerases that catalyze the rearrangement of disulfide bonds within proteins during folding. Specific protein disulfide-isomerase isoenzymes also occur as subunits of PROCOLLAGEN-PROLINE DIOXYGENASE.
Oxidoreductases with specificity for oxidation or reduction of SULFUR COMPOUNDS.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Hydrogen-donating proteins that participates in a variety of biochemical reactions including ribonucleotide reduction and reduction of PEROXIREDOXINS. Thioredoxin is oxidized from a dithiol to a disulfide when acting as a reducing cofactor. The disulfide form is then reduced by NADPH in a reaction catalyzed by THIOREDOXIN REDUCTASE.
Flavoproteins are a type of protein molecule that contain noncovalently bound flavin mononucleotide or flavin adenine dinucleotide as cofactors, involved in various redox reactions and metabolic pathways, such as electron transfer, energy production, and DNA repair.
NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol.
A broad category of oxidoreductases that either reduce double bonds or oxidize single bonds between OXYGEN and CARBON in organic compounds.
A flavoprotein oxidase complex that contains iron-sulfur centers. It catalyzes the oxidation of SUCCINATE to fumarate and couples the reaction to the reduction of UBIQUINONE to ubiquinol.
A kingdom of hyperthermophilic ARCHAEA found in diverse environments.
A genus of gram-negative, anaerobic, rod-shaped bacteria isolated from the bovine RUMEN, the human gingival sulcus, and dental PULPITIS infections.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5
A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II.
Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties.
Ecosystem and environmental activities, functions, or events.
An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4.
The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)
A subclass of enzymes which includes all dehydrogenases acting on carbon-carbon bonds. This enzyme group includes all the enzymes that introduce double bonds into substrates by direct dehydrogenation of carbon-carbon single bonds.
An enzyme that catalyzes the oxidation and reduction of FERREDOXIN or ADRENODOXIN in the presence of NADP. EC 1.18.1.2 was formerly listed as EC 1.6.7.1 and EC 1.6.99.4.
A flavoprotein and iron sulfur-containing oxidoreductase complex that catalyzes the conversion of UBIQUINONE to ubiquinol. In MITOCHONDRIA the complex also couples its reaction to the transport of PROTONS across the internal mitochondrial membrane. The NADH DEHYDROGENASE component of the complex can be isolated and is listed as EC 1.6.99.3.
A flavoprotein that reversibly catalyzes the oxidation of NADH or NADPH by various quinones and oxidation-reduction dyes. The enzyme is inhibited by dicoumarol, capsaicin, and caffeine.
(5Z)-(15S)-11 alpha-Hydroxy-9,15-dioxoprostanoate:NAD(P)+ delta(13)-oxidoreductase. An enzyme active in prostaglandin E and F catabolism. It catalyzes the reduction of the double bond at the 13-14 position of the 15-ketoprostaglandins and uses NADPH as cofactor. EC 1.3.1.48.
Oxidoreductases that are specific for ALDEHYDES.
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
A genus of basidiomycetous fungi, family POLYPORACEAE, order POLYPORALES, that grows on logs or tree stumps in shelflike layers. The species P. ostreatus, the oyster mushroom, is a choice edible species and is the most frequently encountered member of the genus in eastern North America. (Alexopoulos et al., Introductory Mycology, 4th ed, p531)
A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes.
A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation.
Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Enzymes catalyzing the dehydrogenation of or oxidation of compounds containing primary amines.
Cells lacking a nuclear membrane so that the nuclear material is either scattered in the cytoplasm or collected in a nucleoid region.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
A photo-active pigment localized in prolamellar bodies occurring within the proplastids of dark-grown bean leaves. In the process of photoconversion, the highly fluorescent protochlorophyllide is converted to chlorophyll.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
An enzyme that utilizes NADH or NADPH to reduce FLAVINS. It is involved in a number of biological processes that require reduced flavin for their functions such as bacterial bioluminescence. Formerly listed as EC 1.6.8.1 and EC 1.5.1.29.
Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS.
The space between the inner and outer membranes of a cell that is shared with the cell wall.
A glucose dehydrogenase that catalyzes the oxidation of beta-D-glucose to form D-glucono-1,5-lactone, using NAD as well as NADP as a coenzyme.
A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5.
A low-molecular-weight (16,000) iron-free flavoprotein containing one molecule of flavin mononucleotide (FMN) and isolated from bacteria grown on an iron-deficient medium. It can replace ferredoxin in all the electron-transfer functions in which the latter is known to serve in bacterial cells.
Non-pathogenic ovoid to rod-shaped bacteria that are widely distributed and found in fresh water as well as marine and hypersaline habitats.
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2.
Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.
Proteins found in any species of bacterium.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-.
A pyrrolo-quinoline having two adjacent keto-groups at the 4 and 5 positions and three acidic carboxyl groups. It is a coenzyme of some DEHYDROGENASES.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Compounds containing the -SH radical.
Proteins found in the PERIPLASM of organisms with cell walls.
An enzyme that catalyzes the oxidation of XANTHINE in the presence of NAD+ to form URIC ACID and NADH. It acts also on a variety of other purines and aldehydes.
Drug metabolizing enzymes which oxidize methyl ethers. Usually found in liver microsomes.
One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA.
A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawley's Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851)
Reversibly catalyzes the oxidation of a hydroxyl group of sugar alcohols to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2. and EC 1.1.99.
Compounds based on fumaric acid.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37.
Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A naturally occurring amino acid in both eukaryotic and prokaryotic organisms. It is found in tRNAs and in the catalytic site of some enzymes. The genes for glutathione peroxidase and formate dehydrogenase contain the TGA codon, which codes for this amino acid.
A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES.
The rate dynamics in chemical or physical systems.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
Selenoproteins are proteins that specifically incorporate SELENOCYSTEINE into their amino acid chain. Most selenoproteins are enzymes with the selenocysteine residues being responsible for their catalytic functions.
The degree of similarity between sequences. Studies of AMINO ACID SEQUENCE HOMOLOGY and NUCLEIC ACID SEQUENCE HOMOLOGY provide useful information about the genetic relatedness of genes, gene products, and species.
The functional hereditary units of BACTERIA.
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
A multisubunit enzyme complex that contains CYTOCHROME B GROUP; CYTOCHROME C1; and iron-sulfur centers. It catalyzes the oxidation of ubiquinol to UBIQUINONE, and transfers the electrons to CYTOCHROME C. In MITOCHONDRIA the redox reaction is coupled to the transport of PROTONS across the inner mitochondrial membrane.
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
An enzyme that catalyzes reversibly the oxidation of an aldose to an alditol. It possesses broad specificity for many aldoses. EC 1.1.1.21.
Proteins prepared by recombinant DNA technology.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals.
A species of gram-positive bacteria that is a common soil and water saprophyte.
The relationships of groups of organisms as reflected by their genetic makeup.
The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat.
A multistage process that includes the determination of a sequence (protein, carbohydrate, etc.), its fragmentation and analysis, and the interpretation of the resulting sequence information.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
Proteins obtained from ESCHERICHIA COLI.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.
Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed)
A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen.
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)
A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
An element that is a member of the chalcogen family. It has an atomic symbol S, atomic number 16, and atomic weight [32.059; 32.076]. It is found in the amino acids cysteine and methionine.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Life or metabolic reactions occurring in an environment containing oxygen.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins.
A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539)

Glutathione-independent prostaglandin D2 synthase in ram and stallion epididymal fluids: origin and regulation. (1/1229)

Microsequencing after two-dimensional electrophoresis revealed a major protein, glutathione-independent prostaglandin D2 synthase (PGDS) in the anterior epididymal region fluid of the ram and stallion. In this epididymal region, PGDS was a polymorphic compound with a molecular mass around 30 kDa and a range of pI from 4 to 7. PGDS represented 15% and 8% of the total luminal proteins present in this region in the ram and stallion, respectively. The secretion of the protein as judged by in vitro biosynthesis, and the presence of its mRNA as studied by Northern blot analysis, were limited to the proximal caput epididymidis. Using a specific polyclonal antibody raised against a synthetic peptide, PGDS was found throughout the epididymis, decreasing in concentration toward the cauda region. PGDS was also detected in the testicular fluid and seminal plasma by Western blotting. Castration and efferent duct ligation in the ram led to a decrease in PGDS mRNA and secretion. PGDS mRNA was not detected in the stallion 1 mo after castration, and it was restored by testosterone supplementation. This study showed that PGDS is present in the environment of spermatozoa throughout the male genital tract. Its function in the maturation and/or protection of spermatozoa is unknown.  (+info)

Prostacyclin synthase gene transfer accelerates reendothelialization and inhibits neointimal formation in rat carotid arteries after balloon injury. (2/1229)

Prostacyclin (PGI2), a metabolite of arachidonic acid, has the vasoprotective effects of vasodilation, anti-platelet aggregation, and inhibition of smooth muscle cell proliferation. We hypothesized that an overexpression of endogenous PGI2 may accelerate the recovery from endothelial damage and inhibit neointimal formation in the injured artery. To test this hypothesis, we investigated in vivo transfer of the PGI2 synthase (PCS) gene into balloon-injured rat carotid arteries by a nonviral lipotransfection method. Seven days after transfection, a significant regeneration of endothelium was observed in the arteries transfected with a plasmid carrying the rat PCS gene (pCMV-PCS), but little regeneration was seen in those with the control plasmid carrying the lacZ gene (pCMV-lacZ) (percent luminal circumference lined by newly regenerated endothelium: 87. 1+/-6.9% in pCMV-PCS-transfected vessels and 6.9+/-0.2% in pCMV-lacZ vessels, P<0.001). BrdU staining of arterial segments demonstrated a significantly lower incorporation in pCMV-PCS-transfected vessels (7. 5+/-0.3% positive nuclei in vessel cells) than in pCMV-lacZ (50. 7+/-9.6%, P<0.01). Moreover, 2 weeks after transfection, the PCS gene transfer resulted in a significant inhibition of neointimal formation (88% reduction in ratio of intima/media areas), whereas medial area was similar among the groups. Arterial segments transfected with pCMV-PCS produced significantly higher levels of 6-keto-PGF1alpha, the main metabolite of PGI2, compared with the segments transfected with pCMV-lacZ (10.2+/-0.55 and 2.1+/-0.32 ng/mg tissue for pCMV-PCS and pCMV-placZ, P<0.001). In conclusion, this study demonstrated that an in vivo PCS gene transfer increased the production of PGI2 and markedly inhibited neointimal formation with accelerated reendothelialization in rat carotid arteries after balloon injury.  (+info)

Effects of lithium on pigmentation in the embryonic zebrafish (Brachydanio rerio). (3/1229)

Pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores and/or iridophores. Cell signaling mechanisms related to the development of pigmentation remain obscure. In order to examine the mechanisms involved in pigment cell signaling, we treated zebrafish embryos with various activators and inhibitors of signaling pathways. Among those chemicals tested, LiCl and LiCl/forskolin had a stimulatory effect on pigmentation, most notable in the melanophore population. We propose that the inositol phosphate (IP) pathway, is involved in pigment pattern formation in zebrafish through its involvement in the: (1) differentiation/proliferation of melanophores; (2) dispersion of melanosomes; and/or (3) synthesis/deposition of melanin. To discern at what level pigmentation was being effected we: (1) counted the number of melanophores in control and experimental animals 5 days after treatment; (2) measured tyrosinase activity and melanin content; and (3) employed immunoblotting techniques with anti-tyrosine-related protein-2 and anti-melanocyte-specific gene-1 as melanophore-specific markers. Although gross pigmentation increased dramatically in LiCl- and LiCl/forskolin treated embryos, the effect on pigmentation was not due to an increase in the proliferation of melanophores, but was possibly through an increase in melanin synthesis and/or deposition. Collectively, results from these studies suggest the involvement of an IP-signaling pathway in the stimulation of pigmentation in embryonic zebrafish through the synthesis/deposition of melanin within the neural crest-derived melanophores.  (+info)

Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. (4/1229)

