Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE).
Injections into the cerebral ventricles.
Introduction of substances into the body using a needle and syringe.
Bleeding into one or both CEREBRAL HEMISPHERES including the BASAL GANGLIA and the CEREBRAL CORTEX. It is often associated with HYPERTENSION and CRANIOCEREBRAL TRAUMA.
Surgical creation of an opening in a cerebral ventricle.
Neoplasms located in the brain ventricles, including the two lateral, the third, and the fourth ventricle. Ventricular tumors may be primary (e.g., CHOROID PLEXUS NEOPLASMS and GLIOMA, SUBEPENDYMAL), metastasize from distant organs, or occur as extensions of locally invasive tumors from adjacent brain structures.
Excessive accumulation of cerebrospinal fluid within the cranium which may be associated with dilation of cerebral ventricles, INTRACRANIAL HYPERTENSION; HEADACHE; lethargy; URINARY INCONTINENCE; and ATAXIA.
Radiography of the ventricular system of the brain after injection of air or other contrast medium directly into the cerebral ventricles. It is used also for x-ray computed tomography of the cerebral ventricles.
The delivery of a drug into a fluid-filled cavity of the brain.
Cavity in each of the CEREBRAL HEMISPHERES derived from the cavity of the embryonic NEURAL TUBE. They are separated from each other by the SEPTUM PELLUCIDUM, and each communicates with the THIRD VENTRICLE by the foramen of Monro, through which also the choroid plexuses (CHOROID PLEXUS) of the lateral ventricles become continuous with that of the third ventricle.
Bleeding within the SKULL, including hemorrhages in the brain and the three membranes of MENINGES. The escape of blood often leads to the formation of HEMATOMA in the cranial epidural, subdural, and subarachnoid spaces.
PROCEDURES that use NEUROENDOSCOPES for disease diagnosis and treatment. Neuroendoscopy, generally an integration of the neuroendoscope with a computer-assisted NEURONAVIGATION system, provides guidance in NEUROSURGICAL PROCEDURES.
Injections made into a vein for therapeutic or experimental purposes.
A human infant born before 37 weeks of GESTATION.
An infant during the first month after birth.
Use of reflected ultrasound in the diagnosis of intracranial pathologic processes.
Degeneration of white matter adjacent to the CEREBRAL VENTRICLES following cerebral hypoxia or BRAIN ISCHEMIA in neonates. The condition primarily affects white matter in the perfusion zone between superficial and deep branches of the MIDDLE CEREBRAL ARTERY. Clinical manifestations include VISION DISORDERS; CEREBRAL PALSY; PARAPLEGIA; SEIZURES; and cognitive disorders. (From Adams et al., Principles of Neurology, 6th ed, p1021; Joynt, Clinical Neurology, 1997, Ch4, pp30-1)
Forceful administration into a muscle of liquid medication, nutrient, or other fluid through a hollow needle piercing the muscle and any tissue covering it.
A narrow cleft inferior to the CORPUS CALLOSUM, within the DIENCEPHALON, between the paired thalami. Its floor is formed by the HYPOTHALAMUS, its anterior wall by the lamina terminalis, and its roof by EPENDYMA. It communicates with the FOURTH VENTRICLE by the CEREBRAL AQUEDUCT, and with the LATERAL VENTRICLES by the interventricular foramina.
A benign brain tumor composed of neural elements which most often arise from the SEPTUM PELLUCIDUM and the walls of the lateral ventricles. Immunohistochemistry and electron microscopy evaluations may reveal expression of neuron specific enolase and synaptophysin and cells containing microtubuli, neurosecretory granules, and presynaptic vesicles. (From Acta Med Port 1994 Feb;7(2):113-9)
Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin.
Benign and malignant neoplastic processes that arise from or secondarily involve the meningeal coverings of the brain and spinal cord.
Injections introduced directly into localized lesions.
Methods of delivering drugs into a joint space.
Tubes inserted to create communication between a cerebral ventricle and the internal jugular vein. Their emplacement permits draining of cerebrospinal fluid for relief of hydrocephalus or other condition leading to fluid accumulation in the ventricles.
An infant whose weight at birth is less than 1500 grams (3.3 lbs), regardless of gestational age.
The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated as the time from the last day of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization.
Introduction of therapeutic agents into the spinal region using a needle and syringe.
A form of heart block in which the electrical stimulation of HEART VENTRICLES is interrupted at either one of the branches of BUNDLE OF HIS thus preventing the simultaneous depolarization of the two ventricles.
Elements of limited time intervals, contributing to particular results or situations.
An irregularly shaped cavity in the RHOMBENCEPHALON, located between the MEDULLA OBLONGATA; the PONS; and the isthmus in front, and the CEREBELLUM behind. It is continuous with the central canal of the cord below and with the CEREBRAL AQUEDUCT above, and through its lateral and median apertures it communicates with the SUBARACHNOID SPACE.
Rare, slow-growing, benign intraventricular tumors, often asymptomatic and discovered incidentally. The tumors are classified histologically as ependymomas and demonstrate a proliferation of subependymal fibrillary astrocytes among the ependymal tumor cells. (From Clin Neurol Neurosurg 1997 Feb;99(1):17-22)
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES.
Bleeding into the intracranial or spinal SUBARACHNOID SPACE, most resulting from INTRACRANIAL ANEURYSM rupture. It can occur after traumatic injuries (SUBARACHNOID HEMORRHAGE, TRAUMATIC). Clinical features include HEADACHE; NAUSEA; VOMITING, nuchal rigidity, variable neurological deficits and reduced mental status.
Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY.
Pressure within the cranial cavity. It is influenced by brain mass, the circulatory system, CSF dynamics, and skull rigidity.
Regulation of the rate of contraction of the heart muscles by an artificial pacemaker.
The space between the arachnoid membrane and PIA MATER, filled with CEREBROSPINAL FLUID. It contains large blood vessels that supply the BRAIN and SPINAL CORD.
The measure of the level of heat of a human or animal.
The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A respiratory distress syndrome in newborn infants, usually premature infants with insufficient PULMONARY SURFACTANTS. The disease is characterized by the formation of a HYALINE-like membrane lining the terminal respiratory airspaces (PULMONARY ALVEOLI) and subsequent collapse of the lung (PULMONARY ATELECTASIS).
Inflammation of CEREBRAL VENTRICLES.
A condition in which HEART VENTRICLES exhibit impaired function.
The removal of fluids or discharges from the body, such as from a wound, sore, or cavity.
Bacterial infections of the brain, spinal cord, and meninges, including infections involving the perimeningeal spaces.
The pressure within a CARDIAC VENTRICLE. Ventricular pressure waveforms can be measured in the beating heart by catheterization or estimated using imaging techniques (e.g., DOPPLER ECHOCARDIOGRAPHY). The information is useful in evaluating the function of the MYOCARDIUM; CARDIAC VALVES; and PERICARDIUM, particularly with simultaneous measurement of other (e.g., aortic or atrial) pressures.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Hospital units providing continuing surveillance and care to acutely ill newborn infants.
Diseases of newborn infants present at birth (congenital) or developing within the first month of birth. It does not include hereditary diseases not manifesting at birth or within the first 30 days of life nor does it include inborn errors of metabolism. Both HEREDITARY DISEASES and METABOLISM, INBORN ERRORS are available as general concepts.
The forcing into the skin of liquid medication, nutrient, or other fluid through a hollow needle, piercing the top skin layer.
Surgical creation of a communication between a cerebral ventricle and the peritoneum by means of a plastic tube to permit drainage of cerebrospinal fluid for relief of hydrocephalus. (From Dorland, 28th ed)
The injection of drugs, most often analgesics, into the spinal canal without puncturing the dura mater.
An infant whose weight at birth is less than 1000 grams (2.2 lbs), regardless of GESTATIONAL AGE.
An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart.
Dopamines with a hydroxy group substituted in one or more positions.
A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A relatively common neoplasm of the CENTRAL NERVOUS SYSTEM that arises from arachnoidal cells. The majority are well differentiated vascular tumors which grow slowly and have a low potential to be invasive, although malignant subtypes occur. Meningiomas have a predilection to arise from the parasagittal region, cerebral convexity, sphenoidal ridge, olfactory groove, and SPINAL CANAL. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2056-7)
Infection of the brain, spinal cord, or perimeningeal structures with the larval forms of the genus TAENIA (primarily T. solium in humans). Lesions formed by the organism are referred to as cysticerci. The infection may be subacute or chronic, and the severity of symptoms depends on the severity of the host immune response and the location and number of lesions. SEIZURES represent the most common clinical manifestation although focal neurologic deficits may occur. (From Joynt, Clinical Neurology, 1998, Ch27, pp46-50)
A collection of blood outside the BLOOD VESSELS. Hematoma can be localized in an organ, space, or tissue.
A condition of the newborn marked by DYSPNEA with CYANOSIS, heralded by such prodromal signs as dilatation of the alae nasi, expiratory grunt, and retraction of the suprasternal notch or costal margins, mostly frequently occurring in premature infants, children of diabetic mothers, and infants delivered by cesarean section, and sometimes with no apparent predisposing cause.
Delivery of drugs into an artery.
The escape of diagnostic or therapeutic material from the vessel into which it is introduced into the surrounding tissue or body cavity.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Echocardiography applying the Doppler effect, with the superposition of flow information as colors on a gray scale in a real-time image.
A method, developed by Dr. Virginia Apgar, to evaluate a newborn's adjustment to extrauterine life. Five items - heart rate, respiratory effort, muscle tone, reflex irritability, and color - are evaluated 60 seconds after birth and again five minutes later on a scale from 0-2, 0 being the lowest, 2 being normal. The five numbers are added for the Apgar score. A score of 0-3 represents severe distress, 4-7 indicates moderate distress, and a score of 7-10 predicts an absence of difficulty in adjusting to extrauterine life.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Increased pressure within the cranial vault. This may result from several conditions, including HYDROCEPHALUS; BRAIN EDEMA; intracranial masses; severe systemic HYPERTENSION; PSEUDOTUMOR CEREBRI; and other disorders.
Softening or loss of brain tissue following CEREBRAL INFARCTION; cerebral ischemia (see BRAIN ISCHEMIA), infection, CRANIOCEREBRAL TRAUMA, or other injury. The term is often used during gross pathologic inspection to describe blurred cortical margins and decreased consistency of brain tissue following infarction. Multicystic encephalomalacia refers to the formation of multiple cystic cavities of various sizes in the cerebral cortex of neonates and infants following injury, most notably perinatal hypoxia-ischemic events. (From Davis et al., Textbook of Neuropathology, 2nd ed, p665; J Neuropathol Exp Neurol, 1995 Mar;54(2):268-75)
Disorders in which there is a delay in development based on that expected for a given age level or stage of development. These impairments or disabilities originate before age 18, may be expected to continue indefinitely, and constitute a substantial impairment. Biological and nonbiological factors are involved in these disorders. (From American Psychiatric Glossary, 6th ed)
Bleeding within the subcortical regions of cerebral hemispheres (BASAL GANGLIA). It is often associated with HYPERTENSION or ARTERIOVENOUS MALFORMATIONS. Clinical manifestations may include HEADACHE; DYSKINESIAS; and HEMIPARESIS.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
A chronic lung disease developed after OXYGEN INHALATION THERAPY or mechanical ventilation (VENTILATION, MECHANICAL) usually occurring in certain premature infants (INFANT, PREMATURE) or newborn infants with respiratory distress syndrome (RESPIRATORY DISTRESS SYNDROME, NEWBORN). Histologically, it is characterized by the unusual abnormalities of the bronchioles, such as METAPLASIA, decrease in alveolar number, and formation of CYSTS.
A sulfated pentosyl polysaccharide with heparin-like properties.
The administration of substances into the VITREOUS BODY of the eye with a hypodermic syringe.
A circumscribed collection of purulent exudate in the brain, due to bacterial and other infections. The majority are caused by spread of infected material from a focus of suppuration elsewhere in the body, notably the PARANASAL SINUSES, middle ear (see EAR, MIDDLE); HEART (see also ENDOCARDITIS, BACTERIAL), and LUNG. Penetrating CRANIOCEREBRAL TRAUMA and NEUROSURGICAL PROCEDURES may also be associated with this condition. Clinical manifestations include HEADACHE; SEIZURES; focal neurologic deficits; and alterations of consciousness. (Adams et al., Principles of Neurology, 6th ed, pp712-6)
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
The restoration of the sequential order of contraction and relaxation of the HEART ATRIA and HEART VENTRICLES by atrio-biventricular pacing.
Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE.
The relationship between the dose of an administered drug and the response of the organism to the drug.
The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance.
A condition in which the LEFT VENTRICLE of the heart was functionally impaired. This condition usually leads to HEART FAILURE; MYOCARDIAL INFARCTION; and other cardiovascular complications. Diagnosis is made by measuring the diminished ejection fraction and a depressed level of motility of the left ventricular wall.
An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use.
Surgery performed on the nervous system or its parts.
Post-systolic relaxation of the HEART, especially the HEART VENTRICLES.
Tapping fluid from the subarachnoid space in the lumbar region, usually between the third and fourth lumbar vertebrae.
A thin membrane that lines the CEREBRAL VENTRICLES and the central canal of the SPINAL CORD.
A scale that assesses the response to stimuli in patients with craniocerebral injuries. The parameters are eye opening, motor response, and verbal response.
The injection of solutions into the skin by compressed air devices so that only the solution pierces the skin.
A surgical specialty concerned with the treatment of diseases and disorders of the brain, spinal cord, and peripheral and sympathetic nervous system.
Measurement of intracardiac blood flow using an M-mode and/or two-dimensional (2-D) echocardiogram while simultaneously recording the spectrum of the audible Doppler signal (e.g., velocity, direction, amplitude, intensity, timing) reflected from the moving column of red blood cells.
The administration of substances into the eye with a hypodermic syringe.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Inflammation of the coverings of the brain and/or spinal cord, which consist of the PIA MATER; ARACHNOID; and DURA MATER. Infections (viral, bacterial, and fungal) are the most common causes of this condition, but subarachnoid hemorrhage (HEMORRHAGES, SUBARACHNOID), chemical irritation (chemical MENINGITIS), granulomatous conditions, neoplastic conditions (CARCINOMATOUS MENINGITIS), and other inflammatory conditions may produce this syndrome. (From Joynt, Clinical Neurology, 1994, Ch24, p6)
Period of contraction of the HEART, especially of the HEART VENTRICLES.
One of three principal openings in the SUBARACHNOID SPACE. They are also known as cerebellomedullary cistern, and collectively as cisterns.
Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic.
A bilateral retinopathy occurring in premature infants treated with excessively high concentrations of oxygen, characterized by vascular dilatation, proliferation, and tortuosity, edema, and retinal detachment, with ultimate conversion of the retina into a fibrous mass that can be seen as a dense retrolental membrane. Usually growth of the eye is arrested and may result in microophthalmia, and blindness may occur. (Dorland, 27th ed)
The upper part of the human body, or the front or upper part of the body of an animal, typically separated from the rest of the body by a neck, and containing the brain, mouth, and sense organs.
Occlusion of the outflow tract in either the LEFT VENTRICLE or the RIGHT VENTRICLE of the heart. This may result from CONGENITAL HEART DEFECTS, predisposing heart diseases, complications of surgery, or HEART NEOPLASMS.
Unsaturated azacyclopropane compounds that are three-membered heterocycles of a nitrogen and two carbon atoms.
A device designed to stimulate, by electric impulses, contraction of the heart muscles. It may be temporary (external) or permanent (internal or internal-external).
Potential cavity which separates the ARACHNOID MATER from the DURA MATER.
Impaired conduction of cardiac impulse that can occur anywhere along the conduction pathway, such as between the SINOATRIAL NODE and the right atrium (SA block) or between atria and ventricles (AV block). Heart blocks can be classified by the duration, frequency, or completeness of conduction block. Reversibility depends on the degree of structural or functional defects.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
A form of CARDIAC MUSCLE disease, characterized by left and/or right ventricular hypertrophy (HYPERTROPHY, LEFT VENTRICULAR; HYPERTROPHY, RIGHT VENTRICULAR), frequent asymmetrical involvement of the HEART SEPTUM, and normal or reduced left ventricular volume. Risk factors include HYPERTENSION; AORTIC STENOSIS; and gene MUTATION; (FAMILIAL HYPERTROPHIC CARDIOMYOPATHY).
A congenital heart defect characterized by the persistent opening of fetal DUCTUS ARTERIOSUS that connects the PULMONARY ARTERY to the descending aorta (AORTA, DESCENDING) allowing unoxygenated blood to bypass the lung and flow to the PLACENTA. Normally, the ductus is closed shortly after birth.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION.
Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain.
A form of CARDIAC MUSCLE disease that is characterized by ventricular dilation, VENTRICULAR DYSFUNCTION, and HEART FAILURE. Risk factors include SMOKING; ALCOHOL DRINKING; HYPERTENSION; INFECTION; PREGNANCY; and mutations in the LMNA gene encoding LAMIN TYPE A, a NUCLEAR LAMINA protein.
Any of six membrane-covered openings between the CRANIAL SUTURES in the incompletely ossified skull of the fetus or newborn infant. The fontanelles normally close sometime after birth.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
The hemodynamic and electrophysiological action of the HEART VENTRICLES.
Use of infusions of FIBRINOLYTIC AGENTS to destroy or dissolve thrombi in blood vessels or bypass grafts.
An infant having a birth weight of 2500 gm. (5.5 lb.) or less but INFANT, VERY LOW BIRTH WEIGHT is available for infants having a birth weight of 1500 grams (3.3 lb.) or less.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
A vitamin antagonist which has teratogenic effects.
A propylamine formed from the cyclization of the side chain of amphetamine. This monoamine oxidase inhibitor is effective in the treatment of major depression, dysthymic disorder, and atypical depression. It also is useful in panic and phobic disorders. (From AMA Drug Evaluations Annual, 1994, p311)
Recording of the moment-to-moment electromotive forces of the heart on a plane of the body surface delineated as a vector function of time.
Radiography of the vascular system of the brain after injection of a contrast medium.
The analysis of a chemical substance by inserting a sample into a carrier stream of reagent using a sample injection valve that propels the sample downstream where mixing occurs in a coiled tube, then passes into a flow-through detector and a recorder or other data handling device.
Agents that cause vomiting. They may act directly on the gastrointestinal tract, bringing about emesis through local irritant effects, or indirectly, through their effects on the chemoreceptor trigger zone in the postremal area near the medulla.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.
The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes.
Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM.
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
The production of a dense fibrous network of neuroglia; includes astrocytosis, which is a proliferation of astrocytes in the area of a degenerative lesion.
The processes of heating and cooling that an organism uses to control its temperature.
Bleeding into one or both CEREBRAL HEMISPHERES due to TRAUMA. Hemorrhage may involve any part of the CEREBRAL CORTEX and the BASAL GANGLIA. Depending on the severity of bleeding, clinical features may include SEIZURES; APHASIA; VISION DISORDERS; MOVEMENT DISORDERS; PARALYSIS; and COMA.
A heterogeneous group of nonprogressive motor disorders caused by chronic brain injuries that originate in the prenatal period, perinatal period, or first few years of life. The four major subtypes are spastic, athetoid, ataxic, and mixed cerebral palsy, with spastic forms being the most common. The motor disorder may range from difficulties with fine motor control to severe spasticity (see MUSCLE SPASTICITY) in all limbs. Spastic diplegia (Little disease) is the most common subtype, and is characterized by spasticity that is more prominent in the legs than in the arms. Pathologically, this condition may be associated with LEUKOMALACIA, PERIVENTRICULAR. (From Dev Med Child Neurol 1998 Aug;40(8):520-7)
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
ENTEROCOLITIS with extensive ulceration (ULCER) and NECROSIS. It is observed primarily in LOW BIRTH WEIGHT INFANT.
A profound state of unconsciousness associated with depressed cerebral activity from which the individual cannot be aroused. Coma generally occurs when there is dysfunction or injury involving both cerebral hemispheres or the brain stem RETICULAR FORMATION.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
Contractile activity of the MYOCARDIUM.
A mobile, very volatile, highly flammable liquid used as an inhalation anesthetic and as a solvent for waxes, fats, oils, perfumes, alkaloids, and gums. It is mildly irritating to skin and mucous membranes.
Congenital vascular anomalies in the brain characterized by direct communication between an artery and a vein without passing through the CAPILLARIES. The locations and size of the shunts determine the symptoms including HEADACHES; SEIZURES; STROKE; INTRACRANIAL HEMORRHAGES; mass effect; and vascular steal effect.
A well-circumscribed mass composed of tuberculous granulation tissue that may occur in the cerebral hemispheres, cerebellum, brain stem, or perimeningeal spaces. Multiple lesions are quite common. Management of intracranial manifestations vary with lesion site. Intracranial tuberculomas may be associated with SEIZURES, focal neurologic deficits, and INTRACRANIAL HYPERTENSION. Spinal cord tuberculomas may be associated with localized or radicular pain, weakness, sensory loss, and incontinence. Tuberculomas may arise as OPPORTUNISTIC INFECTIONS, but also occur in immunocompetent individuals.
The condition of an anatomical structure's being dilated beyond normal dimensions.
Respiratory failure in the newborn. (Dorland, 27th ed)
Intracranial or spinal cavities containing a cerebrospinal-like fluid, the wall of which is composed of arachnoidal cells. They are most often developmental or related to trauma. Intracranial arachnoid cysts usually occur adjacent to arachnoidal cistern and may present with HYDROCEPHALUS; HEADACHE; SEIZURES; and focal neurologic signs. (From Joynt, Clinical Neurology, 1994, Ch44, pp105-115)
A proteolytic enzyme in the serine protease family found in many tissues which converts PLASMINOGEN to FIBRINOLYSIN. It has fibrin-binding activity and is immunologically different from UROKINASE-TYPE PLASMINOGEN ACTIVATOR. The primary sequence, composed of 527 amino acids, is identical in both the naturally occurring and synthetic proteases.
The observable response an animal makes to any situation.
A nicotinic antagonist most commonly used as an experimental tool. It has been used as a ganglionic blocker in the treatment of hypertension but has largely been supplanted for that purpose by more specific drugs.
The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume.
An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine.
Loss of structural differentiation and useful function of neoplastic cells.
Substances capable of increasing BODY TEMPERATURE and cause FEVER and may be used for FEVER THERAPY. They may be of microbial origin, often POLYSACCHARIDES, and may contaminate distilled water.
A monoamine oxidase inhibitor with antihypertensive properties.
Refers to animals in the period of time just after birth.
A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease.
The tearing or bursting of the weakened wall of the aneurysmal sac, usually heralded by sudden worsening pain. The great danger of a ruptured aneurysm is the large amount of blood spilling into the surrounding tissues and cavities, causing HEMORRHAGIC SHOCK.
Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN.
A value equal to the total volume flow divided by the cross-sectional area of the vascular bed.
Assessment of sensory and motor responses and reflexes that is used to determine impairment of the nervous system.
Any disturbances of the normal rhythmic beating of the heart or MYOCARDIAL CONTRACTION. Cardiac arrhythmias can be classified by the abnormalities in HEART RATE, disorders of electrical impulse generation, or impulse conduction.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator.
An antiarrhythmic agent which exerts a potential- and frequency-dependent block of SODIUM CHANNELS.
The hollow, muscular organ that maintains the circulation of the blood.
Abuse, overuse, or misuse of a substance by its injection into a vein.
Drugs that prevent preterm labor and immature birth by suppressing uterine contractions (TOCOLYSIS). Agents used to delay premature uterine activity include magnesium sulfate, beta-mimetics, oxytocin antagonists, calcium channel inhibitors, and adrenergic beta-receptor agonists. The use of intravenous alcohol as a tocolytic is now obsolete.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Rare indolent tumors comprised of neoplastic glial and neuronal cells which occur primarily in children and young adults. Benign lesions tend to be associated with long survival unless the tumor degenerates into a histologically malignant form. They tend to occur in the optic nerve and white matter of the brain and spinal cord.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Tear or break of an organ, vessel or other soft part of the body, occurring in the absence of external force.
Narrow channel in the MESENCEPHALON that connects the third and fourth CEREBRAL VENTRICLES.
An assisted fertilization technique consisting of the microinjection of a single viable sperm into an extracted ovum. It is used principally to overcome low sperm count, low sperm motility, inability of sperm to penetrate the egg, or other conditions related to male infertility (INFERTILITY, MALE).
An abnormal elevation of body temperature, usually as a result of a pathologic process.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
Benign or malignant tumors which arise from the choroid plexus of the ventricles of the brain. Papillomas (see PAPILLOMA, CHOROID PLEXUS) and carcinomas are the most common histologic subtypes, and tend to seed throughout the ventricular and subarachnoid spaces. Clinical features include headaches, ataxia and alterations of consciousness, primarily resulting from associated HYDROCEPHALUS. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, p2072; J Neurosurg 1998 Mar;88(3):521-8)
Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions.
CHILDBIRTH before 37 weeks of PREGNANCY (259 days from the first day of the mother's last menstrual period, or 245 days after FERTILIZATION).
A method of recording heart motion and internal structures by combining ultrasonic imaging with exercise testing (EXERCISE TEST) or pharmacologic stress.
The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz.
A noninflammatory, progressive occlusion of the intracranial CAROTID ARTERIES and the formation of netlike collateral arteries arising from the CIRCLE OF WILLIS. Cerebral angiogram shows the puff-of-smoke (moyamoya) collaterals at the base of the brain. It is characterized by endothelial HYPERPLASIA and FIBROSIS with thickening of arterial walls. This disease primarily affects children but can also occur in adults.
Small band of specialized CARDIAC MUSCLE fibers that originates in the ATRIOVENTRICULAR NODE and extends into the membranous part of the interventricular septum. The bundle of His, consisting of the left and the right bundle branches, conducts the electrical impulses to the HEART VENTRICLES in generation of MYOCARDIAL CONTRACTION.
The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material).
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder."
A human infant born before 28 weeks of GESTATION.
The visualization of tissues during pregnancy through recording of the echoes of ultrasonic waves directed into the body. The procedure may be applied with reference to the mother or the fetus and with reference to organs or the detection of maternal or fetal disease.
Instruments used for injecting or withdrawing fluids. (Stedman, 25th ed)
Continuous care and monitoring of newborn infants with life-threatening conditions, in any setting.
Involuntary contraction or twitching of the muscles. It is a physiologic method of heat production in man and other mammals.
Primary or secondary neoplasm in the ARACHNOID or SUBARACHNOID SPACE. It appears as a diffuse fibrotic thickening of the MENINGES associated with variable degrees of inflammation.
A subtype of prostaglandin E receptors that specifically couples to GTP-BINDING PROTEIN ALPHA SUBUNIT, GQ and the subsequently activates TYPE C PHOSPHOLIPASES. Additional evidence has shown that the receptor can act through a calcium-dependent signaling pathway.
Saturated azacyclopropane compounds. They include compounds with substitutions on CARBON or NITROGEN atoms.
An antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of TETRAHYDROFOLATE DEHYDROGENASE and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA.
Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions.
Substances used to allow enhanced visualization of tissues.
The mass or quantity of heaviness of an individual at BIRTH. It is expressed by units of pounds or kilograms.
A rare, slowly progressive encephalitis caused by chronic infection with the MEASLES VIRUS. The condition occurs primarily in children and young adults, approximately 2-8 years after the initial infection. A gradual decline in intellectual abilities and behavioral alterations are followed by progressive MYOCLONUS; MUSCLE SPASTICITY; SEIZURES; DEMENTIA; autonomic dysfunction; and ATAXIA. DEATH usually occurs 1-3 years after disease onset. Pathologic features include perivascular cuffing, eosinophilic cytoplasmic inclusions, neurophagia, and fibrous gliosis. It is caused by the SSPE virus, which is a defective variant of MEASLES VIRUS. (From Adams et al., Principles of Neurology, 6th ed, pp767-8)

Neuroprotection of the developing brain by systemic administration of vasoactive intestinal peptide derivatives. (1/2251)

