Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID.
An enzyme that catalyzes the synthesis of hydroxymethylglutaryl-CoA from acetyl-CoA and acetoacetyl-CoA. This is a key enzyme in steroid biosynthesis. This enzyme was formerly listed as EC 4.1.3.5.
An enzyme that catalyzes the formation of CoA derivatives from ATP, acetate, and CoA to form AMP, pyrophosphate, and acetyl CoA. It acts also on propionates and acrylates. EC 6.2.1.1.
An enzyme that catalyzes reversibly the hydrolysis of acetyl-CoA to yield CoA and acetate. The enzyme is involved in the oxidation of fatty acids. EC 3.1.2.1.
Compounds that inhibit HMG-CoA reductases. They have been shown to directly lower cholesterol synthesis.
A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver.
Coenzyme A is an essential coenzyme that plays a crucial role in various metabolic processes, particularly in the transfer and activation of acetyl groups in important biochemical reactions such as fatty acid synthesis and oxidation, and the citric acid cycle.
Mevalonic acid is a crucial intermediate compound in the HMG-CoA reductase pathway, which is a metabolic route that produces cholesterol, other steroids, and isoprenoids in cells.
A derivative of LOVASTATIN and potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It may also interfere with steroid hormone production. Due to the induction of hepatic LDL RECEPTORS, it increases breakdown of LDL CHOLESTEROL.
7-carbon saturated monocarboxylic acids.
Azoles of one NITROGEN and two double bonds that have aromatic chemical properties.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Substances used to lower plasma CHOLESTEROL levels.
Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7.
An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11.
An enzyme of the transferase class that catalyzes the reaction 5,10-methylenetetrahydrofolate and dUMP to dihydrofolate and dTMP in the synthesis of thymidine triphosphate. (From Dorland, 27th ed) EC 2.1.1.45.
A glycogen synthase kinase that was originally described as a key enzyme involved in glycogen metabolism. It regulates a diverse array of functions such as CELL DIVISION, microtubule function and APOPTOSIS.
A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in NERVE TISSUE.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.
An important enzyme in the glyoxylic acid cycle which reversibly catalyzes the synthesis of L-malate from acetyl-CoA and glyoxylate. This enzyme was formerly listed as EC 4.1.3.2.
Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An enzyme that catalyzes the conversion of L-serine and 1-(indol-3-yl)glycerol 3-phosphate to L-tryptophan and glyceraldehyde 3-phosphate. It is a pyridoxal phosphate protein that also catalyzes the conversion of serine and indole into tryptophan and water and of indoleglycerol phosphate into indole and glyceraldehyde phosphate. (From Enzyme Nomenclature, 1992) EC 4.2.1.20.
An enzyme that catalyzes the formation of 2 molecules of glutamate from glutamine plus alpha-ketoglutarate in the presence of NADPH. EC 1.4.1.13.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
An enzyme found predominantly in platelet microsomes. It catalyzes the conversion of PGG(2) and PGH(2) (prostaglandin endoperoxides) to thromboxane A2. EC 5.3.99.5.
Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.
A class of enzymes that catalyze oxidation-reduction reactions of amino acids.
Enzymes which transfer coenzyme A moieties from acyl- or acetyl-CoA to various carboxylic acceptors forming a thiol ester. Enzymes in this group are instrumental in ketone body metabolism and utilization of acetoacetate in mitochondria. EC 2.8.3.
Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
An enzyme of long-chain fatty acid synthesis, that adds a two-carbon unit from malonyl-(acyl carrier protein) to another molecule of fatty acyl-(acyl carrier protein), giving a beta-ketoacyl-(acyl carrier protein) with the release of carbon dioxide. EC 2.3.1.41.
Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives.
A somewhat heterogeneous class of enzymes that catalyze the transfer of alkyl or related groups (excluding methyl groups). EC 2.5.
Proton-translocating ATPases responsible for ADENOSINE TRIPHOSPHATE synthesis in the MITOCHONDRIA. They derive energy from the respiratory chain-driven reactions that develop high concentrations of protons within the intermembranous space of the mitochondria.
An enzyme that catalyzes the transfer of glucose from ADPglucose to glucose-containing polysaccharides in 1,4-alpha-linkages. EC 2.4.1.21.
The rate dynamics in chemical or physical systems.

A critical role for cAMP response element-binding protein (CREB) as a Co-activator in sterol-regulated transcription of 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter. (1/183)

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, a key regulatory enzyme in the pathway for endogenous cholesterol synthesis, is a target for negative feedback regulation by cholesterol. When cellular sterol levels are low, the sterol regulatory element-binding proteins (SREBPs) are released from the endoplasmic reticulum membrane, allowing them to translocate to the nucleus and activate SREBP target genes. However, in all SREBP-regulated promoters studied to date, additional co-regulatory transcription factors are required for sterol-regulated activation of transcription. We have previously shown that, in addition to SREBPs, NF-Y/CBF is required for sterol-regulated transcription of HMG-CoA synthase. This heterotrimeric transcription factor has recently been shown to function as a co-regulator in several other SREBP-regulated promoters, as well. In addition to cis-acting sites for both SREBP and NF-Y/CBF, the sterol regulatory region of the synthase promoter also contains a consensus cAMP response element (CRE), an element that binds members of the CREB/ATF family of transcription factors. Here, we show that this consensus CRE is essential for sterol-regulated transcription of the synthase promoter. Using in vitro binding assays, we also demonstrate that CREB binds to this CRE, and mutations within the CRE that result in a loss of CREB binding also result in a loss of sterol-regulated transcription. We further show that efficient activation of the synthase promoter in Drosophila SL2 cells requires the simultaneous expression of all three factors: SREBPs, NF-Y/CBF, and CREB. To date this is the first promoter shown to require CREB for efficient sterol-regulated transcription, and to require two different co-regulatory factors in addition to SREBPs for maximal activation.  (+info)

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. (2/183)

Cytosolic and mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthases were first recognized as different chemical entities in 1975, when they were purified and characterized by Lane's group. Since then, the two enzymes have been studied extensively, one as a control site of the cholesterol biosynthetic pathway and the other as an important control site of ketogenesis. This review describes some key developments over the last 25 years that have led to our current understanding of the physiology of mitochondrial HMG-CoA synthase in the HMG-CoA pathway and in ketogenesis in the liver and small intestine of suckling animals. The enzyme is regulated by two systems: succinylation and desuccinylation in the short term, and transcriptional regulation in the long term. Both control mechanisms are influenced by nutritional and hormonal factors, which explains the incidence of ketogenesis in diabetes and starvation, during intense lipolysis, and in the foetal-neonatal and suckling-weaning transitions. The DNA-binding properties of the peroxisome-proliferator-activated receptor and other transcription factors on the nuclear-receptor-responsive element of the mitochondrial HMG-CoA synthase promoter have revealed how ketogenesis can be regulated by fatty acids. Finally, the expression of mitochondrial HMG-CoA synthase in the gonads and the correction of auxotrophy for mevalonate in cells deficient in cytosolic HMG-CoA synthase suggest that the mitochondrial enzyme may play a role in cholesterogenesis in gonadal and other tissues.  (+info)

YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. (3/183)

