Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects.
Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND.
Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE.
Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively.
A 191-amino acid polypeptide hormone secreted by the human adenohypophysis (PITUITARY GLAND, ANTERIOR), also known as GH or somatotropin. Synthetic growth hormone, termed somatropin, has replaced the natural form in therapeutic usage such as treatment of dwarfism in children with growth hormone deficiency.
An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP).
Hormones secreted by the PITUITARY GLAND including those from the anterior lobe (adenohypophysis), the posterior lobe (neurohypophysis), and the ill-defined intermediate lobe. Structurally, they include small peptides, proteins, and glycoproteins. They are under the regulation of neural signals (NEUROTRANSMITTERS) or neuroendocrine signals (HYPOTHALAMIC HORMONES) from the hypothalamus as well as feedback from their targets such as ADRENAL CORTEX HORMONES; ANDROGENS; ESTROGENS.
A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3.
Compounds, either natural or synthetic, which block development of the growing insect.
Therapeutic use of hormones to alleviate the effects of hormone deficiency.
A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND.
The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids.
A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS.
Peptide hormones produced by NEURONS of various regions in the HYPOTHALAMUS. They are released into the pituitary portal circulation to stimulate or inhibit PITUITARY GLAND functions. VASOPRESSIN and OXYTOCIN, though produced in the hypothalamus, are not included here for they are transported down the AXONS to the POSTERIOR LOBE OF PITUITARY before being released into the portal circulation.
Hormones synthesized from amino acids. They are distinguished from INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS in that their actions are systemic.
A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM.
The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism.
A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.
A glycoprotein that causes regression of MULLERIAN DUCTS. It is produced by SERTOLI CELLS of the TESTES. In the absence of this hormone, the Mullerian ducts develop into structures of the female reproductive tract. In males, defects of this hormone result in persistent Mullerian duct, a form of MALE PSEUDOHERMAPHRODITISM.
Hormones produced by the GONADS, including both steroid and peptide hormones. The major steroid hormones include ESTRADIOL and PROGESTERONE from the OVARY, and TESTOSTERONE from the TESTIS. The major peptide hormones include ACTIVINS and INHIBINS.
High affinity receptors for THYROID HORMONES, especially TRIIODOTHYRONINE. These receptors are usually found in the nucleus where they regulate DNA transcription. They are encoded by the THRB gene (also known as NR1A2, THRB1, or ERBA2 gene) as several isoforms produced by alternative splicing. Mutations in the THRB gene cause THYROID HORMONE RESISTANCE SYNDROME.
A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate.
Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Structurally, they include polypeptide, protein, and glycoprotein molecules.
A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity.
The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS.
HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs.
High affinity receptors for THYROID HORMONES, especially TRIIODOTHYRONINE. These receptors are usually found in the nucleus where they regulate DNA transcription. They are encoded by the THRA gene (also known as NR1A1, THRA1, ERBA or ERBA1 gene) as several isoforms produced by alternative splicing.
The alpha chain of pituitary glycoprotein hormones (THYROTROPIN; FOLLICLE STIMULATING HORMONE; LUTEINIZING HORMONE) and the placental CHORIONIC GONADOTROPIN. Within a species, the alpha subunits of these four hormones are identical; the distinct functional characteristics of these glycoprotein hormones are determined by the unique beta subunits. Both subunits, the non-covalently bound heterodimers, are required for full biologic activity.
Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones.
Chemical substances which inhibit the function of the endocrine glands, the biosynthesis of their secreted hormones, or the action of hormones upon their specific sites.
Peptides, natural or synthetic, that stimulate the release of PITUITARY HORMONES. They were first isolated from the extracts of the HYPOTHALAMUS; MEDIAN EMINENCE; PITUITARY STALK; and NEUROHYPOPHYSIS. In addition, some hypophysiotropic hormones control pituitary cell differentiation, cell proliferation, and hormone synthesis. Some can act on more than one pituitary hormone.
Hormones produced by invertebrates, usually insects, mollusks, annelids, and helminths.
Hormones released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). They include a number of peptides which are formed in the NEURONS in the HYPOTHALAMUS, bound to NEUROPHYSINS, and stored in the nerve terminals in the posterior pituitary. Upon stimulation, these peptides are released into the hypophysial portal vessel blood.
Cell surface proteins that bind GROWTH HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. Activation of growth hormone receptors regulates amino acid transport through cell membranes, RNA translation to protein, DNA transcription, and protein and amino acid catabolism in many cell types. Many of these effects are mediated indirectly through stimulation of the release of somatomedins.
Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds.
Peptides with the ability to stimulate pigmented cells MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. By stimulating the synthesis and distribution of MELANIN in these pigmented cells, they increase coloration of skin and other tissue. MSHs, derived from pro-opiomelanocortin (POMC), are produced by MELANOTROPHS in the INTERMEDIATE LOBE OF PITUITARY; CORTICOTROPHS in the ANTERIOR LOBE OF PITUITARY, and the hypothalamic neurons in the ARCUATE NUCLEUS OF HYPOTHALAMUS.
Hormones produced in the testis.
The beta subunit of follicle stimulating hormone. It is a 15-kDa glycopolypeptide. Full biological activity of FSH requires the non-covalently bound heterodimers of an alpha and a beta subunit. Mutation of the FSHB gene causes delayed puberty, or infertility.
The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION.
The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions.
A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA.
A parathyroid hormone receptor subtype that recognizes both PARATHYROID HORMONE and PARATHYROID HORMONE-RELATED PROTEIN. It is a G-protein-coupled receptor that is expressed at high levels in BONE and in KIDNEY.
Hormones produced by the placenta include CHORIONIC GONADOTROPIN, and PLACENTAL LACTOGEN as well as steroids (ESTROGENS; PROGESTERONE), and neuropeptide hormones similar to those found in the hypothalamus (HYPOTHALAMIC HORMONES).
Peptide hormones secreted into the blood by cells in the ISLETS OF LANGERHANS of the pancreas. The alpha cells secrete glucagon; the beta cells secrete insulin; the delta cells secrete somatostatin; and the PP cells secrete pancreatic polypeptide.
The surgical removal of one or both ovaries.
Cell surface receptors that bind thyrotropin releasing hormone (TRH) with high affinity and trigger intracellular changes which influence the behavior of cells. Activated TRH receptors in the anterior pituitary stimulate the release of thyrotropin (thyroid stimulating hormone, TSH); TRH receptors on neurons mediate neurotransmission by TRH.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
Cell surface proteins that bind PARATHYROID HORMONE with high affinity and trigger intracellular changes which influence the behavior of cells. Parathyroid hormone receptors on BONE; KIDNEY; and gastrointestinal cells mediate the hormone's role in calcium and phosphate homeostasis.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor.
Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed)
A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively.
Receptors with a 6-kDa protein on the surfaces of cells that secrete LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE, usually in the adenohypophysis. LUTEINIZING HORMONE-RELEASING HORMONE binds to these receptors, is endocytosed with the receptor and, in the cell, triggers the release of LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE by the cell. These receptors are also found in rat gonads. INHIBINS prevent the binding of GnRH to its receptors.
Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE.
A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN).
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An inherited autosomal recessive trait, characterized by peripheral resistance to THYROID HORMONES and the resulting elevation in serum levels of THYROXINE and TRIIODOTHYRONINE. This syndrome is caused by mutations of gene THRB encoding the THYROID HORMONE RECEPTORS BETA in target cells. HYPOTHYROIDISM in these patients is partly overcome by the increased thyroid hormone levels.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Elements of limited time intervals, contributing to particular results or situations.
The physiological period following the MENOPAUSE, the permanent cessation of the menstrual life.
A group of polycyclic compounds closely related biochemically to TERPENES. They include cholesterol, numerous hormones, precursors of certain vitamins, bile acids, alcohols (STEROLS), and certain natural drugs and poisons. Steroids have a common nucleus, a fused, reduced 17-carbon atom ring system, cyclopentanoperhydrophenanthrene. Most steroids also have two methyl groups and an aliphatic side-chain attached to the nucleus. (From Hawley's Condensed Chemical Dictionary, 11th ed)
Cell surface proteins that bind FOLLICLE STIMULATING HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells.
Cell surface receptors that bind the hypothalamic hormones regulating pituitary cell differentiation, proliferation, and hormone synthesis and release, including the pituitary-releasing and release-inhibiting hormones. The pituitary hormone-regulating hormones are also released by cells other than hypothalamic neurons, and their receptors also occur on non-pituitary cells, especially brain neurons, where their role is less well understood. Receptors for dopamine, which is a prolactin release-inhibiting hormone as well as a common neurotransmitter, are not included here.
A 13-amino acid peptide derived from proteolytic cleavage of ADRENOCORTICOTROPIC HORMONE, the N-terminal segment of ACTH. ACTH (1-13) is amidated at the C-terminal to form ACTH (1-13)NH2 which in turn is acetylated to form alpha-MSH in the secretory granules. Alpha-MSH stimulates the synthesis and distribution of MELANIN in MELANOCYTES in mammals and MELANOPHORES in lower vertebrates.
The beta subunit of luteinizing hormone. It is a 15-kDa glycopolypeptide with structure similar to the beta subunit of the placental chorionic gonadatropin (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN) except for the additional 31 amino acids at the C-terminal of CG-beta. Full biological activity of LH requires the non-covalently bound heterodimers of an alpha and a beta subunit. Mutation of the LHB gene causes HYPOGONADISM and infertility.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Compounds that interact with PROGESTERONE RECEPTORS in target tissues to bring about the effects similar to those of PROGESTERONE. Primary actions of progestins, including natural and synthetic steroids, are on the UTERUS and the MAMMARY GLAND in preparation for and in maintenance of PREGNANCY.
Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA.
A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS.
A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8.
A 28-amino acid, acylated, orexigenic peptide that is a ligand for GROWTH HORMONE SECRETAGOGUE RECEPTORS. Ghrelin is widely expressed but primarily in the stomach in the adults. Ghrelin acts centrally to stimulate growth hormone secretion and food intake, and peripherally to regulate energy homeostasis. Its large precursor protein, known as appetite-regulating hormone or motilin-related peptide, contains ghrelin and obestatin.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The last menstrual period. Permanent cessation of menses (MENSTRUATION) is usually defined after 6 to 12 months of AMENORRHEA in a woman over 45 years of age. In the United States, menopause generally occurs in women between 48 and 55 years of age.
Humoral factors secreted by the thymus gland. They participate in the development of the lymphoid system and the maturation of the cellular immune response.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
Surgical removal or artificial destruction of gonads.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Hypersecretion of THYROID HORMONES from the THYROID GLAND. Elevated levels of thyroid hormones increase BASAL METABOLIC RATE.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The relationship between the dose of an administered drug and the response of the organism to the drug.
The surgical removal of one or both testicles.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A metabolite of THYROXINE, formed by the peripheral enzymatic monodeiodination of T4 at the 5 position of the inner ring of the iodothyronine nucleus.
Deviations from the average values for a specific age and sex in any or all of the following: height, weight, skeletal proportions, osseous development, or maturation of features. Included here are both acceleration and retardation of growth.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES.