We have evaluated the ability of bioballistic "gene gun" immunization of mice with plasmid DNA encoding clinically relevant tumor antigens to induce protective antitumor immunity. Mice immunized with plasmid cDNA encoding the cervical carcinoma-associated human papillomavirus 16-E7 gene product exhibited potent anti-E7-specific cytotoxic T lymphocytes and were protected completely against a subsequent challenge with the E7+ C3 sarcoma. Of perhaps greater clinical interest, genetic immunization using cDNA encoding the normal, germline-encoded murine melanosomal protein tyrosinase-related protein-2 (TRP-2) resulted in delayed outgrowth of TRP-2+ B16 melanoma in mice and was associated with an in vivo activation of TRP-2-specific cytotoxic T lymphocytes. Codelivery of plasmid cDNA encoding TRP-2 and the T helper 1-biasing cytokine murine interleukin-12 considerably enhanced the antitumor efficacy of these gene-based melanoma vaccines.  (+info)

The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the alpha-glucosidase inhibitor acarbose. (5/1229)

The putative biosynthetic gene cluster for the alpha-glucosidase inhibitor acarbose was identified in the producer Actinoplanes sp. 50/110 by cloning a DNA segment containing the conserved gene for dTDP-D-glucose 4,6-dehydratase, acbB. The two flanking genes were acbA (dTDP-D-glucose synthase) and acbC, encoding a protein with significant similarity to 3-dehydroquinate synthases (AroB proteins). The acbC gene was overexpressed heterologously in Streptomyces lividans 66, and the product was shown to be a C7-cyclitol synthase using sedo-heptulose 7-phosphate, but not ido-heptulose 7-phosphate, as its substrate. The cyclization product, 2-epi-5-epi-valiolone ((2S,3S,4S,5R)-5-(hydroxymethyl)cyclohexanon-2,3,4,5-tetrol), is a precursor of the valienamine moiety of acarbose. A possible five-step reaction mechanism is proposed for the cyclization reaction catalyzed by AcbC based on the recent analysis of the three-dimensional structure of a eukaryotic 3-dehydroquinate synthase domain (Carpenter, E. P., Hawkins, A. R., Frost, J. W., and Brown, K. A. (1998) Nature 394, 299-302).  (+info)

COX-2 and cytosolic PLA2 mediate IL-1beta-induced cAMP production in human vascular smooth muscle cells. (6/1229)

Interleukin (IL)-1 is a potent vasodilator that causes prolonged induction of prostacyclin (PGI2) and cAMP synthesis in human vascular smooth muscle cells (HVSMC). The present study investigated IL-1 induction of PG synthetic enzymes in HVSMC and tested their respective roles in PGI2 and cAMP production. Cyclooxygenase (COX)-1 mRNA was not detectable in either control or IL-1-treated HVSMC, as assessed by RT-PCR. In contrast, COX-2 mRNA was detectable in control HVSMC, increased markedly (16-fold) after 1 h of IL-1 exposure, and increased further (52-fold) after 24 h. COX-2 protein levels, assessed by Western analysis, were increased concomitantly. HVSMC contained mRNA encoding both the secreted and cytosolic forms of phospholipase A2 (sPLA2 and cPLA2, respectively). IL-1 stimulation did not affect sPLA2 mRNA levels, but cPLA2 mRNA levels increased at 8 h, after the initial induction of PG synthesis. HVSMC constitutively expressed PGI2 synthase mRNA, and its levels were not affected by IL-1. A selective COX-2 inhibitor, NS-398, reversed IL-1-induced PGI2 and cAMP production, supporting a role of COX-2 in mediating increased PG synthesis. IL-1-induced cAMP was also reversed by a selective cPLA2 inhibitor, AACOCF3, but not by thioetheramide phosphorylcholine, which inhibits sPLA2 preferentially over cPLA2, supporting a requirement for cPLA2-derived arachidonic acid in IL-1-induced PG synthesis. The delayed induction of cPLA2 mRNA was also attenuated by NS-398, suggesting that it was secondary to the initial COX-2-induced PG synthesis. Together, the results support the hypothesis that IL-1 induces intracellular PG synthesis in HVSMC via rapid upregulation of COX-2, which utilizes cPLA2-derived arachidonic acid to generate PG metabolites that regulate adenylate cyclase.  (+info)

Prostaglandin endoperoxide-dependent vasospasm in bovine coronary arteries after nitration of prostacyclin synthase. (7/1229)

In the present study we used a bioassay to study the effects of peroxynitrite (ONOO-) on angiotensin II (A-II)-triggered tension in isolated bovine coronary arteries in order to show the consequences of the previously reported PGI2-synthase inhibition by ONOO- in this model. The following results were obtained: 1. 1 micromol L(-1) ONOO- impaired A-II-induced vasorelaxation and caused a second long lasting constriction phase. Indomethacin (10(-5)M) prevented both effects. U51605, a dual blocker of PGI2-synthase and thromboxane (TX)A2-synthase mimicked the effects of ONOO-. 2. The selective TXA2/prostaglandin endoperoxide (PGH2) receptor antagonist SQ29548 antagonized the second vasoconstriction phase after ONOO- -treatment. Since a generation of TXA2 and 8-iso-prostaglandin F2alpha could be excluded a direct action of unmetabolized PGH2 on the TXA2/PGH2 receptor was postulated. 3. ONOO- dose-dependently inhibited the conversion of 14C-PGH2 into 6-keto-PGF1alpha in isolated bovine coronary arteries with an IC50-value of 100 nM. 4. Immunoprecipitation of 3-nitrotyrosine-containing proteins with a monoclonal antibody revealed PGI2-synthase as the only nitrated protein in bovine coronary arteries treated with 1 micromol 1(-1) ONOO-. 5. Using immunohistochemistry a co-localization of PGI2-synthase and nitrotyrosine-containing proteins was clearly visible in both endothelial and vascular smooth muscle cells. We concluded that ONOO- not only eliminated the vasodilatory, growth-inhibiting, antithrombotic and antiadhesive effects of PGI2 but also allowed and promoted an action of the potent vasoconstrictor, prothrombotic agent, growth promoter, and leukocyte adherer, PGH2.  (+info)

Otx1 and Otx2 activities are required for the normal development of the mouse inner ear. (8/1229)

The Otx1 and Otx2 genes are two murine orthologues of the Orthodenticle (Otd) gene in Drosophila. In the developing mouse embryo, both Otx genes are expressed in the rostral head region and in certain sense organs such as the inner ear. Previous studies have shown that mice lacking Otx1 display abnormal patterning of the brain, whereas embryos lacking Otx2 develop without heads. In this study, we examined, at different developmental stages, the inner ears of mice lacking both Otx1 and Otx2 genes. In wild-type inner ears, Otx1, but not Otx2, was expressed in the lateral canal and ampulla, as well as part of the utricle. Ventral to the mid-level of the presumptive utricle, Otx1 and Otx2 were co-expressed, in regions such as the saccule and cochlea. Paint-filled membranous labyrinths of Otx1-/- mutants showed an absence of the lateral semicircular canal, lateral ampulla, utriculosaccular duct and cochleosaccular duct, and a poorly defined hook (the proximal part) of the cochlea. Defects in the shape of the saccule and cochlea were variable in Otx1-/- mice and were much more severe in an Otx1-/-;Otx2(+/)- background. Histological and in situ hybridization experiments of both Otx1-/- and Otx1-/-;Otx2(+/)- mutants revealed that the lateral crista was absent. In addition, the maculae of the utricle and saccule were partially fused. In mutant mice in which both copies of the Otx1 gene were replaced with a human Otx2 cDNA (hOtx2(1)/ hOtx2(1)), most of the defects associated with Otx1-/- mutants were rescued. However, within the inner ear, hOtx2 expression failed to rescue the lateral canal and ampulla phenotypes, and only variable rescues were observed in regions where both Otx1 and Otx2 are normally expressed. These results suggest that both Otx genes play important and differing roles in the morphogenesis of the mouse inner ear and the development of its sensory organs.  (+info)

Intramolecular oxidoreductases are a specific class of enzymes that catalyze the transfer of electrons within a single molecule, hence the term "intramolecular." These enzymes are involved in oxidoreduction reactions, where one part of the molecule is oxidized (loses electrons) and another part is reduced (gains electrons). This process allows for the rearrangement or modification of functional groups within the molecule.

The term "oxidoreductase" refers to enzymes that catalyze oxidation-reduction reactions, which are also known as redox reactions. These enzymes play a crucial role in various biological processes, including energy metabolism, detoxification, and biosynthesis.

It's important to note that intramolecular oxidoreductases should not be confused with intermolecular oxidoreductases, which catalyze redox reactions between two separate molecules.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

I believe you may have meant to ask for the definition of "pyruvate dehydrogenase complex" rather than "pyruvate synthase," as I couldn't find any relevant medical information regarding a specific enzyme named "pyruvate synthase."

Pyruvate dehydrogenase complex (PDC) is a crucial enzyme complex in the human body, playing an essential role in cellular energy production. PDC is located within the mitochondrial matrix and catalyzes the oxidative decarboxylation of pyruvate, the end product of glycolysis, into acetyl-CoA. This process connects the glycolytic pathway to the citric acid cycle (Krebs cycle) and enables the continuation of aerobic respiration for efficient energy production in the form of ATP.

The pyruvate dehydrogenase complex consists of three main enzymes: pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). Additionally, two accessory proteins, E3-binding protein (E3BP) and protein X, are part of the complex. These enzymes work together to facilitate the conversion of pyruvate into acetyl-CoA, CO2, and NADH. Dysfunction in the pyruvate dehydrogenase complex can lead to various metabolic disorders and neurological symptoms.

NADH, NADPH oxidoreductases are a class of enzymes that catalyze the redox reaction between NADH or NADPH and various electron acceptors. These enzymes play a crucial role in cellular metabolism by transferring electrons from NADH or NADPH to other molecules, which is essential for many biochemical reactions.

NADH (nicotinamide adenine dinucleotide hydrogen) and NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) are coenzymes that act as electron carriers in redox reactions. They consist of a nicotinamide ring, which undergoes reduction or oxidation by accepting or donating electrons and a proton (H+).

NADH, NADPH oxidoreductases are classified based on their structure and mechanism of action. Some examples include:

1. Dehydrogenases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing an organic substrate. Examples include lactate dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase.
2. Oxidases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing molecular oxygen (O2) to water (H2O). Examples include NADH oxidase and NADPH oxidase.
3. Reductases: These enzymes catalyze the reduction of various electron acceptors using NADH or NADPH as a source of electrons. Examples include glutathione reductase, thioredoxin reductase, and nitrate reductase.

Overall, NADH, NADPH oxidoreductases are essential for maintaining the redox balance in cells and play a critical role in various metabolic pathways, including energy production, detoxification, and biosynthesis.

Alcohol oxidoreductases are a class of enzymes that catalyze the oxidation of alcohols to aldehydes or ketones, while reducing nicotinamide adenine dinucleotide (NAD+) to NADH. These enzymes play an important role in the metabolism of alcohols and other organic compounds in living organisms.

The most well-known example of an alcohol oxidoreductase is alcohol dehydrogenase (ADH), which is responsible for the oxidation of ethanol to acetaldehyde in the liver during the metabolism of alcoholic beverages. Other examples include aldehyde dehydrogenases (ALDH) and sorbitol dehydrogenase (SDH).

These enzymes are important targets for the development of drugs used to treat alcohol use disorder, as inhibiting their activity can help to reduce the rate of ethanol metabolism and the severity of its effects on the body.

Ketone oxidoreductases are a group of enzymes that catalyze the conversion of ketones to corresponding alcohols or vice versa, through the process of reduction or oxidation. These enzymes play an essential role in various metabolic pathways and biochemical reactions within living organisms.

In the context of medical research and diagnostics, ketone oxidoreductases have gained attention for their potential applications in the development of biosensors to detect and monitor blood ketone levels, particularly in patients with diabetes. Elevated levels of ketones in the blood (known as ketonemia) can indicate a serious complication called diabetic ketoacidosis, which requires prompt medical attention.