Ying Yang 1 (YY1) is shown to bind to the proximal promoters of the genes encoding 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, farnesyl diphosphate (FPP) synthase, and the low density lipoprotein (LDL) receptor. To investigate the potential effect of YY1 on the expression of SREBP-responsive genes, HepG2 cells were transiently transfected with luciferase reporter constructs under the control of promoters derived from either HMG-CoA synthase, FPP synthase, or the LDL receptor genes. The luciferase activity of each construct increased when HepG2 cells were incubated in lipid-depleted media or when the cells were cotransfected with a plasmid encoding mature sterol regulatory element-binding protein (SREBP)-1a. In each case, the increase in luciferase activity was attenuated by coexpression of wild-type YY1 but not by coexpression of mutant YY1 proteins that are known to be defective in either DNA binding or in modulating transcription of other known YY1-responsive genes. In contrast, incubation of cells in lipid-depleted media resulted in induction of an HMG-CoA reductase promoter-luciferase construct by a process that was unaffected by coexpression of wild-type YY1. Electromobility shift assays were used to demonstrate that the proximal promoters of the HMG-CoA synthase, FPP synthase, and the LDL receptor contain YY1 binding sites and that YY1 displaced nuclear factor Y from the promoter of the HMG-CoA synthase gene. We conclude that YY1 inhibits the transcription of specific SREBP-dependent genes and that, in the case of the HMG-CoA synthase gene, this involves displacement of nuclear factor Y from the promoter. We hypothesize that YY1 plays a regulatory role in the transcriptional regulation of specific SREBP-responsive genes.  (+info)

Atypical expression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in subcutaneous adipose tissue of male rats. (4/183)

The mRNAs encoding mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mtHMG-CoA synthase), the rate limiting enzyme in ketone body production, are highly expressed in subcutaneous (SC) and, to a lesser extent, in peri-epididymal (PE) rat adipose tissues. This atypical mtHMG-CoA synthase gene expression is dependent on the age (from 9 weeks of age) and sex (higher in male than in female) of the rats. In contrast, the expression of mtHMG-CoA synthase in SC adipose deposit is independent of the nutritional state (fed versus starved) or of the thermic environment (24 degrees C versus 4 degrees C). The expression of mtHMG-CoA synthase is suppressed in SC fat pads of castrated male rats whereas treatment of castrated rats with testosterone restores a normal level of expression. Moreover, testosterone injection induces the expression mtHMG-CoA synthase in SC adipose tissue of age-matched females. The presence of the mtHMG-CoA synthase immunoreactive protein confers to mitochondria isolated from SC adipose deposits, the capacity to produce ketone bodies at a rate similar to that found in liver mitochondria (SC = 13.7 +/- 0.7, liver = 16.4 +/- 1.4 nmol/min/mg prot). mtHMG-CoA synthase is expressed in the stromal vascular fraction (SVF) whatever the adipose deposit considered. While acetyl-CoA carboxylase (ACC) is only expressed in mature adipocytes, the other lipogenic enzymes, fatty acid synthase (FAS) and citrate cleavage enzyme (CCE), are expressed both in SVF cells and mature adipocytes. The expression of lipogenic enzyme genes is markedly reduced in adipocytes but not in SVF cells isolated from 48-h starved male rats. When SVF is subfractionated, mtHMG-CoA synthase mRNAs are mainly recovered in two fractions containing poorly digested structures such as microcapillaries whereas the lowest expression is found in the pre-adipocyte fraction. Interestingly, FAS and CCE mRNAs co-segregate with mtHMG-CoA synthase mRNA. The possible physiological relevance of such atypical expression of mtHMG-CoA synthase is discussed.  (+info)

Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. (5/183)

To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type and SREBP-1(-/-) mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished in SREBP-1(-/-) mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refed SREBP-1(-/-) livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1(-/-) mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.  (+info)

Regulation of HMG-CoA synthase and HMG-CoA reductase by insulin and epidermal growth factor in HaCaT keratinocytes. (6/183)

Synthesis of cholesterol, via the isoprenoid/mevalonate pathway, is required for keratinocyte growth and differentiation, and maintenance of the stratum corneum lipid lamellae. 3-hydroxy-3-methylglutaryl coenzyme A synthase catalyzes the first step in isoprenoid/mevalonate synthesis and under some conditions controls the flux into the pathway. We have investigated whether selected growth factors and hormones could increase 3-hydroxy-3-methylglutaryl coenzyme A synthase mRNA in keratinocytes. Northern blotting was used to demonstrate that 10 microg per ml insulin and 0.1 microg per ml epidermal growth factor both increased steady-state levels of 3-hydroxy-3-methylglutaryl coenzyme A synthase mRNA by 2.5 and 6-fold, respectively. Epidermal growth factor and insulin also increased 3-hydroxy-3-methylglutaryl coenzyme A reductase enzyme activity. 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter activity in a luciferase reporter construct was increased 2-fold by insulin and 2.9-fold by epidermal growth factor. When a mutation in the sterol regulatory element was introduced into the 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter, activity was not increased by insulin, but was increased by epidermal growth factor. Mutation of an AP-1 site in the 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter did not affect the increase in activity following treatment with insulin or epidermal growth factor. Therefore, 3-hydroxy-3-methylglutaryl coenzyme A synthase expression in keratinocytes is regulated by insulin and epidermal growth factor by different mechanisms. These results suggest a role for hormones and growth factors in the control of epidermal cholesterol synthesis.  (+info)

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase promoter contains a CREB binding site that regulates cAMP action in Caco-2 cells. (7/183)

cAMP increases transcription of the mitochondrial (mit.) gene for 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase, which encodes an enzyme that has been proposed as a control site of ketogenesis. The incubation of Caco-2 cells with cAMP increased mit.HMG-CoA synthase mRNA levels 4-fold within 24 h. We have identified an active cAMP-response element (CRE) located 546 bp upstream of the mit. HMG-CoA synthase promoter that is necessary for the induction of expression by dibutyryl cAMP. Co-transfections of constructs, containing the CRE element of the mit.HMG-CoA synthase promoter fused to the gene for chloramphenicol acetyltransferase, with protein kinase A and a dominant-negative mutant of cAMP-response-element-binding protein (CREB) show that the response to cAMP is mediated by the transcription factor CREB. The CRE element confers responsiveness of protein kinase A to a heterologous promoter in transfection assays in Caco-2 cells. Gel-retardation assays revealed that the mit.HMG-CoA synthase CRE binds to recombinant CREB. The shifted band obtained with the putative mit. HMG-CoA synthase CRE sequence and nuclear proteins from Caco-2 cells competed with CRE sequences of other genes such as somatostatin and phosphoenolpyruvate carboxykinase. We conclude that the regulation of the expression of the gene for mit.HMG-CoA synthase in Caco-2 cells by cAMP is mediated by a CRE sequence in the promoter.  (+info)

3-Hydroxy-3-methylglutaryl-CoA synthase. A role for glutamate 95 in general acid/base catalysis of C-C bond formation. (8/183)