A form of dwarfism caused by complete or partial GROWTH HORMONE deficiency, resulting from either the lack of GROWTH HORMONE-RELEASING FACTOR from the HYPOTHALAMUS or from the mutations in the growth hormone gene (GH1) in the PITUITARY GLAND. It is also known as Type I pituitary dwarfism. Human hypophysial dwarf is caused by a deficiency of HUMAN GROWTH HORMONE during development.
The period from onset of one menstrual bleeding (MENSTRUATION) to the next in an ovulating woman or female primate. The menstrual cycle is regulated by endocrine interactions of the HYPOTHALAMUS; the PITUITARY GLAND; the ovaries; and the genital tract. The menstrual cycle is divided by OVULATION into two phases. Based on the endocrine status of the OVARY, there is a FOLLICULAR PHASE and a LUTEAL PHASE. Based on the response in the ENDOMETRIUM, the menstrual cycle is divided into a proliferative and a secretory phase.
Any of the hormones produced naturally in plants and active in controlling growth and other functions. There are three primary classes: auxins, cytokinins, and gibberellins.
Established cell cultures that have the potential to propagate indefinitely.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
The discharge of an OVUM from a rupturing follicle in the OVARY.
Cell surface proteins that bind corticotropin-releasing hormone with high affinity and trigger intracellular changes which influence the behavior of cells. The corticotropin releasing-hormone receptors on anterior pituitary cells mediate the stimulation of corticotropin release by hypothalamic corticotropin releasing factor. The physiological consequence of activating corticotropin-releasing hormone receptors on central neurons is not well understood.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes.
An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
Diminution or cessation of secretion of one or more hormones from the anterior pituitary gland (including LH; FOLLICLE STIMULATING HORMONE; SOMATOTROPIN; and CORTICOTROPIN). This may result from surgical or radiation ablation, non-secretory PITUITARY NEOPLASMS, metastatic tumors, infarction, PITUITARY APOPLEXY, infiltrative or granulomatous processes, and other conditions.
Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR) that stimulate gonadal functions in both males and females. They include FOLLICLE STIMULATING HORMONE that stimulates germ cell maturation (OOGENESIS; SPERMATOGENESIS), and LUTEINIZING HORMONE that stimulates the production of sex steroids (ESTROGENS; PROGESTERONE; ANDROGENS).
Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important.
The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS.
A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ.
The rate dynamics in chemical or physical systems.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal.
A polypeptide hormone of approximately 25 kDa that is produced by the SYNCYTIOTROPHOBLASTS of the PLACENTA, also known as chorionic somatomammotropin. It has both GROWTH HORMONE and PROLACTIN activities on growth, lactation, and luteal steroid production. In women, placental lactogen secretion begins soon after implantation and increases to 1 g or more a day in late pregnancy. Placental lactogen is also an insulin antagonist.
An anti-inflammatory 9-fluoro-glucocorticoid.
Achievement of full sexual capacity in animals and in humans.
Cell surface proteins that bind pituitary hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Since many pituitary hormones are also released by neurons as neurotransmitters, these receptors are also found in the nervous system.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively
Tumors or cancer of the human BREAST.
Two pairs of small oval-shaped glands located in the front and the base of the NECK and adjacent to the two lobes of THYROID GLAND. They secrete PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.
Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction.
An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
A potent synthetic long-acting agonist of GONADOTROPIN-RELEASING HORMONE that regulates the synthesis and release of pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE.
A 16-kDa peptide hormone secreted from WHITE ADIPOCYTES. Leptin serves as a feedback signal from fat cells to the CENTRAL NERVOUS SYSTEM in regulation of food intake, energy balance, and fat storage.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
The measurement of an organ in volume, mass, or heaviness.
A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE.
A delta-4 C19 steroid that is produced not only in the TESTIS, but also in the OVARY and the ADRENAL CORTEX. Depending on the tissue type, androstenedione can serve as a precursor to TESTOSTERONE as well as ESTRONE and ESTRADIOL.
The total process by which organisms produce offspring. (Stedman, 25th ed)
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example.
A potent androgenic metabolite of TESTOSTERONE. It is produced by the action of the enzyme 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE.
A potent synthetic analog of GONADOTROPIN-RELEASING HORMONE with D-serine substitution at residue 6, glycine10 deletion, and other modifications.
The system of glands that release their secretions (hormones) directly into the circulatory system. In addition to the ENDOCRINE GLANDS, included are the CHROMAFFIN SYSTEM and the NEUROSECRETORY SYSTEMS.
Surgical removal of the thyroid gland. (Dorland, 28th ed)
A condition caused by prolonged exposure to excessive HUMAN GROWTH HORMONE in adults. It is characterized by bony enlargement of the FACE; lower jaw (PROGNATHISM); hands; FEET; HEAD; and THORAX. The most common etiology is a GROWTH HORMONE-SECRETING PITUITARY ADENOMA. (From Joynt, Clinical Neurology, 1992, Ch36, pp79-80)
A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system.
Ductless glands that secrete HORMONES directly into the BLOOD CIRCULATION. These hormones influence the METABOLISM and other functions of cells in the body.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
A potent synthetic long-acting agonist of GONADOTROPIN-RELEASING HORMONE with D-tryptophan substitution at residue 6.
A polypeptide that consists of the 1-34 amino-acid fragment of human PARATHYROID HORMONE, the biologically active N-terminal region. The acetate form is given by intravenous infusion in the differential diagnosis of HYPOPARATHYROIDISM and PSEUDOHYPOPARATHYROIDISM. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1995)
Transmembrane proteins that recognize and bind GHRELIN, a potent stimulator of GROWTH HORMONE secretion and food intake in mammals. Ghrelin receptors are found in the pituitary and HYPOTHALAMUS. They belong to the family of G-PROTEIN-COUPLED RECEPTORS.
A parathyroid hormone receptor subtype found in the BRAIN and the PANCREAS. It is a G-protein-coupled receptor with a ligand specificity that varies between homologs from different species.
The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary.
A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534)
Proteins prepared by recombinant DNA technology.
The period of the MENSTRUAL CYCLE representing follicular growth, increase in ovarian estrogen (ESTROGENS) production, and epithelial proliferation of the ENDOMETRIUM. Follicular phase begins with the onset of MENSTRUATION and ends with OVULATION.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Condition resulting from deficient gonadal functions, such as GAMETOGENESIS and the production of GONADAL STEROID HORMONES. It is characterized by delay in GROWTH, germ cell maturation, and development of secondary sex characteristics. Hypogonadism can be due to a deficiency of GONADOTROPINS (hypogonadotropic hypogonadism) or due to primary gonadal failure (hypergonadotropic hypogonadism).
A steroid hormone that regulates the processes of MOLTING or ecdysis in insects.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A pharmaceutical preparation containing a mixture of water-soluble, conjugated estrogens derived wholly or in part from URINE of pregnant mares or synthetically from ESTRONE and EQUILIN. It contains a sodium-salt mixture of estrone sulfate (52-62%) and equilin sulfate (22-30%) with a total of the two between 80-88%. Other concomitant conjugates include 17-alpha-dihydroequilin, 17-alpha-estradiol, and 17-beta-dihydroequilin. The potency of the preparation is expressed in terms of an equivalent quantity of sodium estrone sulfate.
A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP).
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH).
The period of cyclic physiological and behavior changes in non-primate female mammals that exhibit ESTRUS. The estrous cycle generally consists of 4 or 5 distinct periods corresponding to the endocrine status (PROESTRUS; ESTRUS; METESTRUS; DIESTRUS; and ANESTRUS).
A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Paired or fused ganglion-like bodies in the head of insects. The bodies secrete hormones important in the regulation of metamorphosis and the development of some adult tissues.
Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS.
Cell surface proteins that bind pituitary THYROTROPIN (also named thyroid stimulating hormone or TSH) and trigger intracellular changes of the target cells. TSH receptors are present in the nervous system and on target cells in the thyroid gland. Autoantibodies to TSH receptors are implicated in thyroid diseases such as GRAVES DISEASE and Hashimoto disease (THYROIDITIS, AUTOIMMUNE).
A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Glucose in blood.
Labile proteins on or in prolactin-sensitive cells that bind prolactin initiating the cells' physiological response to that hormone. Mammary casein synthesis is one of the responses. The receptors are also found in placenta, liver, testes, kidneys, ovaries, and other organs and bind and respond to certain other hormones and their analogs and antagonists. This receptor is related to the growth hormone receptor.
Periodic casting off FEATHERS; HAIR; or cuticle. Molting is a process of sloughing or desquamation, especially the shedding of an outer covering and the development of a new one. This phenomenon permits growth in ARTHROPODS, skin renewal in AMPHIBIANS and REPTILES, and the shedding of winter coats in BIRDS and MAMMALS.
The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.
The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa.
Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
Agents that are used to treat hyperthyroidism by reducing the excessive production of thyroid hormones.
A synthetic progestin that is derived from 17-hydroxyprogesterone. It is a long-acting contraceptive that is effective both orally or by intramuscular injection and has also been used to treat breast and endometrial neoplasms.
The hollow thick-walled muscular organ in the female PELVIS. It consists of the fundus (the body) which is the site of EMBRYO IMPLANTATION and FETAL DEVELOPMENT. Beyond the isthmus at the perineal end of fundus, is CERVIX UTERI (the neck) opening into VAGINA. Beyond the isthmi at the upper abdominal end of fundus, are the FALLOPIAN TUBES.
A genetic or pathological condition that is characterized by short stature and undersize. Abnormal skeletal growth usually results in an adult who is significantly below the average height.
Cell surface receptors that bind specific neuropeptides with high affinity and trigger intracellular changes influencing the behavior of cells. Many neuropeptides are also hormones outside of the nervous system.
A condition of abnormally elevated output of PARATHYROID HORMONE (or PTH) triggering responses that increase blood CALCIUM. It is characterized by HYPERCALCEMIA and BONE RESORPTION, eventually leading to bone diseases. PRIMARY HYPERPARATHYROIDISM is caused by parathyroid HYPERPLASIA or PARATHYROID NEOPLASMS. SECONDARY HYPERPARATHYROIDISM is increased PTH secretion in response to HYPOCALCEMIA, usually caused by chronic KIDNEY DISEASES.
A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Proteins in the nucleus or cytoplasm that specifically bind RETINOIC ACID or RETINOL and trigger changes in the behavior of cells. Retinoic acid receptors, like steroid receptors, are ligand-activated transcription regulators. Several types have been recognized.
Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced.
Steroids that bring about MOLTING or ecdysis in insects. Ecdysteroids include the endogenous insect hormones (ECDYSONE and ECDYSTERONE) and the insect-molting hormones found in plants, the phytoecdysteroids. Phytoecdysteroids are natural insecticides.
Examinations that evaluate functions of the pituitary gland.
A period in the human life in which the development of the hypothalamic-pituitary-gonadal system takes place and reaches full maturity. The onset of synchronized endocrine events in puberty lead to the capacity for reproduction (FERTILITY), development of secondary SEX CHARACTERISTICS, and other changes seen in ADOLESCENT DEVELOPMENT.
A peptide of 36 or 37 amino acids that is derived from PROGLUCAGON and mainly produced by the INTESTINAL L CELLS. GLP-1(1-37 or 1-36) is further N-terminally truncated resulting in GLP-1(7-37) or GLP-1-(7-36) which can be amidated. These GLP-1 peptides are known to enhance glucose-dependent INSULIN release, suppress GLUCAGON release and gastric emptying, lower BLOOD GLUCOSE, and reduce food intake.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
The period before MENOPAUSE. In premenopausal women, the climacteric transition from full sexual maturity to cessation of ovarian cycle takes place between the age of late thirty and early fifty.
The consumption of edible substances.
Excision of one or both adrenal glands. (From Dorland, 28th ed)

