Insulinoma: A benign tumor of the PANCREATIC BETA CELLS. Insulinoma secretes excess INSULIN resulting in HYPOGLYCEMIA.Adenoma, Islet Cell: A benign tumor of the pancreatic ISLET CELLS. Usually it involves the INSULIN-producing PANCREATIC BETA CELLS, as in INSULINOMA, resulting in HYPERINSULINISM.Pancreatic Neoplasms: Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA).Islets of Langerhans: Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.Insulin: A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).Nesidioblastosis: An inherited autosomal recessive syndrome characterized by the disorganized formation of new islets in the PANCREAS and CONGENITAL HYPERINSULINISM. It is due to focal hyperplasia of pancreatic ISLET CELLS budding off from the ductal structures and forming new islets of Langerhans. Mutations in the islet cells involve the potassium channel gene KCNJ11 or the ATP-binding cassette transporter gene ABCC8, both on CHROMOSOME 11.Hypoglycemia: A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH.Insulin-Secreting Cells: A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN.Proinsulin: A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.Glucose: A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.Pancreatectomy: Surgical removal of the pancreas. (Dorland, 28th ed)Glucose Transporter Type 2: A glucose transport facilitator that is expressed primarily in PANCREATIC BETA CELLS; LIVER; and KIDNEYS. It may function as a GLUCOSE sensor to regulate INSULIN release and glucose HOMEOSTASIS.Tumor Cells, Cultured: Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.Group VI Phospholipases A2: A calcium-independent phospholipase A2 group that may play a role in membrane phospholipid remodeling and homeostasis by controling the levels of PHOSPHATIDYLCHOLINE in mammalian cell membranes.Glucagonoma: An almost always malignant GLUCAGON-secreting tumor derived from the PANCREATIC ALPHA CELLS. It is characterized by a distinctive migratory ERYTHEMA; WEIGHT LOSS; STOMATITIS; GLOSSITIS; DIABETES MELLITUS; hypoaminoacidemia; and normochromic normocytic ANEMIA.Calcium Gluconate: The calcium salt of gluconic acid. The compound has a variety of uses, including its use as a calcium replenisher in hypocalcemic states.Octreotide: A potent, long-acting synthetic SOMATOSTATIN octapeptide analog that inhibits secretion of GROWTH HORMONE and is used to treat hormone-secreting tumors; DIABETES MELLITUS; HYPOTENSION, ORTHOSTATIC; HYPERINSULINISM; hypergastrinemia; and small bowel fistula.Tolbutamide: A sulphonylurea hypoglycemic agent with actions and uses similar to those of CHLORPROPAMIDE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p290)Receptors, Glucagon: Cell surface receptors that bind glucagon with high affinity and trigger intracellular changes which influence the behavior of cells. Activation of glucagon receptors causes a variety of effects; the best understood is the initiation of a complex enzymatic cascade in the liver which ultimately increases the availability of glucose to body organs.Receptor-Like Protein Tyrosine Phosphatases, Class 8: A subclass of receptor-like protein tryosine phosphatases that contain an extracellular RDGS-adhesion recognition motif and a single cytosolic protein tyrosine phosphate domain.Proprotein Convertase 2: A serine endopeptidase that has specificity for cleavage at ARGININE. It cleaves a variety of prohormones including PRO-OPIOMELANOCORTIN, proluteinizing-hormone-releasing hormone, proenkephalins, prodynorphin, and PROINSULIN.Secretagogins: Secretagogins are EF HAND MOTIF-containing calcium-binding proteins that are involved in early neuronal migration and neurogenesis. They are also present in many adult organs and in brain and endocrine neoplasms.Multiple Endocrine Neoplasia Type 1: A form of multiple endocrine neoplasia that is characterized by the combined occurrence of tumors in the PARATHYROID GLANDS, the PITUITARY GLAND, and the PANCREATIC ISLETS. The resulting clinical signs include HYPERPARATHYROIDISM; HYPERCALCEMIA; HYPERPROLACTINEMIA; CUSHING DISEASE; GASTRINOMA; and ZOLLINGER-ELLISON SYNDROME. This disease is due to loss-of-function of the MEN1 gene, a tumor suppressor gene (GENES, TUMOR SUPPRESSOR) on CHROMOSOME 11 (Locus: 11q13).Neuroendocrine Tumors: Tumors whose cells possess secretory granules and originate from the neuroectoderm, i.e., the cells of the ectoblast or epiblast that program the neuroendocrine system. Common properties across most neuroendocrine tumors include ectopic hormone production (often via APUD CELLS), the presence of tumor-associated antigens, and isozyme composition.Exome: That part of the genome that corresponds to the complete complement of EXONS of an organism or cell.YY1 Transcription Factor: A ubiquitously expressed zinc finger-containing protein that acts both as a repressor and activator of transcription. It interacts with key regulatory proteins such as TATA-BINDING PROTEIN; TFIIB; and ADENOVIRUS E1A PROTEINS.Carcinoma, Neuroendocrine: A group of carcinomas which share a characteristic morphology, often being composed of clusters and trabecular sheets of round "blue cells", granular chromatin, and an attenuated rim of poorly demarcated