One example of a ketone oxidoreductase is the enzyme known as d-beta-hydroxybutyrate dehydrogenase (d-BDH), which catalyzes the conversion of d-beta-hydroxybutyrate to acetoacetate. This reaction is part of the metabolic pathway that breaks down fatty acids for energy production, and it becomes particularly important during periods of low carbohydrate availability or insulin deficiency, as seen in diabetes.

Understanding the function and regulation of ketone oxidoreductases can provide valuable insights into the pathophysiology of metabolic disorders like diabetes and contribute to the development of novel therapeutic strategies for their management.

Glutaredoxins (Grxs) are small, ubiquitous proteins that belong to the thioredoxin superfamily. They play a crucial role in maintaining the redox balance within cells by catalyzing the reversible reduction of disulfide bonds and mixed disulfides between protein thiols and low molecular weight compounds, using glutathione (GSH) as a reducing cofactor.

Glutaredoxins are involved in various cellular processes, such as:

1. DNA synthesis and repair
2. Protein folding and degradation
3. Antioxidant defense
4. Regulation of enzyme activities
5. Iron-sulfur cluster biogenesis

There are two main classes of glutaredoxins, Grx1 and Grx2, which differ in their active site sequences and functions. In humans, Grx1 is primarily located in the cytosol, while Grx2 is found in both the cytosol and mitochondria.

The medical relevance of glutaredoxins lies in their role as antioxidant proteins that protect cells from oxidative stress and maintain cellular redox homeostasis. Dysregulation of glutaredoxin function has been implicated in several pathological conditions, including neurodegenerative diseases, cancer, and aging-related disorders.

Protein Disulfide-Isomerases (PDIs) are a family of enzymes found in the endoplasmic reticulum (ER) of eukaryotic cells. They play a crucial role in the folding and maturation of proteins by catalyzing the formation, breakage, and rearrangement of disulfide bonds between cysteine residues in proteins. This process helps to stabilize the three-dimensional structure of proteins and is essential for their proper function. PDIs also have chaperone activity, helping to prevent protein aggregation and assisting in the correct folding of nascent polypeptides. Dysregulation of PDI function has been implicated in various diseases, including cancer, neurodegenerative disorders, and diabetes.

Oxidoreductases acting on sulfur group donors are a class of enzymes that catalyze redox reactions involving sulfur group donors. These enzymes play a crucial role in various biological processes, such as the metabolism of sulfur-containing compounds and the detoxification of xenobiotics.

The term "oxidoreductase" refers to any enzyme that catalyzes an oxidation-reduction reaction, where one molecule is oxidized (loses electrons) and another is reduced (gains electrons). In the case of oxidoreductases acting on sulfur group donors, the sulfur atom in the substrate serves as the electron donor.

The systematic name for this class of enzymes follows a specific format: "donor:acceptor oxidoreductase." The donor is the sulfur-containing compound that donates electrons, and the acceptor is the molecule that accepts the electrons. For example, the enzyme that catalyzes the reaction between glutathione (GSH) and a variety of electrophiles is called glutathione transferase, or GST (donor:acceptor oxidoreductase).

These enzymes are further classified into subclasses based on the type of acceptor involved in the reaction. Examples include:

* EC 1.8.1: Oxidoreductases acting on CH-NH2 group donors
* EC 1.8.3: Oxidoreductases acting on CH or CH2 groups
* EC 1.8.4: Oxidoreductases acting on the CH-CH group of donors
* EC 1.8.5: Oxidoreductases acting on a sulfur group of donors
* EC 1.8.6: Oxidoreductases acting on NADH or NADPH

The subclass EC 1.8.5, oxidoreductases acting on a sulfur group of donors, includes enzymes that catalyze redox reactions involving sulfur-containing compounds such as thiols (compounds containing -SH groups), disulfides (-S-S- bonds), and other sulfur-containing functional groups. These enzymes play crucial roles in various biological processes, including detoxification, antioxidant defense, and redox regulation.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Thioredoxins are a group of small proteins that contain a redox-active disulfide bond and play a crucial role in the redox regulation of cellular processes. They function as electron donors and help to maintain the intracellular reducing environment by reducing disulfide bonds in other proteins, thereby regulating their activity. Thioredoxins also have antioxidant properties and protect cells from oxidative stress by scavenging reactive oxygen species (ROS) and repairing oxidatively damaged proteins. They are widely distributed in various organisms, including bacteria, plants, and animals, and are involved in many physiological processes such as DNA synthesis, protein folding, and apoptosis.

Flavoproteins are a type of protein molecule that contain noncovalently bound flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD) as cofactors. These flavin cofactors play a crucial role in redox reactions, acting as electron carriers in various metabolic pathways such as cellular respiration and oxidative phosphorylation. Flavoproteins are involved in several biological processes, including the breakdown of fatty acids, amino acids, and carbohydrates, as well as the synthesis of steroids and other lipids. They can also function as enzymes that catalyze various redox reactions, such as oxidases, dehydrogenases, and reductases. Flavoproteins are widely distributed in nature and found in many organisms, from bacteria to humans.

Quinone reductases are a group of enzymes that catalyze the reduction of quinones to hydroquinones, using NADH or NADPH as an electron donor. This reaction is important in the detoxification of quinones, which are potentially toxic compounds produced during the metabolism of certain drugs, chemicals, and endogenous substances.

There are two main types of quinone reductases: NQO1 (NAD(P)H:quinone oxidoreductase 1) and NQO2 (NAD(P)H:quinone oxidoreductase 2). NQO1 is a cytosolic enzyme that can reduce a wide range of quinones, while NQO2 is a mitochondrial enzyme with a narrower substrate specificity.

Quinone reductases have been studied for their potential role in cancer prevention and treatment, as they may help to protect cells from oxidative stress and DNA damage caused by quinones and other toxic compounds. Additionally, some quinone reductase inhibitors have been developed as chemotherapeutic agents, as they can enhance the cytotoxicity of certain drugs that require quinone reduction for activation.

Oxidoreductases acting on aldehyde or oxo group donors are a class of enzymes that catalyze the transfer of electrons from an aldehyde or ketone group to an electron acceptor. These enzymes are involved in various redox reactions and play a crucial role in cellular metabolism. They can be found in different organisms, including bacteria, archaea, and eukaryotes.

The systematic name for this class of enzymes is "Oxidoreductases acting on the CH-OH group of donors, NAD(P)+ as acceptor." The reaction catalyzed by these enzymes can be represented as follows:

R-CHO + NAD(P)+ -> R=O + NAD(P)H + H+

In this reaction, the aldehyde group (R-CHO) is oxidized to a carbonyl group (R=O), and NAD(P)+ is reduced to NAD(P)H. This process helps to maintain the redox balance in cells and provides energy for various cellular functions.

Examples of enzymes that belong to this class include alcohol dehydrogenases, aldehyde dehydrogenases, and xanthine oxidase. These enzymes have important roles in metabolizing various compounds, such as alcohol, aldehydes, and purines, and are involved in various physiological processes, including detoxification, energy production, and signal transduction.

Electron Transport Complex II, also known as succinate-Q oxidoreductase, is a key component of the electron transport chain in the inner mitochondrial membrane. It plays a crucial role in the process of cellular respiration, where it facilitates the transfer of electrons from succinate to ubiquinone (Q), thereby generating a proton gradient across the membrane. This gradient drives the synthesis of ATP, which is the primary source of energy for the cell.

The complex is composed of four core subunits: flavoprotein (Fp), iron-sulfur protein (Ip), cytochrome b (Cyb), and ubiquinone-binding protein (Qp). Electrons from succinate are accepted by FAD in the Fp subunit, and then transferred to the Ip subunit containing iron-sulfur clusters. From there, the electrons are moved to heme groups in the Cyb subunit, and finally passed on to ubiquinone at the Qp subunit.

In addition to its role in the electron transport chain, Complex II has been implicated in various cellular processes such as regulation of reactive oxygen species (ROS) production and modulation of apoptosis. Mutations in genes encoding Complex II subunits have been associated with several human diseases, including neurodegenerative disorders and cancer.

Nanoarchaeota is a phylum or a group of archaea, a domain of single-celled microorganisms. They are named after their small size, with cells that are only about 400 nanometers in diameter. Nanoarchaeota are unique in that they are obligate symbionts, meaning they can only live in association with another organism and cannot survive on their own. The host organism for Nanoarchaeota is another archaea from the phylum Crenarchaeota.

The first species of Nanoarchaeota was discovered in a hydrothermal vent system in the Pacific Ocean, and since then, they have been found in various environments including marine sediments, hot springs, and terrestrial subsurface environments. The study of Nanoarchaeota is still in its early stages, and much remains to be learned about their biology, ecology, and evolutionary relationships with other archaea.

I'm sorry for any confusion, but "Wolinella" is not a medical term or a specific condition in human medicine. It is actually the name of a genus of bacteria that are commonly found in the digestive tracts of animals, including humans. These bacteria are named after the Polish microbiologist Michaił Łaszkowski, whose last name was transcribed as "Wolin" in German scientific literature.

The bacteria in this genus are gram-negative, non-spore forming, and can be curved or spiral-shaped. They are often associated with gastrointestinal diseases in animals, but their role in human health and disease is not fully understood. Some research suggests that they may be involved in certain digestive disorders, such as inflammatory bowel disease, but more study is needed to confirm these associations and understand their significance.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Thioredoxin-disulfide reductase (Txnrd, TrxR) is an enzyme that belongs to the pyridine nucleotide-disulfide oxidoreductase family. It plays a crucial role in maintaining the intracellular redox balance by reducing disulfide bonds in proteins and keeping them in their reduced state. This enzyme utilizes NADPH as an electron donor to reduce thioredoxin (Trx), which then transfers its electrons to various target proteins, thereby regulating their activity, protein folding, and antioxidant defense mechanisms.

Txnrd is essential for several cellular processes, including DNA synthesis, gene expression, signal transduction, and protection against oxidative stress. Dysregulation of Txnrd has been implicated in various pathological conditions, such as cancer, neurodegenerative diseases, and inflammatory disorders. Therefore, understanding the function and regulation of this enzyme is of great interest for developing novel therapeutic strategies.

Succinate dehydrogenase (SDH) is an enzyme complex that plays a crucial role in the process of cellular respiration, specifically in the citric acid cycle (also known as the Krebs cycle) and the electron transport chain. It is located in the inner mitochondrial membrane of eukaryotic cells.

SDH catalyzes the oxidation of succinate to fumarate, converting it into a molecule of fadaquate in the process. During this reaction, two electrons are transferred from succinate to the FAD cofactor within the SDH enzyme complex, reducing it to FADH2. These electrons are then passed on to ubiquinone (CoQ), which is a mobile electron carrier in the electron transport chain, leading to the generation of ATP, the main energy currency of the cell.

SDH is also known as mitochondrial complex II because it is the second complex in the electron transport chain. Mutations in the genes encoding SDH subunits or associated proteins have been linked to various human diseases, including hereditary paragangliomas, pheochromocytomas, gastrointestinal stromal tumors (GISTs), and some forms of neurodegenerative disorders.

Disulfides are a type of organic compound that contains a sulfur-sulfur bond. In the context of biochemistry and medicine, disulfide bonds are often found in proteins, where they play a crucial role in maintaining their three-dimensional structure and function. These bonds form when two sulfhydryl groups (-SH) on cysteine residues within a protein molecule react with each other, releasing a molecule of water and creating a disulfide bond (-S-S-) between the two cysteines. Disulfide bonds can be reduced back to sulfhydryl groups by various reducing agents, which is an important process in many biological reactions. The formation and reduction of disulfide bonds are critical for the proper folding, stability, and activity of many proteins, including those involved in various physiological processes and diseases.

Ecological and environmental processes refer to the complex interactions and relationships between living organisms and their physical surroundings. These processes can be biological, chemical, or physical in nature and they play a critical role in shaping the distribution and abundance of species, as well as the overall health and functioning of ecosystems.