Replacement of 3-hydroxy-3-methylglutaryl-CoA synthase's glutamate 95 with alanine diminishes catalytic activity by over 5 orders of magnitude. The structural integrity of E95A enzyme is suggested by the observation that this protein contains a full complement of acyl-CoA binding sites, as indicated by binding studies using a spin-labeled acyl-CoA. Active site integrity is also demonstrated by (13)C NMR studies, which indicate that E95A forms an acetyl-S-enzyme reaction intermediate with the same distinctive spectroscopic characteristics measured using wild type enzyme. The initial reaction steps are not disrupted in E95A, which exhibits normal levels of Michaelis complex and acetyl-S-enzyme intermediate. Likewise, E95A is not impaired in catalysis of the terminal reaction step, as indicated by efficient catalysis of a hydrolysis partial reaction. Single turnover experiments indicate defective C-C bond formation. The mechanism-based inhibitor, 3-chloropropionyl-CoA, efficiently alkylates E95A. This is compatible with the presence of a functional general base, raising the possibility that Glu(95) functions as a general acid. Demonstration of a significant upfield shift for the methyl protons of HMG-CoA synthase's acetyl-S-enzyme reaction intermediate suggests a hydrophobic active site environment that could elevate the pK(a) of Glu(95) as required to support its function as a general acid.  (+info)

Hydroxymethylglutaryl CoA (HMG-CoA) reductase is an enzyme that plays a crucial role in the synthesis of cholesterol in the body. It is found in the endoplasmic reticulum of cells and catalyzes the conversion of HMG-CoA to mevalonic acid, which is a key rate-limiting step in the cholesterol biosynthetic pathway.

The reaction catalyzed by HMG-CoA reductase is as follows:

HMG-CoA + 2 NADPH + 2 H+ → mevalonic acid + CoA + 2 NADP+

This enzyme is the target of statin drugs, which are commonly prescribed to lower cholesterol levels in the treatment of cardiovascular diseases. Statins work by inhibiting HMG-CoA reductase, thereby reducing the production of cholesterol in the body.

Hydroxymethylglutaryl-CoA Synthase (HMG-CoA Synthase) is a key enzyme in the cholesterol biosynthesis pathway. It catalyzes the reaction of acetoacetyl-CoA and acetyl-CoA to form HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A), which is a crucial intermediate in the synthesis of cholesterol, ketone bodies, and other isoprenoids.

There are two isoforms of this enzyme: HMG-CoA synthase 1 (HMGCS1) and HMG-CoA synthase 2 (HMGCS2). HMGCS1 is primarily expressed in the liver and is involved in cholesterol synthesis, while HMGCS2 is mainly found in the brain, kidney, and liver, where it plays a role in ketone body synthesis during periods of fasting or low-carbohydrate diets.

Defects in HMG-CoA synthase can lead to metabolic disorders, such as hypocholesterolemia (low cholesterol levels) and hyperketonemia (elevated ketone bodies). Additionally, inhibitors of HMG-CoA synthase are used as cholesterol-lowering drugs, known as statins, to treat conditions like hyperlipidemia and prevent cardiovascular diseases.

Acetate-CoA ligase is an enzyme that plays a role in the metabolism of acetate in cells. The enzyme catalyzes the conversion of acetate and coenzyme A (CoA) to acetyl-CoA, which is a key molecule in various metabolic pathways, including the citric acid cycle (also known as the Krebs cycle).

The reaction catalyzed by Acetate-CoA ligase can be summarized as follows:

acetate + ATP + CoA → acetyl-CoA + AMP + PPi

In this reaction, acetate is activated by combining it with ATP to form acetyl-AMP, which then reacts with CoA to produce acetyl-CoA. The reaction also produces AMP and pyrophosphate (PPi) as byproducts.

There are two main types of Acetate-CoA ligases: the short-chain fatty acid-CoA ligase, which is responsible for activating acetate and other short-chain fatty acids, and the acyl-CoA synthetase, which activates long-chain fatty acids. Both types of enzymes play important roles in energy metabolism and the synthesis of various biological molecules.

Acetyl-CoA hydrolase is an enzyme that catalyzes the hydrolysis of Acetyl-CoA into acetate and coenzyme A (CoA). The chemical reaction it catalyzes is as follows:

Acetyl-CoA + H2O → acetate + CoA-SH

This enzyme plays a role in the metabolism of fatty acids, cholesterol, and other compounds. It is also involved in the detoxification of certain drugs and chemicals that are conjugated with Acetyl-CoA before being excreted from the body.

Acetyl-CoA hydrolase is found in various tissues, including the liver, kidney, and intestine. It belongs to the family of hydrolases, specifically those acting on thioester bonds. The gene that encodes this enzyme is called "ACOT" (Acyl-CoA thioesterase). Mutations in this gene have been associated with neurological disorders and other health conditions.

Hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors, also known as statins, are a class of cholesterol-lowering medications. They work by inhibiting the enzyme HMG-CoA reductase, which plays a central role in the production of cholesterol in the liver. By blocking this enzyme, the liver is stimulated to take up more low-density lipoprotein (LDL) cholesterol from the bloodstream, leading to a decrease in LDL cholesterol levels and a reduced risk of cardiovascular disease.

Examples of HMG-CoA reductase inhibitors include atorvastatin, simvastatin, pravastatin, rosuvastatin, and fluvastatin. These medications are commonly prescribed to individuals with high cholesterol levels, particularly those who are at risk for or have established cardiovascular disease.

It's important to note that while HMG-CoA reductase inhibitors can be effective in reducing LDL cholesterol levels and the risk of cardiovascular events, they should be used as part of a comprehensive approach to managing high cholesterol, which may also include lifestyle modifications such as dietary changes, exercise, and weight management.

Lovastatin is a medication that belongs to a class of drugs called statins, which are used to lower cholesterol levels in the blood. It works by inhibiting HMG-CoA reductase, an enzyme that plays a crucial role in the production of cholesterol in the body. By reducing the amount of cholesterol produced in the liver, lovastatin helps to decrease the levels of low-density lipoprotein (LDL) or "bad" cholesterol and triglycerides in the blood, while increasing the levels of high-density lipoprotein (HDL) or "good" cholesterol.

Lovastatin is available in both immediate-release and extended-release forms, and it is typically taken orally once or twice a day, depending on the dosage prescribed by a healthcare provider. Common side effects of lovastatin include headache, nausea, diarrhea, and muscle pain, although more serious side effects such as liver damage and muscle weakness are possible, particularly at higher doses.

It is important to note that lovastatin should not be taken by individuals with active liver disease or by those who are pregnant or breastfeeding. Additionally, it may interact with certain other medications, so it is essential to inform a healthcare provider of all medications being taken before starting lovastatin therapy.

Coenzyme A, often abbreviated as CoA or sometimes holo-CoA, is a coenzyme that plays a crucial role in several important chemical reactions in the body, particularly in the metabolism of carbohydrates, fatty acids, and amino acids. It is composed of a pantothenic acid (vitamin B5) derivative called pantothenate, an adenosine diphosphate (ADP) molecule, and a terminal phosphate group.

Coenzyme A functions as a carrier molecule for acetyl groups, which are formed during the breakdown of carbohydrates, fatty acids, and some amino acids. The acetyl group is attached to the sulfur atom in CoA, forming acetyl-CoA, which can then be used as a building block for various biochemical pathways, such as the citric acid cycle (Krebs cycle) and fatty acid synthesis.

In summary, Coenzyme A is a vital coenzyme that helps facilitate essential metabolic processes by carrying and transferring acetyl groups in the body.

