A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.
Relatively complete absence of oxygen in one or more tissues.
Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood.
The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration (= OXYGEN CONSUMPTION) or cell respiration (= CELL RESPIRATION).
Respiratory retention of carbon dioxide. It may be chronic or acute.
Clinical manifestation consisting of a deficiency of carbon dioxide in arterial blood.
The total volume of gas inspired or expired per unit of time, usually measured in liters per minute.
The pressure that would be exerted by one component of a mixture of gases if it were present alone in a container. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
The circulation of blood through the BLOOD VESSELS of the BRAIN.
The physical or mechanical action of the LUNGS; DIAPHRAGM; RIBS; and CHEST WALL during respiration. It includes airflow, lung volume, neural and reflex controls, mechanoreceptors, breathing patterns, etc.
Measurement of oxygen and carbon dioxide in the blood.
A transient absence of spontaneous respiration.
A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up.
The volume of air inspired or expired during each normal, quiet respiratory cycle. Common abbreviations are TV or V with subscript T.
The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance.
A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control.
An abnormal increase in the amount of oxygen in the tissues and organs.
The innermost layer of the three meninges covering the brain and spinal cord. It is the fine vascular membrane that lies under the ARACHNOID and the DURA MATER.
A pulmonary ventilation rate faster than is metabolically necessary for the exchange of gases. It is the result of an increased frequency of breathing, an increased tidal volume, or a combination of both. It causes an excess intake of oxygen and the blowing off of carbon dioxide.
A pathological condition caused by lack of oxygen, manifested in impending or actual cessation of life.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A reduction in the amount of air entering the pulmonary alveoli.
Measurement of the volume of gas in the lungs, including that which is trapped in poorly communicating air spaces. It is of particular use in chronic obstructive pulmonary disease and emphysema. (Segen, Dictionary of Modern Medicine, 1992)
The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm.
The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION.
Physiological processes and properties of the RESPIRATORY SYSTEM as a whole or of any of its parts.
Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2).
The arterial blood vessels supplying the CEREBRUM.
These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES.
Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed)
Respiratory muscles that arise from the lower border of one rib and insert into the upper border of the adjoining rib, and contract during inspiration or respiration. (From Stedman, 25th ed)
One of the CARBONIC ANHYDRASE INHIBITORS that is sometimes effective against absence seizures. It is sometimes useful also as an adjunct in the treatment of tonic-clonic, myoclonic, and atonic seizures, particularly in women whose seizures occur or are exacerbated at specific times in the menstrual cycle. However, its usefulness is transient often because of rapid development of tolerance. Its antiepileptic effect may be due to its inhibitory effect on brain carbonic anhydrase, which leads to an increased transneuronal chloride gradient, increased chloride current, and increased inhibition. (From Smith and Reynard, Textbook of Pharmacology, 1991, p337)
The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities.
Part of the brain located in the MEDULLA OBLONGATA and PONS. It receives neural, chemical and hormonal signals, and controls the rate and depth of respiratory movements of the DIAPHRAGM and other respiratory muscles.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
The act of blowing a powder, vapor, or gas into any body cavity for experimental, diagnostic, or therapeutic purposes.
Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity.
A central respiratory stimulant with a brief duration of action. (From Martindale, The Extra Pharmocopoeia, 30th ed, p1225)
The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA.
The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER.
Refers to animals in the period of time just after birth.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.
A class of compounds that reduces the secretion of H+ ions by the proximal kidney tubule through inhibition of CARBONIC ANHYDRASES.
A value equal to the total volume flow divided by the cross-sectional area of the vascular bed.
A highly poisonous compound that is an inhibitor of many metabolic processes and is used as a test reagent for the function of chemoreceptors. It is also used in many industrial processes.
HYPOVENTILATION syndrome in very obese persons with excessive ADIPOSE TISSUE around the ABDOMEN and DIAPHRAGM. It is characterized by diminished to absent ventilatory chemoresponsiveness; chronic HYPOXIA; HYPERCAPNIA; POLYCYTHEMIA; and long periods of sleep during day and night (HYPERSOMNOLENCE). It is a condition often related to OBSTRUCTIVE SLEEP APNEA but can occur separately.
Stretch receptors found in the bronchi and bronchioles. Pulmonary stretch receptors are sensors for a reflex which stops inspiration. In humans, the reflex is protective and is probably not activated during normal respiration.
The determination of oxygen-hemoglobin saturation of blood either by withdrawing a sample and passing it through a classical photoelectric oximeter or by electrodes attached to some translucent part of the body like finger, earlobe, or skin fold. It includes non-invasive oxygen monitoring by pulse oximetry.
A state in which there is an enhanced potential for sensitivity and an efficient responsiveness to external stimuli.
The act of BREATHING in.
The interruption or removal of any part of the vagus (10th cranial) nerve. Vagotomy may be performed for research or for therapeutic purposes.
Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.

Depression of peripheral chemosensitivity by a dopaminergic mechanism in patients with obstructive sleep apnoea syndrome. (1/1202)

In the present study, respiratory drives to chemical stimuli and peripheral chemosensitivity were evaluated in patients with obstructive sleep apnoea (OSAS). The effects of oral administration of domperidone, a selective dopamine D2-receptor antagonist, were also examined, to study the respiratory effects of endogenous dopamine on peripheral chemoreceptors. Sixteen patients with OSAS and nine normal control subjects were studied. Respiratory responses to hypercapnia and hypoxia were measured using the rebreathing method and isocapnic progressive hypoxia method, respectively. The hypoxic withdrawal test, which measures the decrease in ventilation caused by two breaths of 100% O2 under mild hypercapnic hypoxic conditions (end-tidal oxygen and carbon dioxide tensions approximately 8.0 kPa and 5.3-6.7 kPa, respectively), was used to evaluate peripheral chemosensitivity. In the patients with OSAS, ventilatory responses to hypercapnia and hypoxia were significantly decreased compared with those of control subjects. Hypoxic withdrawal tests showed that peripheral chemosensitivity was significantly lower in patients with OSAS than in normal subjects. Hypercapnic ventilatory response and peripheral chemosensitivity were enhanced by administration of domperidone in the patients with OSAS, although no changes in either of these were observed in the control subjects. The hypoxic ventilatory response and peripheral chemosensitivity in the patients with OSAS were each significantly correlated with severity of hypoxia during sleep. These findings suggest that peripheral chemosensitivity in patients with obstructive sleep apnoea syndrome may be decreased as a result of abnormality in dopaminergic mechanisms and that the reduced chemosensitivity observed in patients with obstructive sleep apnoea syndrome may affect the severity of hypoxia during sleep.  (+info)

Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. (2/1202)