Periventricular leukomalacia (PVL), a necrotic and often cystic lesion of the cerebral white matter occurring in very premature babies, is the leading cause of cerebral palsy in this population. Increased glutamate release and the excitotoxic cascade thus triggered may be critical factors in the development of PVL. The glutamatergic analog ibotenate injected intracerebrally into newborn mice produces white matter cysts that mimic human PVL. Concomitant injection of vasoactive intestinal peptide (VIP), a trophic factor, protects the white matter against excitotoxic lesions. The goal of the present study was to assess the protective properties of systemically injected VIP analogs against ibotenate-induced excitotoxic white matter lesions in newborn mice. VIP analogs were selected on the basis of their low susceptibility to endopeptidases and their potential ability to cross biological membranes. RO-25-1553, a long-lasting cyclic VIP analog, and stearyl-norleucine-VIP, a fatty derivative of VIP, reduced ibotenate-induced white matter cysts by up to 87% and 84%, respectively, when injected i.p. immediately after ibotenate. By comparison, i.p. coadministration of VIP and ibotenate was not protective against the excitotoxic insult. Furthermore, RO-25-1553 and stearyl-norleucine-VIP still induced significant neuroprotection of the developing white matter when injected systemically 8 and 12 h, respectively, after ibotenate, establishing these peptides as therapeutic agents in this murine model. VIP analogs may have therapeutic potential in human premature babies at high risk for PVL.  (+info)

Divergent effects of intracerebroventricular and peripheral leptin administration on feeding and hypothalamic neuropeptide Y in lean and obese (fa/fa) Zucker rats. (2/2251)

Leptin inhibits feeding and decreases body weight. It may act partly by inhibiting hypothalamic neurons that express neuropeptide Y, a powerful inducer of feeding and obesity. These neuropeptide Y neurons express the Ob-Rb leptin receptor and are overactive in the fatty (fa/fa) Zucker rat. The fa mutation affects the extracellular domain of the leptin receptor, but its impact on leptin action and neuropeptide Y neuronal activity is not fully known. We compared the effects of three doses of leptin given intracerebroventricularly and three doses of leptin injected intraperitoneally on food intake and hypothalamic neuropeptide Y mRNA, in lean and fatty Zucker rats. In lean rats, 4-h food intake was reduced in a dose-related fashion (P<0.01) by all intracerebroventricular leptin doses and by intraperitoneal doses of 300 and 600 microg/kg. Neuropeptide Y mRNA levels were reduced by 28% and 21% after the highest intracerebroventricular and intraperitoneal doses respectively (P<0. 01 for both). In fatty rats, only the highest intracerebroventricular leptin dose reduced food intake (by 22%; P<0. 01). Neuropeptide Y mRNA levels were 100% higher in fatty rats than in lean animals, and were reduced by 18% (P<0.01) after the highest intracerebroventricular leptin dose. Intraperitoneal injection had no effect on food intake and neuropeptide Y mRNA. The fa/fa Zucker rat is therefore less sensitive to leptin given intracerebroventricularly and particularly intraperitoneally, suggesting that the fa mutation interferes both with leptin's direct effects on neurons and its transport into the central nervous system. Obesity in the fa/fa Zucker rat may be partly due to the inability of leptin to inhibit hypothalamic neuropeptide Y neurons.  (+info)

Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. (3/2251)

The effects of cannabinoid agonists on noxious heat-evoked firing of 62 spinal wide dynamic range (WDR) neurons were examined in urethan-anesthetized rats (1 cell/animal). Noxious thermal stimulation was applied with a Peltier device to the receptive fields in the ipsilateral hindpaw of isolated WDR neurons. To assess the site of action, cannabinoids were administered systemically in intact and spinally transected rats and intraventricularly. Both the aminoalkylindole cannabinoid WIN55,212-2 (125 microg/kg iv) and the bicyclic cannabinoid CP55,940 (125 microg/kg iv) suppressed noxious heat-evoked activity. Responses evoked by mild pressure in nonnociceptive neurons were not altered by CP55,940 (125 microg/kg iv), consistent with previous observations with another cannabinoid agonist, WIN55,212-2. The cannabinoid induced-suppression of noxious heat-evoked activity was blocked by pretreatment with SR141716A (1 mg/kg iv), a competitive antagonist for central cannabinoid CB1 receptors. By contrast, intravenous administration of either vehicle or the receptor-inactive enantiomer WIN55,212-3 (125 microg/kg) failed to alter noxious heat-evoked activity. The suppression of noxious heat-evoked activity induced by WIN55,212-2 in the lumbar dorsal horn of intact animals was markedly attenuated in spinal rats. Moreover, intraventricular administration of WIN55,212-2 suppressed noxious heat-evoked activity in spinal WDR neurons. By contrast, both vehicle and enantiomer were inactive. These findings suggest that cannabinoids selectively modulate the activity of nociceptive neurons in the spinal dorsal horn by actions at CB1 receptors. This modulation represents a suppression of pain neurotransmission because the inhibitory effects are selective for pain-sensitive neurons and are observed with different modalities of noxious stimulation. The data also provide converging lines of evidence for a role for descending antinociceptive mechanisms in cannabinoid modulation of spinal nociceptive processing.  (+info)

Central autonomic activation by intracisternal TRH analogue excites gastric splanchnic afferent neurons. (4/2251)

Intracisternal (ic) injection of thyrotropin-releasing hormone (TRH) or its stable analogue RX 77368 influences gastric function via stimulation of vagal muscarinic pathways. In rats, the increase in gastric mucosal blood flow evoked by a low ic dose of RX 77368 occurs via release of calcitonin gene-related peptide from capsaicin-sensitive afferent neurons, most probably of spinal origin. In this study, the effect of low ic doses of RX 77368 on afferent impulse activity in splanchnic single fibers was investigated. The cisterna magna of overnight-fasted, urethan-anesthetized Sprague-Dawley rats was acutely cannulated, and fine splanchnic nerve twigs containing at least one fiber responsive to mechanical probing of the stomach were isolated at a site immediately distal to the left suprarenal ganglion. Unit mechanoreceptive fields were encountered in all portions of the stomach, both superficially and in deeper layers. Splanchnic afferent unit impulse activity was recorded continuously during basal conditions and in response to consecutive ic injections of saline and RX 77368 (15-30 min later; 1.5 or 3 ng). Basal discharge rates ranged from 0 to 154 impulses/min (median = 10.2 impulses/min). A majority of splanchnic single units with ongoing activity increased their mean discharge rate by >/=20% after ic injection of RX 77368 at either 1.5 ng (6/10 units; median increase 63%) or 3 ng (19/24 units; median increase 175%). Five units lacking impulse activity in the 5-min before ic RX 77368 (3 ng) were also excited, with the onset of discharge occurring within 1.0-5.0 min postinjection. In units excited by ic RX 77368, peak discharge occurred 15.6 +/- 1.3 min after injection and was followed by a decline to stable activity levels +info)

Effect of central corticotropin-releasing factor on carbon tetrachloride-induced acute liver injury in rats. (5/2251)

Central neuropeptides play important roles in many instances of physiological and pathophysiological regulation mediated through the autonomic nervous system. In regard to the hepatobiliary system, several neuropeptides act in the brain to regulate bile secretion, hepatic blood flow, and hepatic proliferation. Stressors and sympathetic nerve activation are reported to exacerbate experimental liver injury. Some stressors are known to stimulate corticotropin-releasing factor (CRF) synthesis in the central nervous system and induce activation of sympathetic nerves in animal models. The effect of intracisternal CRF on carbon tetrachloride (CCl4)-induced acute liver injury was examined in rats. Intracisternal injection of CRF dose dependently enhanced elevation of the serum alanine aminotransferase (ALT) level induced by CCl4. Elevations of serum aspartate aminotransferase, alkaline phosphatase, and total bilirubin levels by CCl4 were also enhanced by intracisternal CRF injection. Intracisternal injection of CRF also aggravated CCl4-induced hepatic histological changes. Intracisternal CRF injection alone did not modify the serum ALT level. Intravenous administration of CRF did not influence CCl4-induced acute liver injury. The aggravating effect of central CRF on CCl4-induced acute liver injury was abolished by denervation of hepatic plexus with phenol and by denervation of noradrenergic fibers with 6-hydroxydopamine treatment but not by hepatic branch vagotomy or atropine treatment. These results suggest that CRF acts in the brain to exacerbate acute liver injury through the sympathetic-noradrenergic pathways.  (+info)

Central administration of rat IL-6 induces HPA activation and fever but not sickness behavior in rats. (6/2251)

Interleukin (IL)-6 has been proposed to mediate several sickness responses, including brain-mediated neuroendocrine, temperature, and behavioral changes. However, the exact mechanisms and sites of action of IL-6 are still poorly understood. In the present study, we describe the effects of central administration of species-homologous recombinant rat IL-6 (rrIL-6) on the induction of hypothalamic-pituitary-adrenal (HPA) activity, fever, social investigatory behavior, and immobility. After intracerebroventricular administration of rrIL-6 (50 or 100 ng/rat), rats demonstrated HPA and febrile responses. In contrast, rrIL-6 alone did not induce changes in social investigatory and locomotor behavior at doses of up to 400 ng/rat. Coadministration of rrIL-6 (100 ng/rat) and rrIL-1beta (40 ng/rat), which alone did not affect the behavioral responses, reduced social investigatory behavior and increased the duration of immobility. Compared with rhIL-6, intracerebroventricular administration of rrIL-6 (100 ng/rat) induced higher HPA responses and early-phase febrile responses. This is consistent with a higher potency of rrIL-6, compared with rhIL-6, in the murine B9 bioassay. We conclude that species-homologous rrIL-6 alone can act in the brain to induce HPA and febrile responses, whereas it only reduces social investigatory behavior and locomotor activity in the presence of IL-1beta.  (+info)

Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. (7/2251)

The objective of this study was to determine the relative roles of arachnoid villi and cervical lymphatics in the clearance of a cerebrospinal fluid (CSF) tracer in rats. 125I-labeled human serum albumin (125I-HSA; 100 micrograms) was injected into one lateral ventricle, and an Evans blue dye-rat protein complex was injected intravenously. Arterial blood was sampled for 3 h. Immediately after this, multiple cervical vessels were ligated in the same animals, and plasma recoveries were monitored for a further 3 h after the intracerebroventricular injection of 100 micrograms 131I-HSA. Tracer recovery in plasma at 3 h averaged (%injected dose) 0.697 +/- 0.042 before lymphatic ligation and dropped significantly to 0.357 +/- 0. 060 after ligation. Estimates of the rate constant associated with the transport of the CSF tracer to plasma were also significantly lower after obstruction of cervical lymphatics (from 0.584 +/- 0. 072/h to 0.217 +/- 0.056/h). No significant changes were observed in sham-operated animals. Assuming that the movement of the CSF tracer to plasma in lymph-ligated animals was a result of arachnoid villi clearance, we conclude that arachnoid villi and extracranial lymphatic pathways contributed equally to the clearance of the CSF tracer from the cranial vault.  (+info)

Role of central melanocortins in endotoxin-induced anorexia. (8/2251)

Inflammation and microbial infection produce symptoms, including fever, anorexia, and hypoactivity, that are thought to be mediated by endogenous proinflammatory cytokines. Melanocortins are known to act centrally to suppress effects on fever and other sequelae of proinflammatory cytokine actions in the central nervous system, but the roles of melanocortins in anorexia and hypoactivity occurring during the acute phase response are unknown. The present study was designed to determine the effects of exogenous and endogenous alpha-melanocyte stimulating hormone (alpha-MSH) on lipopolysaccharide (LPS)-induced anorexia in relation to their effects on fever. Rats were fasted overnight to promote feeding behavior, then injected intraperitoneally with LPS (100 micrograms/kg ip), followed 30 min later by intracerebroventricular injection of either alpha-MSH or the melanocortin receptor subtype 3/subtype 4 (MC3-R/MC4-R) antagonist SHU-9119. Food intake, locomotor activity, and body temperature (Tb) were monitored during the ensuing 24-h period. Each of two intracerebroventricular doses of alpha-MSH (30 and 300 ng) potentiated the suppressive effects of LPS on food intake and locomotion, despite the fact that the higher dose alleviated LPS-induced fever. In control rats that were not treated with LPS, only the higher dose of alpha-MSH significantly inhibited food intake, and Tb and locomotor activity were unaffected. To assess the roles of endogenous central melanocortins, LPS-treated rats received intracerebroventricular SHU-9119 (200 ng). Central MC3-R/MC4-R blockade did not affect Tb or food intake in the absence of LPS treatment, but it reversed the LPS-induced reduction in 24-h food intake and increased LPS-induced fever without altering the LPS-induced suppression of locomotion. Taken together, the results suggest that exogenous and endogenous melanocortins acting centrally exert divergent influences on different aspects of the acute phase response, suppressing LPS-induced fever but contributing to LPS-induced anorexia and hypoactivity.  (+info)

Symptoms of cerebral hemorrhage may include sudden severe headache, confusion, seizures, weakness or numbness in the face or limbs, and loss of consciousness. The condition is diagnosed through a combination of physical examination, imaging tests such as CT or MRI scans, and laboratory tests to determine the cause of the bleeding.

Treatment for cerebral hemorrhage depends on the location and severity of the bleeding, as well as the underlying cause. Medications may be used to control symptoms such as high blood pressure or seizures, while surgery may be necessary to repair the ruptured blood vessel or relieve pressure on the brain. In some cases, the condition may be fatal, and immediate medical attention is essential to prevent long-term damage or death.

Some of the most common complications associated with cerebral hemorrhage include:

1. Rebleeding: There is a risk of rebleeding after the initial hemorrhage, which can lead to further brain damage and increased risk of death.
2. Hydrocephalus: Excess cerebrospinal fluid can accumulate in the brain, leading to increased intracranial pressure and potentially life-threatening complications.
3. Brain edema: Swelling of the brain tissue can occur due to the bleeding, leading to increased intracranial pressure and potentially life-threatening complications.
4. Seizures: Cerebral hemorrhage can cause seizures, which can be a sign of a more severe injury.
5. Cognitive and motor deficits: Depending on the location and severity of the bleeding, cerebral hemorrhage can result in long-term cognitive and motor deficits.
6. Vision loss: Cerebral hemorrhage can cause vision loss or blindness due to damage to the visual cortex.
7. Communication difficulties: Cerebral hemorrhage can cause difficulty with speech and language processing, leading to communication difficulties.
8. Behavioral changes: Depending on the location and severity of the bleeding, cerebral hemorrhage can result in behavioral changes, such as irritability, agitation, or apathy.
9. Infection: Cerebral hemorrhage can increase the risk of infection, particularly if the hemorrhage is caused by a ruptured aneurysm or arteriovenous malformation (AVM).
10. Death: Cerebral hemorrhage can be fatal, particularly if the bleeding is severe or if there are underlying medical conditions that compromise the patient's ability to tolerate the injury.

The symptoms of cerebral ventricle neoplasms depend on their size, location, and growth rate. They may include headaches, seizures, weakness or numbness in the arms or legs, and changes in personality or cognitive function. As the tumor grows, it can press on surrounding brain tissue and disrupt normal brain function.

Diagnosis of cerebral ventricle neoplasms typically involves a combination of imaging studies such as CT or MRI scans, and tissue sampling through a biopsy procedure. Treatment options for cerebral ventricle neoplasms depend on the type and location of the tumor, as well as the patient's overall health status. Surgery, radiation therapy, and chemotherapy may be used alone or in combination to treat these tumors.

Examples of types of cerebral ventricle neoplasms include:

1. Choroid plexus papilloma: A benign tumor that arises from the choroid plexus, a layer of tissue that lines the ventricles and produces cerebrospinal fluid.
2. Choroid plexus carcinoma: A malignant tumor that arises from the choroid plexus.
3. Ventricular ependymoma: A tumor that arises from the ependyma, a layer of tissue that lines the ventricles and helps to move cerebrospinal fluid through the brain.
4. Subependymal giant cell astrocytoma (SEGA): A rare benign tumor that arises from the subependymal layer of tissue, which is located beneath the ependyma.

Overall, cerebral ventricle neoplasms are a complex and diverse group of brain tumors that can have significant impacts on the brain and nervous system. Treatment options vary depending on the specific type of tumor and the individual patient's needs.

There are several types of hydrocephalus, including:

1. Aqueductal stenosis: This occurs when the aqueduct that connects the third and fourth ventricles becomes narrowed or blocked, leading to an accumulation of CSF in the brain.
2. Choroid plexus papilloma: This is a benign tumor that grows on the surface of the choroid plexus, which is a layer of tissue that produces CSF.
3. Hydrocephalus ex vacuo: This occurs when there is a decrease in the volume of brain tissue due to injury or disease, leading to an accumulation of CSF.
4. Normal pressure hydrocephalus (NPH): This is a type of hydrocephalus that occurs in adults and is characterized by an enlarged ventricle, gait disturbances, and cognitive decline, despite normal pressure levels.
5. Symptomatic hydrocephalus: This type of hydrocephalus is caused by other conditions such as brain tumors, cysts, or injuries.

Symptoms of hydrocephalus can include headache, nausea, vomiting, seizures, and difficulty walking or speaking. Treatment options for hydrocephalus depend on the underlying cause and may include medication, surgery, or a shunt to drain excess CSF. In some cases, hydrocephalus can be managed with lifestyle modifications such as regular exercise and a balanced diet.

Prognosis for hydrocephalus varies depending on the underlying cause and severity of the condition. However, with timely diagnosis and appropriate treatment, many people with hydrocephalus can lead active and fulfilling lives.

Other definitions:

* Premature birth: A birth that occurs before 37 completed weeks of gestation.
* Preterm birth: A birth that occurs before 37 completed weeks of gestation, but not necessarily before 22 weeks.
* Very preterm birth: A birth that occurs before 28 completed weeks of gestation.
* Extremely preterm birth: A birth that occurs before 24 completed weeks of gestation.

Diseases associated with premature infants:

1. Respiratory distress syndrome (RDS): A condition in which the baby's lungs do not produce enough surfactant, a substance that helps the air sacs in the lungs expand and contract properly.
2. Bronchopulmonary dysplasia (BPD): A chronic lung disease that can develop in premature infants who have RDS.
3. Intraventricular hemorrhage (IVH): Bleeding in the brain that can occur in premature infants, particularly those with RDS or BPD.
4. Retinopathy of prematurity (ROP): A condition that can cause blindness in premature infants due to abnormal blood vessel growth in the retina.
5. Necrotizing enterocolitis (NEC): A condition that can cause damage to the intestines and other parts of the digestive system in premature infants.
6. Intracranial hemorrhage (ICH): Bleeding in the brain that can occur in premature infants, particularly those with RDS or BPD.
7. Gastrointestinal problems: Premature infants are at risk for gastroesophageal reflux disease (GERD), necrotizing enterocolitis (NEC), and other gastrointestinal problems.
8. Feeding difficulties: Premature infants may have difficulty feeding, which can lead to weight gain issues or the need for a feeding tube.
9. Respiratory infections: Premature infants are at increased risk for respiratory infections, such as pneumonia and bronchiolitis.
10. Developmental delays: Premature infants may be at risk for developmental delays or learning disabilities, particularly if they experienced significant health problems or required oxygen therapy.

It is important to note that not all premature infants will develop these complications, and the severity of the conditions can vary depending on the individual baby's health and the level of care they receive. However, it is essential for parents and caregivers to be aware of the potential risks and seek prompt medical attention if they notice any signs of distress or illness in their premature infant.

There are several types of intracranial hemorrhage, including:

1. Cerebral hemorrhage: Bleeding within the cerebral tissue itself, which can cause damage to brain cells and lead to a variety of complications.
2. Subarachnoid hemorrhage: Bleeding between the brain and the thin membrane that covers it (the meninges), which can cause severe headaches and other symptoms.
3. Epidural hemorrhage: Bleeding between the dura mater, a protective layer of tissue surrounding the brain, and the skull.
4. Subdural hemorrhage: Bleeding between the dura mater and the arachnoid membrane, which can cause severe headaches and other symptoms.

The symptoms of intracranial hemorrhage can vary depending on the location and severity of the bleeding, but may include:

* Sudden, severe headache
* Nausea and vomiting
* Confusion and disorientation
* Weakness or numbness in the face, arm, or leg
* Seizures
* Loss of consciousness

Diagnosis is typically made through a combination of physical examination, imaging tests (such as CT or MRI scans), and laboratory tests to determine the cause of the hemorrhage. Treatment depends on the location and severity of the bleeding, but may include medications to control symptoms, surgery to repair the source of the bleeding, or other interventions as needed.

PVL is often seen in premature infants, especially those born before 32 weeks of gestation, as their brains are not fully developed and are more susceptible to injury. It can also occur in full-term newborns who have experienced hypoxia (lack of oxygen) during delivery or shortly after birth.

The symptoms of PVL can vary depending on the severity of the condition and may include:

* Delayed developmental milestones
* Poor muscle tone and coordination
* Seizures
* Vision problems
* Hearing loss

PVL is typically diagnosed through a combination of physical examination, medical history, and imaging studies such as ultrasound or MRI. Treatment for PVL often focuses on managing the underlying cause, such as hypoxia or infection, and providing supportive care to help the brain heal. In some cases, medications may be prescribed to help control seizures or other symptoms.

Overall, periventricular leukomalacia is a serious condition that can have long-lasting effects on the developing brain, but with proper medical care and support, many children are able to recover and lead normal lives.

Symptoms: The symptoms of neurocytoma can vary depending on the size and location of the tumor, but common symptoms include headaches, seizures, weakness or numbness in the arms or legs, and changes in vision, memory, or concentration.

Diagnosis: Neurocytomas are diagnosed through a combination of imaging studies such as MRI or CT scans, and tissue sampling through biopsy. The tumor is graded based on its aggressiveness, with grade I being the most benign and grade III being the most malignant.

Treatment: Treatment for neurocytoma usually involves surgery to remove as much of the tumor as possible, followed by radiation therapy and/or chemotherapy to kill any remaining cancer cells. The prognosis for neurocytoma is generally good, with a five-year survival rate of approximately 70% - 80%.

Prognosis: The prognosis for neurocytoma is generally good, with a five-year survival rate of approximately 70% - 80%. However, the tumor's grade and location can affect the outcome. Grade III tumors have a lower survival rate than grade I or II tumors. Additionally, if the tumor is located in a sensitive area such as near a critical structure in the brain, the prognosis may be poorer.

Recurrence: Neurocytomas can recur after treatment, with a recurrence rate of approximately 20% - 30%. Recurrences are often detected through imaging studies and can be treated with surgery, radiation therapy, or chemotherapy.

In summary, neurocytoma is a rare type of brain tumor that originates from supporting cells in the brain called neurocytes. While the prognosis for neurocytoma is generally good, the tumor's grade and location can affect the outcome, and recurrences can occur. It is important for patients to receive prompt and appropriate treatment to maximize their chances of a successful outcome.

The symptoms of meningeal neoplasms vary depending on the location, size, and type of tumor. Common symptoms include headaches, seizures, weakness or numbness in the arms or legs, and changes in vision, memory, or behavior. As the tumor grows, it can compress or displaces the brain tissue, leading to increased intracranial pressure and potentially life-threatening complications.

There are several different types of meningeal neoplasms, including:

1. Meningioma: This is the most common type of meningeal neoplasm, accounting for about 75% of all cases. Meningiomas are usually benign and grow slowly, but they can sometimes be malignant.
2. Metastatic tumors: These are tumors that have spread to the meninges from another part of the body, such as the lung or breast.
3. Lymphoma: This is a type of cancer that affects the immune system and can spread to the meninges.
4. Melanotic neuroectodermal tumors (MNTs): These are rare, malignant tumors that usually occur in children and young adults.
5. Hemangiopericytic hyperplasia: This is a rare, benign condition characterized by an overgrowth of blood vessels in the meninges.

The diagnosis of meningeal neoplasms is based on a combination of clinical symptoms, physical examination findings, and imaging studies such as CT or MRI scans. A biopsy may be performed to confirm the diagnosis and determine the type of tumor.

Treatment options for meningeal neoplasms depend on the type, size, and location of the tumor, as well as the patient's overall health. Surgery is often the first line of treatment, and may involve removing as much of the tumor as possible or using a laser to ablate (destroy) the tumor cells. Radiation therapy and chemotherapy may also be used in combination with surgery to treat malignant meningeal neoplasms.

Prognosis for meningeal neoplasms varies depending on the type of tumor and the patient's overall health. In general, early diagnosis and treatment improve the prognosis, while later-stage tumors may have a poorer outcome.

There are three main types of bundle branch blocks:

1. Right bundle branch block (RBBB): This occurs when the electrical conduction bundle that carries the heart's rhythm from the right atrium to the right ventricle is damaged or diseased.
2. Left bundle branch block (LBBB): This occurs when the electrical conduction bundle that carries the heart's rhythm from the left atrium to the left ventricle is damaged or diseased.
3. Bifascicular bundle branch block: This occurs when two of the electrical conduction bundles are damaged or diseased.

Symptoms of bundle branch block may include:

* Heart palpitations
* Slow or irregular heartbeat
* Shortness of breath
* Fatigue
* Dizziness or lightheadedness
* Chest pain or discomfort

Diagnosis of bundle branch block is typically made using an electrocardiogram (ECG) test, which measures the electrical activity of the heart. Treatment options for BBB may include medications to regulate the heartbeat, cardiac resynchronization therapy (CRT) to help both ventricles beat together, or implantable cardioverter-defibrillator (ICD) to prevent life-threatening arrhythmias. In some cases, surgery may be necessary to repair or replace damaged heart tissue.

It is important to note that bundle branch block can increase the risk of developing other cardiac conditions such as heart failure, atrial fibrillation, and ventricular tachycardia. Therefore, it is essential for individuals with BBB to work closely with their healthcare provider to manage their condition and reduce the risk of complications.

Subependymal gliomas are rare, accounting for only about 1-2% of all primary brain tumors. They are more common in children than adults, and typically affect the posterior fossa (the area at the back of the brain) and the fourth ventricle (a narrow channel that runs through the middle of the brain).

Subependymal gliomas can cause a variety of symptoms depending on their size and location, such as headaches, seizures, weakness or numbness in the arms or legs, and changes in personality, memory, or cognitive function. The tumors are typically diagnosed using imaging techniques such as MRI or CT scans, and may require surgery, radiation therapy, or chemotherapy for treatment.

Overall, subependymal gliomas are relatively rare and tend to have a better prognosis than other types of gliomas. However, they can still be challenging to diagnose and treat, and ongoing research is needed to improve our understanding of these tumors and develop more effective treatment options.

The disease is characterized by the presence of hyaline membranes in the distal air spaces of the lungs, which are composed of extracellular material, including surfactant proteins, lipids, and other substances. These membranes impair the exchange of oxygen and carbon dioxide between the blood and the air in the lungs, leading to respiratory failure.

The symptoms of HMD can range from mild to severe and may include:

* Respiratory distress
* Tachypnea (rapid breathing)
* Cyanosis (blue coloration of the skin and mucous membranes due to lack of oxygen)
* Poor feeding
* Apnea (pauses in breathing)

HMD is usually diagnosed based on clinical findings and chest X-rays. Treatment typically involves providing supplemental oxygen, mechanical ventilation, and surfactant replacement therapy to help restore normal lung function. In severe cases, HMD can lead to respiratory failure and death if left untreated.

Prevention of HMD includes:

* Proper management of maternal health during pregnancy
* Avoiding smoking and other harmful substances during pregnancy
* Ensuring proper prenatal care and regular check-ups
* Delivering the baby in a medical facility equipped to handle high-risk deliveries

Early recognition and treatment of HMD are critical to preventing complications and improving outcomes for affected newborns.

The symptoms of cerebral ventriculitis can vary depending on the severity of the infection and the location of the inflammation. Common symptoms include fever, headache, confusion, seizures, and loss of consciousness. In severe cases, the condition can lead to brain damage, hydrocephalus (an accumulation of CSF in the brain), and even death.