Growth hormone-releasing peptide-2 infusion synchronizes growth hormone, thyrotrophin and prolactin release in prolonged critical illness. (1/3396)

OBJECTIVE: During prolonged critical illness, nocturnal pulsatile secretion of GH, TSH and prolactin (PRL) is uniformly reduced but remains responsive to the continuous infusion of GH secretagogues and TRH. Whether such (pertinent) secretagogues would synchronize pituitary secretion of GH, TSH and/or PRL is not known. DESIGN AND METHODS: We explored temporal coupling among GH, TSH and PRL release by calculating cross-correlation among GH, TSH and PRL serum concentration profiles in 86 time series obtained from prolonged critically ill patients by nocturnal blood sampling every 20 min for 9 h during 21-h infusions of either placebo (n=22), GHRH (1 microg/kg/h; n=10), GH-releasing peptide-2 (GHRP-2; 1 microg/kg/h; n=28), TRH (1 microg/kg/h; n=8) or combinations of these agonists (n=8). RESULTS: The normal synchrony among GH, TSH and PRL was absent during placebo delivery. Infusion of GHRP-2, but not GHRH or TRH, markedly synchronized serum profiles of GH, TSH and PRL (all P< or =0.007). After addition of GHRH and TRH to the infusion of GHRP-2, only the synchrony between GH and PRL was maintained (P=0.003 for GHRH + GHRP-2 and P=0.006 for TRH + GHRH + GHRP-2), and was more marked than with GHRP-2 infusion alone (P=0.0006 by ANOVA). CONCLUSIONS: The nocturnal GH, TSH and PRL secretory patterns during prolonged critical illness are herewith further characterized to include loss of synchrony among GH, TSH and PRL release. The synchronizing effect of an exogenous GHRP-2 drive, but not of GHRH or TRH, suggests that the presumed endogenous GHRP-like ligand may participate in the orchestration of coordinated anterior pituitary hormone release.  (+info)

Long-term results of GH therapy in GH-deficient children treated before 1 year of age. (2/3396)

OBJECTIVES: To evaluate the long-term effects of GH therapy in early diagnosed GH-deficient patients treated before 1 year of age. STUDY DESIGN: We studied all 59 patients (33 males) recorded by Association France-Hypophyse and treated with GH (0.50+/-0.15 IU/kg (S.D.) per week) before 1 year of age. Clinical presentation and growth parameters under GH treatment were analyzed. RESULTS: Neonatal manifestations of hypopituitarism were frequent: hypoglycemia (n=50), jaundice (n=25) and micropenis (n=17/33). Although birth length was moderately reduced (-0.9+/-1.4), growth retardation at diagnosis (5.8+/-3.8 months) was severe (-3.5+/-1.9 standard deviation scores (SDS)). Fifty patients (85%) had thyrotropin and/or corticotropin deficiency. After a mean duration of GH therapy of 8.0+/-3.6 years, change in height SDS was +3.11+/-2.06 S.D., exceeding 4 SDS in 19 patients. Only 9 patients (15%) did not reach a height of -2 S.D. for chronological age and 20 patients (34%) exceeded their target height. Pretreatment height SDS was independently associated with total catch-up growth. CONCLUSION: Conventional doses of GH allow normalization of height in patients with early GH deficiency and treatment.  (+info)

Changes in body composition and leptin levels during growth hormone (GH) treatment in short children with various GH secretory capacities. (3/3396)

OBJECTIVE: The aim of this study was to follow changes in body composition, estimated by dual-energy X-ray absorptiometry (DXA), in relation to changes in leptin during the first year of GH therapy in order to test the hypothesis that leptin is a metabolic signal involved in the regulation of GH secretion in children. DESIGN AND METHODS: In total, 33 prepubertal children were investigated. Their mean (S.D.) chronological age at the start of GH treatment was 11.5 (1.6) years, and their mean height was -2.33 (0.38) S.D. scores (SDS). GH was administered subcutaneously at a daily dose of 0.1 (n=26) or 0.2 (n=7) IU/kg body weight. Ten children were in the Swedish National Registry for children with GH deficiency, and twenty-three children were involved in trials of GH treatment for idiopathic short stature. Spontaneous 24-h GH secretion was studied in 32 of the children. In the 24-h GH profiles, the maximum level of GH was determined and the secretion rate estimated by deconvolution analysis (GHt). Serum leptin levels were measured at the start of GH treatment and after 10 and 30 days and 3, 6 and 12 months of treatment. Body composition measurements, by DXA, were performed at baseline and 12 months after the onset of GH treatment. RESULTS: After 12 months of GH treatment, mean height increased from -2.33 to -1.73 SDS and total body fat decreased significantly by 3.0 (3.3)%. Serum leptin levels were decreased significantly at all time points studied compared with baseline. There was a significant correlation between the change in total body fat and the change in serum leptin levels during the 12 months of GH treatment, whereas the leptin concentration per unit fat mass did not change. In a multiple stepwise linear regression analysis with 12 month change in leptin levels as the dependent variable, the percentage change in fat over 12 months, the baseline fat mass (%) of body mass and GHt accounted for 24.0%, 11.5% and 12.2% of the variability respectively. CONCLUSIONS: There are significant correlations between changes in leptin and fat and endogenous GH secretion in short children with various GH secretory capacities. Leptin may be the messenger by which the adipose tissue affects hypothalamic regulation of GH secretion.  (+info)

Hormone-related, muscle-specific changes in protein metabolism and fiber type profile after faba bean intake. (4/3396)

Male growing Wistar rats were fed, over 15 days, isoenergetic (16.72 +/- 0.49 MJ) and isoproteic (11%) diets containing either lactalbumin or raw Vicia faba L. (Vf) as the sole source of protein. Compared with pair-fed controls (PF), soleus muscles of Vf-fed rats showed increased (P < 0.05) synthesis and breakdown rates. In addition, the soleus of Vf-fed rats displayed a decrease (P < 0.05) in type I and an increase (P < 0.01) in type IIc fibers compared with that of PF animals. On the contrary, extensor digitorum longus muscles of both Vf-fed and PF rats showed an increase (P < 0.01) in type I and a reduction (P < 0.05) in type IIb fibers together with a decrease (P < 0.05) in the cross-sectional area of the latter fibers. Vf-fed rats exhibited a significant decrease in serum insulin (P < 0.05) and thyrotropin (P < 0.01) levels, together with an increase in plasma glucagon (P < 0.05) and 3,5,3'-triiodothyronine (P < 0.01) concentrations, compared with the PF group. Both Vf-fed and PF rats experienced an increase in corticosterone concentrations (P < 0.01 vs. control; P < 0.05 vs. PF). The muscle-specific changes in both protein metabolism and fiber type composition may partly depend on the hormonal changes that were observed after Vf intake.  (+info)

Mechanism for the posture-specific plasma volume increase after a single intense exercise protocol. (5/3396)

To test the hypothesis that exercise-induced hypervolemia is a posture-dependent process, we measured plasma volume, plasma albumin content, and renal function in seven healthy subjects for 22 h after single upright (Up) or supine (Sup) intense (85% peak oxygen consumption rate) exercise. This posture was maintained for 5 h after exercise. Plasma volume decreased during exercise but returned to control levels by 5 h of recovery in both postures. By 22 h of recovery, plasma volume increased 2.4 +/- 0.8 ml/kg in Up but decreased 2.1 +/- 0.8 ml/kg in Sup. The plasma volume expansion in Up was accompanied by an increase in plasma albumin content (0.11 +/- 0.04 g/kg; P < 0.05). Plasma albumin content was unchanged in Sup. Urine volume and sodium clearance were lower in Up than Sup (P < 0.05) by 5 h of recovery. These data suggest that increased plasma albumin content contributes to the acute phase of exercise-induced hypervolemia. More importantly, the mechanism by which exercise influences the distribution of albumin between extra- and intravascular stores after exercise is altered by posture and is unknown. We speculate that factors associated with postural changes (e.g., central venous pressure) modify the increase in plasma albumin content and the plasma volume expansion after exercise.  (+info)

Physiological variability of fluid-regulation hormones in young women. (6/3396)

We tested the physiological reliability of plasma renin activity (PRA) and plasma concentrations of arginine vasopressin (P[AVP]), aldosterone (P[ALD]), and atrial natriuretic peptide (P[ANP]) in the early follicular phase and midluteal phases over the course of two menstrual cycles (n = 9 women, ages 25 +/- 1 yr). The reliability (Cronbach's alpha >/=0.80) of these hormones within a given phase of the cycle was tested 1) at rest, 2) after 2.5 h of dehydrating exercise, and 3) during a rehydration period. The mean hormone concentrations were similar within both the early follicular and midluteal phase tests; and the mean concentrations of P[ALD] and PRA for the three test conditions were significantly greater during the midluteal compared with the early follicular phase. Although Cronbach's alpha for resting and recovery P[ANP] were high (0.80 and 0.87, respectively), the resting and rehydration values for P[AVP], P[ALD], and PRA were variable between trials for the follicular (alpha from 0.49 to 0.55) and the luteal phase (alpha from 0.25 to 0. 66). Physiological reliability was better after dehydration for P[AVP] and PRA but remained low for P[ALD]. Although resting and recovery P[AVP], P[ALD], and PRA were not consistent within a given menstrual phase, the differences in the concentrations of these hormones between the different menstrual phases far exceeded the variability within the phases, indicating that the low within-phase reliability does not prevent the detection of menstrual phase-related differences in these hormonal variables.  (+info)

Endotoxin-induced changes in IGF-I differ in rats provided enteral vs. parenteral nutrition. (7/3396)

The purpose of the present study was to determine whether acute changes in the insulin-like growth factor (IGF) system induced by mild surgical trauma/fasting or endotoxin [lipopolysaccharide (LPS)] are differentially modulated by total enteral nutrition (TEN) or total parenteral nutrition (TPN). Rats had vascular catheters and a gastrostomy tube surgically placed and were fasted overnight. The next morning animals randomly received an isocaloric, isonitrogenous (250 kcal. kg-1. day-1, 1.6 g N. kg-1. day-1) infusion of either TEN or TPN for 48 h. Then rats were injected intravenously with Escherichia coli LPS (1 mg/kg) while nutritional support was continued. Time-matched control animals were injected with saline. After mild surgical trauma and an 18-h fast, TEN was more effective at increasing plasma IGF-I levels than TPN. Subsequent injection of LPS decreased IGF-I in blood, liver, and muscle in both TEN- and TPN-fed rats compared with saline-injected control animals. However, this decrease was approximately 30% greater in rats fed TPN compared with those fed TEN. LPS-induced downregulation of IGF-I mRNA expression in liver and muscle was also more prominent in TPN-fed rats. The LPS-induced increase in plasma corticosterone and tumor necrosis factor-alpha was greater (2- and 1.6-fold, respectively) in TPN-fed rats, and these changes were consistent with the greater reduction in IGF-I seen in these animals. In similarly treated rats allowed to survive for 24 h after LPS injection, the LPS-induced increase in the urinary 3-methylhistidine-to-creatinine ratio was smaller in TEN-fed rats. In summary, LPS reduced systemic levels of IGF-I as well as IGF-I protein and mRNA in critical target organs. Enteral feeding greatly attenuated this response. Maintenance of higher IGF-I levels in TEN-fed rats was associated with a reduction in inflammatory cytokine levels and lower rates of myofibrillar degradation.  (+info)

The importance of pyruvate availability to PDC activation and anaplerosis in human skeletal muscle. (8/3396)

No studies have singularly investigated the relationship between pyruvate availability, pyruvate dehydrogenase complex (PDC) activation, and anaplerosis in skeletal muscle. This is surprising given the functional importance attributed to these processes in normal and disease states. We investigated the effects of changing pyruvate availability with dichloroacetate (DCA), epinephrine, and pyruvate infusions on PDC activation and accumulation of acetyl groups and tricarboxylic acid (TCA) cycle intermediates (TCAI) in human muscle. DCA increased resting PDC activity sixfold (P < 0.05) but decreased the muscle TCAI pool (mmol/kg dry muscle) from 1.174 +/- 0.042 to 0.747 +/- 0.055 (P < 0.05). This was probably a result of pyruvate being diverted to acetyl-CoA and acetylcarnitine after near-maximal activation of PDC by DCA. Conversely, neither epinephrine nor pyruvate activated PDC. However, both increased the TCAI pool (1.128 +/- 0.076 to 1.614 +/- 0.188, P < 0.05 and 1.098 +/- 0.059 to 1.385 +/- 0.114, P < 0.05, respectively) by providing a readily available pool of pyruvate for anaplerosis. These data support the hypothesis that TCAI pool expansion is principally a reflection of increased muscle pyruvate availability and, together with our previous work (J. A. Timmons, S. M. Poucher, D. Constantin-Teodosiu, V. Worrall, I. A. Macdonald, and P. L. Greenhaff. J. Clin. Invest. 97: 879-883, 1996), indicate that TCA cycle expansion may be of little functional significance to TCA cycle flux. It would appear therefore that the primary effect of DCA on oxidative ATP provision is to provide a readily available pool of acetyl groups to the TCA cycle at the onset of exercise rather than increasing TCA cycle flux by expanding the TCAI pool.  (+info)

Hypothyroidism can be diagnosed through a series of blood tests that measure the levels of thyroid hormones in the body. Treatment typically involves taking synthetic thyroid hormone medication to replace the missing hormones. With proper treatment, most people with hypothyroidism can lead normal, healthy lives.