BACKGROUND: The chemoreflexes are an important mechanism for regulation of both breathing and autonomic cardiovascular function. Abnormalities in chemoreflex mechanisms may be implicated in increased cardiovascular stress in patients with obstructive sleep apnea (OSA). We tested the hypothesis that chemoreflex function is altered in patients with OSA. METHODS AND RESULTS: We compared ventilatory, sympathetic, heart rate, and blood pressure responses to hypoxia, hypercapnia, and the cold pressor test in 16 untreated normotensive patients with OSA and 12 normal control subjects matched for age and body mass index. Baseline muscle sympathetic nerve activity (MSNA) was higher in the patients with OSA than in the control subjects (43+/-4 versus 21+/-3 bursts per minute; P<0. 001). During hypoxia, patients with OSA had greater increases in minute ventilation (5.8+/-0.8 versus 3.2+/-0.7 L/min; P=0.02), heart rate (10+/-1 versus 7+/-1 bpm; P=0.03), and mean arterial pressure (7+/-2 versus 0+/-2 mm Hg; P=0.001) than control subjects. Despite higher ventilation and blood pressure (both of which inhibit sympathetic activity) in OSA patients, the MSNA increase during hypoxia was similar in OSA patients and control subjects. When the sympathetic-inhibitory influence of breathing was eliminated by apnea during hypoxia, the increase in MSNA in OSA patients (106+/-20%) was greater than in control subjects (52+/-23%; P=0.04). Prolongation of R-R interval with apnea during hypoxia was also greater in OSA patients (24+/-6%) than in control subjects (7+/-5%) (P=0.04). Autonomic, ventilatory, and blood pressure responses to hypercapnia and the cold pressor test in OSA patients were not different from those observed in control subjects. CONCLUSIONS: OSA is associated with a selective potentiation of autonomic, hemodynamic, and ventilatory responses to peripheral chemoreceptor activation by hypoxia.  (+info)

Hyperglycemia and focal brain ischemia. (3/1202)

The influence of hyperglycemic ischemia on tissue damage and cerebral blood flow was studied in rats subjected to short-lasting transient middle cerebral artery (MCA) occlusion. Rats were made hyperglycemic by intravenous infusion of glucose to a blood glucose level of about 20 mmol/L, and MCA occlusion was performed with the intraluminar filament technique for 15, 30, or 60 minutes, followed by 7 days of recovery. Normoglycemic animals received saline infusion. Perfusion-fixed brains were examined microscopically, and the volumes of selective neuronal necrosis and infarctions were calculated. Cerebral blood flow was measured autoradiographically at the end of 30 minutes of MCA occlusion and after 1 hour of recirculation in normoglycemic and hyperglycemic animals. In two additional groups with 30 minutes of MCA occlusion, CO2 was added to the inhaled gases to create a similar tissue acidosis as in hyperglycemic animals. In one group CBF was measured, and the second group was examined for tissue damage after 7 days. Fifteen and 30 minutes of MCA occlusion in combination with hyperglycemia produced larger infarcts and smaller amounts of selective neuronal necrosis than in rats with normal blood glucose levels, a significant difference in the total volume of ischemic damage being found after 30 minutes of MCA occlusion. After 60 minutes of occlusion, when the volume of infarction was larger, only minor differences between normoglycemic and hyperglycemic animals were found. Hypercapnic animals showed volumes of both selective neuronal necrosis and infarction that were almost identical with those observed in normoglycemic, normocapnic animals. When local CBF was measured in the ischemic core after 30 minutes of occlusion, neither the hyperglycemic nor the hypercapnic animals were found to be significantly different from the normoglycemic group. Brief focal cerebral ischemia combined with hyperglycemia leads to larger and more severe tissue damage. Our results do not support the hypothesis that the aggravated injury is caused by any disturbances in CBF.  (+info)

Spike generation from dorsal roots and cutaneous afferents by hypoxia or hypercapnia in the rat in vivo. (4/1202)

The present study aimed at investigating the responsiveness of different parts of the primary afferent neurones to a brief hypoxia, hypercapnia or ischaemia under in vivo conditions. Action potentials were recorded in separate groups of anaesthetized rats from (i) the peripheral end of the central stump of the cut L3, L4 or L5 dorsal root (dorsal root preparation); (ii) the central end of the peripheral stump of the cut saphenous nerve (saphenous-receptor preparation); (iii) the distal end of a segment of the saphenous nerve cut at both ends (axon preparation). In paralysed animals interruption of artificial ventilation for 20-60 s elicited or increased the frequency of action potentials in both the dorsal root and saphenous-receptor preparations. Activation of these preparations was also achieved by inspiration of gas mixtures containing 10-0% oxygen (mixed with nitrogen) or 20-50% carbon dioxide (mixed with oxygen) which elicited in the blood a decrease in PO2 or an increase in PCO2 with a fall in pH. Occlusion of the femoral artery for 3 min also caused spike generation in the saphenous-receptor preparations with little alteration in blood pressure. All these stimuli failed to evoke action potentials in the axon preparations. Systemic (300 mg kg-1 s.c.) or perineural (2%) capsaicin pretreatment failed to inhibit the effect of hypoxia, hypercapnia or ischaemia, indicating a significant contribution of capsaicin-insensitive neurones to the responses. It is concluded that central and peripheral terminals but not axons of primary afferent neurones are excited by a brief hypoxia or hypercapnia and the peripheral terminals by a short local ischaemia as well. Excitation of central terminals by hypoxia or hypercapnia revealed in this way an antidromic activation of dorsal roots in response to natural chemical stimuli.  (+info)

Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy. (5/1202)

BACKGROUND: Respiratory failure is the commonest cause of death in patients with Duchenne muscular dystrophy (DMD). Life expectancy is less than one year once diurnal hypercapnia develops. This study examines the effects of nasal intermittent positive pressure ventilation (NIPPV) on survival in symptomatic Duchenne patients with established ventilatory failure. METHODS: Nocturnal NIPPV was applied in 23 consecutive patients with DMD of mean (SD) age 20.3 (3.4) years who presented with diurnal and nocturnal hypercapnia. RESULTS: One year and five year survival rates were 85% (95% CI 69 to 100) and 73% (95% CI 53 to 94), respectively. Early changes in arterial blood gas tensions following NIPPV occurred with mean (SD) PO2 increasing from 7.6 (2.1) kPa to 10.8 (1.3) kPa and mean (SD) PCO2 falling from 10.3 (4.5) kPa to 6.1 (1.0) kPa. Improvements in arterial blood gas tensions were maintained over five years. Health perception and social aspects of SF-36 health related quality of life index were reported as equivalent to other groups with nonprogressive disorders using NIPPV. CONCLUSIONS: Nasal ventilation is likely to increase survival in hypercapnic patients with Duchenne muscular dystrophy and should be considered as a treatment option when ventilatory failure develops.  (+info)

Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. (6/1202)

Protons are involved in gating Kir2.3. To identify the molecular motif in the Kir2.3 channel protein that is responsible for this process, experiments were performed using wild-type and mutated Kir2. 3 and Kir2.1. CO2 and low pHi strongly inhibited wild-type Kir2.3 but not Kir2.1 in whole cell voltage clamp and excised inside-out patches. This CO2/pH sensitivity was completely eliminated in a mutant Kir2.3 in which the N terminus was substituted with that in Kir2.1, whereas a similar replacement of its C terminus had no effect. Site-specific mutations of all titratable residues in the N terminus, however, did not change the CO2/pH sensitivity. Using several chimeras generated systematically in the N terminus, a 10-residue motif near the M1 region was identified in which only three amino acids are different between Kir2.3 and Kir2.1. Mutations of these residues, especially Thr53, dramatically reduced the pH sensitivity of Kir2.3. Introducing these residues or even a single threonine to the corresponding positions of Kir2.1 made the mutant channel pH-sensitive. Thus, a critical motif responsible for gating Kir2.3 by protons was identified in the N terminus, which contained about 10 residues centered by Thr53.  (+info)

Exertional dyspnoea in patients with airway obstruction, with and without CO2 retention. (7/1202)