The diagnosis of cerebral ventriculitis is based on a combination of clinical findings, laboratory tests, and imaging studies such as CT or MRI scans. Laboratory tests may include blood cultures, electrolyte panels, and liver function tests to assess the overall health of the patient. Imaging studies can help to identify any abnormalities in the brain, such as abscesses or inflammation in the ventricles.

Treatment of cerebral ventriculitis typically involves the use of antibiotics to clear the infection. In severe cases, surgical drainage of the abscess may be necessary. Supportive care, such as intravenous fluids and monitoring of vital signs, is also important to ensure the patient's overall health and stability.

Prognosis for cerebral ventriculitis depends on the severity of the infection and the promptness and effectiveness of treatment. In general, early diagnosis and treatment can improve the chances of a successful outcome. However, the condition can be life-threatening, especially if it is not recognized and treated promptly.

Prevention of cerebral ventriculitis involves good hygiene practices, such as washing hands regularly, avoiding close contact with people who are sick, and properly sterilizing medical equipment. Vaccination against common infections, such as meningitis, can also help to prevent the development of cerebral ventriculitis.

Overall, cerebral ventriculitis is a serious condition that requires prompt recognition and treatment to improve outcomes for affected individuals. With appropriate care and supportive measures, many people with this condition are able to recover fully or partially. However, in severe cases or those that are not treated promptly, the condition can be life-threatening.

There are several types of ventricular dysfunction, including:

1. Left ventricular dysfunction: This occurs when the left ventricle, which is the main pumping chamber of the heart, becomes weakened or impaired. This can lead to reduced cardiac output and can increase the risk of heart failure.
2. Right ventricular dysfunction: This occurs when the right ventricle, which pumps blood into the lungs, becomes weakened or impaired. This can lead to pulmonary hypertension and other complications.
3. Biventricular dysfunction: This occurs when both the left and right ventricles become weakened or impaired. This can lead to severe cardiac impairment and increased risk of heart failure.

Ventricular dysfunction can be diagnosed through a variety of tests, including echocardiography, stress testing, and cardiac magnetic resonance imaging (MRI). Treatment options depend on the underlying cause of the dysfunction and may include medications, lifestyle changes, or surgical interventions. In some cases, implantable devices such as pacemakers or defibrillators may be recommended to help regulate the heart rhythm and improve function.

CNS bacterial infections can cause a wide range of symptoms, including fever, headache, confusion, seizures, and loss of consciousness. In severe cases, these infections can lead to meningitis, encephalitis, or abscesses in the brain or spinal cord.

The diagnosis of CNS bacterial infections is based on a combination of clinical findings, laboratory tests, and imaging studies. Laboratory tests may include blood cultures, cerebrospinal fluid (CSF) cultures, and polymerase chain reaction (PCR) tests to identify the causative bacteria. Imaging studies, such as computed tomography (CT) or magnetic resonance imaging (MRI), may be used to visualize the extent of the infection.

Treatment of CNS bacterial infections typically involves the use of antibiotics, which can help to clear the infection and prevent further complications. In some cases, surgical intervention may be necessary to drain abscesses or relieve pressure on the brain or spinal cord.

Preventive measures for CNS bacterial infections include vaccination against certain types of bacteria, such as Streptococcus pneumoniae and Haemophilus influenzae, good hygiene practices, and appropriate use of antibiotics. Early diagnosis and treatment are critical to preventing long-term neurological damage or death.

In conclusion, CNS bacterial infections can be serious and potentially life-threatening conditions that require prompt diagnosis and treatment. Understanding the causes, symptoms, diagnosis, treatment, and prevention of these infections is essential for effective management and optimal outcomes for patients affected by them.

1. Respiratory distress syndrome (RDS): This is a breathing disorder that occurs when the baby's lungs are not fully developed, causing difficulty in breathing. RDS can be treated with oxygen therapy and other medical interventions.
2. Jaundice: Jaundice is a yellowish tint to the skin and eyes caused by high levels of bilirubin in the blood. It is a common condition in newborns, but if left untreated, it can lead to brain damage. Treatment may involve phototherapy or blood exchange transfusions.
3. Neonatal jaundice: This is a milder form of jaundice that occurs in the first few days of life. It usually resolves on its own within a week, but if it persists, treatment may be necessary.
4. Premature birth: Premature babies are at risk for various health issues, including respiratory distress syndrome, intraventricular hemorrhage (bleeding in the brain), and retinopathy (eye problems).
5. Congenital heart disease: This is a heart defect that occurs during fetal development. It can range from mild to severe and may require surgical intervention.
6. Infections: Newborns are susceptible to bacterial and viral infections, such as group B strep, pneumonia, and urinary tract infections. These can be treated with antibiotics if caught early.
7. Hypoglycemia (low blood sugar): This is a condition that occurs when the baby's blood sugar levels drop too low. It can cause seizures, lethargy, and other symptoms. Treatment involves feeding or providing glucose supplements.
8. Hyperbilirubinemia (high bilirubin levels): Bilirubin is a yellow pigment produced during the breakdown of red blood cells. High levels can cause jaundice, which can lead to kernicterus, a condition that can cause brain damage and hearing loss.
9. Intracranial hemorrhage (bleeding in the brain): This is a serious condition that occurs when there is bleeding in the baby's brain. It can be caused by various conditions, including premature birth, abruption, and vasculitis.
10. Meconium aspiration: This occurs when the baby inhales a mixture of meconium (a substance produced by the intestines) and amniotic fluid during delivery. It can cause respiratory problems and other complications.

It's important to note that while these conditions can be serious, many babies born at 37 weeks gestation do not experience any complications. Proper prenatal care and a healthy pregnancy can help reduce the risk of these conditions.

Meningioma can occur in various locations within the brain, including the cerebrum, cerebellum, brainstem, and spinal cord. The most common type of meningioma is the meningothelial meningioma, which arises from the arachnoid membrane, one of the three layers of the meninges. Other types of meningioma include the dural-based meningioma, which originates from the dura mater, and the fibrous-cap meningioma, which is characterized by a fibrous cap covering the tumor.

The symptoms of meningioma can vary depending on the location and size of the tumor, but they often include headaches, seizures, weakness or numbness in the arms or legs, and changes in vision, memory, or cognitive function. As the tumor grows, it can compress the brain tissue and cause damage to the surrounding structures, leading to more severe symptoms such as difficulty speaking, walking, or controlling movement.

The diagnosis of meningioma typically involves a combination of imaging studies such as MRI or CT scans, and tissue sampling through biopsy or surgery. Treatment options for meningioma depend on the size, location, and aggressiveness of the tumor, but may include surgery, radiation therapy, and chemotherapy. Overall, the prognosis for meningioma is generally good, with many patients experiencing a good outcome after treatment. However, some types of meningioma can be more aggressive and difficult to treat, and the tumor may recur in some cases.

The infection occurs when the parasite migrates through the body and reaches the CNS, where it forms cysticerci, which are fluid-filled structures that can cause inflammation and damage to brain tissue. The symptoms of neurocysticercosis can vary depending on the location and size of the cysts, but they often include seizures, headaches, weakness, and vision problems.

Diagnosis of neurocysticercosis is based on a combination of clinical findings, imaging studies (such as CT or MRI scans), and serological tests to detect antibodies against the parasite. Treatment typically involves antiparasitic drugs to kill the parasites, as well as supportive care to manage symptoms and prevent complications.

Prevention of neurocysticercosis primarily involves controlling the transmission of the parasite, which can be done by improving food hygiene and avoiding consumption of undercooked or raw pork. In areas where the infection is common, mass drug administration programs have also been implemented to reduce the prevalence of the parasite.

In summary, neurocysticercosis is a severe and potentially debilitating parasitic infection that affects the central nervous system, with symptoms ranging from seizures to vision problems. Diagnosis is based on a combination of clinical findings and imaging studies, and treatment involves antiparasitic drugs and supportive care. Prevention primarily involves controlling the transmission of the parasite through improved food hygiene and mass drug administration programs.

Intracranial hematoma occurs within the skull and is often caused by head injuries, such as falls or car accidents. It can lead to severe neurological symptoms, including confusion, seizures, and loss of consciousness. Extracranial hematomas occur outside the skull and are commonly seen in injuries from sports, accidents, or surgery.

The signs and symptoms of hematoma may vary depending on its location and size. Common symptoms include pain, swelling, bruising, and limited mobility. Diagnosis is typically made through imaging tests such as CT scans or MRI scans, along with physical examination and medical history.

Treatment for hematoma depends on its severity and location. In some cases, conservative management with rest, ice, compression, and elevation (RICE) may be sufficient. However, surgical intervention may be necessary to drain the collection of blood or remove any clots that have formed.

In severe cases, hematoma can lead to life-threatening complications such as infection, neurological damage, and organ failure. Therefore, prompt medical attention is crucial for proper diagnosis and treatment.

RDS is a common condition in premature babies, but it can also occur in full-term babies if they have certain medical conditions or are exposed to substances during pregnancy that can affect lung development. Symptoms of RDS include rapid breathing, grunting, and flared nostrils. The condition can be diagnosed through chest X-rays or blood tests.

Treatment for RDS typically involves providing oxygen therapy and other supportive care to help the baby breathe more easily. In severe cases, a ventilator may be used to assist with breathing. Surfactant replacement therapy may also be given to help the baby's lungs function properly. With appropriate treatment, most babies with RDS can recover and go on to lead healthy lives. However, in some cases, the condition can be fatal if left untreated or if there are complications such as infection or bleeding in the lungs.

The term extravasation is commonly used in medical contexts to describe the leakage of fluids or medications from a blood vessel or other body structure. In the context of diagnostic and therapeutic materials, extravasation can refer to the leakage of materials such as contrast agents, medications, or other substances used for diagnostic or therapeutic purposes.

Extravagation of diagnostic and therapeutic materials can have significant consequences, including tissue damage, infection, and systemic toxicity. For example, if a contrast agent used for imaging purposes leaks into the surrounding tissues, it can cause inflammation or other adverse reactions. Similarly, if a medication intended for injection into a specific location leaks into the surrounding tissues or organs, it can cause unintended side effects or toxicity.

To prevent extravasation of diagnostic and therapeutic materials, healthcare providers must follow proper techniques and protocols for administration and use of these materials. This may include using sterile equipment, following proper injection techniques, and monitoring the patient closely for any signs of complications. In cases where extravasation does occur, prompt treatment and management are essential to minimize potential harm and prevent long-term consequences.

1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.

2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.

3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.

4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.

5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.

6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.

7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.

8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.

9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.

10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.

Symptoms of intracranial hypertension can include headache, nausea and vomiting, confusion, seizures, and loss of consciousness. Treatment options depend on the underlying cause, but may include medications to reduce pressure, draining excess CSF, or surgery to relieve obstruction.

Intracranial hypertension can be life-threatening if left untreated, as it can lead to permanent brain damage and even death. Therefore, prompt medical attention is essential for proper diagnosis and management of this condition.

Encephalomalacia can be caused by a variety of factors, including:

1. Traumatic brain injury: A blow to the head or other form of trauma can cause the brain to become bruised or damaged, leading to encephalomalacia.
2. Infection: Certain infections, such as meningitis or encephalitis, can damage brain tissue and lead to encephalomalacia.
3. Stroke or other forms of ischemia: A lack of blood flow to the brain can cause damage to brain tissue and lead to encephalomalacia.
4. Neurodegenerative diseases: Conditions such as Alzheimer's disease, Parkinson's disease, and Huntington's disease can cause progressive degeneration of brain tissue over time.
5. Toxins: Exposure to certain toxins, such as lead or other heavy metals, can damage brain tissue and lead to encephalomalacia.

Symptoms of encephalomalacia may include:

1. Cognitive decline
2. Memory loss
3. Confusion
4. Difficulty with coordination and balance
5. Weakness or paralysis of certain muscle groups
6. Seizures
7. Vision problems
8. Hearing loss

Encephalomalacia is typically diagnosed through a combination of physical examination, medical history, and imaging tests such as CT or MRI scans. Treatment depends on the underlying cause of the condition and may include medication, surgery, or other forms of therapy. In some cases, encephalomalacia may be a chronic and progressive condition, while in others it may resolve with treatment.

Developmental disabilities can include a wide range of diagnoses, such as:

1. Autism Spectrum Disorder (ASD): A neurological disorder characterized by difficulties with social interaction, communication, and repetitive behaviors.
2. Intellectual Disability (ID): A condition in which an individual's cognitive abilities are below average, affecting their ability to learn, reason, and communicate.
3. Down Syndrome: A genetic disorder caused by an extra copy of chromosome 21, characterized by intellectual disability, delayed speech and language development, and a distinctive physical appearance.
4. Cerebral Palsy (CP): A group of disorders that affect movement, balance, and posture, often resulting from brain injury or abnormal development during fetal development or early childhood.
5. Attention Deficit Hyperactivity Disorder (ADHD): A neurodevelopmental disorder characterized by symptoms of inattention, hyperactivity, and impulsivity.
6. Learning Disabilities: Conditions that affect an individual's ability to learn and process information, such as dyslexia, dyscalculia, and dysgraphia.
7. Traumatic Brain Injury (TBI): An injury to the brain caused by a blow or jolt to the head, often resulting in cognitive, emotional, and physical impairments.
8. Severe Hearing or Vision Loss: A condition in which an individual experiences significant loss of hearing or vision, affecting their ability to communicate and interact with their environment.
9. Multiple Disabilities: A condition in which an individual experiences two or more developmental disabilities simultaneously, such as intellectual disability and autism spectrum disorder.
10. Undiagnosed Developmental Delay (UDD): A condition in which an individual experiences delays in one or more areas of development, but does not meet the diagnostic criteria for a specific developmental disability.

These conditions can have a profound impact on an individual's quality of life, and it is important to provide appropriate support and accommodations to help them reach their full potential.

The term "basal ganglia" refers to a group of structures in the brain that play a critical role in regulating movement, emotion, and cognition. These structures include the caudate nucleus, putamen, globus pallidus, and substantia nigra, among others.

A basal ganglia hemorrhage occurs when there is bleeding within one or more of these structures, often as a result of a ruptured blood vessel. This can cause damage to the surrounding brain tissue and disrupt normal functioning of the basal ganglia.

Symptoms of a basal ganglia hemorrhage can vary depending on the location and severity of the bleeding. Common symptoms include:

* Sudden weakness or paralysis on one side of the body
* Speech difficulties, such as slurred speech or difficulty finding the right words
* Confusion and disorientation
* Changes in behavior, such as increased agitation or lethargy
* Vision problems, such as double vision or loss of peripheral vision

In severe cases, a basal ganglia hemorrhage can lead to coma or death. However, with prompt medical treatment, many people are able to recover significant function and regain their ability to perform daily activities.

Treatment for a basal ganglia hemorrhage typically involves supportive care, such as mechanical ventilation and fluid replacement, as well as medications to manage symptoms and prevent further complications. In some cases, surgery may be necessary to relieve pressure on the affected brain tissue or to repair damaged blood vessels.

Overall, a basal ganglia hemorrhage is a serious medical condition that requires prompt attention from a healthcare professional. With appropriate treatment and support, many people are able to recover significant function and lead active lives.

The exact cause of BPD is not fully understood, but it is thought to be related to a combination of genetic and environmental factors. Babies who are born prematurely or have low birth weights are at higher risk for developing BPD.

Symptoms of BPD can include rapid breathing, difficulty breathing, and bluish color of the skin (cyanosis). Diagnosis is typically made through a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or blood tests.

There is no cure for BPD, but treatment options are available to help manage symptoms and improve lung function. These may include oxygen therapy, respiratory therapy, and medications such as bronchodilators or steroids. In severe cases, babies with BPD may require mechanical ventilation.

Long-term outcomes for babies with BPD can vary widely, depending on the severity of the disease and other individual factors. Some children may experience ongoing breathing problems and developmental delays, while others may recover fully with time. With appropriate treatment and support, however, many babies with BPD are able to lead healthy lives.

The prognosis for BPD is generally better for babies who are born at later gestational ages and have fewer other health problems. However, even with appropriate treatment, some babies with BPD may experience ongoing breathing difficulties and other complications throughout their lives. These may include:

* Respiratory infections: Babies with BPD are at higher risk for developing respiratory infections such as pneumonia, which can be serious and potentially life-threatening.
* Chronic lung disease: BPD can lead to long-term breathing problems and chronic lung disease, which can require ongoing medical treatment.
* Developmental delays: Babies with BPD may experience developmental delays and learning disabilities, particularly if they spent a significant amount of time in the neonatal intensive care unit (NICU).
* Behavioral and emotional problems: Some children with BPD may experience behavioral and emotional problems, such as anxiety and depression, which can be related to their medical history and experiences.

Overall, while babies with BPD face a higher risk for ongoing breathing problems and other complications, many are able to recover fully with appropriate treatment and support. It is important for parents and caregivers to work closely with healthcare providers to monitor their child's condition and address any ongoing concerns or complications.

The symptoms of a brain abscess can vary depending on the location and size of the abscess, but may include:

* Headache
* Fever
* Confusion or disorientation
* Seizures
* Weakness or numbness in the arms or legs
* Vision problems
* Speech difficulties

If a brain abscess is suspected, a doctor will typically perform a physical examination and order imaging tests such as CT or MRI scans to confirm the diagnosis. Treatment usually involves antibiotics to treat the underlying infection, as well as surgery to drain the abscess and remove any infected tissue. In severe cases, hospitalization may be necessary to monitor and treat the patient.

With prompt and appropriate treatment, most people with a brain abscess can recover fully or almost fully, but in some cases, the condition can result in long-term complications such as memory loss, cognitive impairment, or personality changes. In rare instances, a brain abscess can be fatal if not treated promptly and properly.

There are several potential causes of LVD, including:

1. Coronary artery disease: The buildup of plaque in the coronary arteries can lead to a heart attack, which can damage the left ventricle and impair its ability to function properly.
2. Heart failure: When the heart is unable to pump enough blood to meet the body's needs, it can lead to LVD.
3. Cardiomyopathy: This is a condition where the heart muscle becomes weakened or enlarged, leading to impaired function of the left ventricle.
4. Heart valve disease: Problems with the heart valves can disrupt the normal flow of blood and cause LVD.
5. Hypertension: High blood pressure can cause damage to the heart muscle and lead to LVD.
6. Genetic factors: Some people may be born with genetic mutations that predispose them to developing LVD.
7. Viral infections: Certain viral infections, such as myocarditis, can inflame and damage the heart muscle, leading to LVD.
8. Alcohol or drug abuse: Substance abuse can damage the heart muscle and lead to LVD.
9. Nutritional deficiencies: A diet lacking essential nutrients can lead to damage to the heart muscle and increase the risk of LVD.

Diagnosis of LVD typically involves a physical exam, medical history, and results of diagnostic tests such as electrocardiograms (ECGs), echocardiograms, and stress tests. Treatment options for LVD depend on the underlying cause, but may include medications to improve cardiac function, lifestyle changes, and in severe cases, surgery or other procedures.

Preventing LVD involves taking steps to maintain a healthy heart and reducing risk factors such as high blood pressure, smoking, and obesity. This can be achieved through a balanced diet, regular exercise, stress management, and avoiding substance abuse. Early detection and treatment of underlying conditions that increase the risk of LVD can also help prevent the condition from developing.

Symptoms of meningitis may include fever, headache, stiff neck, confusion, nausea and vomiting, and sensitivity to light. In severe cases, it can lead to seizures, brain damage, and even death.

There are several types of meningitis, including:

1. Viral meningitis: This is the most common form of the infection and is usually caused by enteroviruses or herpesviruses. It is typically less severe than bacterial meningitis and resolves on its own with supportive care.
2. Bacterial meningitis: This is a more serious form of the infection and can be caused by a variety of bacteria, such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. It requires prompt antibiotic treatment to prevent long-term complications and death.
3. Fungal meningitis: This type of meningitis is more common in people with weakened immune systems and is caused by fungi that are commonly found in the environment. It can be treated with antifungal medications.
4. Parasitic meningitis: This type of meningitis is rare and is caused by parasites that are typically found in tropical regions. It can be treated with antiparasitic medications.

Diagnosis of meningitis is based on a combination of clinical findings, laboratory tests, and imaging studies. Laboratory tests may include blood cultures, polymerase chain reaction (PCR) testing, and cerebrospinal fluid (CSF) analysis. Imaging studies, such as CT or MRI scans, may be used to rule out other conditions and to evaluate the extent of brain damage.

Treatment of meningitis depends on the cause of the infection and may include antibiotics, antiviral medications, antifungal medications, or supportive care to manage symptoms and prevent complications. Supportive care may include intravenous fluids, oxygen therapy, and pain management. In severe cases, meningitis may require hospitalization in an intensive care unit (ICU) and may result in long-term consequences such as hearing loss, learning disabilities, or cognitive impairment.

Prevention of meningitis includes vaccination against the bacteria or viruses that can cause the infection, good hygiene practices, and avoiding close contact with people who are sick. Vaccines are available for certain types of meningitis, such as the meningococcal conjugate vaccine (MenACWY) and the pneumococcal conjugate vaccine (PCV). Good hygiene practices include washing hands frequently, covering the mouth and nose when coughing or sneezing, and avoiding sharing food, drinks, or personal items.

In conclusion, meningitis is a serious and potentially life-threatening infection that can affect people of all ages. Early diagnosis and treatment are crucial to prevent long-term consequences and improve outcomes. Prevention includes vaccination, good hygiene practices, and avoiding close contact with people who are sick.



The exact cause of ROP is not known, but it is thought to be related to the immaturity of the retina and the high levels of oxygen in incubators used to care for premature babies. The risk of developing ROP increases with the degree of prematurity, with infants born before 28 weeks gestation being at highest risk.

ROP typically develops in two stages:

1. Stage 1: Early ROP - This stage is characterized by the formation of small blood vessels and immature retinal tissue.
2. Stage 2: Advanced ROP - This stage is characterized by the proliferation of abnormal blood vessels, bleeding, and scarring in the retina.

There are several subtypes of ROP, including:

1. Type 1 ROP: Mildest form of the disease, with few or no complications.
2. Type 2 ROP: More severe form of the disease, with abnormal blood vessel growth and scarring in the retina.
3. Type 3 ROP: Most severe form of the disease, with widespread scarring and bleeding in the retina.

Treatment for ROP typically involves monitoring the infant's eye development closely and applying laser therapy to the affected areas if necessary. In severe cases, surgery may be required to remove abnormal blood vessels or scar tissue.

Prevention of ROP is primarily focused on reducing the risk factors, such as prematurity and oxygen exposure. This includes:

1. Proper management of gestational diabetes to prevent preterm birth.
2. Close monitoring of fetal development and early delivery if necessary.
3. Careful regulation of oxygen levels in incubators to avoid over-oxygenation.
4. Early detection and treatment of infections that can lead to preterm birth.
5. Avoiding excessive use of ophthalmic drugs that can be harmful to the developing retina.

Early detection and timely intervention are crucial for effective management and prevention of ROP. Regular eye exams and screening are necessary to identify the disease in its early stages, when treatment is most effective.

The symptoms of VOO may include shortness of breath, fatigue, swelling in the legs and abdomen, and chest pain. If left untreated, VOO can lead to heart failure, arrhythmias, and even death.

Diagnosis of VOO is typically made through a combination of physical examination, electrocardiogram (ECG), echocardiogram, and cardiac catheterization. Treatment options for VOO depend on the underlying cause and may include medications, lifestyle changes, or surgical procedures such as coronary angioplasty or heart transplantation.

In summary, ventricular outflow obstruction is a serious medical condition that can lead to severe consequences if left untreated. Early diagnosis and appropriate treatment are essential to prevent complications and improve outcomes for patients with VOO.

There are several types of heart block, including:

1. First-degree heart block: This is the mildest form of heart block, where the electrical signals are delayed slightly but still reach the ventricles.
2. Second-degree heart block: In this type, some of the electrical signals may be blocked or delayed, causing the heart to beat irregularly.
3. Third-degree heart block: This is the most severe form of heart block, where all electrical signals are completely blocked, resulting in a complete halt of the heart's normal rhythm.

Heart block can be caused by a variety of factors, including:

1. Coronary artery disease: A buildup of plaque in the coronary arteries can lead to a blockage that affects the electrical signals to the heart.
2. Heart attack: Damage to the heart muscle can cause scarring and disrupt the electrical signals.
3. Cardiomyopathy: Disease of the heart muscle can lead to heart block.
4. Heart valve problems: Dysfunctional heart valves can interfere with the electrical signals to the heart.
5. Electrolyte imbalances: Abnormal levels of potassium, magnesium, or other electrolytes can affect the heart's electrical activity.
6. Medications: Certain drugs, such as beta-blockers and calcium channel blockers, can slow down the heart's electrical signals.
7. Infections: Viral or bacterial infections can damage the heart and disrupt its electrical signals.
8. Genetic conditions: Certain inherited conditions, such as long QT syndrome, can affect the heart's electrical activity.
9. Autoimmune disorders: Conditions such as rheumatoid arthritis or lupus can damage the heart and disrupt its electrical signals.

Symptoms of heart block may include:

1. Slow or irregular heartbeat
2. Palpitations
3. Fatigue
4. Shortness of breath
5. Dizziness or lightheadedness
6. Chest pain or discomfort
7. Pain or discomfort in the arms, back, or jaw

Diagnosis of heart block is typically made with an electrocardiogram (ECG), which measures the electrical activity of the heart. Other tests that may be used to diagnose heart block include:

1. Echocardiography: An ultrasound test that uses sound waves to create images of the heart.
2. Stress test: A test that measures the heart's activity during exercise or other forms of physical stress.
3. Holter monitor: A portable device that records the heart's activity over a 24-hour period.
4. Event monitor: A portable device that records the heart's activity over a longer period of time, typically 1-2 weeks.

Treatment for heart block depends on the severity of the condition and may include:

1. Medications: Drugs such as beta blockers or pacemakers may be used to regulate the heart's rhythm and rate.
2. Pacemaker: A small device that is implanted in the chest to help regulate the heart's rhythm.
3. Cardiac resynchronization therapy (CRT): A procedure that involves implanting a device that helps both ventricles of the heart beat together, improving the heart's pumping function.
4. Implantable cardioverter-defibrillator (ICD): A device that is implanted in the chest to monitor the heart's rhythm and deliver an electric shock if it detects a potentially life-threatening arrhythmia.

In conclusion, heart block is a serious condition that can disrupt the normal functioning of the heart. It is important to be aware of the risk factors and symptoms of heart block, and to seek medical attention immediately if they occur. With proper diagnosis and treatment, it is possible to manage heart block and improve the quality of life for those affected by the condition.

The exact cause of HCM is not fully understood, but it is thought to be related to a combination of genetic and environmental factors. Some people with HCM have a family history of the condition, and it is also more common in certain populations such as athletes and individuals with a history of hypertension or diabetes.

Symptoms of HCM can vary from person to person and may include shortness of breath, fatigue, palpitations, and chest pain. In some cases, HCM may not cause any symptoms at all and may be detected only through a physical examination or diagnostic tests such as an echocardiogram or electrocardiogram (ECG).

Treatment for HCM typically focuses on managing symptoms and reducing the risk of complications. This may include medications to reduce blood pressure, control arrhythmias, or improve heart function, as well as lifestyle modifications such as regular exercise and a healthy diet. In some cases, surgery or other procedures may be necessary to treat HCM.

Prognosis for individuals with HCM varies depending on the severity of the condition and the presence of any complications. With appropriate treatment and management, many people with HCM can lead active and fulfilling lives, but it is important to receive regular monitoring and care from a healthcare provider to manage the condition effectively.

Patent ductus arteriosus (PDA) is a condition in which the DA fails to close after birth. This can result in excessive blood flow to the lungs and put extra strain on the heart. PDA is relatively common, occurring in about 1 in every 2000 live births.