Hypothyroidism is a relatively common condition, affecting about 4.6 million people in the United States alone. Women are more likely to develop hypothyroidism than men, and it is most commonly diagnosed in middle-aged women.

Some of the symptoms of Hypothyroidism include:

1. Fatigue or tiredness
2. Weight gain
3. Dry skin
4. Constipation
5. Depression or anxiety
6. Memory problems
7. Muscle aches and stiffness
8. Heavy or irregular menstrual periods
9. Pale, dry, or rough skin
10. Hair loss or thinning
11. Cold intolerance
12. Slowed speech and movements

It's important to note that some people may not experience any symptoms at all, especially in the early stages of the condition. However, if left untreated, hypothyroidism can lead to more severe complications such as heart disease, mental health problems, and infertility.

The symptoms of thyroid hormone resistance syndrome can vary depending on the severity of the mutation and may include:

1. Hypoglycemia (low blood sugar)
2. Growth retardation
3. Congenital hypothyroidism (CH)
4. Neonatal hypothyroidism (NH)
5. Cretinism
6. Mental retardation
7. Developmental delays
8. Short stature
9. Coarse facial features
10. Elevated TSH levels

The diagnosis of thyroid hormone resistance syndrome is based on a combination of clinical findings, laboratory tests, and genetic analysis. Treatment options for this condition include:

1. Thyroid hormone replacement therapy to normalize metabolic function and growth.
2. Monitoring TSH levels to ensure that the thyroid hormone dosage is appropriate.
3. Management of associated symptoms such as hypoglycemia or growth retardation.
4. Genetic counseling to discuss the risks of passing on the condition to future generations.

The prognosis for individuals with thyroid hormone resistance syndrome varies depending on the severity of the condition and the presence of any additional health problems. Early diagnosis and appropriate treatment can improve growth and developmental outcomes, but some individuals may experience persistent health issues or intellectual disability.

Some common types of pituitary neoplasms include:

1. Adenomas: These are benign tumors that grow slowly and often do not cause any symptoms in the early stages.
2. Craniopharyngiomas: These are rare, slow-growing tumors that can be benign or malignant. They can affect the pituitary gland, the hypothalamus, and other areas of the brain.
3. Pituitary carcinomas: These are malignant tumors that grow quickly and can spread to other parts of the body.
4. Pituitary metastases: These are tumors that have spread to the pituitary gland from another part of the body, such as breast cancer or lung cancer.

Symptoms of pituitary neoplasms can vary depending on the size and location of the tumor, but they may include:

* Headaches
* Vision changes, such as blurred vision or loss of peripheral vision
* Hormonal imbalances, which can lead to a variety of symptoms including fatigue, weight gain or loss, and irregular menstrual cycles
* Cognitive changes, such as memory loss or difficulty with concentration
* Pressure on the brain, which can cause nausea, vomiting, and weakness or numbness in the limbs

Diagnosis of pituitary neoplasms typically involves a combination of imaging tests, such as MRI or CT scans, and hormone testing to determine the level of hormones in the blood. Treatment options can vary depending on the type and size of the tumor, but they may include:

* Watchful waiting: Small, benign tumors may not require immediate treatment and can be monitored with regular imaging tests.
* Medications: Hormone replacement therapy or medications to control hormone levels may be used to manage symptoms.
* Surgery: Tumors can be removed through a transsphenoidal surgery, which involves removing the tumor through the nasal cavity and sphenoid sinus.
* Radiation therapy: May be used to treat residual tumor tissue after surgery or in cases where the tumor cannot be completely removed with surgery.

Overall, pituitary neoplasms are rare and can have a significant impact on the body if left untreated. If you suspect you may have a pituitary neoplasm, it is important to seek medical attention for proper diagnosis and treatment.

The most common cause of hyperthyroidism is an autoimmune disorder called Graves' disease, which causes the thyroid gland to produce too much thyroxine (T4) and triiodothyronine (T3). Other causes include inflammation of the thyroid gland (thyroiditis), thyroid nodules, and certain medications.

Symptoms of hyperthyroidism can vary depending on the severity of the condition, but may include:

* Rapid weight loss
* Nervousness or irritability
* Increased heart rate
* Heat intolerance
* Changes in menstrual cycle
* Fatigue
* Muscle weakness
* tremors

If left untreated, hyperthyroidism can lead to more serious complications such as heart problems, bone loss, and eye problems. Treatment options for hyperthyroidism include medications to reduce hormone production, radioactive iodine therapy to destroy part of the thyroid gland, and surgery to remove part or all of the thyroid gland.

In pregnant women, untreated hyperthyroidism can increase the risk of miscarriage, preterm labor, and intellectual disability in the baby. Treatment options for pregnant women with hyperthyroidism are similar to those for non-pregnant adults, but may need to be adjusted to avoid harm to the developing fetus.

It is important for individuals suspected of having hyperthyroidism to seek medical attention as soon as possible to receive proper diagnosis and treatment. Early treatment can help prevent complications and improve quality of life.

Some common types of growth disorders include:

1. Growth hormone deficiency (GHD): A condition in which the body does not produce enough growth hormone, leading to short stature and slow growth.
2. Turner syndrome: A genetic disorder that affects females, causing short stature, incomplete sexual development, and other health problems.
3. Prader-Willi syndrome: A rare genetic disorder that causes excessive hunger, obesity, and other physical and behavioral abnormalities.
4. Chronic kidney disease (CKD): A condition in which the kidneys gradually lose function over time, leading to growth retardation and other health problems.
5. Thalassemia: A genetic disorder that affects the production of hemoglobin, leading to anemia, fatigue, and other health problems.
6. Hypothyroidism: A condition in which the thyroid gland does not produce enough thyroid hormones, leading to slow growth and other health problems.
7. Cushing's syndrome: A rare hormonal disorder that can cause rapid growth and obesity.
8. Marfan syndrome: A genetic disorder that affects the body's connective tissue, causing tall stature, long limbs, and other physical abnormalities.
9. Noonan syndrome: A genetic disorder that affects the development of the heart, lungs, and other organs, leading to short stature and other health problems.
10. Williams syndrome: A rare genetic disorder that causes growth delays, cardiovascular problems, and other health issues.

Growth disorders can be diagnosed through a combination of physical examination, medical history, and laboratory tests such as hormone level assessments or genetic testing. Treatment depends on the specific condition and may include medication, hormone therapy, surgery, or other interventions. Early diagnosis and treatment can help manage symptoms and improve quality of life for individuals with growth disorders.

Pituitary dwarfism is characterized by short stature, typically defined as an adult height of 4 feet 10 inches or under, and can be associated with other medical conditions such as hypothyroidism, adrenal insufficiency, and gonadal insufficiency. The condition can be diagnosed through a combination of clinical evaluation, laboratory tests, and imaging studies.

Treatment for pituitary dwarfism typically involves replacement therapy with growth hormone to promote growth and development, as well as management of any associated medical conditions. In some cases, surgery may be necessary to remove a tumor that is affecting GH production. With appropriate treatment, individuals with pituitary dwarfism can experience significant improvement in their growth and overall health.

In addition to its clinical significance, pituitary dwarfism also has important implications for genetic counseling and family planning. The condition is often inherited in an autosomal dominant pattern, meaning that a single copy of the mutated gene is enough to cause the condition. This means that individuals with pituitary dwarfism have a 50% chance of passing the mutation on to each of their children, and may need to consider genetic testing and counseling to understand their risk.

Overall, pituitary dwarfism is a rare but important condition that can have significant implications for an individual's growth, development, and overall health. With appropriate diagnosis and treatment, individuals with this condition can lead fulfilling lives and achieve their full potential.

The symptoms of hypopituitarism can vary depending on the specific hormone deficiency and can include:

1. Growth hormone deficiency: Short stature, delayed puberty, and decreased muscle mass.
2. Adrenocorticotropic hormone (ACTH) deficiency: Weakness, fatigue, weight loss, and low blood pressure.
3. Thyroid-stimulating hormone (TSH) deficiency: Hypothyroidism, decreased metabolism, dry skin, and constipation.
4. Prolactin deficiency: Lack of milk production in lactating women, erectile dysfunction, and infertility.
5. Vasopressin (ADH) deficiency: Increased thirst and urination.
6. Oxytocin deficiency: Difficulty breastfeeding, low milk supply, and uterine atony.

Hypopituitarism can be caused by a variety of factors such as:

1. Traumatic brain injury or surgery
2. Tumors, cysts, or inflammation in the pituitary gland or hypothalamus
3. Radiation therapy
4. Infections such as meningitis or encephalitis
5. Autoimmune disorders such as hypophyseal lymphocytic infiltration
6. Genetic mutations

Diagnosis of hypopituitarism involves a series of tests to assess the levels of hormones in the blood and urine, as well as imaging studies such as MRI or CT scans to evaluate the pituitary gland. Treatment depends on the specific hormone deficiency and can include hormone replacement therapy, surgery, or radiation therapy. In some cases, hypopituitarism may be a temporary condition that resolves once the underlying cause is treated. However, in other cases, it may be a lifelong condition requiring ongoing management.

In conclusion, hypopituitarism is a rare but potentially debilitating disorder that can affect various aspects of human physiology. It is important to be aware of the signs and symptoms of hypopituitarism and seek medical attention if they persist or worsen over time. With proper diagnosis and treatment, individuals with hypopituitarism can lead relatively normal lives.

There are different types of Breast Neoplasms such as:

1. Fibroadenomas: These are benign tumors that are made up of glandular and fibrous tissues. They are usually small and round, with a smooth surface, and can be moved easily under the skin.

2. Cysts: These are fluid-filled sacs that can develop in both breast tissue and milk ducts. They are usually benign and can disappear on their own or be drained surgically.

3. Ductal Carcinoma In Situ (DCIS): This is a precancerous condition where abnormal cells grow inside the milk ducts. If left untreated, it can progress to invasive breast cancer.

4. Invasive Ductal Carcinoma (IDC): This is the most common type of breast cancer and starts in the milk ducts but grows out of them and invades surrounding tissue.

5. Invasive Lobular Carcinoma (ILC): It originates in the milk-producing glands (lobules) and grows out of them, invading nearby tissue.

Breast Neoplasms can cause various symptoms such as a lump or thickening in the breast or underarm area, skin changes like redness or dimpling, change in size or shape of one or both breasts, discharge from the nipple, and changes in the texture or color of the skin.

Treatment options for Breast Neoplasms may include surgery such as lumpectomy, mastectomy, or breast-conserving surgery, radiation therapy which uses high-energy beams to kill cancer cells, chemotherapy using drugs to kill cancer cells, targeted therapy which uses drugs or other substances to identify and attack cancer cells while minimizing harm to normal cells, hormone therapy, immunotherapy, and clinical trials.

It is important to note that not all Breast Neoplasms are cancerous; some are benign (non-cancerous) tumors that do not spread or grow.

Body weight is an important health indicator, as it can affect an individual's risk for certain medical conditions, such as obesity, diabetes, and cardiovascular disease. Maintaining a healthy body weight is essential for overall health and well-being, and there are many ways to do so, including a balanced diet, regular exercise, and other lifestyle changes.