BACKGROUND: Dyspnoea is a common and disabling symptom in patients with cardiopulmonary disease. Unfortunately the mechanisms that produce dyspnoea are still poorly understood. The relationship between dyspnoea and the load on the ventilatory muscles, chemical drive, and ventilatory indices was therefore assessed in patients with obstructive pulmonary disease during an incremental exercise test. METHODS: Fifty patients with a wide range of obstructive pulmonary disease (mean forced expiratory volume in one second (FEV1) 66.1 (28.8)% predicted) performed an incremental cycle ergometer test. A subdivision was made between subjects with CO2 retention (delta PaCO2 > or = 0, n = 22) and subjects without CO2 retention (delta PaCO2 < 0, n = 28) during exercise. During the test dyspnoea (Borg score), oesophageal pressures (mechanical load on the ventilatory muscles (time tension index (TTI), blood gas tensions, and minute ventilation were measured. Correlations for changes in mechanical and chemical factors with changes in dyspnoea score were calculated to assess relevant factors. An analysis of covariance was used to examine whether there was a relationship between dyspnoea score and each of these factors and whether this relationship was different between the subgroups with and without CO2 retention. Multiple regression analysis was used to assess the independent effect of each parameter on dyspnoea sensation. Furthermore, the amplitude of pleural pressure swing ((Pi + Pe)act) generated at maximal work load (Ptot, an indication of the load on all respiratory muscles) was calculated. Analysis of covariance was used to assess whether there was a relationship between tidal volume (VT) and Ptot and whether this relationship was different between the groups (slopes are an expression of the length-tension inappropriateness, LTI). RESULTS: In the total group and the group without CO2 retention a significant correlation between dyspnoea and the increase in the inspiratory time tension index (TTIi) was present. In the group with CO2 retention a significant correlation was seen between dyspnoea and delta PaCO2. The factors delta PaO2, delta VE%MVV and delta (VT/Ti) showed a correlation with a p value of < or = 0.10 both in the total group and in those without CO2 retention. In an analysis of covariance the relationship between dyspnoea score and delta PaCO2 appeared to be significantly different between the two subgroups, being more pronounced in the group with CO2 retention. No other relationships with change in dyspnoea score were found. There was no significant relationship between VT and Ptot in the total group nor in the two subgroups, indicating some length-tension inappropriateness in both groups. CONCLUSIONS: In patients with distinctive pulmonary disease who are normocapnic or hypocapnic the mechanical load (delta TTIi) and length-tension inappropriateness (LTI) on ventilatory muscles seem to be the main determinant of exertional dyspnoea. As soon as hypercapnia occurs, this seems to override all other inputs for dyspnoea.  (+info)

A low concentration of nitrous oxide reduces dyspnoea produced by a combination of hypercapnia and severe elastic load. (8/1202)

We have measured how a low concentration of nitrous oxide affected respiratory sensation and ventilation. Severe dyspnoea was induced in nine normal subjects by a combination of hypercapnia and inspiratory elastic load (50 cm H2O litre-1). Subjects were asked to rate their sensation of respiratory discomfort using a visual analogue scale (VAS) while breathing either 20% nitrous oxide or 20% nitrogen gas mixture. We compared the effects of each gas mixture on respiratory sensation and ventilation using steady-state values of ventilatory variables and VAS scores obtained before, during and after inhalation of each gas mixture. Inhalation of 20% nitrous oxide reduced the sensation of respiratory discomfort from a median VAS score of 6.5 (range 5.0-8.1) before inhalation to 3.6 (2.4-5.9) during inhalation (P < 0.05). There was no significant change in minute ventilation but tidal volume increased during inhalation of 20% nitrogen did not alter VAS scores or ventilatory variables. We found that a low concentration of nitrous oxide greatly alleviated the intensity of dyspnoea without changing respiratory load compensation.  (+info)

Hypercapnia is a state of increased carbon dioxide (CO2) concentration in the blood, typically defined as an arterial CO2 tension (PaCO2) above 45 mmHg. It is often associated with conditions that impair gas exchange or eliminate CO2 from the body, such as chronic obstructive pulmonary disease (COPD), severe asthma, respiratory failure, or certain neuromuscular disorders. Hypercapnia can cause symptoms such as headache, confusion, shortness of breath, and in severe cases, it can lead to life-threatening complications such as respiratory acidosis, coma, and even death if not promptly treated.

Carbon dioxide (CO2) is a colorless, odorless gas that is naturally present in the Earth's atmosphere. It is a normal byproduct of cellular respiration in humans, animals, and plants, and is also produced through the combustion of fossil fuels such as coal, oil, and natural gas.

In medical terms, carbon dioxide is often used as a respiratory stimulant and to maintain the pH balance of blood. It is also used during certain medical procedures, such as laparoscopic surgery, to insufflate (inflate) the abdominal cavity and create a working space for the surgeon.

Elevated levels of carbon dioxide in the body can lead to respiratory acidosis, a condition characterized by an increased concentration of carbon dioxide in the blood and a decrease in pH. This can occur in conditions such as chronic obstructive pulmonary disease (COPD), asthma, or other lung diseases that impair breathing and gas exchange. Symptoms of respiratory acidosis may include shortness of breath, confusion, headache, and in severe cases, coma or death.

Anoxia is a medical condition that refers to the absence or complete lack of oxygen supply in the body or a specific organ, tissue, or cell. This can lead to serious health consequences, including damage or death of cells and tissues, due to the vital role that oxygen plays in supporting cellular metabolism and energy production.

Anoxia can occur due to various reasons, such as respiratory failure, cardiac arrest, severe blood loss, carbon monoxide poisoning, or high altitude exposure. Prolonged anoxia can result in hypoxic-ischemic encephalopathy, a serious condition that can cause brain damage and long-term neurological impairments.

Medical professionals use various diagnostic tests, such as blood gas analysis, pulse oximetry, and electroencephalography (EEG), to assess oxygen levels in the body and diagnose anoxia. Treatment for anoxia typically involves addressing the underlying cause, providing supplemental oxygen, and supporting vital functions, such as breathing and circulation, to prevent further damage.

Chemoreceptor cells are specialized sensory neurons that detect and respond to chemical changes in the internal or external environment. They play a crucial role in maintaining homeostasis within the body by converting chemical signals into electrical impulses, which are then transmitted to the central nervous system for further processing and response.

There are two main types of chemoreceptor cells:

1. Oxygen Chemoreceptors: These cells are located in the carotid bodies near the bifurcation of the common carotid artery and in the aortic bodies close to the aortic arch. They monitor the levels of oxygen, carbon dioxide, and pH in the blood and respond to decreases in oxygen concentration or increases in carbon dioxide and hydrogen ions (indicating acidity) by increasing their firing rate. This signals the brain to increase respiratory rate and depth, thereby restoring normal oxygen levels.

2. Taste Cells: These chemoreceptor cells are found within the taste buds of the tongue and other areas of the oral cavity. They detect specific tastes (salty, sour, sweet, bitter, and umami) by interacting with molecules from food. When a tastant binds to receptors on the surface of a taste cell, it triggers a series of intracellular signaling events that ultimately lead to the generation of an action potential. This information is then relayed to the brain, where it is interpreted as taste sensation.

In summary, chemoreceptor cells are essential for maintaining physiological balance by detecting and responding to chemical stimuli in the body. They play a critical role in regulating vital functions such as respiration and digestion.