cytoplasm. Neuroendocrine tumors include carcinoids, small ("oat") cell carcinomas, medullary carcinoma of the thyroid, Merkel cell tumor, cutaneous neuroendocrine carcinoma, pancreatic islet cell tumors, and pheochromocytoma. Neurosecretory granules are found within the tumor cells. (Segen, Dictionary of Modern Medicine, 1992)Vipoma: A tumor that secretes VASOACTIVE INTESTINAL PEPTIDE, a neuropeptide that causes VASODILATION; relaxation of smooth muscles; watery DIARRHEA; HYPOKALEMIA; and HYPOCHLORHYDRIA. Vipomas, derived from the pancreatic ISLET CELLS, generally are malignant and can secrete other hormones. In most cases, Vipomas are located in the PANCREAS but can be found in extrapancreatic sites.Adrenomedullin: A 52-amino acid peptide with multi-functions. It was originally isolated from PHEOCHROMOCYTOMA and ADRENAL MEDULLA but is widely distributed throughout the body including lung and kidney tissues. Besides controlling fluid-electrolyte homeostasis, adrenomedullin is a potent vasodilator and can inhibit pituitary ACTH secretion.Peptides: Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.Receptors, Adrenomedullin: G-protein-coupled cell surface receptors for ADRENOMEDULLIN. They are formed by the heterodimerization of CALCITONIN RECEPTOR-LIKE PROTEIN and either RECEPTOR ACTIVITY-MODIFYING PROTEIN 2 or RECEPTOR ACTIVITY-MODIFYING PROTEIN 3.Abstracting and Indexing as Topic: Activities performed to identify concepts and aspects of published information and research reports.Data Mining: Use of sophisticated analysis tools to sort through, organize, examine, and combine large sets of information.Periodicals as Topic: A publication issued at stated, more or less regular, intervals.Laparoscopy: A procedure in which a laparoscope (LAPAROSCOPES) is inserted through a small incision near the navel to examine the abdominal and pelvic organs in the PERITONEAL CAVITY. If appropriate, biopsy or surgery can be performed during laparoscopy.Cholecystectomy, Laparoscopic: Excision of the gallbladder through an abdominal incision using a laparoscope.ArchivesTankyrases: A group of telomere associated proteins that interact with TRF1 PROTEIN, contain ANKYRIN REPEATS and have poly(ADP-ribose) polymerase activity.Nicotinamide Phosphoribosyltransferase: An enzyme that catalyzes the formation of nicotinamide mononucleotide (NMN) from nicotinamide and 5-phosphoribosyl-1-pyrophosphate, the rate-limiting step in the biosynthesis of the NAD coenzyme. It is also known as a growth factor for early B-LYMPHOCYTES, or an ADIPOKINE with insulin-mimetic effects (visfatin).NAD: A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)Nicotinamide-Nucleotide Adenylyltransferase: An enzyme that catalyzes reversibly the transfer of the adenylyl moiety of ATP to the phosphoryl group of NMN to form NAD+ and pyrophosphate. The enzyme is found predominantly in the nuclei and catalyzes the final reaction in the major pathway for the biosynthesis of NAD in mammals. EC 2.7.7.1.Acrylamides: Colorless, odorless crystals that are used extensively in research laboratories for the preparation of polyacrylamide gels for electrophoresis and in organic synthesis, and polymerization. Some of its polymers are used in sewage and wastewater treatment, permanent press fabrics, and as soil conditioning agents.Coronary Artery Bypass: Surgical therapy of ischemic coronary artery disease achieved by grafting a section of saphenous vein, internal mammary artery, or other substitute between the aorta and the obstructed coronary artery distal to the obstructive lesion.Thyroid Function Tests: Blood tests used to evaluate the functioning of the thyroid gland.Sulfonylurea CompoundsHydrocortisone: The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions.Fatigue: The state of weariness following a period of exertion, mental or physical, characterized by a decreased capacity for work and reduced efficiency to respond to stimuli.Somatomedins: Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism.Coronary Artery Disease: Pathological processes of CORONARY ARTERIES that may derive from a congenital abnormality, atherosclerotic, or non-atherosclerotic cause.Electronic Mail: Messages between computer users via COMPUTER COMMUNICATION NETWORKS. This feature duplicates most of the features of paper mail, such as forwarding, multiple copies, and attachments of images and other file types, but with a speed advantage. The term also refers to an individual message sent in this way.Diabetes Mellitus, Type 1: A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence.Food Dispensers, Automatic: Mechanical food dispensing machines.Diabetes Mellitus: A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.Diabetes Mellitus, Type 2: A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY.Postal Service: The functions and activities carried out by the U.S. Postal Service, foreign postal services, and private postal services such as Federal Express.Internet: A loose confederation of computer communication networks around the world. The networks that make up the Internet are connected through several backbone networks. The Internet grew out of the US Government ARPAnet project and was designed to facilitate information exchange.