Mevalonic acid is not a term that is typically used in medical definitions, but rather it is a biochemical concept. Mevalonic acid is a key intermediate in the biosynthetic pathway for cholesterol and other isoprenoids. It is formed from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) by the enzyme HMG-CoA reductase, which is the target of cholesterol-lowering drugs known as statins.

In a medical context, mevalonic acid may be mentioned in relation to certain rare genetic disorders, such as mevalonate kinase deficiency (MKD) or hyperimmunoglobulinemia D and periodic fever syndrome (HIDS), which are caused by mutations in the gene encoding mevalonate kinase, an enzyme involved in the metabolism of mevalonic acid. These conditions can cause recurrent fevers, rashes, joint pain, and other symptoms.

Simvastatin is a medication that belongs to a class of drugs called statins, which are used to lower cholesterol levels in the blood. It works by inhibiting HMG-CoA reductase, an enzyme that plays a key role in the production of cholesterol in the body. By reducing the amount of cholesterol produced by the liver, simvastatin helps to lower the levels of LDL (low-density lipoprotein) or "bad" cholesterol and triglycerides in the blood, while increasing HDL (high-density lipoprotein) or "good" cholesterol.

Simvastatin is used to prevent cardiovascular diseases such as heart attacks and strokes in individuals with high cholesterol levels, particularly those who have other risk factors such as diabetes, hypertension, or a history of smoking. It is available in various strengths and forms, and is typically taken orally once a day, usually in the evening.

Like all medications, simvastatin can cause side effects, ranging from mild to severe. Common side effects include headache, muscle pain, and gastrointestinal symptoms such as nausea, constipation, or diarrhea. Rare but serious side effects may include liver damage, muscle breakdown (rhabdomyolysis), and increased risk of diabetes. It is important to follow the dosage instructions carefully and inform your healthcare provider of any pre-existing medical conditions or medications you are taking, as these may affect the safety and efficacy of simvastatin.

Heptanoic acid, also known as enanthic acid, is an organic compound with the formula CH3(CH2)5COOH. It is a fatty acid with a 7-carbon chain, and it is a colorless liquid that is slightly soluble in water and fully miscible with ether and ethanol.

Heptanoic acid is not typically considered a medical term, as it is not a substance that is directly related to human health or disease. However, like other fatty acids, heptanoic acid can be metabolized in the body for energy and used in various physiological processes. Abnormal levels of certain fatty acids, including heptanoic acid, may be associated with various medical conditions, such as metabolic disorders or genetic diseases that affect fatty acid metabolism.

It's important to note that Heptanoic Acid is not a common term in medicine, and it's more related to chemistry and biochemistry fields.

"Pyrroles" is not a medical term in and of itself, but "pyrrole" is an organic compound that contains one nitrogen atom and four carbon atoms in a ring structure. In the context of human health, "pyrroles" often refers to a group of compounds called pyrrol derivatives or pyrrole metabolites.

In clinical settings, "pyrroles" is sometimes used to refer to a urinary metabolite called "pyrrole-protein conjugate," which contains a pyrrole ring and is excreted in the urine. Elevated levels of this compound have been associated with certain psychiatric and behavioral disorders, such as schizophrenia and mood disorders. However, the relationship between pyrroles and these conditions is not well understood, and more research is needed to establish a clear medical definition or diagnostic criteria for "pyrrole disorder" or "pyroluria."

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Anticholesteremic agents are a class of medications that are used to lower the levels of cholesterol and other fats called lipids in the blood. These medications work by reducing the production of cholesterol in the body, increasing the removal of cholesterol from the bloodstream, or preventing the absorption of cholesterol in the digestive tract.

There are several types of anticholesteremic agents, including:

1. Statins: These medications work by blocking a liver enzyme that is necessary for the production of cholesterol. Examples of statins include atorvastatin, simvastatin, and rosuvastatin.
2. Bile acid sequestrants: These medications bind to bile acids in the digestive tract and prevent them from being reabsorbed into the bloodstream. This causes the liver to produce more bile acids, which in turn lowers cholesterol levels. Examples of bile acid sequestrants include cholestyramine and colesevelam.
3. Nicotinic acid: Also known as niacin, this medication works by reducing the production of very low-density lipoproteins (VLDL) in the liver, which are a major source of bad cholesterol.
4. Fibrates: These medications work by increasing the removal of cholesterol from the bloodstream and reducing the production of VLDL in the liver. Examples of fibrates include gemfibrozil and fenofibrate.
5. PCSK9 inhibitors: These are a newer class of medications that work by blocking the action of a protein called PCSK9, which helps regulate the amount of cholesterol in the blood. By blocking PCSK9, these medications increase the number of LDL receptors on the surface of liver cells, which leads to increased removal of LDL from the bloodstream.

Anticholesteremic agents are often prescribed for people who have high cholesterol levels and are at risk for heart disease or stroke. By lowering cholesterol levels, these medications can help reduce the risk of heart attack, stroke, and other cardiovascular events.

Glycogen synthase is an enzyme (EC 2.4.1.11) that plays a crucial role in the synthesis of glycogen, a polysaccharide that serves as the primary storage form of glucose in animals, fungi, and bacteria. This enzyme catalyzes the transfer of glucosyl residues from uridine diphosphate glucose (UDP-glucose) to the non-reducing end of an growing glycogen chain, thereby elongating it.

Glycogen synthase is regulated by several mechanisms, including allosteric regulation and covalent modification. The activity of this enzyme is inhibited by high levels of intracellular glucose-6-phosphate (G6P) and activated by the binding of glycogen or proteins that bind to glycogen, such as glycogenin. Phosphorylation of glycogen synthase by protein kinases, like glycogen synthase kinase-3 (GSK3), also reduces its activity, while dephosphorylation by protein phosphatases enhances it.

The regulation of glycogen synthase is critical for maintaining glucose homeostasis and energy balance in the body. Dysregulation of this enzyme has been implicated in several metabolic disorders, including type 2 diabetes and non-alcoholic fatty liver disease (NAFLD).

Thymidylate synthase (TS) is an essential enzyme in the metabolic pathway for DNA synthesis and repair. It catalyzes the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP), which is a crucial building block for DNA replication and repair. This reaction also involves the methylation of dUMP using a methyl group donated by N5,N10-methylenetetrahydrofolate, resulting in the formation of dihydrofolate as a byproduct. The regeneration of dihydrofolate to tetrahydrofolate is necessary for TS to continue functioning, making it dependent on the folate cycle. Thymidylate synthase inhibitors are used in cancer chemotherapy to interfere with DNA synthesis and replication, leading to cytotoxic effects in rapidly dividing cells.

Glycogen Synthase Kinase 3 (GSK-3) is a serine/threonine protein kinase that plays a crucial role in the regulation of several cellular processes, including glycogen metabolism, cell signaling, gene transcription, and apoptosis. It was initially discovered as a key enzyme involved in glycogen metabolism due to its ability to phosphorylate and inhibit glycogen synthase, an enzyme responsible for the synthesis of glycogen from glucose.

GSK-3 exists in two isoforms, GSK-3α and GSK-3β, which share a high degree of sequence similarity and are widely expressed in various tissues. Both isoforms are constitutively active under normal conditions and are regulated through inhibitory phosphorylation by several upstream signaling pathways, such as insulin, Wnt, and Hedgehog signaling.

