The development by insects of resistance to insecticides.
Pesticides designed to control insects that are harmful to man. The insects may be directly harmful, as those acting as disease vectors, or indirectly harmful, as destroyers of crops, food products, or textile fabrics.
The active insecticidal constituent of CHRYSANTHEMUM CINERARIIFOLIUM flowers. Pyrethrin I is the pyretholone ester of chrysanthemummonocarboxylic acid and pyrethrin II is the pyretholone ester of chrysanthemumdicarboxylic acid monomethyl ester.
A polychlorinated pesticide that is resistant to destruction by light and oxidation. Its unusual stability has resulted in difficulties in residue removal from water, soil, and foodstuffs. This substance may reasonably be anticipated to be a carcinogen: Fourth Annual Report on Carcinogens (NTP-85-002, 1985). (From Merck Index, 11th ed)
A species of mosquito in the genus Anopheles and the principle vector of MALARIA in Africa.
A pyrethroid insecticide commonly used in the treatment of LICE INFESTATIONS and SCABIES.
A genus of mosquitoes (CULICIDAE) that are known vectors of MALARIA.
The reduction or regulation of the population of mosquitoes through chemical, biological, or other means.
A wide spectrum aliphatic organophosphate insecticide widely used for both domestic and commercial agricultural purposes.
A genus of mosquitoes (CULICIDAE) commonly found in tropical regions. Species of this genus are vectors for ST. LOUIS ENCEPHALITIS as well as many other diseases of man and domestic and wild animals.
An organothiophosphate cholinesterase inhibitor that is used as an insecticide.
A carbamate insecticide.
Flies of the species Musca domestica (family MUSCIDAE), which infest human habitations throughout the world and often act as carriers of pathogenic organisms.
The reduction or regulation of the population of noxious, destructive, or dangerous insects through chemical, biological, or other means.
Insects that transmit infective organisms from one host to another or from an inanimate reservoir to an animate host.
The geographic area of the Mekong Valley in general or when the specific country or countries are not indicated. Usually includes Cambodia, Indochina, and Laos.
Chemicals that, while not possessing inherent pesticidal activity, nonetheless promote or enhance the effectiveness of other pesticides when combined.
An organochlorine insecticide whose use has been cancelled or suspended in the United States. It has been used to control locusts, tropical disease vectors, in termite control by direct soil injection, and non-food seed and plant treatment. (From HSDB)
A republic in western Africa, south of NIGER and between TOGO and NIGERIA. Its capital is Porto-Novo. It was formerly called Dahomey. In the 17th century it was a kingdom in the southern area of Africa. Coastal footholds were established by the French who deposed the ruler by 1892. It was made a French colony in 1894 and gained independence in 1960. Benin comes from the name of the indigenous inhabitants, the Bini, now more closely linked with southern Nigeria (Benin City, a town there). Bini may be related to the Arabic bani, sons. (From Webster's New Geographical Dictionary, 1988, p136, 310 & Room, Brewer's Dictionary of Names, 1992, p60)
Invertebrates or non-human vertebrates which transmit infective organisms from one host to another.
An island in the Lesser Antilles, one of the Windward Islands. Its capital is Fort-de-France. It was discovered by Columbus in 1502 and from its settlement in 1635 by the French it passed into and out of Dutch and British hands. It was made a French overseas department in 1946. One account of the name tells of native women on the shore calling "Madinina" as Columbus approached the island. The meaning was never discovered but was entered on early charts as Martinique, influenced by the name of St. Martin. (From Webster's New Geographical Dictionary, 1988, p734 & Room, Brewer's Dictionary of Names, 1992, p339)
A protozoan disease caused in humans by four species of the PLASMODIUM genus: PLASMODIUM FALCIPARUM; PLASMODIUM VIVAX; PLASMODIUM OVALE; and PLASMODIUM MALARIAE; and transmitted by the bite of an infected female mosquito of the genus ANOPHELES. Malaria is endemic in parts of Asia, Africa, Central and South America, Oceania, and certain Caribbean islands. It is characterized by extreme exhaustion associated with paroxysms of high FEVER; SWEATING; shaking CHILLS; and ANEMIA. Malaria in ANIMALS is caused by other species of plasmodia.
Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration.
Proteins found in any species of insect.
Esterases are hydrolase enzymes that catalyze the hydrolysis of ester bonds, converting esters into alcohols and acids, playing crucial roles in various biological processes including metabolism and detoxification.
The functional hereditary units of INSECTS.
Carboxylesterase is a serine-dependent esterase with wide substrate specificity. The enzyme is involved in the detoxification of XENOBIOTICS and the activation of ester and of amide PRODRUGS.
Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE.
An organothiophosphate insecticide.
Bugs of the family CIMICIDAE, genus Cimex. They are flattened, oval, reddish insects which inhabit houses, wallpaper, furniture, and beds. C. lectularius, of temperate regions, is the common bedbug that attacks humans and is frequently a serious pest in houses, hotels, barracks, and other living quarters. Experiments have shown that bedbugs can transmit a variety of diseases, but they are not normal vectors under natural conditions. (From Dorland, 27th ed; Borror, et al., An Introduction to the Study of Insects, 4th ed, p272)
A family (Aphididae) of small insects, in the suborder Sternorrhyncha, that suck the juices of plants. Important genera include Schizaphis and Myzus. The latter is known to carry more than 100 virus diseases between plants.
Phenyl esters of carbamic acid or of N-substituted carbamic acids. Structures are similar to PHENYLUREA COMPOUNDS with a carbamate in place of the urea.
A genus of mosquitoes (CULICIDAE) frequently found in tropical and subtropical regions. YELLOW FEVER and DENGUE are two of the diseases that can be transmitted by species of this genus.
An organochlorine insecticide that is slightly irritating to the skin. (From Merck Index, 11th ed, p482)
A family of the order DIPTERA that comprises the mosquitoes. The larval stages are aquatic, and the adults can be recognized by the characteristic WINGS, ANIMAL venation, the scales along the wing veins, and the long proboscis. Many species are of particular medical importance.
An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7.
An organothiophosphorus cholinesterase inhibitor. It has been used as an acaricide and as an insecticide.
Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals.
A republic in central Africa, bordering the Bay of Biafra, CAMEROON is to the north and GABON to the south. Its capital is Malabo.
A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc.
Derivatives of carbamic acid, H2NC(=O)OH. Included under this heading are N-substituted and O-substituted carbamic acids. In general carbamate esters are referred to as urethanes, and polymers that include repeating units of carbamate are referred to as POLYURETHANES. Note however that polyurethanes are derived from the polymerization of ISOCYANATES and the singular term URETHANE refers to the ethyl ester of carbamic acid.
An insecticide synergist, especially for pyrethroids and ROTENONE.
Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Lightweight meshwork fabric made of cotton, silk, polyester, nylon (polyamides), or other material impregnated with insecticide, having openings too small to allow entry of mosquitoes or other insects, thereby offering protection against insect bite and insect-borne diseases.
Lice of the genus Pediculus, family Pediculidae. Pediculus humanus corporus is the human body louse and Pediculus humanus capitis is the human head louse.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Free-standing or supported lightweight meshwork fabric made of cotton, silk, polyester or other material, having openings too small to allow entry of mosquitoes or other insects, thereby protecting against INSECT BITES; INSECT STINGS, and insect-borne diseases.
A mitosporic fungal genus. Teleomorphs are found in the family Clavicipitaceae and include Cordyceps bassiana. The species Beauveria bassiana is a common pathogen of ARTHROPODS and is used in PEST CONTROL.
Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P(=O)(O)3 structure. Note that several specific classes of endogenous phosphorus-containing compounds such as NUCLEOTIDES; PHOSPHOLIPIDS; and PHOSPHOPROTEINS are listed elsewhere.
A large order of insects characterized by having the mouth parts adapted to piercing or sucking. It is comprised of four suborders: HETEROPTERA, Auchenorrhyncha, Sternorrhyncha, and Coleorrhyncha.
The dose amount of poisonous or toxic substance or dose of ionizing radiation required to kill 50% of the tested population.
Tracts of land completely surrounded by water.
An order of the class Insecta. Wings, when present, number two and distinguish Diptera from other so-called flies, while the halteres, or reduced hindwings, separate Diptera from other insects with one pair of wings. The order includes the families Calliphoridae, Oestridae, Phoridae, SARCOPHAGIDAE, Scatophagidae, Sciaridae, SIMULIIDAE, Tabanidae, Therevidae, Trypetidae, CERATOPOGONIDAE; CHIRONOMIDAE; CULICIDAE; DROSOPHILIDAE; GLOSSINIDAE; MUSCIDAE; TEPHRITIDAE; and PSYCHODIDAE. The larval form of Diptera species are called maggots (see LARVA).
Juvenile hormone analog and insect growth regulator used to control insects by disrupting metamorphosis. Has been effective in controlling mosquito larvae.
An organochlorine insecticide.
Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures.
Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS.
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.
The class Insecta, in the phylum ARTHROPODA, whose members are characterized by division into three parts: head, thorax, and abdomen. They are the dominant group of animals on earth; several hundred thousand different kinds having been described. Three orders, HEMIPTERA; DIPTERA; and SIPHONAPTERA; are of medical interest in that they cause disease in humans and animals. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p1)
A suborder of HEMIPTERA, called true bugs, characterized by the possession of two pairs of wings. It includes the medically important families CIMICIDAE and REDUVIIDAE. (From Dorland, 28th ed)
A plant genus in the family ROSACEAE, order Rosales, subclass Rosidae. It is best known as a source of edible fruits such as apricot, plum, peach, cherry, and almond.
A family of winged insects of the suborder HETEROPTERA, called assassin bugs, because most prey on other insects. However one subfamily, TRIATOMINAE, attacks humans and other vertebrates and transmits Chagas disease.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A republic in western Africa, south and east of MALI and west of NIGER. Its capital is Ouagadougou. It was formerly called Upper Volta until 1984.
Simultaneous resistance to several structurally and functionally distinct drugs.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Zygote-containing cysts of sporozoan protozoa. Further development in an oocyst produces small individual infective organisms called SPOROZOITES. Then, depending on the genus, the entire oocyst is called a sporocyst or the oocyst contains multiple sporocysts encapsulating the sporozoites.
An organothiophosphate cholinesterase inhibitor that is used as an insecticide and as an acaricide.
A large family of fruit flies in the order DIPTERA, comprising over 4,500 species in about 100 genera. They have patterned wings and brightly colored bodies and are found predominantly in the tropical latitudes.
The capacity of an organism to defend itself against pathological processes or the agents of those processes. This most often involves innate immunity whereby the organism responds to pathogens in a generic way. The term disease resistance is used most frequently when referring to plants.
Compounds having the nitro group, -NO2, attached to carbon. When attached to nitrogen they are nitramines and attached to oxygen they are NITRATES.
A republic in central Africa lying east of CHAD and the CENTRAL AFRICAN REPUBLIC and west of NIGERIA. The capital is Yaounde.
Insects of the suborder Heterocera of the order LEPIDOPTERA.
A discipline or occupation concerned with the study of INSECTS, including the biology and the control of insects.
Articles of cloth, usually cotton or rayon and other synthetic or cotton-blend fabrics, used in households, hospitals, physicians' examining rooms, nursing homes, etc., for sheets, pillow cases, toweling, gowns, drapes, and the like.
Arthropods, other than insects and arachnids, which transmit infective organisms from one host to another or from an inanimate reservoir to an animate host.
The genetic complement of an insect (INSECTS) as represented in its DNA.
The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT.
A genus of protozoa that comprise the malaria parasites of mammals. Four species infect humans (although occasional infections with primate malarias may occur). These are PLASMODIUM FALCIPARUM; PLASMODIUM MALARIAE; PLASMODIUM OVALE, and PLASMODIUM VIVAX. Species causing infection in vertebrates other than man include: PLASMODIUM BERGHEI; PLASMODIUM CHABAUDI; P. vinckei, and PLASMODIUM YOELII in rodents; P. brasilianum, PLASMODIUM CYNOMOLGI; and PLASMODIUM KNOWLESI in monkeys; and PLASMODIUM GALLINACEUM in chickens.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
The ability of viruses to resist or to become tolerant to chemotherapeutic agents or antiviral agents. This resistance is acquired through gene mutation.
The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
A republic in western Africa, south of BURKINA FASO and west of TOGO. Its capital is Accra.
The process of laying or shedding fully developed eggs (OVA) from the female body. The term is usually used for certain INSECTS or FISHES with an organ called ovipositor where eggs are stored or deposited before expulsion from the body.
The geographical area of Asia comprising BORNEO; BRUNEI; CAMBODIA; INDONESIA; LAOS; MALAYSIA; the MEKONG VALLEY; MYANMAR (formerly Burma), the PHILIPPINES; SINGAPORE; THAILAND; and VIETNAM.
A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite.
The science, art or practice of cultivating soil, producing crops, and raising livestock.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells.
A cholinesterase inhibitor that is used as an organothiophosphorus insecticide.
The relationships of groups of organisms as reflected by their genetic makeup.
Pesticides or their breakdown products remaining in the environment following their normal use or accidental contamination.
A species of fruit fly much used in genetics because of the large size of its chromosomes.
Compounds containing carbon-phosphorus bonds in which the phosphorus component is also bonded to one or more sulfur atoms. Many of these compounds function as CHOLINERGIC AGENTS and as INSECTICIDES.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The science dealing with the earth and its life, especially the description of land, sea, and air and the distribution of plant and animal life, including humanity and human industries with reference to the mutual relations of these elements. (From Webster, 3d ed)
Substances that reduce the growth or reproduction of BACTERIA.
Chemicals used to destroy pests of any sort. The concept includes fungicides (FUNGICIDES, INDUSTRIAL); INSECTICIDES; RODENTICIDES; etc.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
The application of smoke, vapor, or gas for the purpose of disinfecting or destroying pests or microorganisms.
Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population.
The addition of descriptive information about the function or structure of a molecular sequence to its MOLECULAR SEQUENCE DATA record.
The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Use of naturally-occuring or genetically-engineered organisms to reduce or eliminate populations of pests.
The reduction or regulation of the population of noxious, destructive, or dangerous plants, insects, or other animals. This includes control of plants that serve as habitats or food sources for animal pests.
Potent cholinesterase inhibitor used as an insecticide and acaricide.
A highly poisonous organochlorine insecticide. The EPA has cancelled registrations of pesticides containing this compound with the exception of its use through subsurface ground insertion for termite control and the dipping of roots or tops of non-food plants. (From Merck Index, 11th ed)
An acute febrile disease transmitted by the bite of AEDES mosquitoes infected with DENGUE VIRUS. It is self-limiting and characterized by fever, myalgia, headache, and rash. SEVERE DENGUE is a more virulent form of dengue.
A carbamate insecticide and parasiticide. It is a potent anticholinesterase agent belonging to the carbamate group of reversible cholinesterase inhibitors. It has a particularly low toxicity from dermal absorption and is used for control of head lice in some countries.
A polychlorinated compound used for controlling a variety of insects. It is practically water-insoluble, but readily adheres to clay particles and persists in soil and water for several years. Its mode of action involves repetitive nerve-discharges positively correlated to increase in temperature. This compound is extremely toxic to most fish. (From Comp Biochem Physiol (C) 1993 Jul;105(3):347-61)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A carbamate insecticide with anticholinesterase activity.
A genus of the subfamily TRIATOMINAE. Several species are vectors of TRYPANOSOMA CRUZI.
An organochlorine insecticide that has been used as a pediculicide and a scabicide. It has been shown to cause cancer.
Poisoning due to exposure to ORGANOPHOSPHORUS COMPOUNDS, such as ORGANOPHOSPHATES; ORGANOTHIOPHOSPHATES; and ORGANOTHIOPHOSPHONATES.
Nonsusceptibility of bacteria to the action of TETRACYCLINE which inhibits aminoacyl-tRNA binding to the 30S ribosomal subunit during protein synthesis.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
A cholinesterase inhibitor that is used as a systemic insecticide, an acaricide, and nematocide. (From Merck Index, 11th ed)
Diseases of plants.
Substances causing insects to turn away from them or reject them as food.
An organophosphorus insecticide that inhibits ACETYLCHOLINESTERASE.
Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system.
Nonsusceptibility of an organism to the action of penicillins.
An individual in which both alleles at a given locus are identical.
A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics.
Various salts of a quaternary ammonium oxime that reconstitute inactivated acetylcholinesterase, especially at the neuromuscular junction, and may cause neuromuscular blockade. They are used as antidotes to organophosphorus poisoning as chlorides, iodides, methanesulfonates (mesylates), or other salts.
Cholinesterases are a group of enzymes that catalyze the hydrolysis of acetylcholine and other choline esters, playing crucial roles in the termination of impulse transmission at cholinergic synapses and neuro-muscular junctions, and in the metabolism of certain drugs and toxic substances.
A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide.
Genotypic differences observed among individuals in a population.
The methyl homolog of parathion. An effective, but highly toxic, organothiophosphate insecticide and cholinesterase inhibitor.
Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function.
Partial cDNA (DNA, COMPLEMENTARY) sequences that are unique to the cDNAs from which they were derived.
Carbon-containing thiophosphoric acid derivatives. Included under this heading are compounds that have carbon bound to either SULFUR atom, or the OXYGEN atom of the SPO3 core structure.
Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The ability of fungi to resist or to become tolerant to chemotherapeutic agents, antifungal agents, or antibiotics. This resistance may be acquired through gene mutation.
Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow.
An organophosphate cholinesterase inhibitor that is used as a pesticide.
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
Proteins found in any species of bacterium.
Chemicals used in agriculture. These include pesticides, fumigants, fertilizers, plant hormones, steroids, antibiotics, mycotoxins, etc.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
An organothiophosphorus cholinesterase inhibitor that is used as a systemic and contact insecticide.
Living facilities for humans.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.