There are several ways to measure body weight, including:

1. Scale: This is the most common method of measuring body weight, and it involves standing on a scale that displays the individual's weight in kg or lb.
2. Body fat calipers: These are used to measure body fat percentage by pinching the skin at specific points on the body.
3. Skinfold measurements: This method involves measuring the thickness of the skin folds at specific points on the body to estimate body fat percentage.
4. Bioelectrical impedance analysis (BIA): This is a non-invasive method that uses electrical impulses to measure body fat percentage.
5. Dual-energy X-ray absorptiometry (DXA): This is a more accurate method of measuring body composition, including bone density and body fat percentage.

It's important to note that body weight can fluctuate throughout the day due to factors such as water retention, so it's best to measure body weight at the same time each day for the most accurate results. Additionally, it's important to use a reliable scale or measuring tool to ensure accurate measurements.

The word "acromegaly" comes from the Greek words "akros," meaning "tip" or " extremity," and "megas," meaning "large." It was first used in the medical literature in the late 19th century to describe the condition.

Symptoms of acromegaly can include:

* Enlarged hands and feet
* Coarsening of facial features
* Joint pain and limited joint mobility
* Carpal tunnel syndrome
* Sleep apnea
* Vision problems
* Fatigue
* Weakness

If left untreated, acromegaly can lead to serious complications such as diabetes, hypertension, and cardiovascular disease. Treatment options for acromegaly include surgery to remove the pituitary tumor, radiation therapy, and medications to reduce GH production.

It's worth noting that acromegaly is different from gigantism, which is a condition where children experience excessive growth and height due to an overproduction of growth hormone during childhood. Acromegaly only occurs in adults and is typically caused by a benign tumor on the pituitary gland, while gigantism can be caused by a variety of factors, including genetics, brain injuries, and certain medical conditions.

* Infertility or low fertility
* Irregular menstrual cycles in women
* Low libido (sex drive) in both men and women
* Erectile dysfunction in men
* Hot flashes, mood changes, and vaginal dryness in women

Hypogonadism can be caused by a variety of factors, including:

* Hormonal imbalances
* Pituitary gland problems
* Brain tumors or other lesions
* Chronic illnesses such as hypopituitarism, hyperthyroidism, and liver or kidney disease
* Injury to the testicles or ovaries
* Certain medications
* Chromosomal abnormalities

Treatment for hypogonadism usually involves hormone replacement therapy (HRT) to replace the deficient sex hormones. However, the specific treatment plan will depend on the underlying cause of the condition and may involve a combination of medications, lifestyle changes, and other interventions.

It is important to note that hypogonadism can have significant psychological and social impacts, particularly in men who experience decreased libido and erectile dysfunction. It is essential for healthcare providers to address these issues sensitively and provide adequate support and resources to patients.

In summary, hypogonadism is a condition characterized by low levels of sex hormones, which can lead to a range of symptoms and health complications. Early diagnosis and appropriate treatment are important for improving quality of life and addressing any related psychological and social issues.

1. Medical Definition: In medicine, dwarfism is defined as a condition where an individual's height is significantly below the average range for their age and gender. The term "dwarfism" is often used interchangeably with "growth hormone deficiency," but the two conditions are not the same. Growth hormone deficiency is a specific cause of dwarfism, but there can be other causes as well, such as genetic mutations or chromosomal abnormalities.
2. Genetic Definition: From a genetic perspective, dwarfism can be defined as a condition caused by a genetic mutation or variation that results in short stature. There are many different genetic causes of dwarfism, including those caused by mutations in the growth hormone receptor gene, the insulin-like growth factor 1 (IGF1) gene, and other genes involved in growth and development.
3. Anthropological Definition: In anthropology, dwarfism is defined as a physical characteristic that is considered to be outside the normal range for a particular population or culture. This can include individuals who are short-statured due to various causes, including genetics, nutrition, or environmental factors.
4. Social Definition: From a social perspective, dwarfism can be defined as a condition that is perceived to be different or abnormal by society. Individuals with dwarfism may face social stigma, discrimination, and other forms of prejudice due to their physical appearance.
5. Legal Definition: In some jurisdictions, dwarfism may be defined as a disability or a medical condition that is protected by anti-discrimination laws. This can provide legal protections for individuals with dwarfism and ensure that they have access to the same rights and opportunities as others.

In summary, the definition of dwarfism can vary depending on the context in which it is used, and it may be defined differently by different disciplines and communities. It is important to recognize and respect the diversity of individuals with dwarfism and to provide support and accommodations as needed to ensure their well-being and inclusion in society.

There are two main types of hyperparathyroidism: primary and secondary. Primary hyperparathyroidism is caused by a benign tumor in one of the parathyroid glands, while secondary hyperparathyroidism is caused by another condition that leads to overproduction of PTH, such as kidney disease or vitamin D deficiency.

Symptoms of hyperparathyroidism can include:

* High blood calcium levels
* Bone loss or osteoporosis
* Kidney stones
* Pancreatitis (inflammation of the pancreas)
* Hyperthyroidism (an overactive thyroid gland)
* Fatigue
* Weakness
* Nausea and vomiting
* Abdominal pain
* Headaches

Treatment for hyperparathyroidism usually involves surgery to remove the affected parathyroid gland or glands. In some cases, medications may be used to manage symptoms before surgery. It is important for individuals with hyperparathyroidism to receive prompt medical attention, as untreated hyperparathyroidism can lead to serious complications such as heart disease and kidney failure.

Adenomas are caused by genetic mutations that occur in the DNA of the affected cells. These mutations can be inherited or acquired through exposure to environmental factors such as tobacco smoke, radiation, or certain chemicals.

The symptoms of an adenoma can vary depending on its location and size. In general, they may include abdominal pain, bleeding, or changes in bowel movements. If the adenoma becomes large enough, it can obstruct the normal functioning of the affected organ or cause a blockage that can lead to severe health complications.

Adenomas are usually diagnosed through endoscopy, which involves inserting a flexible tube with a camera into the affected organ to visualize the inside. Biopsies may also be taken to confirm the presence of cancerous cells.

Treatment for adenomas depends on their size, location, and severity. Small, non-pedunculated adenomas can often be removed during endoscopy through a procedure called endoscopic mucosal resection (EMR). Larger adenomas may require surgical resection, and in some cases, chemotherapy or radiation therapy may also be necessary.

In summary, adenoma is a type of benign tumor that can occur in glandular tissue throughout the body. While they are not cancerous, they have the potential to become malignant over time if left untreated. Therefore, it is important to seek medical attention if symptoms persist or worsen over time. Early detection and treatment can help prevent complications and improve outcomes for patients with adenomas.

1. Hypothyroidism: This is a condition where the thyroid gland does not produce enough thyroid hormones. Symptoms can include fatigue, weight gain, dry skin, constipation, and depression.
2. Hyperthyroidism: This is a condition where the thyroid gland produces too much thyroid hormone. Symptoms can include weight loss, anxiety, tremors, and an irregular heartbeat.
3. Thyroid nodules: These are abnormal growths on the thyroid gland that can be benign or cancerous.
4. Thyroid cancer: This is a type of cancer that affects the thyroid gland. There are several types of thyroid cancer, including papillary, follicular, and medullary thyroid cancer.
5. Goiter: This is an enlargement of the thyroid gland that can be caused by a variety of factors, including hypothyroidism, hyperthyroidism, and thyroid nodules.
6. Thyrotoxicosis: This is a condition where the thyroid gland produces too much thyroid hormone, leading to symptoms such as weight loss, anxiety, tremors, and an irregular heartbeat.
7. Thyroiditis: This is an inflammation of the thyroid gland that can cause symptoms such as pain, swelling, and difficulty swallowing.
8. Congenital hypothyroidism: This is a condition where a baby is born without a functioning thyroid gland or with a gland that does not produce enough thyroid hormones.
9. Thyroid cancer in children: This is a type of cancer that affects children and teenagers, usually in the form of papillary or follicular thyroid cancer.
10. Thyroid storm: This is a life-threatening condition where the thyroid gland produces an excessive amount of thyroid hormones, leading to symptoms such as fever, rapid heartbeat, and cardiac arrest.

These are just a few examples of the many conditions that can affect the thyroid gland. It's important to be aware of these conditions and seek medical attention if you experience any symptoms or concerns related to your thyroid health.

Examples of hormone-dependent neoplasms include:

1. Breast cancer: Many breast cancers are estrogen receptor-positive (ER+), meaning that they grow in response to estrogen. These cancers can be treated with selective estrogen receptor modulators (SERMs) or aromatase inhibitors, which block the effects of estrogen on cancer growth.
2. Prostate cancer: Some prostate cancers are androgen-dependent, meaning that they grow in response to androgens such as testosterone. These cancers can be treated with androgen deprivation therapy (ADT), which reduces the levels of androgens in the body to slow or stop cancer growth.
3. Uterine cancer: Some uterine cancers are estrogen-dependent, meaning that they grow in response to estrogen. These cancers can be treated with hormone therapy to reduce estrogen levels.

Hormone-dependent neoplasms are often characterized by the presence of hormone receptors on the surface of the cancer cells. These receptors can bind to specific hormones and trigger signals that promote cancer growth and progression. Targeting these hormone receptors with hormone therapy can be an effective way to slow or stop the growth of these cancers.

The main difference between primary hyperparathyroidism (HPT) and secondary HPT is the underlying cause of the disorder. In primary HPT, the overactive parathyroid glands are due to a genetic mutation or an autoimmune response, while in secondary HPT, the overactivity is caused by another condition or medication that affects vitamin D levels.

The symptoms of SHPT are similar to those of primary HPT and may include:

* Bone pain or weakness
* Osteoporosis or osteopenia
* Kidney stones or other kidney problems
* High blood pressure
* Headaches
* Fatigue
* Nausea or vomiting
* Increased urination

SHPT can be diagnosed with a combination of physical examination, laboratory tests, and imaging studies such as ultrasound or CT scans. Treatment typically involves addressing the underlying cause of the condition and replacing vitamin D deficiency with supplements. In some cases, surgery may be necessary to remove part or all of the parathyroid glands.

While SHPT is rare, it is important for healthcare providers to be aware of this condition in patients who present with symptoms suggestive of HPT but have normal imaging studies and no family history of the condition. Early diagnosis and treatment can help prevent complications and improve quality of life for affected individuals.

In summary, secondary hyperparathyroidism is a rare endocrine disorder caused by a deficiency in vitamin D that leads to overactive parathyroid glands and an imbalance in calcium levels. It can cause a range of symptoms, including bone pain, osteoporosis, high blood pressure, and kidney problems. Treatment involves addressing the underlying cause of the condition and replacing vitamin D deficiency with supplements. Early diagnosis and treatment can help prevent complications and improve quality of life for affected individuals.

Precocious puberty is a condition wherein children under the age of 8 or 9 experience early onset of pubertal changes, such as breast development, menstruation, or enlargement of the testes and scrotum. It is also known as central precocious puberty (CPP) when it is caused by premature activation of the hypothalamic-pituitary-gonadal axis, resulting in early release of sex hormones.

Precocious Puberty: Causes

The exact cause of precocious puberty is not known; however, several factors have been implicated, including:

1. Genetics: In some cases, precocious puberty may be inherited, with a family history of early puberty or other hormonal disorders.
2. Brain tumors: Tumors in the hypothalamus or pituitary gland can cause early activation of the HPG axis and result in precocious puberty.
3. Congenital anomalies: Some children may be born with abnormalities in the HPG axis, leading to early puberty.
4. Trauma: Traumatic brain injury or stroke may trigger premature activation of the HPG axis and result in precocious puberty.
5. Infections: Certain infections, such as meningitis or encephalitis, can cause inflammation in the hypothalamus or pituitary gland, leading to early puberty.
6. Nutritional factors: Malnutrition or rapid weight gain may contribute to early puberty.
7. Hormonal imbalance: Some children may have an imbalance of sex hormones, such as estrogen or testosterone, which can lead to early puberty.
8. Thyroid disorders: Hypothyroidism (underactive thyroid) or hyperthyroidism (overactive thyroid) can cause early puberty.
9. Chronic diseases: Certain chronic diseases, such as type 1 diabetes mellitus or inflammatory bowel disease, may increase the risk of early puberty.