Medical Definition of Respiration:

Respiration, in physiology, is the process by which an organism takes in oxygen and gives out carbon dioxide. It's also known as breathing. This process is essential for most forms of life because it provides the necessary oxygen for cellular respiration, where the cells convert biochemical energy from nutrients into adenosine triphosphate (ATP), and releases waste products, primarily carbon dioxide.

In humans and other mammals, respiration is a two-stage process:

1. Breathing (or external respiration): This involves the exchange of gases with the environment. Air enters the lungs through the mouth or nose, then passes through the pharynx, larynx, trachea, and bronchi, finally reaching the alveoli where the actual gas exchange occurs. Oxygen from the inhaled air diffuses into the blood, while carbon dioxide, a waste product of metabolism, diffuses from the blood into the alveoli to be exhaled.

2. Cellular respiration (or internal respiration): This is the process by which cells convert glucose and other nutrients into ATP, water, and carbon dioxide in the presence of oxygen. The carbon dioxide produced during this process then diffuses out of the cells and into the bloodstream to be exhaled during breathing.

In summary, respiration is a vital physiological function that enables organisms to obtain the necessary oxygen for cellular metabolism while eliminating waste products like carbon dioxide.

Respiratory acidosis is a medical condition that occurs when the lungs are not able to remove enough carbon dioxide (CO2) from the body, leading to an increase in the amount of CO2 in the bloodstream and a decrease in the pH of the blood. This can happen due to various reasons such as chronic lung diseases like emphysema or COPD, severe asthma attacks, neuromuscular disorders that affect breathing, or when someone is not breathing deeply or frequently enough, such as during sleep apnea or drug overdose.

Respiratory acidosis can cause symptoms such as headache, confusion, shortness of breath, and in severe cases, coma and even death. Treatment for respiratory acidosis depends on the underlying cause but may include oxygen therapy, bronchodilators, or mechanical ventilation to help support breathing.

Hypocapnia is a medical term that refers to a condition where there is an abnormally low level of carbon dioxide (CO2) in the blood. Carbon dioxide is a gas that is produced by the body's cells as they carry out their normal metabolic processes, and it is transported in the bloodstream to the lungs, where it is exhaled out of the body during breathing.

Hypocapnia can occur when a person breathes too quickly or too deeply, which can cause too much CO2 to be exhaled from the body. This condition can also result from certain medical conditions that affect breathing, such as chronic obstructive pulmonary disease (COPD), asthma, and sleep apnea.

Mild hypocapnia may not cause any noticeable symptoms, but more severe cases can lead to symptoms such as dizziness, lightheadedness, headache, confusion, and rapid breathing. In extreme cases, it can lead to life-threatening conditions such as respiratory failure or cardiac arrest.

Hypocapnia is typically diagnosed through blood tests that measure the level of CO2 in the blood. Treatment for hypocapnia may involve addressing any underlying medical conditions that are causing it, as well as providing supportive care to help the person breathe more effectively.

Pulmonary ventilation, also known as pulmonary respiration or simply ventilation, is the process of moving air into and out of the lungs to facilitate gas exchange. It involves two main phases: inhalation (or inspiration) and exhalation (or expiration). During inhalation, the diaphragm and external intercostal muscles contract, causing the chest volume to increase and the pressure inside the chest to decrease, which then draws air into the lungs. Conversely, during exhalation, these muscles relax, causing the chest volume to decrease and the pressure inside the chest to increase, which pushes air out of the lungs. This process ensures that oxygen-rich air from the atmosphere enters the alveoli (air sacs in the lungs), where it can diffuse into the bloodstream, while carbon dioxide-rich air from the bloodstream in the capillaries surrounding the alveoli is expelled out of the body.

In the context of medicine, and specifically in physiology and respiratory therapy, partial pressure (P or p) is a measure of the pressure exerted by an individual gas in a mixture of gases. It's commonly used to describe the concentrations of gases in the body, such as oxygen (PO2), carbon dioxide (PCO2), and nitrogen (PN2).

The partial pressure of a specific gas is calculated as the fraction of that gas in the total mixture multiplied by the total pressure of the mixture. This concept is based on Dalton's law, which states that the total pressure exerted by a mixture of gases is equal to the sum of the pressures exerted by each individual gas.

For example, in room air at sea level, the partial pressure of oxygen (PO2) is approximately 160 mmHg (mm of mercury), which represents about 21% of the total barometric pressure (760 mmHg). This concept is crucial for understanding gas exchange in the lungs and how gases move across membranes, such as from alveoli to blood and vice versa.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Cerebrovascular circulation refers to the network of blood vessels that supply oxygenated blood and nutrients to the brain tissue, and remove waste products. It includes the internal carotid arteries, vertebral arteries, circle of Willis, and the intracranial arteries that branch off from them.

The internal carotid arteries and vertebral arteries merge to form the circle of Willis, a polygonal network of vessels located at the base of the brain. The anterior cerebral artery, middle cerebral artery, posterior cerebral artery, and communicating arteries are the major vessels that branch off from the circle of Willis and supply blood to different regions of the brain.

Interruptions or abnormalities in the cerebrovascular circulation can lead to various neurological conditions such as stroke, transient ischemic attack (TIA), and vascular dementia.

Respiratory mechanics refers to the biomechanical properties and processes that involve the movement of air through the respiratory system during breathing. It encompasses the mechanical behavior of the lungs, chest wall, and the muscles of respiration, including the diaphragm and intercostal muscles.

Respiratory mechanics includes several key components:

1. **Compliance**: The ability of the lungs and chest wall to expand and recoil during breathing. High compliance means that the structures can easily expand and recoil, while low compliance indicates greater resistance to expansion and recoil.
2. **Resistance**: The opposition to airflow within the respiratory system, primarily due to the friction between the air and the airway walls. Airway resistance is influenced by factors such as airway diameter, length, and the viscosity of the air.
3. **Lung volumes and capacities**: These are the amounts of air present in the lungs during different phases of the breathing cycle. They include tidal volume (the amount of air inspired or expired during normal breathing), inspiratory reserve volume (additional air that can be inspired beyond the tidal volume), expiratory reserve volume (additional air that can be exhaled beyond the tidal volume), and residual volume (the air remaining in the lungs after a forced maximum exhalation).
4. **Work of breathing**: The energy required to overcome the resistance and elastic forces during breathing. This work is primarily performed by the respiratory muscles, which contract to generate negative intrathoracic pressure and expand the chest wall, allowing air to flow into the lungs.
5. **Pressure-volume relationships**: These describe how changes in lung volume are associated with changes in pressure within the respiratory system. Important pressure components include alveolar pressure (the pressure inside the alveoli), pleural pressure (the pressure between the lungs and the chest wall), and transpulmonary pressure (the difference between alveolar and pleural pressures).

Understanding respiratory mechanics is crucial for diagnosing and managing various respiratory disorders, such as chronic obstructive pulmonary disease (COPD), asthma, and restrictive lung diseases.

Blood gas analysis is a medical test that measures the levels of oxygen and carbon dioxide in the blood, as well as the pH level, which indicates the acidity or alkalinity of the blood. This test is often used to evaluate lung function, respiratory disorders, and acid-base balance in the body. It can also be used to monitor the effectiveness of treatments for conditions such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory illnesses. The analysis is typically performed on a sample of arterial blood, although venous blood may also be used in some cases.