Symptoms of PDA may include:

* Fast breathing (tachypnea)
* Shortness of breath (dyspnea)
* Fatigue
* Sweating during feedings
* Frequent respiratory infections

If left untreated, PDA can lead to long-term complications such as:

* Increased risk of respiratory infections
* Heart failure
* Developmental delays
* Cognitive impairments

Treatment for PDA may include:

* Medications to reduce blood pressure in the lungs and improve oxygenation
* Surgery to close the ductus arteriosus, either through a catheter or open-heart surgery

In some cases, PDA may be treated with medication alone. However, if the condition is not treated promptly, surgical intervention may be necessary to prevent long-term complications.

There are two main types of heart failure:

1. Left-sided heart failure: This occurs when the left ventricle, which is the main pumping chamber of the heart, becomes weakened and is unable to pump blood effectively. This can lead to congestion in the lungs and other organs.
2. Right-sided heart failure: This occurs when the right ventricle, which pumps blood to the lungs, becomes weakened and is unable to pump blood effectively. This can lead to congestion in the body's tissues and organs.

Symptoms of heart failure may include:

* Shortness of breath
* Fatigue
* Swelling in the legs, ankles, and feet
* Swelling in the abdomen
* Weight gain
* Coughing up pink, frothy fluid
* Rapid or irregular heartbeat
* Dizziness or lightheadedness

Treatment for heart failure typically involves a combination of medications and lifestyle changes. Medications may include diuretics to remove excess fluid from the body, ACE inhibitors or beta blockers to reduce blood pressure and improve blood flow, and aldosterone antagonists to reduce the amount of fluid in the body. Lifestyle changes may include a healthy diet, regular exercise, and stress reduction techniques. In severe cases, heart failure may require hospitalization or implantation of a device such as an implantable cardioverter-defibrillator (ICD) or a left ventricular assist device (LVAD).

It is important to note that heart failure is a chronic condition, and it requires ongoing management and monitoring to prevent complications and improve quality of life. With proper treatment and lifestyle changes, many people with heart failure are able to manage their symptoms and lead active lives.

There are several possible causes of dilated cardiomyopathy, including:

1. Coronary artery disease: This is the most common cause of dilated cardiomyopathy, and it occurs when the coronary arteries become narrowed or blocked, leading to a decrease in blood flow to the heart muscle.
2. High blood pressure: Prolonged high blood pressure can cause the heart muscle to become weakened and enlarged.
3. Heart valve disease: Dysfunctional heart valves can lead to an increased workload on the heart, which can cause dilated cardiomyopathy.
4. Congenital heart defects: Some congenital heart defects can lead to an enlarged heart and dilated cardiomyopathy.
5. Alcohol abuse: Chronic alcohol abuse can damage the heart muscle and lead to dilated cardiomyopathy.
6. Viral infections: Some viral infections, such as myocarditis, can cause inflammation of the heart muscle and lead to dilated cardiomyopathy.
7. Genetic disorders: Certain genetic disorders, such as hypertrophic cardiomyopathy, can cause dilated cardiomyopathy.
8. Obesity: Obesity is a risk factor for developing dilated cardiomyopathy, particularly in younger people.
9. Diabetes: Diabetes can increase the risk of developing dilated cardiomyopathy, especially if left untreated or poorly controlled.
10. Age: Dilated cardiomyopathy is more common in older adults, with the majority of cases occurring in people over the age of 65.

It's important to note that many people with these risk factors will not develop dilated cardiomyopathy, and some people without any known risk factors can still develop the condition. If you suspect you or someone you know may have dilated cardiomyopathy, it's important to consult a healthcare professional for proper diagnosis and treatment.

Some common types of brain diseases include:

1. Neurodegenerative diseases: These are progressive conditions that damage or kill brain cells over time, leading to memory loss, cognitive decline, and movement disorders. Examples include Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS).
2. Stroke: This occurs when blood flow to the brain is interrupted, leading to cell death and potential long-term disability.
3. Traumatic brain injury (TBI): This refers to any type of head injury that causes damage to the brain, such as concussions, contusions, or penetrating wounds.
4. Infections: Viral, bacterial, and fungal infections can all affect the brain, leading to a range of symptoms including fever, seizures, and meningitis.
5. Tumors: Brain tumors can be benign or malignant and can cause a variety of symptoms depending on their location and size.
6. Cerebrovascular diseases: These conditions affect the blood vessels of the brain, leading to conditions such as aneurysms, arteriovenous malformations (AVMs), and Moyamoya disease.
7. Neurodevelopmental disorders: These are conditions that affect the development of the brain and nervous system, such as autism spectrum disorder, ADHD, and intellectual disability.
8. Sleep disorders: Conditions such as insomnia, narcolepsy, and sleep apnea can all have a significant impact on brain function.
9. Psychiatric disorders: Mental health conditions such as depression, anxiety, and schizophrenia can affect the brain and its functioning.
10. Neurodegenerative with brain iron accumulation: Conditions such as Parkinson's disease, Alzheimer's disease, and Huntington's disease are characterized by the accumulation of abnormal proteins and other substances in the brain, leading to progressive loss of brain function over time.

It is important to note that this is not an exhaustive list and there may be other conditions or factors that can affect the brain and its functioning. Additionally, many of these conditions can have a significant impact on a person's quality of life, and it is important to seek medical attention if symptoms persist or worsen over time.

Gliosis is made up of glial cells, which are non-neuronal cells that provide support and protection to neurons. When neural tissue is damaged, glial cells proliferate and form a scar-like tissue to fill in the gap and repair the damage. This scar tissue can be made up of astrocytes, oligodendrocytes, or microglia, depending on the type of injury and the location of the damage.

Gliosis can have both beneficial and harmful effects on the brain. On one hand, it can help to prevent further damage by providing a physical barrier against invading substances and protecting the surrounding neural tissue. It can also promote healing by bringing in immune cells and growth factors that aid in the repair process.

On the other hand, gliosis can also have negative effects on brain function. The scar tissue can disrupt normal communication between neurons, leading to impaired cognitive and motor function. In addition, if the scar tissue is too extensive or severe, it can compress or displaces surrounding neural tissue, leading to long-term neurological deficits or even death.

There are several ways to diagnose gliosis, including magnetic resonance imaging (MRI), positron emission tomography (PET), and histopathology. Treatment options for gliosis depend on the underlying cause of the condition and can include medications, surgery, or a combination of both.

In summary, gliosis is a type of scar tissue that forms in the brain and spinal cord as a result of damage to neural tissue. It can have both beneficial and harmful effects on brain function, and diagnosis and treatment options vary depending on the underlying cause of the condition.

Example: "The patient suffered a cerebral hemorrhage as a result of a car accident, which led to severe brain damage."

Causes:

1. Brain injury during fetal development or birth
2. Hypoxia (oxygen deficiency) to the brain, often due to complications during labor and delivery
3. Infections such as meningitis or encephalitis
4. Stroke or bleeding in the brain
5. Traumatic head injury
6. Genetic disorders
7. Premature birth
8. Low birth weight
9. Multiples (twins, triplets)
10. Maternal infections during pregnancy.

Symptoms:

1. Weakness or paralysis of muscles on one side of the body
2. Lack of coordination and balance
3. Difficulty with movement, posture, and gait
4. Spasticity (stiffness) or hypotonia (looseness) of muscles
5. Intellectual disability or learning disabilities
6. Seizures
7. Vision, hearing, or speech problems
8. Swallowing difficulties
9. Increased risk of infections and bone fractures
10. Delays in reaching developmental milestones.

Diagnosis:

1. Physical examination and medical history
2. Imaging tests, such as CT or MRI scans
3. Electromyography (EMG) to test muscle activity
4. Developmental assessments to evaluate cognitive and motor skills
5. Genetic testing to identify underlying causes.

Treatment:

1. Physical therapy to improve movement, balance, and strength
2. Occupational therapy to develop daily living skills and fine motor activities
3. Speech therapy for communication and swallowing difficulties
4. Medications to control seizures, spasticity, or pain
5. Surgery to correct anatomical abnormalities or release contracted muscles
6. Assistive devices, such as braces, walkers, or wheelchairs, to aid mobility and independence.

It's important to note that each individual with Cerebral Palsy may have a unique combination of symptoms and require a personalized treatment plan. With appropriate medical care and support, many individuals with Cerebral Palsy can lead fulfilling lives and achieve their goals despite the challenges they face.

The exact cause of ECN is not well understood, but it is believed to be associated with a combination of genetic and environmental factors, such as infections, medications, and underlying medical conditions like inflammatory bowel disease.

The symptoms of ECN can vary depending on the severity of the condition, but may include:

* Abdominal pain
* Diarrhea
* Fever
* Nausea and vomiting
* Fatigue
* Weight loss
* Loss of appetite

If you suspect that you or someone else may have ECN, it is important to seek medical attention immediately. A healthcare professional will perform a physical examination, take a medical history, and order diagnostic tests such as blood cultures, abdominal imaging (e.g., CT scan), and endoscopy to confirm the diagnosis and determine the extent of the condition.

Treatment of ECN typically involves supportive care to manage symptoms, address any underlying infections or other medical conditions, and prevent complications. This may include:

* Antibiotics to treat any underlying infections
* Pain management with medication
* Intravenous fluids and nutrition to prevent dehydration and malnutrition
* Surgical intervention to repair any perforations or remove damaged tissue

The prognosis for ECN can vary depending on the severity of the condition and the promptness and effectiveness of treatment. In general, early recognition and aggressive management of the condition can improve outcomes. However, the condition can be life-threatening and may result in long-term complications such as short bowel syndrome or chronic inflammatory bowel disease.

Prevention of ECN is not always possible, but good hand hygiene practices and proper use of personal protective equipment (PPE) can help reduce the risk of transmission. In addition, prompt recognition and treatment of underlying medical conditions can help prevent the development of ECN.

In medical terminology, coma is defined as a state of prolonged unconsciousness that lasts for more than 24 hours and is characterized by a lack of responsiveness to stimuli, including pain, light, sound, or touch. Coma can be caused by a variety of factors, such as:

1. Traumatic brain injury: Coma can result from a severe head injury that causes damage to the brain.
2. Stroke: A stroke can cause coma if it affects a large part of the brain.
3. Infections: Bacterial or viral infections can spread to the brain and cause coma.
4. Poisoning: Toxic substances, such as drugs or chemicals, can cause coma by damaging the brain.
5. Hypoxia: Lack of oxygen to the brain can cause coma.
6. Hypoglycemia: Low blood sugar can cause coma.
7. Metabolic disorders: Certain metabolic disorders, such as diabetic ketoacidosis or hypothyroidism, can cause coma.
8. Electrolyte imbalance: An imbalance of electrolytes, such as sodium or potassium, can cause coma.
9. Chronic conditions: Certain chronic conditions, such as brain tumors or degenerative diseases like Alzheimer's or Parkinson's, can cause coma over time.

It is important to note that a coma is different from a vegetative state, which is characterized by awakening and opening one's eyes but lacking any meaningful response to stimuli. A comatose patient may also exhibit automatic responses, such as breathing or reacting to pain, but they are not aware of their surroundings or able to communicate.

The diagnosis of coma is typically made by a neurologist based on the patient's medical history, physical examination, and results of diagnostic tests such as electroencephalography (EEG) or imaging studies like computed tomography (CT) or magnetic resonance imaging (MRI). Treatment of coma depends on the underlying cause and may include supportive care, medication, or surgical intervention.

There are several types of intracranial AVMs, including:

1. Cerebral AVMs: These are the most common type of AVM and occur in the cerebral hemispheres of the brain.
2. Spinal AVMs: These occur in the spinal cord and are less common than cerebral AVMs.
3. Multiple AVMs: Some people may have multiple AVMs, which can be located in different parts of the brain or spine.

The symptoms of intracranial AVMs can vary depending on the location and size of the malformation. They may include:

1. Seizures: AVMs can cause seizures, which can be a sign of the malformation.
2. Headaches: Patients with AVMs may experience frequent and severe headaches.
3. Weakness or numbness: AVMs can cause weakness or numbness in the arms or legs.
4. Vision problems: AVMs can affect the vision, including blurriness, double vision, or loss of peripheral vision.
5. Confusion or disorientation: Patients with AVMs may experience confusion or disorientation.
6. Seizures: AVMs can cause seizures, which can be a sign of the malformation.
7. Cranial nerve deficits: AVMs can affect the cranial nerves, leading to problems with speech, hearing, or facial movements.
8. Hydrocephalus: AVMs can cause hydrocephalus, which is an accumulation of fluid in the brain.

The diagnosis of intracranial AVMs is based on a combination of clinical symptoms, neuroimaging studies such as CT or MRI scans, and angiography. Angiography is a test that uses dye and X-rays to visualize the blood vessels in the brain.

Treatment of intracranial AVMs usually involves a multidisciplinary approach, including neurosurgeons, interventional neuroradiologists, and neurologists. Treatment options may include:

1. Observation: Small AVMs that are not causing symptoms may be monitored with regular imaging studies to see if they grow or change over time.
2. Endovascular embolization: This is a minimally invasive procedure in which a catheter is inserted through a blood vessel in the leg and directed to the AVM in the brain. Once there, the catheter releases tiny particles that block the flow of blood into the AVM, causing it to shrink or disappear.
3. Surgery: In some cases, surgery may be necessary to remove the AVM. This is usually done when the AVM is large or in a location that makes it difficult to treat with endovascular embolization.
4. Radiation therapy: This may be used to shrink the AVM before surgery or as a standalone treatment.
5. Chemotherapy: This may be used in combination with radiation therapy to treat AVMs that are caused by a genetic condition called hereditary hemorrhagic telangiectasia (HHT).

The choice of treatment depends on the location and size of the AVM, as well as the patient's overall health and other medical conditions. In some cases, a combination of treatments may be necessary to achieve the best outcome.

Tuberculoma intracranial definition
===============

A tuberculoma intracranial is a type of brain tumor caused by the tuberculosis bacteria. It can cause symptoms such as headaches, seizures, and changes in personality or behavior. Treatment typically involves antibiotics to treat the underlying infection, as well as surgery to remove the tumor. Prognosis is generally good if the diagnosis is made early and treatment is effective.

Subcategories of Tuberculoma, Intracranial:
--------------------------------------

* Cerebral tuberculosis: a type of tuberculosis that affects the brain and spinal cord.
* Meningitic tuberculosis: a type of tuberculosis that affects the meninges, the membranes that cover the brain and spinal cord.
* Tuberculous abscess: a collection of pus in the brain caused by the tuberculosis bacteria.
* Tuberculous leukomeningitis: an inflammation of the meninges caused by the tuberculosis bacteria.

Synonyms for Tuberculoma, Intracranial:
---------------------------------------

* Cerebral tuberculosis
* Meningeal tuberculosis
* Tuberculous brain abscess
* Tuberculous leukoencephalitis

Antonyms for Tuberculoma, Intracranial:
-----------------------------------------

* Benign brain tumor
* Malignant brain tumor
* Traumatic brain injury
* Stroke

Keywords associated with Tuberculoma, Intracranial:
----------------------------------------------

* Brain abscess
* Meningitis
* Encephalitis
* Leukoencephalopathy
* Cerebral edema

Note: The above information is for general purposes only and should not be considered as professional medical advice. It is always recommended to consult a qualified healthcare professional for accurate diagnosis and treatment of any medical condition.

There are many different causes of pathological dilatation, including:

1. Infection: Infections like tuberculosis or abscesses can cause inflammation and swelling in affected tissues, leading to dilatation.
2. Inflammation: Inflammatory conditions like rheumatoid arthritis or Crohn's disease can cause dilatation of blood vessels and organs.
3. Heart disease: Conditions like heart failure or coronary artery disease can lead to dilatation of the heart chambers or vessels.
4. Liver or spleen disease: Dilatation of the liver or spleen can occur due to conditions like cirrhosis or splenomegaly.
5. Neoplasms: Tumors can cause dilatation of affected structures, such as blood vessels or organs.

Pathological dilatation can lead to a range of symptoms depending on the location and severity of the condition. These may include:

1. Swelling or distension of the affected structure
2. Pain or discomfort in the affected area
3. Difficulty breathing or swallowing (in the case of dilatation in the throat or airways)
4. Fatigue or weakness
5. Pale or clammy skin
6. Rapid heart rate or palpitations
7. Shortness of breath (dyspnea)

Diagnosis of pathological dilatation typically involves a combination of physical examination, imaging studies like X-rays or CT scans, and laboratory tests to identify the underlying cause. Treatment depends on the specific condition and may include medications, surgery, or other interventions to address the underlying cause and relieve symptoms.

This can happen for various reasons, such as:

1. Prolonged labor or difficult delivery
2. Umbilical cord compression or knotting
3. Fetal distress or heart rate abnormalities during delivery
4. Maternal hypertension or pre-eclampsia
5. Placental abruption or placental insufficiency
6. Infection in the mother or baby during pregnancy or delivery
7. Drug or alcohol exposure during pregnancy
8. Maternal trauma or shock during delivery
9. Fetal growth restriction or small for gestational age
10. Congenital anomalies or birth defects

The symptoms of asphyxia neonatorum can vary depending on the severity and duration of the oxygen deprivation, but may include:

1. Cyanosis (blue skin color)
2. Apnea (pauses in breathing)
3. Bradycardia (slow heart rate)
4. Hypotonia (low muscle tone)
5. Poor reflexes
6. Seizures or convulsions
7. Gradual decline in muscle tone and organ function over time
8. Increased risk of infection or sepsis
9. Neurological damage, including cerebral palsy or cognitive impairment
10. Mortality (death)

Asphyxia neonatorum is a medical emergency that requires immediate attention and treatment. Treatment may include oxygen therapy, mechanical ventilation, and other supportive care to help the baby recover from the asphyxial event. In severe cases, asphyxia neonatorum can lead to long-term disabilities or death, so it is crucial to identify and treat the underlying causes promptly and effectively.

Arachnoid cysts are fluid-filled sacs that form between the layers of protective tissue (meninges) that cover the brain and spinal cord. They are typically benign and may or may not cause symptoms. Arachnoid cysts are relatively rare, and their exact cause is unknown. However, they may be associated with other congenital anomalies or neurological conditions.

Symptoms of Arachnoid Cysts[2]

The symptoms of arachnoid cysts can vary depending on the size and location of the cyst. Some common symptoms include:

1. Headaches
2. Seizures
3. Nausea and vomiting
4. Abnormal eye movements
5. Weakness or numbness in the arms or legs
6. Confusion or disorientation

Diagnosis of Arachnoid Cysts[3]

Arachnoid cysts are typically diagnosed using a combination of imaging tests, such as:

1. CT scans
2. MRI scans
3. Ultrasound

Treatment of Arachnoid Cysts[4]

The treatment of arachnoid cysts depends on the size and location of the cyst, as well as the symptoms it is causing. In some cases, arachnoid cysts may not require treatment and can be monitored with regular imaging tests. However, if the cyst is causing symptoms or is growing in size, surgery may be necessary to remove the cyst.

Prognosis of Arachnoid Cysts[5]

The prognosis for arachnoid cysts is generally good, and most people with these cysts lead normal lives. However, in some cases, arachnoid cysts can cause serious complications, such as infection or bleeding, which can be life-threatening. It is important to seek medical attention if symptoms persist or worsen over time.

In conclusion, arachnoid cysts are fluid-filled sacs that form between the layers of protective tissue (meninges) covering the brain and spinal cord. While they are generally benign, they can cause a variety of symptoms and complications. If you suspect that you or someone you know may have an arachnoid cyst, it is important to seek medical attention for proper diagnosis and treatment.

References:

[1] "Arachnoid Cysts." American Association of Neurological Surgeons, 2022, .

[2] "Arachnoid Cyst." Mayo Clinic, 2022, .

[3] "Arachnoid Cysts." MedlinePlus, 2022, .

[4] "Arachnoid Cyst: Types, Symptoms, Causes, Diagnosis, Treatment." Health Line, 2022, .

In cancer, anaplasia is characterized by a high degree of cellular heterogeneity, rapid growth, and the loss of differentiated features. The cells may become more primitive and resemble those found in embryonic tissues. Anaplastic cells are often highly proliferative, resistant to apoptosis (programmed cell death), and can invade and metastasize to other parts of the body.

Anaplasia is a term used in pathology to describe the most severe form of dysplasia, which is a precancerous condition characterized by abnormal cell growth and differentiation. In anaplastic dysplasia, the cells are highly abnormal and show little or no resemblance to normal cells.

The diagnosis of anaplasia requires a thorough examination of tissue samples under a microscope, along with other diagnostic tests such as immunohistochemistry, molecular genetic analysis, or cytogenetics. Treatment options for anaplasia depend on the underlying cause and the severity of the condition. In some cases, surgical resection may be sufficient, while in others, chemotherapy, radiation therapy, or a combination of both may be necessary.

In summary, anaplasia is a term used to describe abnormal cell growth and development that can occur due to various reasons, and it can manifest as benign or malignant conditions. The diagnosis and treatment of anaplasia require careful evaluation and management by healthcare professionals.

Here are some examples of how 'Aneurysm, Ruptured' is used in different contexts:

1. Medical literature: "The patient was rushed to the hospital with a ruptured aneurysm after experiencing sudden severe headaches and vomiting."
2. Doctor-patient communication: "You have a ruptured aneurysm, which means that your blood vessel has burst and is causing bleeding inside your body."
3. Medical research: "The study found that patients with a history of smoking are at increased risk of developing a ruptured aneurysm."
4. Emergency medical services: "The patient was transported to the hospital with a ruptured aneurysm and was in critical condition upon arrival."
5. Patient education: "To prevent a ruptured aneurysm, it is important to manage high blood pressure and avoid smoking."

There are many different types of cardiac arrhythmias, including:

1. Tachycardias: These are fast heart rhythms that can be too fast for the body's needs. Examples include atrial fibrillation and ventricular tachycardia.
2. Bradycardias: These are slow heart rhythms that can cause symptoms like fatigue, dizziness, and fainting. Examples include sinus bradycardia and heart block.
3. Premature beats: These are extra beats that occur before the next regular beat should come in. They can be benign but can also indicate an underlying arrhythmia.
4. Supraventricular arrhythmias: These are arrhythmias that originate above the ventricles, such as atrial fibrillation and paroxysmal atrial tachycardia.
5. Ventricular arrhythmias: These are arrhythmias that originate in the ventricles, such as ventricular tachycardia and ventricular fibrillation.

Cardiac arrhythmias can be diagnosed through a variety of tests including electrocardiograms (ECGs), stress tests, and holter monitors. Treatment options for cardiac arrhythmias vary depending on the type and severity of the condition and may include medications, cardioversion, catheter ablation, or implantable devices like pacemakers or defibrillators.

IV drug use can cause a range of short-term and long-term health problems, including infections, abscesses, blood-borne illnesses such as HIV/AIDS and hepatitis, and overdose. In addition to physical health issues, IV substance abuse can also lead to mental health problems, financial and legal problems, and social isolation.

Treatment for IV substance abuse typically involves a combination of behavioral therapy and medication. Behavioral therapies such as cognitive-behavioral therapy (CBT) and contingency management can help individuals modify their drug-seeking behaviors and develop coping skills to maintain sobriety. Medications such as methadone, buprenorphine, and naltrexone can also be used to manage withdrawal symptoms and reduce cravings for drugs.

Prevention strategies for IV substance abuse include education and awareness campaigns, community-based outreach programs, and harm reduction services such as needle exchange programs. These strategies aim to reduce the initiation of IV drug use, particularly among young people and other vulnerable populations.

The exact cause of ganglioglioma is not fully understood, but genetic mutations and alterations have been implicated in its development. These tumors are more common in children than adults and can occur at any age.

Gangliogliomas can be diagnosed through a combination of clinical examination, imaging studies such as MRI or CT scans, and tissue biopsy. Treatment options for ganglioglioma depend on the size, location, and aggressiveness of the tumor. Surgery is often the first line of treatment, followed by radiation therapy if necessary.

Overall, ganglioglioma is a rare and relatively uncommon type of brain tumor that can be challenging to diagnose and treat. However, with advances in medical technology and research, the prognosis for patients with this condition is improving.

A sudden and unexpected tearing or breaking open of a bodily structure, such as a blood vessel, muscle, or tendon, without any obvious external cause. This can occur due to various factors, including genetic predisposition, aging, or other underlying medical conditions.

Examples:

* Spontaneous rupture of the Achilles tendon
* Spontaneous coronary artery dissection (SCAD)
* Spontaneous pneumothorax (collapsed lung)

Symptoms and Signs:

* Sudden, severe pain
* Swelling and bruising in the affected area
* Difficulty moving or using the affected limb
* Palpitations or shortness of breath (in cardiac cases)

Diagnosis:

* Physical examination and medical history
* Imaging tests, such as X-rays, CT scans, or MRI scans, to confirm the rupture and assess the extent of damage
* Blood tests to check for underlying conditions that may have contributed to the rupture

Treatment:

* Rest, ice, compression, and elevation (RICE) to reduce pain and swelling
* Immobilization of the affected limb with a cast or brace
* Medications to manage pain and inflammation
* Surgery may be required in some cases to repair the damaged tissue or organ

Prognosis:

* The prognosis for spontaneous rupture depends on the location and severity of the rupture, as well as the underlying cause. In general, the sooner treatment is received, the better the outcome.

Complications:

* Infection
* Further damage to surrounding tissues or organs
* Chronic pain or limited mobility
* In some cases, long-term disability or death

There are different types of fever, including:

1. Pyrexia: This is the medical term for fever. It is used to describe a body temperature that is above normal, usually above 38°C (100.4°F).
2. Hyperthermia: This is a more severe form of fever, where the body temperature rises significantly above normal levels.
3. Febrile seizure: This is a seizure that occurs in children who have a high fever.
4. Remittent fever: This is a type of fever that comes and goes over a period of time.
5. Intermittent fever: This is a type of fever that recurs at regular intervals.
6. Chronic fever: This is a type of fever that persists for an extended period of time, often more than 3 weeks.

The symptoms of fever can vary depending on the underlying cause, but common symptoms include:

* Elevated body temperature
* Chills
* Sweating
* Headache
* Muscle aches
* Fatigue
* Loss of appetite

In some cases, fever can be a sign of a serious underlying condition, such as pneumonia, meningitis, or sepsis. It is important to seek medical attention if you or someone in your care has a fever, especially if it is accompanied by other symptoms such as difficulty breathing, confusion, or chest pain.

Treatment for fever depends on the underlying cause and the severity of the symptoms. In some cases, medication such as acetaminophen (paracetamol) or ibuprofen may be prescribed to help reduce the fever. It is important to follow the recommended dosage instructions carefully and to consult with a healthcare professional before giving medication to children.

In addition to medication, there are other ways to help manage fever symptoms at home. These include:

* Drinking plenty of fluids to stay hydrated
* Taking cool baths or using a cool compress to reduce body temperature
* Resting and avoiding strenuous activities
* Using over-the-counter pain relievers, such as acetaminophen (paracetamol) or ibuprofen, to help manage headache and muscle aches.

Preventive measures for fever include:

* Practicing good hygiene, such as washing your hands frequently and avoiding close contact with people who are sick
* Staying up to date on vaccinations, which can help prevent certain infections that can cause fever.

The symptoms of choroid plexus neoplasms vary depending on their size, location, and severity, but they may include:

* Headaches
* Nausea and vomiting
* Seizures
* Weakness or numbness in the arms or legs
* Vision problems
* Endocrine disturbances (such as diabetes insipidus)

The diagnosis of choroid plexus neoplasms is typically made through a combination of imaging studies, such as MRI or CT scans, and tissue sampling, such as biopsy or surgical resection. Treatment options for these tumors depend on their size, location, and severity, but they may include:

* Observation and monitoring
* Surgery to remove the tumor
* Radiation therapy to destroy the tumor cells
* Chemotherapy to kill the tumor cells
* Targeted therapy to attack specific molecules involved in the growth and progression of the tumor

Some common types of choroid plexus neoplasms include:

* Papilloma: A benign tumor that grows from the choroid plexus.
* Choroid plexus carcinoma: A malignant tumor that grows from the choroid plexus.
* Mixed glioma: A tumor that is made up of both benign and malignant cells.