It is important to note that in many cases, the exact cause of precocious puberty cannot be determined. If you suspect that your child is experiencing early puberty, it is essential to consult with a healthcare professional for proper evaluation and treatment.

The symptoms of hypercalcemia may include:

* Fatigue
* Nausea and vomiting
* Weakness
* Constipation
* Abdominal pain
* Kidney stones
* Bone pain or fractures

If left untreated, hypercalcemia can lead to complications such as kidney damage, heart problems, and an increased risk of osteoporosis. Treatment options may include medications to reduce calcium levels, surgery to remove a tumor or overactive parathyroid gland, or dialysis if the patient has kidney failure.

Early diagnosis and treatment are important to prevent long-term complications and improve the patient's quality of life.

Some common causes of hypocalcemia include:

1. Vitamin D deficiency: Vitamin D is essential for the absorption of calcium from the diet. A lack of vitamin D can lead to low levels of calcium in the blood.
2. Parathyroid gland disorders: The parathyroid glands are located in the neck and regulate calcium levels in the blood. Disorders such as hypoparathyroidism (underactive parathyroid glands) or hyperparathyroidism (overactive parathyroid glands) can cause hypocalcemia.
3. Malabsorption: Certain conditions, such as celiac disease or Crohn's disease, can lead to malabsorption of nutrients, including calcium.
4. Kidney problems: Kidney failure can cause hypocalcemia by reducing the amount of calcium that is excreted in the urine.
5. Hypomagnesemia (low levels of magnesium): Magnesium is important for calcium metabolism, and low levels of magnesium can contribute to hypocalcemia.

Symptoms of hypocalcemia can include:

1. Muscle cramps
2. Weakness
3. Twitching or tremors
4. Seizures
5. Tingling or numbness in the fingers and toes
6. Difficulty swallowing
7. Palpitations
8. Headaches
9. Fatigue
10. Depression

Treatment for hypocalcemia usually involves addressing the underlying cause of the condition. For example, if the condition is caused by a vitamin D deficiency, supplements may be prescribed. If the condition is caused by a parathyroid gland disorder, surgery may be necessary to remove the affected gland or glands. In some cases, calcium supplements may be prescribed to help restore normal calcium levels.

It's important to note that hypocalcemia can be a sign of an underlying condition, and it should be treated promptly to prevent complications. If you suspect you or someone you know may have hypocalcemia, it is important to seek medical attention as soon as possible. A healthcare professional can diagnose the condition and recommend appropriate treatment.

Causes:

There are several possible causes of amenorrhea, including:

1. Hormonal Imbalance: Imbalance of hormones can prevent the uterus from preparing for menstruation.
2. Pregnancy: Pregnancy is one of the most common causes of amenorrhea.
3. Menopause: Women going through menopause may experience amenorrhea due to the decreased levels of estrogen and progesterone.
4. Polycystic Ovary Syndrome (PCOS): PCOS is a hormonal disorder that can cause irregular periods or amenorrhea.
5. Thyroid Disorders: Both hypothyroidism (underactive thyroid) and hyperthyroidism (overactive thyroid) can cause amenorrhea.
6. Obesity: Women who are significantly overweight may experience amenorrhea due to the hormonal imbalance caused by excess body fat.
7. Stress: Chronic stress can disrupt hormone levels and cause amenorrhea.
8. Surgery or Trauma: Certain surgeries, such as hysterectomy or removal of the ovaries, can cause amenorrhea. Trauma, such as a severe injury or infection, can also cause amenorrhea.
9. Medications: Certain medications, such as steroids and chemotherapy drugs, can cause amenorrhea as a side effect.
10. Endocrine Disorders: Disorders such as hypogonadotropic hypogonadism, hyperprolactinemia, and hypothyroidism can cause amenorrhea.

Symptoms:

Amenorrhea can cause a range of symptoms, including:

1. No menstrual period
2. Difficulty getting pregnant (infertility)
3. Abnormal vaginal bleeding or spotting
4. Painful intercourse
5. Weight gain or loss
6. Mood changes, such as anxiety or depression
7. Fatigue
8. Headaches
9. Insomnia
10. Hot flashes

Diagnosis:

Amenorrhea is typically diagnosed based on a patient's medical history and physical examination. Additional tests may be ordered to determine the underlying cause of amenorrhea, such as:

1. Blood tests to measure hormone levels, including estrogen, progesterone, and thyroid-stimulating hormone (TSH)
2. Imaging tests, such as ultrasound or MRI, to evaluate the ovaries and uterus
3. Laparoscopy, a minimally invasive procedure that allows the doctor to visually examine the ovaries and fallopian tubes
4. Hysteroscopy, a procedure that allows the doctor to examine the inside of the uterus

Treatment:

The treatment of amenorrhea depends on the underlying cause. Some common treatments include:

1. Hormone replacement therapy (HRT) to restore hormone balance and promote menstruation
2. Medications to stimulate ovulation, such as clomiphene citrate or letrozole
3. Surgery to remove fibroids, cysts, or other structural abnormalities that may be contributing to amenorrhea
4. Infertility treatments, such as in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI), if the patient is experiencing difficulty getting pregnant
5. Lifestyle changes, such as weight loss or exercise, to improve overall health and promote menstruation

Prevention:

There is no specific way to prevent amenorrhea, but maintaining a healthy lifestyle and managing any underlying medical conditions can help reduce the risk of developing the condition. Some tips for prevention include:

1. Eating a balanced diet that includes plenty of fruits, vegetables, whole grains, and lean protein sources
2. Exercising regularly to maintain a healthy weight and improve overall health
3. Managing stress through relaxation techniques, such as yoga or meditation
4. Getting enough sleep each night
5. Avoiding excessive alcohol consumption and smoking
6. Maintaining a healthy body mass index (BMI) to reduce the risk of developing hormonal imbalances
7. Managing any underlying medical conditions, such as polycystic ovary syndrome (PCOS), thyroid disorders, or adrenal gland disorders
8. Avoiding exposure to harmful chemicals and toxins that can disrupt hormone balance.

The pituitary gland is a small endocrine gland located at the base of the brain that plays a crucial role in regulating various bodily functions, such as growth and development, metabolism, and reproductive function. Pituitary diseases refer to any disorders or abnormalities that affect the pituitary gland, including tumors, cysts, hypopituitarism (underactive pituitary gland), hyperpituitarism (overactive pituitary gland), and other conditions.

Some common types of pituitary diseases include:

1. Pituitary tumors: These are abnormal growths that can occur in the pituitary gland, either benign (non-cancerous) or malignant (cancerous). The most common type of pituitary tumor is a benign adenoma, which can cause excessive production of hormones and lead to various symptoms.
2. Cushing's disease: This is a rare disorder caused by excessive production of the hormone cortisol, which can lead to weight gain, high blood pressure, and other symptoms.
3. Hypopituitarism: This condition occurs when the pituitary gland does not produce enough hormones, leading to symptoms such as fatigue, weight loss, and poor fertility.
4. Hyperthyroidism: This is a condition in which the thyroid gland produces too much thyroid hormone, leading to symptoms such as rapid heartbeat, weight loss, and anxiety.
5. Acromegaly: This is a rare disorder caused by excessive production of growth hormone, leading to symptoms such as abnormal growth of hands, feet, and facial features, as well as joint pain and sleep apnea.
6. Pituitary giants: These are rare cases of pituitary tumors that can cause excessive growth and development in children.
7. Pituitary dwarfism: This is a condition in which the pituitary gland does not produce enough growth hormone, leading to short stature and other growth abnormalities.
8. Cushing's syndrome: This is a rare disorder caused by excessive production of the hormone cortisol, which can lead to symptoms such as weight gain, high blood pressure, and poor sleep.
9. Adrenal insufficiency: This is a condition in which the adrenal glands do not produce enough cortisol and aldosterone hormones, leading to symptoms such as fatigue, weight loss, and low blood pressure.
10. Multiple endocrine neoplasia (MEN): This is a rare genetic disorder that affects the endocrine system and can cause various types of tumors, including pituitary, thyroid, and adrenal gland tumors.

These are just a few examples of rare hormonal disorders. There are many others, each with its unique set of symptoms and causes. If you suspect that you or someone you know may have a hormonal disorder, it is important to consult a qualified healthcare professional for proper diagnosis and treatment.

The primary symptom of hypoparathyroidism is low blood calcium levels, which can lead to tingling or numbness in the fingers and toes, muscle cramps, twitching, and spasms. Other signs may include brittle nails, thinning hair, and poor wound healing. In severe cases, hypoparathyroidism can cause seizures, coma, and even death.

Hypoparathyroidism is usually diagnosed through a combination of physical examination, blood tests, and imaging studies such as ultrasound or CT scans. Treatment typically involves replacing calcium and vitamin D hormones, which can help manage symptoms and prevent complications. In some cases, medications that stimulate the parathyroid glands may be prescribed to increase calcium production. Surgery may be necessary in cases where the condition is caused by a tumor or other structural abnormality.

Prognosis for hypoparathyroidism varies depending on the underlying cause and severity of the condition. With appropriate treatment, many people with hypoparathyroidism can lead normal lives, but some may experience persistent symptoms or complications such as osteoporosis, kidney stones, or cognitive impairment.

Causes:

1. Genetic mutations: Congenital hypothyroidism can be caused by genetic mutations that affect the structure or function of the thyroid gland. These mutations can be inherited from one or both parents.
2. Thyroid dysgenesis: This occurs when the thyroid gland does not develop properly during fetal development.
3. Autoimmune disorders: In some cases, congenital hypothyroidism can be caused by autoimmune disorders that affect the thyroid gland.

Symptoms:

1. Delayed physical growth and development
2. Intellectual disability
3. Muscle weakness
4. Fatigue
5. Cold intolerance
6. Poor feeding or eating habits
7. Slowed speech development
8. Decreased muscle tone (floppy baby)
9. Yellowish tint to the skin and eyes (jaundice)

Diagnosis:

1. Physical examination
2. Blood tests to measure thyroid hormone levels
3. Ultrasound or scan of the thyroid gland
4. Genetic testing to identify genetic mutations

Treatment:

1. Thyroid hormone replacement therapy: This involves taking synthetic thyroid hormones to replace the missing or underproduced hormones.
2. Monitoring of thyroid hormone levels and adjustment of dosage as needed
3. Regular check-ups with a healthcare provider to monitor growth and development

Prognosis:

If congenital hypothyroidism is diagnosed early and treated appropriately, the prognosis is generally good. With proper treatment, most children with this condition can lead normal lives and achieve their full potential. However, if left untreated, the condition can have serious and long-lasting effects on physical and mental development.

Malignant prostatic neoplasms are cancerous tumors that can be aggressive and spread to other parts of the body (metastasize). The most common type of malignant prostatic neoplasm is adenocarcinoma of the prostate, which accounts for approximately 95% of all prostate cancers. Other types of malignant prostatic neoplasms include sarcomas and small cell carcinomas.

Prostatic neoplasms can be diagnosed through a variety of tests such as digital rectal examination (DRE), prostate-specific antigen (PSA) test, imaging studies (ultrasound, CT scan or MRI), and biopsy. Treatment options for prostatic neoplasms depend on the type, stage, and grade of the tumor, as well as the patient's age and overall health. Treatment options can include active surveillance, surgery (robotic-assisted laparoscopic prostatectomy or open prostatectomy), radiation therapy (external beam radiation therapy or brachytherapy), and hormone therapy.