RINm5f cells express inactivating BK channels whereas HIT cells express noninactivating BK channels. (1/873)

Large-conductance Ca2+- and voltage-activated BK-type K+ channels are expressed abundantly in normal rat pancreatic islet cells and in the clonal rat insulinoma tumor (RINm5f) and hamster insulinoma tumor (HIT) beta cell lines. Previous work has suggested that the Ca2+ sensitivity of BK channels in RIN cells is substantially less than that in HIT cells, perhaps contributing to differences between the cell lines in responsiveness to glucose in mediating insulin secretion. In both RIN cells and normal pancreatic beta cells, BK channels are thought to play a limited role in responses of beta cells to secretagogues and in the electrical activity of beta cells. Here we examine in detail the properties of BK channels in RIN and HIT cells using inside-out patches and whole cell recordings. BK channels in RIN cells exhibit rapid inactivation that results in an anomalous steady-state Ca2+ dependence of activation. In contrast, BK channels in HIT cells exhibit the more usual noninactivating behavior. When BK inactivation is taken into account, the Ca2+ and voltage dependence of activation of BK channels in RIN and HIT cells is essentially indistinguishable. The properties of BK channel inactivation in RIN cells are similar to those of inactivating BK channels (termed BKi channels) previously identified in rat chromaffin cells. Inactivation involves multiple, trypsin-sensitive cytosolic domains and exhibits a dependence on Ca2+ and voltage that appears to arise from coupling to channel activation. In addition, the rates of inactivation onset and recovery are similar to that of BKi channels in chromaffin cells. The charybdotoxin (CTX) sensitivity of BKi currents is somewhat less than that of the noninactivating BK variant. Action potential voltage-clamp waveforms indicate that BK current is activated only weakly by Ca2+ influx in RIN cells but more strongly activated in HIT cells even when Ca2+ current magnitude is comparable. Concentrations of CTX sufficient to block BKi current in RIN cells have no effect on action potential activity initiated by glucose or DC injection. Despite its abundant expression in RIN cells, BKi current appears to play little role in action potential activity initiated by glucose or DC injection in RIN cells, but BK current may play an important role in action potential repolarization in HIT cells.  (+info)