Apnea is a medical condition defined as the cessation of breathing for 10 seconds or more. It can occur during sleep (sleep apnea) or while awake (wakeful apnea). There are different types of sleep apnea, including obstructive sleep apnea, central sleep apnea, and complex sleep apnea syndrome. Obstructive sleep apnea occurs when the airway becomes blocked during sleep, while central sleep apnea occurs when the brain fails to signal the muscles to breathe. Complex sleep apnea syndrome, also known as treatment-emergent central sleep apnea, is a combination of obstructive and central sleep apneas. Sleep apnea can lead to various complications, such as fatigue, difficulty concentrating, high blood pressure, heart disease, and stroke.

Acidosis is a medical condition that occurs when there is an excess accumulation of acid in the body or when the body loses its ability to effectively regulate the pH level of the blood. The normal pH range of the blood is slightly alkaline, between 7.35 and 7.45. When the pH falls below 7.35, it is called acidosis.

Acidosis can be caused by various factors, including impaired kidney function, respiratory problems, diabetes, severe dehydration, alcoholism, and certain medications or toxins. There are two main types of acidosis: metabolic acidosis and respiratory acidosis.

Metabolic acidosis occurs when the body produces too much acid or is unable to eliminate it effectively. This can be caused by conditions such as diabetic ketoacidosis, lactic acidosis, kidney failure, and ingestion of certain toxins.

Respiratory acidosis, on the other hand, occurs when the lungs are unable to remove enough carbon dioxide from the body, leading to an accumulation of acid. This can be caused by conditions such as chronic obstructive pulmonary disease (COPD), asthma, and sedative overdose.

Symptoms of acidosis may include fatigue, shortness of breath, confusion, headache, rapid heartbeat, and in severe cases, coma or even death. Treatment for acidosis depends on the underlying cause and may include medications, oxygen therapy, fluid replacement, and dialysis.

Tidal volume (Vt) is the amount of air that moves into or out of the lungs during normal, resting breathing. It is the difference between the volume of air in the lungs at the end of a normal expiration and the volume at the end of a normal inspiration. In other words, it's the volume of each breath you take when you are not making any effort to breathe more deeply.

The average tidal volume for an adult human is around 500 milliliters (ml) per breath, but this can vary depending on factors such as age, sex, size, and fitness level. During exercise or other activities that require increased oxygen intake, tidal volume may increase to meet the body's demands for more oxygen.

Tidal volume is an important concept in respiratory physiology and clinical medicine, as it can be used to assess lung function and diagnose respiratory disorders such as chronic obstructive pulmonary disease (COPD) or asthma.

Acid-base equilibrium refers to the balance between the concentration of acids and bases in a solution, which determines its pH level. In a healthy human body, maintaining acid-base equilibrium is crucial for proper cellular function and homeostasis.

The balance is maintained by several buffering systems in the body, including the bicarbonate buffer system, which helps to regulate the pH of blood. This system involves the reaction between carbonic acid (a weak acid) and bicarbonate ions (a base) to form water and carbon dioxide.

The balance between acids and bases is carefully regulated by the body's respiratory and renal systems. The lungs control the elimination of carbon dioxide, a weak acid, through exhalation, while the kidneys regulate the excretion of hydrogen ions and the reabsorption of bicarbonate ions.

When the balance between acids and bases is disrupted, it can lead to acid-base disorders such as acidosis (excessive acidity) or alkalosis (excessive basicity). These conditions can have serious consequences on various organ systems if left untreated.

The carotid body is a small chemoreceptor organ located near the bifurcation of the common carotid artery into the internal and external carotid arteries. It plays a crucial role in the regulation of respiration, blood pressure, and pH balance by detecting changes in the chemical composition of the blood, particularly oxygen levels, carbon dioxide levels, and hydrogen ion concentration (pH).

The carotid body contains specialized nerve endings called glomus cells that are sensitive to changes in these chemical parameters. When there is a decrease in oxygen or an increase in carbon dioxide or hydrogen ions, the glomus cells release neurotransmitters such as acetylcholine and dopamine, which activate afferent nerve fibers leading to the brainstem's nucleus tractus solitarius. This information is then integrated with other physiological signals in the brainstem, resulting in appropriate adjustments in breathing rate, depth, and pattern, as well as changes in heart rate and blood vessel diameter to maintain homeostasis.

Dysfunction of the carotid body can lead to various disorders, such as hypertension, sleep apnea, and chronic lung disease. In some cases, overactivity of the carotid body may result in conditions like primary breathing pattern disorders or pseudohypoxia, where the body responds as if it is experiencing hypoxia despite normal oxygen levels.

Hyperoxia is a medical term that refers to an abnormally high concentration of oxygen in the body or in a specific organ or tissue. It is often defined as the partial pressure of oxygen (PaO2) in arterial blood being greater than 100 mmHg.

This condition can occur due to various reasons such as exposure to high concentrations of oxygen during medical treatments, like mechanical ventilation, or due to certain diseases and conditions that cause the body to produce too much oxygen.

While oxygen is essential for human life, excessive levels can be harmful and lead to oxidative stress, which can damage cells and tissues. Hyperoxia has been linked to various complications, including lung injury, retinopathy of prematurity, and impaired wound healing.

Pia Mater is the inner-most layer of the meninges, which are the protective coverings of the brain and spinal cord. It is a very thin and highly vascularized (rich in blood vessels) membrane that closely adheres to the surface of the brain. The name "Pia Mater" comes from Latin, meaning "tender mother." This layer provides nutrition and protection to the brain, and it also allows for the movement and flexibility of the brain within the skull.

Hyperventilation is a medical condition characterized by an increased respiratory rate and depth, resulting in excessive elimination of carbon dioxide (CO2) from the body. This leads to hypocapnia (low CO2 levels in the blood), which can cause symptoms such as lightheadedness, dizziness, confusion, tingling sensations in the extremities, and muscle spasms. Hyperventilation may occur due to various underlying causes, including anxiety disorders, lung diseases, neurological conditions, or certain medications. It is essential to identify and address the underlying cause of hyperventilation for proper treatment.

Asphyxia is a medical condition that occurs when there is insufficient oxygen supply or excessive carbon dioxide buildup in the body, leading to impaired respiration and oxygenation of organs. This can result in unconsciousness, damage to internal organs, and potentially death if not treated promptly.

Asphyxia can be caused by various factors such as strangulation, choking, smoke inhalation, chemical exposure, or drowning. Symptoms of asphyxia may include shortness of breath, coughing, wheezing, cyanosis (bluish discoloration of the skin and mucous membranes), rapid heartbeat, confusion, and eventually loss of consciousness.

Immediate medical attention is required for individuals experiencing symptoms of asphyxia. Treatment may involve providing supplemental oxygen, removing the source of obstruction or exposure to harmful substances, and supporting respiratory function with mechanical ventilation if necessary. Prevention measures include avoiding hazardous environments, using proper safety equipment, and seeking prompt medical attention in case of suspected asphyxiation.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Hypoventilation is a medical condition that refers to the decreased rate and depth of breathing, which leads to an inadequate exchange of oxygen and carbon dioxide in the lungs. As a result, there is an increase in the levels of carbon dioxide (hypercapnia) and a decrease in the levels of oxygen (hypoxemia) in the blood. Hypoventilation can occur due to various reasons such as respiratory muscle weakness, sedative or narcotic overdose, chest wall deformities, neuromuscular disorders, obesity hypoventilation syndrome, and sleep-disordered breathing. Prolonged hypoventilation can lead to serious complications such as respiratory failure, cardiac arrhythmias, and even death.