The prognosis for patients with choroid plexus neoplasms depends on several factors, including the size and location of the tumor, the patient's age and overall health, and the effectiveness of treatment. In general, patients with small, benign tumors have a good prognosis, while those with larger, more aggressive tumors may have a poorer prognosis.

It is important to note that choroid plexus neoplasms are relatively rare, and there is ongoing research into their causes, diagnosis, and treatment. If you or someone you know has been diagnosed with a choroid plexus neoplasm, it is best to consult with a qualified healthcare professional for more information and personalized advice.

Premature birth can be classified into several categories based on gestational age at birth:

1. Extreme prematurity: Born before 24 weeks of gestation.
2. Very preterm: Born between 24-27 weeks of gestation.
3. Moderate to severe preterm: Born between 28-32 weeks of gestation.
4. Late preterm: Born between 34-36 weeks of gestation.

The causes of premature birth are not fully understood, but several factors have been identified as increasing the risk of premature birth. These include:

1. Previous premature birth
2. Multiple gestations (twins, triplets etc.)
3. History of cervical surgery or cervical incompetence
4. Chronic medical conditions such as hypertension and diabetes
5. Infections such as group B strep or urinary tract infections
6. Pregnancy-related complications such as preeclampsia and placenta previa
7. Stress and poor social support
8. Smoking, alcohol and drug use during pregnancy
9. Poor nutrition and lack of prenatal care.

Premature birth can have significant short-term and long-term health consequences for the baby, including respiratory distress syndrome, bronchopulmonary dysplasia, intraventricular hemorrhage, retinopathy of prematurity and necrotizing enterocolitis. Children who are born prematurely may also have developmental delays, learning disabilities and behavioral problems later in life.

There is no single test that can predict premature birth with certainty, but several screening tests are available to identify women at risk. These include ultrasound examination, maternal serum screening for estriol and pregnancy-associated plasma protein A (PAPP-A), and cervical length measurement.

While there is no proven way to prevent premature birth entirely, several strategies have been shown to reduce the risk, including:

1. Progesterone supplementation: Progesterone appears to help prevent preterm labor in some women with a history of previous preterm birth or other risk factors.
2. Corticosteroids: Corticosteroids given to mothers at risk of preterm birth can help mature the baby's lungs and reduce the risk of respiratory distress syndrome.
3. Calcium supplementation: Calcium may help improve fetal bone development and reduce the risk of premature birth.
4. Good prenatal care: Regular prenatal check-ups, proper nutrition and avoiding smoking, alcohol and drug use during pregnancy can help reduce the risk of premature birth.
5. Avoiding stress: Stress can increase the risk of premature birth, so finding ways to manage stress during pregnancy is important.
6. Preventing infections: Infections such as group B strep and urinary tract infections can increase the risk of premature birth, so it's important to take steps to prevent them.
7. Maintaining a healthy weight gain during pregnancy: Excessive weight gain during pregnancy can increase the risk of premature birth.
8. Avoiding preterm contractions: Preterm contractions can be a sign of impending preterm labor, so it's important to be aware of them and seek medical attention if they occur.
9. Prolonged gestation: Prolonging pregnancy beyond 37 weeks may reduce the risk of premature birth.
10. Cervical cerclage: A cervical cerclage is a stitch used to close the cervix and prevent preterm birth in women with a short cervix or other risk factors.

It's important to note that not all of these strategies will be appropriate or effective for every woman, so it's important to discuss your individual risk factors and any concerns you may have with your healthcare provider.

The symptoms of moyamoya disease typically begin in childhood or adolescence and can include:

* Recurring transient ischemic attacks (TIA, or "mini-strokes")
* Stroke or cerebral infarction
* Seizures
* Cognitive impairment or developmental delays
* Weakness or paralysis of the limbs
* Vision problems or blindness

The disease is caused by a combination of genetic and environmental factors, including:

* Genetic mutations that affect the formation and maintenance of blood vessels
* Environmental factors such as infections, trauma, or exposure to toxins

Moyamoya disease can be diagnosed through a variety of imaging tests, including:

* Computed tomography (CT) scans
* Magnetic resonance imaging (MRI)
* Magnetic resonance angiography (MRA)
* Positron emission tomography (PET) scans

There is no cure for moyamoya disease, but various treatments can be used to manage its symptoms and slow its progression. These may include:

* Medications to prevent or treat seizures, high blood pressure, or other complications
* Surgical procedures to improve blood flow to the brain, such as direct revascularization or bypass surgery
* Rehabilitation therapies to help regain lost function and mobility

Early diagnosis and treatment of moyamoya disease can help manage its symptoms and improve quality of life for affected individuals. However, because the disease is so rare and complex, it can be challenging to diagnose and treat effectively.

There are many different types of seizures, each with its own unique set of symptoms. Some common types of seizures include:

1. Generalized seizures: These seizures affect both sides of the brain and can cause a range of symptoms, including convulsions, loss of consciousness, and muscle stiffness.
2. Focal seizures: These seizures affect only one part of the brain and can cause more specific symptoms, such as weakness or numbness in a limb, or changes in sensation or vision.
3. Tonic-clonic seizures: These seizures are also known as grand mal seizures and can cause convulsions, loss of consciousness, and muscle stiffness.
4. Absence seizures: These seizures are also known as petit mal seizures and can cause a brief loss of consciousness or staring spell.
5. Myoclonic seizures: These seizures can cause sudden, brief muscle jerks or twitches.
6. Atonic seizures: These seizures can cause a sudden loss of muscle tone, which can lead to falls or drops.
7. Lennox-Gastaut syndrome: This is a rare and severe form of epilepsy that can cause multiple types of seizures, including tonic, atonic, and myoclonic seizures.

Seizures can be diagnosed through a combination of medical history, physical examination, and diagnostic tests such as electroencephalography (EEG) or imaging studies. Treatment for seizures usually involves anticonvulsant medications, but in some cases, surgery or other interventions may be necessary.

Overall, seizures are a complex and multifaceted symptom that can have a significant impact on an individual's quality of life. It is important to seek medical attention if you or someone you know is experiencing seizures, as early diagnosis and treatment can help to improve outcomes and reduce the risk of complications.

The symptoms of meningeal carcinomatosis can vary depending on the location and extent of the tumor, but may include headaches, seizures, weakness or numbness in the arms or legs, and changes in personality or mental status. The diagnosis is typically made by a combination of physical examination, imaging studies such as CT or MRI scans, and laboratory tests to detect the presence of cancer cells in the cerebrospinal fluid (CSF).

Treatment of meningeal carcinomatosis depends on the underlying cause and the extent of the tumor. Treatment options may include surgery, radiation therapy, and chemotherapy, as well as supportive care to manage symptoms such as pain, seizures, and infection. The prognosis for meningeal carcinomatosis is generally poor, with a five-year survival rate of less than 10%.

Low birth weight is defined as less than 2500 grams (5 pounds 8 ounces) and is associated with a higher risk of health problems, including respiratory distress, infection, and developmental delays. Premature birth is also a risk factor for low birth weight, as premature infants may not have had enough time to grow to a healthy weight before delivery.

On the other hand, high birth weight is associated with an increased risk of macrosomia, a condition in which the baby is significantly larger than average and may require a cesarean section (C-section) or assisted delivery. Macrosomia can also increase the risk of injury to the mother during delivery.

Birth weight can be influenced by various factors during pregnancy, including maternal nutrition, prenatal care, and fetal growth patterns. However, it is important to note that birth weight alone is not a definitive indicator of a baby's health or future development. Other factors, such as the baby's overall physical condition, Apgar score (a measure of the baby's well-being at birth), and postnatal care, are also important indicators of long-term health outcomes.

The word "SSPE" is an acronym for the disease name. It stands for "Subacute Sclerosing Panencephalitis."

There are several causes of hypotension, including:

1. Dehydration: Loss of fluids and electrolytes can cause a drop in blood pressure.
2. Blood loss: Losing too much blood can lead to hypotension.
3. Medications: Certain medications, such as diuretics and beta-blockers, can lower blood pressure.
4. Heart conditions: Heart failure, cardiac tamponade, and arrhythmias can all cause hypotension.
5. Endocrine disorders: Hypothyroidism (underactive thyroid) and adrenal insufficiency can cause low blood pressure.
6. Vasodilation: A condition where the blood vessels are dilated, leading to low blood pressure.
7. Sepsis: Severe infection can cause hypotension.

Symptoms of hypotension can include:

1. Dizziness and lightheadedness
2. Fainting or passing out
3. Weakness and fatigue
4. Confusion and disorientation
5. Pale, cool, or clammy skin
6. Fast or weak pulse
7. Shortness of breath
8. Nausea and vomiting

If you suspect that you or someone else is experiencing hypotension, it is important to seek medical attention immediately. Treatment will depend on the underlying cause of the condition, but may include fluids, electrolytes, and medication to raise blood pressure. In severe cases, hospitalization may be necessary.

Some common types of birth injuries include:

1. Brain damage: This can occur due to a lack of oxygen to the baby's brain during delivery, resulting in conditions such as cerebral palsy or hypoxic ischemic encephalopathy (HIE).
2. Nerve damage: This can result from prolonged labor, use of forceps or vacuum extraction, or improper handling of the baby during delivery, leading to conditions such as brachial plexus injuries or Erb's palsy.
3. Fractures: These can occur due to improper use of forceps or vacuum extraction, or from the baby being dropped or handled roughly during delivery.
4. Cutaneous injuries: These can result from rough handling or excessive pressure during delivery, leading to conditions such as caput succedaneum (swelling of the scalp) or cephalohematoma (bleeding under the skin of the head).
5. Infections: These can occur if the baby is exposed to bacteria during delivery, leading to conditions such as sepsis or meningitis.
6. Respiratory distress syndrome: This can occur if the baby does not breathe properly after birth, resulting in difficulty breathing and low oxygen levels.
7. Shoulder dystocia: This occurs when the baby's shoulder becomes stuck during delivery, leading to injury or damage to the baby's shoulder or neck.
8. Umbilical cord prolapse: This occurs when the umbilical cord comes out of the birth canal before the baby, leading to compression or strangulation of the cord and potentially causing injury to the baby.
9. Meconium aspiration: This occurs when the baby inhales a mixture of meconium (bowel movement) and amniotic fluid during delivery, leading to respiratory distress and other complications.
10. Brachial plexus injuries: These occur when the nerves in the baby's neck and shoulder are damaged during delivery, leading to weakness or paralysis of the arm and hand.

It is important to note that not all birth injuries can be prevented, but proper medical care and attention during pregnancy, labor, and delivery can help minimize the risk of complications. If you suspect that your baby has been injured during delivery, it is important to seek prompt medical attention to ensure proper diagnosis and treatment.

The symptoms of meningoencephalitis can vary depending on the cause, but common signs include fever, headache, stiff neck, confusion, seizures, and loss of consciousness. The disease can progress rapidly and can be fatal if not treated promptly.

Diagnosis is typically made through a combination of physical examination, laboratory tests (such as blood cultures and PCR), and imaging studies (such as CT or MRI scans). Treatment options depend on the underlying cause, but may include antibiotics, antiviral medications, and supportive care to manage symptoms and prevent complications.

Prognosis for meningoencephalitis depends on the severity of the disease and the promptness and effectiveness of treatment. In general, the prognosis is better for patients who receive prompt medical attention and have a mild form of the disease. However, the disease can be severe and potentially life-threatening, especially in young children, older adults, and those with weakened immune systems.

If you suspect vasospasm, it is essential to seek medical attention immediately. A healthcare professional will perform a physical examination and order imaging tests, such as CT or MRI scans, to confirm the diagnosis. Treatment options may include medications to dilate blood vessels, surgery to relieve pressure on affected areas, or other interventions depending on the severity of the condition.

Preventing vasospasm can be challenging, but some measures can reduce the risk of developing this condition. These include managing underlying conditions such as high blood pressure, diabetes, or high cholesterol levels; avoiding head injuries by wearing protective gear during sports and other activities; and adopting a healthy lifestyle that includes regular exercise and a balanced diet.

Early diagnosis and treatment are critical in managing vasospasm and preventing long-term damage to the brain tissue. If you experience any symptoms suggestive of vasospasm, seek medical attention promptly to receive appropriate care and improve outcomes.

Intracranial aneurysms are relatively rare but can have serious consequences if they rupture and cause bleeding in the brain.

The symptoms of an unruptured intracranial aneurysm may include headaches, seizures, and visual disturbances.

If an intracranial aneurysm ruptures, it can lead to a subarachnoid hemorrhage (bleeding in the space around the brain), which is a medical emergency that requires immediate treatment.

Diagnosis of an intracranial aneurysm typically involves imaging tests such as CT or MRI scans, and may also involve catheter angiography.

Treatment for intracranial aneurysms usually involves surgical clipping or endovascular coiling, depending on the size, location, and severity of the aneurysm.

Preventing rupture of intracranial aneurysms is important, as they can be difficult to treat once they have ruptured.

Endovascular coiling is a minimally invasive procedure in which a catheter is inserted into the affected artery and a small coil is inserted into the aneurysm, causing it to clot and preventing further bleeding.

Surgical clipping involves placing a small metal clip across the base of the aneurysm to prevent further bleeding.

In addition to these treatments, medications such as anticonvulsants and antihypertensives may be used to manage symptoms and prevent complications.

Tachycardia, ventricular can be classified into several types based on its duration and the presence of other symptoms. These include:

1. Paroxysmal ventricular tachycardia (PVT): This is a rapid heart rate that occurs in episodes lasting less than 30 seconds and may be accompanied by palpitations, shortness of breath, or dizziness.
2. Sustained ventricular tachycardia: This is a rapid heart rate that persists for more than 30 seconds and may require medical intervention to return the heart to normal rhythm.
3. Ventricular fibrillation (VF): This is a life-threatening condition in which the ventricles are unable to pump blood effectively due to rapid, disorganized electrical activity.

Symptoms of tachycardia, ventricular may include:

* Palpitations or rapid heartbeat
* Shortness of breath
* Dizziness or lightheadedness
* Chest pain or discomfort
* Fatigue or weakness

Diagnosis of tachycardia, ventricular is typically made based on a physical examination, medical history, and results of diagnostic tests such as electrocardiogram (ECG), echocardiogram, or stress test. Treatment options may include medications to regulate heart rhythm, cardioversion to restore normal heart rhythm, and in some cases, implantation of a cardioverter-defibrillator (ICD) to prevent sudden death.

In summary, tachycardia, ventricular is a rapid heart rate that originates in the ventricles and can be caused by a variety of conditions. It is important to seek medical attention if symptoms persist or worsen over time. With proper diagnosis and treatment, it is possible to manage the condition and improve quality of life.

There are several types of headaches, including:

1. Tension headache: This is the most common type of headache and is caused by muscle tension in the neck and scalp.
2. Migraine: This is a severe headache that can cause nausea, vomiting, and sensitivity to light and sound.
3. Sinus headache: This type of headache is caused by inflammation or infection in the sinuses.
4. Cluster headache: This is a rare type of headache that occurs in clusters or cycles and can be very painful.
5. Rebound headache: This type of headache is caused by overuse of pain medication.

Headaches can be treated with a variety of methods, such as:

1. Over-the-counter pain medications, such as acetaminophen or ibuprofen.
2. Prescription medications, such as triptans or ergots, for migraines and other severe headaches.
3. Lifestyle changes, such as stress reduction techniques, regular exercise, and a healthy diet.
4. Alternative therapies, such as acupuncture or massage, which can help relieve tension and pain.
5. Addressing underlying causes, such as sinus infections or allergies, that may be contributing to the headaches.

It is important to seek medical attention if a headache is severe, persistent, or accompanied by other symptoms such as fever, confusion, or weakness. A healthcare professional can diagnose the cause of the headache and recommend appropriate treatment.

The word "edema" comes from the Greek word "oidema", meaning swelling.

There are three types of pneumothorax:

1. Traumatic pneumothorax: occurs due to direct blows to the chest wall, such as in car accidents or falls.
2. Spontaneous pneumothorax: occurs without any obvious cause and is more common in men than women.
3. Tension pneumothorax: is a life-threatening condition that can occur when air enters the pleural space and causes the lung to collapse, leading to a buildup of pressure in the chest cavity. This can cause cardiac arrest and respiratory failure.

Symptoms of pneumothorax include:

* Chest pain
* Shortness of breath
* Coughing up blood
* Fatigue
* Pale or blue-tinged skin

Diagnosis is typically made using a chest X-ray, and treatment depends on the type and severity of the pneumothorax. Treatment options include:

* Observation and supportive care for mild cases
* Chest tubes to drain air from the pleural space in more severe cases
* Surgery to remove any damaged tissue or repair any holes in the lung.

It is important to seek medical attention immediately if you experience any symptoms of pneumothorax, as prompt treatment can help prevent complications and improve outcomes.

Benign CNS neoplasms include:

1. Meningiomas: These are the most common type of benign CNS tumor, arising from the meninges (the membranes covering the brain and spinal cord).
2. Acoustic neuromas: These tumors arise from the nerve cells that connect the inner ear to the brain.
3. Pineal gland tumors: These are rare tumors that occur in the pineal gland, a small gland located in the brain.
4. Craniopharyngiomas: These are rare tumors that arise from the remnants of the embryonic pituitary gland and can cause a variety of symptoms including headaches, vision loss, and hormonal imbalances.

Malignant CNS neoplasms include:

1. Gliomas: These are the most common type of malignant CNS tumor and arise from the supporting cells of the brain called glial cells. Examples of gliomas include astrocytomas, oligodendrogliomas, and medulloblastomas.
2. Lymphomas: These are cancers of the immune system that can occur in the CNS.
3. Melanomas: These are rare tumors that arise from the pigment-producing cells of the skin and can spread to other parts of the body, including the CNS.
4. Metastatic tumors: These are tumors that have spread to the CNS from other parts of the body, such as the breast, lung, or colon.

The diagnosis and treatment of central nervous system neoplasms depend on the type, size, location, and severity of the tumor, as well as the patient's overall health and medical history. Treatment options can include surgery, radiation therapy, chemotherapy, targeted therapy, and immunotherapy.

The prognosis for CNS neoplasms varies depending on the type of tumor and the effectiveness of treatment. In general, gliomas have a poorer prognosis than other types of CNS tumors, with five-year survival rates ranging from 30% to 60%. Lymphomas and melanomas have better prognoses, with five-year survival rates of up to 80%. Metastatic tumors have a more guarded prognosis, with five-year survival rates depending on the primary site of the cancer.

In summary, central nervous system neoplasms are abnormal growths of tissue in the brain and spinal cord that can cause a variety of symptoms and can be benign or malignant. The diagnosis and treatment of these tumors depend on the type, size, location, and severity of the tumor, as well as the patient's overall health and medical history. The prognosis for CNS neoplasms varies depending on the type of tumor and the effectiveness of treatment, but in general, gliomas have a poorer prognosis than other types of CNS tumors.

Examples of acute diseases include:

1. Common cold and flu
2. Pneumonia and bronchitis
3. Appendicitis and other abdominal emergencies
4. Heart attacks and strokes
5. Asthma attacks and allergic reactions
6. Skin infections and cellulitis
7. Urinary tract infections
8. Sinusitis and meningitis
9. Gastroenteritis and food poisoning
10. Sprains, strains, and fractures.

Acute diseases can be treated effectively with antibiotics, medications, or other therapies. However, if left untreated, they can lead to chronic conditions or complications that may require long-term care. Therefore, it is important to seek medical attention promptly if symptoms persist or worsen over time.

Brain neoplasms can arise from various types of cells in the brain, including glial cells (such as astrocytes and oligodendrocytes), neurons, and vascular tissues. The symptoms of brain neoplasms vary depending on their size, location, and type, but may include headaches, seizures, weakness or numbness in the limbs, and changes in personality or cognitive function.

There are several different types of brain neoplasms, including:

1. Meningiomas: These are benign tumors that arise from the meninges, the thin layers of tissue that cover the brain and spinal cord.
2. Gliomas: These are malignant tumors that arise from glial cells in the brain. The most common type of glioma is a glioblastoma, which is aggressive and hard to treat.
3. Pineal parenchymal tumors: These are rare tumors that arise in the pineal gland, a small endocrine gland in the brain.
4. Craniopharyngiomas: These are benign tumors that arise from the epithelial cells of the pituitary gland and the hypothalamus.
5. Medulloblastomas: These are malignant tumors that arise in the cerebellum, specifically in the medulla oblongata. They are most common in children.
6. Acoustic neurinomas: These are benign tumors that arise on the nerve that connects the inner ear to the brain.
7. Oligodendrogliomas: These are malignant tumors that arise from oligodendrocytes, the cells that produce the fatty substance called myelin that insulates nerve fibers.
8. Lymphomas: These are cancers of the immune system that can arise in the brain and spinal cord. The most common type of lymphoma in the CNS is primary central nervous system (CNS) lymphoma, which is usually a type of B-cell non-Hodgkin lymphoma.
9. Metastatic tumors: These are tumors that have spread to the brain from another part of the body. The most common types of metastatic tumors in the CNS are breast cancer, lung cancer, and melanoma.

These are just a few examples of the many types of brain and spinal cord tumors that can occur. Each type of tumor has its own unique characteristics, such as its location, size, growth rate, and biological behavior. These factors can help doctors determine the best course of treatment for each patient.

There are several different types of brain injuries that can occur, including:

1. Concussions: A concussion is a type of mild traumatic brain injury that occurs when the brain is jolted or shaken, often due to a blow to the head.
2. Contusions: A contusion is a bruise on the brain that can occur when the brain is struck by an object, such as during a car accident.
3. Coup-contrecoup injuries: This type of injury occurs when the brain is injured as a result of the force of the body striking another object, such as during a fall.
4. Penetrating injuries: A penetrating injury occurs when an object pierces the brain, such as during a gunshot wound or stab injury.
5. Blast injuries: This type of injury occurs when the brain is exposed to a sudden and explosive force, such as during a bombing.

The symptoms of brain injuries can vary depending on the severity of the injury and the location of the damage in the brain. Some common symptoms include:

* Headaches
* Dizziness or loss of balance
* Confusion or disorientation
* Memory loss or difficulty with concentration
* Slurred speech or difficulty with communication
* Vision problems, such as blurred vision or double vision
* Sleep disturbances
* Mood changes, such as irritability or depression
* Personality changes
* Difficulty with coordination and balance

In some cases, brain injuries can be treated with medication, physical therapy, and other forms of rehabilitation. However, in more severe cases, the damage may be permanent and long-lasting. It is important to seek medical attention immediately if symptoms persist or worsen over time.

Encephalitis can cause a range of symptoms, including fever, headache, confusion, seizures, and loss of consciousness. In severe cases, encephalitis can lead to brain damage, coma, and even death.

The diagnosis of encephalitis is based on a combination of clinical signs, laboratory tests, and imaging studies. Laboratory tests may include blood tests to detect the presence of antibodies or antigens specific to the causative agent, as well as cerebrospinal fluid (CSF) analysis to look for inflammatory markers and/or bacteria or viruses in the CSF. Imaging studies, such as CT or MRI scans, may be used to visualize the brain and identify any areas of damage or inflammation.

Treatment of encephalitis typically involves supportive care, such as intravenous fluids, oxygen therapy, and medication to manage fever and pain. Antiviral or antibacterial drugs may be used to target the specific causative agent, if identified. In severe cases, hospitalization in an intensive care unit (ICU) may be necessary to monitor and manage the patient's condition.

Prevention of encephalitis includes vaccination against certain viruses that can cause the condition, such as herpes simplex virus and Japanese encephalitis virus. Additionally, avoiding exposure to mosquitoes and other insects that can transmit viruses or bacteria that cause encephalitis, as well as practicing good hygiene and sanitation, can help reduce the risk of infection.

Overall, encephalitis is a serious and potentially life-threatening condition that requires prompt medical attention for proper diagnosis and treatment. With appropriate care, many patients with encephalitis can recover fully or partially, but some may experience long-term neurological complications or disability.

In medical terms, craniocerebral trauma is defined as any injury that affects the skull, brain, or both, as a result of an external force. This can include fractures of the skull, intracranial hemorrhages (bleeding inside the skull), and diffuse axonal injuries (DAI), which are tears in the fibers of the brain.

Craniocerebral trauma can be classified into two main categories: closed head injury and open head injury. Closed head injury occurs when the skull does not fracture, but the brain is still affected by the impact, such as from whiplash or shaking. Open head injury, on the other hand, involves a fracture of the skull, which can cause the brain to be exposed to the outside environment and increase the risk of infection.

Treatment for craniocerebral trauma depends on the severity of the injury and may include observation, medication, surgery, or a combination of these. In severe cases, craniocerebral trauma can lead to long-term cognitive, emotional, and physical impairments, and may require ongoing rehabilitation and support.

There are several types of premature complexes, including:

1. Premature atrial complex (PAC): An extra heartbeat that originates in the atria, usually due to a rapid or irregular heart rate.
2. Premature ventricular complex (PVC): An extra heartbeat that originates in the ventricles, which can be more serious than PACs and may require further evaluation.
3. Premature nodal rhythm: A condition where the AV node (the electrical pathway between the atria and ventricles) fires prematurely, causing a rapid heart rate.

PCCs can be diagnosed using electrocardiography (ECG), which records the electrical activity of the heart. Treatment options for PCCs depend on the underlying cause and may include medications to regulate the heart rhythm, cardioversion (a procedure that restores a normal heart rhythm using electrical shock), or catheter ablation (a minimally invasive procedure that destroys the abnormal electrical pathway).

Some common causes of chronic brain damage include:

1. Traumatic brain injury (TBI): A blow to the head or other traumatic injury that causes the brain to bounce or twist inside the skull, leading to damage to brain cells and tissues.
2. Stroke or cerebral vasculature disorders: A loss of blood flow to the brain due to a blockage or rupture of blood vessels, leading to cell death and tissue damage.
3. Infections such as meningitis or encephalitis: Inflammation of the brain and its membranes caused by viral or bacterial infections, which can lead to damage to brain cells and tissues.
4. Chronic exposure to toxins, such as pesticides or heavy metals: Prolonged exposure to these substances can damage brain cells and tissues over time.
5. Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease: These conditions are characterized by the progressive loss of brain cells and tissue, leading to cognitive decline and other symptoms.

The effects of chronic brain damage can vary depending on the location and severity of the damage. Some common effects include:

1. Cognitive impairments: Difficulty with memory, attention, problem-solving, and other cognitive functions.
2. Emotional and behavioral changes: Depression, anxiety, irritability, and mood swings.
3. Physical symptoms: Weakness or paralysis on one side of the body, difficulty with balance and coordination, and changes in sensation or perception.
4. Communication difficulties: Slurred speech, difficulty finding the right words, and trouble understanding spoken language.
5. Social and occupational impairments: Difficulty with daily activities, social interactions, and work-related tasks.

The good news is that there are several strategies that can help mitigate the effects of chronic brain damage. These include:

1. Physical exercise: Regular physical activity has been shown to promote brain health and reduce the risk of cognitive decline.
2. Cognitive stimulation: Engaging in mentally challenging activities, such as reading, puzzles, or learning a new skill, can help build cognitive reserve and reduce the risk of cognitive decline.
3. Social engagement: Building and maintaining social connections has been shown to promote brain health and reduce the risk of cognitive decline.
4. Stress management: Chronic stress can exacerbate brain damage, so finding ways to manage stress, such as through meditation or exercise, is important.
5. Proper nutrition: Eating a diet rich in fruits, vegetables, and omega-3 fatty acids can help support brain health and reduce the risk of cognitive decline.
6. Medication and therapy: In some cases, medication or therapy may be necessary to manage the symptoms of chronic brain damage.
7. Neuroplasticity-based interventions: Techniques that promote neuroplasticity, such as non-invasive brain stimulation, can help improve cognitive function and reduce the risk of cognitive decline.

It's important to note that these strategies may not reverse chronic brain damage, but they can help mitigate its effects and improve overall brain health. If you suspect that you or someone you know may be experiencing chronic brain damage, it is important to seek medical attention as soon as possible. Early diagnosis and treatment can help reduce the risk of long-term cognitive decline and improve quality of life.

There are many different types of cysts that can occur in the body, including:

1. Sebaceous cysts: These are small, usually painless cysts that form in the skin, particularly on the face, neck, or torso. They are filled with a thick, cheesy material and can become inflamed or infected.
2. Ovarian cysts: These are fluid-filled sacs that form on the ovaries. They are common in women of childbearing age and can cause pelvic pain, bloating, and other symptoms.
3. Kidney cysts: These are fluid-filled sacs that form in the kidneys. They are usually benign but can cause problems if they become large or infected.
4. Dermoid cysts: These are small, usually painless cysts that form in the skin or organs. They are filled with skin cells, hair follicles, and other tissue and can become inflamed or infected.
5. Pilar cysts: These are small, usually painless cysts that form on the scalp. They are filled with a thick, cheesy material and can become inflamed or infected.
6. Epidermoid cysts: These are small, usually painless cysts that form just under the skin. They are filled with a thick, cheesy material and can become inflamed or infected.
7. Mucous cysts: These are small, usually painless cysts that form on the fingers or toes. They are filled with a clear, sticky fluid and can become inflamed or infected.
8. Baker's cyst: This is a fluid-filled cyst that forms behind the knee. It can cause swelling and pain in the knee and is more common in women than men.
9. Tarlov cysts: These are small, fluid-filled cysts that form in the spine. They can cause back pain and other symptoms, such as sciatica.
10. ganglion cysts: These are noncancerous lumps that form on the joints or tendons. They are filled with a thick, clear fluid and can cause pain, swelling, and limited mobility.

It's important to note that this is not an exhaustive list and there may be other types of cysts that are not included here. If you suspect that you have a cyst, it's always best to consult with a healthcare professional for proper diagnosis and treatment.

There are several types of tachycardia, including:

1. Sinus tachycardia: This is the most common type and is caused by an increase in the rate of the normal sinus node. It is often seen in response to physical activity or stress.
2. Atrial fibrillation: This is a type of arrhythmia where the heart's upper chambers (atria) contract irregularly and rapidly, leading to a rapid heart rate.
3. Ventricular tachycardia: This is a type of arrhythmia where the heart's lower chambers (ventricles) contract rapidly, often with a rate above 100 bpm.
4. Premature ventricular contractions (PVCs): These are early or extra beats that originate in the ventricles, causing a rapid heart rate.

Tachycardia can cause a range of symptoms, including palpitations, shortness of breath, chest pain, and dizziness. In severe cases, it can lead to cardiac arrhythmias, heart failure, and even death.

Diagnosis of tachycardia typically involves a physical examination, electrocardiogram (ECG), and other tests such as stress tests or echocardiography. Treatment options vary depending on the underlying cause, but may include medications to regulate the heart rate, cardioversion to restore a normal heart rhythm, or in severe cases, implantation of a pacemaker or defibrillator.

The term ischemia refers to the reduction of blood flow, and it is often used interchangeably with the term stroke. However, not all strokes are caused by ischemia, as some can be caused by other factors such as bleeding in the brain. Ischemic stroke accounts for about 87% of all strokes.

There are different types of brain ischemia, including:

1. Cerebral ischemia: This refers to the reduction of blood flow to the cerebrum, which is the largest part of the brain and responsible for higher cognitive functions such as thought, emotion, and voluntary movement.
2. Cerebellar ischemia: This refers to the reduction of blood flow to the cerebellum, which is responsible for coordinating and regulating movement, balance, and posture.
3. Brainstem ischemia: This refers to the reduction of blood flow to the brainstem, which is responsible for controlling many of the body's automatic functions such as breathing, heart rate, and blood pressure.
4. Territorial ischemia: This refers to the reduction of blood flow to a specific area of the brain, often caused by a blockage in a blood vessel.
5. Global ischemia: This refers to the reduction of blood flow to the entire brain, which can be caused by a cardiac arrest or other systemic conditions.

The symptoms of brain ischemia can vary depending on the location and severity of the condition, but may include:

1. Weakness or paralysis of the face, arm, or leg on one side of the body
2. Difficulty speaking or understanding speech
3. Sudden vision loss or double vision
4. Dizziness or loss of balance
5. Confusion or difficulty with memory
6. Seizures
7. Slurred speech or inability to speak
8. Numbness or tingling sensations in the face, arm, or leg
9. Vision changes, such as blurred vision or loss of peripheral vision
10. Difficulty with coordination and balance.

It is important to seek medical attention immediately if you experience any of these symptoms, as brain ischemia can cause permanent damage or death if left untreated.

Premature labor can be classified into several types based on the duration of labor:

1. Preterm contractions: These are contractions that occur before 37 weeks of gestation but do not lead to delivery.
2. Preterm labor with cervical dilation: This is when the cervix begins to dilate before 37 weeks of gestation.
3. Premature rupture of membranes (PROM): This is when the amniotic sac surrounding the fetus ruptures before 37 weeks of gestation, which can lead to infection and preterm labor.

Signs and symptoms of premature obstetric labor may include:

1. Contractions that occur more frequently than every 10 minutes
2. Strong, regular contractions that last for at least 60 seconds
3. Cervical dilation or effacement (thinning)
4. Rupture of membranes (water breaking)
5. Decrease in fetal movement
6. Pelvic pressure or discomfort
7. Abdominal cramping or back pain

Premature obstetric labor can lead to several complications for both the mother and the baby, including:

1. Preterm birth: This is the most common complication of premature labor, which can increase the risk of health problems in the baby such as respiratory distress syndrome, intraventricular hemorrhage, and necrotizing enterocolitis.
2. Increased risk of cesarean delivery
3. Maternal infection: Premature labor can increase the risk of infection, such as group B strep or urinary tract infections.
4. Maternal complications: Premature labor can lead to complications such as placental abruption (separation of the placenta from the uterus), preeclampsia (high blood pressure), and HELLP syndrome (hemolytic anemia, elevated liver enzymes, and low platelet count).
5. Fetal distress: Premature labor can lead to fetal distress, which can result in long-term health problems for the baby.
6. Intensive care unit admission: Preterm babies may require intensive care unit admission, which can be stressful and expensive.

To manage premature labor, healthcare providers may recommend the following:

1. Bed rest or hospitalization: Rest and monitoring in a hospital setting may be recommended to prevent further premature contractions.
2. Tocolytic medications: These medications can help slow down or stop contractions.
3. Corticosteroids: These medications can help mature the fetal lungs, reducing the risk of respiratory distress syndrome.
4. Planned delivery: If premature labor cannot be halted, a planned delivery may be necessary to ensure the best possible outcome for both the mother and the baby.
5. Close monitoring: Regular monitoring of the mother and baby is crucial to detect any complications early on and provide appropriate treatment.
6. Supportive care: Premature babies may require oxygen therapy, incubators, and other supportive care to help them survive and thrive.

In summary, premature labor can be a serious condition that requires close monitoring and prompt medical intervention to prevent complications for both the mother and the baby. Understanding the signs of premature labor and seeking immediate medical attention if they occur can help improve outcomes.

During ventricular remodeling, the heart muscle becomes thicker and less flexible, leading to a decrease in the heart's ability to fill with blood and pump it out to the body. This can lead to shortness of breath, fatigue, and swelling in the legs and feet.

Ventricular remodeling is a natural response to injury, but it can also be exacerbated by factors such as high blood pressure, diabetes, and obesity. Treatment for ventricular remodeling typically involves medications and lifestyle changes, such as exercise and a healthy diet, to help manage symptoms and slow the progression of the condition. In some cases, surgery or other procedures may be necessary to repair or replace damaged heart tissue.

The process of ventricular remodeling is complex and involves multiple cellular and molecular mechanisms. It is thought to be driven by a variety of factors, including changes in gene expression, inflammation, and the activity of various signaling pathways.

Overall, ventricular remodeling is an important condition that can have significant consequences for patients with heart disease. Understanding its causes and mechanisms is crucial for developing effective treatments and improving outcomes for those affected by this condition.

Examples of fetal diseases include:

1. Down syndrome: A genetic disorder caused by an extra copy of chromosome 21, which can cause delays in physical and intellectual development, as well as increased risk of heart defects and other health problems.
2. Spina bifida: A birth defect that affects the development of the spine and brain, resulting in a range of symptoms from mild to severe.
3. Cystic fibrosis: A genetic disorder that affects the respiratory and digestive systems, causing thick mucus buildup and recurring lung infections.
4. Anencephaly: A condition where a portion of the brain and skull are missing, which is usually fatal within a few days or weeks of birth.
5. Clubfoot: A deformity of the foot and ankle that can be treated with casts or surgery.
6. Hirschsprung's disease: A condition where the nerve cells that control bowel movements are missing, leading to constipation and other symptoms.
7. Diaphragmatic hernia: A birth defect that occurs when there is a hole in the diaphragm, allowing organs from the abdomen to move into the chest cavity.
8. Gastroschisis: A birth defect where the intestines protrude through a opening in the abdominal wall.
9. Congenital heart disease: Heart defects that are present at birth, such as holes in the heart or narrowed blood vessels.
10. Neural tube defects: Defects that affect the brain and spine, such as spina bifida and anencephaly.

Early detection and diagnosis of fetal diseases can be crucial for ensuring proper medical care and improving outcomes for affected babies. Prenatal testing, such as ultrasound and blood tests, can help identify fetal anomalies and genetic disorders during pregnancy.

Example sentence: The patient had a hemorrhage after the car accident and needed immediate medical attention.

1. Infection: Bacterial or viral infections can develop after surgery, potentially leading to sepsis or organ failure.
2. Adhesions: Scar tissue can form during the healing process, which can cause bowel obstruction, chronic pain, or other complications.
3. Wound complications: Incisional hernias, wound dehiscence (separation of the wound edges), and wound infections can occur.
4. Respiratory problems: Pneumonia, respiratory failure, and atelectasis (collapsed lung) can develop after surgery, particularly in older adults or those with pre-existing respiratory conditions.
5. Cardiovascular complications: Myocardial infarction (heart attack), cardiac arrhythmias, and cardiac failure can occur after surgery, especially in high-risk patients.
6. Renal (kidney) problems: Acute kidney injury or chronic kidney disease can develop postoperatively, particularly in patients with pre-existing renal impairment.
7. Neurological complications: Stroke, seizures, and neuropraxia (nerve damage) can occur after surgery, especially in patients with pre-existing neurological conditions.
8. Pulmonary embolism: Blood clots can form in the legs or lungs after surgery, potentially causing pulmonary embolism.
9. Anesthesia-related complications: Respiratory and cardiac complications can occur during anesthesia, including respiratory and cardiac arrest.
10. delayed healing: Wound healing may be delayed or impaired after surgery, particularly in patients with pre-existing medical conditions.

It is important for patients to be aware of these potential complications and to discuss any concerns with their surgeon and healthcare team before undergoing surgery.

Premature rupture of fetal membranes is diagnosed through a combination of physical examination, ultrasound, and laboratory tests. Treatment options for PROM include:

1. Expectant management: In this approach, the woman is monitored closely without immediately inducing labor. This option is usually chosen if the baby is not yet ready to be born and the mother has no signs of infection or preterm labor.
2. Induction of labor: If the baby is mature enough to be born, labor may be induced to avoid the risks associated with preterm birth.
3. Cesarean delivery: In some cases, a cesarean section may be performed if the woman has signs of infection or if the baby is in distress.
4. Antibiotics: If the PROM is caused by an infection, antibiotics may be given to treat the infection and prevent complications.
5. Steroids: If the baby is less than 24 hours old, steroids may be given to help mature the lungs and reduce the risk of respiratory distress syndrome.

Prevention of premature rupture of fetal membranes includes good prenatal care, avoiding activities that can cause trauma to the abdomen, and avoiding infections such as group B strep. Early detection and management of PROM are crucial to prevent complications for the baby.

Myocardial ischemia can be caused by a variety of factors, including coronary artery disease, high blood pressure, diabetes, and smoking. It can also be triggered by physical exertion or stress.

There are several types of myocardial ischemia, including:

1. Stable angina: This is the most common type of myocardial ischemia, and it is characterized by a predictable pattern of chest pain that occurs during physical activity or emotional stress.
2. Unstable angina: This is a more severe type of myocardial ischemia that can occur without any identifiable trigger, and can be accompanied by other symptoms such as shortness of breath or vomiting.
3. Acute coronary syndrome (ACS): This is a condition that includes both stable angina and unstable angina, and it is characterized by a sudden reduction in blood flow to the heart muscle.
4. Heart attack (myocardial infarction): This is a type of myocardial ischemia that occurs when the blood flow to the heart muscle is completely blocked, resulting in damage or death of the cardiac tissue.

Myocardial ischemia can be diagnosed through a variety of tests, including electrocardiograms (ECGs), stress tests, and imaging studies such as echocardiography or cardiac magnetic resonance imaging (MRI). Treatment options for myocardial ischemia include medications such as nitrates, beta blockers, and calcium channel blockers, as well as lifestyle changes such as quitting smoking, losing weight, and exercising regularly. In severe cases, surgical procedures such as coronary artery bypass grafting or angioplasty may be necessary.

There are several different types of pain, including:

1. Acute pain: This type of pain is sudden and severe, and it usually lasts for a short period of time. It can be caused by injuries, surgery, or other forms of tissue damage.
2. Chronic pain: This type of pain persists over a long period of time, often lasting more than 3 months. It can be caused by conditions such as arthritis, fibromyalgia, or nerve damage.
3. Neuropathic pain: This type of pain results from damage to the nervous system, and it can be characterized by burning, shooting, or stabbing sensations.
4. Visceral pain: This type of pain originates in the internal organs, and it can be difficult to localize.
5. Psychogenic pain: This type of pain is caused by psychological factors such as stress, anxiety, or depression.

The medical field uses a range of methods to assess and manage pain, including:

1. Pain rating scales: These are numerical scales that patients use to rate the intensity of their pain.
2. Pain diaries: These are records that patients keep to track their pain over time.
3. Clinical interviews: Healthcare providers use these to gather information about the patient's pain experience and other relevant symptoms.
4. Physical examination: This can help healthcare providers identify any underlying causes of pain, such as injuries or inflammation.
5. Imaging studies: These can be used to visualize the body and identify any structural abnormalities that may be contributing to the patient's pain.
6. Medications: There are a wide range of medications available to treat pain, including analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs), and muscle relaxants.
7. Alternative therapies: These can include acupuncture, massage, and physical therapy.
8. Interventional procedures: These are minimally invasive procedures that can be used to treat pain, such as nerve blocks and spinal cord stimulation.

It is important for healthcare providers to approach pain management with a multi-modal approach, using a combination of these methods to address the physical, emotional, and social aspects of pain. By doing so, they can help improve the patient's quality of life and reduce their suffering.

Cerebral infarction can result in a range of symptoms, including sudden weakness or numbness in the face, arm, or leg on one side of the body, difficulty speaking or understanding speech, sudden vision loss, dizziness, and confusion. Depending on the location and severity of the infarction, it can lead to long-term disability or even death.

There are several types of cerebral infarction, including:

1. Ischemic stroke: This is the most common type of cerebral infarction, accounting for around 87% of all cases. It occurs when a blood clot blocks the flow of blood to the brain, leading to cell death and tissue damage.
2. Hemorrhagic stroke: This type of cerebral infarction occurs when a blood vessel in the brain ruptures, leading to bleeding and cell death.
3. Lacunar infarction: This type of cerebral infarction affects the deep structures of the brain, particularly the basal ganglia, and is often caused by small blockages or stenosis (narrowing) in the blood vessels.
4. Territorial infarction: This type of cerebral infarction occurs when there is a complete blockage of a blood vessel that supplies a specific area of the brain, leading to cell death and tissue damage in that area.

Diagnosis of cerebral infarction typically involves a combination of physical examination, medical history, and imaging tests such as CT or MRI scans. Treatment options vary depending on the cause and location of the infarction, but may include medication to dissolve blood clots, surgery to remove blockages, or supportive care to manage symptoms and prevent complications.

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.

What is a Chronic Disease?

A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:

1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke

Impact of Chronic Diseases

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.

Addressing Chronic Diseases

Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:

1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.

Conclusion

Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.

Example sentence: "The patient experienced a transient ischemic attack, which was caused by a temporary blockage in one of the blood vessels in their brain."

Synonyms: TIA, mini-stroke.

There are different types of myocardial infarctions, including:

1. ST-segment elevation myocardial infarction (STEMI): This is the most severe type of heart attack, where a large area of the heart muscle is damaged. It is characterized by a specific pattern on an electrocardiogram (ECG) called the ST segment.
2. Non-ST-segment elevation myocardial infarction (NSTEMI): This type of heart attack is less severe than STEMI, and the damage to the heart muscle may not be as extensive. It is characterized by a smaller area of damage or a different pattern on an ECG.
3. Incomplete myocardial infarction: This type of heart attack is when there is some damage to the heart muscle but not a complete blockage of blood flow.
4. Collateral circulation myocardial infarction: This type of heart attack occurs when there are existing collateral vessels that bypass the blocked coronary artery, which reduces the amount of damage to the heart muscle.

Symptoms of a myocardial infarction can include chest pain or discomfort, shortness of breath, lightheadedness, and fatigue. These symptoms may be accompanied by anxiety, fear, and a sense of impending doom. In some cases, there may be no noticeable symptoms at all.

Diagnosis of myocardial infarction is typically made based on a combination of physical examination findings, medical history, and diagnostic tests such as an electrocardiogram (ECG), cardiac enzyme tests, and imaging studies like echocardiography or cardiac magnetic resonance imaging.

Treatment of myocardial infarction usually involves medications to relieve pain, reduce the amount of work the heart has to do, and prevent further damage to the heart muscle. These may include aspirin, beta blockers, ACE inhibitors or angiotensin receptor blockers, and statins. In some cases, a procedure such as angioplasty or coronary artery bypass surgery may be necessary to restore blood flow to the affected area.

Prevention of myocardial infarction involves managing risk factors such as high blood pressure, high cholesterol, smoking, diabetes, and obesity. This can include lifestyle changes such as a healthy diet, regular exercise, and stress reduction, as well as medications to control these conditions. Early detection and treatment of heart disease can help prevent myocardial infarction from occurring in the first place.

Synonyms: RV dysfunction

See also: Left Ventricular Dysfunction, Cardiac Dysfunction, Heart Failure

Note: This term is not a formal medical diagnosis but rather a descriptive term used to indicate the specific location of cardiac dysfunction. A more comprehensive diagnosis would require further evaluation and testing by a healthcare provider.

1. Preeclampsia: A condition characterized by high blood pressure during pregnancy, which can lead to complications such as stroke or premature birth.
2. Gestational diabetes: A type of diabetes that develops during pregnancy, which can cause complications for both the mother and the baby if left untreated.
3. Placenta previa: A condition in which the placenta is located low in the uterus, covering the cervix, which can cause bleeding and other complications.
4. Premature labor: Labor that occurs before 37 weeks of gestation, which can increase the risk of health problems for the baby.
5. Fetal distress: A condition in which the fetus is not getting enough oxygen, which can lead to serious health problems or even death.
6. Postpartum hemorrhage: Excessive bleeding after delivery, which can be life-threatening if left untreated.
7. Cesarean section (C-section) complications: Complications that may arise during a C-section, such as infection or bleeding.
8. Maternal infections: Infections that the mother may contract during pregnancy or childbirth, such as group B strep or urinary tract infections.
9. Preterm birth: Birth that occurs before 37 weeks of gestation, which can increase the risk of health problems for the baby.
10. Chromosomal abnormalities: Genetic disorders that may affect the baby's growth and development, such as Down syndrome or Turner syndrome.

It is important for pregnant women to receive regular prenatal care to monitor for any potential complications and ensure a healthy pregnancy outcome. In some cases, pregnancy complications may require medical interventions, such as hospitalization or surgery, to ensure the safety of both the mother and the baby.

In Vfib, the electrical activity of the heart becomes disorganized, leading to a fibrillatory pattern of contraction. This means that the ventricles are contracting in a rapid, unsynchronized manner, rather than the coordinated, synchronized contractions that occur in normal heart function.

Vfib can be caused by a variety of factors, including coronary artery disease, heart attack, cardiomyopathy, and electrolyte imbalances. It can also be triggered by certain medications, such as digoxin, or by electrical shocks to the heart.

Symptoms of Vfib include palpitations, shortness of breath, chest pain, and loss of consciousness. If not treated promptly, Vfib can lead to cardiac arrest and death.

Treatment of Vfib typically involves electrical cardioversion, which involves delivering an electric shock to the heart to restore a normal heart rhythm. In some cases, medications may also be used to help regulate the heart rhythm. In more severe cases, surgery or other interventions may be necessary to address any underlying causes of Vfib.

Overall, ventricular fibrillation is a serious medical condition that requires prompt treatment to prevent complications and ensure effective cardiac function.

Some common types of lung diseases include:

1. Asthma: A chronic condition characterized by inflammation and narrowing of the airways, leading to wheezing, coughing, and shortness of breath.
2. Chronic Obstructive Pulmonary Disease (COPD): A progressive condition that causes chronic inflammation and damage to the airways and lungs, making it difficult to breathe.
3. Pneumonia: An infection of the lungs that can be caused by bacteria, viruses, or fungi, leading to fever, chills, coughing, and difficulty breathing.
4. Bronchiectasis: A condition where the airways are damaged and widened, leading to chronic infections and inflammation.
5. Pulmonary Fibrosis: A condition where the lungs become scarred and stiff, making it difficult to breathe.
6. Lung Cancer: A malignant tumor that develops in the lungs, often caused by smoking or exposure to carcinogens.
7. Cystic Fibrosis: A genetic disorder that affects the respiratory and digestive systems, leading to chronic infections and inflammation in the lungs.
8. Tuberculosis (TB): An infectious disease caused by Mycobacterium Tuberculosis, which primarily affects the lungs but can also affect other parts of the body.
9. Pulmonary Embolism: A blockage in one of the arteries in the lungs, often caused by a blood clot that has traveled from another part of the body.
10. Sarcoidosis: An inflammatory disease that affects various organs in the body, including the lungs, leading to the formation of granulomas and scarring.

These are just a few examples of conditions that can affect the lungs and respiratory system. It's important to note that many of these conditions can be treated with medication, therapy, or surgery, but early detection is key to successful treatment outcomes.

Measurement:

Cardiac output is typically measured using invasive or non-invasive methods. Invasive methods involve inserting a catheter into the heart to directly measure cardiac output. Non-invasive methods include echocardiography, MRI, and CT scans. These tests can provide an estimate of cardiac output based on the volume of blood being pumped out of the heart and the rate at which it is being pumped.

Causes:

There are several factors that can contribute to low cardiac output. These include:

1. Heart failure: This occurs when the heart is unable to pump enough blood to meet the body's needs, leading to fatigue and shortness of breath.
2. Anemia: A low red blood cell count can reduce the amount of oxygen being delivered to the body's tissues, leading to fatigue and weakness.
3. Medication side effects: Certain medications, such as beta blockers, can slow down the heart rate and reduce cardiac output.
4. Sepsis: A severe infection can lead to inflammation throughout the body, which can affect the heart's ability to pump blood effectively.
5. Myocardial infarction (heart attack): This occurs when the heart muscle is damaged due to a lack of oxygen, leading to reduced cardiac output.

Symptoms:

Low cardiac output can cause a range of symptoms, including:

1. Fatigue and weakness
2. Dizziness and lightheadedness
3. Shortness of breath
4. Pale skin
5. Decreased urine output
6. Confusion and disorientation

Treatment:

The treatment of low cardiac output depends on the underlying cause. Treatment may include:

1. Medications to increase heart rate and contractility
2. Diuretics to reduce fluid buildup in the body
3. Oxygen therapy to increase oxygenation of tissues
4. Mechanical support devices, such as intra-aortic balloon pumps or ventricular assist devices
5. Surgery to repair or replace damaged heart tissue
6. Lifestyle changes, such as a healthy diet and regular exercise, to improve cardiovascular health.

Prevention:

Preventing low cardiac output involves managing any underlying medical conditions, taking medications as directed, and making lifestyle changes to improve cardiovascular health. This may include:

1. Monitoring and controlling blood pressure
2. Managing diabetes and other chronic conditions
3. Avoiding substances that can damage the heart, such as tobacco and excessive alcohol
4. Exercising regularly
5. Eating a healthy diet that is low in saturated fats and cholesterol
6. Maintaining a healthy weight.

Some common types of Acinetobacter infections include:

1. Pneumonia: This is an infection of the lungs that can cause fever, cough, chest pain, and difficulty breathing.
2. Urinary tract infections (UTIs): These are infections of the bladder, kidneys, or ureters that can cause symptoms such as burning during urination, frequent urination, and abdominal pain.
3. Bloodstream infections (sepsis): This is a serious and potentially life-threatening condition that occurs when bacteria enter the bloodstream and cause widespread inflammation. Symptoms can include fever, chills, rapid heart rate, and shortness of breath.
4. Skin and soft tissue infections: These are infections of the skin and underlying tissues that can cause redness, swelling, warmth, and pain.
5. Bacteremia: This is a condition in which bacteria enter the bloodstream and cause an infection.
6. Endocarditis: This is an infection of the heart valves, which can cause symptoms such as fever, fatigue, and shortness of breath.

Acinetobacter infections are often caused by the bacteria entering the body through a wound or surgical incision. They can also be spread through contact with contaminated surfaces or equipment in healthcare settings.

Treatment of Acinetobacter infections typically involves the use of antibiotics, which may be administered intravenously or orally. In some cases, surgical intervention may be necessary to remove infected tissue or repair damaged organs.

Prevention of Acinetobacter infections is important for reducing the risk of these infections occurring in healthcare settings. This can include proper hand hygiene, use of personal protective equipment (PPE), and effective cleaning and disinfection of surfaces and equipment.

Overall, Acinetobacter infections are a significant concern in healthcare settings, and prompt recognition and treatment are critical for preventing serious complications and improving patient outcomes.

The mitral valve is located between the left atrium and the left ventricle, and it is responsible for regulating blood flow between these two chambers. When the mitral valve does not close properly, blood can leak back into the left atrium, causing a range of symptoms and complications.

There are several causes of mitral valve insufficiency, including:

* Degenerative changes: The mitral valve can wear out over time due to degenerative changes, such as calcium buildup or tearing of the valve flaps.
* Heart muscle disease: Diseases such as cardiomyopathy can cause the heart muscle to weaken and stretch, leading to mitral valve insufficiency.
* Endocarditis: Infections of the inner lining of the heart can damage the mitral valve and lead to insufficiency.
* Heart defects: Congenital heart defects, such as a bicuspid valve or a narrow valve opening, can lead to mitral valve insufficiency.

Treatment for mitral valve insufficiency depends on the severity of the condition and may include medications to manage symptoms, lifestyle changes, or surgery to repair or replace the damaged valve. In some cases, catheter-based procedures may be used to repair the valve without open-heart surgery.

Overall, mitral valve insufficiency is a common condition that can have a significant impact on quality of life if left untreated. It is important to seek medical attention if symptoms persist or worsen over time.

There are many different types of heart diseases, including:

1. Coronary artery disease: The buildup of plaque in the coronary arteries, which supply blood to the heart muscle, leading to chest pain or a heart attack.
2. Heart failure: When the heart is unable to pump enough blood to meet the body's needs, leading to fatigue, shortness of breath, and swelling in the legs.
3. Arrhythmias: Abnormal heart rhythms, such as atrial fibrillation or ventricular tachycardia, which can cause palpitations, dizziness, and shortness of breath.
4. Heart valve disease: Problems with the heart valves, which can lead to blood leaking back into the chambers or not being pumped effectively.
5. Cardiomyopathy: Disease of the heart muscle, which can lead to weakened heart function and heart failure.
6. Heart murmurs: Abnormal sounds heard during a heartbeat, which can be caused by defects in the heart valves or abnormal blood flow.
7. Congenital heart disease: Heart defects present at birth, such as holes in the heart or abnormal blood vessels.
8. Myocardial infarction (heart attack): Damage to the heart muscle due to a lack of oxygen, often caused by a blockage in a coronary artery.
9. Cardiac tamponade: Fluid accumulation around the heart, which can cause compression of the heart and lead to cardiac arrest.
10. Endocarditis: Infection of the inner lining of the heart, which can cause fever, fatigue, and heart valve damage.

Heart diseases can be diagnosed through various tests such as electrocardiogram (ECG), echocardiogram, stress test, and blood tests. Treatment options depend on the specific condition and may include lifestyle changes, medication, surgery, or a combination of these.

Examples of Nervous System Diseases include:

1. Alzheimer's disease: A progressive neurological disorder that affects memory and cognitive function.
2. Parkinson's disease: A degenerative disorder that affects movement, balance and coordination.
3. Multiple sclerosis: An autoimmune disease that affects the protective covering of nerve fibers.
4. Stroke: A condition where blood flow to the brain is interrupted, leading to brain cell death.
5. Brain tumors: Abnormal growth of tissue in the brain.
6. Neuropathy: Damage to peripheral nerves that can cause pain, numbness and weakness in hands and feet.
7. Epilepsy: A disorder characterized by recurrent seizures.
8. Motor neuron disease: Diseases that affect the nerve cells responsible for controlling voluntary muscle movement.
9. Chronic pain syndrome: Persistent pain that lasts more than 3 months.
10. Neurodevelopmental disorders: Conditions such as autism, ADHD and learning disabilities that affect the development of the brain and nervous system.

These diseases can be caused by a variety of factors such as genetics, infections, injuries, toxins and ageing. Treatment options for Nervous System Diseases range from medications, surgery, rehabilitation therapy to lifestyle changes.

Hyperalgesia is often seen in people with chronic pain conditions, such as fibromyalgia, and it can also be a side effect of certain medications or medical procedures. Treatment options for hyperalgesia depend on the underlying cause of the condition, but may include pain management techniques, physical therapy, and medication adjustments.

In clinical settings, hyperalgesia is often assessed using a pinprick test or other pain tolerance tests to determine the patient's sensitivity to different types of stimuli. The goal of treatment is to reduce the patient's pain and improve their quality of life.

There are several types of cardiomyopathies, each with distinct characteristics and symptoms. Some of the most common forms of cardiomyopathy include:

1. Hypertrophic cardiomyopathy (HCM): This is the most common form of cardiomyopathy and is characterized by an abnormal thickening of the heart muscle, particularly in the left ventricle. HCM can lead to obstruction of the left ventricular outflow tract and can increase the risk of sudden death.
2. Dilated cardiomyopathy: This type of cardiomyopathy is characterized by a decrease in the heart's ability to pump blood effectively, leading to enlargement of the heart and potentially life-threatening complications such as congestive heart failure.
3. Restrictive cardiomyopathy: This type of cardiomyopathy is characterized by stiffness of the heart muscle, which makes it difficult for the heart to fill with blood. This can lead to shortness of breath and fatigue.
4. Left ventricular non-compaction (LVNC): This is a rare type of cardiomyopathy that occurs when the left ventricle does not properly compact, leading to reduced cardiac function and potentially life-threatening complications.
5. Cardiac amyloidosis: This is a condition in which abnormal proteins accumulate in the heart tissue, leading to stiffness and impaired cardiac function.
6. Right ventricular cardiomyopathy (RVCM): This type of cardiomyopathy is characterized by impaired function of the right ventricle, which can lead to complications such as pulmonary hypertension and heart failure.
7. Endocardial fibroelastoma: This is a rare type of cardiomyopathy that occurs when abnormal tissue grows on the inner lining of the heart, leading to reduced cardiac function and potentially life-threatening complications.
8. Cardiac sarcoidosis: This is a condition in which inflammatory cells accumulate in the heart, leading to impaired cardiac function and potentially life-threatening complications.
9. Hypertrophic cardiomyopathy (HCM): This is a condition in which the heart muscle thickens, leading to reduced cardiac function and potentially life-threatening complications such as arrhythmias and sudden death.
10. Hypokinetic left ventricular cardiomyopathy: This type of cardiomyopathy is characterized by decreased contraction of the left ventricle, leading to reduced cardiac function and potentially life-threatening complications such as heart failure.

It's important to note that some of these types of cardiomyopathy are more common in certain populations, such as hypertrophic cardiomyopathy being more common in young athletes. Additionally, some types of cardiomyopathy may have overlapping symptoms or co-occurring conditions, so it's important to work with a healthcare provider for an accurate diagnosis and appropriate treatment.

Types of experimental neoplasms include:

* Xenografts: tumors that are transplanted into animals from another species, often humans.
* Transgenic tumors: tumors that are created by introducing cancer-causing genes into an animal's genome.
* Chemically-induced tumors: tumors that are caused by exposure to certain chemicals or drugs.

The use of experimental neoplasms in research has led to significant advances in our understanding of cancer biology and the development of new treatments for the disease. However, the use of animals in cancer research is a controversial topic and alternatives to animal models are being developed and implemented.

Disease progression can be classified into several types based on the pattern of worsening:

1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.

Disease progression can be influenced by various factors, including:

1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.

Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.

Recurrence can also refer to the re-emergence of symptoms in a previously treated condition, such as a chronic pain condition that returns after a period of remission.

In medical research, recurrence is often studied to understand the underlying causes of disease progression and to develop new treatments and interventions to prevent or delay its return.

Aortic valve stenosis can be caused by a variety of factors, including aging, calcium buildup, or congenital heart defects. It is typically diagnosed through echocardiography or cardiac catheterization. Treatment options for aortic valve stenosis include medications to manage symptoms, aortic valve replacement surgery, or transcatheter aortic valve replacement (TAVR), which is a minimally invasive procedure.

In TAVR, a thin tube is inserted through a blood vessel in the leg and guided to the heart, where it delivers a new aortic valve. This can be performed through a small incision in the chest or through a catheter inserted into the femoral artery.

While TAVR has become increasingly popular for treating aortic valve stenosis, it is not suitable for all patients and requires careful evaluation to determine the best course of treatment. It is important to discuss the risks and benefits of TAVR with a healthcare provider to determine the appropriate treatment plan for each individual patient.

Medical Term: Cardiomegaly

Definition: An abnormal enlargement of the heart.

Symptoms: Difficulty breathing, shortness of breath, fatigue, swelling of legs and feet, chest pain, and palpitations.

Causes: Hypertension, cardiac valve disease, myocardial infarction (heart attack), congenital heart defects, and other conditions that affect the heart muscle or cardiovascular system.

Diagnosis: Physical examination, electrocardiogram (ECG), chest x-ray, echocardiography, and other diagnostic tests as necessary.

Treatment: Medications such as diuretics, vasodilators, and beta blockers, lifestyle changes such as exercise and diet modifications, surgery or other interventions in severe cases.

Note: Cardiomegaly is a serious medical condition that requires prompt diagnosis and treatment to prevent complications such as heart failure and death. If you suspect you or someone else may have cardiomegaly, seek medical attention immediately.

There are two types of hypertension:

1. Primary Hypertension: This type of hypertension has no identifiable cause and is also known as essential hypertension. It accounts for about 90% of all cases of hypertension.
2. Secondary Hypertension: This type of hypertension is caused by an underlying medical condition or medication. It accounts for about 10% of all cases of hypertension.

Some common causes of secondary hypertension include:

* Kidney disease
* Adrenal gland disorders
* Hormonal imbalances
* Certain medications
* Sleep apnea
* Cocaine use

There are also several risk factors for hypertension, including:

* Age (the risk increases with age)
* Family history of hypertension
* Obesity
* Lack of exercise
* High sodium intake
* Low potassium intake
* Stress

Hypertension is often asymptomatic, and it can cause damage to the blood vessels and organs over time. Some potential complications of hypertension include:

* Heart disease (e.g., heart attacks, heart failure)
* Stroke
* Kidney disease (e.g., chronic kidney disease, end-stage renal disease)
* Vision loss (e.g., retinopathy)
* Peripheral artery disease

Hypertension is typically diagnosed through blood pressure readings taken over a period of time. Treatment for hypertension may include lifestyle changes (e.g., diet, exercise, stress management), medications, or a combination of both. The goal of treatment is to reduce the risk of complications and improve quality of life.

LVH can lead to a number of complications, including:

1. Heart failure: The enlarged left ventricle can become less efficient at pumping blood throughout the body, leading to heart failure.
2. Arrhythmias: The abnormal electrical activity in the heart can lead to irregular heart rhythms.
3. Sudden cardiac death: In some cases, LVH can increase the risk of sudden cardiac death.
4. Atrial fibrillation: The enlarged left atrium can lead to atrial fibrillation, a common type of arrhythmia.
5. Mitral regurgitation: The enlargement of the left ventricle can cause the mitral valve to become incompetent, leading to mitral regurgitation.
6. Heart valve problems: The enlarged left ventricle can lead to heart valve problems, such as mitral regurgitation or aortic stenosis.
7. Coronary artery disease: LVH can increase the risk of coronary artery disease, which can lead to a heart attack.
8. Pulmonary hypertension: The enlarged left ventricle can lead to pulmonary hypertension, which can further strain the heart and increase the risk of complications.

Evaluation of LVH typically involves a physical examination, medical history, electrocardiogram (ECG), echocardiography, and other diagnostic tests such as stress test or cardiac MRI. Treatment options for LVH depend on the underlying cause and may include medications, lifestyle changes, and in some cases, surgery or other interventions.

Body weight is an important health indicator, as it can affect an individual's risk for certain medical conditions, such as obesity, diabetes, and cardiovascular disease. Maintaining a healthy body weight is essential for overall health and well-being, and there are many ways to do so, including a balanced diet, regular exercise, and other lifestyle changes.

There are several ways to measure body weight, including:

1. Scale: This is the most common method of measuring body weight, and it involves standing on a scale that displays the individual's weight in kg or lb.
2. Body fat calipers: These are used to measure body fat percentage by pinching the skin at specific points on the body.
3. Skinfold measurements: This method involves measuring the thickness of the skin folds at specific points on the body to estimate body fat percentage.
4. Bioelectrical impedance analysis (BIA): This is a non-invasive method that uses electrical impulses to measure body fat percentage.
5. Dual-energy X-ray absorptiometry (DXA): This is a more accurate method of measuring body composition, including bone density and body fat percentage.

It's important to note that body weight can fluctuate throughout the day due to factors such as water retention, so it's best to measure body weight at the same time each day for the most accurate results. Additionally, it's important to use a reliable scale or measuring tool to ensure accurate measurements.

There are several types of edema, including:

1. Pitting edema: This type of edema occurs when the fluid accumulates in the tissues and leaves a pit or depression when it is pressed. It is commonly seen in the skin of the lower legs and feet.
2. Non-pitting edema: This type of edema does not leave a pit or depression when pressed. It is often seen in the face, hands, and arms.
3. Cytedema: This type of edema is caused by an accumulation of fluid in the tissues of the limbs, particularly in the hands and feet.
4. Edema nervorum: This type of edema affects the nerves and can cause pain, numbness, and tingling in the affected area.
5. Lymphedema: This is a condition where the lymphatic system is unable to properly drain fluid from the body, leading to swelling in the arms or legs.

Edema can be diagnosed through physical examination, medical history, and diagnostic tests such as imaging studies and blood tests. Treatment options for edema depend on the underlying cause, but may include medications, lifestyle changes, and compression garments. In some cases, surgery or other interventions may be necessary to remove excess fluid or tissue.

Types of congenital heart defects include:

1. Ventricular septal defect (VSD): A hole in the wall between the two lower chambers of the heart, allowing abnormal blood flow.
2. Atrial septal defect (ASD): A hole in the wall between the two upper chambers of the heart, also allowing abnormal blood flow.
3. Tetralogy of Fallot: A combination of four heart defects, including VSD, pulmonary stenosis (narrowing of the pulmonary valve), and abnormal development of the infundibulum (a part of the heart that connects the ventricles to the pulmonary artery).
4. Transposition of the great vessels: A condition in which the aorta and/or pulmonary artery are placed in the wrong position, disrupting blood flow.
5. Hypoplastic left heart syndrome (HLHS): A severe defect in which the left side of the heart is underdeveloped, resulting in insufficient blood flow to the body.
6. Pulmonary atresia: A condition in which the pulmonary valve does not form properly, blocking blood flow to the lungs.
7. Truncus arteriosus: A rare defect in which a single artery instead of two (aorta and pulmonary artery) arises from the heart.
8. Double-outlet right ventricle: A condition in which both the aorta and the pulmonary artery arise from the right ventricle instead of the left ventricle.

Causes of congenital heart defects are not fully understood, but genetics, environmental factors, and viral infections during pregnancy may play a role. Diagnosis is typically made through fetal echocardiography or cardiac ultrasound during pregnancy or after birth. Treatment depends on the type and severity of the defect and may include medication, surgery, or heart transplantation. With advances in medical technology and treatment, many children with congenital heart disease can lead active, healthy lives into adulthood.


There are several key features of inflammation:

1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.

Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.

There are several types of inflammation, including:

1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.

There are several ways to reduce inflammation, including:

1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.

It's important to note that chronic inflammation can lead to a range of health problems, including:

1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.

Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.

Some common examples of bacterial infections include:

1. Urinary tract infections (UTIs)
2. Respiratory infections such as pneumonia and bronchitis
3. Skin infections such as cellulitis and abscesses
4. Bone and joint infections such as osteomyelitis
5. Infected wounds or burns
6. Sexually transmitted infections (STIs) such as chlamydia and gonorrhea
7. Food poisoning caused by bacteria such as salmonella and E. coli.

In severe cases, bacterial infections can lead to life-threatening complications such as sepsis or blood poisoning. It is important to seek medical attention if symptoms persist or worsen over time. Proper diagnosis and treatment can help prevent these complications and ensure a full recovery.

Types of Experimental Diabetes Mellitus include:

1. Streptozotocin-induced diabetes: This type of EDM is caused by administration of streptozotocin, a chemical that damages the insulin-producing beta cells in the pancreas, leading to high blood sugar levels.
2. Alloxan-induced diabetes: This type of EDM is caused by administration of alloxan, a chemical that also damages the insulin-producing beta cells in the pancreas.
3. Pancreatectomy-induced diabetes: In this type of EDM, the pancreas is surgically removed or damaged, leading to loss of insulin production and high blood sugar levels.

Experimental Diabetes Mellitus has several applications in research, including:

1. Testing new drugs and therapies for diabetes treatment: EDM allows researchers to evaluate the effectiveness of new treatments on blood sugar control and other physiological processes.
2. Studying the pathophysiology of diabetes: By inducing EDM in animals, researchers can study the progression of diabetes and its effects on various organs and tissues.
3. Investigating the role of genetics in diabetes: Researchers can use EDM to study the effects of genetic mutations on diabetes development and progression.
4. Evaluating the efficacy of new diagnostic techniques: EDM allows researchers to test new methods for diagnosing diabetes and monitoring blood sugar levels.
5. Investigating the complications of diabetes: By inducing EDM in animals, researchers can study the development of complications such as retinopathy, nephropathy, and cardiovascular disease.

In conclusion, Experimental Diabetes Mellitus is a valuable tool for researchers studying diabetes and its complications. The technique allows for precise control over blood sugar levels and has numerous applications in testing new treatments, studying the pathophysiology of diabetes, investigating the role of genetics, evaluating new diagnostic techniques, and investigating complications.

There are several types of radiculopathy, including:

1. Cervical radiculopathy: This type affects the neck and arm region and is often caused by a herniated disk or degenerative changes in the spine.
2. Thoracic radiculopathy: This type affects the chest and abdominal regions and is often caused by a tumor or injury.
3. Lumbar radiculopathy: This type affects the lower back and leg region and is often caused by a herniated disk, spinal stenosis, or degenerative changes in the spine.
4. Sacral radiculopathy: This type affects the pelvis and legs and is often caused by a tumor or injury.

The symptoms of radiculopathy can vary depending on the location and severity of the nerve compression. They may include:

1. Pain in the affected area, which can be sharp or dull and may be accompanied by numbness, tingling, or weakness.
2. Numbness or tingling sensations in the skin of the affected limb.
3. Weakness in the affected muscles, which can make it difficult to move the affected limb or perform certain activities.
4. Difficulty with coordination and balance.
5. Tremors or spasms in the affected muscles.
6. Decreased reflexes in the affected area.
7. Difficulty with bladder or bowel control (in severe cases).

Treatment for radiculopathy depends on the underlying cause and severity of the condition. Conservative treatments such as physical therapy, medication, and lifestyle changes may be effective in managing symptoms and improving function. In some cases, surgery may be necessary to relieve pressure on the nerve root.

It's important to seek medical attention if you experience any of the symptoms of radiculopathy, as early diagnosis and treatment can help prevent long-term damage and improve outcomes.

These animal models allow researchers to study the underlying causes of arthritis, test new treatments and therapies, and evaluate their effectiveness in a controlled environment before moving to human clinical trials. Experimental arthritis models are used to investigate various aspects of the disease, including its pathophysiology, immunogenicity, and potential therapeutic targets.

Some common experimental arthritis models include:

1. Collagen-induced arthritis (CIA): This model is induced in mice by immunizing them with type II collagen, which leads to an autoimmune response and inflammation in the joints.
2. Rheumatoid arthritis (RA) models: These models are developed by transferring cells from RA patients into immunodeficient mice, which then develop arthritis-like symptoms.
3. Osteoarthritis (OA) models: These models are induced in animals by subjecting them to joint injury or overuse, which leads to degenerative changes in the joints and bone.
4. Psoriatic arthritis (PsA) models: These models are developed by inducing psoriasis in mice, which then develop arthritis-like symptoms.

Experimental arthritis models have contributed significantly to our understanding of the disease and have helped to identify potential therapeutic targets for the treatment of arthritis. However, it is important to note that these models are not perfect representations of human arthritis and should be used as tools to complement, rather than replace, human clinical trials.

Endophthalmitis can be classified into several types based on its causes, such as:

1. Postoperative endophthalmitis: This type of endophthalmitis occurs after cataract surgery or other intraocular surgeries. It is caused by bacterial infection that enters the eye through the surgical incision.
2. Endogenous endophthalmitis: This type of endophthalmitis is caused by an infection that originates within the eye, such as from a retinal detachment or uveitis.
3. Exogenous endophthalmitis: This type of endophthalmitis is caused by an infection that enters the eye from outside, such as from a penetrating injury or a foreign object in the eye.

The symptoms of endophthalmitis can include:

1. Severe pain in the eye
2. Redness and swelling of the conjunctiva
3. Difficulty seeing or blind spots in the visual field
4. Sensitivity to light
5. Increased sensitivity to touch or pressure on the eye
6. Fever and chills
7. Swollen lymph nodes
8. Enlarged pupil
9. Clouding of the vitreous humor

If you suspect that you or someone else has endophthalmitis, it is important to seek medical attention immediately. Early diagnosis and treatment can help prevent vision loss. Treatment options for endophthalmitis may include antibiotics, vitrectomy (removal of the vitreous humor), and in some cases, removal of the affected eye.

1. Ischemic stroke: This is the most common type of stroke, accounting for about 87% of all strokes. It occurs when a blood vessel in the brain becomes blocked, reducing blood flow to the brain.
2. Hemorrhagic stroke: This type of stroke occurs when a blood vessel in the brain ruptures, causing bleeding in the brain. High blood pressure, aneurysms, and blood vessel malformations can all cause hemorrhagic strokes.
3. Transient ischemic attack (TIA): Also known as a "mini-stroke," a TIA is a temporary interruption of blood flow to the brain that lasts for a short period of time, usually less than 24 hours. TIAs are often a warning sign for a future stroke and should be taken seriously.

Stroke can cause a wide range of symptoms depending on the location and severity of the damage to the brain. Some common symptoms include:

* Weakness or numbness in the face, arm, or leg
* Difficulty speaking or understanding speech
* Sudden vision loss or double vision
* Dizziness, loss of balance, or sudden falls
* Severe headache
* Confusion, disorientation, or difficulty with memory

Stroke is a leading cause of long-term disability and can have a significant impact on the quality of life for survivors. However, with prompt medical treatment and rehabilitation, many people are able to recover some or all of their lost functions and lead active lives.

The medical community has made significant progress in understanding stroke and developing effective treatments. Some of the most important advances include:

* Development of clot-busting drugs and mechanical thrombectomy devices to treat ischemic strokes
* Improved imaging techniques, such as CT and MRI scans, to diagnose stroke and determine its cause
* Advances in surgical techniques for hemorrhagic stroke
* Development of new medications to prevent blood clots and reduce the risk of stroke

Despite these advances, stroke remains a significant public health problem. According to the American Heart Association, stroke is the fifth leading cause of death in the United States and the leading cause of long-term disability. In 2017, there were over 795,000 strokes in the United States alone.

There are several risk factors for stroke that can be controlled or modified. These include:

* High blood pressure
* Diabetes mellitus
* High cholesterol levels
* Smoking
* Obesity
* Lack of physical activity
* Poor diet

In addition to these modifiable risk factors, there are also several non-modifiable risk factors for stroke, such as age (stroke risk increases with age), family history of stroke, and previous stroke or transient ischemic attack (TIA).

The medical community has made significant progress in understanding the causes and risk factors for stroke, as well as developing effective treatments and prevention strategies. However, more research is needed to improve outcomes for stroke survivors and reduce the overall burden of this disease.

Examples of delayed hypersensitivity reactions include contact dermatitis (a skin reaction to an allergic substance), tuberculin reactivity (a reaction to the bacteria that cause tuberculosis), and sarcoidosis (a condition characterized by inflammation in various organs, including the lungs and lymph nodes).

Delayed hypersensitivity reactions are important in the diagnosis and management of allergic disorders and other immune-related conditions. They can be detected through a variety of tests, including skin prick testing, patch testing, and blood tests. Treatment for delayed hypersensitivity reactions depends on the underlying cause and may involve medications such as antihistamines, corticosteroids, or immunosuppressants.

There are several possible causes of oligospermia, including:

* Hormonal imbalances
* Varicocele (a swelling of the veins in the scrotum)
* Infections such as epididymitis or prostatitis
* Blockages such as a vasectomy or epididymal obstruction
* Certain medications such as anabolic steroids and chemotherapy drugs
* Genetic disorders
* Environmental factors such as exposure to toxins or radiation

Symptoms of oligospermia may include:

* Difficulty getting an erection
* Premature ejaculation
* Low sex drive
* Painful ejaculation

Diagnosis of oligospermia typically involves a physical exam, medical history, and semen analysis. Treatment will depend on the underlying cause of the condition, but may include medications to improve sperm count and quality, surgery to correct blockages or varicoceles, or assisted reproductive technologies such as in vitro fertilization (IVF).

It's important to note that a low sperm count does not necessarily mean a man is infertile. However, it can make it more difficult to conceive a child. With appropriate treatment and lifestyle changes, some men with oligospermia may be able to improve their fertility and have children.

Osteoarthritis (OA) is a degenerative condition that occurs when the cartilage that cushions the joints breaks down over time, causing the bones to rub together. It is the most common form of arthritis and typically affects older adults.

Rheumatoid arthritis (RA) is an autoimmune condition that occurs when the body's immune system attacks the lining of the joints, leading to inflammation and pain. It can affect anyone, regardless of age, and is typically seen in women.

Other types of arthritis include psoriatic arthritis, gouty arthritis, and lupus-related arthritis. Treatment for arthritis depends on the type and severity of the condition, but can include medications such as pain relievers, anti-inflammatory drugs, and disease-modifying anti-rheumatic drugs (DMARDs). Physical therapy and lifestyle changes, such as exercise and weight loss, can also be helpful. In severe cases, surgery may be necessary to repair or replace damaged joints.

Arthritis is a leading cause of disability worldwide, affecting over 50 million adults in the United States alone. It can have a significant impact on a person's quality of life, making everyday activities such as walking, dressing, and grooming difficult and painful. Early diagnosis and treatment are important to help manage symptoms and slow the progression of the disease.

HIV (human immunodeficiency virus) infection is a condition in which the body is infected with HIV, a type of retrovirus that attacks the body's immune system. HIV infection can lead to AIDS (acquired immunodeficiency syndrome), a condition in which the immune system is severely damaged and the body is unable to fight off infections and diseases.

There are several ways that HIV can be transmitted, including:

1. Sexual contact with an infected person
2. Sharing of needles or other drug paraphernalia with an infected person
3. Mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Blood transfusions ( although this is rare in developed countries due to screening processes)
5. Organ transplantation (again, rare)

The symptoms of HIV infection can be mild at first and may not appear until several years after infection. These symptoms can include:

1. Fever
2. Fatigue
3. Swollen glands in the neck, armpits, and groin
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss

If left untreated, HIV infection can progress to AIDS, which is a life-threatening condition that can cause a wide range of symptoms, including:

1. Opportunistic infections (such as pneumocystis pneumonia)
2. Cancer (such as Kaposi's sarcoma)
3. Wasting syndrome
4. Neurological problems (such as dementia and seizures)

HIV infection is diagnosed through a combination of blood tests and physical examination. Treatment typically involves antiretroviral therapy (ART), which is a combination of medications that work together to suppress the virus and slow the progression of the disease.

Prevention methods for HIV infection include:

1. Safe sex practices, such as using condoms and dental dams
2. Avoiding sharing needles or other drug-injecting equipment
3. Avoiding mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Post-exposure prophylaxis (PEP), which is a short-term treatment that can prevent infection after potential exposure to the virus
5. Pre-exposure prophylaxis (PrEP), which is a daily medication that can prevent infection in people who are at high risk of being exposed to the virus.

It's important to note that HIV infection is manageable with proper treatment and care, and that people living with HIV can lead long and healthy lives. However, it's important to be aware of the risks and take steps to prevent transmission.

Male infertility can be caused by a variety of factors, including:

1. Low sperm count or poor sperm quality: This is one of the most common causes of male infertility. Sperm count is typically considered low if less than 15 million sperm are present in a sample of semen. Additionally, sperm must be of good quality to fertilize an egg successfully.
2. Varicocele: This is a swelling of the veins in the scrotum that can affect sperm production and quality.
3. Erectile dysfunction: Difficulty achieving or maintaining an erection can make it difficult to conceive.
4. Premature ejaculation: This can make it difficult for the sperm to reach the egg during sexual intercourse.
5. Blockages or obstructions: Blockages in the reproductive tract, such as a blockage of the epididymis or vas deferens, can prevent sperm from leaving the body during ejaculation.
6. Retrograde ejaculation: This is a condition in which semen is released into the bladder instead of being expelled through the penis during ejaculation.
7. Hormonal imbalances: Imbalances in hormones such as testosterone and inhibin can affect sperm production and quality.
8. Medical conditions: Certain medical conditions, such as diabetes, hypogonadism, and hyperthyroidism, can affect fertility.
9. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and stress can all impact fertility.
10. Age: Male fertility declines with age, especially after the age of 40.

There are several treatment options for male infertility, including:

1. Medications to improve sperm count and quality
2. Surgery to repair blockages or obstructions in the reproductive tract
3. Artificial insemination (IUI) or in vitro fertilization (IVF) to increase the chances of conception
4. Donor sperm
5. Assisted reproductive technology (ART) such as ICSI (intracytoplasmic sperm injection)
6. Hormone therapy to improve fertility
7. Lifestyle changes such as quitting smoking and alcohol, losing weight, and reducing stress.

It's important to note that male infertility is a common condition and there are many treatment options available. If you're experiencing difficulty conceiving, it's important to speak with a healthcare provider to determine the cause of infertility and discuss potential treatment options.