Dysregulation of GSK-3 has been implicated in the pathogenesis of various diseases, including diabetes, neurodegenerative disorders, and cancer. In recent years, GSK-3 has emerged as an attractive therapeutic target for the development of novel drugs to treat these conditions.

Nitric Oxide Synthase Type I, also known as NOS1 or neuronal nitric oxide synthase (nNOS), is an enzyme that catalyzes the production of nitric oxide (NO) from L-arginine. It is primarily expressed in the nervous system, particularly in neurons, and plays a crucial role in the regulation of neurotransmission, synaptic plasticity, and cerebral blood flow. NOS1 is calcium-dependent and requires several cofactors for its activity, including NADPH, FAD, FMN, and calmodulin. It is involved in various physiological and pathological processes, such as learning and memory, seizure susceptibility, and neurodegenerative disorders.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

Acyl Coenzyme A (often abbreviated as Acetyl-CoA or Acyl-CoA) is a crucial molecule in metabolism, particularly in the breakdown and oxidation of fats and carbohydrates to produce energy. It is a thioester compound that consists of a fatty acid or an acetate group linked to coenzyme A through a sulfur atom.

Acyl CoA plays a central role in several metabolic pathways, including:

1. The citric acid cycle (Krebs cycle): In the mitochondria, Acyl-CoA is formed from the oxidation of fatty acids or the breakdown of certain amino acids. This Acyl-CoA then enters the citric acid cycle to produce high-energy electrons, which are used in the electron transport chain to generate ATP (adenosine triphosphate), the main energy currency of the cell.
2. Beta-oxidation: The breakdown of fatty acids occurs in the mitochondria through a process called beta-oxidation, where Acyl-CoA is sequentially broken down into smaller units, releasing acetyl-CoA, which then enters the citric acid cycle.
3. Ketogenesis: In times of low carbohydrate availability or during prolonged fasting, the liver can produce ketone bodies from acetyl-CoA to supply energy to other organs, such as the brain and heart.
4. Protein synthesis: Acyl-CoA is also involved in the modification of proteins by attaching fatty acid chains to them (a process called acetylation), which can influence protein function and stability.

In summary, Acyl Coenzyme A is a vital molecule in metabolism that connects various pathways related to energy production, fatty acid breakdown, and protein modification.

Malate Synthase is a key enzyme in the gluconeogenesis pathway and the glyoxylate cycle, which are present in many organisms including plants, bacteria, and parasites. The glyoxylate cycle is a variation of the citric acid cycle (Krebs cycle) that allows these organisms to convert two-carbon molecules into four-carbon molecules, bypassing steps that require oxygen.

Malate Synthase catalyzes the reaction between glyoxylate and acetyl-CoA to produce malate, a four-carbon compound. This enzyme plays a crucial role in enabling these organisms to utilize fatty acids as a carbon source for growth and energy production, particularly under conditions where oxygen is limited or absent. In humans, Malate Synthase is not typically found, but its presence can indicate certain parasitic infections or metabolic disorders.

Acetyl Coenzyme A, often abbreviated as Acetyl-CoA, is a key molecule in metabolism, particularly in the breakdown and oxidation of carbohydrates, fats, and proteins to produce energy. It is a coenzyme that plays a central role in the cellular process of transforming the energy stored in the chemical bonds of nutrients into a form that the cell can use.

Acetyl-CoA consists of an acetyl group (two carbon atoms) linked to coenzyme A, a complex organic molecule. This linkage is facilitated by an enzyme called acetyltransferase. Once formed, Acetyl-CoA can enter various metabolic pathways. In the citric acid cycle (also known as the Krebs cycle), Acetyl-CoA is further oxidized to release energy in the form of ATP, NADH, and FADH2, which are used in other cellular processes. Additionally, Acetyl-CoA is involved in the biosynthesis of fatty acids, cholesterol, and certain amino acids.

In summary, Acetyl Coenzyme A is a vital molecule in metabolism that connects various biochemical pathways for energy production and biosynthesis.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Tryptophan synthase is a bacterial enzyme that catalyzes the final step in the biosynthesis of the essential amino acid tryptophan. It is a complex enzyme composed of two types of subunits, α and β, which form an αββα tetrameric structure.

Tryptophan synthase catalyzes the conversion of indole-3-glycerol phosphate (IGP) and L-serine into tryptophan through two separate reactions that occur in a coordinated manner within the active site of the enzyme. In the first reaction, the α subunit catalyzes the breakdown of IGP into indole and glyceraldehyde-3-phosphate (G3P). The indole molecule then moves through a tunnel to the active site of the β subunit, where it is combined with L-serine to form tryptophan in the second reaction.

The overall reaction catalyzed by tryptophan synthase is:

Indole-3-glycerol phosphate + L-serine → L-tryptophan + glyceraldehyde-3-phosphate

Tryptophan synthase plays a critical role in the biosynthesis of tryptophan, which is an essential amino acid that cannot be synthesized by humans and must be obtained through diet. Defects in tryptophan synthase can lead to various genetic disorders, such as hyperbeta-alaninemia and tryptophanuria.

Glutamate synthase is an enzyme found in bacteria, plants, and some animals that plays a crucial role in the synthesis of the amino acid glutamate. There are two types of glutamate synthases: NADPH-dependent and NADH-dependent.

The NADPH-dependent glutamate synthase, also known as glutamine:2-oxoglutarate aminotransferase or GOGAT, catalyzes the following reversible reaction:

glutamine + 2-oxoglutarate -> 2 glutamate

This enzyme requires NADPH as a cofactor and is responsible for the conversion of glutamine and 2-oxoglutarate to two molecules of glutamate. This reaction is essential in the assimilation of ammonia into organic compounds, particularly in plants and some bacteria.

The NADH-dependent glutamate synthase, on the other hand, is found mainly in animals and catalyzes a different set of reactions that involve the conversion of L-glutamate to α-ketoglutarate and ammonia, with the concomitant reduction of NAD+ to NADH.

Both types of glutamate synthases are essential for maintaining the balance of nitrogen metabolism in living organisms.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Thromboxane-A Synthase (TXA2S) is a medical term referring to an enzyme that plays a crucial role in the blood coagulation process. It is found in platelets, and its primary function is to convert arachidonic acid into thromboxane A2 (TXA2), a potent vasoconstrictor and platelet aggregator.

Thromboxane A2 causes platelets to clump together, which is essential for the formation of blood clots that can help prevent excessive bleeding after an injury. However, an overproduction of thromboxane A2 can lead to the development of blood clots in blood vessels, increasing the risk of heart attack and stroke.

Therefore, Thromboxane-A Synthase is a vital enzyme in hemostasis (the process that stops bleeding), but its dysregulation can contribute to various cardiovascular diseases.

Coenzyme A (CoA) ligases, also known as CoA synthetases, are a class of enzymes that activate acyl groups, such as fatty acids and amino acids, by forming a thioester bond with coenzyme A. This activation is an essential step in various metabolic pathways, including fatty acid oxidation, amino acid catabolism, and the synthesis of several important compounds like steroids and acetylcholine.