Why are there so few resistance-associated mutations in insecticide target genes? (1/735)

The genes encoding the three major targets of conventional insecticides are: Rdl, which encodes a gamma-aminobutyric acid receptor subunit (RDL); para, which encodes a voltage-gated sodium channel (PARA); and Ace, which encodes insect acetylcholinesterase (AChE). Interestingly, despite the complexity of the encoded receptors or enzymes, very few amino acid residues are replaced in different resistant insects: one within RDL, two within PARA and three or more within AChE. Here we examine the possible reasons underlying this extreme conservation by looking at the aspects of receptor and/or enzyme function that may constrain replacements to such a limited number of residues.  (+info)

The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. (2/735)

The primary routes of insecticide resistance in all insects are alterations in the insecticide target sites or changes in the rate at which the insecticide is detoxified. Three enzyme systems, glutathione S-transferases, esterases and monooxygenases, are involved in the detoxification of the four major insecticide classes. These enzymes act by rapidly metabolizing the insecticide to non-toxic products, or by rapidly binding and very slowly turning over the insecticide (sequestration). In Culex mosquitoes, the most common organophosphate insecticide resistance mechanism is caused by co-amplification of two esterases. The amplified esterases are differentially regulated, with three times more Est beta 2(1) being produced than Est alpha 2(1). Cis-acting regulatory sequences associated with these esterases are under investigation. All the amplified esterases in different Culex species act through sequestration. The rates at which they bind with insecticides are more rapid than those for their non-amplified counterparts in the insecticide-susceptible insects. In contrast, esterase-based organophosphate resistance in Anopheles is invariably based on changes in substrate specificities and increased turnover rates of a small subset of insecticides. The up-regulation of both glutathione S-transferases and monooxygenases in resistant mosquitoes is due to the effects of a single major gene in each case. The products of these major genes up-regulate a broad range of enzymes. The diversity of glutathione S-transferases produced by Anopheles mosquitoes is increased by the splicing of different 5' ends of genes, with a single 3' end, within one class of this enzyme family. The trans-acting regulatory factors responsible for the up-regulation of both the monooxygenase and glutathione S-transferases still need to be identified, but the recent development of molecular tools for positional cloning in Anopheles gambiae now makes this possible.  (+info)

Cytochrome P450 monooxygenases and insecticide resistance in insects. (3/735)

Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the sequencing of a cytochrome P450 candidate for resistance in resistant and susceptible flies. Several mutations leading to amino-acid substitutions have been detected in the P450 gene CYP6A2 of a resistant strain. The location of these mutations in a model of the 3D structure of the CYP6A2 protein suggested that some of them may be important for enzyme activity of this molecule. This has been verified by heterologous expression of wild-type and mutated cDNA in Escherichia coli. When other resistance mechanisms are considered, relatively few genetic mutations are involved in insecticide resistance, and this has led to an optimistic view of the management of resistance. Our observations compel us to survey in more detail the genetic diversity of cytochrome P450 genes and alleles involved in resistance.  (+info)

An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. (4/735)

Insecticide resistance genes have developed in a wide variety of insects in response to heavy chemical application. Few of these examples of adaptation in response to rapid environmental change have been studied both at the population level and at the gene level. One of these is the evolution of the overproduced esterases that are involved in resistance to organophosphate insecticides in the mosquito Culex pipiens. At the gene level, two genetic mechanisms are involved in esterase overproduction, namely gene amplification and gene regulation. At the population level, the co-occurrence of the same amplified allele in distinct geographic areas is best explained by the importance of passive transportation at the worldwide scale. The long-term monitoring of a population of mosquitoes in southern France has enabled a detailed study to be made of the evolution of resistance genes on a local scale, and has shown that a resistance gene with a lower cost has replaced a former resistance allele with a higher cost.  (+info)

Predicting insecticide resistance: mutagenesis, selection and response. (5/735)

Strategies to manage resistance to a particular insecticide have usually been devised after resistance has evolved. If it were possible to predict likely resistance mechanisms to novel insecticides before they evolved in the field, it might be feasible to have programmes that manage susceptibility. With this approach in mind, single-gene variants of the Australian sheep blowfly, Lucilia cuprina, resistant to dieldrin, diazinon and malathion, were selected in the laboratory after mutagenesis of susceptible strains. The genetic and molecular bases of resistance in these variants were identical to those that had previously evolved in natural populations. Given this predictive capacity for known resistances, the approach was extended to anticipate possible mechanisms of resistance to cyromazine, an insecticide to which L. cuprina populations remain susceptible after almost 20 years of exposure. Analysis of the laboratory-generated resistant variants provides an explanation for this observation. The variants show low levels of resistance and a selective advantage over susceptibles for only a limited concentration range. These results are discussed in the context of the choice of insecticides for control purposes and of delivery strategies to minimize the evolution of resistance.  (+info)

Can anything be done to maintain the effectiveness of pyrethroid-impregnated bednets against malaria vectors? (6/735)

Pyrethroid-treated bednets are the most promising available method of controlling malaria in the tropical world. Every effort should be made to find methods of responding to, or preventing, the emergence of pyrethroid resistance in the Anopheles vectors. Some cases of such resistance are known, notably in An. gambiae in West Africa where the kdr type of resistance has been selected, probably because of the use of pyrethroids on cotton. Because pyrethroids are irritant to mosquitoes, laboratory studies on the impact of, and selection for, resistance need to be conducted with free-flying mosquitoes in conditions that are as realistic as possible. Such studies are beginning to suggest that, although there is cross-resistance to all pyrethroids, some treatments are less likely to select for resistance than others are. Organophosphate, carbamate and phenyl pyrazole insecticides have been tested as alternative treatments for nets or curtains. Attempts have been made to mix an insect growth regulator and a pyrethroid on netting to sterilize pyrethroid-resistant mosquitoes that are not killed after contact with the netting. There seems to be no easy solution to the problem of pyrethroid resistance management, but further research is urgently needed.  (+info)

Altered properties of neuronal sodium channels associated with genetic resistance to pyrethroids. (7/735)

Genetic resistance to pyrethroid insecticides involves nervous system insensitivity linked to regulatory and structural genes of voltage-sensitive sodium channels. We examined the properties and relative density of sodium channels in central neurons of susceptible and pyrethroid-resistant (Pyr-R) insects that were homozygous for the amino acid substitution V421M in the I-S6 transmembrane segment. Pyr-R sodium channels show approximately 21-fold lower sensitivity to the synthetic pyrethroid permethrin and a approximately 2-fold increased sensitivity to the alpha-scorpion toxin LqhalphaIT. Pyr-R channels also exhibit altered gating properties, including a approximately 13 mV positive shift in voltage-dependent activation and approximately 7 mV positive shift in steady-state inactivation. Consistent with these changes in gating behavior, Pyr-R central neurons are less excitable, as evidenced by an approximately 11 mV elevation of action potential threshold. No differences in sodium channel density are evident. The altered properties of Pyr-R sodium channels provide a plausible molecular basis for nervous system insensitivity associated with pyrethroid resistance.  (+info)

Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). (8/735)

Overproduction of the insecticide-degrading esterases, E4 and FE4, in peach-potato aphids, Myzus persicae (Sulzer), depends on both gene amplification and transcriptional control, the latter being associated with changes in DNA methylation. The structure and function of the aphid esterase genes have been studied but the determination of their copy number has proved difficult, a common problem with gene amplification. We have now used a combination of pulsed-field gel electrophoresis and quantitative competitive PCR to determine relative esterase gene copy numbers in aphid clones with different levels of insecticide resistance (R1, R2 and R3). There are approx. 4-fold increases between susceptible, R1, R2 and R3 aphids, reaching a maximum of approx. 80 times more genes in R3; this gives proportionate increases in esterase protein relative to susceptible aphids. Thus there is no overexpression of the amplified genes, in contrast with what was thought previously. For E4 genes, the loss of 5-methylcytosine is correlated with a loss of expression, greatly decreasing the amount of enzyme relative to the copy number.  (+info)

Insecticide resistance is a genetic selection process in insect populations that allows them to survive and reproduce despite exposure to insecticides. It's the result of changes in the genetic makeup of insects, which can be caused by natural selection when insecticides are used repeatedly. Over time, this leads to the prevalence of genes that provide resistance to the insecticide, making the pest control methods less effective. Insecticide resistance is a significant challenge in public health and agriculture, as it can reduce the efficacy of interventions aimed at controlling disease-carrying insects or protecting crops from pests.

Insecticides are substances or mixtures of substances intended for preventing, destroying, or mitigating any pest, including insects, arachnids, or other related pests. They can be chemical or biological agents that disrupt the growth, development, or behavior of these organisms, leading to their death or incapacitation. Insecticides are widely used in agriculture, public health, and residential settings for pest control. However, they must be used with caution due to potential risks to non-target organisms and the environment.

Pyrethrins are a group of naturally occurring organic compounds extracted from the flowers of Chrysanthemum cinerariaefolium and Chrysanthemum coccineum. They have been used for centuries as insecticides due to their ability to disrupt the nervous system of insects, leading to paralysis and death. Pyrethrins are composed of six esters, pyrethrin I and II, cinerin I and II, and jasmolin I and II, which have different insecticidal properties but share a similar mode of action. They are commonly used in household insect sprays, pet shampoos, and agricultural applications to control a wide range of pests. However, pyrethrins can be toxic to fish and some beneficial insects, so they must be used with caution.

DDT (dichlorodiphenyltrichloroethane) is a synthetic insecticide that was widely used in the mid-20th century to control agricultural pests and vector-borne diseases such as malaria. It belongs to a class of chemicals called organochlorines, which are known for their persistence in the environment and potential for bioaccumulation in the food chain.

DDT was first synthesized in 1874, but its insecticidal properties were not discovered until 1939. Its use as an insecticide became widespread during World War II, when it was used to control typhus and malaria-carrying lice and mosquitoes among troops. After the war, DDT was widely adopted for agricultural and public health purposes.

However, concerns about the environmental and human health effects of DDT led to its ban or severe restriction in many countries starting in the 1970s. The United States banned the use of DDT for most purposes in 1972, and the Stockholm Convention on Persistent Organic Pollutants (POPs) prohibited its production and use globally in 2004, except in cases where there is a risk of vector-borne diseases.

DDT has been linked to several health problems, including reproductive effects, developmental toxicity, neurotoxicity, and endocrine disruption. It is also highly persistent in the environment, with a half-life of up to 15 years in soil and up to 30 years in water. This means that DDT can accumulate in the food chain, posing risks to wildlife and humans who consume contaminated food or water.

In summary, DDT is a synthetic insecticide that was widely used in the mid-20th century but has been banned or restricted in many countries due to its environmental and health effects. It belongs to a class of chemicals called organochlorines, which are known for their persistence in the environment and potential for bioaccumulation in the food chain. DDT has been linked to several health problems, including reproductive effects, developmental toxicity, neurotoxicity, and endocrine disruption.

'Anopheles gambiae' is a species of mosquito that is a major vector for the transmission of malaria. The female Anopheles gambiae mosquito bites primarily during the nighttime hours and preferentially feeds on human blood, which allows it to transmit the Plasmodium parasite that causes malaria. This species is widely distributed throughout much of Africa and is responsible for transmitting a significant proportion of the world's malaria cases.

The Anopheles gambiae complex actually consists of several closely related species or forms, which can be difficult to distinguish based on morphological characteristics alone. However, advances in molecular techniques have allowed for more accurate identification and differentiation of these species. Understanding the biology and behavior of Anopheles gambiae is crucial for developing effective strategies to control malaria transmission.

Permethrin is a type of medication that belongs to the class of chemicals called pyrethroids. It's commonly used as a topical treatment for scabies and lice infestations. Permethrin works by disrupting the nervous system of these parasites, leading to their paralysis and death.

In medical terms, permethrin is defined as a synthetic pyrethroid insecticide and acaricide with contact and stomach activity. It's used topically in the form of creams or lotions to treat infestations of lice and scabies mites on the skin. Permethrin is considered safe and effective for use in adults and children, including infants over two months old.

It's important to note that permethrin should be used as directed by a healthcare professional, and it may have some potential side effects such as skin irritation, redness, or itching.

'Anopheles' is a genus of mosquitoes that are known for their role in transmitting malaria parasites to humans. These mosquitoes have a distinctive resting posture, with their abdomens raised and heads down, and they typically feed on human hosts at night. Only female Anopheles mosquitoes transmit the malaria parasite, as they require blood meals to lay eggs.

There are over 400 species of Anopheles mosquitoes worldwide, but only about 30-40 of these are considered significant vectors of human malaria. The distribution and behavior of these mosquitoes can vary widely depending on the specific species and geographic location.

Preventing and controlling the spread of malaria involves a variety of strategies, including the use of insecticide-treated bed nets, indoor residual spraying, antimalarial drugs, and vaccines. Public health efforts to reduce the burden of malaria have made significant progress in recent decades, but the disease remains a major global health challenge, particularly in sub-Saharan Africa.

'Mosquito Control' is not a medical term per se, but it is a public health concept that refers to the systematic reduction or elimination of mosquito populations through various methods to prevent or minimize the transmission of mosquito-borne diseases. This multidisciplinary field involves entomologists, ecologists, engineers, and public health professionals working together to manage mosquito habitats, apply insecticides, and educate communities about personal protection measures. By controlling mosquito populations, we can significantly reduce the risk of contracting vector-borne illnesses such as malaria, dengue fever, yellow fever, Zika virus, and West Nile virus, among others.

Malathion is a type of organophosphate pesticide that is widely used in agriculture, public health, and residential settings for the control of various insect pests. It works by inhibiting an enzyme called acetylcholinesterase, which leads to the accumulation of the neurotransmitter acetylcholine in the synapses, resulting in overstimulation of the nervous system and ultimately death of the insect.

In a medical context, malathion is also used as a topical treatment for head lice infestations. It is available in various forms, such as shampoos, lotions, and sprays, and works by killing the lice and their eggs on contact. However, it is important to follow the instructions carefully when using malathion products to avoid excessive exposure and potential health risks.

'Culex' is a genus of mosquitoes that includes many species that are vectors for various diseases, such as West Nile virus, filariasis, and avian malaria. They are often referred to as "house mosquitoes" because they are commonly found in urban environments. These mosquitoes typically lay their eggs in standing water and have a cosmopolitan distribution, being found on all continents except Antarctica. The life cycle of Culex mosquitoes includes four stages: egg, larva, pupa, and adult. Both male and female adults feed on nectar, but only females require blood meals to lay eggs.

Fenitrothion is a type of organophosphate pesticide that is used to control a wide variety of insects. It works by inhibiting the enzyme acetylcholinesterase, which leads to an accumulation of the neurotransmitter acetylcholine and results in nervous system dysfunction in insects.

Fenitrothion is used to control pests in agricultural settings, as well as in public health programs to combat vectors of diseases such as mosquitoes and lice. However, it can also have toxic effects on non-target organisms, including humans, and has been linked to a variety of health problems, including neurological damage and cancer. As a result, its use is regulated in many countries, and there are restrictions on the amount that can be applied and the circumstances under which it can be used.

Propoxur is a carbamate insecticide that acts as a cholinesterase inhibitor. It is used to control a wide variety of pests, including cockroaches, ants, fleas, and ticks. Propoxur works by disrupting the nervous system of insects, leading to paralysis and death. It can be found in various forms such as powders, granules, and liquids for use in residential and commercial settings. However, it is important to note that propoxur can also have toxic effects on non-target organisms, including humans, and its use is regulated by environmental and health agencies worldwide.

I'm sorry for any confusion, but "Houseflies" are not a medical condition or term. Houseflies (Musca domestica) are a species of fly that are commonly found in human habitats. They are often considered nuisance pests because they can contaminate food and spread diseases. However, they do have an important role in the ecosystem as decomposers. If you have any questions related to medical terminology or health concerns, I'd be happy to try to help with those!

'Insect control' is not a term typically used in medical definitions. However, it generally refers to the methods and practices used to manage or reduce the population of insects that can be harmful or disruptive to human health, food supply, or property. This can include various strategies such as chemical pesticides, biological control agents, habitat modification, and other integrated pest management techniques.

In medical terms, 'vector control' is a more relevant concept, which refers to the specific practices used to reduce or prevent the transmission of infectious diseases by insects and other arthropods that act as disease vectors (such as mosquitoes, ticks, and fleas). Vector control measures may include the use of insecticides, larvicides, biological control agents, environmental management, personal protection methods, and other integrated vector management strategies.

Insect vectors are insects that transmit disease-causing pathogens (such as viruses, bacteria, parasites) from one host to another. They do this while feeding on the host's blood or tissues. The insects themselves are not infected by the pathogen but act as mechanical carriers that pass it on during their bite. Examples of diseases spread by insect vectors include malaria (transmitted by mosquitoes), Lyme disease (transmitted by ticks), and plague (transmitted by fleas). Proper prevention measures, such as using insect repellent and reducing standing water where mosquitoes breed, can help reduce the risk of contracting these diseases.