Biological processes include things like predation, competition, and symbiosis, which describe how organisms interact with one another for resources and survival. Chemical processes involve the cycling of nutrients and energy through an ecosystem, such as the carbon cycle or nitrogen cycle. Physical processes include things like weather patterns, geological formations, and water cycles, which can all impact the distribution and diversity of species in an area.

Environmental processes can also refer to human activities that impact the environment, such as pollution, land use changes, and climate change. These processes can have significant consequences for both natural ecosystems and human health, making it essential to understand and manage them effectively.

Glucose oxidase (GOD) is an enzyme that catalyzes the oxidation of D-glucose to D-glucono-1,5-lactone, while reducing oxygen to hydrogen peroxide in the process. This reaction is a part of the metabolic pathway in some organisms that convert glucose into energy. The systematic name for this enzyme is D-glucose:oxygen 1-oxidoreductase.

Glucose oxidase is commonly found in certain fungi, such as Aspergillus niger, and it has various applications in industry, medicine, and research. For instance, it's used in the production of glucose sensors for monitoring blood sugar levels, in the detection and quantification of glucose in food and beverages, and in the development of biosensors for environmental monitoring.

It's worth noting that while glucose oxidase has many applications, it should not be confused with glutathione peroxidase, another enzyme involved in the reduction of hydrogen peroxide to water.

The Electron Transport Chain (ETC) is a series of complexes in the inner mitochondrial membrane that are involved in the process of cellular respiration. It is the final pathway for electrons derived from the oxidation of nutrients such as glucose, fatty acids, and amino acids to be transferred to molecular oxygen. This transfer of electrons drives the generation of a proton gradient across the inner mitochondrial membrane, which is then used by ATP synthase to produce ATP, the main energy currency of the cell.

The electron transport chain consists of four complexes (I-IV) and two mobile electron carriers (ubiquinone and cytochrome c). Electrons from NADH and FADH2 are transferred to Complex I and Complex II respectively, which then pass them along to ubiquinone. Ubiquinone then transfers the electrons to Complex III, which passes them on to cytochrome c. Finally, cytochrome c transfers the electrons to Complex IV, where they combine with oxygen and protons to form water.

The transfer of electrons through the ETC is accompanied by the pumping of protons from the mitochondrial matrix to the intermembrane space, creating a proton gradient. The flow of protons back across the inner membrane through ATP synthase drives the synthesis of ATP from ADP and inorganic phosphate.

Overall, the electron transport chain is a crucial process for generating energy in the form of ATP in the cell, and it plays a key role in many metabolic pathways.

Oxidoreductases acting on CH-CH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts upon donors containing a carbon-carbon (CH-CH) bond, where one atom or group of atoms is oxidized and another is reduced during the reaction process. These enzymes play crucial roles in various metabolic pathways, including the breakdown and synthesis of carbohydrates, lipids, and amino acids.

The reactions catalyzed by these enzymes involve the transfer of electrons and hydrogen atoms between the donor and an acceptor molecule. This process often results in the formation or cleavage of carbon-carbon bonds, making them essential for numerous biological processes. The systematic name for this class of enzymes is typically structured as "donor:acceptor oxidoreductase," where donor and acceptor represent the molecules involved in the electron transfer process.

Examples of enzymes that fall under this category include:

1. Aldehyde dehydrogenases (EC 1.2.1.3): These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using NAD+ as an electron acceptor.
2. Dihydrodiol dehydrogenase (EC 1.3.1.14): This enzyme is responsible for the oxidation of dihydrodiols to catechols in the biodegradation of aromatic compounds.
3. Succinate dehydrogenase (EC 1.3.5.1): A key enzyme in the citric acid cycle, succinate dehydrogenase catalyzes the oxidation of succinate to fumarate and reduces FAD to FADH2.
4. Xylose reductase (EC 1.1.1.307): This enzyme is involved in the metabolism of pentoses, where it reduces xylose to xylitol using NADPH as a cofactor.

Ferredoxin-NADP Reductase (FDNR) is an enzyme that catalyzes the electron transfer from ferredoxin to NADP+, reducing it to NADPH. This reaction plays a crucial role in several metabolic pathways, including photosynthesis and nitrogen fixation.

In photosynthesis, FDNR is located in the stroma of chloroplasts and receives electrons from ferredoxin, which is reduced by photosystem I. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the Calvin cycle for carbon fixation.

In nitrogen fixation, FDNR is found in the nitrogen-fixing bacteria and receives electrons from ferredoxin, which is reduced by nitrogenase. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the reduction of nitrogen gas (N2) to ammonia (NH3).

FDNR is a flavoprotein that contains a FAD cofactor and an iron-sulfur cluster. The enzyme catalyzes the electron transfer through a series of conformational changes that bring ferredoxin and NADP+ in close proximity, allowing for efficient electron transfer.

Electron Transport Complex I, also known as NADH:ubiquinone oxidoreductase, is a large protein complex located in the inner mitochondrial membrane of eukaryotic cells and the cytoplasmic membrane of prokaryotic cells. It is the first complex in the electron transport chain, a series of protein complexes that transfer electrons from NADH to oxygen, driving the synthesis of ATP through chemiosmosis.

Complex I consists of multiple subunits, including a flavin mononucleotide (FMN) cofactor and several iron-sulfur clusters, which facilitate the oxidation of NADH and the reduction of ubiquinone (coenzyme Q). The energy released during this electron transfer process is used to pump protons across the membrane, creating a proton gradient that drives ATP synthesis.

Defects in Complex I can lead to various mitochondrial diseases, including neurological disorders and muscle weakness.

15-Oxoprostaglandin 13-Reductase is an enzyme that catalyzes the reduction of 15-keto prostaglandins to 13,14-dihydro-15-keto prostaglandins. This enzyme plays a role in the metabolism and deactivation of prostaglandins, which are hormone-like substances that are involved in various physiological processes such as inflammation, blood flow regulation, and labor induction. The reduction of 15-keto prostaglandins to 13,14-dihydro-15-keto prostaglandins by 15-Oxoprostaglandin 13-Reductase results in the loss of biological activity of these prostaglandins.

Aldehyde oxidoreductases are a class of enzymes that catalyze the oxidation of aldehydes to carboxylic acids using NAD+ or FAD as cofactors. They play a crucial role in the detoxification of aldehydes generated from various metabolic processes, such as lipid peroxidation and alcohol metabolism. These enzymes are widely distributed in nature and have been identified in bacteria, yeast, plants, and animals.

The oxidation reaction catalyzed by aldehyde oxidoreductases involves the transfer of electrons from the aldehyde substrate to the cofactor, resulting in the formation of a carboxylic acid and reduced NAD+ or FAD. The enzymes are classified into several families based on their sequence similarity and cofactor specificity.

One of the most well-known members of this family is alcohol dehydrogenase (ADH), which catalyzes the oxidation of alcohols to aldehydes or ketones as part of the alcohol metabolism pathway. Another important member is aldehyde dehydrogenase (ALDH), which further oxidizes the aldehydes generated by ADH to carboxylic acids, thereby preventing the accumulation of toxic aldehydes in the body.

Deficiencies in ALDH enzymes have been linked to several human diseases, including alcoholism and certain types of cancer. Therefore, understanding the structure and function of aldehyde oxidoreductases is essential for developing new therapeutic strategies to treat these conditions.

NADP (Nicotinamide Adenine Dinucleotide Phosphate) is a coenzyme that plays a crucial role as an electron carrier in various redox reactions in the human body. It exists in two forms: NADP+, which functions as an oxidizing agent and accepts electrons, and NADPH, which serves as a reducing agent and donates electrons.

NADPH is particularly important in anabolic processes, such as lipid and nucleotide synthesis, where it provides the necessary reducing equivalents to drive these reactions forward. It also plays a critical role in maintaining the cellular redox balance by participating in antioxidant defense mechanisms that neutralize harmful reactive oxygen species (ROS).

In addition, NADP is involved in various metabolic pathways, including the pentose phosphate pathway and the Calvin cycle in photosynthesis. Overall, NADP and its reduced form, NADPH, are essential molecules for maintaining proper cellular function and energy homeostasis.

"Pleurotus" is not a medical term, but a genus of fungi commonly known as oyster mushrooms. These mushrooms are often consumed for their nutritional and potential medicinal benefits. However, in a medical context, if someone is referring to "pleural," it relates to the pleura, which is the double-layered serous membrane that surrounds the lungs and lines the inside of the chest wall. Any medical condition or disease affecting this area may be described as "pleural."

Flavin-Adenine Dinucleotide (FAD) is a coenzyme that plays a crucial role in various metabolic processes, particularly in the electron transport chain where it functions as an electron carrier in oxidation-reduction reactions. FAD is composed of a flavin moiety, riboflavin or vitamin B2, and adenine dinucleotide. It can exist in two forms: an oxidized form (FAD) and a reduced form (FADH2). The reduction of FAD to FADH2 involves the gain of two electrons and two protons, which is accompanied by a significant conformational change that allows FADH2 to donate its electrons to subsequent components in the electron transport chain, ultimately leading to the production of ATP, the main energy currency of the cell.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Coenzymes are small organic molecules that assist enzymes in catalyzing chemical reactions within cells. They typically act as carriers of specific atoms or groups of atoms during enzymatic reactions, facilitating the conversion of substrates into products. Coenzymes often bind temporarily to enzymes at the active site, forming an enzyme-coenzyme complex.

Coenzymes are usually derived from vitamins or minerals and are essential for maintaining proper metabolic functions in the body. Examples of coenzymes include nicotinamide adenine dinucleotide (NAD+), flavin adenine dinucleotide (FAD), and coenzyme A (CoA). When a coenzyme is used up in a reaction, it must be regenerated or replaced for the enzyme to continue functioning.

In summary, coenzymes are vital organic compounds that work closely with enzymes to facilitate biochemical reactions, ensuring the smooth operation of various metabolic processes within living organisms.

Iron-sulfur proteins are a group of metalloproteins that contain iron and sulfur atoms in their active centers. These clusters of iron and sulfur atoms, also known as iron-sulfur clusters, can exist in various forms, including Fe-S, 2Fe-2S, 3Fe-4S, and 4Fe-4S structures. The iron atoms are coordinated to the protein through cysteine residues, while the sulfur atoms can be in the form of sulfide (S2-) or sulfane (-S-).

These proteins play crucial roles in many biological processes, such as electron transfer, redox reactions, and enzyme catalysis. They are found in various organisms, from bacteria to humans, and are involved in a wide range of cellular functions, including energy metabolism, photosynthesis, nitrogen fixation, and DNA repair.

Iron-sulfur proteins can be classified into several categories based on their structure and function, such as ferredoxins, Rieske proteins, high-potential iron-sulfur proteins (HiPIPs), and radical SAM enzymes. Dysregulation or mutations in iron-sulfur protein genes have been linked to various human diseases, including neurodegenerative disorders, cancer, and mitochondrial disorders.

Flavins are a group of naturally occurring organic compounds that contain a characteristic isoalloxazine ring, which is a tricyclic aromatic structure. The most common and well-known flavin is flavin adenine dinucleotide (FAD), which plays a crucial role as a coenzyme in various biological oxidation-reduction reactions. FAD accepts electrons and hydrogens to form the reduced form, flavin adenine dinucleotide hydride (FADH2). Another important flavin is flavin mononucleotide (FMN), which is derived from FAD and functions similarly as a coenzyme. Flavins are yellow in color and can be found in various biological systems, including animals, plants, and microorganisms. They are involved in several metabolic pathways, such as the electron transport chain, where they contribute to energy production.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Oxidoreductases acting on CH-NH2 group donors are a class of enzymes that catalyze the oxidation-reduction reactions involving the transfer of electrons from a donor with a CH-NH2 group to an electron acceptor. This category of enzymes is classified under EC 1.5.99 in the Enzyme Commission (EC) system.