Whole-body plethysmography is a non-invasive medical technique used to measure changes in the volume of air in the lungs and chest during breathing. It is often utilized in the diagnosis and assessment of various respiratory disorders such as chronic obstructive pulmonary disease (COPD), asthma, and restrictive lung diseases.

During whole-body plethysmography, the patient enters a sealed, clear chamber, usually in a standing or sitting position. The patient is instructed to breathe normally while the machine measures changes in pressure within the chamber as the chest and abdomen move during respiration. These measurements are then used to calculate lung volume, airflow, and other respiratory parameters.

This technique provides valuable information about the functional status of the lungs and can help healthcare providers make informed decisions regarding diagnosis, treatment planning, and disease monitoring.

The phrenic nerve is a motor nerve that originates from the cervical spine (C3-C5) and descends through the neck to reach the diaphragm, which is the primary muscle used for breathing. The main function of the phrenic nerve is to innervate the diaphragm and control its contraction and relaxation, thereby enabling respiration.

Damage or injury to the phrenic nerve can result in paralysis of the diaphragm, leading to difficulty breathing and potentially causing respiratory failure. Certain medical conditions, such as neuromuscular disorders, spinal cord injuries, and tumors, can affect the phrenic nerve and impair its function.

A diaphragm is a thin, dome-shaped muscle that separates the chest cavity from the abdominal cavity. It plays a vital role in the process of breathing as it contracts and flattens to draw air into the lungs (inhalation) and relaxes and returns to its domed shape to expel air out of the lungs (exhalation).

In addition, a diaphragm is also a type of barrier method of birth control. It is a flexible dome-shaped device made of silicone that fits over the cervix inside the vagina. When used correctly and consistently, it prevents sperm from entering the uterus and fertilizing an egg, thereby preventing pregnancy.

Respiratory physiological phenomena refer to the various mechanical, chemical, and biological processes and functions that occur in the respiratory system during breathing and gas exchange. These phenomena include:

1. Ventilation: The movement of air into and out of the lungs, which is achieved through the contraction and relaxation of the diaphragm and intercostal muscles.
2. Gas Exchange: The diffusion of oxygen (O2) from the alveoli into the bloodstream and carbon dioxide (CO2) from the bloodstream into the alveoli.
3. Respiratory Mechanics: The physical properties and forces that affect the movement of air in and out of the lungs, such as lung compliance, airway resistance, and chest wall elasticity.
4. Control of Breathing: The regulation of ventilation by the central nervous system through the integration of sensory information from chemoreceptors and mechanoreceptors in the respiratory system.
5. Acid-Base Balance: The maintenance of a stable pH level in the blood through the regulation of CO2 elimination and bicarbonate balance by the respiratory and renal systems.
6. Oxygen Transport: The binding of O2 to hemoglobin in the red blood cells and its delivery to the tissues for metabolic processes.
7. Defense Mechanisms: The various protective mechanisms that prevent the entry and colonization of pathogens and foreign particles into the respiratory system, such as mucociliary clearance, cough reflex, and immune responses.

Artificial respiration is an emergency procedure that can be used to provide oxygen to a person who is not breathing or is breathing inadequately. It involves manually forcing air into the lungs, either by compressing the chest or using a device to deliver breaths. The goal of artificial respiration is to maintain adequate oxygenation of the body's tissues and organs until the person can breathe on their own or until advanced medical care arrives. Artificial respiration may be used in conjunction with cardiopulmonary resuscitation (CPR) in cases of cardiac arrest.

Cerebral arteries refer to the blood vessels that supply oxygenated blood to the brain. These arteries branch off from the internal carotid arteries and the vertebral arteries, which combine to form the basilar artery. The major cerebral arteries include:

1. Anterior cerebral artery (ACA): This artery supplies blood to the frontal lobes of the brain, including the motor and sensory cortices responsible for movement and sensation in the lower limbs.
2. Middle cerebral artery (MCA): The MCA is the largest of the cerebral arteries and supplies blood to the lateral surface of the brain, including the temporal, parietal, and frontal lobes. It is responsible for providing blood to areas involved in motor function, sensory perception, speech, memory, and vision.
3. Posterior cerebral artery (PCA): The PCA supplies blood to the occipital lobe, which is responsible for visual processing, as well as parts of the temporal and parietal lobes.
4. Anterior communicating artery (ACoA) and posterior communicating arteries (PComAs): These are small arteries that connect the major cerebral arteries, forming an important circulatory network called the Circle of Willis. The ACoA connects the two ACAs, while the PComAs connect the ICA with the PCA and the basilar artery.

These cerebral arteries play a crucial role in maintaining proper brain function by delivering oxygenated blood to various regions of the brain. Any damage or obstruction to these arteries can lead to serious neurological conditions, such as strokes or transient ischemic attacks (TIAs).

Respiratory muscles are a group of muscles involved in the process of breathing. They include the diaphragm, intercostal muscles (located between the ribs), scalene muscles (located in the neck), and abdominal muscles. These muscles work together to allow the chest cavity to expand or contract, which draws air into or pushes it out of the lungs. The diaphragm is the primary muscle responsible for breathing, contracting to increase the volume of the chest cavity and draw air into the lungs during inhalation. The intercostal muscles help to further expand the ribcage, while the abdominal muscles assist in exhaling by compressing the abdomen and pushing up on the diaphragm.

Respiratory insufficiency is a condition characterized by the inability of the respiratory system to maintain adequate gas exchange, resulting in an inadequate supply of oxygen and/or removal of carbon dioxide from the body. This can occur due to various causes, such as lung diseases (e.g., chronic obstructive pulmonary disease, pneumonia), neuromuscular disorders (e.g., muscular dystrophy, spinal cord injury), or other medical conditions that affect breathing mechanics and/or gas exchange.

Respiratory insufficiency can manifest as hypoxemia (low oxygen levels in the blood) and/or hypercapnia (high carbon dioxide levels in the blood). Symptoms of respiratory insufficiency may include shortness of breath, rapid breathing, fatigue, confusion, and in severe cases, loss of consciousness or even death. Treatment depends on the underlying cause and severity of the condition and may include oxygen therapy, mechanical ventilation, medications, and/or other supportive measures.

The intercostal muscles are a group of muscles located between the ribs (intercostal spaces) in the thoracic region of the body. They play a crucial role in the process of breathing by assisting in the expansion and contraction of the chest wall during inspiration and expiration.

There are two sets of intercostal muscles: the external intercostals and the internal intercostals. The external intercostals run from the lower edge of one rib to the upper edge of the next lower rib, forming a layer that extends from the tubercles of the ribs down to the costochondral junctions (where the rib meets the cartilage). These muscles help elevate the ribcage during inspiration.

The internal intercostals are deeper and run in the opposite direction, originating at the lower edge of a rib and inserting into the upper edge of the next higher rib. They assist in lowering the ribcage during expiration.

Additionally, there is a third layer called the innermost intercostal muscles, which are even deeper than the internal intercostals and have similar functions. The intercostal membranes connect the ends of the ribs and complete the muscle layers between the ribs. Together, these muscles help maintain the structural integrity of the chest wall and contribute to respiratory function.

Acetazolamide is a medication that belongs to a class of drugs called carbonic anhydrase inhibitors. It works by decreasing the production of bicarbonate in the body, which helps to reduce the amount of fluid in the eye and brain, making it useful for treating conditions such as glaucoma and epilepsy.