I'm sorry for any confusion, but "Mekong Valley" is not a term used in medical definitions. The Mekong Valley refers to the geographical region through which the Mekong River flows, including parts of China, Myanmar, Laos, Thailand, Cambodia, and Vietnam. If you have any questions related to health or medicine, I'd be happy to try to help answer those!

A pesticide synergist is not a medical term per se, but it is a term used in the field of toxicology and pest management. A pesticide synergist refers to a chemical compound that, when combined with a primary pesticide, enhances its toxicity or efficacy against pests.

Synergists do not have insecticidal properties on their own but can increase the potency of other chemicals. They work by inhibiting the detoxification enzymes in the target pest, which would otherwise help the pest metabolize and eliminate the primary pesticide. As a result, the pesticide remains active for a longer duration, leading to improved pest control.

It is essential to note that while synergists can enhance the effectiveness of pesticides, they may also increase the risk of adverse health effects in non-target organisms, including humans, due to the heightened toxicity. Therefore, their use should be carefully evaluated and regulated to minimize potential risks.

Dieldrin is a chlorinated hydrocarbon insecticide that was widely used in the past for agricultural and household pest control. It is a white, odorless, crystalline solid that is insoluble in water but soluble in organic solvents. Dieldrin has high toxicity to both insects and mammals, including humans. It can cause a range of harmful health effects, such as seizures, damage to the nervous system, and liver and kidney damage. Dieldrin was banned for most uses in the United States in 1974 due to its persistence in the environment and potential to accumulate in the food chain. It is now classified as a persistent organic pollutant (POP) and is regulated under international treaties.

I'm not aware of any medical definitions associated with the term "Benin." Benin is a country located in West Africa, and its name is used in medical literature to describe conditions or issues related to that country, such as diseases prevalent there. However, without additional context, it's difficult to provide a specific medical definition for 'Benin.'

A disease vector is a living organism that transmits infectious pathogens from one host to another. These vectors can include mosquitoes, ticks, fleas, and other arthropods that carry viruses, bacteria, parasites, or other disease-causing agents. The vector becomes infected with the pathogen after biting an infected host, and then transmits the infection to another host through its saliva or feces during a subsequent blood meal.

Disease vectors are of particular concern in public health because they can spread diseases rapidly and efficiently, often over large geographic areas. Controlling vector-borne diseases requires a multifaceted approach that includes reducing vector populations, preventing bites, and developing vaccines or treatments for the associated diseases.

I'm sorry for any confusion, but "Martinique" is not a medical term. It is actually the name of an island located in the Lesser Antilles in the eastern Caribbean Sea, which is a part of France. Therefore, it does not have a medical definition. If you have any questions related to medicine or health, I would be happy to try and help answer them!

Malaria is not a medical definition itself, but it is a disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. Here's a simple definition:

Malaria: A mosquito-borne infectious disease caused by Plasmodium parasites, characterized by cycles of fever, chills, and anemia. It can be fatal if not promptly diagnosed and treated. The five Plasmodium species known to cause malaria in humans are P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi.

Drug resistance, also known as antimicrobial resistance, is the ability of a microorganism (such as bacteria, viruses, fungi, or parasites) to withstand the effects of a drug that was originally designed to inhibit or kill it. This occurs when the microorganism undergoes genetic changes that allow it to survive in the presence of the drug. As a result, the drug becomes less effective or even completely ineffective at treating infections caused by these resistant organisms.

Drug resistance can develop through various mechanisms, including mutations in the genes responsible for producing the target protein of the drug, alteration of the drug's target site, modification or destruction of the drug by enzymes produced by the microorganism, and active efflux of the drug from the cell.

The emergence and spread of drug-resistant microorganisms pose significant challenges in medical treatment, as they can lead to increased morbidity, mortality, and healthcare costs. The overuse and misuse of antimicrobial agents, as well as poor infection control practices, contribute to the development and dissemination of drug-resistant strains. To address this issue, it is crucial to promote prudent use of antimicrobials, enhance surveillance and monitoring of resistance patterns, invest in research and development of new antimicrobial agents, and strengthen infection prevention and control measures.

I'm sorry for any confusion, but "Insect Proteins" is not a recognized medical term. However, I can provide some information about insect protein from a nutritional and food science perspective.

Insect proteins refer to the proteins that are obtained from insects. Insects are a rich source of protein, and their protein content varies by species. For example, mealworms and crickets have been found to contain approximately 47-63% and 60-72% protein by dry weight, respectively.

In recent years, insect proteins have gained attention as a potential sustainable source of nutrition due to their high protein content, low environmental impact, and the ability to convert feed into protein more efficiently compared to traditional livestock. Insect proteins can be used in various applications such as food and feed additives, nutritional supplements, and even cosmetics.

However, it's important to note that the use of insect proteins in human food is not widely accepted in many Western countries due to cultural and regulatory barriers. Nonetheless, research and development efforts continue to explore the potential benefits and applications of insect proteins in the global food system.

Esterases are a group of enzymes that catalyze the hydrolysis of ester bonds in esters, producing alcohols and carboxylic acids. They are widely distributed in plants, animals, and microorganisms and play important roles in various biological processes, such as metabolism, digestion, and detoxification.

Esterases can be classified into several types based on their substrate specificity, including carboxylesterases, cholinesterases, lipases, and phosphatases. These enzymes have different structures and mechanisms of action but all share the ability to hydrolyze esters.

Carboxylesterases are the most abundant and diverse group of esterases, with a wide range of substrate specificity. They play important roles in the metabolism of drugs, xenobiotics, and lipids. Cholinesterases, on the other hand, specifically hydrolyze choline esters, such as acetylcholine, which is an important neurotransmitter in the nervous system. Lipases are a type of esterase that preferentially hydrolyzes triglycerides and plays a crucial role in fat digestion and metabolism. Phosphatases are enzymes that remove phosphate groups from various molecules, including esters, and have important functions in signal transduction and other cellular processes.

Esterases can also be used in industrial applications, such as in the production of biodiesel, detergents, and food additives. They are often produced by microbial fermentation or extracted from plants and animals. The use of esterases in biotechnology is an active area of research, with potential applications in biofuel production, bioremediation, and medical diagnostics.

Genes in insects refer to the hereditary units of DNA that are passed down from parents to offspring and contain the instructions for the development, function, and reproduction of an organism. These genetic materials are located within the chromosomes in the nucleus of insect cells. They play a crucial role in determining various traits such as physical characteristics, behavior, and susceptibility to diseases.

Insect genes, like those of other organisms, consist of exons (coding regions) that contain information for protein synthesis and introns (non-coding regions) that are removed during the process of gene expression. The expression of insect genes is regulated by various factors such as transcription factors, enhancers, and silencers, which bind to specific DNA sequences to activate or repress gene transcription.

Understanding the genetic makeup of insects has important implications for various fields, including agriculture, public health, and evolutionary biology. For example, genes associated with insect pests' resistance to pesticides can be identified and targeted to develop more effective control strategies. Similarly, genes involved in disease transmission by insect vectors such as mosquitoes can be studied to develop novel interventions for preventing the spread of infectious diseases.

Carboxylesterase is a type of enzyme that catalyzes the hydrolysis of ester bonds in carboxylic acid esters, producing alcohol and carboxylate products. These enzymes are widely distributed in various tissues, including the liver, intestines, and plasma. They play important roles in detoxification, metabolism, and the breakdown of xenobiotics (foreign substances) in the body.

Carboxylesterases can also catalyze the reverse reaction, forming esters from alcohols and carboxylates, which is known as transesterification or esterification. This activity has applications in industrial processes and biotechnology.

There are several families of carboxylesterases, with different substrate specificities, kinetic properties, and tissue distributions. These enzymes have been studied for their potential use in therapeutics, diagnostics, and drug delivery systems.

Nitriles, in a medical context, refer to a class of organic compounds that contain a cyano group (-CN) bonded to a carbon atom. They are widely used in the chemical industry and can be found in various materials, including certain plastics and rubber products.

In some cases, nitriles can pose health risks if ingested, inhaled, or come into contact with the skin. Short-term exposure to high levels of nitriles can cause irritation to the eyes, nose, throat, and respiratory tract. Prolonged or repeated exposure may lead to more severe health effects, such as damage to the nervous system, liver, and kidneys.

However, it's worth noting that the medical use of nitriles is not very common. Some nitrile gloves are used in healthcare settings due to their resistance to many chemicals and because they can provide a better barrier against infectious materials compared to latex or vinyl gloves. But beyond this application, nitriles themselves are not typically used as medications or therapeutic agents.

Temefos is not a term that has a widely accepted medical definition. However, Temefos is an insecticide that belongs to the organophosphate group. It works by inhibiting the enzyme acetylcholinesterase, leading to the accumulation of the neurotransmitter acetylcholine and resulting in toxic effects on the nervous system.

Temefos is used to control a wide range of pests in agriculture, animal husbandry, and public health. It is also known as Abate, and it is commonly used in vector control programs to combat mosquito-borne diseases such as malaria and dengue fever.

However, the use of Temefos is regulated due to its potential toxicity to non-target organisms, including humans. Therefore, it is essential to follow safety guidelines when handling this chemical to minimize exposure and potential health risks.

Bedbugs are small, wingless insects that belong to the family Cimicidae. The scientific name for the most common species of bedbug is Cimex lectularius. Adult bedbugs are oval-shaped, flat, and reddish-brown in color, while nymphs (immature bedbugs) are smaller, lighter in color, and translucent.

Bedbugs feed on the blood of humans and other warm-blooded animals, usually at night when their hosts are asleep. They are attracted to body heat and carbon dioxide exhaled by their hosts. Bedbug bites can cause itchy red welts or bumps on the skin, but they are not known to transmit any diseases.

Bedbugs can be found in a variety of places where people sleep or rest for extended periods, including homes, hotels, hostels, and college dormitories. They can hide in cracks and crevices in furniture, walls, floors, and bedding, making them difficult to detect and eliminate.

To prevent bedbug infestations, it is recommended to inspect second-hand furniture carefully before bringing it into your home, use protective encasements on mattresses and box springs, and avoid storing items under beds or near walls. If you suspect a bedbug infestation, contact a pest management professional for assistance.

Aphids, also known as plant lice, are small sap-sucking insects that belong to the superfamily Aphidoidea in the order Hemiptera. They are soft-bodied and pear-shaped, with most species measuring less than 1/8 inch (3 millimeters) long.

Aphids feed on a wide variety of plants by inserting their needle-like mouthparts into the plant's vascular system to extract phloem sap. This feeding can cause stunted growth, yellowing, curling, or distortion of leaves and flowers, and may even lead to the death of the plant in severe infestations.

Aphids reproduce rapidly and can produce several generations per year. Many species give birth to live young (nymphs) rather than laying eggs, which allows them to increase their population numbers quickly. Aphids also have a complex life cycle that may involve sexual reproduction, parthenogenesis (reproduction without fertilization), and winged or wingless forms.

Aphids are an important pest in agriculture and horticulture, causing significant damage to crops and ornamental plants. They can also transmit plant viruses and produce honeydew, a sticky substance that attracts ants and supports the growth of sooty mold fungi.

Controlling aphids may involve cultural practices such as pruning, watering, and removing weeds; biological control using natural enemies such as lady beetles, lacewings, and parasitic wasps; or chemical control using insecticides.

Phenylcarbamates are a group of organic compounds that contain a phenyl group (a functional group consisting of a six-carbon ring, with the formula -C6H5) bonded to a carbamate group (-NHCOO-). Carbamates are compounds that contain a carbonyl (>C=O) group bonded to a nitrogen atom that is also bonded to two organic substituents.

In the medical field, phenylcarbamates have been used as drugs for various purposes. For example, some phenylcarbamates have been used as anticonvulsants, while others have been investigated for their potential as anti-cancer agents. However, it is important to note that many phenylcarbamates also have toxic properties and must be used with caution.

One well-known example of a phenylcarbamate is phenytoin, an anticonvulsant medication used to treat seizures. Phenytoin works by slowing down the transmission of nerve impulses in the brain, which can help prevent or reduce the severity of seizures.

It's worth noting that while phenylcarbamates have been studied for their potential therapeutic uses, they are not a widely used class of drugs and further research is needed to fully understand their mechanisms of action and potential side effects.

"Aedes" is a genus of mosquitoes that are known to transmit various diseases, including Zika virus, dengue fever, chikungunya, and yellow fever. These mosquitoes are typically found in tropical and subtropical regions around the world. They are distinguished by their black and white striped legs and thorax. Aedes aegypti is the most common species associated with disease transmission, although other species such as Aedes albopictus can also transmit diseases. It's important to note that only female mosquitoes bite and feed on blood, while males feed solely on nectar and plant juices.

Dichlorodiphenyldichloroethane (DDT) is a synthetic insecticide that was widely used in the 20th century to control agricultural pests and vector-borne diseases such as malaria. It is a colorless, odorless crystalline solid with a weak sweetish taste. DDT has high toxicity to many insects, but relatively low toxicity to mammals and birds. However, its persistence in the environment and bioaccumulation in the food chain have raised significant environmental and health concerns.

DDT was first synthesized in 1874, but its insecticidal properties were not discovered until 1939. During World War II, it was used extensively to control typhus and malaria-carrying mosquitoes, saving countless lives. After the war, DDT became a popular agricultural pesticide, leading to widespread use in agriculture and public health programs.

However, in the 1960s, studies began to reveal the negative impacts of DDT on wildlife, particularly birds. Rachel Carson's book "Silent Spring" (1962) brought these issues to public attention and helped launch the modern environmental movement. Research showed that DDT caused thinning of eggshells in birds, leading to reproductive failure and population declines.

In 1972, the United States banned the use of DDT for most purposes due to its environmental persistence, bioaccumulation, and toxicity to wildlife. Many other countries followed suit, and international agreements were established to limit its production and use. However, DDT is still used in some countries to control vector-borne diseases such as malaria, despite concerns about its long-term impacts on human health and the environment.

DDT has been linked to several potential health effects in humans, including cancer, reproductive problems, and developmental issues. However, the evidence for these risks is not conclusive, and more research is needed to fully understand the potential health impacts of DDT exposure.

'Culicidae' is the biological family that includes all species of mosquitoes. It consists of three subfamilies: Anophelinae, Culicinae, and Toxorhynchitinae. Mosquitoes are small, midge-like flies that are known for their ability to transmit various diseases to humans and other animals, such as malaria, yellow fever, dengue fever, and Zika virus. The medical importance of Culicidae comes from the fact that only female mosquitoes require blood meals to lay eggs, and during this process, they can transmit pathogens between hosts.

Acetylcholinesterase (AChE) is an enzyme that catalyzes the hydrolysis of acetylcholine (ACh), a neurotransmitter, into choline and acetic acid. This enzyme plays a crucial role in regulating the transmission of nerve impulses across the synapse, the junction between two neurons or between a neuron and a muscle fiber.

Acetylcholinesterase is located in the synaptic cleft, the narrow gap between the presynaptic and postsynaptic membranes. When ACh is released from the presynaptic membrane and binds to receptors on the postsynaptic membrane, it triggers a response in the target cell. Acetylcholinesterase rapidly breaks down ACh, terminating its action and allowing for rapid cycling of neurotransmission.

Inhibition of acetylcholinesterase leads to an accumulation of ACh in the synaptic cleft, prolonging its effects on the postsynaptic membrane. This can result in excessive stimulation of cholinergic receptors and overactivation of the cholinergic system, which may cause a range of symptoms, including muscle weakness, fasciculations, sweating, salivation, lacrimation, urination, defecation, bradycardia, and bronchoconstriction.

Acetylcholinesterase inhibitors are used in the treatment of various medical conditions, such as Alzheimer's disease, myasthenia gravis, and glaucoma. However, they can also be used as chemical weapons, such as nerve agents, due to their ability to disrupt the nervous system and cause severe toxicity.

Azinphosmethyl is a type of organophosphate insecticide that is used to control various pests in agriculture. Its chemical formula is C6H12NO6PS. It works by inhibiting the activity of acetylcholinesterase, an enzyme that is crucial for the proper functioning of the nervous system. This leads to an accumulation of the neurotransmitter acetylcholine, which can result in a variety of symptoms such as muscle twitching, tremors, convulsions, and eventually respiratory failure.

Azinphosmethyl is highly toxic to both insects and mammals, and it can pose significant risks to human health if not handled properly. Exposure to this chemical can occur through inhalation, skin contact, or ingestion, and it can cause a range of adverse health effects, including headaches, nausea, dizziness, and respiratory problems. Long-term exposure has been linked to more serious health issues such as neurological damage and an increased risk of certain types of cancer.

Due to its high toxicity and potential risks to human health, the use of azinphosmethyl is regulated by various governmental agencies around the world. In the United States, for example, the Environmental Protection Agency (EPA) has classified azinphosmethyl as a restricted-use pesticide, which means that it can only be applied by certified applicators who have received special training in its safe use.

A larva is a distinct stage in the life cycle of various insects, mites, and other arthropods during which they undergo significant metamorphosis before becoming adults. In a medical context, larvae are known for their role in certain parasitic infections. Specifically, some helminth (parasitic worm) species use larval forms to infect human hosts. These invasions may lead to conditions such as cutaneous larva migrans, visceral larva migrans, or gnathostomiasis, depending on the specific parasite involved and the location of the infection within the body.