The reaction catalyzed by these enzymes typically results in the formation of a carbon-nitrogen double bond, with the concomitant reduction of the electron acceptor. Examples of such reactions include the oxidative deamination of amino acids to produce keto acids and ammonia, as well as the conversion of primary amines to aldehydes or nitro compounds.

These enzymes are widely distributed in nature and play important roles in various biological processes, such as metabolism, detoxification, and biosynthesis. They require various cofactors, such as NAD+, NADP+, FAD, or PQQ, to facilitate the electron transfer during the reaction.

In summary, oxidoreductases acting on CH-NH2 group donors are a class of enzymes that catalyze the oxidation of CH-NH2 group donors and the reduction of various electron acceptors, with important roles in diverse biological processes.

Prokaryotic cells are simple, single-celled organisms that do not have a true nucleus or other membrane-bound organelles. They include bacteria and archaea. The genetic material of prokaryotic cells is composed of a single circular chromosome located in the cytoplasm, along with small, circular pieces of DNA called plasmids. Prokaryotic cells have a rigid cell wall, which provides protection and support, and a flexible outer membrane that helps them to survive in diverse environments. They reproduce asexually by binary fission, where the cell divides into two identical daughter cells. Compared to eukaryotic cells, prokaryotic cells are generally smaller and have a simpler structure.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Protochlorophyllide is a pigment involved in the process of photosynthesis. It is a precursor to chlorophyll, which is the main pigment responsible for light absorption during photosynthesis. Protochlorophyllide is present in the chloroplasts of plant cells and certain types of algae. It is converted to chlorophyllide by the action of light during the process of photoactivation, which is the activation of a chemical reaction by light. Defects in the biosynthesis of protochlorophyllide can lead to certain types of genetic disorders that affect photosynthesis and plant growth.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Flavin Mononucleotide (FMN) Reductase is an enzyme that catalyzes the reduction of FMN to FMNH2 using NADH or NADPH as an electron donor. This enzyme plays a crucial role in the electron transport chain and is involved in various redox reactions within the cell. It is found in many organisms, including bacteria, fungi, plants, and animals. In humans, FMN Reductase is encoded by the RIBFLR gene and is primarily located in the mitochondria. Defects in this enzyme can lead to various metabolic disorders.

An electron is a subatomic particle, symbol e-, with a negative electric charge. Electrons are fundamental components of atoms and are responsible for the chemical bonding between atoms to form molecules. They are located in an atom's electron cloud, which is the outermost region of an atom and contains negatively charged electrons that surround the positively charged nucleus.

Electrons have a mass that is much smaller than that of protons or neutrons, making them virtually weightless on the atomic scale. They are also known to exhibit both particle-like and wave-like properties, which is a fundamental concept in quantum mechanics. Electrons play a crucial role in various physical phenomena, such as electricity, magnetism, and chemical reactions.

The periplasm is a term used in the field of microbiology, specifically in reference to gram-negative bacteria. It refers to the compartment or region located between the bacterial cell's inner membrane (cytoplasmic membrane) and its outer membrane. This space contains a unique mixture of proteins, ions, and other molecules that play crucial roles in various cellular processes, such as nutrient uptake, waste excretion, and the maintenance of cell shape.

The periplasm is characterized by its peptidoglycan layer, which provides structural support to the bacterial cell and protects it from external pressures. This layer is thinner in gram-negative bacteria compared to gram-positive bacteria, which do not have an outer membrane and thus lack a periplasmic space.

Understanding the periplasmic region of gram-negative bacteria is essential for developing antibiotics and other therapeutic agents that can target specific cellular processes or disrupt bacterial growth and survival.

Glucose 1-Dehydrogenase (G1DH) is an enzyme that catalyzes the oxidation of β-D-glucose into D-glucono-1,5-lactone and reduces the cofactor NAD+ into NADH. This reaction plays a role in various biological processes, including glucose sensing and detoxification of reactive carbonyl species. G1DH is found in many organisms, including humans, and has several isoforms with different properties and functions.

Isomerases are a class of enzymes that catalyze the interconversion of isomers of a single molecule. They do this by rearranging atoms within a molecule to form a new structural arrangement or isomer. Isomerases can act on various types of chemical bonds, including carbon-carbon and carbon-oxygen bonds.

There are several subclasses of isomerases, including:

1. Racemases and epimerases: These enzymes interconvert stereoisomers, which are molecules that have the same molecular formula but different spatial arrangements of their atoms in three-dimensional space.
2. Cis-trans isomerases: These enzymes interconvert cis and trans isomers, which differ in the arrangement of groups on opposite sides of a double bond.
3. Intramolecular oxidoreductases: These enzymes catalyze the transfer of electrons within a single molecule, resulting in the formation of different isomers.
4. Mutases: These enzymes catalyze the transfer of functional groups within a molecule, resulting in the formation of different isomers.
5. Tautomeres: These enzymes catalyze the interconversion of tautomers, which are isomeric forms of a molecule that differ in the location of a movable hydrogen atom and a double bond.

Isomerases play important roles in various biological processes, including metabolism, signaling, and regulation.

Flavodoxin is not strictly a medical term, but it is a term used in biochemistry and molecular biology. Flavodoxins are small electron transfer proteins that contain a non-heme iron atom bound to a organic molecule called flavin mononucleotide (FMN). They play a role in various biological processes such as photosynthesis, nitrogen fixation and respiration where they function as electron carriers. Flavodoxins can undergo reversible oxidation and reduction, and this property allows them to transfer electrons between different enzymes during metabolic reactions. They are not specific to human physiology, but can be found in various organisms including bacteria, algae, and plants.

Rhodobacter capsulatus is not a medical term, but a species name in the field of microbiology. It refers to a type of purple nonsulfur bacteria that is capable of photosynthesis and can be found in freshwater and soil environments. These bacteria are known for their ability to switch between using light and organic compounds as sources of energy, depending on the availability of each. They have been studied for their potential applications in biotechnology and renewable energy production.

While not directly related to medical definitions, some research has explored the potential use of Rhodobacter capsulatus in bioremediation and wastewater treatment due to its ability to break down various organic compounds. However, it is not a pathogenic organism and does not have any direct relevance to human health or disease.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

Glutathione reductase (GR) is an enzyme that plays a crucial role in maintaining the cellular redox state. The primary function of GR is to reduce oxidized glutathione (GSSG) to its reduced form (GSH), which is an essential intracellular antioxidant. This enzyme utilizes nicotinamide adenine dinucleotide phosphate (NADPH) as a reducing agent in the reaction, converting it to NADP+. The medical definition of Glutathione Reductase is:

Glutathione reductase (GSR; EC 1.8.1.7) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) in the presence of NADPH as a cofactor. This enzyme is essential for maintaining the cellular redox balance and protecting cells from oxidative stress by regenerating the active form of glutathione, a vital antioxidant and detoxifying agent.

Protein folding is the process by which a protein molecule naturally folds into its three-dimensional structure, following the synthesis of its amino acid chain. This complex process is determined by the sequence and properties of the amino acids, as well as various environmental factors such as temperature, pH, and the presence of molecular chaperones. The final folded conformation of a protein is crucial for its proper function, as it enables the formation of specific interactions between different parts of the molecule, which in turn define its biological activity. Protein misfolding can lead to various diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Hydroxysteroid dehydrogenases (HSDs) are a group of enzymes that play a crucial role in steroid hormone metabolism. They catalyze the oxidation and reduction reactions of hydroxyl groups on the steroid molecule, which can lead to the activation or inactivation of steroid hormones. HSDs are involved in the conversion of various steroids, including sex steroids (e.g., androgens, estrogens) and corticosteroids (e.g., cortisol, cortisone). These enzymes can be found in different tissues throughout the body, and their activity is regulated by various factors, such as hormones, growth factors, and cytokines. Dysregulation of HSDs has been implicated in several diseases, including cancer, diabetes, and cardiovascular disease.

PQQ, or pyrroloquinoline quinone, is a redox cofactor that plays a role in the electron transfer chain and is involved in various redox reactions in the body. It can be found in some bacteria and plants, and there is evidence to suggest that it may also be present in human tissues. However, the exact role of PQQ as a cofactor in humans is not well understood and more research is needed to fully understand its functions and potential health benefits.

A cofactor is a non-protein chemical compound that is required for an enzyme to function. Cofactors can be inorganic ions, such as iron or magnesium, or organic molecules, like PQQ. They play a crucial role in catalyzing biochemical reactions and maintaining the structural integrity of proteins.

In summary, PQQ is a redox cofactor that may have a role in various redox reactions in the body, but its exact functions and significance in human health are still being studied.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Sulfhydryl compounds, also known as thiol compounds, are organic compounds that contain a functional group consisting of a sulfur atom bonded to a hydrogen atom (-SH). This functional group is also called a sulfhydryl group. Sulfhydryl compounds can be found in various biological systems and play important roles in maintaining the structure and function of proteins, enzymes, and other biomolecules. They can also act as antioxidants and help protect cells from damage caused by reactive oxygen species. Examples of sulfhydryl compounds include cysteine, glutathione, and coenzyme A.

Periplasmic proteins are a type of protein that are found in the periplasm, which is the compartment between the inner and outer membranes of gram-negative bacteria. This region contains a variety of enzymes and other proteins that play important roles in various cellular processes, including nutrient transport, metabolism, and protection against antibiotics.

Periplasmic proteins are synthesized on the cytoplasmic side of the inner membrane and are then translocated across the membrane into the periplasm through specialized protein channels. Once in the periplasm, these proteins can perform a variety of functions, such as binding to and transporting nutrients, breaking down toxic compounds, or participating in quality control processes that help ensure the proper folding and assembly of other proteins.

Periplasmic proteins are often involved in important bacterial processes, such as the production of antibiotics, the degradation of complex carbohydrates, and the resistance to environmental stresses. As a result, they have attracted interest as potential targets for new antibiotics and other therapeutic agents.

Xanthine dehydrogenase (XDH) is an enzyme involved in the metabolism of purines, which are nitrogen-containing compounds that form part of DNA and RNA. Specifically, XDH helps to break down xanthine and hypoxanthine into uric acid, a waste product that is excreted in the urine.

XDH can exist in two interconvertible forms: a dehydrogenase form (XDH) and an oxidase form (XO). In its dehydrogenase form, XDH uses NAD+ as an electron acceptor to convert xanthine into uric acid. However, when XDH is converted to its oxidase form (XO), it can use molecular oxygen as an electron acceptor instead, producing superoxide and hydrogen peroxide as byproducts. These reactive oxygen species can contribute to oxidative stress and tissue damage in the body.

Abnormal levels or activity of XDH have been implicated in various diseases, including gout, cardiovascular disease, and neurodegenerative disorders.

Oxidoreductases, O-demethylating are enzymes that belong to the larger family of oxidoreductases. Specifically, they are involved in catalyzing the removal of methyl groups (-CH3) from various substrates through oxidation reactions. This process is known as O-demethylation.

These enzymes play a crucial role in the metabolism of xenobiotics (foreign substances) such as drugs, toxins, and carcinogens. They help convert these substances into more water-soluble forms, which can then be easily excreted from the body. O-demethylating oxidoreductases are often found in the liver, where they contribute to the detoxification of xenobiotics.

The reaction catalyzed by these enzymes involves the transfer of a hydrogen atom and the addition of an oxygen atom to the methyl group, resulting in the formation of formaldehyde (-CH2O) and a demethylated product. The cytochrome P450 family of enzymes is one example of O-demethylating oxidoreductases.

Archaea are a domain of single-celled microorganisms that lack membrane-bound nuclei and other organelles. They are characterized by the unique structure of their cell walls, membranes, and ribosomes. Archaea were originally classified as bacteria, but they differ from bacteria in several key ways, including their genetic material and metabolic processes.

Archaea can be found in a wide range of environments, including some of the most extreme habitats on Earth, such as hot springs, deep-sea vents, and highly saline lakes. Some species of Archaea are able to survive in the absence of oxygen, while others require oxygen to live.