CoA ligases catalyze the following reaction:

acyl group + ATP + CoA ↔ acyl-CoA + AMP + PP~i~

In this reaction, an acyl group (R-) from a carboxylic acid is linked to the thiol (-SH) group of coenzyme A through a high-energy thioester bond. The energy required for this activation is provided by the hydrolysis of ATP to AMP and inorganic pyrophosphate (PP~i~).

CoA ligases are classified into three main types based on the nature of the acyl group they activate:

1. Acyl-CoA synthetases (or long-chain fatty acid CoA ligases) activate long-chain fatty acids, typically containing 12 or more carbon atoms.
2. Aminoacyl-CoA synthetases activate amino acids to form aminoacyl-CoAs, which are essential intermediates in the catabolism of certain amino acids.
3. Short-chain specific CoA ligases activate short-chain fatty acids (up to 6 carbon atoms) and other acyl groups like acetate or propionate.

These enzymes play a crucial role in maintaining cellular energy homeostasis, metabolism, and the synthesis of various essential biomolecules.

Amino acid oxidoreductases are a class of enzymes that catalyze the reversible oxidation and reduction reactions involving amino acids. They play a crucial role in the metabolism of amino acids by catalyzing the interconversion of L-amino acids to their corresponding α-keto acids, while simultaneously reducing a cofactor such as NAD(P)+ or FAD.

The reaction catalyzed by these enzymes can be represented as follows:

L-amino acid + H2O + Coenzyme (Oxidized) → α-keto acid + NH3 + Coenzyme (Reduced)

Amino acid oxidoreductases are classified into two main types based on their cofactor requirements and reaction mechanisms. The first type uses FAD as a cofactor and is called amino acid flavoprotein oxidoreductases. These enzymes typically catalyze the oxidative deamination of L-amino acids to form α-keto acids, ammonia, and reduced FAD. The second type uses pyridine nucleotides (NAD(P)+) as cofactors and is called amino acid pyridine nucleotide-dependent oxidoreductases. These enzymes catalyze the reversible interconversion of L-amino acids to their corresponding α-keto acids, while simultaneously reducing or oxidizing NAD(P)H/NAD(P)+.

Amino acid oxidoreductases are widely distributed in nature and play important roles in various biological processes, including amino acid catabolism, nitrogen metabolism, and the biosynthesis of various secondary metabolites. Dysregulation of these enzymes has been implicated in several diseases, including neurodegenerative disorders and cancer. Therefore, understanding the structure, function, and regulation of amino acid oxidoreductases is crucial for developing novel therapeutic strategies to treat these diseases.

Coenzyme A-transferases are a group of enzymes that catalyze the transfer of Coenzyme A (CoA) from one molecule to another. CoA is a coenzyme that plays a crucial role in various metabolic processes, including the oxidation of carbohydrates, fatty acids, and amino acids.

Coenzyme A-transferases can be further classified into several subfamilies based on their specific functions and the types of molecules they act upon. For example, some CoA-transferases transfer CoA to acyl groups, forming acyl-CoAs, which are important intermediates in fatty acid metabolism. Other CoA-transferases transfer CoA to pyruvate, forming pyruvate dehydrogenase complexes that play a key role in glucose metabolism.

These enzymes are essential for maintaining the proper functioning of various metabolic pathways and are involved in a wide range of physiological processes, including energy production, lipid synthesis, and detoxification. Defects in CoA-transferases can lead to several metabolic disorders, such as fatty acid oxidation disorders and pyruvate dehydrogenase deficiency.

Oxo-acid lyases are a class of enzymes that catalyze the cleavage of a carbon-carbon bond in an oxo-acid to give a molecule with a carbonyl group and a carbanion, which then reacts non-enzymatically with a proton to form a new double bond. The reaction is reversible, and the enzyme can also catalyze the reverse reaction.

Oxo-acid lyases play important roles in various metabolic pathways, such as the citric acid cycle, glyoxylate cycle, and the degradation of certain amino acids. These enzymes are characterized by the presence of a conserved catalytic mechanism involving a nucleophilic attack on the carbonyl carbon atom of the oxo-acid substrate.

The International Union of Biochemistry and Molecular Biology (IUBMB) has classified oxo-acid lyases under EC 4.1.3, which includes enzymes that catalyze the formation of a carbon-carbon bond by means other than carbon-carbon bond formation to an enolate or carbonion, a carbanionic fragment, or a Michael acceptor.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Glucosyltransferases (GTs) are a group of enzymes that catalyze the transfer of a glucose molecule from an activated donor to an acceptor molecule, resulting in the formation of a glycosidic bond. These enzymes play crucial roles in various biological processes, including the biosynthesis of complex carbohydrates, cell wall synthesis, and protein glycosylation. In some cases, GTs can also contribute to bacterial pathogenesis by facilitating the attachment of bacteria to host tissues through the formation of glucans, which are polymers of glucose molecules.

GTs can be classified into several families based on their sequence similarities and catalytic mechanisms. The donor substrates for GTs are typically activated sugars such as UDP-glucose, TDP-glucose, or GDP-glucose, which serve as the source of the glucose moiety that is transferred to the acceptor molecule. The acceptor can be a wide range of molecules, including other sugars, proteins, lipids, or small molecules.

In the context of human health and disease, GTs have been implicated in various pathological conditions, such as cancer, inflammation, and microbial infections. For example, some GTs can modify proteins on the surface of cancer cells, leading to increased cell proliferation, migration, and invasion. Additionally, GTs can contribute to bacterial resistance to antibiotics by modifying the structure of bacterial cell walls or by producing biofilms that protect bacteria from host immune responses and antimicrobial agents.

Overall, Glucosyltransferases are essential enzymes involved in various biological processes, and their dysregulation has been associated with several human diseases. Therefore, understanding the structure, function, and regulation of GTs is crucial for developing novel therapeutic strategies to target these enzymes and treat related pathological conditions.

Fatty acid synthases (FAS) are a group of enzymes that are responsible for the synthesis of fatty acids in the body. They catalyze a series of reactions that convert acetyl-CoA and malonyl-CoA into longer chain fatty acids, which are then used for various purposes such as energy storage or membrane formation.

The human genome encodes two types of FAS: type I and type II. Type I FAS is a large multifunctional enzyme complex found in the cytoplasm of cells, while type II FAS consists of individual enzymes located in the mitochondria. Both types of FAS play important roles in lipid metabolism, but their regulation and expression differ depending on the tissue and physiological conditions.

Inhibition of FAS has been explored as a potential therapeutic strategy for various diseases, including cancer, obesity, and metabolic disorders. However, more research is needed to fully understand the complex mechanisms regulating FAS activity and its role in human health and disease.

Alkyl and aryl transferases are a group of enzymes that catalyze the transfer of alkyl or aryl groups from one molecule to another. These enzymes play a role in various biological processes, including the metabolism of drugs and other xenobiotics, as well as the biosynthesis of certain natural compounds.

Alkyl transferases typically catalyze the transfer of methyl or ethyl groups, while aryl transferases transfer larger aromatic rings. These enzymes often use cofactors such as S-adenosylmethionine (SAM) or acetyl-CoA to donate the alkyl or aryl group to a recipient molecule.