The larval stage is characterized by its markedly different morphology and behavior compared to the adult form. Larvae often have a distinct appearance, featuring unsegmented bodies, simple sense organs, and undeveloped digestive systems. They are typically adapted for a specific mode of life, such as free-living or parasitic existence, and rely on external sources of nutrition for their development.

In the context of helminth infections, larvae may be transmitted to humans through various routes, including ingestion of contaminated food or water, direct skin contact with infective stages, or transmission via an intermediate host (such as a vector). Once inside the human body, these parasitic larvae can cause tissue damage and provoke immune responses, leading to the clinical manifestations of disease.

It is essential to distinguish between the medical definition of 'larva' and its broader usage in biology and zoology. In those fields, 'larva' refers to any juvenile form that undergoes metamorphosis before reaching adulthood, regardless of whether it is parasitic or not.

Equatorial Guinea is a country located in Central Africa, straddling the equator. It is not a medical term but a geographical and political designation. The country is composed of two main parts: Río Muni, which is the mainland and makes up about 10% of the country's total area, and Bioko, a tropical island in the Bight of Bonny, along with several smaller islands including Annobón, Corisco, and Elobey.

The capital city, Malabo, is located on Bioko Island. The official languages are Spanish and French, with Portuguese also recognized as an official language due to its membership in the Community of Portuguese Language Countries (CPLP).

Equatorial Guinea has a population of approximately 1.4 million people and is one of the smallest countries in Africa by land area. It gained independence from Spain in 1968, and since then, it has faced numerous challenges related to political instability, human rights abuses, and socio-economic development.

In terms of medical aspects, Equatorial Guinea faces various health issues, such as high infant mortality rates, malaria, HIV/AIDS, and other infectious diseases. The country also struggles with providing adequate healthcare services to its population due to limited resources, infrastructure, and healthcare personnel.

A biological assay is a method used in biology and biochemistry to measure the concentration or potency of a substance (like a drug, hormone, or enzyme) by observing its effect on living cells or tissues. This type of assay can be performed using various techniques such as:

1. Cell-based assays: These involve measuring changes in cell behavior, growth, or viability after exposure to the substance being tested. Examples include proliferation assays, apoptosis assays, and cytotoxicity assays.
2. Protein-based assays: These focus on measuring the interaction between the substance and specific proteins, such as enzymes or receptors. Examples include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and pull-down assays.
3. Genetic-based assays: These involve analyzing the effects of the substance on gene expression, DNA structure, or protein synthesis. Examples include quantitative polymerase chain reaction (qPCR) assays, reporter gene assays, and northern blotting.

Biological assays are essential tools in research, drug development, and diagnostic applications to understand biological processes and evaluate the potential therapeutic efficacy or toxicity of various substances.

Carbamates are a group of organic compounds that contain the carbamate functional group, which is a carbon atom double-bonded to oxygen and single-bonded to a nitrogen atom (> N-C=O). In the context of pharmaceuticals and agriculture, carbamates are a class of drugs and pesticides that have carbamate as their core structure.

Carbamate insecticides work by inhibiting the enzyme acetylcholinesterase, which is responsible for breaking down the neurotransmitter acetylcholine in the synapses of the nervous system. When this enzyme is inhibited, acetylcholine accumulates in the synaptic cleft, leading to overstimulation of the nervous system and ultimately causing paralysis and death in insects.

Carbamate drugs are used for a variety of medical indications, including as anticonvulsants, muscle relaxants, and psychotropic medications. They work by modulating various neurotransmitter systems in the brain, such as GABA, glutamate, and dopamine. Carbamates can also be used as anti- parasitic agents, such as ivermectin, which is effective against a range of parasites including nematodes, arthropods, and some protozoa.

It's important to note that carbamate pesticides can be toxic to non-target organisms, including humans, if not used properly. Therefore, it's essential to follow all safety guidelines when handling or using these products.

Piperonyl Butoxide (PBO) is not a medication or a therapeutic agent, so it doesn't have a typical "medical definition" as such. However, it is a chemical compound with a specific use in the medical field, particularly in relation to pest control and public health.

Piperonyl Butoxide is an organic compound that is commonly used as a synergist in pesticides. A synergist is a substance that enhances the effectiveness of a primary active ingredient. In the case of PBO, it is often combined with pyrethrin or pyrethroid-based insecticides to increase their potency and duration of action.

PBO works by inhibiting certain enzymes in insects that would otherwise help them metabolize and detoxify the insecticide. This allows the insecticide to remain active for a longer period, thereby increasing its efficacy.

It's important to note that while PBO is used in pest control, it is not directly toxic to humans or other mammals in the concentrations typically used. However, exposure should still be minimized as much as possible due to potential respiratory and skin irritation, and long-term health effects are not fully understood.

Metabolic detoxification, in the context of drugs, refers to the series of biochemical processes that the body undergoes to transform drugs or other xenobiotics into water-soluble compounds so they can be excreted. This process typically involves two phases:

1. Phase I Detoxification: In this phase, enzymes such as cytochrome P450 oxidases introduce functional groups into the drug molecule, making it more polar and reactive. This can result in the formation of metabolites that are less active than the parent compound or, in some cases, more toxic.

2. Phase II Detoxification: In this phase, enzymes such as glutathione S-transferases, UDP-glucuronosyltransferases, and sulfotransferases conjugate these polar and reactive metabolites with endogenous molecules like glutathione, glucuronic acid, or sulfate. This further increases the water solubility of the compound, allowing it to be excreted by the kidneys or bile.

It's important to note that while these processes are essential for eliminating drugs and other harmful substances from the body, they can also produce reactive metabolites that may cause damage to cells and tissues if not properly regulated. Therefore, maintaining a balance in the activity of these detoxification enzymes is crucial for overall health and well-being.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Insecticide-Treated Bednets (ITNs) are bed nets that have been specially treated with insecticides to repel, incapacitate, and kill mosquitoes and other disease-carrying insects. The World Health Organization (WHO) recommends the use of ITNs as a crucial strategy in preventing malaria transmission, especially in areas where the disease is endemic.

The insecticide used in ITNs is typically a pyrethroid, which is safe for humans but highly toxic to mosquitoes. When an infected mosquito lands on the net to bite a person, it comes into contact with the insecticide and dies before it can transmit the malaria parasite.

ITNs are often distributed through mass campaigns or targeted interventions in communities most at risk of malaria transmission. They have been shown to be highly effective in reducing the incidence of malaria and saving lives, particularly among young children and pregnant women who are most vulnerable to the disease.

"Pediculus" is the medical term for a type of small, wingless parasitic insect that can be found in human hair and on the body. There are two main species that affect humans:

1. Pediculus humanus capitis - also known as the head louse, it primarily lives on the scalp and is responsible for causing head lice infestations.
2. Pediculus humanus corporis - also known as the body louse, it typically lives in clothing and on the body, particularly in seams and folds of clothing, and can cause body lice infestations.

Both species of Pediculus feed on human blood and can cause itching and skin irritation. They are primarily spread through close personal contact and sharing of items such as hats, combs, and clothing.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

A mosquito net is not so much a medical definition but rather a description of a device used to prevent insect bites, particularly from mosquitoes. However, I can provide you with a general description and the role it plays in medical and public health contexts:

Mosquito nets are specially designed nets that are draped over beds or other sleeping areas to create a protective barrier against mosquitoes and other insects. They are often made of lightweight, breathable material such as polyester or cotton. In many cases, they are treated with insecticides to enhance their ability to repel or kill insects that come into contact with the netting.

In medical and public health contexts, mosquito nets are frequently used in areas where mosquito-borne diseases such as malaria, dengue fever, yellow fever, and Zika virus are prevalent. By creating a barrier between people and mosquitoes, mosquito nets can help prevent the transmission of these diseases, particularly during sleeping hours when people are most vulnerable to mosquito bites.

Mosquito nets can be used by themselves or in combination with other mosquito-borne disease prevention strategies such as insect repellents, long-sleeved clothing, and indoor residual spraying of insecticides. They are a simple, cost-effective intervention that has been shown to significantly reduce the risk of mosquito-borne diseases in many settings.

'Beauveria' is a genus of fungi that belongs to the family Cordycipitaceae. These fungi are known for their ability to parasitize various insects and arthropods, and they have been studied for their potential as biocontrol agents. The most well-known species in this genus is Beauveria bassiana, which has been used to control a variety of pest insects in agriculture and forestry.

Beauveria fungi produce a range of bioactive compounds that can have toxic effects on insects and other organisms. When an infected insect comes into contact with the spores of Beauveria, the spores germinate and penetrate the insect's cuticle, eventually killing the host. The fungus then grows inside the insect's body, producing more spores that can infect other hosts.

In addition to their use as biocontrol agents, Beauveria fungi have also been studied for their potential medicinal properties. Some research has suggested that certain species of Beauveria may have antimicrobial, antitumor, and immunomodulatory effects, although more research is needed to confirm these findings and to understand the mechanisms behind them.

Organophosphates are a group of chemicals that include insecticides, herbicides, and nerve gases. They work by inhibiting an enzyme called acetylcholinesterase, which normally breaks down the neurotransmitter acetylcholine in the synapse between nerves. This leads to an overaccumulation of acetylcholine, causing overstimulation of the nervous system and resulting in a wide range of symptoms such as muscle twitching, nausea, vomiting, diarrhea, sweating, confusion, and potentially death due to respiratory failure. Organophosphates are highly toxic and their use is regulated due to the risks they pose to human health and the environment.

I'm sorry for any confusion, but "Hemiptera" is not a medical term. It is a taxonomic order in the classification of living things, also known as "true bugs." This group includes species such as cicadas, aphids, and bedbugs. If you have a medical term in mind, please provide it so I can give you an accurate definition.

Medical Definition:

Lethal Dose 50 (LD50) is a standard measurement in toxicology that refers to the estimated amount or dose of a substance, which if ingested, injected, inhaled, or absorbed through the skin by either human or animal, would cause death in 50% of the test population. It is expressed as the mass of a substance per unit of body weight (mg/kg, μg/kg, etc.). LD50 values are often used to compare the toxicity of different substances and help determine safe dosage levels.

I am not aware of a standard medical definition for the term "islands." In general, an island is a landmass that is surrounded by water. In a medical context, it might be used to describe isolated areas or structures within the body, such as islands of Langerhans in the pancreas which are clusters of cells that produce hormones like insulin. However, I would need more specific context to provide an accurate definition related to medicine.

Diptera is an order of insects that includes flies, mosquitoes, and gnats. The name "Diptera" comes from the Greek words "di," meaning two, and "pteron," meaning wing. This refers to the fact that all members of this order have a single pair of functional wings for flying, while the other pair is reduced to small knob-like structures called halteres, which help with balance and maneuverability during flight.

Some common examples of Diptera include houseflies, fruit flies, horseflies, tsetse flies, and midges. Many species in this order are important pollinators, while others can be significant pests or disease vectors. The study of Diptera is called dipterology.

Methoprene is an insect growth regulator (IGR) that disrupts the developmental process in insects, preventing them from reaching maturity and reproducing. It works by mimicking the natural hormones found in insects, specifically juvenile hormone, which regulates their molting and metamorphosis. By interfering with this process, methoprene causes immature insects to continue molting without ever becoming adults, or it prevents larvae from transforming into pupae or adults.

Methoprene is commonly used in pest control applications, including public health, agriculture, and household settings, to control a wide range of insect pests, such as mosquitoes, fleas, ticks, ants, cockroaches, and stored product pests. It has low toxicity to non-target organisms, including mammals, making it a relatively safe option for use in sensitive environments. However, like any pesticide, methoprene should be used responsibly and according to label instructions to minimize potential risks to human health and the environment.

Dicofol is an organic compound that is primarily used as a pesticide, specifically as an acaricide to control mites in various crops. It is a technical grade of the chemical compound, which means it may contain small amounts of other related compounds. Dicofol is an organochlorine insecticide, and its chemical structure is similar to that of DDT.

The medical definition of Dicofol relates to its potential health effects on humans. It has been classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC) based on limited evidence in experimental animals. Exposure to Dicofol may cause irritation to the skin, eyes, and respiratory tract. Long-term exposure may also affect the nervous system and reproductive system. However, it is important to note that the use of Dicofol as a pesticide is regulated by various governmental agencies worldwide, and its use is subject to strict guidelines and safety measures to minimize human exposure.

Drug resistance in neoplasms (also known as cancer drug resistance) refers to the ability of cancer cells to withstand the effects of chemotherapeutic agents or medications designed to kill or inhibit the growth of cancer cells. This can occur due to various mechanisms, including changes in the cancer cell's genetic makeup, alterations in drug targets, increased activity of drug efflux pumps, and activation of survival pathways.

Drug resistance can be intrinsic (present at the beginning of treatment) or acquired (developed during the course of treatment). It is a significant challenge in cancer therapy as it often leads to reduced treatment effectiveness, disease progression, and poor patient outcomes. Strategies to overcome drug resistance include the use of combination therapies, development of new drugs that target different mechanisms, and personalized medicine approaches that consider individual patient and tumor characteristics.

Organophosphorus compounds are a class of chemical substances that contain phosphorus bonded to organic compounds. They are used in various applications, including as plasticizers, flame retardants, pesticides (insecticides, herbicides, and nerve gases), and solvents. In medicine, they are also used in the treatment of certain conditions such as glaucoma. However, organophosphorus compounds can be toxic to humans and animals, particularly those that affect the nervous system by inhibiting acetylcholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine. Exposure to these compounds can cause symptoms such as nausea, vomiting, muscle weakness, and in severe cases, respiratory failure and death.

The Cytochrome P-450 (CYP450) enzyme system is a group of enzymes found primarily in the liver, but also in other organs such as the intestines, lungs, and skin. These enzymes play a crucial role in the metabolism and biotransformation of various substances, including drugs, environmental toxins, and endogenous compounds like hormones and fatty acids.

The name "Cytochrome P-450" refers to the unique property of these enzymes to bind to carbon monoxide (CO) and form a complex that absorbs light at a wavelength of 450 nm, which can be detected spectrophotometrically.

The CYP450 enzyme system is involved in Phase I metabolism of xenobiotics, where it catalyzes oxidation reactions such as hydroxylation, dealkylation, and epoxidation. These reactions introduce functional groups into the substrate molecule, which can then undergo further modifications by other enzymes during Phase II metabolism.

There are several families and subfamilies of CYP450 enzymes, each with distinct substrate specificities and functions. Some of the most important CYP450 enzymes include:

1. CYP3A4: This is the most abundant CYP450 enzyme in the human liver and is involved in the metabolism of approximately 50% of all drugs. It also metabolizes various endogenous compounds like steroids, bile acids, and vitamin D.
2. CYP2D6: This enzyme is responsible for the metabolism of many psychotropic drugs, including antidepressants, antipsychotics, and beta-blockers. It also metabolizes some endogenous compounds like dopamine and serotonin.
3. CYP2C9: This enzyme plays a significant role in the metabolism of warfarin, phenytoin, and nonsteroidal anti-inflammatory drugs (NSAIDs).
4. CYP2C19: This enzyme is involved in the metabolism of proton pump inhibitors, antidepressants, and clopidogrel.
5. CYP2E1: This enzyme metabolizes various xenobiotics like alcohol, acetaminophen, and carbon tetrachloride, as well as some endogenous compounds like fatty acids and prostaglandins.

Genetic polymorphisms in CYP450 enzymes can significantly affect drug metabolism and response, leading to interindividual variability in drug efficacy and toxicity. Understanding the role of CYP450 enzymes in drug metabolism is crucial for optimizing pharmacotherapy and minimizing adverse effects.

I apologize for any confusion, but "insects" are not a medical term. Insects are small air-breathing arthropods that have a segmented body with six legs and usually have wings. They make up the largest group of animals on Earth, with over a million described species.

If you're looking for information about a specific medical condition or topic, please provide more details so I can offer a relevant response.

Heteroptera is not a medical term, but a taxonomic category in zoology. It refers to a suborder of insects within the order Hemiptera, also known as true bugs. This group includes a wide variety of species, such as bed bugs, assassin bugs, and stink bugs. While Heteroptera is not directly related to human health or medicine, some species can have medical importance as disease vectors or pests.

"Prunus" is a term that refers to a genus of plants, which includes many familiar fruits such as plums, cherries, peaches, and almonds. It's not a medical term, but rather a botanical one. The fruit of these plants are often used in food medicine due to their nutritional value and health benefits. For example, prunes (dried plums) are known for their laxative effects. However, the plant itself or its extracts can also have medicinal uses, mainly as anti-inflammatory, antioxidant and cardioprotective agents.

Reduviidae is a family of insects in the order Hemiptera, also known as "assassin bugs." These insects are named for their long, narrow bodies and piercing-sucking mouthparts that they use to feed on other insects and sometimes small vertebrates. Some species of Reduviidae are known to be hematophagous (blood-feeding) and can transmit diseases to humans and animals, such as Chagas disease, which is caused by the parasite Trypanosoma cruzi and transmitted through the feces of infected triatomine bugs. However, most species of Reduviidae are beneficial predators that help control pest insect populations in natural ecosystems.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

I apologize for any confusion, but "Burkina Faso" is not a medical term or concept. It is the name of a country located in West Africa. The name "Burkina Faso" translates to "Land of Incorruptible People" in Mossi and Dioula, two languages spoken in the region. The country was known as Upper Volta when it gained independence from France in 1960. It was renamed Burkina Faso in 1984 by then-President Thomas Sankara, who aimed to promote a sense of national identity and unity among the diverse population.