Archaea play important roles in global nutrient cycles, including the nitrogen cycle and the carbon cycle. They are also being studied for their potential role in industrial processes, such as the production of biofuels and the treatment of wastewater.

Succinic acid, also known as butanedioic acid, is an organic compound with the chemical formula HOOC(CH2)2COOH. It is a white crystalline powder that is soluble in water and has a slightly acerbic taste. In medicine, succinic acid is not used as a treatment for any specific condition. However, it is a naturally occurring substance found in the body and plays a role in the citric acid cycle, which is a key process in energy production within cells. It can also be found in some foods and is used in the manufacturing of various products such as pharmaceuticals, resins, and perfumes.

Sugar alcohol dehydrogenases (SADHs) are a group of enzymes that catalyze the interconversion between sugar alcohols and sugars, which involves the gain or loss of a pair of electrons, typically in the form of NAD(P)+/NAD(P)H. These enzymes play a crucial role in the metabolism of sugar alcohols, which are commonly found in various plants and some microorganisms.

Sugar alcohols, also known as polyols, are reduced forms of sugars that contain one or more hydroxyl groups instead of aldehyde or ketone groups. Examples of sugar alcohols include sorbitol, mannitol, xylitol, and erythritol. SADHs can interconvert these sugar alcohols to their corresponding sugars through a redox reaction that involves the transfer of hydrogen atoms.

The reaction catalyzed by SADHs is typically represented as follows:

R-CH(OH)-CH2OH + NAD(P)+ ↔ R-CO-CH2OH + NAD(P)H + H+

where R represents a carbon chain, and CH(OH)-CH2OH and CO-CH2OH represent the sugar alcohol and sugar forms, respectively.

SADHs are widely distributed in nature and have been found in various organisms, including bacteria, fungi, plants, and animals. These enzymes have attracted significant interest in biotechnology due to their potential applications in the production of sugar alcohols and other value-added products. Additionally, SADHs have been studied as targets for developing novel antimicrobial agents, as inhibiting these enzymes can disrupt the metabolism of certain pathogens that rely on sugar alcohols for growth and survival.

Fumarates are the salts or esters of fumaric acid, a naturally occurring organic compound with the formula HO2C-CH=CH-CO2H. In the context of medical therapy, fumarates are used as medications for the treatment of psoriasis and multiple sclerosis.

One such medication is dimethyl fumarate (DMF), which is a stable salt of fumaric acid. DMF has anti-inflammatory and immunomodulatory properties, and it's used to treat relapsing forms of multiple sclerosis (MS) and moderate-to-severe plaque psoriasis.

The exact mechanism of action of fumarates in these conditions is not fully understood, but they are thought to modulate the immune system and have antioxidant effects. Common side effects of fumarate therapy include gastrointestinal symptoms such as diarrhea, nausea, and abdominal pain, as well as flushing and skin reactions.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Malate Dehydrogenase (MDH) is an enzyme that plays a crucial role in the Krebs cycle, also known as the citric acid cycle or tricarboxylic acid (TCA) cycle. It catalyzes the reversible oxidation of malate to oxaloacetate, while simultaneously reducing NAD+ to NADH. This reaction is essential for energy production in the form of ATP and NADH within the cell.

There are two main types of Malate Dehydrogenase:

1. NAD-dependent Malate Dehydrogenase (MDH1): Found primarily in the cytoplasm, this isoform plays a role in the malate-aspartate shuttle, which helps transfer reducing equivalents between the cytoplasm and mitochondria.
2. FAD-dependent Malate Dehydrogenase (MDH2): Located within the mitochondrial matrix, this isoform is involved in the Krebs cycle for energy production.

Abnormal levels of Malate Dehydrogenase enzyme can be indicative of certain medical conditions or diseases, such as myocardial infarction (heart attack), muscle damage, or various types of cancer. Therefore, MDH enzyme activity is often assessed in diagnostic tests to help identify and monitor these health issues.

Ferredoxins are iron-sulfur proteins that play a crucial role in electron transfer reactions in various biological systems, particularly in photosynthesis and nitrogen fixation. They contain one or more clusters of iron and sulfur atoms (known as the iron-sulfur cluster) that facilitate the movement of electrons between different molecules during metabolic processes.

Ferredoxins have a relatively simple structure, consisting of a polypeptide chain that binds to the iron-sulfur cluster. This simple structure allows ferredoxins to participate in a wide range of redox reactions and makes them versatile electron carriers in biological systems. They can accept electrons from various donors and transfer them to different acceptors, depending on the needs of the cell.

In photosynthesis, ferredoxins play a critical role in the light-dependent reactions by accepting electrons from photosystem I and transferring them to NADP+, forming NADPH. This reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) is then used in the Calvin cycle for carbon fixation and the production of glucose.

In nitrogen fixation, ferredoxins help transfer electrons to the nitrogenase enzyme complex, which reduces atmospheric nitrogen gas (N2) into ammonia (NH3), making it available for assimilation by plants and other organisms.

Overall, ferredoxins are essential components of many metabolic pathways, facilitating electron transfer and energy conversion in various biological systems.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Selenocysteine (Sec) is a rare, naturally occurring amino acid that contains selenium. It is encoded by the opal (TGA) codon, which typically signals stop translation in mRNA. However, when followed by a specific hairpin-like structure called the Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA, the TGA codon is interpreted as a signal for selenocysteine incorporation during protein synthesis.

Selenocysteine plays an essential role in several enzymes involved in antioxidant defense and redox homeostasis, such as glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases. These enzymes require selenocysteine for their catalytic activity due to its unique chemical properties, which allow them to neutralize harmful reactive oxygen species (ROS) and maintain proper cellular function.

In summary, selenocysteine is a specialized amino acid containing selenium that is encoded by the TGA codon in mRNA when accompanied by a SECIS element. It is crucial for the activity of several enzymes involved in antioxidant defense and redox homeostasis.

Dihydrolipoamide dehydrogenase (DHLD) is an enzyme that plays a crucial role in several important metabolic pathways in the human body, including the citric acid cycle and the catabolism of certain amino acids. DHLD is a component of multi-enzyme complexes, such as the pyruvate dehydrogenase complex (PDC) and the alpha-ketoglutarate dehydrogenase complex (KGDC).

The primary function of DHLD is to catalyze the oxidation of dihydrolipoamide, a reduced form of lipoamide, back to its oxidized state (lipoamide) while simultaneously reducing NAD+ to NADH. This reaction is essential for the continued functioning of the PDC and KGDC, as dihydrolipoamide is a cofactor for these enzyme complexes.

Deficiencies in DHLD can lead to serious metabolic disorders, such as maple syrup urine disease (MSUD) and riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD). These conditions can result in neurological symptoms, developmental delays, and metabolic acidosis, among other complications. Treatment typically involves dietary modifications, supplementation with specific nutrients, and, in some cases, enzyme replacement therapy.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Selenoproteins are a specific group of proteins that contain the essential micronutrient selenium in the form of selenocysteine (Sec), which is a naturally occurring amino acid. Selenocysteine is encoded by the opal codon UGA, which typically serves as a stop codon in mRNA.

There are 25 known human selenoproteins, and they play crucial roles in various physiological processes, including antioxidant defense, DNA synthesis, thyroid hormone metabolism, and immune function. Some of the well-known selenoproteins include glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs), and iodothyronine deiodinases (IDIs).

The presence of selenocysteine in these proteins makes them particularly efficient at catalyzing redox reactions, which involve the gain or loss of electrons. This property is essential for their functions as antioxidants and regulators of cellular signaling pathways.

Deficiencies in selenium can lead to impaired function of selenoproteins, potentially resulting in various health issues, such as increased oxidative stress, weakened immune response, and disrupted thyroid hormone metabolism.

Sequence homology is a term used in molecular biology to describe the similarity between the nucleotide or amino acid sequences of two or more genes or proteins. It is a measure of the degree to which the sequences are related, indicating a common evolutionary origin.

In other words, sequence homology implies that the compared sequences have a significant number of identical or similar residues in the same order, suggesting that they share a common ancestor and have diverged over time through processes such as mutation, insertion, deletion, or rearrangement. The higher the degree of sequence homology, the more closely related the sequences are likely to be.

Sequence homology is often used to identify similarities between genes or proteins from different species, which can provide valuable insights into their functions, structures, and evolutionary relationships. It is commonly assessed using various bioinformatics tools and algorithms, such as BLAST (Basic Local Alignment Search Tool), Clustal Omega, and multiple sequence alignment (MSA) methods.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

Electron Transport Complex III, also known as cytochrome bc1 complex or ubiquinol-cytochrome c reductase, is a protein complex located in the inner mitochondrial membrane of eukaryotic cells and the cytoplasmic membrane of prokaryotic cells. It plays a crucial role in the electron transport chain (ETC), a series of complexes that generate energy in the form of ATP through a process called oxidative phosphorylation.

In ETC, Electron Transport Complex III accepts electrons from ubiquinol and transfers them to cytochrome c. This electron transfer is coupled with the translocation of protons (H+ ions) across the membrane, creating an electrochemical gradient. The energy stored in this gradient drives the synthesis of ATP by ATP synthase.

Electron Transport Complex III consists of several subunits, including cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein. These subunits work together to facilitate the electron transfer and proton translocation processes.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

Aldehyde reductase is an enzyme that belongs to the family of alcohol dehydrogenases. Its primary function is to catalyze the reduction of a wide variety of aldehydes into their corresponding alcohols, using NADPH as a cofactor. This enzyme plays a crucial role in the detoxification of aldehydes generated from various metabolic processes, such as lipid peroxidation and alcohol metabolism. It is widely distributed in different tissues, including the liver, kidney, and brain. In addition to its detoxifying function, aldehyde reductase has been implicated in several physiological and pathophysiological processes, such as neuroprotection, cancer, and diabetes.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Glutathione is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It is a vital antioxidant that plays an essential role in maintaining cellular health and function. Glutathione helps protect cells from oxidative stress by neutralizing free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer, heart disease, and dementia. It also supports the immune system, detoxifies harmful substances, and regulates various cellular processes, including DNA synthesis and repair.

Glutathione is found in every cell of the body, with particularly high concentrations in the liver, lungs, and eyes. The body can produce its own glutathione, but levels may decline with age, illness, or exposure to toxins. As such, maintaining optimal glutathione levels through diet, supplementation, or other means is essential for overall health and well-being.

Quinones are a class of organic compounds that contain a fully conjugated diketone structure. This structure consists of two carbonyl groups (C=O) separated by a double bond (C=C). Quinones can be found in various biological systems and synthetic compounds. They play important roles in many biochemical processes, such as electron transport chains and redox reactions. Some quinones are also known for their antimicrobial and anticancer properties. However, some quinones can be toxic or mutagenic at high concentrations.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Ubiquinone, also known as coenzyme Q10 (CoQ10), is a lipid-soluble benzoquinone that plays a crucial role in the mitochondrial electron transport chain as an essential component of Complexes I, II, and III. It functions as an electron carrier, assisting in the transfer of electrons from reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) to molecular oxygen during oxidative phosphorylation, thereby contributing to the generation of adenosine triphosphate (ATP), the primary energy currency of the cell.

Additionally, ubiquinone acts as a potent antioxidant in both membranes and lipoproteins, protecting against lipid peroxidation and oxidative damage to proteins and DNA. Its antioxidant properties stem from its ability to donate electrons and regenerate other antioxidants like vitamin E. Ubiquinone is synthesized endogenously in all human cells, with the highest concentrations found in tissues with high energy demands, such as the heart, liver, kidneys, and skeletal muscles.

Deficiency in ubiquinone can result from genetic disorders, aging, or certain medications (such as statins), leading to impaired mitochondrial function and increased oxidative stress. Supplementation with ubiquinone has been explored as a potential therapeutic strategy for various conditions associated with mitochondrial dysfunction and oxidative stress, including cardiovascular diseases, neurodegenerative disorders, and cancer.