Examples of alkyl and aryl transferases include:

1. Methyltransferases: enzymes that transfer methyl groups from SAM to various acceptor molecules, such as DNA, RNA, proteins, and small molecules.
2. Histone methyltransferases: enzymes that methylate specific residues on histone proteins, which can affect chromatin structure and gene expression.
3. N-acyltransferases: enzymes that transfer acetyl or other acyl groups to amino groups in proteins or small molecules.
4. O-acyltransferases: enzymes that transfer acyl groups to hydroxyl groups in lipids, steroids, and other molecules.
5. Arylsulfatases: enzymes that remove sulfate groups from aromatic rings, releasing an alcohol and sulfate.
6. Glutathione S-transferases (GSTs): enzymes that transfer the tripeptide glutathione to electrophilic centers in xenobiotics and endogenous compounds, facilitating their detoxification and excretion.

Mitochondrial proton-translocating ATPases, also known as F1F0-ATP synthase or complex V, are enzyme complexes found in the inner mitochondrial membrane of eukaryotic cells. They play a crucial role in the process of oxidative phosphorylation, which generates ATP (adenosine triphosphate), the primary energy currency of the cell.

These enzyme complexes consist of two main parts: F1 and F0. The F1 portion is located on the matrix side of the inner mitochondrial membrane and contains the catalytic sites for ATP synthesis. It is composed of three α, three β, and one γ subunits, along with additional subunits that regulate its activity.

The F0 portion spans the inner mitochondrial membrane and functions as a proton channel. It is composed of multiple subunits, including a, b, and c subunits, which form a rotor-stator structure. As protons flow through this channel due to the electrochemical gradient established by the electron transport chain, the rotation of the F0 rotor drives the synthesis of ATP in the F1 portion.

Mitochondrial proton-translocating ATPases are highly conserved across different species and play a vital role in maintaining energy homeostasis within the cell. Dysfunction in these enzyme complexes can lead to various mitochondrial disorders and diseases, such as neurodegenerative disorders, muscle weakness, and metabolic abnormalities.

Starch synthase is an enzyme involved in the synthesis of starch, which is a complex carbohydrate that serves as an important energy storage molecule in plants. Specifically, starch synthase catalyzes the transfer of glucose from activated donor molecules, such as ADP-glucose, to the non-reducing end of a growing linear chain or branch of an amylopectin molecule, resulting in the formation of starch.

There are several isoforms of starch synthase that have been identified in plants, including granule-bound starch synthase (GBSS), which is responsible for synthesizing the highly branched and crystalline amylose component of starch, and soluble starch synthases (SSI, SSII, SSIII, and SSIV), which contribute to the synthesis of the more branched and less crystalline amylopectin component.

Defects in starch synthase activity have been associated with various genetic disorders in humans, such as glycogen storage disease type II (Pompe disease) and transient infantile hyperammonemia, which are caused by mutations in the genes encoding for the enzymes involved in the synthesis of glycogen and starch, respectively.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