Burkina Faso is a landlocked country with a population of around 21 million people (as of 2021). It shares borders with six countries: Mali to the northwest, Niger to the northeast, Benin to the southeast, Togo and Ghana to the south, and Côte d'Ivoire to the southwest. The capital city is Ouagadougou.

The primary languages spoken in Burkina Faso are French (the official language), Mooré, Dioula, Fula, and Gourmanchéma. The country has a diverse cultural heritage with numerous ethnic groups, including the Mossi, Fulani, Bobo, Gurunsi, Senufo, and Lobi.

Burkina Faso faces various challenges, such as poverty, food insecurity, limited access to education, and health issues like malaria, HIV/AIDS, and neglected tropical diseases. The country also struggles with political instability and security threats from extremist groups operating in the Sahel region.

"Multiple drug resistance" (MDR) is a term used in medicine to describe the condition where a patient's infection becomes resistant to multiple antimicrobial drugs. This means that the bacteria, virus, fungus or parasite that is causing the infection has developed the ability to survive and multiply despite being exposed to medications that were originally designed to kill or inhibit its growth.

In particular, MDR occurs when an organism becomes resistant to at least one drug in three or more antimicrobial categories. This can happen due to genetic changes in the microorganism that allow it to survive in the presence of these drugs. The development of MDR is a significant concern for public health because it limits treatment options and can make infections harder, if not impossible, to treat.

MDR can develop through several mechanisms, including mutations in the genes that encode drug targets or enzymes involved in drug metabolism, as well as the acquisition of genetic elements such as plasmids and transposons that carry resistance genes. The overuse and misuse of antimicrobial drugs are major drivers of MDR, as they create selective pressure for the emergence and spread of resistant strains.

MDR infections can occur in various settings, including hospitals, long-term care facilities, and communities. They can affect people of all ages and backgrounds, although certain populations may be at higher risk, such as those with weakened immune systems or chronic medical conditions. Preventing the spread of MDR requires a multifaceted approach that includes surveillance, infection control, antimicrobial stewardship, and research into new therapies and diagnostics.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

An oocyst is a thick-walled, environmentally resistant spore-like structure produced by some protozoan parasites, such as Cryptosporidium and Cyclospora, during their life cycle. These oocysts can survive for long periods in the environment and can infect a host when ingested, leading to infection and disease. The term "oocyst" is specific to certain groups of protozoan parasites and should not be confused with other types of spores produced by fungi or bacteria.

Chlorpyrifos is a type of pesticide that belongs to the class of organophosphates. It works by inhibiting the enzyme acetylcholinesterase, which leads to an accumulation of the neurotransmitter acetylcholine and causes toxic effects in insects. Chlorpyrifos is used to control a wide variety of pests, including insects that infest crops, homes, and gardens. It is also used to protect wood from termites and other wood-boring insects.

Chlorpyrifos can be harmful to humans if it is ingested, inhaled, or comes into contact with the skin. Exposure to chlorpyrifos can cause a range of symptoms, including nausea, vomiting, headache, dizziness, and muscle twitching. In severe cases, it can lead to respiratory failure, convulsions, and even death. Chlorpyrifos has been linked to developmental problems in children, including reduced IQ and attention deficit disorder. As a result, the use of chlorpyrifos in residential settings has been restricted in many countries.

Tephritidae is a family of flies commonly known as "fruit flies" or "vinegar flies." The term "Tephritidae" is derived from the Greek word "tephra," which means "ash," likely referring to the often gray or sooty coloration of some members of this family.

Tephritidae includes over 4,000 species worldwide, many of which are important agricultural pests. These flies are known for their habit of laying eggs in or on fruits and vegetables, leading to the development of larvae that feed on the plant tissue and cause damage. Some well-known examples of Tephritidae include the Mediterranean fruit fly (Ceratitis capitata) and the apple maggot (Rhagoletis pomonella).

It is worth noting that "fruit flies" is also a common name for Drosophilidae, another family of small flies. While both families are sometimes referred to as "fruit flies," Tephritidae species tend to be larger and more brightly colored than Drosophilidae species.

Disease resistance, in a medical context, refers to the inherent or acquired ability of an organism to withstand or limit infection by a pathogen, such as bacteria, viruses, fungi, or parasites. This resistance can be due to various factors including the presence of physical barriers (e.g., intact skin), chemical barriers (e.g., stomach acid), and immune responses that recognize and eliminate the pathogen.

Inherited disease resistance is often determined by genetics, where certain genetic variations can make an individual more or less susceptible to a particular infection. For example, some people are naturally resistant to certain diseases due to genetic factors that prevent the pathogen from infecting their cells or replicating within them.

Acquired disease resistance can occur through exposure to a pathogen, which triggers an immune response that confers immunity or resistance to future infections by the same pathogen. This is the basis of vaccination, where a weakened or dead form of a pathogen is introduced into the body to stimulate an immune response without causing disease.

Overall, disease resistance is an important factor in maintaining health and preventing the spread of infectious diseases.

Nitro compounds, also known as nitro derivatives or nitro aromatics, are organic compounds that contain the nitro group (-NO2) bonded to an aromatic hydrocarbon ring. They are named as such because they contain a nitrogen atom in a -3 oxidation state and are typically prepared by the nitration of aromatic compounds using nitric acid or a mixture of nitric and sulfuric acids.

Nitro compounds have significant importance in organic chemistry due to their versatile reactivity, which allows for various chemical transformations. They can serve as useful intermediates in the synthesis of other chemical products, including dyes, pharmaceuticals, and explosives. However, some nitro compounds can also be hazardous, with potential health effects such as skin and respiratory irritation, and they may pose environmental concerns due to their persistence and potential toxicity.

It is important to handle nitro compounds with care, following appropriate safety guidelines and regulations, to minimize risks associated with their use.

I'm not aware of any medical condition or term that is specifically associated with or referred to as "Cameroon." Cameroon is a country located in Central Africa, known for its rich biodiversity and cultural diversity. If you have more context about why you are looking for a medical definition of "Cameroon," I may be able to provide a more helpful response.

I believe there may be some confusion in your question. "Moths" are not a medical term, but rather they are a group of insects closely related to butterflies. They belong to the order Lepidoptera and are characterized by their scales covering their wings and body. If you have any questions about moths or if you meant to ask something else, please let me know!

Entomology is the scientific study of insects, including their behavior, classification, and evolution. It is a branch of zoology that deals with the systematic study of insects and their relationship with humans, animals, and the environment. Entomologists may specialize in various areas such as medical entomology, agricultural entomology, or forensic entomology, among others. Medical entomology focuses on the study of insects that can transmit diseases to humans and animals, while agricultural entomology deals with insects that affect crops and livestock. Forensic entomology involves using insects found in crime scenes to help determine the time of death or other relevant information for legal investigations.

'Bedding and linens' is a term that refers to the items used to cover, clean, and maintain beds and other furniture in medical and residential settings. These items include:

1. Sheets: These are flat pieces of cloth that are placed on top of the mattress and beneath the blankets or comforters. They come in various sizes (twin, full, queen, king) to fit different mattress sizes.
2. Blankets/Comforters: These are thicker, often quilted or filled, pieces of fabric that provide warmth and comfort to the user.
3. Pillows and pillowcases: Pillows are used to support the head and neck during sleep, while pillowcases are the removable covers that protect the pillows from dirt, sweat, and stains.
4. Mattress pads/protectors: These are additional layers placed between the mattress and the sheets to provide extra protection against spills, stains, or allergens.
5. Bed skirts: These are decorative pieces of fabric that cover the space between the box spring and the floor, hiding any storage area or providing a more finished look to the bed.
6. Towels and washcloths: While not directly related to the bed, these linens are often included in the 'bedding and linens' category as they share similar cleaning and maintenance requirements.

In medical settings, such as hospitals and nursing homes, strict infection control protocols are followed for handling, washing, and storing bedding and linens to prevent the spread of infectious diseases.

Arthropod vectors are living organisms, specifically arthropods such as mosquitoes, ticks, fleas, and lice, that can transmit infectious agents (such as viruses, bacteria, or parasites) from one host to another. This process is called vector-borne transmission. The arthropod vectors become infected with the pathogen while taking a blood meal from an infected host, then transmit the pathogen to another host during subsequent feedings. The transmission can occur through various means, including biting, stinging, or even mechanical contact. It's important to note that not all arthropods are vectors, and only certain species within each group are capable of transmitting diseases.

A genome in the context of insects refers to the complete set of genetic material, including all of the DNA and RNA, that is present in the cells of an insect. The genome contains all of the genes that provide the instructions for the development, growth, and function of the insect. It also includes non-coding regions of DNA that may have regulatory functions or may be the result of historical processes.

The genome of an insect is typically divided into several chromosomes, which are structures in the cell's nucleus that contain long stretches of DNA. The number and appearance of these chromosomes can vary between different species of insects. For example, some insects may have a diploid number of two sets of chromosomes (one set from each parent), while others may have a haploid number of a single set of chromosomes.

The genome size of insects can also vary significantly, with some species having genomes that are only a few hundred million base pairs in length, while others have genomes that are several billion base pairs long. The genome sequence of an insect can provide valuable insights into its evolutionary history, as well as information about the genes and regulatory elements that are important for its biology and behavior.

Vascular resistance is a measure of the opposition to blood flow within a vessel or a group of vessels, typically expressed in units of mmHg/(mL/min) or sometimes as dynes*sec/cm^5. It is determined by the diameter and length of the vessels, as well as the viscosity of the blood flowing through them. In general, a decrease in vessel diameter, an increase in vessel length, or an increase in blood viscosity will result in an increase in vascular resistance, while an increase in vessel diameter, a decrease in vessel length, or a decrease in blood viscosity will result in a decrease in vascular resistance. Vascular resistance is an important concept in the study of circulation and cardiovascular physiology because it plays a key role in determining blood pressure and blood flow within the body.

"Plasmodium" is a genus of protozoan parasites that are the causative agents of malaria in humans and other animals. There are several species within this genus, including Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, among others.

These parasites have a complex life cycle that involves two hosts: an Anopheles mosquito and a vertebrate host (such as humans). When a person is bitten by an infected mosquito, the parasites enter the bloodstream and infect red blood cells, where they multiply and cause the symptoms of malaria.

Plasmodium species are transmitted through the bites of infected female Anopheles mosquitoes, which become infected after taking a blood meal from an infected person. The parasites then develop in the mosquito's midgut, eventually making their way to the salivary glands, where they can be transmitted to another human through the mosquito's bite.

Malaria is a serious and sometimes fatal disease that affects millions of people worldwide, particularly in tropical and subtropical regions. It is characterized by fever, chills, headache, muscle and joint pain, and anemia, among other symptoms. Prompt diagnosis and treatment are essential to prevent severe illness and death from malaria.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

An allele is a variant form of a gene that is located at a specific position on a specific chromosome. Alleles are alternative forms of the same gene that arise by mutation and are found at the same locus or position on homologous chromosomes.

Each person typically inherits two copies of each gene, one from each parent. If the two alleles are identical, a person is said to be homozygous for that trait. If the alleles are different, the person is heterozygous.

For example, the ABO blood group system has three alleles, A, B, and O, which determine a person's blood type. If a person inherits two A alleles, they will have type A blood; if they inherit one A and one B allele, they will have type AB blood; if they inherit two B alleles, they will have type B blood; and if they inherit two O alleles, they will have type O blood.

Alleles can also influence traits such as eye color, hair color, height, and other physical characteristics. Some alleles are dominant, meaning that only one copy of the allele is needed to express the trait, while others are recessive, meaning that two copies of the allele are needed to express the trait.

Drug resistance, viral, refers to the ability of a virus to continue replicating in the presence of antiviral drugs that are designed to inhibit or stop its growth. This occurs when the virus mutates and changes its genetic makeup in such a way that the drug can no longer effectively bind to and inhibit the function of its target protein, allowing the virus to continue infecting host cells and causing disease.

Viral drug resistance can develop due to several factors, including:

1. Mutations in the viral genome that alter the structure or function of the drug's target protein.
2. Changes in the expression levels or location of the drug's target protein within the virus-infected cell.
3. Activation of alternative pathways that allow the virus to replicate despite the presence of the drug.
4. Increased efflux of the drug from the virus-infected cell, reducing its intracellular concentration and effectiveness.

Viral drug resistance is a significant concern in the treatment of viral infections such as HIV, hepatitis B and C, herpes simplex virus, and influenza. It can lead to reduced treatment efficacy, increased risk of treatment failure, and the need for more toxic or expensive drugs. Therefore, it is essential to monitor viral drug resistance during treatment and adjust therapy accordingly to ensure optimal outcomes.

Multiple bacterial drug resistance (MDR) is a medical term that refers to the resistance of multiple strains of bacteria to several antibiotics or antimicrobial agents. This means that these bacteria have developed mechanisms that enable them to survive and multiply despite being exposed to drugs that were previously effective in treating infections caused by them.

MDR is a significant public health concern because it limits the treatment options available for bacterial infections, making them more difficult and expensive to treat. In some cases, MDR bacteria may cause severe or life-threatening infections that are resistant to all available antibiotics, leaving doctors with few or no effective therapeutic options.

MDR can arise due to various mechanisms, including the production of enzymes that inactivate antibiotics, changes in bacterial cell membrane permeability that prevent antibiotics from entering the bacteria, and the development of efflux pumps that expel antibiotics out of the bacteria. The misuse or overuse of antibiotics is a significant contributor to the emergence and spread of MDR bacteria.

Preventing and controlling the spread of MDR bacteria requires a multifaceted approach, including the judicious use of antibiotics, infection control measures, surveillance, and research into new antimicrobial agents.

I'm sorry for any confusion, but "Ghana" is not a medical term. It is the name of a country located in West Africa, known officially as the Republic of Ghana. If you have any questions about medical terms or conditions, I would be happy to help with those!

Oviposition is a medical/biological term that refers to the process of laying or depositing eggs by female organisms, including birds, reptiles, insects, and fish. In humans and other mammals, the term is not applicable since they give birth to live young rather than laying eggs.

Southeast Asia is a geographical region that consists of the countries that are located at the southeastern part of the Asian continent. The definition of which countries comprise Southeast Asia may vary, but it generally includes the following 11 countries:

* Brunei
* Cambodia
* East Timor (Timor-Leste)
* Indonesia
* Laos
* Malaysia
* Myanmar (Burma)
* Philippines
* Singapore
* Thailand
* Vietnam

Southeast Asia is known for its rich cultural diversity, with influences from Hinduism, Buddhism, Islam, and Christianity. The region is also home to a diverse range of ecosystems, including rainforests, coral reefs, and mountain ranges. In recent years, Southeast Asia has experienced significant economic growth and development, but the region still faces challenges related to poverty, political instability, and environmental degradation.

Glutathione transferases (GSTs) are a group of enzymes involved in the detoxification of xenobiotics and endogenous compounds. They facilitate the conjugation of these compounds with glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, which results in more water-soluble products that can be easily excreted from the body.

GSTs play a crucial role in protecting cells against oxidative stress and chemical injury by neutralizing reactive electrophilic species and peroxides. They are found in various tissues, including the liver, kidneys, lungs, and intestines, and are classified into several families based on their structure and function.

Abnormalities in GST activity have been associated with increased susceptibility to certain diseases, such as cancer, neurological disorders, and respiratory diseases. Therefore, GSTs have become a subject of interest in toxicology, pharmacology, and clinical research.

I apologize for any confusion, but "agriculture" is not a term that has a medical definition. Agriculture refers to the cultivation and breeding of animals, plants, and fungi for food, fiber, biofuel, medicinal plants, and other products used to sustain and enhance human life. It is an important industry and practice that has been developed over thousands of years and continues to play a critical role in global food production and security.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

The transcriptome refers to the complete set of RNA molecules, including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and other non-coding RNAs, that are present in a cell or a population of cells at a given point in time. It reflects the genetic activity and provides information about which genes are being actively transcribed and to what extent. The transcriptome can vary under different conditions, such as during development, in response to environmental stimuli, or in various diseases, making it an important area of study in molecular biology and personalized medicine.

Diazinon is a type of organophosphate insecticide that works by inhibiting the enzyme acetylcholinesterase, which leads to an accumulation of the neurotransmitter acetylcholine in the synaptic cleft and results in overstimulation of cholinergic receptors. This can cause a variety of symptoms, including muscle twitching, tremors, convulsions, and respiratory failure, which can be fatal if not treated promptly.

Diazinon is used to control a wide range of insect pests in agriculture, horticulture, and residential settings. However, it is highly toxic to both insects and mammals, including humans, and its use is regulated by environmental and public health agencies around the world. Exposure to diazinon can occur through inhalation, skin contact, or ingestion, and can cause acute and chronic health effects depending on the level and duration of exposure.

In the medical field, diazinon poisoning is treated with atropine, which blocks the action of acetylcholine at muscarinic receptors, and oximes, which reactivate acetylcholinesterase. Supportive care, such as oxygen therapy, mechanical ventilation, and fluid replacement, may also be necessary in severe cases.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Pesticide residues refer to the remaining pesticide chemicals, including their metabolites and degradation products, that are present in or on food commodities or environmental samples after a pesticide application has ended. These residues can result from agricultural use, such as spraying crops to control pests, or from non-agricultural uses, like treating buildings for termite control.