In summary, Prostatic Neoplasms are tumors that occur in the prostate gland, which can be benign or malignant. The most common types of malignant prostatic neoplasms are adenocarcinoma of the prostate, and other types include sarcomas and small cell carcinomas. Diagnosis is done through a variety of tests, and treatment options depend on the type, stage, and grade of the tumor, as well as the patient's age and overall health.

Types of Hypothalamic Diseases:

1. Hypothalamic hamartoma: A benign tumor that develops in the hypothalamus and can cause a variety of symptoms such as seizures, obesity, and developmental delays.
2. Hypothalamic glioma: A malignant tumor that arises in the hypothalamus and can cause similar symptoms to hypothalamic hamartoma.
3. Hypothalamic malformations: Congenital abnormalities that affect the development of the hypothalamus, leading to various neurological symptoms such as seizures, intellectual disability, and behavioral problems.
4. Hypothalamic infarction: A condition where there is a lack of blood flow to the hypothalamus, leading to damage to the tissue and potentially causing a range of symptoms including stroke-like symptoms.
5. Hypothalamic lesions: Damage to the hypothalamus caused by traumatic brain injury, infection, or other factors, which can lead to a range of neurological symptoms.

Symptoms of Hypothalamic Diseases:

The symptoms of hypothalamic diseases can vary depending on the specific condition and the severity of the damage to the hypothalamus. Some common symptoms include:

* Seizures
* Headaches
* Vision problems
* Balance and coordination difficulties
* Weight changes (gain or loss)
* Sleep disturbances
* Mood changes (depression, anxiety)
* Behavioral problems (aggression, irritability)
* Intellectual disability

Diagnosis of Hypothalamic Diseases:

Diagnosing hypothalamic diseases can be challenging and may require a range of tests and evaluations. These may include:

1. Physical examination and medical history: A thorough evaluation of the patient's symptoms, medical history, and physical condition.
2. Imaging tests: Such as CT or MRI scans to visualize the brain and identify any structural abnormalities or lesions in the hypothalamus.
3. Blood tests: To check for hormone levels and other markers that can help diagnose specific conditions.
4. EEG and other neurological tests: To evaluate the patient's neurological function and identify any potential seizure activity or other abnormalities.
5. Genetic testing: If the condition is suspected to be inherited, genetic testing may be performed to identify mutations or variations in genes that can contribute to hypothalamic diseases.

Treatment of Hypothalamic Diseases:

The treatment of hypothalamic diseases depends on the specific condition and the severity of the symptoms. Some common treatments include:

1. Medications: Such as anticonvulsants, hormone replacement therapy, and pain management medications to control seizures, hormonal imbalances, and pain.
2. Hormone replacement therapy: To replace hormones that are deficient or imbalanced.
3. Surgery: May be necessary to remove a tumor or repair a structural abnormality in the hypothalamus.
4. Lifestyle modifications: Such as changes to diet, exercise, and sleep habits to manage symptoms and improve quality of life.
5. Rehabilitation therapy: To help regain lost functions and improve daily living skills.

Prognosis of Hypothalamic Diseases:

The prognosis for hypothalamic diseases varies depending on the specific condition and the severity of the symptoms. Some conditions may have a good prognosis with appropriate treatment, while others may have a poorer outcome. In general, early diagnosis and treatment can improve the chances of a better outcome.

Living with Hypothalamic Diseases:

Living with a hypothalamic disease can be challenging and may require significant lifestyle modifications and ongoing medical care. However, with the right treatment and support, many people are able to manage their symptoms and improve their quality of life. Some tips for living with a hypothalamic disease include:

1. Educate yourself about your condition and its management.
2. Work closely with your healthcare provider to develop a personalized treatment plan.
3. Make lifestyle modifications such as changes to diet, exercise, and sleep habits.
4. Join a support group to connect with others who are living with similar conditions.
5. Seek mental health support if needed to cope with the emotional impact of the condition.

In conclusion, hypothalamic diseases can have a significant impact on quality of life, but with early diagnosis and appropriate treatment, many people are able to manage their symptoms and improve their outcomes. It is important to work closely with a healthcare provider to develop a personalized treatment plan and make lifestyle modifications as needed. With the right support and resources, it is possible to live a fulfilling life with a hypothalamic disease.

Euthyroid sick syndrome is caused by a variety of factors, including infections, inflammatory conditions, and autoimmune disorders. It is important to diagnose euthyroid sick syndrome correctly, as it can be mistaken for other conditions such as hypopituitarism or adrenal insufficiency.

Treatment of euthyroid sick syndrome typically involves addressing the underlying cause of the condition. In some cases, this may involve treating an infection or inflammatory condition with antibiotics or steroids. In other cases, treatment may involve managing symptoms such as fever and pain with medication.

It is important for individuals with hypothyroidism or hyperthyroidism to be aware of the signs and symptoms of euthyroid sick syndrome and to seek medical attention if they experience any unusual or severe symptoms. Early diagnosis and treatment can help prevent complications and improve outcomes for individuals with this condition.

Causes of Female Infertility
--------------------------

There are several potential causes of female infertility, including:

1. Hormonal imbalances: Disorders such as polycystic ovary syndrome (PCOS), thyroid dysfunction, and premature ovarian failure can affect hormone levels and ovulation.
2. Ovulatory disorders: Problems with ovulation, such as anovulation or oligoovulation, can make it difficult to conceive.
3. Tubal damage: Damage to the fallopian tubes due to pelvic inflammatory disease, ectopic pregnancy, or surgery can prevent the egg from traveling through the tube and being fertilized.
4. Endometriosis: This condition occurs when tissue similar to the lining of the uterus grows outside of the uterus, causing inflammation and scarring that can lead to infertility.
5. Fibroids: Noncancerous growths in the uterus can interfere with implantation of a fertilized egg or disrupt ovulation.
6. Pelvic adhesions: Scar tissue in the pelvis can cause fallopian tubes to become damaged or blocked, making it difficult for an egg to travel through the tube and be fertilized.
7. Uterine or cervical abnormalities: Abnormalities such as a bicornuate uterus or a narrow cervix can make it difficult for a fertilized egg to implant in the uterus.
8. Age: A woman's age can affect her fertility, as the quality and quantity of her eggs decline with age.
9. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and being overweight or underweight can affect fertility.
10. Stress: Chronic stress can disrupt hormone levels and ovulation, making it more difficult to conceive.

It's important to note that many of these factors can be treated with medical assistance, such as medication, surgery, or assisted reproductive technology (ART) like in vitro fertilization (IVF). If you are experiencing difficulty getting pregnant, it is recommended that you speak with a healthcare provider to determine the cause of your infertility and discuss potential treatment options.

The endocrine system is a network of glands and hormones that regulate various bodily functions, such as growth, development, metabolism, and reproductive processes. Endocrine system diseases refer to disorders or abnormalities that affect one or more of the endocrine glands or the hormones they produce.

Types of Endocrine System Diseases:

1. Diabetes Mellitus (DM): A group of metabolic disorders characterized by high blood sugar levels due to insulin deficiency or insulin resistance.
2. Hypothyroidism: A condition where the thyroid gland does not produce enough thyroid hormones, leading to symptoms such as fatigue, weight gain, and cold intolerance.
3. Hyperthyroidism: A condition where the thyroid gland produces too much thyroid hormone, leading to symptoms such as anxiety, weight loss, and heart palpitations.
4. Cushing's Syndrome: A rare disorder caused by excessive levels of cortisol hormone in the body, leading to symptoms such as weight gain, high blood pressure, and mood changes.
5. Addison's Disease: A rare disorder caused by a deficiency of cortisol and aldosterone hormones in the body, leading to symptoms such as fatigue, weight loss, and dehydration.
6. Pituitary Gland Disorders: Tumors or cysts in the pituitary gland can affect the production of hormones that regulate other endocrine glands.
7. Adrenal Insufficiency: A condition where the adrenal glands do not produce enough cortisol and aldosterone hormones, leading to symptoms such as fatigue, weight loss, and dehydration.
8. Polycystic Ovary Syndrome (PCOS): A hormonal disorder that affects women of reproductive age, characterized by irregular menstrual cycles, cysts on the ovaries, and insulin resistance.
9. Graves' Disease: An autoimmune disorder that causes hyperthyroidism (an overactive thyroid gland), leading to symptoms such as rapid weight loss, nervousness, and heart palpitations.
10. Hashimoto's Thyroiditis: An autoimmune disorder that causes hypothyroidism (an underactive thyroid gland), leading to symptoms such as fatigue, weight gain, and depression.

These are just a few examples of endocrine disorders, and there are many more that can affect different parts of the endocrine system. It's important to be aware of the signs and symptoms of these disorders so that you can seek medical attention if you experience any unusual changes in your body.

1. Polycystic ovary syndrome (PCOS): This is the most common cause of anovulation, affecting up to 75% of women with PCOS.
2. Hypothalamic dysfunction: The hypothalamus regulates hormonal signals that stimulate ovulation. Disruptions in these signals can lead to anovulation.
3. Thyroid disorders: Both hypothyroidism (underactive thyroid) and hyperthyroidism (overactive thyroid) can disrupt hormone levels and lead to anovulation.
4. Premature ovarian failure (POF): This condition is characterized by the premature loss of ovarian function before age 40.
5. Ovarian insufficiency: This occurs when the ovaries lose their ability to produce eggs, often due to aging or medical treatment.
6. Chronic diseases: Certain conditions like diabetes, hypertension, and obesity can increase the risk of anovulation.
7. Luteal phase defect: This occurs when the uterine lining does not properly thicken during the second half of the menstrual cycle, making it difficult for a fertilized egg to implant.
8. Ovulatory disorders: Disorders such as ovarian cysts, endometriosis, and pelvic inflammatory disease can interfere with ovulation.
9. Genetic factors: Some genetic mutations can affect ovulation, such as those associated with Turner syndrome or other rare genetic conditions.
10. Medications: Certain medications, such as hormonal contraceptives and antidepressants, can disrupt ovulation.

Anovulation is typically diagnosed through a combination of medical history, physical examination, and laboratory tests, including hormone levels and imaging studies. Treatment options for anovulation depend on the underlying cause and may include:

1. Hormonal medications to stimulate ovulation
2. Intrauterine insemination (IUI) or in vitro fertilization (IVF) to increase the chances of conception
3. Lifestyle modifications, such as weight loss and stress management
4. Surgery to correct anatomical abnormalities or remove any blockages in the reproductive tract
5. Assisted reproductive technologies (ART), such as IVF with egg donation or surrogacy.

It's important for women experiencing irregular periods or anovulation to seek medical attention, as timely diagnosis and treatment can improve their chances of conceiving and reduce the risk of complications during pregnancy.

There are several different types of obesity, including:

1. Central obesity: This type of obesity is characterized by excess fat around the waistline, which can increase the risk of health problems such as type 2 diabetes and cardiovascular disease.
2. Peripheral obesity: This type of obesity is characterized by excess fat in the hips, thighs, and arms.
3. Visceral obesity: This type of obesity is characterized by excess fat around the internal organs in the abdominal cavity.
4. Mixed obesity: This type of obesity is characterized by both central and peripheral obesity.

Obesity can be caused by a variety of factors, including genetics, lack of physical activity, poor diet, sleep deprivation, and certain medications. Treatment for obesity typically involves a combination of lifestyle changes, such as increased physical activity and a healthy diet, and in some cases, medication or surgery may be necessary to achieve weight loss.

Preventing obesity is important for overall health and well-being, and can be achieved through a variety of strategies, including:

1. Eating a healthy, balanced diet that is low in added sugars, saturated fats, and refined carbohydrates.
2. Engaging in regular physical activity, such as walking, jogging, or swimming.
3. Getting enough sleep each night.
4. Managing stress levels through relaxation techniques, such as meditation or deep breathing.
5. Avoiding excessive alcohol consumption and quitting smoking.
6. Monitoring weight and body mass index (BMI) on a regular basis to identify any changes or potential health risks.
7. Seeking professional help from a healthcare provider or registered dietitian for personalized guidance on weight management and healthy lifestyle choices.