Islet amyloid polypeptide/amylin messenger RNA and protein expression in human insulinomas in relation to amyloid formation. (2/873)

OBJECTIVE: Islet amyloid polypeptide (IAPP), also named amylin, is the predominant protein component of amyloid deposits in human islet beta cell tumours of the pancreas (insulinomas). IAPP is co-produced with insulin by islet beta cells. We investigated IAPP expression in relation to insulin expression and to amyloid formation in eleven insulinomas. DESIGN AND METHODS: RNA and protein extracts were prepared from the same pieces of tumour tissue, and from specimens of two normal human pancreata. IAPP and insulin mRNA and peptide content were quantified using Northern blot analysis and radioimmunoassay (RIA) respectively. Molecular forms of IAPP immunoreactivity were analysed by reversed-phase high-performance liquid chromatography (HPLC). The presence of islet hormones and of amyloid was assessed by (immuno)histochemical staining of paraffin sections. Plasma levels of IAPP and insulin prior to tumour resection were determined by RIA. RESULTS: IAPP and insulin mRNA and peptide content varied widely between the tumour specimens, and there was considerable intratumour heterogeneity of peptide content. HPLC analysis indicated correct proteolytic processing of the IAPP precursor protein. Amyloid deposits were detected only in the three tumours with the highest IAPP content. In contrast to insulin, plasma levels of IAPP were not elevated in the insulinoma patients. CONCLUSIONS: The spectrum of hormone production by insulinomas cannot be inferred from only a few tissue sections due to intratumour heterogeneity. Expression of the IAPP and insulin genes is not coupled in insulinomas, which produce properly processed mature IAPP. In addition to IAPP overproduction, additional factors such as intracellular accumulation of IAPP are involved in amyloidogenesis in insulinomas.  (+info)

Dual actions of the metabolic inhibitor, sodium azide on K(ATP) channel currents in the rat CRI-G1 insulinoma cell line. (3/873)

1. The effects of various inhibitors of the mitochondrial electron transport chain on the activity of ATP-sensitive K+ channels were examined in the Cambridge rat insulinoma G1 (CRI-G1) cell line using a combination of whole cell and single channel recording techniques. 2. Whole cell current clamp recordings, with 5 mM ATP in the pipette, demonstrate that the mitochondrial uncoupler sodium azide (3 mM) rapidly hyperpolarizes CRI-G1 cells with a concomitant increase in K+ conductance. This is due to activation of K(ATP) channels as the sulphonylurea tolbutamide (100 microM) completely reversed the actions of azide. Other inhibitors of the mitochondrial electron transport chain, rotenone (10 microM) or oligomycin (2 microM) did not hyperpolarize CRI-G1 cells or increase K+ conductance. 3. In cell-attached recordings, bath application of 3 mM sodium azide (in the absence of glucose) resulted in a rapid increase in K(ATP) channel activity, an action readily reversible by tolbutamide (100 microM). Application of sodium azide (3 mM), in the presence of Mg-ATP, to the intracellular surface of excised inside-out patches also increased K(ATP) channel activity, in a reversible manner. 4. In contrast, rotenone (10 microM) or oligomycin (2 microM) did not increase K(ATP) channel activity in either cell-attached, in the absence of glucose, or inside-out membrane patch recordings. 5. Addition of sodium azide (3 mM) to the intracellular surface of inside-out membrane patches in the presence of Mg-free ATP or the non-hydrolysable analogue 5'-adenylylimidodiphosphate (AMP-PNP) inhibited, rather than increased, K(ATP) channel activity. 6. In conclusion, sodium azide, but not rotenone or oligomycin, directly activates K(ATP) channels in CRI-G1 insulin secreting cells. This action of azide is similar to that reported previously for diazoxide.  (+info)

RIN ZF, a novel zinc finger gene, encodes proteins that bind to the CACC element of the gastrin promoter. (4/873)