Regulatory agencies establish maximum residue limits (MRLs) to ensure that the levels of pesticide residues in food and feed are below those that may pose a risk to human health. Monitoring programs are in place to check compliance with these MRLs, and enforcement actions can be taken if violations occur.

It's important to note that not all pesticide residues are harmful, as some pesticides degrade into harmless compounds over time or leave behind residues below levels of concern for human health. However, long-term exposure to even low levels of certain pesticide residues may still pose a risk and should be avoided when possible.

'Drosophila melanogaster' is the scientific name for a species of fruit fly that is commonly used as a model organism in various fields of biological research, including genetics, developmental biology, and evolutionary biology. Its small size, short generation time, large number of offspring, and ease of cultivation make it an ideal subject for laboratory studies. The fruit fly's genome has been fully sequenced, and many of its genes have counterparts in the human genome, which facilitates the understanding of genetic mechanisms and their role in human health and disease.

Here is a brief medical definition:

Drosophila melanogaster (droh-suh-fih-luh meh-lon-guh-ster): A species of fruit fly used extensively as a model organism in genetic, developmental, and evolutionary research. Its genome has been sequenced, revealing many genes with human counterparts, making it valuable for understanding genetic mechanisms and their role in human health and disease.

Organothiophosphorus compounds are a class of chemical compounds that contain carbon (organo-) and thiophosphorus bonds. Thiophosphorus refers to a phosphorus atom bonded to one or more sulfur atoms. These compounds have various applications, including use as plasticizers, flame retardants, insecticides (such as malathion and parathion), and nerve agents (such as sarin and VX). They can be synthesized through the reaction of organolithium or Grignard reagents with thiophosphoryl chloride. The general structure of these compounds is R-P(=S)Y, where R is an organic group, P is phosphorus, and Y is a group that determines the properties and reactivity of the compound.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

I'm sorry for any confusion, but "geography" is not a term that has a medical definition. Geography is a field of study that deals with the location and distribution of physical and cultural features on Earth's surface, as well as how humans interact with and affect those features. It is not a concept that is typically used in a medical context. If you have any questions related to medicine or healthcare, I would be happy to try to help answer them for you!

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Pesticides are substances or mixtures of substances intended for preventing, destroying, or repelling pests. Pests can be insects, rodents, fungi, weeds, or other organisms that can cause damage to crops, animals, or humans and their living conditions. The term "pesticide" includes all of the following: insecticides, herbicides, fungicides, rodenticides, bactericides, and various other substances used to control pests.

It is important to note that while pesticides are designed to be toxic to the target pests, they can also pose risks to non-target organisms, including humans, if not used properly. Therefore, it is essential to follow all label instructions and safety precautions when handling and applying pesticides.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Fumigation is not typically considered a medical term, but it does have relevance to public health and environmental medicine. According to the World Health Organization (WHO), fumigation is defined as "the treatment of a building or commodity by introducing a gaseous pesticide (fumigant) in sufficient concentration to kill all stages of pests present."

Fumigation is used to control pests, such as insects, rodents, and other organisms that can cause harm to human health, property, or the environment. It is commonly used in agriculture to protect stored commodities from pests during transportation and storage. In addition, fumigation may be used in public health to disinfect buildings, equipment, and other items that have been infested with pests, such as bed bugs, cockroaches, or termites.

Fumigants are toxic gases that can cause harm to humans and animals if not handled properly. Therefore, fumigation should only be carried out by trained professionals who follow strict safety protocols to protect people, pets, and the environment from exposure.

Genetic selection, also known as natural selection, is a fundamental mechanism of evolution. It refers to the process by which certain heritable traits become more or less common in a population over successive generations due to differential reproduction of organisms with those traits.

In genetic selection, traits that increase an individual's fitness (its ability to survive and reproduce) are more likely to be passed on to the next generation, while traits that decrease fitness are less likely to be passed on. This results in a gradual change in the distribution of traits within a population over time, leading to adaptation to the environment and potentially speciation.

Genetic selection can occur through various mechanisms, including viability selection (differential survival), fecundity selection (differences in reproductive success), and sexual selection (choices made by individuals during mating). The process of genetic selection is driven by environmental pressures, such as predation, competition for resources, and changes in the availability of food or habitat.

Molecular sequence annotation is the process of identifying and describing the characteristics, functional elements, and relevant information of a DNA, RNA, or protein sequence at the molecular level. This process involves marking the location and function of various features such as genes, regulatory regions, coding and non-coding sequences, intron-exon boundaries, promoters, introns, untranslated regions (UTRs), binding sites for proteins or other molecules, and post-translational modifications in a given molecular sequence.

The annotation can be manual, where experts curate and analyze the data to predict features based on biological knowledge and experimental evidence. Alternatively, computational methods using various bioinformatics tools and algorithms can be employed for automated annotation. These tools often rely on comparative analysis, pattern recognition, and machine learning techniques to identify conserved sequence patterns, motifs, or domains that are associated with specific functions.

The annotated molecular sequences serve as valuable resources in genomic and proteomic studies, contributing to the understanding of gene function, evolutionary relationships, disease associations, and biotechnological applications.

Gene frequency, also known as allele frequency, is a measure in population genetics that reflects the proportion of a particular gene or allele (variant of a gene) in a given population. It is calculated as the number of copies of a specific allele divided by the total number of all alleles at that genetic locus in the population.

For example, if we consider a gene with two possible alleles, A and a, the gene frequency of allele A (denoted as p) can be calculated as follows:

p = (number of copies of allele A) / (total number of all alleles at that locus)

Similarly, the gene frequency of allele a (denoted as q) would be:

q = (number of copies of allele a) / (total number of all alleles at that locus)

Since there are only two possible alleles for this gene in this example, p + q = 1. These frequencies can help researchers understand genetic diversity and evolutionary processes within populations.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Biological pest control, also known as biocontrol, is a method of managing or eliminating pests such as insects, mites, weeds, and plant diseases using natural enemies or other organisms. These biological control agents include predators, parasites, pathogens, and competitors that regulate pest populations and reduce the need for chemical pesticides. Biological pest control is a key component of integrated pest management (IPM) programs and has minimal impact on the environment compared to traditional pest control methods.

I'm sorry for any confusion, but "pest control" is not a term typically used in medical definitions. Pest control refers to the regulation or management of species considered to be pests, which can include insects, rodents, and other organisms that can cause damage to crops, transmit diseases, or otherwise negatively impact human activities.

In a medical context, you might be looking for information on "pesticide exposure" or "insect-borne diseases." Pesticide exposure refers to the contact with pesticides, which are substances used to control pests. These exposures can occur through inhalation, ingestion, or skin contact and may lead to a variety of health effects depending on the type and amount of pesticide involved. Insect-borne diseases are illnesses transmitted to humans through the bite of infected insects, such as mosquitoes, ticks, or fleas. Examples include malaria, Lyme disease, and Zika virus infection.

Fenthion is a type of pesticide called an organophosphate insecticide. It works by inhibiting the enzyme cholinesterase, which leads to an accumulation of acetylcholine and ultimately results in nervous system dysfunction in insects. Fenthion can be used to control a variety of pests, including flies, mosquitoes, and ticks. However, it is also toxic to non-target organisms, including humans, and has been linked to various health effects such as neurological damage and cancer. As a result, the use of fenthion has been restricted or banned in many countries.

Chlordane is a man-made chlorinated hydrocarbon compound that was widely used as a pesticide, particularly for termite control, from the 1940s until it was banned in the United States in 1988 due to its toxicity and persistence in the environment. It is a colorless or light brown liquid with a mild, aromatic odor.

Chlordane is an extremely toxic compound to insects and has been shown to have negative effects on human health as well. Exposure to chlordane can cause a range of adverse health effects, including neurological damage, liver toxicity, and an increased risk of cancer. It is classified as a probable human carcinogen by the International Agency for Research on Cancer (IARC) and the United States Environmental Protection Agency (EPA).

Chlordane is highly persistent in the environment and can accumulate in the food chain, posing a particular risk to wildlife and humans who consume contaminated food or water. It can also volatilize from soil and water into the air, where it can be transported long distances and contribute to air pollution. As a result, chlordane continues to pose a significant environmental and health hazard, even though its use has been banned for several decades.

Dengue is a mosquito-borne viral infection that is primarily transmitted by the Aedes aegypti and Aedes albopictus species of mosquitoes. It is caused by one of four closely related dengue viruses (DENV 1, DENV 2, DENV 3, or DENV 4). The infection can cause a wide range of symptoms, ranging from mild fever and headache to severe flu-like illness, which is often characterized by the sudden onset of high fever, severe headache, muscle and joint pain, nausea, vomiting, and skin rash. In some cases, dengue can progress to more severe forms, such as dengue hemorrhagic fever or dengue shock syndrome, which can be life-threatening if not treated promptly and appropriately.

Dengue is prevalent in many tropical and subtropical regions around the world, particularly in urban and semi-urban areas with poor sanitation and inadequate mosquito control. There is no specific treatment for dengue, and prevention efforts focus on reducing mosquito populations and avoiding mosquito bites. Vaccines are available in some countries to prevent dengue infection, but they are not widely used due to limitations in their effectiveness and safety.

Carbaryl is a carbamate pesticide that is used to control a wide variety of insects, including fleas, ticks, and mosquitoes. It works by inhibiting the action of an enzyme called cholinesterase, which is necessary for the proper functioning of the nervous system in insects. This leads to paralysis and death of the pests. Carbaryl is also used in some veterinary products to treat parasitic infestations. It can be found in various forms, such as powders, granules, and solutions, and can be applied to plants, animals, and indoor/outdoor surfaces. However, it can be harmful to non-target organisms, including humans, if not used properly. Therefore, it is important to follow the label instructions carefully when using carbaryl products.

Endosulfan is a synthetic, broad-spectrum insecticide that was widely used in agriculture for controlling a variety of pests. It belongs to the class of organic compounds known as organochlorines, which are characterized by having a chlorinated aromatic ring. Endosulfan exists in two stereoisomeric forms, alpha-endosulfan and beta-endosulfan, and is often used as a mixture of these two forms.

Endosulfan has been linked to several health problems, including neurological disorders, endocrine disruption, and reproductive toxicity. It is also considered to be highly toxic to aquatic life and birds. Due to its persistence in the environment and potential for bioaccumulation, endosulfan has been banned or restricted in many countries around the world.

The medical definition of Endosulfan can be described as a synthetic organochlorine insecticide that is highly toxic and has been linked to various health problems, including neurological disorders, endocrine disruption, and reproductive toxicity. It is no longer approved for use in many countries due to its environmental persistence and potential health risks.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Methomyl is a carbamate insecticide that acts as a reversible inhibitor of acetylcholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine in nerve synapses. This results in an accumulation of acetylcholine, leading to overstimulation of cholinergic receptors and disruption of normal nervous system function. Methomyl is used to control a wide range of pests in various crops, but its use is restricted due to its high toxicity to non-target organisms, including humans. It can be absorbed through the skin, respiratory tract, or gastrointestinal tract and can cause symptoms such as nausea, vomiting, diarrhea, muscle twitching, weakness, and difficulty breathing in cases of acute exposure. Chronic exposure to methomyl has been linked to neurological effects, including memory loss and decreased cognitive function.

Triatoma is a genus of insects in the family Reduviidae, also known as "kissing bugs" or "conenose bugs." These insects are called "kissing bugs" because they often bite humans around the mouth and face. They are found primarily in the Americas, ranging from the southern United States to Argentina.

Triatoma species are of medical importance because they can transmit a parasitic infection called Chagas disease (American trypanosomiasis) to humans through their feces. The parasite that causes Chagas disease, Trypanosoma cruzi, is found in the bug's feces and can enter the human body through mucous membranes or breaks in the skin.

Chagas disease can cause serious health problems, including heart damage and digestive system complications, if left untreated. Therefore, it is important to take precautions to prevent Triatoma bites and seek medical attention promptly if bitten by one of these insects.

Lindane is defined in medical terms as an agricultural and pharmaceutical compound that contains thegamma-isomer of hexachlorocyclohexane (γ-HCH). It has been used as a topical treatment for scabies and lice infestations, although its use is now limited due to concerns about toxicity and environmental persistence. Lindane works by disrupting the nervous system of insects, leading to paralysis and death. However, it can also have similar effects on mammals, including humans, at high doses or with prolonged exposure. Therefore, its use is restricted and alternatives are recommended for the treatment of scabies and lice.

Organophosphate (OP) poisoning refers to the toxic effects that occur after exposure to organophosphate compounds, which are commonly used as pesticides, nerve agents, and plasticizers. These substances work by irreversibly inhibiting acetylcholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine in the nervous system. As a result, excessive accumulation of acetylcholine leads to overstimulation of cholinergic receptors, causing a wide range of symptoms.

The severity and type of symptoms depend on the dose, duration, and route of exposure (inhalation, ingestion, or skin absorption). The primary manifestations of organophosphate poisoning are:

1. Muscarinic effects: Excess acetylcholine at muscarinic receptors in the parasympathetic nervous system results in symptoms such as narrowed pupils (miosis), increased salivation, lacrimation, sweating, bronchorrhea (excessive respiratory secretions), diarrhea, bradycardia (decreased heart rate), and hypotension.
2. Nicotinic effects: Overstimulation of nicotinic receptors at the neuromuscular junction leads to muscle fasciculations, weakness, and paralysis. This can also cause tachycardia (increased heart rate) and hypertension.
3. Central nervous system effects: OP poisoning may result in headache, dizziness, confusion, seizures, coma, and respiratory depression.

Treatment for organophosphate poisoning includes decontamination, supportive care, and administration of antidotes such as atropine (to block muscarinic effects) and pralidoxime (to reactivate acetylcholinesterase). Delayed treatment can lead to long-term neurological damage or even death.

Tetracycline resistance is a type of antibiotic resistance where bacteria have developed the ability to survive and grow in the presence of tetracyclines, a class of antibiotics used to treat a wide range of bacterial infections. This resistance can be mediated through various mechanisms such as:

1. Efflux pumps: These are proteins that actively pump tetracyclines out of the bacterial cell, reducing the intracellular concentration of the antibiotic and preventing it from reaching its target site.
2. Ribosomal protection proteins (RPPs): These proteins bind to the ribosomes (the sites of protein synthesis) and prevent tetracyclines from binding, thus allowing protein synthesis to continue in the presence of the antibiotic.
3. Enzymatic modification: Some bacteria produce enzymes that modify tetracyclines, rendering them ineffective or less effective against bacterial growth.
4. Mutations in target sites: Bacteria can also acquire mutations in their genome that alter the structure of the target site (ribosomes), preventing tetracyclines from binding and inhibiting protein synthesis.

Tetracycline resistance has become a significant public health concern, as it limits the therapeutic options for treating bacterial infections and contributes to the emergence and spread of multidrug-resistant bacteria. The primary causes of tetracycline resistance include the misuse and overuse of antibiotics in both human medicine and agriculture.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

Carbofuran is a highly toxic systemic pesticide that belongs to the carbamate family. It is used primarily to control insects in soil before planting and on crops after emergence. Carbofuran works by inhibiting the enzyme cholinesterase, which leads to an accumulation of acetylcholine and results in overstimulation of the nervous system in insects, ultimately causing their death.

In humans, exposure to carbofuran can cause symptoms such as nausea, vomiting, diarrhea, abdominal cramps, headache, dizziness, visual disturbances, and muscle twitching. In severe cases, it can lead to respiratory failure, convulsions, and even death. Carbofuran is classified as a Category I toxic pesticide by the Environmental Protection Agency (EPA) in the United States, indicating that it is highly hazardous.

Due to its high toxicity and potential for environmental harm, carbofuran has been banned or restricted in many countries around the world. In the United States, the use of carbofuran on food crops was phased out in 2009, and its registration for most uses was canceled in 2010. However, it is still used in some parts of the world for non-food crop applications.

A plant disease is a disorder that affects the normal growth and development of plants, caused by pathogenic organisms such as bacteria, viruses, fungi, parasites, or nematodes, as well as environmental factors like nutrient deficiencies, extreme temperatures, or physical damage. These diseases can cause various symptoms, including discoloration, wilting, stunted growth, necrosis, and reduced yield or productivity, which can have significant economic and ecological impacts.

Insect repellents are substances that are applied to the skin, clothing, or other surfaces to deter insects from landing or crawling on that surface. They work by masking the scents that attract insects or by repelling them with unpleasant odors. Insect repellents can be chemical-based, such as those containing DEET (N,N-diethyl-m-toluamide), picaridin, or IR3535, or they can be natural, such as those containing oil of lemon eucalyptus or citronella. These substances work by interfering with the insect's ability to detect human scent, making it less likely that they will come into contact with the person using the repellent. Insect repellents are an important tool in preventing insect-borne diseases such as Lyme disease, West Nile virus, and Zika virus.

Dichlorvos is a type of organophosphate insecticide that is used to control a wide variety of pests in agricultural, residential, and industrial settings. Its chemical formula is (2,2-dichlorovinyl) dimethyl phosphate. It works by inhibiting the enzyme acetylcholinesterase, which leads to an accumulation of the neurotransmitter acetylcholine in the synaptic clefts of nerve cells, causing overstimulation of the nervous system and ultimately death of the pest.