'Bacillus subtilis' is a gram-positive, rod-shaped bacterium that is commonly found in soil and vegetation. It is a facultative anaerobe, meaning it can grow with or without oxygen. This bacterium is known for its ability to form durable endospores during unfavorable conditions, which allows it to survive in harsh environments for long periods of time.

'Bacillus subtilis' has been widely studied as a model organism in microbiology and molecular biology due to its genetic tractability and rapid growth. It is also used in various industrial applications, such as the production of enzymes, antibiotics, and other bioproducts.

Although 'Bacillus subtilis' is generally considered non-pathogenic, there have been rare cases of infection in immunocompromised individuals. It is important to note that this bacterium should not be confused with other pathogenic species within the genus Bacillus, such as B. anthracis (causative agent of anthrax) or B. cereus (a foodborne pathogen).

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Enzyme stability refers to the ability of an enzyme to maintain its structure and function under various environmental conditions, such as temperature, pH, and the presence of denaturants or inhibitors. A stable enzyme retains its activity and conformation over time and across a range of conditions, making it more suitable for industrial and therapeutic applications.

Enzymes can be stabilized through various methods, including chemical modification, immobilization, and protein engineering. Understanding the factors that affect enzyme stability is crucial for optimizing their use in biotechnology, medicine, and research.

Sequence analysis in the context of molecular biology and genetics refers to the systematic examination and interpretation of DNA or protein sequences to understand their features, structures, functions, and evolutionary relationships. It involves using various computational methods and bioinformatics tools to compare, align, and analyze sequences to identify patterns, conserved regions, motifs, or mutations that can provide insights into molecular mechanisms, disease associations, or taxonomic classifications.

In a medical context, sequence analysis can be applied to diagnose genetic disorders, predict disease susceptibility, inform treatment decisions, and guide research in personalized medicine. For example, analyzing the sequence of a gene associated with a particular inherited condition can help identify the specific mutation responsible for the disorder, providing valuable information for genetic counseling and family planning. Similarly, comparing the sequences of pathogens from different patients can reveal drug resistance patterns or transmission dynamics, informing infection control strategies and therapeutic interventions.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

'Clostridium' is a genus of gram-positive, rod-shaped bacteria that are widely distributed in nature, including in soil, water, and the gastrointestinal tracts of animals and humans. Many species of Clostridium are anaerobic, meaning they can grow and reproduce in environments with little or no oxygen. Some species of Clostridium are capable of producing toxins that can cause serious and sometimes life-threatening illnesses in humans and animals.

Some notable species of Clostridium include:

* Clostridium tetani, which causes tetanus (also known as lockjaw)
* Clostridium botulinum, which produces botulinum toxin, the most potent neurotoxin known and the cause of botulism
* Clostridium difficile, which can cause severe diarrhea and colitis, particularly in people who have recently taken antibiotics
* Clostridium perfringens, which can cause food poisoning and gas gangrene.

It is important to note that not all species of Clostridium are harmful, and some are even beneficial, such as those used in the production of certain fermented foods like sauerkraut and natto. However, due to their ability to produce toxins and cause illness, it is important to handle and dispose of materials contaminated with Clostridium species carefully, especially in healthcare settings.

'Escherichia coli (E. coli) proteins' refer to the various types of proteins that are produced and expressed by the bacterium Escherichia coli. These proteins play a critical role in the growth, development, and survival of the organism. They are involved in various cellular processes such as metabolism, DNA replication, transcription, translation, repair, and regulation.

E. coli is a gram-negative, facultative anaerobe that is commonly found in the intestines of warm-blooded organisms. It is widely used as a model organism in scientific research due to its well-studied genetics, rapid growth, and ability to be easily manipulated in the laboratory. As a result, many E. coli proteins have been identified, characterized, and studied in great detail.

Some examples of E. coli proteins include enzymes involved in carbohydrate metabolism such as lactase, sucrase, and maltose; proteins involved in DNA replication such as the polymerases, single-stranded binding proteins, and helicases; proteins involved in transcription such as RNA polymerase and sigma factors; proteins involved in translation such as ribosomal proteins, tRNAs, and aminoacyl-tRNA synthetases; and regulatory proteins such as global regulators, two-component systems, and transcription factors.

Understanding the structure, function, and regulation of E. coli proteins is essential for understanding the basic biology of this important organism, as well as for developing new strategies for combating bacterial infections and improving industrial processes involving bacteria.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

Metalloproteins are proteins that contain one or more metal ions as a cofactor, which is required for their biological activity. These metal ions play crucial roles in the catalytic function, structural stability, and electron transfer processes of metalloproteins. The types of metals involved can include iron, zinc, copper, magnesium, calcium, or manganese, among others. Examples of metalloproteins are hemoglobin (contains heme-bound iron), cytochrome c (contains heme-bound iron and functions in electron transfer), and carbonic anhydrase (contains zinc and catalyzes the conversion between carbon dioxide and bicarbonate).

Alcohol dehydrogenase (ADH) is a group of enzymes responsible for catalyzing the oxidation of alcohols to aldehydes or ketones, and reducing equivalents such as NAD+ to NADH. In humans, ADH plays a crucial role in the metabolism of ethanol, converting it into acetaldehyde, which is then further metabolized by aldehyde dehydrogenase (ALDH) into acetate. This process helps to detoxify and eliminate ethanol from the body. Additionally, ADH enzymes are also involved in the metabolism of other alcohols, such as methanol and ethylene glycol, which can be toxic if allowed to accumulate in the body.

Electron Spin Resonance (ESR) Spectroscopy, also known as Electron Paramagnetic Resonance (EPR) Spectroscopy, is a technique used to investigate materials with unpaired electrons. It is based on the principle of absorption of energy by the unpaired electrons when they are exposed to an external magnetic field and microwave radiation.

In this technique, a sample is placed in a magnetic field and microwave radiation is applied. The unpaired electrons in the sample absorb energy and change their spin state when the energy of the microwaves matches the energy difference between the spin states. This absorption of energy is recorded as a function of the magnetic field strength, producing an ESR spectrum.

ESR spectroscopy can provide information about the number, type, and behavior of unpaired electrons in a sample, as well as the local environment around the electron. It is widely used in physics, chemistry, and biology to study materials such as free radicals, transition metal ions, and defects in solids.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

The endoplasmic reticulum (ER) is a network of interconnected tubules and sacs that are present in the cytoplasm of eukaryotic cells. It is a continuous membranous organelle that plays a crucial role in the synthesis, folding, modification, and transport of proteins and lipids.

The ER has two main types: rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER). RER is covered with ribosomes, which give it a rough appearance, and is responsible for protein synthesis. On the other hand, SER lacks ribosomes and is involved in lipid synthesis, drug detoxification, calcium homeostasis, and steroid hormone production.

In summary, the endoplasmic reticulum is a vital organelle that functions in various cellular processes, including protein and lipid metabolism, calcium regulation, and detoxification.

A conserved sequence in the context of molecular biology refers to a pattern of nucleotides (in DNA or RNA) or amino acids (in proteins) that has remained relatively unchanged over evolutionary time. These sequences are often functionally important and are highly conserved across different species, indicating strong selection pressure against changes in these regions.

In the case of protein-coding genes, the corresponding amino acid sequence is deduced from the DNA sequence through the genetic code. Conserved sequences in proteins may indicate structurally or functionally important regions, such as active sites or binding sites, that are critical for the protein's activity. Similarly, conserved non-coding sequences in DNA may represent regulatory elements that control gene expression.

Identifying conserved sequences can be useful for inferring evolutionary relationships between species and for predicting the function of unknown genes or proteins.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Sulfur is not typically referred to in the context of a medical definition, as it is an element found in nature and not a specific medical condition or concept. However, sulfur does have some relevance to certain medical topics:

* Sulfur is an essential element that is a component of several amino acids (the building blocks of proteins) and is necessary for the proper functioning of enzymes and other biological processes in the body.
* Sulfur-containing compounds, such as glutathione, play important roles in antioxidant defense and detoxification in the body.
* Some medications and supplements contain sulfur or sulfur-containing compounds, such as dimethyl sulfoxide (DMSO), which is used topically for pain relief and inflammation.
* Sulfur baths and other forms of sulfur-based therapies have been used historically in alternative medicine to treat various conditions, although their effectiveness is not well-established by scientific research.

It's important to note that while sulfur itself is not a medical term, it can be relevant to certain medical topics and should be discussed with a healthcare professional if you have any questions or concerns about its use in medications, supplements, or therapies.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Aerobiosis is the process of living, growing, and functioning in the presence of oxygen. It refers to the metabolic processes that require oxygen to break down nutrients and produce energy in cells. This is in contrast to anaerobiosis, which is the ability to live and grow in the absence of oxygen.

In medical terms, aerobiosis is often used to describe the growth of microorganisms, such as bacteria and fungi, that require oxygen to survive and multiply. These organisms are called aerobic organisms, and they play an important role in many biological processes, including decomposition and waste breakdown.

However, some microorganisms are unable to grow in the presence of oxygen and are instead restricted to environments where oxygen is absent or limited. These organisms are called anaerobic organisms, and their growth and metabolism are referred to as anaerobiosis.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

Heme is not a medical term per se, but it is a term used in the field of medicine and biology. Heme is a prosthetic group found in hemoproteins, which are proteins that contain a heme iron complex. This complex plays a crucial role in various biological processes, including oxygen transport (in hemoglobin), electron transfer (in cytochromes), and chemical catalysis (in peroxidases and catalases).

The heme group consists of an organic component called a porphyrin ring, which binds to a central iron atom. The iron atom can bind or release electrons, making it essential for redox reactions in the body. Heme is also vital for the formation of hemoglobin and myoglobin, proteins responsible for oxygen transport and storage in the blood and muscles, respectively.

In summary, heme is a complex organic-inorganic structure that plays a critical role in several biological processes, particularly in electron transfer and oxygen transport.

Cytochrome c is a small protein that is involved in the electron transport chain, a key part of cellular respiration in which cells generate energy in the form of ATP. Cytochrome c contains a heme group, which binds to and transports electrons. The cytochrome c group refers to a class of related cytochromes that have similar structures and functions. These proteins are found in the mitochondria of eukaryotic cells (such as those of plants and animals) and in the inner membranes of bacteria. They play a crucial role in the production of energy within the cell, and are also involved in certain types of programmed cell death (apoptosis).