Expression of gastrin, a gut hormone and growth factor, has tissue-specific transcriptional regulation and can be induced in some tumors. Previous studies have shown that a CACC cis-regulatory element is important for transcriptional activation in pancreatic insulinoma cells. To identify CACC-binding proteins, a lambda phage cDNA library derived from a rat insulinoma cell line, RIN 38A, was screened by a Southwestern method. A novel member of the Cys2-His2 zinc finger gene family was cloned and designated RIN ZF, having a cDNA sequence of 3.8 kilobases. One full-length and a shorter splice variant were sequenced and had predicted protein masses of 91.6 and 88.7 kDa. Expression of both splice forms were ubiquitous in fetal and adult rat tissues. Recombinant RIN ZF protein exhibited sequence-specific binding to the gastrin CACC element in a gel mobility shift assay. In transient transfections, both splice variants appeared to have only weak activating effects on gastrin-luciferase reporter gene transcription. Furthermore, RIN ZF coexpression with Sp1 appeared to block the strongly activating effects of Sp1 mediated through the CACC element. These findings suggest that a novel set of zinc finger proteins may help regulate gastrin gene expression by interfering with Sp1 transactivation.  (+info)

Essential role of caspase-3 in apoptosis of mouse beta-cells transfected with human Fas. (5/873)

Several recent studies have indicated that the Fas-Fas ligand system may be critical for pancreatic beta-cell destruction in type 1 diabetes. Although the fundamental roles of caspases in the mammalian apoptotic machinery have been elucidated, it is not known which caspase or caspases play a major role in Fas-mediated apoptosis of beta-cells. In this study, we transfected human Fas cDNA into a mouse beta-cell line (betaTC1) and established a beta-cell clone expressing human Fas. This clone, designated hFas/betaTC1, underwent apoptosis when exposed to anti-Fas, showing hallmarks of apoptosis (chromatin condensation, nucleolar disintegration, internucleosomal DNA fragmentation, and annexin V staining), indicating that the mouse beta-cell line has the intact machinery of Fas-mediated apoptosis. The cross-linking of Fas by anti-Fas resulted in the elevation of caspase-3-like, but not caspase-1-like, protease activity 2-12 h after the addition of the anti-Fas. A caspase-3 inhibitor, Z-Asp-Glu-Val-Asp-fluoromethyl ketone, attenuated the Fas-mediated beta-cell apoptosis, while a caspase-1 inhibitor, acetyl-Tyr-Val-Ala-Asp-chloromethylketone, failed to suppress the apoptosis. Thus the Fas-induced death signal apparently bypassed caspase-1 in the cells. Furthermore, an antisense caspase-3 construct blocked caspase-3 activation and substantially suppressed Fas-triggered apoptosis of hFas/betaTC1 cells. These observations suggest the essential role of caspase-3 in Fas-mediated apoptosis of the beta-cell line.  (+info)

Site-specific phosphorylation of synapsin I by Ca2+/calmodulin-dependent protein kinase II in pancreatic betaTC3 cells: synapsin I is not associated with insulin secretory granules. (6/873)

Increasing evidence supports a physiological role of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) in the secretion of insulin from the pancreatic beta-cell, but the precise sites of action are not known. A role of this enzyme in neuroexocytosis is implicated by its phosphorylation of a vesicle-associated protein, synapsin I. Because of emerging similarities to the neuron with respect to exocytotic mechanisms, the expression and phosphorylation of synapsin I in the beta-cell have been studied. Synapsin I expression in clonal mouse beta-cells (betaTC3) and primary rat islet beta-cells was initially confirmed by immunoblot analysis. By immunoprecipitation, in situ phosphorylation of synapsin I was induced in permeabilized betaTC3 cells within a Ca2+ concentration range shown to activate endogenous CaM kinase II under identical conditions. Proteolytic digests of these immunoprecipitates revealed that calcium primarily induced the increased phosphorylation of sites identified as CaM kinase II-specific and distinct from protein kinase A-specific sites. Immunofluorescence and immunogold electron microscopy verified synapsin I expression in betaTC3 cells and pancreatic slices but demonstrated little if any colocalization of synapsin I with insulin-containing dense core granules. Thus, although this study establishes that synapsin I is a substrate for CaM kinase II in the pancreatic beta-cell, this event appears not to be important for the mobilization of insulin granules.  (+info)

Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. (7/873)

A pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP) was cloned using a subtractive cDNA expression cloning procedure from mouse insulinoma tissue. Two alternatively spliced variants that differed by the presence or absence of a 118-bp exon (exon IV) were detected in normal balb/c mice, diabetic ob/ob mice, and insulinoma tissue. The longer, 1901-bp full-length cDNA encoded a 355-amino acid protein (molecular weight 40,684) structurally related (50% overall identity) to the liver glucose-6-phosphatase and exhibited similar predicted transmembrane topology, conservation of catalytically important residues, and the presence of an endoplasmic reticulum retention signal. The shorter transcript encoded two possible open reading frames (ORFs), neither of which possessed His174, a residue thought to be the phosphoryl acceptor (Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY: Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144-6148, 1998). Northern blot and reverse transcription-polymerase chain reaction analysis showed that the mRNA was highly expressed in pancreatic islets and expressed more in beta-cell lines than in an alpha-cell line. It was notably absent in tissues and cell lines of non-islet neuroendocrine origin, and no other major tissue source of the mRNA was found. During development, it was expressed in parallel with insulin mRNA. The mRNA was efficiently translated and glycosylated in an in vitro translation/membrane translocation system and readily transcribed into COS 1, HIT, and CHO cells using cytomegalovirus or Rous sarcoma virus promoters. Whereas the liver glucose-6-phosphatase showed activity in these transfection systems, the IGRP failed to show glucose phosphotransferase or phosphatase activity with p-nitrophenol phosphate, inorganic pyrophosphate, or a range of sugar phosphates hydrolyzed by the liver enzyme. While the metabolic function of the enzyme is not resolved, its remarkable tissue-specific expression warrants further investigation, as does its transcriptional regulation in conditions where glucose responsiveness of the pancreatic islet is altered.  (+info)

Beta-cell gene expression and functional characterisation of the human insulinoma cell line CM. (8/873)

Animal insulinoma cell lines are widely used to study physiological and pathophysiological mechanisms involved in glucose metabolism and to establish in vitro models for studies on beta-cells. In contrast, human insulinoma cell lines are rarely used because of difficulties in obtaining and culturing them for long periods. The aim of our study was to investigate, under different experimental conditions, the capacity of the human insulinoma cell line CM to retain beta-cell function, particularly the expression of constitutive beta-cell genes (insulin, the glucose transporters GLUT1 and GLUT2, glucokinase), intracellular and secreted insulin, beta-cell granules, and cAMP content. Results showed that CM cells from an early-passage express specific beta-cell genes in response to glucose stimulation, in particular the insulin and GLUT genes. Such capacity is lost at later passages when cells are cultured at standard glucose concentrations. However, if cultured at lower glucose concentration (0.8 mM) for a longer time, CM cells re-acquire the capacity to respond to glucose stimulation, as shown by the increased expression of beta-cell genes (insulin, GLUT2, glucokinase). Nonetheless, insulin secretion could not be restored under such experimental conditions despite the presence of intracellular insulin, although cAMP response to a potent activator of adenylate cyclase, forskolin, was present indicating a viable system. In conclusion, these data show that the human insulinoma cell line CM, at both early-passage and late-passage, posseses a functional glucose-signalling pathway and insulin mRNA expression similar to normal beta-cells, representing, therefore, a good model for studies concerning the signalling and expression of beta-cells. Furthermore, we have previously shown that it is also a good model for immunological studies. In this respect it is important to note that the CM cell line is one of the very few existing human beta-cell lines in long-term culture.  (+info)