Dichlorvos is highly toxic to both insects and mammals, including humans. Exposure to this chemical can cause a range of symptoms, including headache, dizziness, nausea, vomiting, muscle weakness, and in severe cases, respiratory failure and death. It is classified as a Category I acute toxicant by the Environmental Protection Agency (EPA) and is listed as a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

Due to its high toxicity and potential for environmental persistence, dichlorvos is subject to strict regulations in many countries. It is banned or restricted for use in several jurisdictions, including the European Union, Canada, and some states in the United States. Where it is still allowed, it is typically used only under specific conditions and with appropriate safety measures in place.

Cholinesterase inhibitors are a class of drugs that work by blocking the action of cholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine in the body. By inhibiting this enzyme, the levels of acetylcholine in the brain increase, which can help to improve symptoms of cognitive decline and memory loss associated with conditions such as Alzheimer's disease and other forms of dementia.

Cholinesterase inhibitors are also used to treat other medical conditions, including myasthenia gravis, a neuromuscular disorder that causes muscle weakness, and glaucoma, a condition that affects the optic nerve and can lead to vision loss. Some examples of cholinesterase inhibitors include donepezil (Aricept), galantamine (Razadyne), and rivastigmine (Exelon).

It's important to note that while cholinesterase inhibitors can help to improve symptoms in some people with dementia, they do not cure the underlying condition or stop its progression. Side effects of these drugs may include nausea, vomiting, diarrhea, and increased salivation. In rare cases, they may also cause seizures, fainting, or cardiac arrhythmias.

Penicillin resistance is the ability of certain bacteria to withstand the antibacterial effects of penicillin, a type of antibiotic. This occurs when these bacteria have developed mechanisms that prevent penicillin from binding to and inhibiting the function of their cell wall biosynthesis proteins, particularly the enzyme transpeptidase.

One common mechanism of penicillin resistance is the production of beta-lactamases, enzymes that can hydrolyze and inactivate the beta-lactam ring structure present in penicillin and other related antibiotics. Another mechanism involves alterations in the bacterial cell wall that prevent penicillin from binding to its target proteins.

Penicillin resistance is a significant concern in clinical settings, as it can limit treatment options for bacterial infections and may necessitate the use of more potent or toxic antibiotics. It is important to note that misuse or overuse of antibiotics can contribute to the development and spread of antibiotic-resistant bacteria, including those resistant to penicillin.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

'Plasmodium falciparum' is a specific species of protozoan parasite that causes malaria in humans. It is transmitted through the bites of infected female Anopheles mosquitoes and has a complex life cycle involving both human and mosquito hosts.

In the human host, the parasites infect red blood cells, where they multiply and cause damage, leading to symptoms such as fever, chills, anemia, and in severe cases, organ failure and death. 'Plasmodium falciparum' malaria is often more severe and life-threatening than other forms of malaria caused by different Plasmodium species. It is a major public health concern, particularly in tropical and subtropical regions of the world where access to prevention, diagnosis, and treatment remains limited.

Pralidoxime compounds are a type of antidote used to treat poisoning from organophosphate nerve agents and pesticides. These compounds work by reactivating the acetylcholinesterase enzyme, which is inhibited by organophosphates. This helps to restore the normal functioning of the nervous system and can save lives in cases of severe poisoning.

Pralidoxime is often used in combination with atropine, another antidote that blocks the effects of excess acetylcholine at muscarinic receptors. Together, these compounds can help to manage the symptoms of organophosphate poisoning and prevent long-term neurological damage.

It is important to note that pralidoxime must be administered as soon as possible after exposure to organophosphates, as its effectiveness decreases over time. This makes rapid diagnosis and treatment crucial in cases of suspected nerve agent or pesticide poisoning.

Cholinesterases are a group of enzymes that play an essential role in the nervous system by regulating the transmission of nerve impulses. They work by breaking down a type of chemical messenger called acetylcholine, which is released by nerves to transmit signals to other nerves or muscles.

There are two main types of cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). AChE is found primarily in the nervous system, where it rapidly breaks down acetylcholine to terminate nerve impulses. BChE, on the other hand, is found in various tissues throughout the body, including the liver and plasma, and plays a less specific role in breaking down various substances, including some drugs and toxins.

Inhibition of cholinesterases can lead to an accumulation of acetylcholine in the synaptic cleft, which can result in excessive stimulation of nerve impulses and muscle contractions. This effect is exploited by certain medications used to treat conditions such as myasthenia gravis, Alzheimer's disease, and glaucoma, but can also be caused by exposure to certain chemicals or toxins, such as organophosphate pesticides and nerve agents.

Parathion is not a medical term, but a chemical one. It refers to a type of organophosphate insecticide that is highly toxic and can be absorbed through the skin or ingested. Parathion works by inhibiting an enzyme called acetylcholinesterase, which leads to an overstimulation of the nervous system and can cause symptoms such as muscle twitching, convulsions, respiratory failure, and death. Although parathion is not used in medical treatments, it is important for healthcare providers to be aware of its potential health effects, particularly in cases of accidental or intentional exposure.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Methyl parathion is an organophosphate insecticide and acaricide. It functions by inhibiting the enzyme cholinesterase, which leads to an accumulation of the neurotransmitter acetylcholine, causing nervous system excitation and ultimately damage or death in insects. However, it can also have toxic effects on mammals, including humans, if ingested, inhaled, or absorbed through the skin. It is classified as a highly hazardous pesticide by the World Health Organization (WHO) and its use is restricted or banned in many countries due to its high toxicity and environmental persistence.

Sodium channels are specialized protein structures that are embedded in the membranes of excitable cells, such as nerve and muscle cells. They play a crucial role in the generation and transmission of electrical signals in these cells. Sodium channels are responsible for the rapid influx of sodium ions into the cell during the initial phase of an action potential, which is the electrical signal that travels along the membrane of a neuron or muscle fiber. This sudden influx of sodium ions causes the membrane potential to rapidly reverse, leading to the depolarization of the cell. After the action potential, the sodium channels close and become inactivated, preventing further entry of sodium ions and helping to restore the resting membrane potential.

Sodium channels are composed of a large alpha subunit and one or two smaller beta subunits. The alpha subunit forms the ion-conducting pore, while the beta subunits play a role in modulating the function and stability of the channel. Mutations in sodium channel genes have been associated with various inherited diseases, including certain forms of epilepsy, cardiac arrhythmias, and muscle disorders.

Expressed Sequence Tags (ESTs) are short, single-pass DNA sequences that are derived from cDNA libraries. They represent a quick and cost-effective method for large-scale sequencing of gene transcripts and provide an unbiased view of the genes being actively expressed in a particular tissue or developmental stage. ESTs can be used to identify and study new genes, to analyze patterns of gene expression, and to develop molecular markers for genetic mapping and genome analysis.

Organothiophosphates are a class of organophosphorus compounds that contain a phosphorus atom bonded to one or more organic groups and one or more sulfur atoms. These compounds have various uses, including as plasticizers, flame retardants, and insecticides. The most well-known member of this group is the insecticide parathion. Organothiophosphates are also used in the synthesis of pharmaceuticals and other chemicals.

It's important to note that some organothiophosphates have been associated with health risks, including neurotoxicity and potential developmental effects. Therefore, their use is regulated by various government agencies around the world.

I'm sorry for any confusion, but "seasons" is not a term that has a medical definition. Seasons refer to the four divisions of the year (spring, summer, autumn or fall, and winter) based on the position of the earth in its orbit around the sun. If you have any questions related to health or medicine, I'd be happy to try to help answer those!

Fungal drug resistance is a condition where fungi are no longer susceptible to the antifungal drugs that were previously used to treat infections they caused. This can occur due to genetic changes in the fungi that make them less sensitive to the drug's effects, or due to environmental factors that allow the fungi to survive and multiply despite the presence of the drug.

There are several mechanisms by which fungi can develop drug resistance, including:

1. Mutations in genes that encode drug targets: Fungi can acquire mutations in the genes that encode for the proteins or enzymes that the antifungal drugs target. These mutations can alter the structure or function of these targets, making them less susceptible to the drug's effects.
2. Overexpression of efflux pumps: Fungi can increase the expression of genes that encode for efflux pumps, which are proteins that help fungi expel drugs from their cells. This can reduce the intracellular concentration of the drug and make it less effective.
3. Changes in membrane composition: Fungi can alter the composition of their cell membranes to make them less permeable to antifungal drugs, making it more difficult for the drugs to enter the fungal cells and exert their effects.
4. Biofilm formation: Fungi can form biofilms, which are complex communities of microorganisms that adhere to surfaces and are protected by a matrix of extracellular material. Biofilms can make fungi more resistant to antifungal drugs by limiting drug penetration and creating an environment that promotes the development of resistance.

Fungal drug resistance is a significant clinical problem, particularly in patients with weakened immune systems, such as those with HIV/AIDS or cancer. It can lead to treatment failures, increased morbidity and mortality, and higher healthcare costs. To address this issue, there is a need for new antifungal drugs, as well as strategies to prevent and manage drug resistance.

Airway resistance is a measure of the opposition to airflow during breathing, which is caused by the friction between the air and the walls of the respiratory tract. It is an important parameter in respiratory physiology because it can affect the work of breathing and gas exchange.

Airway resistance is usually expressed in units of cm H2O/L/s or Pa·s/m, and it can be measured during spontaneous breathing or during forced expiratory maneuvers, such as those used in pulmonary function testing. Increased airway resistance can result from a variety of conditions, including asthma, chronic obstructive pulmonary disease (COPD), bronchitis, and bronchiectasis. Decreased airway resistance can be seen in conditions such as emphysema or after a successful bronchodilator treatment.

Paraoxon is the active metabolite of the organophosphate insecticide parathion. It functions as an acetylcholinesterase inhibitor, which means it prevents the breakdown of the neurotransmitter acetylcholine in the synaptic cleft. This leads to an accumulation of acetylcholine and overstimulation of cholinergic receptors, causing a variety of symptoms such as muscle weakness, increased salivation, sweating, lacrimation, nausea, vomiting, and potentially fatal respiratory failure.

Paraoxon is also used in research and diagnostic settings to measure acetylcholinesterase activity. It can be used to determine the degree of inhibition of this enzyme by various chemicals or toxins, including other organophosphate compounds.

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Agrochemicals are a broad range of chemical products used in agriculture to enhance crop production and protect plants from pests. They include fertilizers, which provide nutrients to plants, and pesticides, which include herbicides (weed killers), insecticides (insect killers), fungicides (fungus killers), and other substances used to control pests. Agrochemicals are used to improve crop yield, quality, and resistance to environmental stressors, but their use can also have negative impacts on the environment and human health if not managed properly.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Dimethoate is an organophosphate insecticide and acaricide (a chemical that kills mites). Its chemical formula is C5H12NO3PS. It works by inhibiting the activity of an enzyme called acetylcholinesterase, which is necessary for the proper functioning of the nervous system in both insects and mammals, including humans. This leads to an overstimulation of the nervous system, causing a variety of symptoms such as muscle twitching, tremors, convulsions, and eventually respiratory failure and death in severe cases.

Dimethoate is used to control a wide range of pests, including aphids, thrips, leafminers, and spider mites, on various crops such as fruits, vegetables, cereals, and ornamental plants. However, due to its toxicity to non-target organisms, including humans, it is important to use it with caution and follow all safety guidelines when handling and applying this chemical. It is also subject to regulations regarding its use and disposal in many countries.

I'm sorry for any confusion, but "housing" is not a term that has a medical definition. In a general sense, housing refers to a place where someone lives, such as a house or apartment. If you have any questions related to healthcare, medicine, or health-related topics, I would be happy to try to help answer them.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