Intramolecular lyases, oxidoreductases and transferases catalyze the interconversion of structural isomers. The prevalence of ... All entries presently include: This category (EC 5.3) includes intramolecular oxidoreductases. These isomerases catalyze the ... an intramolecular oxidoreductase. The overall reaction involves the opening of the ring to form an aldose via acid/base ... Isomerases facilitate intramolecular rearrangements in which bonds are broken and formed. The general form of such a reaction ...
This enzyme belongs to the family of isomerases, specifically a class of other intramolecular oxidoreductases. The systematic ...
This enzyme belongs to the family of isomerases, specifically a class of other intramolecular oxidoreductases. The systematic ...
This enzyme belongs to the family of isomerases, specifically a class of other intramolecular oxidoreductases. The systematic ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ... dopachrome oxidoreductase, dopachrome-rearranging enzyme, DCF, DCT, dopachrome keto-enol isomerase, and L-dopachrome-methyl ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
... specifically those intramolecular oxidoreductases transposing C=C bonds. The systematic name of this enzyme class is decenoyl-[ ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
... specifically those intramolecular oxidoreductases transposing C=C bonds. The systematic name of this enzyme class is (13E)-(15S ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ... 3, is an intramolecular redox (reduction-oxidation) reaction. Its first step involves a proton transfer. This product ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ...
This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases transposing C=C bonds. The ...
Classification: ISOMERASE(INTRAMOLECULAR OXIDOREDUCTASE). *Organism(s): Arthrobacter sp. NRRL B3728. *Mutation(s): No ...
Intramolecular lyases, oxidoreductases and transferases catalyze the interconversion of structural isomers. The prevalence of ... All entries presently include: This category (EC 5.3) includes intramolecular oxidoreductases. These isomerases catalyze the ... an intramolecular oxidoreductase. The overall reaction involves the opening of the ring to form an aldose via acid/base ... Isomerases facilitate intramolecular rearrangements in which bonds are broken and formed. The general form of such a reaction ...
Intramolecular oxidoreductases;. Transposing C=C bonds. BRITE hierarchy. Sysname. methylitaconate Delta2-Delta3-isomerase. ...
... the overall chemistry of intramolecular oxidoreductases (EC 5.3), intramolecular transferases (EC 5.4) and intramolecular ... chemistry such as oxidosqualene cyclases and pseudouridine synthases from chemically complex sub-subclasses like intramolecular ...
EC 5.3: Intramolecular Oxidoreductases. EC 5.3.1: Interconverting Aldoses and Ketoses. *EC 5.3.1.1: triose-phosphate isomerase ... 3 EC 5.3: Intramolecular Oxidoreductases *3.1 EC 5.3.1: Interconverting Aldoses and Ketoses ... EC 5.4: Intramolecular Transferases. EC 5.4.1: Transferring Acyl Groups. *EC 5.4.1.1: lysolecithin acylmutase ... 4 EC 5.4: Intramolecular Transferases *4.1 EC 5.4.1: Transferring Acyl Groups ...
Intramolecular oxidoreductases. UniProt ID. HPGDS_HUMAN EC Number. EC 5.3.99.2. Sequence. ...
intramolecular oxidoreductase activity. IEP. Enrichment. MF. GO:0016861. intramolecular oxidoreductase activity, ... oxidoreductase activity. IEP. Enrichment. MF. GO:0016634. oxidoreductase activity, acting on the CH-CH group of donors, oxygen ... oxidoreductase activity, acting on a sulfur group of donors. IEP. Enrichment. MF. GO:0016671. oxidoreductase activity, acting ... oxidoreductase activity, acting on CH or CH2 groups. IEP. Enrichment. MF. GO:0016769. transferase activity, transferring ...
ISOMERASE(INTRAMOLECULAR OXIDOREDUCTASE) SPACE GROUP:. I 2 2 2 RESOLUTION RANGE HIGH:. 1.7 ...
intramolecular oxidoreductase activity, transposing S-S bonds. GO:0016864. 6.65. intramolecular oxidoreductase activity. GO: ...
intramolecular oxidoreductase activity. IEP. Enrichment. MF. GO:0016864. intramolecular oxidoreductase activity, transposing S- ... oxidoreductase activity, acting on a sulfur group of donors. IEP. Enrichment. MF. GO:0016671. oxidoreductase activity, acting ...
intramolecular oxidoreductase activity. IEP. Enrichment. MF. GO:0016861. intramolecular oxidoreductase activity, ... oxidoreductase activity. IEP. Enrichment. MF. GO:0016661. oxidoreductase activity, acting on other nitrogenous compounds as ... intramolecular transferase activity, phosphotransferases. IEP. Enrichment. MF. GO:0019200. carbohydrate kinase activity. IEP. ... oxidoreductase activity, acting on other nitrogenous compounds as donors, with NAD or NADP as acceptor. IEP. Enrichment. ...
intramolecular oxidoreductase activity. IEP. Enrichment. MF. GO:0016861. intramolecular oxidoreductase activity, ...
intramolecular oxidoreductase activity. IEP. Neighborhood. MF. GO:0016861. intramolecular oxidoreductase activity, ...
oxidoreductase activity. IEP. Neighborhood. MF. GO:0016861. intramolecular oxidoreductase activity, interconverting aldoses and ... oxidoreductase activity, acting on phosphorus or arsenic in donors. IEP. Neighborhood. MF. GO:0030614. oxidoreductase activity ...
Intramolecular Oxidoreductases. *JNK Mitogen-Activated Protein Kinases. *Leucine. *Lipase. *Lipid Metabolism. *Lipocalins ...
Calcium Signaling, Endothelial Cells, Female, HEK293 Cells, Humans, Hypersensitivity, Intramolecular Oxidoreductases, ...
Oxidoreductases (Intramolecular) * mPGES-1 * Ligases * DNA ligase * DNA ligase * Synthetases * LRS * MetRS ...
Intramolecular Oxidoreductases, Macrophage Migration-Inhibitory Factors, Mice, Mice, Knockout, Transcription, Genetic ...
... intramolecular oxidoreductases,leptin,pyrazoles,rna, small interfering,sulfonamides,sdg 3 - good health and well-being ,/dk/ ...
... intramolecular oxidoreductase activity, interconverting keto- and enol-groups;0.0109160439672588!GO:0006643;membrane lipid ... intramolecular oxidoreductase activity, transposing S-S bonds;0.0348793590863371!GO:0006066;alcohol metabolic process; ... intramolecular oxidoreductase activity;0.00479344719110164!GO:0006302;double-strand break repair;0.00484949959209026!GO:0000079 ... oxidoreductase activity, acting on diphenols and related substances as donors;0.00101420470426776!GO:0016681;oxidoreductase ...
5.3 Intramolecular oxidoreductases EC subclass 5.4", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", ... 5.5 Intramolecular lyases EC subclass 5.6", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER, 1 ... 5.4 Intramolecular transferases EC subclass 5.5", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER ... 1 Oxidoreductases EC class 2", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER, 1); onmouseout=" ...
Intramolecular Oxidoreductases. * Molecular Sequence Data. * Mutagenesis, Site-Directed. * Phenytoin. * Rats. * Thromboxane-A ...
5.3 Intramolecular oxidoreductases EC subclass 5.4", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", ... 5.5 Intramolecular lyases EC subclass 5.6", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER, 1 ... 5.4 Intramolecular transferases EC subclass 5.5", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER ... 1 Oxidoreductases EC subclass 1.1", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER, 1); ...
5.3 Intramolecular oxidoreductases EC subclass 5.4", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", ... 5.5 Intramolecular lyases EC subclass 5.6", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER, 1 ... 5.4 Intramolecular transferases EC subclass 5.5", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER ... 1 Oxidoreductases EC subclass 1.1", WIDTH, 550, FGCOLOR, "#ffffff", TEXTSIZE, "10px", CAPTIONSIZE, "12px", BORDER, 1); ...
Intramolecular oxidoreductases. EC 5.4. [+] Intramolecular transferases. EC 5.5. [+] Intramolecular lyases. EC 5.6. [+] ...
Instead of the intramolecular disulfide bond formation typical for thioredoxins, this protein forms an intermolecular disulfide ... the redox potential determination revealed a redox cycle distinct from that of typical thioredoxin-superfamily oxidoreductases ...
A more recent study showed that removal of an intramolecular disulfide bond facing the inner membrane space of Tim17p (between ... it was proposed that the bond is catalyzed by the intermembrane space oxidoreductase Erv1p. Another candidate promoting ...
... and the active aldehyde ferredoxin oxidoreductase (AOR) of the hyperthermophilic archaeon Pyrococcus furiosus. The [Ph4P]+ salt ... to yield 2 with the oxidation of these reducing agents suggesting intramolecular electron transfer in the respective ... the Tungsten Sites of Inactive and Active Forms of Hyperthermophilic Pyrococcus furiosus Aldehyde Ferredoxin Oxidoreductase. ...
Ans: Oxidoreductases are enzymes that participate in redox reactions that involve oxidation reduction. They act as catalysts; ... Ans: The formation of intramolecular $\mathrm{H}$-bonding between the $,\mathrm{C}=\mathrm{O}$ groups of amino acids in one ...
Intramolecular involvement of the acyl-amido side chain. Llinás, A., Vilanova, B., Frau, J., Muñoz, F., Donoso, J. & Page, M. I ... Chemical synthesis and biological evaluation of a NAD(P)H: quinone oxidoreductase-1-targeted tripartite quinone drug delivery ...
  • Intramolecular lyases, oxidoreductases and transferases catalyze the interconversion of structural isomers. (wikipedia.org)
  • Although racemases and epimerases (EC 5.1) and cis-trans isomerases (EC 5.2) are sensibly grouped according to changes of stereochemistry, the overall chemistry of intramolecular oxidoreductases (EC 5.3), intramolecular transferases (EC 5.4) and intramolecular lyases (EC 5.5) is challenging. (researchgate.net)
  • In addition, the separation of groups of isomerases sharing similar chemistry such as oxidosqualene cyclases and pseudouridine synthases from chemically complex sub-subclasses like intramolecular transferases acting on \other groups' (EC 5.4.99) might also improve the classification. (researchgate.net)
  • A mechanism involving reaction of DTNB with Cys 149, followed by formation of an intramolecular disulphide bridge between Cys 149 and a second thiol, is shown to be unlikely. (edu.au)
  • TheThis oxidation is significant in the be developed via intramolecular disulphide bonds, as items the cysteine of formation of inter- andindirect reactions of lipoperoxidation well as in withformationand histidine residues [166]. (hivinhibitor.com)
  • Isomerases facilitate intramolecular rearrangements in which bonds are broken and formed. (wikipedia.org)
  • Oxidoreductases: these catalyze the transfer of hydrogen or oxygen atoms or electrons and are using NAD+/NADP+ as an electron acceptor. (researchwap.com)
  • This glutathionylation regulates the redox-driven signal transduction cascades and metabolic pathways [163] and may be reversed by way of thioldisulphide oxidoreductase (thioltransferase) activity [164]. (hivinhibitor.com)
  • Y. J. Yang, M. Dai, Y. J. Reo, C. W. Song, S. Sarkar, K. H. Ahn 'NAD(P)H Quinone Oxidoreductase-1 in Organ and Tumor Tissues: Distinct Activity Levels Observed with a Benzo-rosol-Based Dual-Excitation and Dual-Emission Probe', Anal. (ahn-postech.com)
  • The reaction of 5,5' dithiobis(2 nitrobenzoic acid) (DTNB) with rabbit muscle glyceraldehyde 3 phosphate dehydrogenase [d glyceraldehyde 3 phosphate: NAD + oxidoreductase (phosphorylating), EC 1.2.1.12] consists of an initial burst of reaction over several minutes, corresponding to 2 thiols/subunit, followed by a further slow reaction of the 2 remaining groups. (edu.au)
  • Modern oxidoreductase enzymes employ differential binding between reduced and oxidized forms of redox cofactors to alter cofactor reduction potential and enhance the enzyme's catalytic capabilities. (nature.com)
  • Thioredoxin functions in nearly all organisms as the major thiol-disulfide oxidoreductase within the cytosol. (diamond.ac.uk)
  • Its prime purpose is to maintain cysteine-containing proteins in the reduced state by converting intramolecular disulfide bonds into dithiols in a disulfide exchange reaction. (diamond.ac.uk)
  • 2004). This suggested that the catalytic cysteine residues are involved in the interaction of TRX1 with ASK1 and that the formation of an intramolecular disulfide bond between these cysteines upon oxidation causes TRX1 dissociation from ASK1, regardless of the thiol-reductase activity of TRX1. (bms-833923.com)
  • 2016). The ASK1-TBD sequence has seven conserved Cys residues, thereby suggesting that oxidative stress may induce intramolecular disulfide bond formation, which may affect the structure of ASK1-TBD and its interaction with TRX1. (bms-833923.com)
  • Indeed, the oxidation of ASK1-TBD was shown to induce the formation of several intramolecular disulfide bonds, predominantly Cys185-Cys200 and Cys200-Cys206 and, to a lesser extent, Cys225/Cys226-Cys250 concurrently to conformational changes in ASK1-TBD (Kylarova et al. (bms-833923.com)
  • Data altogether support a mechanism whereby the Cripto-1 CFC domain refolds by virtue of long-range intramolecular interactions that involve residues close to cysteines of the second and third bridge. (cnr.it)
  • Isomerases facilitate intramolecular rearrangements in which bonds are broken and formed. (wikipedia.org)
  • Jorns, M. S. Synthesis and evaluation of potent novel inhibitors of human sulfide:quinone oxidoreductase. (fctdi.com)

No images available that match "intramolecular oxidoreductases"