Hyponatremia can be caused by various factors, such as excessive fluid intake, certain medications, kidney or liver disease, and hormonal imbalances. Symptoms may include headache, nausea, vomiting, fatigue, muscle weakness, and in severe cases, seizures or coma.

Treatment for hyponatremia typically involves correcting the underlying cause of the condition. This may involve discontinuing certain medications, addressing any underlying medical conditions, or limiting fluid intake. In severe cases, hospitalization may be necessary to monitor and treat the condition. In some instances, sodium supplements or diuretics may be prescribed to help correct sodium levels.

It is important to note that hyponatremia can be a serious condition, and prompt medical attention should be sought if symptoms persist or worsen over time. A healthcare professional should be consulted for proper diagnosis and treatment.

Turner syndrome occurs in approximately 1 in every 2,500 to 3,000 live female births and is more common in girls born to older mothers. The symptoms of Turner syndrome can vary widely and may include:

* Short stature and delayed growth and development
* Infertility or lack of menstruation (amenorrhea)
* Heart defects, such as a narrowed aorta or a hole in the heart
* Eye problems, such as cataracts, glaucoma, or crossed eyes
* Hearing loss or deafness
* Bone and joint problems, such as scoliosis or clubfoot
* Cognitive impairments, including learning disabilities and memory problems
* Delayed speech and language development
* Poor immune function, leading to recurrent infections

Turner syndrome is usually diagnosed at birth or during childhood, based on physical characteristics such as short stature, low muscle tone, or heart defects. Chromosomal analysis can also confirm the diagnosis.

There is no cure for Turner syndrome, but treatment can help manage the symptoms and improve quality of life. Hormone replacement therapy may be used to stimulate growth and development in children, while adults with the condition may require ongoing hormone therapy to maintain bone density and prevent osteoporosis. Surgery may be necessary to correct heart defects or other physical abnormalities. Speech and language therapy can help improve communication skills, and cognitive training may be beneficial for learning disabilities.

The long-term outlook for individuals with Turner syndrome varies depending on the severity of the condition and the presence of any additional health problems. With proper medical care and support, many women with Turner syndrome can lead fulfilling lives, but they may face unique challenges related to fertility, heart health, and other issues.

Primary adrenal insufficiency, also known as Addison's disease, is a rare condition where the adrenal glands are damaged or destroyed, leading to a decrease in cortisol and aldosterone production. This can be caused by autoimmune disorders, genetic defects, or viral infections.

Secondary adrenal insufficiency is more common and occurs when the pituitary gland, located at the base of the brain, does not produce enough adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and aldosterone. This can be caused by a variety of factors, including hypothyroidism, hyperthyroidism, and pituitary tumors.

Adrenal insufficiency can cause a range of symptoms, including fatigue, weight loss, muscle weakness, and low blood pressure. Treatment typically involves hormone replacement therapy with cortisol and aldosterone supplements, as well as addressing any underlying causes of the condition.

In summary, adrenal insufficiency is a condition where the adrenal glands do not produce enough cortisol and aldosterone hormones, leading to a range of symptoms and potential complications. It can be classified into primary and secondary types, and treatment involves hormone replacement therapy and addressing any underlying causes.

1. Irregular menstrual cycles, or amenorrhea (the absence of periods).
2. Cysts on the ovaries, which are fluid-filled sacs that can be detected by ultrasound.
3. Elevated levels of androgens (male hormones) in the body, which can cause a range of symptoms including acne, excessive hair growth, and male pattern baldness.
4. Insulin resistance, which is a condition in which the body's cells do not respond properly to insulin, leading to high blood sugar levels.

PCOS is a complex disorder, and there is no single cause. However, genetics, hormonal imbalances, and insulin resistance are thought to play a role in its development. It is estimated that 5-10% of women of childbearing age have PCOS, making it one of the most common endocrine disorders affecting women.

There are several symptoms of PCOS, including:

1. Irregular menstrual cycles or amenorrhea
2. Weight gain or obesity
3. Acne
4. Excessive hair growth on the face, chest, and back
5. Male pattern baldness
6. Infertility or difficulty getting pregnant
7. Mood changes, such as depression and anxiety
8. Sleep apnea

PCOS can be diagnosed through a combination of physical examination, medical history, and laboratory tests, including:

1. Pelvic exam: A doctor will examine the ovaries and uterus to look for cysts or other abnormalities.
2. Ultrasound: An ultrasound can be used to detect cysts on the ovaries and to evaluate the thickness of the uterine lining.
3. Hormone testing: Blood tests can be used to measure levels of androgens, estrogen, and progesterone.
4. Glucose tolerance test: This test is used to check for insulin resistance, which is a common finding in women with PCOS.
5. Laparoscopy: A small camera inserted through a small incision in the abdomen can be used to visualize the ovaries and uterus and to diagnose PCOS.

There is no cure for PCOS, but it can be managed with lifestyle changes and medication. Treatment options include:

1. Weight loss: Losing weight can improve insulin sensitivity and reduce androgen levels.
2. Hormonal birth control: Birth control pills or other hormonal contraceptives can help regulate menstrual cycles and reduce androgen levels.
3. Fertility medications: Clomiphene citrate and letrozole are commonly used to stimulate ovulation in women with PCOS.
4. Injectable fertility medications: Gonadotropins, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), can be used to stimulate ovulation.
5. Surgery: Laparoscopic ovarian drilling or laser surgery can improve ovulation and fertility in women with PCOS.
6. Assisted reproductive technology (ART): In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) can be used to help women with PCOS conceive.
7. Alternative therapies: Some complementary and alternative therapies, such as acupuncture and herbal supplements, may be helpful in managing symptoms of PCOS.

It is important for women with PCOS to work closely with their healthcare provider to develop a treatment plan that meets their individual needs and goals. With appropriate treatment, many women with PCOS can improve their menstrual regularity, fertility, and overall health.

There are several factors that can contribute to bone resorption, including:

1. Hormonal changes: Hormones such as parathyroid hormone (PTH) and calcitonin can regulate bone resorption. Imbalances in these hormones can lead to excessive bone resorption.
2. Aging: As we age, our bones undergo remodeling more frequently, leading to increased bone resorption.
3. Nutrient deficiencies: Deficiencies in calcium, vitamin D, and other nutrients can impair bone health and lead to excessive bone resorption.
4. Inflammation: Chronic inflammation can increase bone resorption, leading to bone loss and weakening.
5. Genetics: Some genetic disorders can affect bone metabolism and lead to abnormal bone resorption.
6. Medications: Certain medications, such as glucocorticoids and anticonvulsants, can increase bone resorption.
7. Diseases: Conditions such as osteoporosis, Paget's disease of bone, and bone cancer can lead to abnormal bone resorption.

Bone resorption can be diagnosed through a range of tests, including:

1. Bone mineral density (BMD) testing: This test measures the density of bone in specific areas of the body. Low BMD can indicate bone loss and excessive bone resorption.
2. X-rays and imaging studies: These tests can help identify abnormal bone growth or other signs of bone resorption.
3. Blood tests: Blood tests can measure levels of certain hormones and nutrients that are involved in bone metabolism.
4. Bone biopsy: A bone biopsy can provide a direct view of the bone tissue and help diagnose conditions such as Paget's disease or bone cancer.

Treatment for bone resorption depends on the underlying cause and may include:

1. Medications: Bisphosphonates, hormone therapy, and other medications can help slow or stop bone resorption.
2. Diet and exercise: A healthy diet rich in calcium and vitamin D, along with regular exercise, can help maintain strong bones.
3. Physical therapy: In some cases, physical therapy may be recommended to improve bone strength and mobility.
4. Surgery: In severe cases of bone resorption, surgery may be necessary to repair or replace damaged bone tissue.

There are several theories about the causes of hot flashes, including hormonal changes, neurotransmitter imbalances, and blood vessel dilation. Some risk factors for hot flashes include age, family history, and certain medical conditions such as hypertension and diabetes.

Treatment options for hot flashes include hormone therapy, selective serotonin reuptake inhibitors (SSRIs), and non-hormonal medications such as clonidine and gabapentin. Lifestyle modifications such as dressing in layers, using a fan, and avoiding triggers like spicy foods and alcohol can also help manage hot flashes.

In conclusion, hot flashes are a common symptom of menopause that can have a significant impact on quality of life. While their exact cause is still not fully understood, there are several effective treatment options available to manage their frequency and severity. By understanding the causes and risk factors for hot flashes, women can work with their healthcare providers to find the best course of treatment for their individual needs.

Cushing syndrome is a rare hormonal disorder that occurs when the body produces too much cortisol, a steroid hormone produced by the adrenal gland. It can be caused by a variety of factors, including tumors, infections, and genetic conditions.

The symptoms of Cushing syndrome can vary depending on the cause and severity of the condition, but may include:

* Weight gain, particularly in the abdomen, face, and neck
* Fatigue and muscle weakness
* Poor sleep
* Mood changes, such as anxiety, depression, and irritability
* High blood pressure
* Easy bruising and thinning skin
* Osteoporosis or osteopenia
* Increased risk of infections
* Menstrual irregularities in women
* Hirsutism (excessive hair growth) in women
* Erectile dysfunction in men

Cushing syndrome can be difficult to diagnose, as the symptoms can be similar to other conditions. A healthcare provider will typically begin by taking a detailed medical history and performing a physical exam. They may also order several tests, including:

* Blood tests to measure cortisol levels and look for other hormonal imbalances
* Urine tests to check for abnormal steroid metabolites
* Imaging studies, such as CT or MRI scans, to look for tumors or other structural abnormalities
* Salivary cortisol testing to measure cortisol levels throughout the day

Treatment for Cushing syndrome depends on the underlying cause of the condition. In some cases, medication may be prescribed to reduce cortisol production or to treat symptoms such as high blood pressure or mood changes. Surgery may be necessary to remove a tumor or other structural abnormality. In addition, lifestyle changes such as diet and exercise may be recommended to help manage the condition.

It is important for individuals with Cushing syndrome to work closely with their healthcare provider to develop a treatment plan that is tailored to their specific needs and circumstances. With appropriate treatment, many people with Cushing syndrome can experience significant improvement in their symptoms and quality of life.

1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.

2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.

3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.

4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.

5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.

6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.

7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.

8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.

9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.

10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.

Prolactinoma is the most common type of pituitary tumor, accounting for about 40% of all cases. It can occur at any age, but it is more common in women than men and typically presents in the fourth or fifth decade of life.

The symptoms of prolactinoma vary depending on the size and location of the tumor, but they often include:

1. Hyperprolactinemia: Elevated levels of prolactin in the blood can cause a variety of symptoms, including galactorrhea (spontaneous milk production), amenorrhea (loss of menstrual period), infertility, and decreased libido.
2. Visual disturbances: Prolactinoma can compress or damage the optic chiasm, leading to visual field defects, blurred vision, and/or double vision.
3. Headaches: Prolactinoma can cause headaches due to compression of the surrounding brain tissue.
4. Hypopituitarism: Large prolactinomas can compress or destroy the normal pituitary gland, leading to deficiencies in other hormones such as growth hormone, thyroid-stimulating hormone, and adrenocorticotropic hormone.
5. Cranial pressure: Prolactinoma can cause cranial pressure symptoms, such as nausea, vomiting, and/or visual disturbances.

Prolactinoma is diagnosed through a combination of clinical evaluation, laboratory tests, and imaging studies. Treatment options for prolactinoma include:

1. Medications: Dopamine agonists, such as bromocriptine or cabergoline, can decrease prolactin secretion and shrink the tumor.
2. Surgery: Transsphenoidal surgery is often the first line of treatment for prolactinoma. This involves removing the tumor through a nasal sinus approach.
3. Radiation therapy: Radiation therapy may be used in cases where the tumor is not completely removed by surgery or has recurred after surgery.
4. