Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
A scanning microscope-based, cytofluorimetry technique for making fluorescence measurements and topographic analysis on individual cells. Lasers are used to excite fluorochromes in labeled cellular specimens. Fluorescence is detected in multiple discrete wavelengths and the locational data is processed to quantitatively assess APOPTOSIS; PLOIDIES; cell proliferation; GENE EXPRESSION; PROTEIN TRANSPORT; and other cellular processes.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Differentiation antigens expressed on pluripotential hematopoietic cells, most human thymocytes, and a major subset of peripheral blood T-lymphocytes. They have been implicated in integrin-mediated cellular adhesion and as signalling receptors on T-cells.
A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006)
Differentiation antigens expressed on B-lymphocytes and B-cell precursors. They are involved in regulation of B-cell proliferation.
A pathologic change in leukemia in which leukemic cells permeate various organs at any stage of the disease. All types of leukemia show various degrees of infiltration, depending upon the type of leukemia. The degree of infiltration may vary from site to site. The liver and spleen are common sites of infiltration, the greatest appearing in myelocytic leukemia, but infiltration is seen also in the granulocytic and lymphocytic types. The kidney is also a common site and of the gastrointestinal system, the stomach and ileum are commonly involved. In lymphocytic leukemia the skin is often infiltrated. The central nervous system too is a common site.
A group of heterogeneous lymphoid tumors generally expressing one or more B-cell antigens or representing malignant transformations of B-lymphocytes.
Unglycosylated phosphoproteins expressed only on B-cells. They are regulators of transmembrane Ca2+ conductance and thought to play a role in B-cell activation and proliferation.
Glycoproteins expressed on all mature T-cells, thymocytes, and a subset of mature B-cells. Antibodies specific for CD5 can enhance T-cell receptor-mediated T-cell activation. The B-cell-specific molecule CD72 is a natural ligand for CD5. (From Abbas et al., Cellular and Molecular Immunology, 2d ed, p156)
A group of heterogeneous lymphoid tumors representing malignant transformations of T-lymphocytes.
A classification of lymphocytes based on structurally or functionally different populations of cells.
A lymphoid leukemia characterized by a profound LYMPHOCYTOSIS with or without LYMPHADENOPATHY, hepatosplenomegaly, frequently rapid progression, and short survival. It was formerly called T-cell chronic lymphocytic leukemia.
A subspecialty of internal medicine concerned with morphology, physiology, and pathology of the blood and blood-forming tissues.
High-molecular weight glycoproteins uniquely expressed on the surface of LEUKOCYTES and their hemopoietic progenitors. They contain a cytoplasmic protein tyrosine phosphatase activity which plays a role in intracellular signaling from the CELL SURFACE RECEPTORS. The CD45 antigens occur as multiple isoforms that result from alternative mRNA splicing and differential usage of three exons.
A general term for various neoplastic diseases of the lymphoid tissue.
A form of non-Hodgkin lymphoma having a usually diffuse pattern with both small and medium lymphocytes and small cleaved cells. It accounts for about 5% of adult non-Hodgkin lymphomas in the United States and Europe. The majority of mantle-cell lymphomas are associated with a t(11;14) translocation resulting in overexpression of the CYCLIN D1 gene (GENES, BCL-1).
A technique encompassing morphometry, densitometry, neural networks, and expert systems that has numerous clinical and research applications and is particularly useful in anatomic pathology for the study of malignant lesions. The most common current application of image cytometry is for DNA analysis, followed by quantitation of immunohistochemical staining.
A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
Ratio of T-LYMPHOCYTES that express the CD4 ANTIGEN to those that express the CD8 ANTIGEN. This value is commonly assessed in the diagnosis and staging of diseases affecting the IMMUNE SYSTEM including HIV INFECTIONS.
A group of disorders having a benign course but exhibiting clinical and histological features suggestive of malignant lymphoma. Pseudolymphoma is characterized by a benign infiltration of lymphoid cells or histiocytes which microscopically resembles a malignant lymphoma. (From Dorland, 28th ed & Stedman, 26th ed)
Any of a group of malignant tumors of lymphoid tissue that differ from HODGKIN DISEASE, being more heterogeneous with respect to malignant cell lineage, clinical course, prognosis, and therapy. The only common feature among these tumors is the absence of giant REED-STERNBERG CELLS, a characteristic of Hodgkin's disease.
Enzyme that is a major constituent of kidney brush-border membranes and is also present to a lesser degree in the brain and other tissues. It preferentially catalyzes cleavage at the amino group of hydrophobic residues of the B-chain of insulin as well as opioid peptides and other biologically active peptides. The enzyme is inhibited primarily by EDTA, phosphoramidon, and thiorphan and is reactivated by zinc. Neprilysin is identical to common acute lymphoblastic leukemia antigen (CALLA Antigen), an important marker in the diagnosis of human acute lymphocytic leukemia. There is no relationship with CALLA PLANT.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or body fluids. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including hormones, antigens, amino and nucleic acids, enzymes, polyamines, and specific cell membrane proteins and lipids.
A neoplasm characterized by abnormalities of the lymphoid cell precursors leading to excessive lymphoblasts in the marrow and other organs. It is the most common cancer in children and accounts for the vast majority of all childhood leukemias.
Complex of at least five membrane-bound polypeptides in mature T-lymphocytes that are non-covalently associated with one another and with the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL). The CD3 complex includes the gamma, delta, epsilon, zeta, and eta chains (subunits). When antigen binds to the T-cell receptor, the CD3 complex transduces the activating signals to the cytoplasm of the T-cell. The CD3 gamma and delta chains (subunits) are separate from and not related to the gamma/delta chains of the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA).
Neoplasms located in the blood and blood-forming tissue (the bone marrow and lymphatic tissue). The commonest forms are the various types of LEUKEMIA, of LYMPHOMA, and of the progressive, life-threatening forms of the MYELODYSPLASTIC SYNDROMES.
Remnant of a tumor or cancer after primary, potentially curative therapy. (Dr. Daniel Masys, written communication)
Cell separation is the process of isolating and distinguishing specific cell types or individual cells from a heterogeneous mixture, often through the use of physical or biological techniques.
Antibodies produced by a single clone of cells.
Removal of bone marrow and evaluation of its histologic picture.
A chronic, malignant T-cell lymphoma of the skin. In the late stages, the LYMPH NODES and viscera are affected.
A neoplastic disease of the lymphoreticular cells which is considered to be a rare type of chronic leukemia; it is characterized by an insidious onset, splenomegaly, anemia, granulocytopenia, thrombocytopenia, little or no lymphadenopathy, and the presence of "hairy" or "flagellated" cells in the blood and bone marrow.
Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.
Disorders characterized by proliferation of lymphoid tissue, general or unspecified.
The number of LYMPHOCYTES per unit volume of BLOOD.
Malignant lymphoma composed of large B lymphoid cells whose nuclear size can exceed normal macrophage nuclei, or more than twice the size of a normal lymphocyte. The pattern is predominantly diffuse. Most of these lymphomas represent the malignant counterpart of B-lymphocytes at midstage in the process of differentiation.
Aggressive T-Cell malignancy with adult onset, caused by HUMAN T-LYMPHOTROPIC VIRUS 1. It is endemic in Japan, the Caribbean basin, Southeastern United States, Hawaii, and parts of Central and South America and sub-Saharan Africa.
Tumors or cancer of the SPLEEN.
Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES.
Removal and examination of tissue obtained through a transdermal needle inserted into the specific region, organ, or tissue being analyzed.
Ordered rearrangement of T-cell variable gene regions coding for the gamma-chain of antigen receptors.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The 140 kDa isoform of NCAM (neural cell adhesion molecule) containing a transmembrane domain and short cytoplasmic tail. It is expressed by all lymphocytes mediating non-MHC restricted cytotoxicity and is present on some neural tissues and tumors.
Disease having a short and relatively severe course.
A chronic leukemia characterized by abnormal B-lymphocytes and often generalized lymphadenopathy. In patients presenting predominately with blood and bone marrow involvement it is called chronic lymphocytic leukemia (CLL); in those predominately with enlarged lymph nodes it is called small lymphocytic lymphoma. These terms represent spectrums of the same disease.
A form of undifferentiated malignant LYMPHOMA usually found in central Africa, but also reported in other parts of the world. It is commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. B-cell antigens are expressed on the immature cells that make up the tumor in virtually all cases of Burkitt lymphoma. The Epstein-Barr virus (HERPESVIRUS 4, HUMAN) has been isolated from Burkitt lymphoma cases in Africa and it is implicated as the causative agent in these cases; however, most non-African cases are EBV-negative.
Diseases of LYMPH; LYMPH NODES; or LYMPHATIC VESSELS.
Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites.
Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin.
A classification of B-lymphocytes based on structurally or functionally different populations of cells.
A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome.
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
Examination of CHROMOSOMES to diagnose, classify, screen for, or manage genetic diseases and abnormalities. Following preparation of the sample, KARYOTYPING is performed and/or the specific chromosomes are analyzed.
A group of differentiation surface antigens, among the first to be discovered on thymocytes and T-lymphocytes. Originally identified in the mouse, they are also found in other species including humans, and are expressed on brain neurons and other cells.
Differentiation antigens found on thymocytes and on cytotoxic and suppressor T-lymphocytes. CD8 antigens are members of the immunoglobulin supergene family and are associative recognition elements in MHC (Major Histocompatibility Complex) Class I-restricted interactions.
Specialized forms of antibody-producing B-LYMPHOCYTES. They synthesize and secrete immunoglobulin. They are found only in lymphoid organs and at sites of immune responses and normally do not circulate in the blood or lymph. (Rosen et al., Dictionary of Immunology, 1989, p169 & Abbas et al., Cellular and Molecular Immunology, 2d ed, p20)
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The cells found in the body fluid circulating throughout the CARDIOVASCULAR SYSTEM.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule.
Membrane antigens associated with maturation stages of B-lymphocytes, often expressed in tumors of B-cell origin.
Malignant lymphoma in which the lymphomatous cells are clustered into identifiable nodules within the LYMPH NODES. The nodules resemble to some extent the GERMINAL CENTER of lymph node follicles and most likely represent neoplastic proliferation of lymph node-derived follicular center B-LYMPHOCYTES.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
A leukemia/lymphoma found predominately in children and adolescents and characterized by a high number of lymphoblasts and solid tumor lesions. Frequent sites involve LYMPH NODES, skin, and bones. It most commonly presents as leukemia.
They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
Diagnosis of the type and, when feasible, the cause of a pathologic process by means of microscopic study of cells in an exudate or other form of body fluid. (Stedman, 26th ed)
A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. CD4 antigens are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. CD4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120.
Mapping of the KARYOTYPE of a cell.
A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.
Clonal hematopoietic stem cell disorders characterized by dysplasia in one or more hematopoietic cell lineages. They predominantly affect patients over 60, are considered preleukemic conditions, and have high probability of transformation into ACUTE MYELOID LEUKEMIA.
A malignant disease characterized by progressive enlargement of the lymph nodes, spleen, and general lymphoid tissue. In the classical variant, giant usually multinucleate Hodgkin's and REED-STERNBERG CELLS are present; in the nodular lymphocyte predominant variant, lymphocytic and histiocytic cells are seen.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed)
A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).
Diseases of the domestic dog (Canis familiaris). This term does not include diseases of wild dogs, WOLVES; FOXES; and other Canidae for which the heading CARNIVORA is used.
Surface antigens expressed on myeloid cells of the granulocyte-monocyte-histiocyte series during differentiation. Analysis of their reactivity in normal and malignant myelomonocytic cells is useful in identifying and classifying human leukemias and lymphomas.
The ordered rearrangement of gene regions by DNA recombination such as that which occurs normally during development.
Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods.
A bifunctional enzyme that catalyzes the synthesis and HYDROLYSIS of CYCLIC ADP-RIBOSE (cADPR) from NAD+ to ADP-RIBOSE. It is a cell surface molecule which is predominantly expressed on LYMPHOID CELLS and MYELOID CELLS.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
A system for verifying and maintaining a desired level of quality in a product or process by careful planning, use of proper equipment, continued inspection, and corrective action as required. (Random House Unabridged Dictionary, 2d ed)
Tumors or cancer of the SKIN.
A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY.
Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.
A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa.
Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type.
Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Progenitor cells from which all blood cells derive.
The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery.
Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules.
A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes.
The number of CD4-POSITIVE T-LYMPHOCYTES per unit volume of BLOOD. Determination requires the use of a fluorescence-activated flow cytometer.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
An encapsulated lymphatic organ through which venous blood filters.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
DNA present in neoplastic tissue.

T-cell development: a new marker of differentiation state. (1/7113)

Differentiation of T cells is a complicated affair and there has been a dearth of markers that faithfully reflect thymocyte phenotype. A new strategy based on T-cell receptor gene sequencing has revealed a marker that can be used to monitor thymocyte differentiation with fidelity and without perturbation.  (+info)

Bone marrow and peripheral blood dendritic cells from patients with multiple myeloma are phenotypically and functionally normal despite the detection of Kaposi's sarcoma herpesvirus gene sequences. (2/7113)

Multiple myeloma (MM) cells express idiotypic proteins and other tumor-associated antigens which make them ideal targets for novel immunotherapeutic approaches. However, recent reports show the presence of Kaposi's sarcoma herpesvirus (KSHV) gene sequences in bone marrow dendritic cells (BMDCs) in MM, raising concerns regarding their antigen-presenting cell (APC) function. In the present study, we sought to identify the ideal source of DCs from MM patients for use in vaccination approaches. We compared the relative frequency, phenotype, and function of BMDCs or peripheral blood dendritic cells (PBDCs) from MM patients versus normal donors. DCs were derived by culture of mononuclear cells in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4. The yield as well as the pattern and intensity of Ag (HLA-DR, CD40, CD54, CD80, and CD86) expression were equivalent on DCs from BM or PB of MM patients versus normal donors. Comparison of PBDCs versus BMDCs showed higher surface expression of HLA-DR (P =.01), CD86 (P =. 0003), and CD14 (P =.04) on PBDCs. APC function, assessed using an allogeneic mixed lymphocyte reaction (MLR), demonstrated equivalent T-cell proliferation triggered by MM versus normal DCs. Moreover, no differences in APC function were noted in BMDCs compared with PBDCs. Polymerase chain reaction (PCR) analysis of genomic DNA from both MM patient and normal donor DCs for the 233-bp KSHV gene sequence (KS330233) was negative, but nested PCR to yield a final product of 186 bp internal to KS330233 was positive in 16 of 18 (88.8%) MM BMDCs, 3 of 8 (37.5%) normal BMDCs, 1 of 5 (20%) MM PBDCs, and 2 of 6 (33.3%) normal donor PBDCs. Sequencing of 4 MM patient PCR products showed 96% to 98% homology to the published KSHV gene sequence, with patient specific mutations ruling out PCR artifacts or contamination. In addition, KHSV-specific viral cyclin D (open reading frame [ORF] 72) was amplified in 2 of 5 MM BMDCs, with sequencing of the ORF 72 amplicon revealing 91% and 92% homology to the KSHV viral cyclin D sequence. These sequences again demonstrated patient specific mutations, ruling out contamination. Therefore, our studies show that PB appears to be the preferred source of DCs for use in vaccination strategies due to the ready accessibility and phenotypic profile of PBDCs, as well as the comparable APC function and lower detection rate of KSHV gene sequences compared with BMDCs. Whether active KSHV infection is present and important in the pathophysiology of MM remains unclear; however, our study shows that MMDCs remain functional despite the detection of KSHV gene sequences.  (+info)

Modulation of VLA-4 and L-selectin expression on normal CD34+ cells during mobilization with G-CSF. (3/7113)

We have evaluated the immunophenotype, functional activity and clonogenic potential of CD34+ cells from peripheral blood (PB) of normal donors before and after 4 and 6 days of G-CSF administration. The percentage and absolute number of CD34+ cells significantly increased at days 4 and 6 of G-CSF administration, compared to the steady-state level (P < 0.0001). Two-colour fluorescence analysis showed, at days 4 and 6, a lower proportion of CD34+/c-kit+ compared to the steady-state level (P < 0.0001), but a similar expression of CD13, CD33, CD38, HLA-DR and Thy-1 antigens on CD34+ cells. The expression of adhesion molecules on CD34+ cells revealed a significant reduction of CD11a (P = 0.009), CD18, CD49d and CD62L (P < 0.0001) at days 4 and 6, compared to the baseline level. Three-colour staining showed a reduction of the more immature compartment (34+/DR-/13-) and an increase of the more differentiated compartment (34+/DR+/13+). Downregulation of VLA-4 during mobilisation was seen almost exclusively on more committed cells (34+/13+); downregulation of CD62L, on the contrary, was observed on both early progenitors (34+/13-) and more committed cells (34+/13+). The expression of 34+/VLA-4+ decreased on both c-kit+ and c-kit- cells, while the expression of 34+/62L+ decreased on the c-kit+ cells only. In vivo administration of G-CSF reduced the adherence capacity of CD34+ cells to normal BM stroma; in vitro incubation with SCF or IL-3 enhanced the expression of CD49d on CD34+ cells, while GM-CSF reduced the expression of CD62L. SCF was the only cytokine able to induce a significant increase of CD34+ cell adherence to preformed stroma. Pre-incubation with the blocking beta2 integrin monoclonal antibody caused a reduction of CD34+ cell adherence. In conclusion, the decrease of CD49d expression on mobilized CD34+ cells correlates with a poor adhesion to BM stroma; CD34+ cells incubated in vitro with SCF showed, conversely, a higher expression of CD49d and a greater adherence capacity on normal preformed stroma.  (+info)

Early ontogeny of monocytes and macrophages in the pig. (4/7113)

Prenatal development of cord blood monocytes and tissue macrophages was studied in pig foetuses by immunophenotyping and functional assays. The function of peripheral blood monocytes was compared in germ-free and conventional piglets. First macrophages were identified by electron microscopy in foetal liver on the 25th day of gestation. Monoclonal antibodies against porcine CD45 and SWC3 antigens were used for flow cytometric identification of myelomonocytic cells in cell suspensions prepared from the yolk sac, foetal liver, spleen and cord blood. Leukocytes expressing the common myelomonocytic antigen SWC3 were found in all organs studied since the earliest stages of development. Opsonized zymosan ingestion assay was used to determine the phagocytic capacity of foetal mononuclear phagocytes isolated from cord blood, liver and spleen. In the foetal liver, avid phagocytosis of apoptic cells had been found to occur before cells were able to ingest zymosan in vitro. The first cells capable of ingesting zymosan particles were found on the 40th day of gestation in umbilical blood and 17 days later in foetal spleen and liver. Their relative proportion increased with age. Cord blood monocytes and peripheral blood monocytes in germ-free piglets had low oxidatory burst activity as shown by iodonitrophenyl tetrazolium reduction assay. A remarkable increase of oxidatory burst activity was observed in conventional piglets, probably due to activation of immune mechanisms by the microflora colonizing gastrointestinal tract.  (+info)

Immunodeficiency due to a unique protracted developmental delay in the B-cell lineage. (5/7113)

A unique immune deficiency in a 24-month-old male characterized by a transient but protracted developmental delay in the B-cell lineage is reported. Significant deficiencies in the number of B cells in the blood, the concentrations of immunoglobulins in the serum, and the titers of antibodies to T-dependent and T-independent antigens resolved spontaneously by the age of 39 months in a sequence that duplicated the normal development of the B-cell lineage: blood B cells followed by immunoglobulin M (IgM), IgG, IgA, and specific IgG antibodies to T-independent antigens (pneumococcal polysaccharides). Because of the sequence of recovery, the disorder could have been confused with other defects in humoral immunity, depending on when in the course of disease immunologic studies were conducted. Investigations of X-chromosome polymorphisms suggested that the disorder was not X linked in that the mother appeared to have identical X chromosomes. An autosomal recessive disorder involving a gene that controls B-cell development and maturation seems more likely. In summary, this case appears to be a novel protracted delay in the development of the B-cell lineage, possibly due to an autosomal recessive genetic defect.  (+info)

Predictive value of CD19 measurements for bacterial infections in children infected with human immunodeficiency virus. (6/7113)

We investigated the predictive value of CD19 cell percentages (CD19%) for times to bacterial infections, using data from six pediatric AIDS Clinical Trials Group protocols and adjusting for other potentially prognostic variables, such as CD4%, CD8%, immunoglobulin (IgA) level, lymphocyte count, prior infections, prior zidovudine treatment, and age. In addition, we explored the combined effects of CD19% and IgG level in predicting time to infection. We found that a low CD19% is associated with a nonsignificant 1.2-fold increase in hazard of bacterial infection (95% confidence interval: 0.97, 1.49). In contrast, a high IgG level is associated with a nonsignificant 0.87-fold decrease in hazard of infection (95% confidence interval: 0.68, 1.12). CD4% was more prognostic of time to bacterial infection than CD19% or IgG level. Low CD19% and high IgG levels together lead to a significant (P < 0. 01) 0.50-fold decrease in hazard (95% confidence interval: 0.35, 0. 73) relative to low CD19% and low IgG levels. Similarly, in a model involving assay result changes (from baseline to 6 months) as well as baseline values, the effect of CD19% by itself is reversed from its effect in conjunction with IgG. In this model, CD19% that are increasing and high are associated with decreases in hazard of infection (P < 0.01), while increasing CD19% and increasing IgG levels are associated with significant (at the P = 0.01 level) fourfold increases in hazard of infection relative to stable CD19% and decreasing, stable, or increasing IgG levels. Our data suggest that CD19%, in conjunction with IgG level, provides a useful prognostic tool for bacterial infections. It is highly likely that T-helper function impacts on B-cell function; thus, inclusion of CD4% in such analyses may greatly enhance the assessment of risk for bacterial infection.  (+info)

Immunohistochemical analysis of arterial wall cellular infiltration in Buerger's disease (endarteritis obliterans). (7/7113)

PURPOSE: The diagnosis of Buerger's disease has depended on clinical symptoms and angiographic findings, whereas pathologic findings are considered to be of secondary importance. Arteries from patients with Buerger's tissue were analyzed histologically, including immunophenotyping of the infiltrating cells, to elucidate the nature of Buerger's disease as a vasculitis. METHODS: Thirty-three specimens from nine patients, in whom Buerger's disease was diagnosed on the basis of our clinical and angiographic criteria between 1980 and 1995 at Nagoya University Hospital, were studied. Immunohistochemical studies were performed on paraffin-embedded tissue with a labeled streptoavidin-biotin method. RESULTS: The general architecture of vessel walls was well preserved regardless of the stage of disease, and cell infiltration was observed mainly in the thrombus and the intima. Among infiltrating cells, CD3(+) T cells greatly outnumbered CD20(+) B cells. CD68(+) macrophages or S-100(+) dendritic cells were detected, especially in the intima during acute and subacute stages. All cases except one showed infiltration by the human leukocyte antigen-D region (HLA-DR) antigen-bearing macrophages and dendritic cells in the intima. Immunoglobulins G, A, and M (IgG, IgA, IgM) and complement factors 3d and 4c (C3d, C4c) were deposited along the internal elastic lamina. CONCLUSION: Buerger's disease is strictly an endarteritis that is introduced by T-cell mediated cellular immunity and by B-cell mediated humoral immunity associated with activation of macrophages or dendritic cells in the intima.  (+info)

Detection of small numbers of immature cells in the blood of healthy subjects. (8/7113)

AIMS: To determine the frequency of immature haemopoietic cells in the peripheral blood of healthy persons. METHODS: Cytocentrifuge preparations were made using mononuclear leucocytes separated by a Ficoll-Hypaque density gradient. The slides were stained by May-Grunwald-Giemsa. The combination with immunoperoxidase technique allowed immunotyping of uncommon blood cells. RESULTS: Blast cells expressing the progenitor cell marker CD34 represented 0.11 (0.06) per cent (mean (SD)) of the total mononuclear leucocyte count; these were the haemopoietic progenitor cells in the peripheral blood. Dark blue cells expressing CD38, CD45, HLA-DR, CD4, CD11a, CD29, CD49d, CD50, and CD54 represented 0.30 (0.21) per cent of the mononuclear leucocytes; most of these cells did not express T, B, NK, myelomonocytic, progenitor cell, proliferation, activation, blood dendritic cell, or follicular dendritic cell markers. These were dendritic cell precursors in the peripheral blood. Very small numbers of cells expressing CD83 were found. Blast-like cells expressing CD45, HLA-DR, CD11a, and CD50 represented 0.15 (0.10) per cent of the mononuclear leucocytes; morphology and immunotyping supported the conclusion that these cells were poorly differentiated monocytes. CONCLUSIONS: Morphological investigation of mononuclear leucocytes in peripheral blood of healthy persons can be used to detect small numbers of blasts, dark blue cells, and blast-like cells. The immunoperoxidase technique can then be used for immunotyping of these cells. This simple method may be helpful in diagnosing haematological disorders.  (+info)

Immunophenotyping is a medical laboratory technique used to identify and classify cells, usually in the context of hematologic (blood) disorders and malignancies (cancers), based on their surface or intracellular expression of various proteins and antigens. This technique utilizes specific antibodies tagged with fluorochromes, which bind to the target antigens on the cell surface or within the cells. The labeled cells are then analyzed using flow cytometry, allowing for the detection and quantification of multiple antigenic markers simultaneously.

Immunophenotyping helps in understanding the distribution of different cell types, their subsets, and activation status, which can be crucial in diagnosing various hematological disorders, immunodeficiencies, and distinguishing between different types of leukemias, lymphomas, and other malignancies. Additionally, it can also be used to monitor the progression of diseases, evaluate the effectiveness of treatments, and detect minimal residual disease (MRD) during follow-up care.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Laser scanning cytometry (LSC) is a technology that combines flow cytometry and microscope-based imaging to enable the quantitative analysis of cellular components or molecules at a single-cell level. In LSC, a laser beam is used to scan and excite fluorescently labeled cells or tissue sections on a glass slide, and the emitted light is collected and analyzed to determine the amount and distribution of specific markers within each cell. This technique allows for high-resolution spatial analysis of cells, making it useful in various research fields such as cell biology, cancer research, and drug development.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

CD7 is a type of protein found on the surface of certain cells in the human body, including some immune cells like T-cells and natural killer cells. It is a type of antigen that can be recognized by other immune cells and their receptors, and it plays a role in the regulation of the immune response.

CD7 antigens are often used as targets for immunotherapy in certain types of cancer, as they are overexpressed on the surface of some cancer cells. For example, anti-CD7 monoclonal antibodies have been developed to target and kill CD7-positive cancer cells, or to deliver drugs or radiation directly to those cells.

It's important to note that while CD7 is a well-established target for immunotherapy in certain types of cancer, it is not a specific disease or condition itself. Rather, it is a molecular marker that can be used to identify and target certain types of cells in the body.

Leukemia is a type of cancer that originates from the bone marrow - the soft, inner part of certain bones where new blood cells are made. It is characterized by an abnormal production of white blood cells, known as leukocytes or blasts. These abnormal cells accumulate in the bone marrow and interfere with the production of normal blood cells, leading to a decrease in red blood cells (anemia), platelets (thrombocytopenia), and healthy white blood cells (leukopenia).

There are several types of leukemia, classified based on the specific type of white blood cell affected and the speed at which the disease progresses:

1. Acute Leukemias - These types of leukemia progress rapidly, with symptoms developing over a few weeks or months. They involve the rapid growth and accumulation of immature, nonfunctional white blood cells (blasts) in the bone marrow and peripheral blood. The two main categories are:
- Acute Lymphoblastic Leukemia (ALL) - Originates from lymphoid progenitor cells, primarily affecting children but can also occur in adults.
- Acute Myeloid Leukemia (AML) - Develops from myeloid progenitor cells and is more common in older adults.

2. Chronic Leukemias - These types of leukemia progress slowly, with symptoms developing over a period of months to years. They involve the production of relatively mature, but still abnormal, white blood cells that can accumulate in large numbers in the bone marrow and peripheral blood. The two main categories are:
- Chronic Lymphocytic Leukemia (CLL) - Affects B-lymphocytes and is more common in older adults.
- Chronic Myeloid Leukemia (CML) - Originates from myeloid progenitor cells, characterized by the presence of a specific genetic abnormality called the Philadelphia chromosome. It can occur at any age but is more common in middle-aged and older adults.

Treatment options for leukemia depend on the type, stage, and individual patient factors. Treatments may include chemotherapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

CD19 is a type of protein found on the surface of B cells, which are a type of white blood cell that plays a key role in the body's immune response. CD19 is a marker that helps identify and distinguish B cells from other types of cells in the body. It is also a target for immunotherapy in certain diseases, such as B-cell malignancies.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. In the context of CD19, antigens refer to substances that can bind to CD19 and trigger a response from the immune system. This can include proteins, carbohydrates, or other molecules found on the surface of bacteria, viruses, or cancer cells.

Therefore, 'antigens, CD19' refers to any substances that can bind to the CD19 protein on B cells and trigger an immune response. These antigens may be used in the development of immunotherapies for the treatment of B-cell malignancies or other diseases.

Leukemic infiltration is the abnormal spread and accumulation of malignant white blood cells (leukemia cells) in various tissues and organs outside the bone marrow. The bone marrow is the spongy tissue inside bones where blood cells are normally produced. In leukemia, the bone marrow produces large numbers of abnormal white blood cells that do not function properly. These abnormal cells can sometimes spill into the bloodstream and infiltrate other organs, such as the lymph nodes, spleen, liver, and central nervous system (brain and spinal cord). Leukemic infiltration can cause damage to these organs and lead to various symptoms. The pattern of organ involvement and the severity of infiltration depend on the type and stage of leukemia.

B-cell lymphoma is a type of cancer that originates from the B-lymphocytes, which are a part of the immune system and play a crucial role in fighting infections. These cells can develop mutations in their DNA, leading to uncontrolled growth and division, resulting in the formation of a tumor.

B-cell lymphomas can be classified into two main categories: Hodgkin's lymphoma and non-Hodgkin's lymphoma. B-cell lymphomas are further divided into subtypes based on their specific characteristics, such as the appearance of the cells under a microscope, the genetic changes present in the cancer cells, and the aggressiveness of the disease.

Some common types of B-cell lymphomas include diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and Burkitt lymphoma. Treatment options for B-cell lymphomas depend on the specific subtype, stage of the disease, and other individual factors. Treatment may include chemotherapy, radiation therapy, immunotherapy, targeted therapy, or stem cell transplantation.

CD20 is not a medical definition of an antigen, but rather it is a cell surface marker that helps identify a specific type of white blood cell called B-lymphocytes or B-cells. These cells are part of the adaptive immune system and play a crucial role in producing antibodies to fight off infections.

CD20 is a protein found on the surface of mature B-cells, and it is used as a target for monoclonal antibody therapies in the treatment of certain types of cancer and autoimmune diseases. Rituximab is an example of a monoclonal antibody that targets CD20 and is used to treat conditions such as non-Hodgkin lymphoma, chronic lymphocytic leukemia, and rheumatoid arthritis.

While CD20 itself is not an antigen, it can be recognized by the immune system as a foreign substance when a monoclonal antibody such as rituximab binds to it. This binding can trigger an immune response, leading to the destruction of the B-cells that express CD20 on their surface.

CD5 is a type of protein found on the surface of certain cells in the human body, including some immune cells like T cells and B cells. It is also known as a cell marker or identifier. Antigens are substances (usually proteins) on the surface of cells that can be recognized by the immune system, triggering an immune response.

In the context of CD5, antigens refer to foreign substances that can bind to the CD5 protein and stimulate an immune response. However, it's important to note that CD5 itself is not typically considered an antigen in the medical community. Instead, it is a marker used to identify certain types of cells and monitor their behavior in health and disease states.

In some cases, abnormal expression or regulation of CD5 has been associated with various diseases, including certain types of cancer. For example, some B-cell lymphomas may overexpress CD5, which can help doctors diagnose and monitor the progression of the disease. However, in these contexts, CD5 is not considered an antigen in the traditional sense.

T-cell lymphoma is a type of cancer that affects the T-cells, which are a specific type of white blood cell responsible for immune function. These lymphomas develop from mature T-cells and can be classified into various subtypes based on their clinical and pathological features.

T-cell lymphomas can arise in many different organs, including the lymph nodes, skin, and other soft tissues. They often present with symptoms such as enlarged lymph nodes, fever, night sweats, and weight loss. The diagnosis of T-cell lymphoma typically involves a biopsy of the affected tissue, followed by immunophenotyping and genetic analysis to determine the specific subtype.

Treatment for T-cell lymphomas may include chemotherapy, radiation therapy, immunotherapy, or stem cell transplantation, depending on the stage and aggressiveness of the disease. The prognosis for T-cell lymphoma varies widely depending on the subtype and individual patient factors.

Lymphocyte subsets refer to distinct populations of white blood cells called lymphocytes, which are crucial components of the adaptive immune system. There are two main types of lymphocytes: T cells and B cells, and each type has several subsets based on their surface receptors, functions, and activation status.

1. T cell subsets: These include CD4+ T helper cells (Th cells), CD8+ cytotoxic T cells (Tc cells), regulatory T cells (Tregs), and memory T cells. Th cells are further divided into Th1, Th2, Th17, and Tfh cells based on their cytokine production profiles and functions.
* CD4+ T helper cells (Th cells) play a central role in orchestrating the immune response by producing various cytokines that activate other immune cells.
* CD8+ cytotoxic T cells (Tc cells) directly kill virus-infected or malignant cells upon recognition of specific antigens presented on their surface.
* Regulatory T cells (Tregs) suppress the activation and proliferation of other immune cells to maintain self-tolerance and prevent autoimmunity.
* Memory T cells are long-lived cells that remain in the body after an initial infection or immunization, providing rapid protection upon subsequent encounters with the same pathogen.
2. B cell subsets: These include naïve B cells, memory B cells, and plasma cells. Upon activation by antigens, B cells differentiate into antibody-secreting plasma cells that produce specific antibodies to neutralize or eliminate pathogens.
* Naïve B cells are resting cells that have not yet encountered their specific antigen.
* Memory B cells are long-lived cells generated after initial antigen exposure, which can quickly differentiate into antibody-secreting plasma cells upon re-exposure to the same antigen.
* Plasma cells are terminally differentiated B cells that secrete large amounts of specific antibodies.

Analyzing lymphocyte subsets is essential for understanding immune system function and dysfunction, as well as monitoring the effectiveness of immunotherapies and vaccinations.

T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive type of leukemia, which is a cancer that affects the blood and bone marrow. Specifically, T-PLL arises from mature T-cells, a type of white blood cell that plays a crucial role in the body's immune response.

In T-PLL, there is an accumulation of abnormal prolymphocytes, a particular stage of T-cell development, in the peripheral blood, bone marrow, and sometimes lymph nodes and spleen. These malignant cells can crowd out healthy cells, leading to impaired immune function, anemia, and increased susceptibility to infections.

T-PLL is primarily a disease of older adults, with a median age at diagnosis around 65 years. It has a poor prognosis, with a median survival of less than two years, although treatment advances have improved outcomes for some patients. Treatment typically involves chemotherapy and/or stem cell transplantation.

Hematology is a branch of medicine that deals with the study of blood, its physiology, and pathophysiology. It involves the diagnosis, treatment, and prevention of diseases related to the blood and blood-forming organs such as the bone marrow, spleen, and lymphatic system. This includes disorders of red and white blood cells, platelets, hemoglobin, blood vessels, and coagulation (blood clotting). Some common hematological diseases include anemia, leukemia, lymphoma, sickle cell disease, and bleeding disorders like hemophilia.

CD45 is a protein that is found on the surface of many types of white blood cells, including T-cells, B-cells, and natural killer (NK) cells. It is also known as leukocyte common antigen because it is present on almost all leukocytes. CD45 is a tyrosine phosphatase that plays a role in regulating the activity of various proteins involved in cell signaling pathways.

As an antigen, CD45 is used as a marker to identify and distinguish different types of white blood cells. It has several isoforms that are generated by alternative splicing of its mRNA, resulting in different molecular weights. The size of the CD45 isoform can be used to distinguish between different subsets of T-cells and B-cells.

CD45 is an important molecule in the immune system, and abnormalities in its expression or function have been implicated in various diseases, including autoimmune disorders and cancer.

Lymphoma is a type of cancer that originates from the white blood cells called lymphocytes, which are part of the immune system. These cells are found in various parts of the body such as the lymph nodes, spleen, bone marrow, and other organs. Lymphoma can be classified into two main types: Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).

HL is characterized by the presence of a specific type of abnormal lymphocyte called Reed-Sternberg cells, while NHL includes a diverse group of lymphomas that lack these cells. The symptoms of lymphoma may include swollen lymph nodes, fever, night sweats, weight loss, and fatigue.

The exact cause of lymphoma is not known, but it is believed to result from genetic mutations in the lymphocytes that lead to uncontrolled cell growth and division. Exposure to certain viruses, chemicals, and radiation may increase the risk of developing lymphoma. Treatment options for lymphoma depend on various factors such as the type and stage of the disease, age, and overall health of the patient. Common treatments include chemotherapy, radiation therapy, immunotherapy, and stem cell transplantation.

Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma (NHL), which is a cancer of the lymphatic system. Specifically, MCL arises from abnormal B-lymphocytes (a type of white blood cell) that typically reside in the "mantle zone" of the lymph node. The malignant cells in MCL tend to have a characteristic genetic abnormality where the cyclin D1 gene is translocated to the immunoglobulin heavy chain gene locus, resulting in overexpression of cyclin D1 protein. This leads to uncontrolled cell division and proliferation.

Mantle cell lymphoma often presents with advanced-stage disease, involving multiple lymph nodes, bone marrow, and sometimes extranodal sites such as the gastrointestinal tract. Symptoms may include swollen lymph nodes, fatigue, weight loss, night sweats, and abdominal pain or discomfort.

Treatment for MCL typically involves a combination of chemotherapy, immunotherapy, and sometimes targeted therapy or stem cell transplantation. However, the prognosis for MCL is generally less favorable compared to other types of NHL, with a median overall survival of around 5-7 years.

Image cytometry is a technique that combines imaging and cytometry to analyze individual cells within a population. It involves capturing digital images of cells, followed by the extraction and analysis of quantitative data from those images. This can include measurements of cell size, shape, and fluorescence intensity, which can be used to identify and characterize specific cell types or functional states. Image cytometry has applications in basic research, diagnostics, and drug development, particularly in the fields of oncology and immunology.

The term "image cytometry" is often used interchangeably with "cellular imaging," although some sources distinguish between the two based on the level of automation and quantitative analysis involved. In general, image cytometry involves more automated and standardized methods for acquiring and analyzing large numbers of cell images, while cellular imaging may involve more manual or qualitative assessment of individual cells.

In situ hybridization, fluorescence (FISH) is a type of molecular cytogenetic technique used to detect and localize the presence or absence of specific DNA sequences on chromosomes through the use of fluorescent probes. This technique allows for the direct visualization of genetic material at a cellular level, making it possible to identify chromosomal abnormalities such as deletions, duplications, translocations, and other rearrangements.

The process involves denaturing the DNA in the sample to separate the double-stranded molecules into single strands, then adding fluorescently labeled probes that are complementary to the target DNA sequence. The probe hybridizes to the complementary sequence in the sample, and the location of the probe is detected by fluorescence microscopy.

FISH has a wide range of applications in both clinical and research settings, including prenatal diagnosis, cancer diagnosis and monitoring, and the study of gene expression and regulation. It is a powerful tool for identifying genetic abnormalities and understanding their role in human disease.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

The CD4-CD8 ratio is a measurement of the relative numbers of two types of immune cells, CD4+ T cells (also known as helper T cells) and CD8+ T cells (also known as cytotoxic T cells), in the blood. The CD4-CD8 ratio is commonly used as a marker of immune function and health.

CD4+ T cells play an important role in the immune response by helping to coordinate the activity of other immune cells, producing chemical signals that activate them, and producing antibodies. CD8+ T cells are responsible for directly killing infected cells and tumor cells.

A normal CD4-CD8 ratio is typically between 1.0 and 3.0. A lower ratio may indicate an impaired immune system, such as in cases of HIV infection or other immunodeficiency disorders. A higher ratio may be seen in some viral infections, autoimmune diseases, or cancer. It's important to note that the CD4-CD8 ratio should be interpreted in conjunction with other laboratory and clinical findings for a more accurate assessment of immune function.

Pseudolymphoma is a term used to describe a benign reactive lymphoid hyperplasia that mimics the clinical and histopathological features of malignant lymphomas. It is also known as pseudolymphomatous cutis or reactive lymphoid hyperplasia.

Pseudolymphoma can occur in various organs, but it is most commonly found in the skin. It is usually caused by a localized immune response to an antigenic stimulus such as insect bites, tattoos, radiation therapy, or certain medications. The condition presents as a solitary or multiple nodular lesions that may resemble lymphoma both clinically and histologically.

Histologically, pseudolymphoma is characterized by a dense infiltrate of lymphocytes, plasma cells, and other immune cells, which can mimic the appearance of malignant lymphoma. However, unlike malignant lymphomas, pseudolymphomas lack cytological atypia, mitotic activity, and clonal proliferation of lymphoid cells.

Pseudolymphoma is usually a self-limiting condition that resolves spontaneously or with the removal of the antigenic stimulus. However, in some cases, it may persist or recur, requiring further evaluation and treatment to exclude malignant lymphoma.

Non-Hodgkin lymphoma (NHL) is a type of cancer that originates in the lymphatic system, which is part of the immune system. It involves the abnormal growth and proliferation of malignant lymphocytes (a type of white blood cell), leading to the formation of tumors in lymph nodes, spleen, bone marrow, or other organs. NHL can be further classified into various subtypes based on the specific type of lymphocyte involved and its characteristics.

The symptoms of Non-Hodgkin lymphoma may include:

* Painless swelling of lymph nodes in the neck, armpits, or groin
* Persistent fatigue
* Unexplained weight loss
* Fever
* Night sweats
* Itchy skin

The exact cause of Non-Hodgkin lymphoma is not well understood, but it has been associated with certain risk factors such as age (most common in people over 60), exposure to certain chemicals, immune system deficiencies, and infection with viruses like Epstein-Barr virus or HIV.

Treatment for Non-Hodgkin lymphoma depends on the stage and subtype of the disease, as well as the patient's overall health. Treatment options may include chemotherapy, radiation therapy, immunotherapy, targeted therapy, stem cell transplantation, or a combination of these approaches. Regular follow-up care is essential to monitor the progression of the disease and manage any potential long-term side effects of treatment.

Neprilysin (NEP), also known as membrane metallo-endopeptidase or CD10, is a type II transmembrane glycoprotein that functions as a zinc-dependent metalloprotease. It is widely expressed in various tissues, including the kidney, brain, heart, and vasculature. Neprilysin plays a crucial role in the breakdown and regulation of several endogenous bioactive peptides, such as natriuretic peptides, bradykinin, substance P, and angiotensin II. By degrading these peptides, neprilysin helps maintain cardiovascular homeostasis, modulate inflammation, and regulate neurotransmission. In the context of heart failure, neprilysin inhibitors have been developed to increase natriuretic peptide levels, promoting diuresis and vasodilation, ultimately improving cardiac function.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a key role in the immune system's response to infection. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as bacteria and viruses.

When a B-lymphocyte encounters a pathogen, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies specific to the antigens on the surface of the pathogen. These antibodies bind to the pathogen, marking it for destruction by other immune cells such as neutrophils and macrophages.

B-lymphocytes also have a role in presenting antigens to T-lymphocytes, another type of white blood cell involved in the immune response. This helps to stimulate the activation and proliferation of T-lymphocytes, which can then go on to destroy infected cells or help to coordinate the overall immune response.

Overall, B-lymphocytes are an essential part of the adaptive immune system, providing long-lasting immunity to previously encountered pathogens and helping to protect against future infections.

Tumor markers are substances that can be found in the body and their presence can indicate the presence of certain types of cancer or other conditions. Biological tumor markers refer to those substances that are produced by cancer cells or by other cells in response to cancer or certain benign (non-cancerous) conditions. These markers can be found in various bodily fluids such as blood, urine, or tissue samples.

Examples of biological tumor markers include:

1. Proteins: Some tumor markers are proteins that are produced by cancer cells or by other cells in response to the presence of cancer. For example, prostate-specific antigen (PSA) is a protein produced by normal prostate cells and in higher amounts by prostate cancer cells.
2. Genetic material: Tumor markers can also include genetic material such as DNA, RNA, or microRNA that are shed by cancer cells into bodily fluids. For example, circulating tumor DNA (ctDNA) is genetic material from cancer cells that can be found in the bloodstream.
3. Metabolites: Tumor markers can also include metabolic products produced by cancer cells or by other cells in response to cancer. For example, lactate dehydrogenase (LDH) is an enzyme that is released into the bloodstream when cancer cells break down glucose for energy.

It's important to note that tumor markers are not specific to cancer and can be elevated in non-cancerous conditions as well. Therefore, they should not be used alone to diagnose cancer but rather as a tool in conjunction with other diagnostic tests and clinical evaluations.

Precursor Cell Lymphoblastic Leukemia-Lymphoma (previously known as Precursor T-lymphoblastic Leukemia/Lymphoma) is a type of cancer that affects the early stages of T-cell development. It is a subtype of acute lymphoblastic leukemia (ALL), which is characterized by the overproduction of immature white blood cells called lymphoblasts in the bone marrow, blood, and other organs.

In Precursor Cell Lymphoblastic Leukemia-Lymphoma, these abnormal lymphoblasts accumulate primarily in the lymphoid tissues such as the thymus and lymph nodes, leading to the enlargement of these organs. This subtype is more aggressive than other forms of ALL and has a higher risk of spreading to the central nervous system (CNS).

The medical definition of Precursor Cell Lymphoblastic Leukemia-Lymphoma includes:

1. A malignant neoplasm of immature T-cell precursors, also known as lymphoblasts.
2. Characterized by the proliferation and accumulation of these abnormal cells in the bone marrow, blood, and lymphoid tissues such as the thymus and lymph nodes.
3. Often associated with chromosomal abnormalities, genetic mutations, or aberrant gene expression that contribute to its aggressive behavior and poor prognosis.
4. Typically presents with symptoms related to bone marrow failure (anemia, neutropenia, thrombocytopenia), lymphadenopathy (swollen lymph nodes), hepatosplenomegaly (enlarged liver and spleen), and potential CNS involvement.
5. Diagnosed through a combination of clinical evaluation, imaging studies, and laboratory tests, including bone marrow aspiration and biopsy, immunophenotyping, cytogenetic analysis, and molecular genetic testing.
6. Treated with intensive multi-agent chemotherapy regimens, often combined with radiation therapy and/or stem cell transplantation to achieve remission and improve survival outcomes.

CD3 antigens are a group of proteins found on the surface of T-cells, which are a type of white blood cell that plays a central role in the immune response. The CD3 antigens are composed of several different subunits (ε, δ, γ, and α) that associate to form the CD3 complex, which is involved in T-cell activation and signal transduction.

The CD3 complex is associated with the T-cell receptor (TCR), which recognizes and binds to specific antigens presented by antigen-presenting cells. When the TCR binds to an antigen, it triggers a series of intracellular signaling events that lead to T-cell activation and the initiation of an immune response.

CD3 antigens are important targets for immunotherapy in some diseases, such as certain types of cancer. For example, monoclonal antibodies that target CD3 have been developed to activate T-cells and enhance their ability to recognize and destroy tumor cells. However, CD3-targeted therapies can also cause side effects, such as cytokine release syndrome, which can be serious or life-threatening in some cases.

Hematologic neoplasms, also known as hematological malignancies, are a group of diseases characterized by the uncontrolled growth and accumulation of abnormal blood cells or bone marrow cells. These disorders can originate from the myeloid or lymphoid cell lines, which give rise to various types of blood cells, including red blood cells, white blood cells, and platelets.

Hematologic neoplasms can be broadly classified into three categories:

1. Leukemias: These are cancers that primarily affect the bone marrow and blood-forming tissues. They result in an overproduction of abnormal white blood cells, which interfere with the normal functioning of the blood and immune system. There are several types of leukemia, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML).
2. Lymphomas: These are cancers that develop from the lymphatic system, which is a part of the immune system responsible for fighting infections. Lymphomas can affect lymph nodes, spleen, bone marrow, and other organs. The two main types of lymphoma are Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).
3. Myelomas: These are cancers that arise from the plasma cells, a type of white blood cell responsible for producing antibodies. Multiple myeloma is the most common type of myeloma, characterized by an excessive proliferation of malignant plasma cells in the bone marrow, leading to the production of abnormal amounts of monoclonal immunoglobulins (M proteins) and bone destruction.

Hematologic neoplasms can have various symptoms, such as fatigue, weakness, frequent infections, easy bruising or bleeding, weight loss, swollen lymph nodes, and bone pain. The diagnosis typically involves a combination of medical history, physical examination, laboratory tests, imaging studies, and sometimes bone marrow biopsy. Treatment options depend on the type and stage of the disease and may include chemotherapy, radiation therapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

A residual neoplasm is a term used in pathology and oncology to describe the remaining abnormal tissue or cancer cells after a surgical procedure or treatment aimed at completely removing a tumor. This means that some cancer cells have been left behind and continue to persist in the body. The presence of residual neoplasm can increase the risk of recurrence or progression of the disease, as these remaining cells may continue to grow and divide.

Residual neoplasm is often assessed during follow-up appointments and monitoring, using imaging techniques like CT scans, MRIs, or PET scans, and sometimes through biopsies. The extent of residual neoplasm can influence the choice of further treatment options, such as additional surgery, radiation therapy, chemotherapy, or targeted therapies, to eliminate the remaining cancer cells and reduce the risk of recurrence.

Cell separation is a process used to separate and isolate specific cell types from a heterogeneous mixture of cells. This can be accomplished through various physical or biological methods, depending on the characteristics of the cells of interest. Some common techniques for cell separation include:

1. Density gradient centrifugation: In this method, a sample containing a mixture of cells is layered onto a density gradient medium and then centrifuged. The cells are separated based on their size, density, and sedimentation rate, with denser cells settling closer to the bottom of the tube and less dense cells remaining near the top.

2. Magnetic-activated cell sorting (MACS): This technique uses magnetic beads coated with antibodies that bind to specific cell surface markers. The labeled cells are then passed through a column placed in a magnetic field, which retains the magnetically labeled cells while allowing unlabeled cells to flow through.

3. Fluorescence-activated cell sorting (FACS): In this method, cells are stained with fluorochrome-conjugated antibodies that recognize specific cell surface or intracellular markers. The stained cells are then passed through a laser beam, which excites the fluorophores and allows for the detection and sorting of individual cells based on their fluorescence profile.

4. Filtration: This simple method relies on the physical size differences between cells to separate them. Cells can be passed through filters with pore sizes that allow smaller cells to pass through while retaining larger cells.

5. Enzymatic digestion: In some cases, cells can be separated by enzymatically dissociating tissues into single-cell suspensions and then using various separation techniques to isolate specific cell types.

These methods are widely used in research and clinical settings for applications such as isolating immune cells, stem cells, or tumor cells from biological samples.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

A bone marrow examination is a medical procedure in which a sample of bone marrow, the spongy tissue inside bones where blood cells are produced, is removed and examined. This test is used to diagnose or monitor various conditions affecting blood cell production, such as infections, leukemia, anemia, and other disorders of the bone marrow.

The sample is typically taken from the hipbone (iliac crest) or breastbone (sternum) using a special needle. The procedure may be done under local anesthesia or with sedation to minimize discomfort. Once the sample is obtained, it is examined under a microscope for the presence of abnormal cells, changes in cell size and shape, and other characteristics that can help diagnose specific conditions. Various stains, cultures, and other tests may also be performed on the sample to provide additional information.

Bone marrow examination is an important diagnostic tool in hematology and oncology, as it allows for a detailed assessment of blood cell production and can help guide treatment decisions for patients with various blood disorders.

Mycosis fungoides is the most common type of cutaneous T-cell lymphoma (CTCL), a rare cancer that affects the skin's immune system. It is characterized by the infiltration of malignant CD4+ T-lymphocytes into the skin, leading to the formation of patches, plaques, and tumors. The disease typically progresses slowly over many years, often starting with scaly, itchy rashes that can be mistaken for eczema or psoriasis. As the disease advances, tumors may form, and the lymphoma may spread to other organs, such as the lymph nodes, lungs, or spleen. Mycosis fungoides is not contagious and cannot be spread from person to person. The exact cause of mycosis fungoides is unknown, but it is thought to result from a combination of genetic, environmental, and immune system factors.

Hairy cell leukemia (HCL) is a rare, slow-growing type of cancer in which the bone marrow makes too many B cells (a type of white blood cell). These excess B cells are often referred to as "hairy cells" because they look abnormal under the microscope, with fine projections or "hair-like" cytoplasmic protrusions.

In HCL, these abnormal B cells can build up in the bone marrow and spleen, causing both of them to enlarge. The accumulation of hairy cells in the bone marrow can crowd out healthy blood cells, leading to a shortage of red blood cells (anemia), platelets (thrombocytopenia), and normal white blood cells (leukopenia). This can result in fatigue, increased risk of infection, and easy bruising or bleeding.

HCL is typically an indolent disease, meaning that it progresses slowly over time. However, some cases may require treatment to manage symptoms and prevent complications. Treatment options for HCL include chemotherapy, immunotherapy, targeted therapy, and stem cell transplantation. Regular follow-up with a healthcare provider is essential to monitor the disease's progression and adjust treatment plans as needed.

Surface antigens are molecules found on the surface of cells that can be recognized by the immune system as being foreign or different from the host's own cells. Antigens are typically proteins or polysaccharides that are capable of stimulating an immune response, leading to the production of antibodies and activation of immune cells such as T-cells.

Surface antigens are important in the context of infectious diseases because they allow the immune system to identify and target infected cells for destruction. For example, viruses and bacteria often display surface antigens that are distinct from those found on host cells, allowing the immune system to recognize and attack them. In some cases, these surface antigens can also be used as targets for vaccines or other immunotherapies.

In addition to their role in infectious diseases, surface antigens are also important in the context of cancer. Tumor cells often display abnormal surface antigens that differ from those found on normal cells, allowing the immune system to potentially recognize and attack them. However, tumors can also develop mechanisms to evade the immune system, making it difficult to mount an effective response.

Overall, understanding the properties and behavior of surface antigens is crucial for developing effective immunotherapies and vaccines against infectious diseases and cancer.

Lymphoproliferative disorders (LPDs) are a group of diseases characterized by the excessive proliferation of lymphoid cells, which are crucial components of the immune system. These disorders can arise from both B-cells and T-cells, leading to various clinical manifestations ranging from benign to malignant conditions.

LPDs can be broadly classified into reactive and neoplastic categories:

1. Reactive Lymphoproliferative Disorders: These are typically triggered by infections, autoimmune diseases, or immunodeficiency states. They involve an exaggerated response of the immune system leading to the excessive proliferation of lymphoid cells. Examples include:
* Infectious mononucleosis (IM) caused by Epstein-Barr virus (EBV)
* Lymph node enlargement due to various infections or autoimmune disorders
* Post-transplant lymphoproliferative disorder (PTLD), which occurs in the context of immunosuppression following organ transplantation
2. Neoplastic Lymphoproliferative Disorders: These are malignant conditions characterized by uncontrolled growth and accumulation of abnormal lymphoid cells, leading to the formation of tumors. They can be further classified into Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Examples include:
* Hodgkin lymphoma (HL): Classical HL and nodular lymphocyte-predominant HL
* Non-Hodgkin lymphoma (NHL): Various subtypes, such as diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and Burkitt lymphoma

It is important to note that the distinction between reactive and neoplastic LPDs can sometimes be challenging, requiring careful clinical, histopathological, immunophenotypic, and molecular evaluations. Proper diagnosis and classification of LPDs are crucial for determining appropriate treatment strategies and predicting patient outcomes.

A lymphocyte count is a laboratory test that measures the number of white blood cells called lymphocytes in a sample of blood. Lymphocytes are a vital part of the immune system and help fight off infections and diseases. A normal lymphocyte count ranges from 1,000 to 4,800 cells per microliter (µL) of blood for adults.

An abnormal lymphocyte count can indicate an infection, immune disorder, or blood cancer. A low lymphocyte count is called lymphopenia, while a high lymphocyte count is called lymphocytosis. The cause of an abnormal lymphocyte count should be investigated through further testing and clinical evaluation.

Large B-cell lymphoma, diffuse is a type of cancer that starts in cells called B-lymphocytes, which are part of the body's immune system. "Large B-cell" refers to the size and appearance of the abnormal cells when viewed under a microscope. "Diffuse" means that the abnormal cells are spread throughout the lymph node or tissue where the cancer has started, rather than being clustered in one area.

This type of lymphoma is typically aggressive, which means it grows and spreads quickly. It can occur almost anywhere in the body, but most commonly affects the lymph nodes, spleen, and bone marrow. Symptoms may include swollen lymph nodes, fever, night sweats, weight loss, and fatigue.

Treatment for large B-cell lymphoma, diffuse typically involves chemotherapy, radiation therapy, or a combination of both. In some cases, stem cell transplantation or targeted therapy may also be recommended. The prognosis varies depending on several factors, including the stage and location of the cancer, as well as the patient's age and overall health.

Adult T-cell Leukemia/Lymphoma (ATLL) is a rare and aggressive type of cancer that affects the circulating white blood cells called T-lymphocytes or T-cells. It is caused by the human T-cell leukemia virus type 1 (HTLV-1), which infects CD4+ T-cells and leads to their malignant transformation. The disease can present as either acute or chronic leukemia, or as lymphoma, depending on the clinical features and laboratory findings.

The acute form of ATLL is characterized by the rapid proliferation of abnormal T-cells in the blood, bone marrow, and other organs. Patients with acute ATLL typically have a poor prognosis, with a median survival of only a few months. Symptoms may include skin rashes, lymphadenopathy (swollen lymph nodes), hepatosplenomegaly (enlarged liver and spleen), and hypercalcemia (high levels of calcium in the blood).

The chronic form of ATLL is less aggressive than the acute form, but it can still lead to serious complications. Chronic ATLL is characterized by the accumulation of abnormal T-cells in the blood and lymph nodes, as well as skin lesions and hypercalcemia. The median survival for patients with chronic ATLL is around two years.

ATLL can also present as a lymphoma, which is characterized by the proliferation of abnormal T-cells in the lymph nodes, spleen, and other organs. Lymphoma may occur in isolation or in combination with leukemic features.

The diagnosis of ATLL is based on clinical findings, laboratory tests, and the detection of HTLV-1 antibodies or proviral DNA in the blood or tissue samples. Treatment options for ATLL include chemotherapy, antiretroviral therapy, immunotherapy, and stem cell transplantation. The choice of treatment depends on several factors, including the patient's age, overall health, and the stage and type of ATLL.

Splenic neoplasms refer to abnormal growths or tumors in the spleen, which can be benign (non-cancerous) or malignant (cancerous). These growths can arise from various cell types present within the spleen, including hematopoietic cells (red and white blood cells, platelets), stromal cells (supporting tissue), or lymphoid cells (part of the immune system).

There are several types of splenic neoplasms:

1. Hematologic malignancies: These are cancers that affect the blood and bone marrow, such as leukemias, lymphomas, and multiple myeloma. They often involve the spleen, causing enlargement (splenomegaly) and neoplastic infiltration of splenic tissue.
2. Primary splenic tumors: These are rare and include benign lesions like hemangiomas, lymphangiomas, and hamartomas, as well as malignant tumors such as angiosarcoma, littoral cell angiosarcoma, and primary splenic lymphoma.
3. Metastatic splenic tumors: These occur when cancer cells from other primary sites spread (metastasize) to the spleen. Common sources of metastasis include lung, breast, colon, and ovarian cancers, as well as melanomas and sarcomas.

Symptoms of splenic neoplasms may vary depending on the type and extent of the disease but often include abdominal pain or discomfort, fatigue, weight loss, and anemia. Diagnosis typically involves imaging studies (such as ultrasound, CT, or MRI scans) and sometimes requires a biopsy for confirmation. Treatment options depend on the type of neoplasm and may include surgery, chemotherapy, radiation therapy, targeted therapy, or immunotherapy.

Acute myeloid leukemia (AML) is a type of cancer that originates in the bone marrow, the soft inner part of certain bones where new blood cells are made. In AML, the immature cells, called blasts, in the bone marrow fail to mature into normal blood cells. Instead, these blasts accumulate and interfere with the production of normal blood cells, leading to a shortage of red blood cells (anemia), platelets (thrombocytopenia), and normal white blood cells (leukopenia).

AML is called "acute" because it can progress quickly and become severe within days or weeks without treatment. It is a type of myeloid leukemia, which means that it affects the myeloid cells in the bone marrow. Myeloid cells are a type of white blood cell that includes monocytes and granulocytes, which help fight infection and defend the body against foreign invaders.

In AML, the blasts can build up in the bone marrow and spread to other parts of the body, including the blood, lymph nodes, liver, spleen, and brain. This can cause a variety of symptoms, such as fatigue, fever, frequent infections, easy bruising or bleeding, and weight loss.

AML is typically treated with a combination of chemotherapy, radiation therapy, and/or stem cell transplantation. The specific treatment plan will depend on several factors, including the patient's age, overall health, and the type and stage of the leukemia.

A needle biopsy is a medical procedure in which a thin, hollow needle is used to remove a small sample of tissue from a suspicious or abnormal area of the body. The tissue sample is then examined under a microscope to check for cancer cells or other abnormalities. Needle biopsies are often used to diagnose lumps or masses that can be felt through the skin, but they can also be guided by imaging techniques such as ultrasound, CT scan, or MRI to reach areas that cannot be felt. There are several types of needle biopsy procedures, including fine-needle aspiration (FNA) and core needle biopsy. FNA uses a thin needle and gentle suction to remove fluid and cells from the area, while core needle biopsy uses a larger needle to remove a small piece of tissue. The type of needle biopsy used depends on the location and size of the abnormal area, as well as the reason for the procedure.

Gamma-chain T-cell antigen receptor gene rearrangement refers to the genetic process that occurs during the development of T-cells in the thymus. The T-cell antigen receptor (TCR) is a protein complex found on the surface of T-cells, which plays a critical role in adaptive immunity by recognizing and binding to specific peptide antigens presented in the context of major histocompatibility complex (MHC) molecules.

The TCR is composed of two types of polypeptide chains: alpha and beta chains or gamma and delta chains, which are encoded by separate genes. The gene rearrangement process involves the somatic recombination of variable (V), diversity (D), joining (J), and constant (C) gene segments to generate a diverse repertoire of TCRs capable of recognizing a wide range of antigens.

Gamma-chain TCR gene rearrangement specifically refers to the genetic rearrangement that occurs in the genes encoding the gamma chain of the TCR. This process involves the recombination of V, J, and C gene segments to form a functional gamma chain gene. The resulting gamma chain protein pairs with the delta chain to form the gamma-delta TCR, which is expressed on a subset of T-cells that have distinct functions in immune surveillance and defense against infections and cancer.

Abnormalities in gamma-chain TCR gene rearrangement can lead to the development of various immunodeficiency disorders or malignancies, such as T-cell acute lymphoblastic leukemia (T-ALL) or gamma-delta T-cell lymphomas.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

CD56 is a type of antigen that is found on the surface of certain cells in the human body. It is also known as neural cell adhesion molecule 1 (NCAM-1) and is a member of the immunoglobulin superfamily. CD56 antigens are primarily expressed on natural killer (NK) cells, a type of immune cell that plays a role in the body's defense against viruses and cancer.

CD56 antigens help NK cells recognize and bind to other cells in the body, such as infected or abnormal cells. This binding can trigger the NK cells to release chemicals that can kill the target cells. CD56 antigens also play a role in the development and function of NK cells, including their ability to communicate with other immune cells and coordinate an effective response to threats.

In addition to NK cells, CD56 antigens are also found on some subsets of T cells, another type of immune cell. In these cells, CD56 antigens help regulate the activation and function of the T cells.

Abnormalities in the expression of CD56 antigens have been associated with various diseases, including certain types of cancer and autoimmune disorders.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Chronic lymphocytic leukemia (CLL) is a type of cancer that starts from cells that become certain white blood cells (called lymphocytes) in the bone marrow. The cancer (leukemia) cells start in the bone marrow but then go into the blood.

In CLL, the leukemia cells often build up slowly. Many people don't have any symptoms for at least a few years. But over time, the cells can spread to other parts of the body, including the lymph nodes, liver, and spleen.

The "B-cell" part of the name refers to the fact that the cancer starts in a type of white blood cell called a B lymphocyte or B cell. The "chronic" part means that this leukemia usually progresses more slowly than other types of leukemia.

It's important to note that chronic lymphocytic leukemia is different from chronic myelogenous leukemia (CML). Although both are cancers of the white blood cells, they start in different types of white blood cells and progress differently.

Burkitt lymphoma is a type of aggressive non-Hodgkin lymphoma (NHL), which is a cancer that originates in the lymphatic system. It is named after Denis Parsons Burkitt, an Irish surgeon who first described this form of cancer in African children in the 1950s.

Burkitt lymphoma is characterized by the rapid growth and spread of abnormal B-lymphocytes (a type of white blood cell), which can affect various organs and tissues, including the lymph nodes, spleen, liver, gastrointestinal tract, and central nervous system.

There are three main types of Burkitt lymphoma: endemic, sporadic, and immunodeficiency-associated. The endemic form is most common in equatorial Africa and is strongly associated with Epstein-Barr virus (EBV) infection. The sporadic form occurs worldwide but is rare, accounting for less than 1% of all NHL cases in the United States. Immunodeficiency-associated Burkitt lymphoma is seen in individuals with weakened immune systems due to HIV/AIDS or immunosuppressive therapy after organ transplantation.

Burkitt lymphoma typically presents as a rapidly growing mass, often involving the jaw, facial bones, or abdominal organs. Symptoms may include swollen lymph nodes, fever, night sweats, weight loss, and fatigue. Diagnosis is made through a biopsy of the affected tissue, followed by immunohistochemical staining and genetic analysis to confirm the presence of characteristic chromosomal translocations involving the MYC oncogene.

Treatment for Burkitt lymphoma typically involves intensive chemotherapy regimens, often combined with targeted therapy or immunotherapy. The prognosis is generally good when treated aggressively and promptly, with a high cure rate in children and young adults. However, the prognosis may be poorer in older patients or those with advanced-stage disease at diagnosis.

Lymphatic diseases refer to a group of conditions that affect the lymphatic system, which is an important part of the immune and circulatory systems. The lymphatic system consists of a network of vessels, organs, and tissues that help to transport lymph fluid throughout the body, fight infection, and remove waste products.

Lymphatic diseases can be caused by various factors, including genetics, infections, cancer, and autoimmune disorders. Some common types of lymphatic diseases include:

1. Lymphedema: A condition that causes swelling in the arms or legs due to a blockage or damage in the lymphatic vessels.
2. Lymphoma: A type of cancer that affects the lymphatic system, including Hodgkin's and non-Hodgkin's lymphoma.
3. Infections: Certain bacterial and viral infections can affect the lymphatic system, such as tuberculosis, cat-scratch disease, and HIV/AIDS.
4. Autoimmune disorders: Conditions such as rheumatoid arthritis, lupus, and scleroderma can cause inflammation and damage to the lymphatic system.
5. Congenital abnormalities: Some people are born with abnormalities in their lymphatic system, such as malformations or missing lymph nodes.

Symptoms of lymphatic diseases may vary depending on the specific condition and its severity. Treatment options may include medication, physical therapy, surgery, or radiation therapy. It is important to seek medical attention if you experience symptoms of a lymphatic disease, as early diagnosis and treatment can improve outcomes.

Leukemia, myeloid is a type of cancer that originates in the bone marrow, where blood cells are produced. Myeloid leukemia affects the myeloid cells, which include red blood cells, platelets, and most types of white blood cells. In this condition, the bone marrow produces abnormal myeloid cells that do not mature properly and accumulate in the bone marrow and blood. These abnormal cells hinder the production of normal blood cells, leading to various symptoms such as anemia, fatigue, increased risk of infections, and easy bruising or bleeding.

There are several types of myeloid leukemias, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). AML progresses rapidly and requires immediate treatment, while CML tends to progress more slowly. The exact causes of myeloid leukemia are not fully understood, but risk factors include exposure to radiation or certain chemicals, smoking, genetic disorders, and a history of chemotherapy or other cancer treatments.

Neoplasm antigens, also known as tumor antigens, are substances that are produced by cancer cells (neoplasms) and can stimulate an immune response. These antigens can be proteins, carbohydrates, or other molecules that are either unique to the cancer cells or are overexpressed or mutated versions of normal cellular proteins.

Neoplasm antigens can be classified into two main categories: tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs). TSAs are unique to cancer cells and are not expressed by normal cells, while TAAs are present at low levels in normal cells but are overexpressed or altered in cancer cells.

TSAs can be further divided into viral antigens and mutated antigens. Viral antigens are produced when cancer is caused by a virus, such as human papillomavirus (HPV) in cervical cancer. Mutated antigens are the result of genetic mutations that occur during cancer development and are unique to each patient's tumor.

Neoplasm antigens play an important role in the immune response against cancer. They can be recognized by the immune system, leading to the activation of immune cells such as T cells and natural killer (NK) cells, which can then attack and destroy cancer cells. However, cancer cells often develop mechanisms to evade the immune response, allowing them to continue growing and spreading.

Understanding neoplasm antigens is important for the development of cancer immunotherapies, which aim to enhance the body's natural immune response against cancer. These therapies include checkpoint inhibitors, which block proteins that inhibit T cell activation, and therapeutic vaccines, which stimulate an immune response against specific tumor antigens.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a central role in the humoral immune response. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as viruses and bacteria.

B-lymphocyte subsets refer to distinct populations of B-cells that can be identified based on their surface receptors and functional characteristics. Some common B-lymphocyte subsets include:

1. Naive B-cells: These are mature B-cells that have not yet been exposed to an antigen. They express surface receptors called immunoglobulin M (IgM) and immunoglobulin D (IgD).
2. Memory B-cells: These are B-cells that have previously encountered an antigen and mounted an immune response. They express high levels of surface immunoglobulins and can quickly differentiate into antibody-secreting plasma cells upon re-exposure to the same antigen.
3. Plasma cells: These are fully differentiated B-cells that secrete large amounts of antibodies in response to an antigen. They lack surface immunoglobulins and do not undergo further division.
4. Regulatory B-cells: These are a subset of B-cells that modulate the immune response by producing anti-inflammatory cytokines and suppressing the activation of other immune cells.
5. B-1 cells: These are a population of B-cells that are primarily found in the peripheral blood and mucosal tissues. They produce natural antibodies that provide early protection against pathogens and help to maintain tissue homeostasis.

Understanding the different B-lymphocyte subsets and their functions is important for diagnosing and treating immune-related disorders, including autoimmune diseases, infections, and cancer.

Translocation, genetic, refers to a type of chromosomal abnormality in which a segment of a chromosome is transferred from one chromosome to another, resulting in an altered genome. This can occur between two non-homologous chromosomes (non-reciprocal translocation) or between two homologous chromosomes (reciprocal translocation). Genetic translocations can lead to various clinical consequences, depending on the genes involved and the location of the translocation. Some translocations may result in no apparent effects, while others can cause developmental abnormalities, cancer, or other genetic disorders. In some cases, translocations can also increase the risk of having offspring with genetic conditions.

CD34 is a type of antigen that is found on the surface of certain cells in the human body. Specifically, CD34 antigens are present on hematopoietic stem cells, which are immature cells that can develop into different types of blood cells. These stem cells are found in the bone marrow and are responsible for producing red blood cells, white blood cells, and platelets.

CD34 antigens are a type of cell surface marker that is used in medical research and clinical settings to identify and isolate hematopoietic stem cells. They are also used in the development of stem cell therapies and transplantation procedures. CD34 antigens can be detected using various laboratory techniques, such as flow cytometry or immunohistochemistry.

It's important to note that while CD34 is a useful marker for identifying hematopoietic stem cells, it is not exclusive to these cells and can also be found on other cell types, such as endothelial cells that line blood vessels. Therefore, additional markers are often used in combination with CD34 to more specifically identify and isolate hematopoietic stem cells.

Prognosis is a medical term that refers to the prediction of the likely outcome or course of a disease, including the chances of recovery or recurrence, based on the patient's symptoms, medical history, physical examination, and diagnostic tests. It is an important aspect of clinical decision-making and patient communication, as it helps doctors and patients make informed decisions about treatment options, set realistic expectations, and plan for future care.

Prognosis can be expressed in various ways, such as percentages, categories (e.g., good, fair, poor), or survival rates, depending on the nature of the disease and the available evidence. However, it is important to note that prognosis is not an exact science and may vary depending on individual factors, such as age, overall health status, and response to treatment. Therefore, it should be used as a guide rather than a definitive forecast.

Cytogenetic analysis is a laboratory technique used to identify and study the structure and function of chromosomes, which are the structures in the cell that contain genetic material. This type of analysis involves examining the number, size, shape, and banding pattern of chromosomes in cells, typically during metaphase when they are at their most condensed state.

There are several methods used for cytogenetic analysis, including karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). Karyotyping involves staining the chromosomes with a dye to visualize their banding patterns and then arranging them in pairs based on their size and shape. FISH uses fluorescent probes to label specific DNA sequences, allowing for the detection of genetic abnormalities such as deletions, duplications, or translocations. CGH compares the DNA content of two samples to identify differences in copy number, which can be used to detect chromosomal imbalances.

Cytogenetic analysis is an important tool in medical genetics and is used for a variety of purposes, including prenatal diagnosis, cancer diagnosis and monitoring, and the identification of genetic disorders.

Thy-1, also known as Thy-1 antigen or CD90, is a glycosylphosphatidylinositol (GPI)-anchored protein found on the surface of various cells in the body. It was first discovered as a cell surface antigen on thymocytes, hence the name Thy-1.

Thy-1 is a member of the immunoglobulin superfamily and is widely expressed in different tissues, including the brain, where it is found on the surface of neurons and glial cells. In the immune system, Thy-1 is expressed on the surface of T lymphocytes, natural killer (NK) cells, and some subsets of dendritic cells.

The function of Thy-1 is not fully understood, but it has been implicated in various biological processes, including cell adhesion, signal transduction, and regulation of immune responses. Thy-1 has also been shown to play a role in the development and maintenance of the nervous system, as well as in the pathogenesis of certain neurological disorders.

As an antigen, Thy-1 can be recognized by specific antibodies, which can be used in various research and clinical applications, such as immunohistochemistry, flow cytometry, and cell sorting.

CD8 antigens are a type of protein found on the surface of certain immune cells called cytotoxic T lymphocytes or cytotoxic T cells. These cells play a critical role in the adaptive immune response, which is the specific and targeted response of the immune system to foreign substances (antigens) that invade the body.

CD8 antigens help cytotoxic T cells recognize and respond to infected or abnormal cells, such as those that have been infected by a virus or have become cancerous. When a cytotoxic T cell encounters a cell displaying a specific antigen bound to a CD8 molecule, it becomes activated and releases toxic substances that can kill the target cell.

CD8 antigens are also known as cluster of differentiation 8 antigens or CD8 receptors. They belong to a larger family of proteins called major histocompatibility complex class I (MHC class I) molecules, which present antigens to T cells and play a crucial role in the immune system's ability to distinguish between self and non-self.

Plasma cells are a type of white blood cell that are derived from B cells (another type of white blood cell) and are responsible for producing antibodies. Antibodies are proteins that help the body to fight against infections by recognizing and binding to specific antigens, such as bacteria or viruses. Plasma cells are found in the bone marrow, spleen, and lymph nodes, and they play a crucial role in the immune system's response to infection.

Plasma cells are characterized by their large size, eccentric nucleus, and abundant cytoplasm filled with rough endoplasmic reticulum, which is where antibody proteins are synthesized and stored. When activated, plasma cells can produce and secrete large amounts of antibodies into the bloodstream and lymphatic system, where they can help to neutralize or eliminate pathogens.

It's worth noting that while plasma cells play an important role in the immune response, abnormal accumulations of these cells can also be a sign of certain diseases, such as multiple myeloma, a type of cancer that affects plasma cells.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Blood cells are the formed elements in the blood, including red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). These cells are produced in the bone marrow and play crucial roles in the body's functions. Red blood cells are responsible for carrying oxygen to tissues and carbon dioxide away from them, while white blood cells are part of the immune system and help defend against infection and disease. Platelets are cell fragments that are essential for normal blood clotting.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Immunoglobulin light chains are the smaller protein subunits of an immunoglobulin, also known as an antibody. They are composed of two polypeptide chains, called kappa (κ) and lambda (λ), which are produced by B cells during the immune response. Each immunoglobulin molecule contains either two kappa or two lambda light chains, in association with two heavy chains.

Light chains play a crucial role in the antigen-binding site of an antibody, where they contribute to the specificity and affinity of the interaction between the antibody and its target antigen. In addition to their role in immune function, abnormal production or accumulation of light chains can lead to various diseases, such as multiple myeloma and amyloidosis.

Antigens are substances that can stimulate an immune response, particularly the production of antibodies by B-lymphocytes. Differentiation refers to the process by which cells mature and become more specialized in their functions. In the context of B-lymphocytes, differentiation involves the maturation of naive B-cells into plasma cells that are capable of producing large amounts of antibodies in response to an antigenic stimulus.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a critical role in the adaptive immune system. They are responsible for producing antibodies, which are proteins that recognize and bind to specific antigens, marking them for destruction by other immune cells.

When a B-lymphocyte encounters an antigen, it becomes activated and begins to differentiate into a plasma cell. During this process, the B-cell undergoes several changes, including an increase in size, the expression of new surface receptors, and the production of large amounts of antibodies specific to the antigen. These antibodies are then released into the bloodstream, where they can bind to the antigen and help to neutralize or eliminate it.

Overall, the differentiation of B-lymphocytes in response to antigens is a critical component of the adaptive immune system, allowing the body to mount targeted responses to specific pathogens and other foreign substances.

Follicular lymphoma is a specific type of low-grade or indolent non-Hodgkin lymphoma (NHL). It develops from the B-lymphocytes, a type of white blood cell found in the lymphatic system. This lymphoma is characterized by the presence of abnormal follicles or nodules in the lymph nodes and other organs. The neoplastic cells in this subtype exhibit a distinct growth pattern that resembles normal follicular centers, hence the name "follicular lymphoma."

The majority of cases involve a translocation between chromosomes 14 and 18 [t(14;18)], leading to an overexpression of the BCL-2 gene. This genetic alteration contributes to the cancer cells' resistance to programmed cell death, allowing them to accumulate in the body.

Follicular lymphoma is typically slow-growing and may not cause symptoms for a long time. Common manifestations include painless swelling of lymph nodes, fatigue, weight loss, and night sweats. Treatment options depend on various factors such as the stage of the disease, patient's age, and overall health. Watchful waiting, chemotherapy, immunotherapy, targeted therapy, radiation therapy, or a combination of these approaches may be used to manage follicular lymphoma.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Precursor B-cell Acute Lymphoblastic Leukemia/Lymphoma (also known as Precursor B-cell ALL or Precursor B-cell Non-Hodgkin Lymphoma) is a type of cancer that affects the early stages of B-cell development. It is characterized by the uncontrolled proliferation of immature B-cells, also known as lymphoblasts, in the bone marrow, blood, and sometimes in other organs such as the lymph nodes. These malignant cells accumulate and interfere with the normal production of blood cells, leading to symptoms such as anemia, infection, and bleeding.

The distinction between Precursor B-cell ALL and Precursor B-cell Lymphoma is based on the site of involvement. If the majority of the cancerous cells are found in the bone marrow and/or blood, it is classified as a leukemia (ALL). However, if the malignant cells primarily involve the lymph nodes or other extramedullary sites, it is considered a lymphoma. Despite this distinction, both entities share similar biological features, treatment approaches, and prognoses.

It's important to note that medical definitions can vary slightly based on the source and context. For the most accurate information, consult authoritative resources such as medical textbooks or peer-reviewed articles.

Lymph nodes are small, bean-shaped organs that are part of the immune system. They are found throughout the body, especially in the neck, armpits, groin, and abdomen. Lymph nodes filter lymph fluid, which carries waste and unwanted substances such as bacteria, viruses, and cancer cells. They contain white blood cells called lymphocytes that help fight infections and diseases by attacking and destroying the harmful substances found in the lymph fluid. When an infection or disease is present, lymph nodes may swell due to the increased number of immune cells and fluid accumulation as they work to fight off the invaders.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

Cytodiagnosis is the rapid, initial evaluation and diagnosis of a disease based on the examination of individual cells obtained from a body fluid or tissue sample. This technique is often used in cytopathology to investigate abnormalities such as lumps, bumps, or growths that may be caused by cancerous or benign conditions.

The process involves collecting cells through various methods like fine-needle aspiration (FNA), body fluids such as urine, sputum, or washings from the respiratory, gastrointestinal, or genitourinary tracts. The collected sample is then spread onto a microscope slide, stained, and examined under a microscope for abnormalities in cell size, shape, structure, and organization.

Cytodiagnosis can provide crucial information to guide further diagnostic procedures and treatment plans. It is often used as an initial screening tool due to its speed, simplicity, and cost-effectiveness compared to traditional histopathological methods that require tissue biopsy and more extensive processing. However, cytodiagnosis may not always be able to distinguish between benign and malignant conditions definitively; therefore, additional tests or follow-up evaluations might be necessary for a conclusive diagnosis.

HLA-DR antigens are a type of human leukocyte antigen (HLA) class II molecule that plays a crucial role in the immune system. They are found on the surface of antigen-presenting cells, such as dendritic cells, macrophages, and B lymphocytes. HLA-DR molecules present peptide antigens to CD4+ T cells, also known as helper T cells, thereby initiating an immune response.

HLA-DR antigens are highly polymorphic, meaning that there are many different variants of these molecules in the human population. This diversity allows for a wide range of potential peptide antigens to be presented and recognized by the immune system. HLA-DR antigens are encoded by genes located on chromosome 6 in the major histocompatibility complex (MHC) region.

In transplantation, HLA-DR compatibility between donor and recipient is an important factor in determining the success of the transplant. Incompatibility can lead to a heightened immune response against the transplanted organ or tissue, resulting in rejection. Additionally, certain HLA-DR types have been associated with increased susceptibility to autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

CD4 antigens, also known as CD4 proteins or CD4 molecules, are a type of cell surface receptor found on certain immune cells, including T-helper cells and monocytes. They play a critical role in the immune response by binding to class II major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells and helping to activate T-cells. CD4 antigens are also the primary target of the human immunodeficiency virus (HIV), which causes AIDS, leading to the destruction of CD4-positive T-cells and a weakened immune system.

Karyotyping is a medical laboratory test used to study the chromosomes in a cell. It involves obtaining a sample of cells from a patient, usually from blood or bone marrow, and then staining the chromosomes so they can be easily seen under a microscope. The chromosomes are then arranged in pairs based on their size, shape, and other features to create a karyotype. This visual representation allows for the identification and analysis of any chromosomal abnormalities, such as extra or missing chromosomes, or structural changes like translocations or inversions. These abnormalities can provide important information about genetic disorders, diseases, and developmental problems.

Human chromosome pair 14 consists of two rod-shaped structures present in the nucleus of human cells, which contain genetic material in the form of DNA and proteins. Each member of the pair contains a single very long DNA molecule that carries an identical set of genes and other genetic elements, totaling approximately 105 million base pairs. These chromosomes play a crucial role in the development, functioning, and reproduction of human beings.

Chromosome 14 is one of the autosomal chromosomes, meaning it is not involved in determining the sex of an individual. It contains around 800-1,000 genes that provide instructions for producing various proteins responsible for numerous cellular functions and processes. Some notable genes located on chromosome 14 include those associated with neurodevelopmental disorders, cancer susceptibility, and immune system regulation.

Human cells typically have 23 pairs of chromosomes, including 22 autosomal pairs (numbered 1-22) and one pair of sex chromosomes (XX for females or XY for males). Chromosome pair 14 is the eighth largest autosomal pair in terms of its total length.

It's important to note that genetic information on chromosome 14, like all human chromosomes, can vary between individuals due to genetic variations and mutations. These differences contribute to the unique characteristics and traits found among humans.

Myelodysplastic syndromes (MDS) are a group of diverse bone marrow disorders characterized by dysplasia (abnormal development or maturation) of one or more types of blood cells or by ineffective hematopoiesis, resulting in cytopenias (lower than normal levels of one or more types of blood cells). MDS can be classified into various subtypes based on the number and type of cytopenias, the degree of dysplasia, the presence of ring sideroblasts, and cytogenetic abnormalities.

The condition primarily affects older adults, with a median age at diagnosis of around 70 years. MDS can evolve into acute myeloid leukemia (AML) in approximately 30-40% of cases. The pathophysiology of MDS involves genetic mutations and chromosomal abnormalities that lead to impaired differentiation and increased apoptosis of hematopoietic stem and progenitor cells, ultimately resulting in cytopenias and an increased risk of developing AML.

The diagnosis of MDS typically requires a bone marrow aspiration and biopsy, along with cytogenetic and molecular analyses to identify specific genetic mutations and chromosomal abnormalities. Treatment options for MDS depend on the subtype, severity of cytopenias, and individual patient factors. These may include supportive care measures, such as transfusions and growth factor therapy, or more aggressive treatments, such as chemotherapy and stem cell transplantation.

Hodgkin disease, also known as Hodgkin lymphoma, is a type of cancer that originates in the white blood cells called lymphocytes. It typically affects the lymphatic system, which is a network of vessels and glands spread throughout the body. The disease is characterized by the presence of a specific type of abnormal cell, known as a Reed-Sternberg cell, within the affected lymph nodes.

The symptoms of Hodgkin disease may include painless swelling of the lymph nodes in the neck, armpits, or groin; fever; night sweats; weight loss; and fatigue. The exact cause of Hodgkin disease is unknown, but it is thought to involve a combination of genetic, environmental, and infectious factors.

Hodgkin disease is typically treated with a combination of chemotherapy, radiation therapy, and/or immunotherapy, depending on the stage and extent of the disease. With appropriate treatment, the prognosis for Hodgkin disease is generally very good, with a high cure rate. However, long-term side effects of treatment may include an increased risk of secondary cancers and other health problems.

Immunoenzyme techniques are a group of laboratory methods used in immunology and clinical chemistry that combine the specificity of antibody-antigen reactions with the sensitivity and amplification capabilities of enzyme reactions. These techniques are primarily used for the detection, quantitation, or identification of various analytes (such as proteins, hormones, drugs, viruses, or bacteria) in biological samples.

In immunoenzyme techniques, an enzyme is linked to an antibody or antigen, creating a conjugate. This conjugate then interacts with the target analyte in the sample, forming an immune complex. The presence and amount of this immune complex can be visualized or measured by detecting the enzymatic activity associated with it.

There are several types of immunoenzyme techniques, including:

1. Enzyme-linked Immunosorbent Assay (ELISA): A widely used method for detecting and quantifying various analytes in a sample. In ELISA, an enzyme is attached to either the capture antibody or the detection antibody. After the immune complex formation, a substrate is added that reacts with the enzyme, producing a colored product that can be measured spectrophotometrically.
2. Immunoblotting (Western blot): A method used for detecting specific proteins in a complex mixture, such as a protein extract from cells or tissues. In this technique, proteins are separated by gel electrophoresis and transferred to a membrane, where they are probed with an enzyme-conjugated antibody directed against the target protein.
3. Immunohistochemistry (IHC): A method used for detecting specific antigens in tissue sections or cells. In IHC, an enzyme-conjugated primary or secondary antibody is applied to the sample, and the presence of the antigen is visualized using a chromogenic substrate that produces a colored product at the site of the antigen-antibody interaction.
4. Immunofluorescence (IF): A method used for detecting specific antigens in cells or tissues by employing fluorophore-conjugated antibodies. The presence of the antigen is visualized using a fluorescence microscope.
5. Enzyme-linked immunosorbent assay (ELISA): A method used for detecting and quantifying specific antigens or antibodies in liquid samples, such as serum or culture supernatants. In ELISA, an enzyme-conjugated detection antibody is added after the immune complex formation, and a substrate is added that reacts with the enzyme to produce a colored product that can be measured spectrophotometrically.

These techniques are widely used in research and diagnostic laboratories for various applications, including protein characterization, disease diagnosis, and monitoring treatment responses.

A clone is a group of cells that are genetically identical to each other because they are derived from a common ancestor cell through processes such as mitosis or asexual reproduction. Therefore, the term "clone cells" refers to a population of cells that are genetic copies of a single parent cell.

In the context of laboratory research, cells can be cloned by isolating a single cell and allowing it to divide in culture, creating a population of genetically identical cells. This is useful for studying the behavior and characteristics of individual cell types, as well as for generating large quantities of cells for use in experiments.

It's important to note that while clone cells are genetically identical, they may still exhibit differences in their phenotype (physical traits) due to epigenetic factors or environmental influences.

CD4-positive T-lymphocytes, also known as CD4+ T cells or helper T cells, are a type of white blood cell that plays a crucial role in the immune response. They express the CD4 receptor on their surface and help coordinate the immune system's response to infectious agents such as viruses and bacteria.

CD4+ T cells recognize and bind to specific antigens presented by antigen-presenting cells, such as dendritic cells or macrophages. Once activated, they can differentiate into various subsets of effector cells, including Th1, Th2, Th17, and Treg cells, each with distinct functions in the immune response.

CD4+ T cells are particularly important in the immune response to HIV (human immunodeficiency virus), which targets and destroys these cells, leading to a weakened immune system and increased susceptibility to opportunistic infections. The number of CD4+ T cells is often used as a marker of disease progression in HIV infection, with lower counts indicating more advanced disease.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

Interphase is a phase in the cell cycle during which the cell primarily performs its functions of growth and DNA replication. It is the longest phase of the cell cycle, consisting of G1 phase (during which the cell grows and prepares for DNA replication), S phase (during which DNA replication occurs), and G2 phase (during which the cell grows further and prepares for mitosis). During interphase, the chromosomes are in their relaxed, extended form and are not visible under the microscope. Interphase is followed by mitosis, during which the chromosomes condense and separate to form two genetically identical daughter cells.

There is no medical definition for "dog diseases" as it is too broad a term. However, dogs can suffer from various health conditions and illnesses that are specific to their species or similar to those found in humans. Some common categories of dog diseases include:

1. Infectious Diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include distemper, parvovirus, kennel cough, Lyme disease, and heartworms.
2. Hereditary/Genetic Disorders: Some dogs may inherit certain genetic disorders from their parents. Examples include hip dysplasia, elbow dysplasia, progressive retinal atrophy (PRA), and degenerative myelopathy.
3. Age-Related Diseases: As dogs age, they become more susceptible to various health issues. Common age-related diseases in dogs include arthritis, dental disease, cancer, and cognitive dysfunction syndrome (CDS).
4. Nutritional Disorders: Malnutrition or improper feeding can lead to various health problems in dogs. Examples include obesity, malnutrition, and vitamin deficiencies.
5. Environmental Diseases: These are caused by exposure to environmental factors such as toxins, allergens, or extreme temperatures. Examples include heatstroke, frostbite, and toxicities from ingesting harmful substances.
6. Neurological Disorders: Dogs can suffer from various neurological conditions that affect their nervous system. Examples include epilepsy, intervertebral disc disease (IVDD), and vestibular disease.
7. Behavioral Disorders: Some dogs may develop behavioral issues due to various factors such as anxiety, fear, or aggression. Examples include separation anxiety, noise phobias, and resource guarding.

It's important to note that regular veterinary care, proper nutrition, exercise, and preventative measures can help reduce the risk of many dog diseases.

Antigens are substances (usually proteins) on the surface of cells, or viruses, bacteria, and other microorganisms, that can stimulate an immune response.

Differentiation in the context of myelomonocytic cells refers to the process by which these cells mature and develop into specific types of immune cells, such as monocytes, macrophages, and neutrophils.

Myelomonocytic cells are a type of white blood cell that originate from stem cells in the bone marrow. They give rise to two main types of immune cells: monocytes and granulocytes (which include neutrophils, eosinophils, and basophils).

Therefore, 'Antigens, Differentiation, Myelomonocytic' refers to the study or examination of how antigens affect the differentiation process of myelomonocytic cells into specific types of immune cells. This is an important area of research in immunology and hematology as it relates to understanding how the body responds to infections, inflammation, and cancer.

"Gene rearrangement" is a process that involves the alteration of the order, orientation, or copy number of genes or gene segments within an organism's genome. This natural mechanism plays a crucial role in generating diversity and specificity in the immune system, particularly in vertebrates.

In the context of the immune system, gene rearrangement occurs during the development of B-cells and T-cells, which are responsible for adaptive immunity. The process involves breaking and rejoining DNA segments that encode antigen recognition sites, resulting in a unique combination of gene segments and creating a vast array of possible antigen receptors.

There are two main types of gene rearrangement:

1. V(D)J recombination: This process occurs in both B-cells and T-cells. It involves the recombination of variable (V), diversity (D), and joining (J) gene segments to form a functional antigen receptor gene. In humans, there are multiple copies of V, D, and J segments for each antigen receptor gene, allowing for a vast number of possible combinations.
2. Class switch recombination: This process occurs only in mature B-cells after antigen exposure. It involves the replacement of the constant (C) region of the immunoglobulin heavy chain gene with another C region, resulting in the production of different isotypes of antibodies (IgG, IgA, or IgE) that have distinct effector functions while maintaining the same antigen specificity.

These processes contribute to the generation of a diverse repertoire of antigen receptors, allowing the immune system to recognize and respond effectively to a wide range of pathogens.

Histochemistry is the branch of pathology that deals with the microscopic localization of cellular or tissue components using specific chemical reactions. It involves the application of chemical techniques to identify and locate specific biomolecules within tissues, cells, and subcellular structures. This is achieved through the use of various staining methods that react with specific antigens or enzymes in the sample, allowing for their visualization under a microscope. Histochemistry is widely used in diagnostic pathology to identify different types of tissues, cells, and structures, as well as in research to study cellular and molecular processes in health and disease.

CD38 is a type of antigen that is found on the surface of many different types of cells in the human body, including immune cells such as T-cells and B-cells. Antigens are substances (usually proteins) on the surface of cells that can be recognized by the immune system, triggering an immune response.

CD38 plays a role in several different cellular processes, including the regulation of calcium levels within cells, the production of energy in the form of ATP, and the modulation of immune responses. It is also involved in the activation and proliferation of T-cells and B-cells, which are critical components of the adaptive immune system.

CD38 can be targeted by certain types of immunotherapy, such as monoclonal antibodies, to help stimulate an immune response against cancer cells that express this antigen on their surface.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Fluorescent dyes are substances that emit light upon excitation by absorbing light of a shorter wavelength. In a medical context, these dyes are often used in various diagnostic tests and procedures to highlight or mark certain structures or substances within the body. For example, fluorescent dyes may be used in imaging techniques such as fluorescence microscopy or fluorescence angiography to help visualize cells, tissues, or blood vessels. These dyes can also be used in flow cytometry to identify and sort specific types of cells. The choice of fluorescent dye depends on the specific application and the desired properties, such as excitation and emission spectra, quantum yield, and photostability.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

"Quality control" is a term that is used in many industries, including healthcare and medicine, to describe the systematic process of ensuring that products or services meet certain standards and regulations. In the context of healthcare, quality control often refers to the measures taken to ensure that the care provided to patients is safe, effective, and consistent. This can include processes such as:

1. Implementing standardized protocols and guidelines for care
2. Training and educating staff to follow these protocols
3. Regularly monitoring and evaluating the outcomes of care
4. Making improvements to processes and systems based on data and feedback
5. Ensuring that equipment and supplies are maintained and functioning properly
6. Implementing systems for reporting and addressing safety concerns or errors.

The goal of quality control in healthcare is to provide high-quality, patient-centered care that meets the needs and expectations of patients, while also protecting their safety and well-being.

Skin neoplasms refer to abnormal growths or tumors in the skin that can be benign (non-cancerous) or malignant (cancerous). They result from uncontrolled multiplication of skin cells, which can form various types of lesions. These growths may appear as lumps, bumps, sores, patches, or discolored areas on the skin.

Benign skin neoplasms include conditions such as moles, warts, and seborrheic keratoses, while malignant skin neoplasms are primarily classified into melanoma, squamous cell carcinoma, and basal cell carcinoma. These three types of cancerous skin growths are collectively known as non-melanoma skin cancers (NMSCs). Melanoma is the most aggressive and dangerous form of skin cancer, while NMSCs tend to be less invasive but more common.

It's essential to monitor any changes in existing skin lesions or the appearance of new growths and consult a healthcare professional for proper evaluation and treatment if needed.

Multiple myeloma is a type of cancer that forms in a type of white blood cell called a plasma cell. Plasma cells help your body fight infection by producing antibodies. In multiple myeloma, cancerous plasma cells accumulate in the bone marrow and crowd out healthy blood cells. Rather than producing useful antibodies, the cancer cells produce abnormal proteins that can cause complications such as kidney damage, bone pain and fractures.

Multiple myeloma is a type of cancer called a plasma cell neoplasm. Plasma cell neoplasms are diseases in which there is an overproduction of a single clone of plasma cells. In multiple myeloma, this results in the crowding out of normal plasma cells, red and white blood cells and platelets, leading to many of the complications associated with the disease.

The abnormal proteins produced by the cancer cells can also cause damage to organs and tissues in the body. These abnormal proteins can be detected in the blood or urine and are often used to monitor the progression of multiple myeloma.

Multiple myeloma is a relatively uncommon cancer, but it is the second most common blood cancer after non-Hodgkin lymphoma. It typically occurs in people over the age of 65, and men are more likely to develop multiple myeloma than women. While there is no cure for multiple myeloma, treatments such as chemotherapy, radiation therapy, and stem cell transplantation can help manage the disease and its symptoms, and improve quality of life.

Antigens are substances (usually proteins) on the surface of cells, viruses, fungi, or bacteria that can be recognized by the immune system and provoke an immune response. In the context of differentiation, antigens refer to specific markers that identify the developmental stage or lineage of a cell.

Differentiation antigens are proteins or carbohydrates expressed on the surface of cells during various stages of differentiation, which can be used to distinguish between cells at different maturation stages or of different cell types. These antigens play an essential role in the immune system's ability to recognize and respond to abnormal or infected cells while sparing healthy cells.

Examples of differentiation antigens include:

1. CD (cluster of differentiation) molecules: A group of membrane proteins used to identify and define various cell types, such as T cells, B cells, natural killer cells, monocytes, and granulocytes.
2. Lineage-specific antigens: Antigens that are specific to certain cell lineages, such as CD3 for T cells or CD19 for B cells.
3. Maturation markers: Antigens that indicate the maturation stage of a cell, like CD34 and CD38 on hematopoietic stem cells.

Understanding differentiation antigens is crucial in immunology, cancer research, transplantation medicine, and vaccine development.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Monocytes are a type of white blood cell that are part of the immune system. They are large cells with a round or oval shape and a nucleus that is typically indented or horseshoe-shaped. Monocytes are produced in the bone marrow and then circulate in the bloodstream, where they can differentiate into other types of immune cells such as macrophages and dendritic cells.

Monocytes play an important role in the body's defense against infection and tissue damage. They are able to engulf and digest foreign particles, microorganisms, and dead or damaged cells, which helps to clear them from the body. Monocytes also produce cytokines, which are signaling molecules that help to coordinate the immune response.

Elevated levels of monocytes in the bloodstream can be a sign of an ongoing infection, inflammation, or other medical conditions such as cancer or autoimmune disorders.

T-lymphocyte subsets refer to distinct populations of T-cells, which are a type of white blood cell that plays a central role in cell-mediated immunity. The two main types of T-lymphocytes are CD4+ and CD8+ cells, which are defined by the presence or absence of specific proteins called cluster differentiation (CD) molecules on their surface.

CD4+ T-cells, also known as helper T-cells, play a crucial role in activating other immune cells, such as B-lymphocytes and macrophages, to mount an immune response against pathogens. They also produce cytokines that help regulate the immune response.

CD8+ T-cells, also known as cytotoxic T-cells, directly kill infected cells or tumor cells by releasing toxic substances such as perforins and granzymes.

The balance between these two subsets of T-cells is critical for maintaining immune homeostasis and mounting effective immune responses against pathogens while avoiding excessive inflammation and autoimmunity. Therefore, the measurement of T-lymphocyte subsets is essential in diagnosing and monitoring various immunological disorders, including HIV infection, cancer, and autoimmune diseases.

'Cell lineage' is a term used in biology and medicine to describe the developmental history or relationship of a cell or group of cells to other cells, tracing back to the original progenitor or stem cell. It refers to the series of cell divisions and differentiation events that give rise to specific types of cells in an organism over time.

In simpler terms, cell lineage is like a family tree for cells, showing how they are related to each other through a chain of cell division and specialization events. This concept is important in understanding the development, growth, and maintenance of tissues and organs in living beings.

Immunoglobulin heavy chains are proteins that make up the framework of antibodies, which are Y-shaped immune proteins. These heavy chains, along with light chains, form the antigen-binding sites of an antibody, which recognize and bind to specific foreign substances (antigens) in order to neutralize or remove them from the body.

The heavy chain is composed of a variable region, which contains the antigen-binding site, and constant regions that determine the class and function of the antibody. There are five classes of immunoglobulins (IgA, IgD, IgE, IgG, and IgM) that differ in their heavy chain constant regions and therefore have different functions in the immune response.

Immunoglobulin heavy chains are synthesized by B cells, a type of white blood cell involved in the adaptive immune response. The genetic rearrangement of immunoglobulin heavy chain genes during B cell development results in the production of a vast array of different antibodies with unique antigen-binding sites, allowing for the recognition and elimination of a wide variety of pathogens.

Natural Killer (NK) cells are a type of lymphocyte, which are large granular innate immune cells that play a crucial role in the host's defense against viral infections and malignant transformations. They do not require prior sensitization to target and destroy abnormal cells, such as virus-infected cells or tumor cells. NK cells recognize their targets through an array of germline-encoded activating and inhibitory receptors that detect the alterations in the cell surface molecules of potential targets. Upon activation, NK cells release cytotoxic granules containing perforins and granzymes to induce target cell apoptosis, and they also produce a variety of cytokines and chemokines to modulate immune responses. Overall, natural killer cells serve as a critical component of the innate immune system, providing rapid and effective responses against infected or malignant cells.

Chromosome aberrations refer to structural and numerical changes in the chromosomes that can occur spontaneously or as a result of exposure to mutagenic agents. These changes can affect the genetic material encoded in the chromosomes, leading to various consequences such as developmental abnormalities, cancer, or infertility.

Structural aberrations include deletions, duplications, inversions, translocations, and rings, which result from breaks and rearrangements of chromosome segments. Numerical aberrations involve changes in the number of chromosomes, such as aneuploidy (extra or missing chromosomes) or polyploidy (multiples of a complete set of chromosomes).

Chromosome aberrations can be detected and analyzed using various cytogenetic techniques, including karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH). These methods allow for the identification and characterization of chromosomal changes at the molecular level, providing valuable information for genetic counseling, diagnosis, and research.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Hematopoietic stem cells (HSCs) are immature, self-renewing cells that give rise to all the mature blood and immune cells in the body. They are capable of both producing more hematopoietic stem cells (self-renewal) and differentiating into early progenitor cells that eventually develop into red blood cells, white blood cells, and platelets. HSCs are found in the bone marrow, umbilical cord blood, and peripheral blood. They have the ability to repair damaged tissues and offer significant therapeutic potential for treating various diseases, including hematological disorders, genetic diseases, and cancer.

A leukocyte count, also known as a white blood cell (WBC) count, is a laboratory test that measures the number of leukocytes in a sample of blood. Leukocytes are a vital part of the body's immune system and help fight infection and inflammation. A high or low leukocyte count may indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder. The normal range for a leukocyte count in adults is typically between 4,500 and 11,000 cells per microliter (mcL) of blood. However, the normal range can vary slightly depending on the laboratory and the individual's age and sex.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Fetal blood refers to the blood circulating in a fetus during pregnancy. It is essential for the growth and development of the fetus, as it carries oxygen and nutrients from the placenta to the developing tissues and organs. Fetal blood also removes waste products, such as carbon dioxide, from the fetal tissues and transports them to the placenta for elimination.

Fetal blood has several unique characteristics that distinguish it from adult blood. For example, fetal hemoglobin (HbF) is the primary type of hemoglobin found in fetal blood, whereas adults primarily have adult hemoglobin (HbA). Fetal hemoglobin has a higher affinity for oxygen than adult hemoglobin, which allows it to more efficiently extract oxygen from the maternal blood in the placenta.

Additionally, fetal blood contains a higher proportion of reticulocytes (immature red blood cells) and nucleated red blood cells compared to adult blood. These differences reflect the high turnover rate of red blood cells in the developing fetus and the need for rapid growth and development.

Examination of fetal blood can provide important information about the health and well-being of the fetus during pregnancy. For example, fetal blood sampling (also known as cordocentesis or percutaneous umbilical blood sampling) can be used to diagnose genetic disorders, infections, and other conditions that may affect fetal development. However, this procedure carries risks, including preterm labor, infection, and fetal loss, and is typically only performed when there is a significant risk of fetal compromise or when other diagnostic tests have been inconclusive.

Mononuclear leukocytes are a type of white blood cells (leukocytes) that have a single, large nucleus. They include lymphocytes (B-cells, T-cells, and natural killer cells), monocytes, and dendritic cells. These cells play important roles in the body's immune system, including defending against infection and disease, and participating in immune responses and surveillance. Mononuclear leukocytes can be found in the bloodstream as well as in tissues throughout the body. They are involved in both innate and adaptive immunity, providing specific and nonspecific defense mechanisms to protect the body from harmful pathogens and other threats.

CD8-positive T-lymphocytes, also known as CD8+ T cells or cytotoxic T cells, are a type of white blood cell that plays a crucial role in the adaptive immune system. They are named after the CD8 molecule found on their surface, which is a protein involved in cell signaling and recognition.

CD8+ T cells are primarily responsible for identifying and destroying virus-infected cells or cancerous cells. When activated, they release cytotoxic granules that contain enzymes capable of inducing apoptosis (programmed cell death) in the target cells. They also produce cytokines such as interferon-gamma, which can help coordinate the immune response and activate other immune cells.

CD8+ T cells are generated in the thymus gland and are a type of T cell, which is a lymphocyte that matures in the thymus and plays a central role in cell-mediated immunity. They recognize and respond to specific antigens presented on the surface of infected or cancerous cells in conjunction with major histocompatibility complex (MHC) class I molecules.

Overall, CD8+ T cells are an essential component of the immune system's defense against viral infections and cancer.

A CD4 lymphocyte count is a laboratory test that measures the number of CD4 T-cells (also known as CD4+ T-cells or helper T-cells) in a sample of blood. CD4 cells are a type of white blood cell that plays a crucial role in the body's immune response, particularly in fighting off infections caused by viruses and other pathogens.

CD4 cells express a protein on their surface called the CD4 receptor, which is used by human immunodeficiency virus (HIV) to infect and destroy these cells. As a result, people with HIV infection or AIDS often have low CD4 lymphocyte counts, which can make them more susceptible to opportunistic infections and other complications.

A normal CD4 lymphocyte count ranges from 500 to 1,200 cells per cubic millimeter of blood (cells/mm3) in healthy adults. A lower than normal CD4 count is often used as a marker for the progression of HIV infection and the development of AIDS. CD4 counts are typically monitored over time to assess the effectiveness of antiretroviral therapy (ART) and to guide clinical decision-making regarding the need for additional interventions, such as prophylaxis against opportunistic infections.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Antigens are substances (usually proteins) on the surface of cells, viruses, fungi, or bacteria that the immune system recognizes as foreign and mounts a response against.

Differentiation in the context of T-lymphocytes refers to the process by which immature T-cells mature and develop into different types of T-cells with specific functions, such as CD4+ helper T-cells or CD8+ cytotoxic T-cells.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a central role in cell-mediated immunity. They are produced in the bone marrow and mature in the thymus gland. Once mature, they circulate throughout the body in search of foreign antigens to attack and destroy.

Therefore, 'Antigens, Differentiation, T-Lymphocyte' refers to the process by which T-lymphocytes mature and develop the ability to recognize and respond to specific foreign antigens.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

The term "DNA, neoplasm" is not a standard medical term or concept. DNA refers to deoxyribonucleic acid, which is the genetic material present in the cells of living organisms. A neoplasm, on the other hand, is a tumor or growth of abnormal tissue that can be benign (non-cancerous) or malignant (cancerous).

In some contexts, "DNA, neoplasm" may refer to genetic alterations found in cancer cells. These genetic changes can include mutations, amplifications, deletions, or rearrangements of DNA sequences that contribute to the development and progression of cancer. Identifying these genetic abnormalities can help doctors diagnose and treat certain types of cancer more effectively.

However, it's important to note that "DNA, neoplasm" is not a term that would typically be used in medical reports or research papers without further clarification. If you have any specific questions about DNA changes in cancer cells or neoplasms, I would recommend consulting with a healthcare professional or conducting further research on the topic.

... is a technique used to study the protein expressed by cells. This technique is commonly used in basic science ... British Society for Haematology guidelines accessed July 31, 2006 Immunophenotyping at the U.S. National Library of Medicine ... Immunophenotyping is a very common flow cytometry test in which fluorophore-conjugated antibodies are used as probes for ...
Naeim F, Rao PN, Song SX, Grody WW (2013). "Principles of Immunophenotyping". Atlas of Hematopathology. pp. 25-46. doi:10.1016/ ...
ISBN 978-3-7186-0596-5. Rawstron AC (May 2006). "Immunophenotyping of plasma cells". Current Protocols in Cytometry. Chapter. ...
"Infection and Immunity Immunophenotyping (3i) Consortium".[permanent dead link] Kapeller R, Toker A, Cantley LC, Carpenter CL ( ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Le Coniat M, Soulard M, Della Valle V, Larsen CJ, Berger R (Mar 1992 ...
"Infection and Immunity Immunophenotyping (3i) Consortium". "OBCD Consortium". Human AGAP1 genome location and AGAP1 gene ...
"Infection and Immunity Immunophenotyping (3i) Consortium".[permanent dead link] (All articles with dead external links, ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Human CORO6 genome location and CORO6 gene details page in the UCSC ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Carim L, Sumoy L, Andreu N, Estivill X, Escarceller M (2000). " ...
"Infection and Immunity Immunophenotyping (3i) Consortium". "OBCD Consortium". Human C10orf76 genome location and C10orf76 gene ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Ma J, Dempsey AA, Stamatiou D, Marshall KW, Liew CC (Mar 2007). " ...
"Infection and Immunity Immunophenotyping (3i) Consortium". (Protein complexes, Proteins). ...
"Infection and Immunity Immunophenotyping (3i) Consortium". "OBCD Consortium". Human COL24A1 genome location and COL24A1 gene ...
"Infection and Immunity Immunophenotyping (3i) Consortium". "OBCD Consortium". Smolich BD, McMahon JA, McMahon AP, Papkoff J ( ...
"Infection and Immunity Immunophenotyping (3i) Consortium". "OBCD Consortium". Vanhoof G, De Meester I, Goossens F, Hendriks D, ...
Immunophenotyping of plasma cells". Current Protocols in Cytometry. Vol. Chapter 6. pp. Unit 6.23. doi:10.1002/0471142956. ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Archived from the original on 2015-05-21. Retrieved 2015-05-19. ...
"Infection and Immunity Immunophenotyping (3i) Consortium".[permanent dead link] Lau LF, Mammen A, Ehlers MD, et al. (1996). " ...
"Infection and Immunity Immunophenotyping (3i) Consortium". "OBCD Consortium". Reid ME (Jan 2003). "The Dombrock blood group ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Walden PD, Cowan NJ (1993). "A novel 205-kilodalton testis-specific ...
"Infection and Immunity Immunophenotyping (3i) Consortium".[permanent dead link] Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, ...
"Infection and Immunity Immunophenotyping (3i) Consortium".[permanent dead link] Mehrle A, Rosenfelder H, Schupp I, del Val C, ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Archived from the original on 2015-05-21. Retrieved 2015-05-19. " ...
"Infection and Immunity Immunophenotyping (3i) Consortium".[permanent dead link] Ma YX, Zhang SZ, Wu QQ, Sun Y, Qiu WM, Xu WM ( ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (Jun 2002). " ...
"Infection and Immunity Immunophenotyping (3i) Consortium".[permanent dead link] Robertson NG, Khetarpal U, Gutiérrez-Espeleta ...
"Infection and Immunity Immunophenotyping (3i) Consortium". "OBCD Consortium". Venkateswarlu K, Cullen PJ (Aug 1999). "Molecular ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Archived from the original on 2015-05-21. Retrieved 2015-05-19. " ...
"Infection and Immunity Immunophenotyping (3i) Consortium". Farnesyl-Diphosphate+Farnesyltransferase at the U.S. National ...
Immunophenotyping is a technique used to study the protein expressed by cells. This technique is commonly used in basic science ... British Society for Haematology guidelines accessed July 31, 2006 Immunophenotyping at the U.S. National Library of Medicine ... Immunophenotyping is a very common flow cytometry test in which fluorophore-conjugated antibodies are used as probes for ...
Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer. *Mark ... Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer}}, url = {{http://dx.doi.org/10.1016/j. ...
Immunophenotyping phenotyping protocol to produce standardised procedure XMLs. Protocol includes purpose, design, equipment, ...
Immunophenotyping. National Comprehensive Cancer Network (NCCN) guidelines consider immunophenotyping essential for ... What is the role of immunophenotyping in the diagnosis of follicular lymphoma? ...
Immunophenotyping. National Comprehensive Cancer Network (NCCN) guidelines consider immunophenotyping essential for ... What is the role of immunophenotyping in the diagnosis of follicular lymphoma? ...
An integrated microfluidic immunophenotyping platform has been developed by Assistant Professor Jianping Fu, Professor Katsuo ... An integrated microfluidic immunophenotyping platform has been developed by Assistant Professor Jianping Fu, Professor Katsuo ... An integrated microfluidic immunophenotyping platform has been developed by Assistant Professor Jianping Fu, Professor Katsuo ... Kurabayashi, and co-workers for rapid and efficient isolation, enrichment, stimulation and functional immunophenotyping of ...
Immunophenotyping.. Numbers of activated and proliferating NK cells were quantified as described previously [28]. For each ...
... with or without genetics and/or immunophenotyping. Review the Definitive Diagnostic Methods, Immunophenotyping and Genetics ...
Flow Cytometry (Immunophenotyping). Flow cytometry (immunophenotyping) can be used to help distinguish AML from acute ... Immunophenotyping by flow cytometry of bone marrow or peripheral blood samples can be used to help distinguish AML from acute ... Table 1. Immunophenotyping of AML Cells (Open Table in a new window) ...
High-resolution immunophenotyping *Analysis of cell lineage and immune response *Gene regulatory network inference ...
2000). Gene product immunophenotyping of neuroendocrine lung tumors. No linking evidence between carcinoids and small-cell lung ... Gene product immunophenotyping of neuroendocrine lung tumors. No linking evidence between carcinoids and small-cell lung ... 2000). Gene product immunophenotyping of neuroendocrine lung tumors. No linking evidence between carcinoids and small-cell lung ... Such statistical analysis displayed that some categories of the gene product-based immunophenotyping variables are grouped in ...
Impact of immunophenotyping on management of acute leukemias (300 Online Views) MC Bene, M Bernier, G Castoldi, GC Faure, W ...
... immunophenotyping by flow cytometry (22-28). Immunophenotyping refers to the detection of antigenic determinants (which are ... Immunophenotyping * For optimal results, perform the test within 30 hours, but no later than 48 hours, after drawing the blood ... Effects of medications and other biologic factors on immunophenotyping results (Table A1) POINT OF CONTACT FOR THIS DOCUMENT:. ... The effect of cool temperatures (i.e., 39 F {4 C}) on immunophenotyping results is not clear (52,57). * Transport specimens to ...
Using immunophenotyping, the NHANES specimens were tested for the proportion of lymphocytes that are CD4+ T cells (helper T ... Immunophenotyping specimens from HIV-infected persons: laboratory guidelines from the Centers for Disease Control and ... Quality assurance and immunophenotyping of peripheral blood lymphocytes. NCCLS H42-T, 1992. ... Guidelines for flow cytometric immunophenotyping, Version 1.0, January 1993.. *Nicholson, JKA, Hubbard, M, Dawson, C. ...
Immunophenotyping. 1. 2021. 1866. 0.140. Why? Immunity, Cellular. 1. 2020. 1606. 0.120. Why? ...
T-Cell Immunophenotyping Distinguishes Active From Latent Tuberculosis. J Infect Dis (2013) 208(6):952-68. doi: 10.1093/infdis/ ...
Incidence; Leukaemia; Immunophenotyping Abstract. Background: Leukaemias are neoplastic proliferations of haematopoietic stem ... were acute undifferentiated leukaemias on immunophenotyping respectively. Out of 29 cases identified as ALL on morphology 25( ...
Flow cytometric immunophenotyping results before and after human papillomavirus vaccination in a patient with splenectomy ... Immunophenotyping revealed a markedly decreased CD4/CD8 ratio (Table). During October 2005-December 2009, the patient received ...
Lymphocyte immunophenotyping and concentration of MMP-9 in transudates and exudates in horses. Hamouzová P, Dobešová O, ...
Learn more about advanced flow cytometry from our webinars, white papers, application notes etc.
Immunopathology - Characterisation of leucocyte surface antigens (including immunophenotyping) Blood HLA-DR1; HLA-DR4 ...
The immunophenotyping results showed no differences between the groups of patients and controls. The lymphoproliferation test ...
Flow immunophenotyping panels were those routinely implemented for ITN clinical trials, as described previously (26, 33). The ... Assays also included screening assessments that were smaller scale, including immunophenotyping by flow cytometry (23) and ... immunophenotyping by flow cytometry (33); transcriptional response to T1D serum (22) assessed using Affymetrix microarrays; and ...
Cell sorting was performed using a FACSAria cell sorter, and immunophenotyping was done on an LSRII flow cytometer (BD ...
3% blasts positive for MPO (by immunophenotyping or cytochemistry) or SBB and negative for NSE by cytochemistry ... 3% blasts positive for MPO (by immunophenotyping or cytochemistry) or SBB and negative for NSE by cytochemistry ... 3% blasts positive for MPO (by immunophenotyping or cytochemistry) or SBB by cytochemistry ... 3% blasts positive for MPO (by immunophenotyping or cytochemistry) or SBB by cytochemistry ...
... the researches concerning the immunophenotyping and molecular classification of MMPC were rare. Barbashina et al. believed that ...
  • citation needed] Immunophenotyping is a very common flow cytometry test in which fluorophore-conjugated antibodies are used as probes for staining target cells with high avidity and affinity. (wikipedia.org)
  • Immunophenotyping by flow cytometry of bone marrow or peripheral blood samples can be used to help distinguish AML from acute lymphocytic leukemia (ALL) and further classify the subtype of AML. (medscape.com)
  • The last stage in the process of measuring the percentage of CD4+ T-lymphocytes in the whole-blood sample is referred to as 'immunophenotyping by flow cytometry' (22-28). (cdc.gov)
  • Although flow cytometric immunophenotyping is a highly complex technology, methodology for performing CD4+ T-cell determinations has become more standardized between laboratories. (cdc.gov)
  • The publication of several sets of guidelines addressing aspects of the CD4+ T-lymphocyte testing process (e.g., quality control, quality assurance, and reagents for flow cytometric immunophenotyping of lymphocytes) has contributed to this standardization (29-32). (cdc.gov)
  • Immunophenotyping by flow cytometry: its use in HIV infection. (bdbiosciences.com)
  • Characterization of BM-MSCs was assessed using in vitro differentiation by histochemical staining and immunophenotyping of cells by flow cytometric analysis. (tubitak.gov.tr)
  • Diagnosis is by flow cytometry and immunophenotyping of peripheral blood. (msdmanuals.com)
  • Blood and bone marrow studies performed for staging revealed no histologic or immunohistochemical evidence of T-cell lymphoma in the bone marrow core, however, atypical blood smear lymphocyte morphology and blood immunophenotyping by flow cytometry were consistent with WHO-HAEM5 classification of ANKL. (bvsalud.org)
  • Using immunophenotyping, HIV-positive blood samples and age-matched controls were tested for the proportion of lymphocytes that are T cells, B cells, natural killer (NK) cells, CD4+ T cells (helper T cells), and CD8+ T cells (suppressor/inducer T cells). (cdc.gov)
  • Immune response was assessed by immunophenotyping of lymphocytes and lymphokine production. (cdc.gov)
  • To ensure clinical labs have the confidence to meet today's rigorous quality assurance obligations the Navios EX has two optional ready-to-use IVD reagent systems, the Navios Tetra System for simultaneous identification and enumeration of T, B and NK lymphocytes and the ClearLLab 10C System - the first FDA cleared and CE marked integrated leukemia and lymphoma immunophenotyping system. (labcyte.com)
  • This histology can be determined by positive histology (including peripheral blood) with or without genetics and/or immunophenotyping. (cancer.gov)
  • These revised guidelines were developed by CDC for laboratories performing lymphocyte immunophenotyping assays in human immunodeficiency virus-infected persons. (cdc.gov)
  • Gene product immunophenotyping of neuroendocrine lung tumors. (unimib.it)
  • Such statistical analysis displayed that some categories of the gene product-based immunophenotyping variables are grouped in the plot identifying three groups: the first group related to carcinoids, the second to small-cell carcinomas, and the third to large-cell neuroendocrine carcinomas. (unimib.it)
  • An integrated microfluidic immunophenotyping platform has been developed by Assistant Professor Jianping Fu , Professor Katsuo Kurabayashi , and co-workers for rapid and efficient isolation, enrichment, stimulation and functional immunophenotyping of subpopulations of immune cells from minute amounts of blood samples. (advancedsciencenews.com)
  • Sylvie Freeman is co-director of the Clinical Immunology Service, leading Immunophenotyping for the diagnosis and monitoring of haematological malignancies. (birmingham.ac.uk)
  • We characterized patients with ITP and compared them with age-matched controls using immunophenotyping, next-generation sequencing of T-cell receptor (TCR) genes, single-cell RNA sequencing, and functional T-cell and platelet assays. (stanford.edu)
  • Out of 19(38%) cases of AML, 29(58%) cases of ALL and 02(04%) cases of indistinguishable diagnosed morphologically, 14(28%) were found to be AML, 32(64%) ALL, 02(04%) bi-phenotypic and 02(04%) were acute undifferentiated leukaemias on immunophenotyping respectively. (banglajol.info)
  • Immunophenotyping is a technique used to study the protein expressed by cells. (wikipedia.org)
  • Immunophenotyping was performed on BAL cells and lung-associated lymph node cells. (cdc.gov)
  • Immunophenotyping is a laboratory test used to identify cells, based on the types of antigens or markers on the surface of the cell. (limamemorial.org)
  • Review the Definitive Diagnostic Methods, Immunophenotyping and Genetics Data sections below, and the instructions in the Hematopoietic Manual for further guidance on assigning Diagnostic confirmation. (cancer.gov)
  • Immunophenotyping revealed a markedly decreased CD4/CD8 ratio ( Table ). (cdc.gov)
  • Although flow cytometric immunophenotyping is a highly complex technology, methodology for performing CD4+ T-cell determinations has become more standardized between laboratories. (cdc.gov)
  • The publication of several sets of guidelines addressing aspects of the CD4+ T-lymphocyte testing process (e.g., quality control, quality assurance, and reagents for flow cytometric immunophenotyping of lymphocytes) has contributed to this standardization (29-32). (cdc.gov)
  • Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. (bdbiosciences.com)
  • Immunophenotyping by flow cytometry of bone marrow or peripheral blood samples can be used to help distinguish AML from acute lymphocytic leukemia (ALL) and further classify the subtype of AML. (medscape.com)
  • A bone marrow aspirate and biopsy performed under sedation will confirm the diagnosis with special stains (immunohistochemistry), and immunophenotyping, and allow collection of adequate sample for cytogenetics and molecular studies. (medscape.com)
  • 10. Acute leukaemia immunophenotyping in bone-marrow routine sections. (nih.gov)
  • These revised guidelines were developed by CDC for laboratories performing lymphocyte immunophenotyping assays in human immunodeficiency virus-infected persons. (cdc.gov)
  • 5. The role of cytology, cytochemistry, immunophenotyping and cytogenetic analysis in the diagnosis of haematological neoplasms. (nih.gov)
  • 11. [Immunophenotyping with flow cytometry in patients with acute leukemia]. (nih.gov)
  • 14. [Immunophenotyping in acute leukemia: detection of minimal residual disease]. (nih.gov)
  • 18. Immunophenotyping of leukemia. (nih.gov)
  • Later in the year, the company added new commercial services to their advanced drug response prediction profile for canine hematopoietic cancers, which offers separate stand-alone immunophenotyping service via flow cytometry and clonality testing by PARR (PCR for Antigen Receptor Rearrangement), firmly cementing the biotech startup in the veterinary diagnostic support space. (einpresswire.com)
  • 2. Role of FAB classification of acute leukemias in era of immunophenotyping. (nih.gov)
  • 3. [Immunophenotyping of acute leukemias: diagnostic and pronostic utility in Abidjan, Côte d'Ivoire]. (nih.gov)
  • 4. Immunophenotyping of acute leukaemias. (nih.gov)
  • This novel assay allows the simultaneous detection of up to four RNA targets in combination with immunophenotyping for cell surface and intracellular proteins using standard flow cytometry. (thermofisher.com)
  • Also to Sarah Chan who assisted with the laboratory work for the immunophenotyping at the University of Hong Kong. (vin.com)
  • Of the 4248 immunophenotyping cases, 359 (8.4%) cases were canceled, according to laboratory protocol based on cytospin review. (elsevierpure.com)
  • Major methodological progress has been made in cytogenetics with the use of in situ fluorescence, in immunophenotyping with 8 and 10 color flow cytometers, in molecular biology with the discovery of numerous oncogenes and tumor molecular markers by Polymerase Chain reaction (PCR) and more recently with the use of Next Generation Sequencing (NGS). (academie-medecine.fr)
  • Additionally, the adoption of flow cytometry in research applications, such as immunophenotyping and stem cell analysis, further fuels the demand for analyzers and reagents. (taiwannews.com.tw)
  • Blood was collected into acid citrate dextrose anticoagulant for immunophenotyping--determining lymphocytic sub-populations and cell surface densities of adhesive proteins. (vin.com)
  • Panel development and implementation for immunophenotyping studies. (nih.gov)
  • One-on-one personal assistance for methods development and standardizing protocols for sample preparation, tissue dissociation and deep immunophenotyping. (nih.gov)
  • Cytospin is cost-effective and provides important morphologic information that facilitates FCM immunophenotyping panel selection and result interpretation. (elsevierpure.com)
  • We have developed a serologically based immunophenotyping approach to study Onchocerca volvulus (Ov) population diversity. (nih.gov)
  • Our aim is to illustrate the contribution of cytospin in direct cellular morphologic visualization in FCM immunophenotyping, in result interpretation, and additionally as a quality control tool. (elsevierpure.com)

No images available that match "immunophenotyping"