In molecular biology, hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the ... hydroxymethylglutaryl coenzyme A synthase, and hydroxymethylglutaryl coenzyme A-condensing enzyme. HMG-CoA synthase contains an ... 3-hydroxy-3-methylglutaryl-coenzyme A synthase, beta-hydroxy-beta-methylglutaryl-CoA synthase, HMG-CoA synthase, acetoacetyl ... acetyl-CoA + H2O + acetoacetyl-CoA ⇌ {\displaystyle \rightleftharpoons } (S)-3-hydroxy-3-methylglutaryl-CoA + CoA The 3 ...
Hydroxymethylglutaryl-CoA synthase, mitochondrial. P54869/NP_032282.2. Hmgcs2. 97. 1.4e-05. 25%. 13/32. 8.65/. 57,300. 1.39. ... ATP synthase subunit beta, mitochondrial. P56480/NP_058054.2. Atp5f1b. 346. 1.7e-30. 70%. 32/49. 5.19/. 56,265. 1.39. 1.29. ... ATP synthase subunit beta, mitochondrial. P56480/NP_058054.2. Atp5f1b. 298. 1.1e-25. 59%. 28/37. 5.19/. 56,265. 0.79. 0.72. ... S-adenosylmethionine synthase isoform type-1. Q91X83/NP_598414.1. Mat1a. 179. 8.5e-14. 50%. 20/43. 5.51/. 44,051. 0.66. (*). ...
... hydroxymethylglutaryl-CoA synthase/reductase; LDLR, low-density lipoprotein receptor; LPIN, lipin; MMP9, matrix ... h Liver acetyl-CoA levels. i qPCR analysis of liver mRNA levels of gt/gt mice relative to wt, studied relative to TATA-box- ... ACSL1, acyl-CoA synthetase long-chain family member 1; AUC, area under the curve; CEBPA, CCAAT-enhancer-binding protein alpha; ... ACSL1, acyl-CoA synthetase long-chain family member 1; ACTA2, actin alpha 2, smooth muscle; ALT, alanine aminotransferase; AST ...
Hydroxymethylglutaryl-CoA synthase involved in ergosterol biosynthesis; localizes to nucleus. View computational annotations ... 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase; catalyzes the formation of HMG-CoA from acetyl-CoA and acetoacetyl-CoA; ...
Next-day shipping cDNA ORF clones derived from HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 available at GenScript, ... hydroxymethylglutaryl-CoA synthase, mitochondrial isoform X1. NM_005518.4. NP_005509.1. hydroxymethylglutaryl-CoA synthase, ... hydroxymethylglutaryl-CoA synthase, mitochondrial isoform X1. NM_001166107.1. NP_001159579.1. hydroxymethylglutaryl-CoA ... hydroxymethylglutaryl-CoA synthase, mitochondrial. 3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial). 3-hydroxy-3- ...
7. Hydroxymethylglutaryl-CoA synthase, cytoplasmic. General function:. Involved in hydroxymethylglutaryl-CoA synthase activity ... 4. Hydroxymethylglutaryl-CoA synthase, mitochondrial. General function:. Involved in hydroxymethylglutaryl-CoA synthase ... hydroxymethylglutaryl-CoA synthase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal bifunctional enzyme, acetyl-CoA ... This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase. Gene Name: ...
HMG-CoA lyase, 3-hydroxy-3-methylylglutaryl-CoA lyase; HMG-CoA synthase, hydroxymethyl glutaryl-CoA synthase; LC-FACS, long ... HMG-CoA lyase, 3-hydroxy-3-methylylglutaryl-CoA lyase; HMG-CoA synthase, hydroxymethyl glutaryl-CoA synthase; LC-FACS, long ... Abbreviations: ACAA1, 3-ketoacyl-CoA thiolase; ACAA2, mitochondrial 3-ketoacyl-CoA thiolase; ACDH, 3-hydroxy acyl-CoA ... Abbreviations: ACAA1, 3-ketoacyl-CoA thiolase; ACAA2, mitochondrial 3-ketoacyl-CoA thiolase; ACDH, 3-hydroxy acyl-CoA ...
It significantly suppressed hydroxymethylglutaryl-CoA synthase activity and increased cholesterol 7α-hydroxylase activity. The ... and NADPH-dependent acetoacetyl-CoA reductase (PhaBRe) from Ralstonia eutropha together with PHA synthases from R. eutropha ( ... Activity toward GAP was lower (Km of 4.6 mM and kcat of 4.77 s−1), and previously predicted succinyl-CoA reductase activity was ... Three encoded chitin synthases with myosin motor-like domains at their N-termini, and we designated these CSM1 to CSM3, whereas ...
Mitochondrial 3-hydroxymethylglutaryl-CoA synthase-2 (HMGCS2) deficiency: a rare case with bicytopenia and coagulopathy Dalia ...
This list also includes interaction between hydroxymethylglutaryl-CoA synthase (UniProt ID: B6U9M4) and acetyl-CoA ... This list includes subunits from known complexes, including ATP synthase, chalcone synthase, cytochrome, and NADH dehydrogenase ...
... hepatic fatty acid oxidation in fasting PPARα null mice is due to impaired mitochondrial hydroxymethylglutaryl-CoA synthase ... Nadal A, Marrero PF, Haro D. Down-regulation of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by insulin: the ... Glucagon activates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in vivo by decreasing the extent of succinylation of ... Activity and expression of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the starved-to-fed transition. ...
PROSITE; PS01226; HMG_COA_SYNTHASE Name. Hydroxymethylglutaryl-coenzyme A synthase active site. ... Reaction=acetoacetyl-CoA + acetyl-CoA + H2O = (3S)-hydroxy-3- methylglutaryl-CoA + CoA + H(+); Xref=Rhea:RHEA:10188, ChEBI: ...
Hydroxymethylglutaryl-CoA synthase (EC 2.3.3.10). [to old protein page] current assignment. Hydroxymethylglutaryl-CoA synthase ... PGF_00012930: Hydroxymethylglutaryl-CoA synthase (EC 2.3.3.10). PLF_1279_00001069: Hydroxymethylglutaryl-CoA synthase (EC 2.3. ... In Mevalonate Branch of Isoprenoid Biosynthesis its role is Hydroxymethylglutaryl-CoA synthase (EC 2.3.3.10). ... In Isoprenoid Biosynthesis PanGenomes its role is Hydroxymethylglutaryl-CoA synthase (EC 2.3.3.10). However, the functionality ...
Hydroxymethylglutaryl-CoA synthase. 2.3.3.10. 2.00 e−48. 36. 56. Terpenoid backbone. ... enoyl-CoA hydratase, ECH; 3-ketoacyl-CoA thiolase, 3KCT; isovaleryl-CoA dehydrogenase, IVD; 3-hydroxyisobutyryl-CoA hydrolase, ... isovaleryl-CoA dehydrogenase (IVD), 3-hydroxyisobutyryl-CoA hydrolase (HIBCH), and propionyl-CoA carboxylase (PCC) (Fig. 3h, ... Hydroxymethylglutaryl-CoA reductase. 1.1.1.34/1.1.1.88. 3.00 e−61. 73. 87. Terpenoid backbone. ...
The first committed enzyme in triterpene saponin biosynthesis from A. mongolicus, cycloartenol synthase (AmCAS), which belongs ... acetyl-CoA C-acetyltransferase (ACAT), hydroxymethylglutaryl-CoA synthase (HMGCS), hydroxymethylglutaryl-CoA reductase (HMGCR ... Many of these genes, i.e. Phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), hydroxymethylglutaryl-CoA synthase ... Chalcone synthase (CHS) catalyzes the key condensation of 4-coumaroyl CoA and three molecules of malonyl CoA, and co-acts with ...
Mitochondrial 3-hydroxymethylglutaryl-CoA synthase-2 (HMGCS2) deficiency: a rare case with bicytopenia and coagulopathy. El- ...
hydroxymethylglutaryl-CoA synthase activity. molecular_function. GO:0008144. drug binding. molecular_function. ... 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1. Molecular. kidney. Mouse. Hmgcs1. 4.0% Decrease Gene Expression Level. Add. ...
Hydroxymethylglutaryl-CoA Synthase Medicine & Life Sciences 100% * Intestines Medicine & Life Sciences 78% ...
hydroxymethylglutaryl-CoA synthase activity. Drugs. No drugs in record. Diseases. No diseases in record ...
hydroxymethylglutaryl-CoA synthase activity. IEP. Neighborhood. BP. GO:0006720. isoprenoid metabolic process. IEP. Neighborhood ...
hydroxymethylglutaryl-CoA synthase activity. IEP. Enrichment. MF. GO:0004743. pyruvate kinase activity. IEP. Enrichment. ...
hydroxymethylglutaryl-CoA synthase activity. IEP. Enrichment. MF. GO:0004616. phosphogluconate dehydrogenase (decarboxylating) ... proton-transporting ATP synthase complex, coupling factor F(o). IEP. Enrichment. BP. GO:0046031. ADP metabolic process. IEP. ...
3. Hydroxymethylglutaryl-CoA synthase, mitochondrial. General Function:. Hydroxymethylglutaryl-coa synthase activity. Specific ... This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase.. Gene Name ...
Hydroxymethylglutaryl-CoA Synthase 100% * 3-Hydroxy-3-Methylglutaryl-CoA 94% * Intestines 52% ... The expression of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme-A synthase in neonatal rat intestine and liver is under ...
hydroxymethylglutaryl-CoA synthase activity. IEP. Enrichment. MF. GO:0004616. phosphogluconate dehydrogenase (decarboxylating) ...
hydroxymethylglutaryl-CoA synthase [1] (data from MRSA252). SACOL_RS13720. class I fructose-bisphosphate aldolase [1] (data ... GMP synthase (glutamine-hydrolyzing) [1] (data from MRSA252). SACOL_RS02930. pyridoxal 5-phosphate synthase lyase subunit PdxS ...
hydroxymethylglutaryl-CoA synthase [1] (data from MRSA252). ⊟Expression & Regulation[edit , edit source]. ... tRNA pseudouridine synthase B (EC 4.2.1.70). RNA Metabolism RNA processing and modification tRNA processing tRNA pseudouridine ... carbamoyl phosphate synthase large subunit [1] (data from MRSA252). SAUSA300_0965. (folD). bifunctional 5,10-methylene- ... Genetic information processing Protein synthesis tRNA and rRNA base modification tRNA pseudouridine(55) synthase (TIGR00431; EC ...
Encodes a protein with hydroxymethylglutaryl-CoA synthase activity which was characterized by phenotypical complementation of ... isochorismate synthase. -. 1e-11. At1g74710. isochorismate synthase 1 (ICS1) / isochorismate mutase. C.G.. S.X.. Please select ... isochorismate synthase 1 (ICS1) / isochorismate mutase. Encodes a protein with isochorismate synthase activity. Mutants fail to ... ICS2 (ISOCHORISMATE SYNTHASE 2). Encodes a protein with isochorismate synthase activity involved in phylloquinone biosynthesis ...
... mitochondrial Succinyl-CoA:3-oxoacid CoA Transferase (SCOT), is expressed ubiquitously, except in liver. Here I demonstrate ... mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2). In contrast, the fate committing enzyme of ketone body oxidation, ... mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2). In contrast, the fate committing enzyme of ketone body oxidation, ... mitochondrial Succinyl-CoA:3-oxoacid CoA Transferase (SCOT), is expressed ubiquitously, except in liver. Here I demonstrate ...

No FAQ available that match "hydroxymethylglutaryl coa synthase"