In medical terms, acetazolamide can be defined as: "A carbonic anhydrase inhibitor that is used to treat glaucoma, epilepsy, altitude sickness, and other conditions. It works by decreasing the production of bicarbonate in the body, which helps to reduce the amount of fluid in the eye and brain."

Acetazolamide may also be used for other purposes not listed here, so it is important to consult with a healthcare provider for specific medical advice.

The medulla oblongata is a part of the brainstem that is located in the posterior portion of the brainstem and continues with the spinal cord. It plays a vital role in controlling several critical bodily functions, such as breathing, heart rate, and blood pressure. The medulla oblongata also contains nerve pathways that transmit sensory information from the body to the brain and motor commands from the brain to the muscles. Additionally, it is responsible for reflexes such as vomiting, swallowing, coughing, and sneezing.

The Respiratory Center is a group of neurons located in the medulla oblongata and pons within the brainstem that are responsible for controlling and regulating breathing. It receives inputs from various sources, including chemoreceptors that detect changes in oxygen and carbon dioxide levels in the blood, as well as mechanoreceptors that provide information about the status of the lungs and airways. Based on these inputs, the respiratory center generates signals that are sent to the diaphragm and intercostal muscles to control the rate and depth of breathing, ensuring adequate gas exchange in the lungs.

Damage to the respiratory center can result in abnormal breathing patterns or even respiratory failure, highlighting its critical role in maintaining proper respiratory function.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Insufflation is a medical term that refers to the act of introducing a gas or vapor into a body cavity or passage, typically through a tube or surgical instrument. This procedure is often used in medical and surgical settings for various purposes, such as:

* To administer anesthesia during surgery (e.g., introducing nitrous oxide or other gases into the lungs)
* To introduce medication or other substances into the body (e.g., insufflating steroids into a joint)
* To perform diagnostic procedures (e.g., insufflating air or a contrast agent into the gastrointestinal tract to visualize it with X-rays)
* To clean out a body cavity (e.g., irrigating and insufflating the bladder during urological procedures).

It's important to note that insufflation should be performed under controlled conditions, as there are potential risks associated with introducing gases or vapors into the body, such as barotrauma (damage caused by changes in pressure) and infection.

Bicarbonates, also known as sodium bicarbonate or baking soda, is a chemical compound with the formula NaHCO3. In the context of medical definitions, bicarbonates refer to the bicarbonate ion (HCO3-), which is an important buffer in the body that helps maintain normal pH levels in blood and other bodily fluids.

The balance of bicarbonate and carbonic acid in the body helps regulate the acidity or alkalinity of the blood, a condition known as pH balance. Bicarbonates are produced by the body and are also found in some foods and drinking water. They work to neutralize excess acid in the body and help maintain the normal pH range of 7.35 to 7.45.

In medical testing, bicarbonate levels may be measured as part of an electrolyte panel or as a component of arterial blood gas (ABG) analysis. Low bicarbonate levels can indicate metabolic acidosis, while high levels can indicate metabolic alkalosis. Both conditions can have serious consequences if not treated promptly and appropriately.

Doxapram is a central stimulant drug that acts on the respiratory system. It is primarily used to stimulate breathing and promote wakefulness in patients who have reduced levels of consciousness or are experiencing respiratory depression due to various causes, such as anesthesia or medication overdose.

Doxapram works by stimulating the respiratory center in the brainstem, increasing the rate and depth of breathing. It also has a mild stimulant effect on the central nervous system, which can help to promote wakefulness and alertness.

The drug is available in various forms, including injectable solutions and inhaled powders. It is typically administered under medical supervision in a hospital or clinical setting due to its potential for causing adverse effects such as agitation, anxiety, and increased heart rate and blood pressure.

It's important to note that doxapram should only be used under the direction of a healthcare professional, as improper use can lead to serious complications.

The brainstem is the lower part of the brain that connects to the spinal cord. It consists of the midbrain, pons, and medulla oblongata. The brainstem controls many vital functions such as heart rate, breathing, and blood pressure. It also serves as a relay center for sensory and motor information between the cerebral cortex and the rest of the body. Additionally, several cranial nerves originate from the brainstem, including those that control eye movements, facial movements, and hearing.

Pulmonary gas exchange is the process by which oxygen (O2) from inhaled air is transferred to the blood, and carbon dioxide (CO2), a waste product of metabolism, is removed from the blood and exhaled. This process occurs in the lungs, primarily in the alveoli, where the thin walls of the alveoli and capillaries allow for the rapid diffusion of gases between them. The partial pressure gradient between the alveolar air and the blood in the pulmonary capillaries drives this diffusion process. Oxygen-rich blood is then transported to the body's tissues, while CO2-rich blood returns to the lungs to be exhaled.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

Heart rate is the number of heartbeats per unit of time, often expressed as beats per minute (bpm). It can vary significantly depending on factors such as age, physical fitness, emotions, and overall health status. A resting heart rate between 60-100 bpm is generally considered normal for adults, but athletes and individuals with high levels of physical fitness may have a resting heart rate below 60 bpm due to their enhanced cardiovascular efficiency. Monitoring heart rate can provide valuable insights into an individual's health status, exercise intensity, and response to various treatments or interventions.

Carbonic anhydrase inhibitors are a class of medications that work by blocking the action of carbonic anhydrase, an enzyme that is responsible for converting carbon dioxide and water into carbonic acid. This enzyme is found in various tissues throughout the body, including the eyes, kidneys, and nervous system.

By inhibiting the activity of carbonic anhydrase, these medications can reduce the production of bicarbonate ions in the body, which helps to lower the rate of fluid buildup in certain tissues. As a result, carbonic anhydrase inhibitors are often used to treat conditions such as glaucoma, epilepsy, and altitude sickness.

In glaucoma, for example, these medications can help to reduce pressure within the eye by promoting the drainage of fluid from the eye. In epilepsy, carbonic anhydrase inhibitors can help to reduce the frequency and severity of seizures by reducing the acidity of the blood and brain. And in altitude sickness, these medications can help to alleviate symptoms such as headache, nausea, and shortness of breath by reducing the buildup of fluid in the lungs.

Some common examples of carbonic anhydrase inhibitors include acetazolamide, methazolamide, and dorzolamide. These medications are available in various forms, including tablets, capsules, and eye drops, and are typically prescribed by a healthcare professional.

Blood flow velocity is the speed at which blood travels through a specific part of the vascular system. It is typically measured in units of distance per time, such as centimeters per second (cm/s) or meters per second (m/s). Blood flow velocity can be affected by various factors, including cardiac output, vessel diameter, and viscosity of the blood. Measuring blood flow velocity is important in diagnosing and monitoring various medical conditions, such as heart disease, stroke, and peripheral vascular disease.

Sodium cyanide is a highly toxic chemical compound with the formula NaCN. It is a white solid that is readily soluble in water, and it has a bitter, almond-like odor that some people can detect. Sodium cyanide is used in various industrial processes, including metal cleaning and electroplating, but it is perhaps best known as a poison.

Cyanide ions (CN-) are extremely toxic because they bind to the ferric iron (Fe3+) in cytochrome c oxidase, a crucial enzyme in the mitochondria that is responsible for cellular respiration and energy production. When cyanide ions bind to this enzyme, it becomes unable to function, leading to a rapid depletion of ATP (adenosine triphosphate) and an accumulation of lactic acid, which can cause metabolic acidosis, coma, and death within minutes to hours.