  • RESULTS Insulinoma location were confirmed preoperatively in insulinoma patients and accepted laparoscopic therapy (13 patients underwent laparoscopic enucleation of the insulinoma, 4 patients underwent laparoscopic distal pancreatectomy, one patient accepted hand assisted laparoscopic uncinate insulinoma resection, 3 patients converted to laparotomy). (sages.org)
  • Engineered insulinoma cell lines may represent an alternative to isolated islets for transplantation therapy of type 1 diabetes. (diabetesjournals.org)
  • Objective The aim of the present study was to investigate the pattern of expression of neurotrophins and their relative receptors both in rat pancreatic islets and in a wide panel of insulinoma cell lines. (imedpub.com)
  • Results Reverse transcription-polymerase chain reaction analysis demonstrates that brainderived neurotrophic factor, as well as neurotrophins 3 and 4, are expressed both in islets and in all insulinoma cells, while nerve growth factor is expressed only in islets, betaTC6-F7 cells and, at a low level, in RIN 1046-38 cells. (imedpub.com)
  • Receptors protein tyrosine kinase A and C are ubiquitously expressed both in islets and insulinoma cells. (imedpub.com)
  • The expression of both high- and low-affinity receptors for NGF has been demonstrated in different insulinoma cell lines and in fetal rat islets, while the expression of Trk-A has been also demonstrated in adult islets [7, (imedpub.com)
  • We describe a 1 cm insulinoma being localized preoperatively by selective arterial stimulation with calcium and venous sampling for insulin. (hku.hk)
  • To this end, we have cultured INS-1 insulinoma cells in increasing concentrations of interleukin-1beta (IL-1beta) + gamma-interferon (IFN-gamma), with approximate weekly iterations over an 8-week period. (diabetesjournals.org)
  • ICA69 is a novel Rab2 effector regulating ER-Golgi trafficking in insulinoma cells. (ox.ac.uk)
  • Here we show that in insulinoma INS-1 cells ICA69 binds to the small GTPase Rab2, which regulates the transport of COPI vesicles between the endoplasmic reticulum and the Golgi complex. (ox.ac.uk)
  • The aim of the present study was to characterize the pattern of expression of neurotrophins and their receptors in pancreatic beta-cells and in pertinent insulinoma cell lines expression. (imedpub.com)
  • Good, ME , Ek-Vitorín, JF & Burt, JM 2012, ' Extracellular loop cysteine mutant of Cx37 fails To suppress proliferation of rat insulinoma cells ', Journal of Membrane Biology , vol. 245, no. 7, pp. 369-380. (elsevier.com)
  • Reale, V, Hales, CN & Ashford, MLJ 1992, ' Cyclic AMP regulates a calcium-activated non-selective cation channel in a rat insulinoma cell line ', Journal of Physiology , vol. 446. (dundee.ac.uk)
  • We present a case of an 45 year old female patient diagnosed with insulinoma who had history of recurrent hypoglycemic attacks. (jaccr.com)
  • Functioning insulinoma - incidence, recurrence & long term survival of patients: a 60 year study. (jaccr.com)
  • If a single large or deep adenoma is within the pancreatic body or tail, if there are multiple lesions of the body or tail (or both), or if no insulinoma is found (an unusual circumstance), a distal, subtotal pancreatectomy is done. (msdmanuals.com)
  • The results demonstrated the molecular biology of human insulinoma tissue at the level of transcript abundance and validated the efficacy of EST sequencing combined with cDNA array in the construction of gene expression profiling. (elsevier.com)
  • G protein α-stimulating activity polypeptide (Gsα) and carboxypeptidase E (CPE) were the most highly expressed genes in human insulinoma, as derived by EST sequencing and cDNA array respectively. (elsevier.com)
  • OBJECTIVE To investigate the feasibility and safety for laparoscopic therapy to insulinoma. (sages.org)
  • Selection of insulinoma cell lines with resistance to interleukin-1beta- and gamma-interferon-induced cytotoxicity. (diabetesjournals.org)
  • Although a functional pore domain is required for connexin 37 (Cx37)-mediated suppression of rat insulinoma (Rin) cell proliferation, it is unknown whether functional hemichannels would be sufficient or if Cx37 gap junction channels are required for growth suppression. (elsevier.com)