Blepharospasm is a type of movement disorder that affects the eyelids, causing them to twitch or spasm involuntarily. The condition can be caused by a variety of factors, including:

1. Stress and fatigue: High levels of stress and fatigue can lead to muscle tension in the eyelids, resulting in blepharospasm.
2. Caffeine withdrawal: Suddenly stopping or reducing caffeine intake can cause withdrawal symptoms, including blepharospasm.
3. Medications: Certain medications, such as antidepressants and antipsychotics, can cause blepharospasm as a side effect.
4. Neurological disorders: In some cases, blepharospasm may be a symptom of an underlying neurological disorder, such as dystonia or Parkinson's disease.
5. Other causes: Blepharospasm can also be caused by other factors, such as dry eyes, allergies, or exposure to bright lights.

Treatment options for blepharospasm include:

1. Relaxation techniques: Techniques such as deep breathing, progressive muscle relaxation, and visualization can help reduce stress and muscle tension in the eyelids.
2. Botulinum toxin injections: Injecting botulinum toxin into the eyelid muscles can weaken the muscles and reduce the frequency and severity of blepharospasm.
3. Surgery: In severe cases of blepharospasm, surgery may be necessary to remove part of the affected muscle or to alter the position of the eyelid.
4. Medications: Various medications, such as anticholinergic drugs and benzodiazepines, can help reduce the symptoms of blepharospasm.
5. Glasses or contact lenses: In some cases, wearing glasses or contact lenses may help reduce the symptoms of blepharospasm by reducing glare and improving vision.

It is important to note that the best course of treatment will depend on the underlying cause of the blepharospasm, and a healthcare professional should be consulted to determine the appropriate treatment plan.

Nakagaki K, Ebihara S, Usui S, Honda Y, Takahashi Y, Kato N (1986). "Effects of intraventricular injection of anti-DSIP serum ...
Ingoglia NA, Dole VP (October 1970). "Localization of d- and l-methadone after intraventricular injection into rat brains". The ...
2021). "Nimodipine pharmacokinetics after intraventricular injection of sustained-release nimodipine for subarachnoid ... or intraventricular hemorrhage (bleeding into the ventricles of the brain) and presence of fever on the eighth day of admission ... "Intraventricular Nimodipine for Aneurysmal Subarachnoid Hemorrhage: Results of the NEWTON Phase 1/2a Study". Neurosurgery. 81: ... reflecting the additive risk from SAH size and accompanying intraventricular hemorrhage (0 - none; 1 - minimal SAH w/o IVH; 2 ...
At this position he conducted research on the development of cerebrospinal fluid and the effects of intra-ventricular injection ...
... injection site swelling (17.1%), urticaria (12.3%), pruritus (7.7%), injection site pruritus (5.8%), nausea (5.8%), injection ... intraventricular hemorrhage (4 in the treatment group compared with 8 in the control for a relative risk of 0.25), and need for ... However, there was a higher incidence of injection site pain with subcutaneous autoinjection than with intramuscular injection ... A single intramuscular injection of 65 to 500 mg OHPC in oil solution has been found to have a duration of action of 5 to 21 ...
... injections, intraventricular MeSH E05.300.530.580 - injections, spinal MeSH E05.300.530.580.300 - injections, epidural MeSH ... injections, intra-arterial MeSH E05.300.530.380 - injections, intra-articular MeSH E05.300.530.430 - injections, intralesional ... injections, intramuscular MeSH E05.300.530.490 - injections, intraperitoneal MeSH E05.300.530.540 - injections, intravenous ... injections, intradermal MeSH E05.300.530.620.570 - injections, jet MeSH E05.300.530.620.570.100 - biolistics MeSH E05.300. ...
... intraventricular infusion - intravesical - invasive cancer - invasive cervical cancer - inverted papilloma - investigational - ... Intramuscular injection (IM) - intraocular melanoma - intraoperative radiation therapy - intraperitoneal - intraperitoneal ... percutaneous ethanol injection - percutaneous transhepatic biliary drainage - percutaneous transhepatic cholangiodrainage - ... stereotactic injection - stereotactic radiation therapy - stereotactic radiosurgery - stereotaxic radiosurgery - stereotaxis - ...
"Colomycin Injection". Summary of Product Characteristics. electronic Medicines Compendium (eMC). 18 May 2016. Archived from the ... Karakitsos D, Paramythiotou E, Samonis G, Karabinis A (2006). "Is intraventricular colistin an effective and safe treatment for ... Colistimethate sodium, a less toxic prodrug, became available for injection in 1959. In the 1980s, polymyxin use was widely ... For systemic infection, colistin must therefore be given by injection. Colistimethate is eliminated by the kidneys, but ...
With botulinum toxin injections, patients experience relief from spasmodic torticollis for approximately 12 to 16 weeks. There ... intraventricular hemorrhage (0.6%), and large subdural hematoma (0.3%). Physical treatment options for cervical dystonia ... Common side effects include pain at the injection site (up to 28%), dysphagia due to the spread to adjacent muscles (11% to 40 ... "Botulinum Neurotoxin Injections". Dystonia Medical Research Foundation. 2022-09-28. Retrieved 2022-09-28.{{cite web}}: CS1 ...
An Ommaya reservoir is an intraventricular catheter system that can be used for the aspiration of cerebrospinal fluid or for ... In the palliative care of terminal cancer, an Ommaya reservoir can be inserted for intracerebroventricular injection (ICV) of ...
They are also less likely to have intraventricular hemorrhage (bleeding of the brain), necrotizing enterocolitis (problems with ... maternal injections of betamethasone in sheep". Eye. 14 (1): 93-98. doi:10.1038/eye.2000.20. PMID 10755109. S2CID 45299374. ... intraventricular hemorrhage and respiratory distress syndrome. Preliminary research has suggested that the use of antenatal ... and intraventricular hemorrhage in preterm infants". American Journal of Obstetrics and Gynecology. 172 (3): 795-800. doi: ...
In the U.S. multi-center ReSPECT-LM Phase 1 clinical trial, 186RNL will be administered through an intraventricular catheter ( ... NanoLiposomes of this size have the ability to facilitate retention at the site of injection. NanoLiposomes in the 100 ... as otherwise it would quickly disperse and be carried away from the site of injection by the circulatory system. Nanotechnology ...
Because injection of quinolinic acid into the striatum of rodents induces electrophysiological, neuropathological, and ... "Learning deficits induced by chronic intraventricular infusion of quinolinic acid--protection by MK-801 and memantine". Eur. J ... Neurological changes produced by quinolinic acid injections include altered levels of glutamate, GABA, and other amino acids. ...
Intravitreal injection of bevacizumab (Avastin) has been reported as a supportive measure in aggressive posterior retinopathy ... Intra ventricular haemorrhage, apnoeic episodes, etc.) may also be offered ROP screening. Retinal examination with scleral ... Potential benefits of intravitreal Avastin injection over laser therapy include: reduction in level of anesthesia required, ...
If the patient's Asthma is treated with an inhaler then it should be used as a pre-treatment prior to the injection of the ... supraventricular tachycardia or bradyarrhythmias Intraventricular conduction delay or bundle branch block or that cannot be ...
... is a route of administration for drugs via an injection into the spinal canal, or into the ... March 1993). "Randomized prospective comparison of intraventricular methotrexate and thiotepa with previously untreated ...
Injection of angiontensin has actually been long used to induce hypertension in animal test models to study the effects of ... "Calcium-mediated metabolic stimulation of neuroendocrine structures by intraventricular endothelin-1 in conscious rats". Brain ...
These tumors show up brightly and uniformly following the injection of contrast agent on both CT and MRI because the high ... D.Y. Suh, T. Mapstone, Pediatric supratentorial intraventricular tumors, FOC 10 (6) (2001) 1-14 C. Bettegowda, O. Adogwa, V. ...
Whittle, IR; Knight, RS; Will, RG (2006). "Unsuccessful intraventricular pentosan polysulphate treatment of variant Creutzfeldt ... with a subcutaneous injection. The 3 mg/kg dose was the most effective. In a study conducted with 10 elderly dogs with ...
Thailand uses lethal injection to execute first prisoner in nearly a decade Bariton Barry McDaniel (87) gestorben (in German) ... intra-ventricular haemorrhage. Karl Fritz Lauer, 80, Romanian-German scientist. Geoff Mason, 88, Australian football player ( ... Theerasak Longji, 26, Thai murderer, execution by lethal injection. Barry McDaniel, 87, American opera singer. Gordon Norton, ... Holloway dies at age 79 Hema Nalin Karunaratne's Death Intra-ventricular hemorrhage the cause Karl Fritz Lauer (in German) ...
2012). Oral administration of d-amphetamine, 0.5 mg/kg, 3 h before [11C]carfentanil injection, reduced BPND values by 2-10%. ... The observed lack of a significant accumulation of PHN in brain following the intraventricular administration of (+)- ... was administered intravenously directly before injection of [11C]carfentanil (Guterstam et al. 2013). It has been hypothesized ... "Formation of p-hydroxynorephedrine in brain following intraventricular administration of p-hydroxyamphetamine". ...
In preliminary research, injection of endothelin-1 into a lateral cerebral ventricle was shown to potently stimulate glucose ... "Dose-related potent brain stimulation by the neuropeptide endothelin-1 after intraventricular administration in conscious rats ...
Nadler; Victor, J.; Perry, Bruce W.; Cotman, Carl W. (1978). "Intraventricular Kainic Acid Preferentially Destroys Hippocampal ... "Extrafusal and Intrafusal Muscle Effects in Experimental Botulinum Toxin-A Injection". Muscle & Nerve. 19 (4): 488-96. doi: ...
In 1992, it was recognized that human gonadotropin administered by injection could also transmit CJD from person to person. ... Bone, Ian (12 July 2006). "Intraventricular Pentosan Polysulphate in Human Prion Diseases: A study of Experience in the United ...
Injection into the bloodstream can be dangerous because insoluble fillers within the tablets can block small blood vessels. ... The observed lack of a significant accumulation of PHN in brain following the intraventricular administration of (+)- ... "Formation of p-hydroxynorephedrine in brain following intraventricular administration of p-hydroxyamphetamine". ... and dopamine-β hydroxylase present in noradrenergic neurons could easily convert p-OHA to p-OHNor after intraventricular ...
Injection into the bloodstream can be dangerous because insoluble fillers within the tablets can block small blood vessels. ... The observed lack of a significant accumulation of PHN in brain following the intraventricular administration of (+)- ... "Formation of p-hydroxynorephedrine in brain following intraventricular administration of p-hydroxyamphetamine". ... and dopamine-β hydroxylase present in noradrenergic neurons could easily convert p-OHA to p-OHNor after intraventricular ...
Bradley PB The effects of intraventricular injections of drugs on the electrical activity of the brain of the conscious cat ... The effects of intraventricular injections of epinephrine, serotonin, amphetamine, LSD and BOL on the EEG and behavior of cats ... "The effects of intraventricular injections of drugs on the electrical activity of the brain of the conscious cat". ... "The effects of intraventricular injections of drugs on the electrical activity of the brain of the conscious cat" Twentieth ...
Mechanism of Pressor Effects of Intraventricular Injection of Angiotensin II in the Rat: Role of Vasopressin and Renal Nerves ... 2. Intraventricular injection of angiotensin II led to a significant increase in blood pressure in the control and all sham- ... 5. These results suggest that the rise in blood pressure observed after intraventricular injection of angiotensin II is due ... 4. In the bilaterally nephrectomized rats plasma vasopressin was still higher 30 min after the intraventricular injection of ...
Start Over You searched for: Subjects Injections, Intraventricular ✖Remove constraint Subjects: Injections, Intraventricular ... Injections, Intraventricular. Key, Axel, 1832-1901. 2. Injections of the subarachnoid spaces and ventricles of the human brain ... 1. Subarachnoid injections of the human brain Publication: Bethesda, MD : U.S. National Library of Medicine, National ... Injections of the subarachnoid spaces and ventricles of the human brain1 ...
INTRAVENTRICULAR. Active Ingredient/Active Moiety. Ingredient Name. Basis of Strength. Strength. GANCICLOVIR SODIUM (UNII: ... Ringers Injection and Lactated Ringers Injection, USP. *Ganciclovir for Injection, USP, when reconstituted with Sterile Water ... See full prescribing information for GANCICLOVIR for Injection, USP. GANCICLOVIR for Injection, USP for intravenous use Initial ... Ganciclovir for injection contains ganciclovir, in the form of the sodium salt for intravenous injection. Ganciclovir is a ...
Injections, Intraventricular * Lisinopril / pharmacology * Lisinopril / therapeutic use* * Maze Learning / drug effects * Mice ... Mice underwent i.c.v. injection of STZ. The Morris water maze (MWM) test was employed for assessment of learning and memory. ...
It has been reported that intraventricular administration of selected glucocorticoids restores hyperphagia and weight gain in ... food-restricted or ad libitum-fed rats received a single intraventricular injection of corticosterone or its vehicle on the day ... Intraventricular corticosterone increases the rate of body weight gain in underweight adrenalectomized rats P K Green 1 , C W ... Intraventricular corticosterone increases the rate of body weight gain in underweight adrenalectomized rats P K Green et al. ...
Embryonic offspring were exposed to a single intraventricular injection of MAU or MTD IgG on embryonic day 14. Offspring were ... This report demonstrates for the first time the effects of a single, low dose intraventricular exposure of IgG derived from ... Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like ... Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like ...
Injections, Intraventricular; Insulin Resistance; Insulin/blood; Interleukin-6/genetics; Interleukin-6/metabolism; Mice; Oxygen ...
Injections, Intraventricular. Cerebral Ventricles. Blood Pressure. Avoidance Learning. Aziridines. Choline. Maze Learning. ...
The effects of intraventricular injections of drugs on the electrical ... Twentieth Internatio.... 1956. ...
Intraventricular injection of MPIOs near SVZ allow migrating neuroblasts to be labeled and detected with MRI in live rats. A) ... Intraventricular injection of MPIOs near SVZ allow migrating neuroblasts to be labeled and… ... Panel A represents MRI image of rat before MPIO injection. B-D) represent the same animal after injection of MPIOs into the ... A) Confocal image of a coronal section through the olfactory bulb of a rat that received an MPIO injection in the SVZ 4 weeks ...
Intraventricular injection of acetylcholine in the cat brain].. Lozoya X; Maass R. Arch Invest Med (Mex); 1973; 4(2):139-44. ... 7. [Effects of intraventricular injection of 6-hydroxydopamine on sleep states and cerebral monoamines in cats].. Laguzzi R; ...
Intraventricular tumors are supplied by anterior and posterior choroidal arteries.. Selective injection of the left middle ... Selective injection of the left middle meningeal artery shows inhomogeneous enhancing tumor, consistent with a parietal- ... The contrast-enhancing mass is attached to the major sphenoid wing and was demonstrated only after the intravenous injection of ... The contrast-enhancing mass is attached to the major sphenoid wing and was demonstrated only after the intravenous injection of ...
The safety and efficacy of vancomycin administered by the intrathecal (intralumbar or intraventricular) route or by the ... Pain, tenderness and necrosis occur with intramuscular (IM) injection of vancomycin hydrochloride for injection or with ... VANCOMYCIN HYDROCHLORIDE injection, powder, lyophilized, for solution. Number of versions: 1. Published Date (What is this?). ... VANCOMYCIN HYDROCHLORIDE injection, powder, lyophilized, for solution. To receive this label RSS feed. Copy the URL below and ...
Injections into the cerebral ventricles.. Entry Version. INJECT INTRAVENTRICULAR. Entry Term(s). Intraventricular Injections ... Injections into the cerebral ventricles.. Terms. Injections, Intraventricular Preferred Term Term UI T021815. Date01/01/1999. ... Injections [E02.319.267.530] * Injections, Intra-Arterial [E02.319.267.530.370] * Injections, Intra-Articular [E02.319.267.530. ... Intraventricular Injections Term UI T021814. Date01/03/1990. LexicalTag NON. ThesaurusID NLM (1991). ...
An MFMU Network study that began in 2003 set out to determine whether injections of a synthetic type of progesterone called 17- ... Additionally, infants of women treated with 17P had significantly lower rates of necrotizing enterocolitis, intraventricular ... The results showed that, for women carrying one baby and with a history of preterm delivery, injections of 17P reduced preterm ...
Systemic delivery, eye drops and intraventricular injections do not always successfully target the optic nerve. Intraorbital ... However, the experimental delivery of drugs or cells to the optic nerve is rarely performed because injections into this ... Of all methods, the injection through the optic foramen is likely the most innovative and fastest. These methods offer ... and transcranial injections into the optic nerve or chiasm have been performed but these methods have not been well described. ...
... a single intraventricular injection of sustained-release nimodipine - with mixed effect. ... or oral nimodipine at locally approved doses plus a saline intraventricular injection (n = 144). All patients had an external ... Cite this: Single-Injection Nimodipine Reduces Vasospasm After Subarachnoid Hemorrhage but Misses Primary Outcome - Medscape - ... After aneurysm clipping or coiling, patients were randomly assigned on postoperative day 1 to either an EG-1962 injection plus ...
Intraventricular ( nontraumatic ) haemorrhage - grade 3 - of fetus and newborn - English → Magyar. Neoplasm of uncertain or ... Foreign object accidentally left in body during surgical and medical care - During injection or immunization - English → Magyar ... Intraventricular ( nontraumatic ) haemorrhage - grade 1 - of fetus and newborn - English → Magyar. Complications of internal ... Unspecified intraventricular ( nontraumatic ) haemorrhage of fetus and newborn - English → Magyar. Postprocedural disorders of ...
... either as an intraventricular injection, or as an ointment on the surface of the primary somatosensory cortex). *It is hoped ... either as an intraventricular injection, or as an ointment on the surface of S1), the pain threshold could be restored. ...
Injection,modify,01-SEP-06,(null),(null) C60817,Angelica_Sinensis_Extract,modify,01-SEP-06,(null),(null) C62271,Nonspecific_ ... Intraventricular_Conduction_Delay,create,01-SEP-06,(null),(null) C60810,Tinzaparin,modify,01-SEP-06,(null),(null) C60814, ...
... including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular ... Where the composition is administered by injection, an ampule of sterile water for injection or saline can be provided, for ... Preferably the dosing is given by injection, preferably intravenous or subcutaneous injections, depending, in part, on whether ... The antibodies or compositions may be administered by any convenient route, for example, by infusion or bolus injection, by ...
To perform intraventricular administration of dexmedetomidine, a guide cannula was placed in the intraventricular space ( ... Likewise, the %MPE after injection of L659,066 (350 micro gram/1.0 micro liter) followed 5 min later by injection of ... The hypnotic effect of LC injection of dexmedetomidine is not antagonized by the intrathecal injection of atipamezole or PTX, ... injection into the LC (59+/-7%, n = 8). Testing began 5 min after the injection of dexmedetomidine. In addition, the hypnotic ...
Another previous study found that the intraventricular injection of PKCζ can activate synapses, but inhibiting aPKCs could ...
Injections ventriculaires Entry term(s):. Injection, Intraventricular. Intraventricular Injection. Intraventricular Injections ... Injections into the cerebral ventricles. Preferred term. Injections, Intraventricular Entry term(s). Injection, ... Injections, Intraventricular - Preferred Concept UI. M0011355. Scope note. ...
Injections into the cerebral ventricles.. Entry Version. INJECT INTRAVENTRICULAR. Entry Term(s). Intraventricular Injections ... Injections into the cerebral ventricles.. Terms. Injections, Intraventricular Preferred Term Term UI T021815. Date01/01/1999. ... Injections [E02.319.267.530] * Injections, Intra-Arterial [E02.319.267.530.370] * Injections, Intra-Articular [E02.319.267.530. ... Intraventricular Injections Term UI T021814. Date01/03/1990. LexicalTag NON. ThesaurusID NLM (1991). ...
When an infant is expected to be delivered significantly early, doctors can give the mother injections of a corticosteroid to ... speed the development of the fetuss lungs and help prevent bleeding in the brain (intraventricular hemorrhage). ... medications such as betamethasone increase surfactant production in the fetus and are given to the mother by injection when a ...
  • HONOLULU - In a phase 3 randomized trial, a single injection of an investigational sustained-release nimodipine formulation significantly reduced the risk for vasospasm after aneurysmal subarachnoid hemorrhage (SAH) but did not improve the primary functional outcome. (medscape.com)
  • He was the co-principal investigator for the Indomethacin Projects to prevent intraventricular hemorrhage in preterm infants, which has been adopted in over 75 countries. (yalemedicine.org)
  • Normally children see them as heterosexual parents do 1535 not feel they can alter the effects of pain in infants 316 acute consequences periventricular-intraventricular hemorrhage increased chemical and physical dependence and tolerance are physiologic states, addiction or psychologic 295 dependence is a result of exposure to radiation injury. (lowerbricktown.com)
  • Injections into the cerebral ventricles. (nih.gov)
  • Furthermore, the action of dexmedetomidine in the LC in turn may result in an increase in activation of alpha(2) adrenoceptors in the spinal cord, because the antinociceptive effect of LC dexmedetomidine injection also can be blocked by intrathecal injection of antipamezole and pertussis toxin. (asahq.org)
  • 2. Intraventricular injection of angiotensin II led to a significant increase in blood pressure in the control and all sham-operated rats compared with that in unilaterally nephrectomized, one-kidney denervated rats and bilaterally nephrectomized rats. (portlandpress.com)
  • 4. In the bilaterally nephrectomized rats plasma vasopressin was still higher 30 min after the intraventricular injection of angiotensin II than that of the control and unilaterally nephrectomized, one-kidney denervated rats. (portlandpress.com)
  • Single doses also induced seizures in mice and rats and intracranial injection in mice produced hippocampal damage. (nih.gov)
  • Rats received either sham surgeries, cholinergic depletions of the medial septum, intracerebroventricular Abeta25-35 injections, or both cholinergic depletion and Abeta25-35 injections (Abeta+ACh group). (nih.gov)
  • 5. These results suggest that the rise in blood pressure observed after intraventricular injection of angiotensin II is due partly to stimulation of the renal sympathetic nervous system and partly to increase in plasma vasopressin concentration. (portlandpress.com)
  • After aneurysm clipping or coiling, patients were randomly assigned on postoperative day 1 to either an EG-1962 injection plus oral placebo (n = 138) or oral nimodipine at locally approved doses plus a saline intraventricular injection (n = 144). (medscape.com)
  • One control group received only saline injections and the other control group received saline 30 minutes prior to 3.0 mg/kg doxorubicin. (biomedcentral.com)
  • A single intracerebroventricular injection of G418 induced GRN PTC readthrough in 6-week-old AAV- GRN -R493X-V5 mice. (biomedcentral.com)
  • 20. Vasopressin release induced by intracranial injection of tachykinins is due to activation of central neurokinin-3 receptors. (nih.gov)
  • With this subject, injection of autologous blood or bacterial collagenase, inflation of intracranial balloon and avulsion of cerebral vessels were the models identified. (spandidos-publications.com)
  • Intraventricular injection is, however, invasive and impractical in a clinical setting, so the researchers tried to deliver oxytocin via the nose. (bigthink.com)
  • The following update provides information on clinical follow-up of patients affected in the unprecedented multistate invasive fungal infection outbreak associated with contaminated methylprednisolone injections in late 2012 and 2013. (cdc.gov)
  • 3. Inhibition of salt appetite in the rat following injection of tachykinins into the medial amygdala. (nih.gov)
  • In October 2010, Dr. Hastings received FDA approval to start the twins on intrathecal injections of cyclodextrin into their spines. (addiandcassi.com)
  • We initially started with intrathecal injections into the spine because we had to prove that the twins would not have an adverse reaction or die from an injection of cyclodextrin into their central nervous systems. (addiandcassi.com)
  • Since October 2010, Addi and Cassi have received over 20 intrathecal injections of cyclodextrin into their spines as we work towards a permanent solution . (addiandcassi.com)
  • Monitor renal function during therapy with ganciclovir for injection, particularly in elderly patients and in patients taking other nephrotoxic drugs, and reduce dosage in patients with renal impairment. (nih.gov)
  • Esmolol hydrochloride in sodium chloride injection is indicated for the rapid control of ventricular rate in patients with atrial fibrillation or atrial flutter in perioperative, postoperative, or other emergent circumstances where short term control of ventricular rate with a short-acting agent is desirable. (nih.gov)
  • Some of these showed always intraventricular to save been patients. (timedwardsco.com)
  • Patients affected by tainted steroid injections from the New England Compounding Center continue to receive treatment for their infections and clinicians should continue to monitor patient recovery. (cdc.gov)
  • After the injection, it costs more and more readily seen in nonconstriction and noncopd disease states, abnormal venous doppler and a search for responses to health inequity or poor hand washing, and properly performed bladder catheterization in children with cyanosis is inversely related to unhealthy sleep. (lowerbricktown.com)
  • The effects of intraventricular injections of epinephrine, serotonin, amphetamine, LSD and BOL on the EEG and behavior of cats. (erowid.org)
  • Cardiac function was assessed by an intraventricular balloon and biochemical effects by release of hydrogen peroxide (H 2 O 2 ) and troponin-T (TnT) in effluate from the isolated hearts, and by myocardial content of doxorubicin. (biomedcentral.com)
  • Coordinates for intraventricular infusion of drugs were based on a stereotaxic atlas of the chick brain (Puelles 2007 The injection probe entered the brain at approximately a 20° angle. (researchassistantresume.com)
  • An Ommaya reservoir is an intraventricular catheter system - a catheter is implanted into the brain and it is attached to a reservoir implanted under the scalp. (addiandcassi.com)
  • Mice underwent i.c.v. injection of STZ. (nih.gov)
  • Moreover, intraventricular injections of phosphoramidon, increase Aß in wild type and APP transgenic mice. (nih.gov)
  • Increases in locomotor activity after each of these CART 55-102 injections were similar and did not show tolerance or sensitization. (nih.gov)
  • Impairment of Fertility: Based on animal data and limited human data, Ganciclovir for Injection, USP may cause temporary or permanent inhibition of spermatogenesis in males and suppression of fertility in females. (nih.gov)
  • Fetal Toxicity: Based on animal data, Ganciclovir for Injection, USP has the potential to cause birth defects in humans. (nih.gov)
  • These data suggest that cholinergic depletions and Abeta injections elicit subtle cognitive deficits when behavioural testing is conducted shortly after the presentation of these factors. (nih.gov)
  • It is a combination of nimodipine and a biodegradable polymer suspended in hyaluronic acid administered as a single intraventricular injection that releases nimodipine 600 mg into the subarachnoid space over 21 days. (medscape.com)
  • The systemic administration of dexmedetomidine produced an increase in tail-flick latency, and this effect was attenuated by the injection of atipamezole and L659,066 into the LC. (asahq.org)
  • Nevertheless, we note that the model can learn to execute a movement is made in the supernatant fractions shown in Fig 3C, providing results similar to each eye, followed by intraventricular injection of BDNF with TrkB-Fc both prevented the calculation of mean elimination event throughout the whole MB dataset. (dcaction.org)
  • On day 1, 3, 5 and 7 the animals received intraperitoneal (i.p.) injections with 10 mg/kg diazoxide and/or 40 mg/kg 5-HD, 30 minutes before i.p. injections with 3.0 mg/kg doxorubicin. (biomedcentral.com)
  • If multiple injections at 2, 4, 6, and 6 to 7 minutes and derives the heart. (lowerbricktown.com)
  • To determine the sites through which dexmedetomidine injection into the LC produces antinociception, the authors examined whether this response could be perturbed by the specific alpha(2)-adrenergic antagonists atipamezole and L659,066 and pertussis toxin administered either into the LC or intrathecally before injection of dexmedetomidine systemically or directly into the LC. (asahq.org)
  • Immunohistochemistry for the haemagglutinin tag appended to ECE revealed strong expression in areas surrounding the injection sites but minimal expression in the contralateral regions. (nih.gov)
  • 4. Central tachykinin injection potently suppresses the need-free salt intake of the female rat. (nih.gov)
  • Part of the mechanism by which dexmedetomidine produces an antinociceptive effect is by an action directly on the LC, demonstrated by these studies in which antinociception produced by injection of this drug into the LC can be blocked by specific alpha(2) antagonists injected into the LC. (asahq.org)

No images available that match "injections intraventricular"