It is important to note that sodium cyanide should be handled with extreme care and only by trained professionals who are familiar with its hazards and proper safety protocols. Exposure to this compound can cause severe health effects, including respiratory failure, convulsions, and cardiac arrest.

Obesity Hypoventilation Syndrome (OHS) is a medical condition characterized by the presence of obesity (generally defined as a body mass index of 30 or higher) and chronic hypoventilation, which means that the person is not breathing adequately, resulting in low levels of oxygen and high levels of carbon dioxide in the blood.

In OHS, the excess weight of the chest walls makes it difficult for the respiratory muscles to work effectively, leading to reduced lung volumes and impaired gas exchange. This results in chronic hypoxemia (low oxygen levels) and hypercapnia (high carbon dioxide levels) during wakefulness and sleep.

OHS is often associated with obstructive sleep apnea (OSA), a condition characterized by repeated episodes of upper airway obstruction during sleep, which can further exacerbate hypoventilation. However, not all patients with OHS have OSA, and vice versa.

The diagnosis of OHS is typically made based on the presence of obesity, chronic hypoventilation (as evidenced by elevated arterial carbon dioxide levels), and the absence of other causes of hypoventilation. Treatment usually involves the use of non-invasive ventilation to support breathing and improve gas exchange, as well as weight loss interventions to address the underlying obesity.

Pulmonary stretch receptors are nerve endings (receptors) located in the smooth muscle of the airways, specifically within the bronchi and bronchioles of the lungs. They are also known as irritant receptors or slowly adapting receptors. These receptors respond to mechanical deformation caused by lung inflation during breathing. When the lungs stretch, these receptors send signals to the brain via the vagus nerve, which helps regulate breathing patterns and depth. This reflex is known as the Hering-Breuer reflex, which can inhibit inspiration and promote expiration, preventing overinflation of the lungs and helping maintain lung volume within normal ranges.

Pulse oximetry is a noninvasive method for monitoring a person's oxygen saturation (SO2) and pulse rate. It uses a device called a pulse oximeter, which measures the amount of oxygen-carrying hemoglobin in the blood compared to the amount of hemoglobin that is not carrying oxygen. This measurement is expressed as a percentage, known as oxygen saturation (SpO2). Normal oxygen saturation levels are generally 95% or above at sea level. Lower levels may indicate hypoxemia, a condition where there is not enough oxygen in the blood to meet the body's needs. Pulse oximetry is commonly used in hospitals and other healthcare settings to monitor patients during surgery, in intensive care units, and in sleep studies to detect conditions such as sleep apnea. It can also be used by individuals with certain medical conditions, such as chronic obstructive pulmonary disease (COPD), to monitor their oxygen levels at home.

Wakefulness is a state of consciousness in which an individual is alert and aware of their surroundings. It is characterized by the ability to perceive, process, and respond to stimuli in a purposeful manner. In a medical context, wakefulness is often assessed using measures such as the electroencephalogram (EEG) to evaluate brain activity patterns associated with consciousness.

Wakefulness is regulated by several interconnected neural networks that promote arousal and attention. These networks include the ascending reticular activating system (ARAS), which consists of a group of neurons located in the brainstem that project to the thalamus and cerebral cortex, as well as other regions involved in regulating arousal and attention, such as the basal forebrain and hypothalamus.

Disorders of wakefulness can result from various underlying conditions, including neurological disorders, sleep disorders, medication side effects, or other medical conditions that affect brain function. Examples of such disorders include narcolepsy, insomnia, hypersomnia, and various forms of encephalopathy or brain injury.

Inhalation is the act or process of breathing in where air or other gases are drawn into the lungs. It's also known as inspiration. This process involves several muscles, including the diaphragm and intercostal muscles between the ribs, working together to expand the chest cavity and decrease the pressure within the thorax, which then causes air to flow into the lungs.

In a medical context, inhalation can also refer to the administration of medications or therapeutic gases through the respiratory tract, typically using an inhaler or nebulizer. This route of administration allows for direct delivery of the medication to the lungs, where it can be quickly absorbed into the bloodstream and exert its effects.

A vagotomy is a surgical procedure that involves cutting or blocking the vagus nerve, which is a parasympathetic nerve that runs from the brainstem to the abdomen and helps regulate many bodily functions such as heart rate, gastrointestinal motility, and digestion. In particular, vagotomy is often performed as a treatment for peptic ulcers, as it can help reduce gastric acid secretion.

There are several types of vagotomy procedures, including:

1. Truncal vagotomy: This involves cutting the main trunks of the vagus nerve as they enter the abdomen. It is a more extensive procedure that reduces gastric acid secretion significantly but can also lead to side effects such as delayed gastric emptying and diarrhea.
2. Selective vagotomy: This involves cutting only the branches of the vagus nerve that supply the stomach, leaving the rest of the nerve intact. It is a less extensive procedure that reduces gastric acid secretion while minimizing side effects.
3. Highly selective vagotomy (HSV): Also known as parietal cell vagotomy, this involves cutting only the branches of the vagus nerve that supply the acid-secreting cells in the stomach. It is a highly targeted procedure that reduces gastric acid secretion while minimizing side effects such as delayed gastric emptying and diarrhea.

Vagotomy is typically performed using laparoscopic or open surgical techniques, depending on the patient's individual needs and the surgeon's preference. While vagotomy can be effective in treating peptic ulcers, it is not commonly performed today due to the development of less invasive treatments such as proton pump inhibitors (PPIs) that reduce gastric acid secretion without surgery.

Respiratory Function Tests (RFTs) are a group of medical tests that measure how well your lungs take in and exhale air, and how well they transfer oxygen and carbon dioxide into and out of your blood. They can help diagnose certain lung disorders, measure the severity of lung disease, and monitor response to treatment.

RFTs include several types of tests, such as:

1. Spirometry: This test measures how much air you can exhale and how quickly you can do it. It's often used to diagnose and monitor conditions like asthma, chronic obstructive pulmonary disease (COPD), and other lung diseases.
2. Lung volume testing: This test measures the total amount of air in your lungs. It can help diagnose restrictive lung diseases, such as pulmonary fibrosis or sarcoidosis.
3. Diffusion capacity testing: This test measures how well oxygen moves from your lungs into your bloodstream. It's often used to diagnose and monitor conditions like pulmonary fibrosis, interstitial lung disease, and other lung diseases that affect the ability of the lungs to transfer oxygen to the blood.
4. Bronchoprovocation testing: This test involves inhaling a substance that can cause your airways to narrow, such as methacholine or histamine. It's often used to diagnose and monitor asthma.
5. Exercise stress testing: This test measures how well your lungs and heart work together during exercise. It's often used to diagnose lung or heart disease.

Overall, Respiratory Function Tests are an important tool for diagnosing and managing a wide range of lung conditions.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Vasodilation is the widening or increase in diameter of blood vessels, particularly the involuntary relaxation of the smooth muscle in the tunica media (middle layer) of the arteriole walls. This results in an increase in blood flow and a decrease in vascular resistance. Vasodilation can occur due to various physiological and pathophysiological stimuli, such as local metabolic demands, neural signals, or pharmacological agents. It plays a crucial role in regulating blood pressure, tissue perfusion, and thermoregulation.

No FAQ available that match "hypercapnia"

No images available that match "hypercapnia"