"Activities of the Insecticide Resistance Action Committee (IRAC)" (PDF). EPPO Resistance Panel Meeting, Paris. Insecticide ... Insecticide Resistance Action Committee (April 2007). "Resistance Management for Sustainable Agriculture and Improved Public ... The Insecticide Resistance Action Committee (IRAC) was formed in 1984 and works as a specialist technical group of the industry ... "Interactive MoA Classification". Insecticide Resistance Action Committee. 2020-09-16. Retrieved 2021-04-01. Sparks, Thomas C.; ...
The industry-sponsored Insecticide Resistance Action Committee (IRAC) advises on the use of insecticides in crop protection and ... "The IRAC Mode of Action Classification Online". Insecticides Resistance Action Committee. 2023. Retrieved 2023-08-15. (Articles ... This is a list of insecticides. These are chemical compounds which have been registered as insecticides. The names on the list ... "A to Z List of Insecticides". University of Hertfordshire. 2023-08-08. Retrieved 2023-08-15. " ...
"IRAC". Insecticide Resistance Action Committee. 2021-03-01. Retrieved 2021-04-02. (All articles lacking reliable references, ... "Interactive MoA Classification". Insecticide Resistance Action Committee. 2020-09-16. Retrieved 2021-04-01. "Cinnamon Oil Kills ... Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind ... Insecticides can be classified into two major groups: systemic insecticides, which have residual or long-term activity; and ...
"Insecticide resistance". Imperial College London. Retrieved 2019-03-19. "Novel mosquito net to combat insecticide resistance ... "WHO , Insecticide resistance". WHO. Archived from the original on October 11, 2014. Retrieved 2019-03-19. "World Malaria Summit ... "Ghana PPP pilots breakthrough insecticide to fight mosquito resistance". Devex. 2018-07-10. Retrieved 2019-03-20. "Trial sites ... Developed diagnostic system for malarial insecticide resistance detection and implemented within disease control programs in ...
Overview of insecticide resistance IRAC, Insecticide Resistance Action Committee FRAC, Fungicide Resistance Action Committee ... The Insecticide Resistance Action Committee (IRAC) definition of insecticide resistance is 'a heritable change in the ... "Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN)". PLOS ... Resistance has evolved in multiple species: resistance to insecticides was first documented by A. L. Melander in 1914 when ...
"IRAC Mode of Action Classification Scheme Version 9.4" (pdf). Insecticide Resistance Action Committee. March 2020. Metcalf, ... "Insecticides, biologics and nematicides: Updates to IRAC's mode of action classification - a tool for resistance management". ... "Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases". Chemico- ... These insecticides kill insects by reversibly inactivating the enzyme acetylcholinesterase (AChE inhibition) (IRAC mode of ...
Teixeira, Luís A; Andaloro, John T (2013). "Diamide insecticides: Global efforts to address insect resistance stewardship ... Insecticide Resistance Action Committee. (CS1: long volume value, Articles with short description, Short description is ... Ryanoids are a class of insecticides which share the same mechanism of action as the alkaloid ryanodine. Ryanodine is a ... Usherwood, P.N.R.; Vais, H. (1995). "Towards the development of ryanoid insecticides with low mammalian toxicity". Toxicology ...
"Interactive MoA Classification". Insecticide Resistance Action Committee. 16 September 2020. Retrieved 1 April 2021. Sparks, ... "Insecticides, biologics and nematicides: Updates to IRAC's mode of action classification - a tool for resistance management". ... As of 2016, chlorpyrifos was the most used conventional insecticide in the US and was used in over 40 states; the top five ... Revkin, Andrew C. (9 June 2000). "E.P.A., Citing Risks to Children, Signs Accord to Limit Insecticide". The New York Times. ...
"Symbiont-mediated insecticide resistance". Proceedings of the National Academy of Sciences of the United States of America. 109 ... In an unusual demonstration of resistance to pesticides, 8% of insects in farm fields were found to carry a symbiotic gut ... Crocker JF, Rozee KR, Ozere RL, Digout SC, Hutzinger O (July 1974). "Insecticide and viral interaction as a cause of fatty ... Fatty changes were noted in liver and kidney in the insecticide-virus groups. The encephalopathy showed no specific central- ...
Insecticide Resistance Action Committee. Mehta, Suresh (2009). "Neuroprotective role of mitochondrial uncoupling protein 2 in ... In the UK, rotenone insecticides (sold under the trade name Derris) were banned for sale in 2009. Rotenone is also used in ... It is commercialized as cubé, tuba, or derris, in single preparation or in synergistic combination with other insecticides. In ... Rotenone is used as a pesticide, insecticide, and as a nonselective piscicide (fish killer). Rotenone has historically been ...
Voltage-dependent sodium channel blockers are used as insecticides, comprising Insecticide Resistance Action Committee (IRAC) ... Insecticide Resistance Action Committee. Bagal, Sharan K.; Chapman, Mark L.; Marron, Brian E.; Prime, Rebecca; Ian Storer, R.; ...
"Interactive MoA Classification". Insecticide Resistance Action Committee. 2020-09-16. Archived from the original on 2022-08-08 ... FRAC (Fungicide Resistance Action Committee) (March 2021). "FRAC Code List ©*2021: Fungal control agents sorted by cross ... "HRAC MOA 2020 Revision Description and Master Herbicide List". Herbicide Resistance Action Committee. 2020-09-14. Archived from ... resistance pattern and mode of action (including coding for FRAC Groups on product labels)" (PDF). Archived from the original ( ...
Insecticide Resistance Action Committee; Regional IPM Centers. "Insecticide Resistance: Causes and Action" (PDF). USDA (United ... "Take Steps to Avoid Insecticide Resistance - Pesticide Environmental Stewardship". Pesticide Environmental Stewardship. North ... so measures to delay resistance are important. Among the factors that may have contributed to pink bollworm resistance to the ... the aim in resistance research is to create modern breeding measures which breed polygenic resistant plants with resistance ...
Liu N, Yue X (August 2000). "Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae)". Journal of ... Insecticide Resistance Action Committee). "Arthropod Pesticide Resistance Database". Michigan State University. Brunner JF. " ... Spinosad has proven not to cause cross-resistance to any other known insecticide. Spinosad has been used around the world for ... Sparks T, Dripps JE, Watson GB, Paroonagian D (6 November 2012). "Resistance and cross-resistance to the spinosyns- A review ...
The Insecticide Resistance Action Committee (IRAC) definition of insecticide resistance is 'a heritable change in the ... "Resistance Definition". Insecticide Resistance Action Committee. 2007. Grapes at Missouri State University (MSU) How pesticide ... If a pest has resistance then that will reduce the pesticide's efficacy - efficacy and resistance are inversely related. Cases ... "Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook". Journal of ...
Insecticide Resistance Action Committee. "Australia to approve DuPont's Exirel insecticide cyantraniliprole". AgroNews. Oct 10 ... Cyantraniliprole is an insecticide of the ryanoid class, specifically a diamide insecticide (IRAC MoA group 28). It is approved ... it has activity against pests such as Diaphorina citri that have developed resistance to other classes of insecticides. ... Tiwari S, Stelinski LL (Sep 2013). "Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus ...
... s have developed insecticide resistance to many of the common insecticides used to control them environmentally, ... Pet safe insecticides may also be an option in treating a pet with fleas, and soap is sufficient as an insecticide for adult ... Accessed 6 August 2012 Coles, Tad B.; Dryden, Michael W. (2014-01-06). "Insecticide/acaricide resistance in fleas and ticks ... Rust, Michael K. (March 2016). "Insecticide Resistance in Fleas". Insects. 7 (1): 10. doi:10.3390/insects7010010. PMC 4808790. ...
1994). "15.2.1 Insecticide resistance". The Insects: An Outline of Entomology. Chapman & Hall. pp. 404-407. ISBN 978-0-412- ... The economic cost of insecticide resistance is significant, but published data on the subject are minimal. In 1994, total costs ... Long-term increased cost to the Michigan potato industry caused by insecticide resistance in Colorado potato beetle was ... CPBs have evolved widespread insecticide resistance. No cases without fitness cost or of negative cost are known. Bacterial ...
... in the Pesticide Properties DataBase (PPDB) "Interactive MoA Classification". IRAC (Insecticide Resistance Action ... As an insecticide it is effective for thrips and has a low dose that is lethal for these animals. The LC99,99 for suspension ... Because methiocarb is widely used as an insecticide on crops, environmental risks were also studied to establish safety risks ... Methiocarb is a carbamate pesticide (an acetylecholinesterase inhibitor) which is used as an insecticide, bird repellent, ...
"Interactive MoA Classification , Insecticide Resistance Action Committee (IRAC)". IRAC. Retrieved 2021-11-30. "Regulations.gov ... "The evolution of insecticide resistance in the peach potato aphid, Myzus persicae". Insect Biochemistry and Molecular Biology. ... Insecticide Resistance Action Committee (IRAC) classified Flupyradifurone as 4D subset (butenolide) and it is the first ... It is used as a novel butenolide insecticide. Flupyradifurone shows efficient protection to crops and is much safer for non- ...
doi:10.1073/pnas.120204710 Heckel, D. G. (2012). Insecticide Resistance After Silent Spring. Science, 337 (6102), 1612-1614. ... He also uses this approach to study the genetic and physiological mechanisms by which insects evolve resistance to chemical and ... Heckel, D. G., Gahan, L. J., Liu, Y. B., Tabashnik, B. E. (1999). Genetic mapping of resistance to Bacillus thuringiensis ... Gahan, L. J., Gould, F., Heckel, D. G. (2001). Identification of a gene associated with Bt resistance in Heliothis virescens. ...
... and to insecticides exacerbated the situation. Resistance was largely fueled by unrestricted agricultural use. Resistance and ... Insects with certain mutations in their sodium channel gene are resistant to DDT and similar insecticides. DDT resistance is ... funestus Giles, indicates an urgent need to develop a strategy of insecticide resistance management for the malaria control ... Denholm I, Devine GJ, Williamson MS (September 2002). "Insecticide resistance on the move". Science. 297 (5590): 2222-2223. doi ...
"IRAC Mode of Action Classification Scheme Version 9.4". IRAC (Insecticide Resistance Action Committee) (pdf). March 2020. ... insecticide, and nematicide. It was used as a poison gas in World War I. Its chemical structural formula is Cl3CNO2. ...
"IRAC Mode of Action Classification Scheme Version 9.4". IRAC (Insecticide Resistance Action Committee) (pdf). March 2020. ... the risks of resistance developing can be reduced by using a mixture of two or more insecticides which each have activity on ... regulatory bodies such as the EPA and the Insecticide Resistance Action Committee (IRAC). In some cases, ... a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin ...
Insecticide Resistance Action Committee (IRAC) created the new MoA Group 30 for Broflanilide. Broflanilide is a meta-diamide ... Insecticide Resistance Action Committee) (pdf). March 2020. Katsuta, Hiroyuki; Nomura, Michikazu; Wakita, Takeo; Daido, ... No cross-resistance with existing MoAs. Shows high effectiveness against wireworms. Not systemic. The EPA has stated that ... Broflanilide is a complex, polycyclic, organohalogen insecticide which provides a novel mode of action (MoA). Upon its ...
Insecticide Resistance Action Committee) (pdf). March 2020. Goodman, Brenda (21 Apr 2011). "Pesticide Exposure in Womb Linked ... The popularity of these insecticides increased after many of the organochlorine insecticides, such as DDT, dieldrin, and ... According to the EPA, organophosphate use in 2004 accounts for 40% of all insecticide products used in the United States. Out ... For instance, parathion, one of the first OPPs commercialized, is many times more potent than malathion, an insecticide used in ...
It is involved in insecticide resistance. The first member gene identified was CYP18A1, from a Drosophila melanogaster fly, ... "Detoxification enzymes associated with butene-fipronil resistance in Epacromius coerulipes". Pest Management Science. 76 (1): ...
Cyhalothrin Imiprothrin "IRAC Mode of Action Classification Scheme Version 9.4". IRAC (Insecticide Resistance Action Committee ... Cyfluthrin is a pyrethroid insecticide and common household pesticide. It is a complex organic compound and the commercial ...
Rates of insecticide resistance among triatomines are fairly low due to their long lifecycle and low genetic variability, but ... "History of insecticide resistance of Triatominae vectors". Revista da Sociedade Brasileira de Medicina Tropical. 48 (4): 380- ... Synthetic pyrethroids are the main class of insecticides used to control triatominae infestations. Insecticide treatment is ... A single treatment with insecticide typically protects against triatomine infestation for a year or more on timber walls vs. 2- ...
Some H. azteca have evolved insecticide resistance. This does however conflict with their need to adapt to climate change: ... 2020). Fitness costs of pesticide resistance in Hyalella azteca under future climate change scenarios. Science of the Total ... 2020). Recessivity of pyrethroid resistance and limited interspecies hybridization across Hyalella clades supports rapid and ... Fulton et al 2021 finds some of their mechanisms of resistance impose a fitness cost under higher temperatures. Hyalella azteca ...
"Activities of the Insecticide Resistance Action Committee (IRAC)" (PDF). EPPO Resistance Panel Meeting, Paris. Insecticide ... Insecticide Resistance Action Committee (April 2007). "Resistance Management for Sustainable Agriculture and Improved Public ... The Insecticide Resistance Action Committee (IRAC) was formed in 1984 and works as a specialist technical group of the industry ... "Interactive MoA Classification". Insecticide Resistance Action Committee. 2020-09-16. Retrieved 2021-04-01. Sparks, Thomas C.; ...
Dr Richard Wilkins looks at the role of protease inhibitors as an alternative to insecticide resistance. ... Research to date supports the roles that intracellular proteases play in insecticide resistance and the novel applications in ... In some molecular biology studies, up-regulation of proteases was associated with resistance or affected by insecticide ... GABA receptor subunit - resistance to cyclodienes and fipronil *Voltage-gated Na+ channel - DDT and pyrethroids (Kdr resistance ...
... insecticide resistance mosquitoes - Raising our voices to improve health around the world. ... William (Bill) Brogdon, insecticide resistance mosquitoes, mosquito, mosquito-borne disease, PMI. Tags Centers for Disease ...
Insecticide treated bednets are highly effective at reducing malaria transmission, despite the rise in insecticide resistance, ... This study provides encouraging news that we have not yet run out of time in battling insecticide resistance, he said. ... The research found that the insecticide treated bednets still kill mosquitos even in areas where there is known resistance. ... The WHO research across five countries showed that people who slept under a long-lasting insecticide treated net (LLIN) had ...
... of vector biology have put together an editorial outlining the need for a more urgent and proactive approach to insecticide ... resistance, if the gains made in malaria prevention in the 21st century are not to be lost. ... Insecticide Resistance Genes Affect Vector Competence for West Nile Virus. Jan. 31, 2019 In a context of overuse of ... Tracking the Spread of Mosquito Insecticide Resistance Across Africa. June 25, 2020 In a step toward better control of the ...
Data from: Insecticide resistance mediated by an exon skipping event. Berger, Madeleine, University of Nottingham, Rothamsted ... during the evolution of resistance and identifies exon skipping as a molecular alteration conferring insecticide resistance. ... Tuta absoluta is associated with aberrant regulation of splicing of Taα6 resulting in a novel form of insecticide resistance ... 2016). Data from: Insecticide resistance mediated by an exon skipping event [Dataset]. Dryad. https://doi.org/10.5061/dryad. ...
... leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance ... Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can ... of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is ... Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation ...
Insecticide resistance in the pea and bean weevil has been detected in the UK. Tags: Coleoptera, UK Urgent research to ... understand the nature and extent of insecticide resistance in an increasingly damaging pest of peas and beans is underway at ... For further information see the resistance alert on the Rothamsted Research website ... which are a special chemical class of active ingredients found in many modern insecticides used by growers. ...
Insecticide resistance costs growers in both yield and increased control costs - the Insecticide Resistance Action Committee ( ... can be predisposed to developing resistance to insecticides when one class of insecticide is used exclusively and repeatedly. ... How to Help Delay or Prevent Insecticide Resistance from Developing in Organic Crop Production. Organic production is tough ... Breaking the Insecticide Resistance Cycle. A rotation program that includes efficacious active ingredients belonging to ...
Of the seven insecticides tested four insecticides (chlorpyrifos, profenofos, thiodicarb and carbaryl) showed the Resistance ... has recently developed resistance to various kinds of insecticide in the field. The resistance status of pink bollworm to ... Insecticides Resistance Detection in Field-collected Populations of Pectinophora gossypiella (Saunders). American Journal of ... Insecticides Resistance Detection in Field-collected Populations of Pectinophora gossypiella (Saunders) table, th, td { border ...
A NAMRU-3/WHO training course on insecticide resistance monitoring took place in Cairo, Egypt, from 26 to 30 May 2013. ... elucidate the insecticide resistance mechanism, the metabolic resistance and target-site resistance on both theoretical and ... WHO/NAMRU-3 training course on insecticide resistance monitoring, 26-30 May 2013 ... A WHO/NAMRU-3 training course on insecticide resistance monitoring took place in Cairo, Egypt, from 26 to 30 May 2013. ...
... codling moth is showing signs of insecticide resistance to codling moth granulovirus, a key codling moth organic insecticide. I ... Identifying biologically-based paths reducing insecticide resistance in codling moth. Identifying biologically-based paths ... However, fears of promoting insecticide resistance has prevented industry adoption. In organic blocks, ... reducing insecticide resistance in codling moth. Codling moth is the key pest in Washington apples, a $2 billion industry. WSU ...
... USDA Agricultural Research Service sent this bulletin at 06/21/2022 ... Winter Honey Bees Show Resistance to a Common Insecticide. For media inquiries contact: Jessica Ryan. June 21, 2022 ... Imidacloprid is an insecticide made to mimic nicotine and is toxic to insects. This powerful insecticide is widely used in ... "Our research shows that winter honey bees have unrecognized physiological mechanisms to counteract the effects of insecticides ...
Insecticide resistance, Drosophila melanogaster, CRISPR/Cas9 genome editing, TARGET-SITE RESISTANCE, GATED CHLORIDE CHANNEL, 2- ... Insecticide resistance,Drosophila melanogaster,CRISPR/Cas9 genome editing,TARGET-SITE RESISTANCE,GATED CHLORIDE CHANNEL,2- ... Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance : Drosophila and beyond. ... To mitigate failure of insecticide-based control tools, the mechanisms by which insects have evolved resistance must be ...
Anopheles funestus; Insecticide resistance; Malaria control; Nigeria; Resistance mechanisms. Dates:. *Accepted: 15 November ... the extent and spread of insecticide resistance in malaria vectors is vital to successfully manage insecticide resistance in ... This study reports the insecticide susceptibility status and the molecular basis of resistance of An. funestus as well as its ... 6 more authors) (2016) Evidence of a multiple insecticide resistance in the malaria vector Anopheles funestus in South West ...
Further, when the effect of the fitness cost of insecticide resistance with respect to fecundity (i.e., assuming a decrease in ... Mathematical assessment of the role of vector insecticide resistance and feeding/resting behavior on malaria transmission ... insecticide resistance effectively managed during the first 8 years of the 15-year implementation period of the insecticides- ... such as resistance to insecticide in the mosquito vector and their preference to feed and rest outdoors or early in the evening ...
Biotype, origin and insecticide resistance of Bemisia tabaci interceptions in the UK:Implications for IPM quantity. ... Biotype, origin and insecticide resistance of Bemisia tabaci interceptions in the UK:Implications for IPM. ... tabaci entering the UK are mostlyQ-types that may exhibit high levels of resistance to insecticides commonly used for their ... Limited information is available with respect to Bemisia tabaci biotypes entering theUK and whether insecticide resistance ...
Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina. Overview of attention for ... Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina ...
Tagged as: Anopheles, insecticide, insecticide resistance, malaria, mosquito, parasite, parasitism, parasitology, Plasmodium ... and discusses the finding that selection for insecticide resistance can promote Plasmodium falciparum infection in Anopheles ...
The current study aimed to assess whether phenotypic insecticide resistance and associated molecular resistance mechanisms in ... Insecticide resistance may partially be related to the use of pesticides in agriculture, while the level and mechanisms of ... In addition, we measured the expression levels of genes previously associated with insecticide resistance in An. gambiae s.l., ... In our study, we observed intriguing associations between the type of agricultural practices and certain insecticide resistance ...
In both species, deltamethrin resistance was recorded along with high resistance and suspected resistance to DDT in An. gambiae ... knowledge of insecticide resistance status and resistance mechanisms in these vectors is limited. Mosquitoes were collected ... CYP6P9a and CYP6P9b in insecticide resistant An. funestus. These data show that high levels of deltamethrin resistance in the ... Synergist assays indicated a strong role for P450s in deltamethrin resistance in both species. In An. gambiae, analysis of ...
Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN) Cite ... Title : Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN) ... "Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN)" 10, no ... "Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN)" vol. 10 ...
Rotating insecticides based on MOA reduces the chance of resistance developing. The modes of action of insecticides and ... Strictly adhering to insecticide resistance management practices can help reduce the chance of resistance developing in the ... Resistance is a change in the susceptibility of some insects or mites in an arthropod pest population to an insecticide. This ... The Insecticide Resistance Action Committee (IRAC) groups pesticides by mode of action (MOA). Different chemical classes can ...
The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual ... Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in ... Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and ... insecticide resistance were estimated, respectively. Cohorts have been set up in all five countries, and phenotypic resistance ...
Tag: insecticide resistance management. The State of Insect Resistance to Transgenic Bt Crops Crops engineered to produce ... California Study Warns of Growing Insecticide Resistance in Cockroaches Researchers in California tested several common ... But they do look to IPM and extension agents for guidance in managing insecticide resistance. ... insecticide baits used for management of German cockroaches (Blattella germanica) and found evidence of resistance to all but ...
... participate in laboratory and field insecticide tests; clean reusable equipment; make disposable equipment; participate in site ... Public Health Technician - Insecticide Resistance Management. Agency. Harris County Public Health. Location. Houston, TX. Job ... entojobs.tamu.edu/posted-2019-technician-insecticide-resistance-management/. Description. Position Summary: The IRMT duties are ... One year chemical or insecticide mixing/handling experience • Must be able to write neat, concise, and accurate reports • Must ...
MANAGING INSECTICIDE RESISTANCE:. Follow Insecticide Best Practices. Using insecticides appropriately can significantly reduce ... In most cases, when an insect develops resistance to an insecticide, it may also develop resistance to other products in the ... Insecticide mixtures ("tank mixes") are not primarily used for purposes of insect resistance management but may offer benefits ... If a product does fail, keep in mind it could be for reasons other than insecticide resistance. This includes, but is not ...
Insecticide resistance in arthropods / A. W. A. Brown, R. Pal. By: Brown, Anthony William AldridgeContributor(s): Pal, Rajindar ... Insecticide resistance , ArthropodsNLM classification: WA 240Online resources: Click here to access online ...
GM Insecticide Resistance. As with any environmental management tactic, there is concern that GM crops may cause adverse ... GM Herbicide Resistance. While the shift in the type of herbicide used on GM crops represents a net improvement as measured by ... The use of GM IR technology effectively replaces the use of insecticides to control key crop pests. This is particularly ... All weeds have the potential to develop resistance to herbicides and there are hundreds of resistant weed species confirmed. As ...

No FAQ available that match "insecticide resistance"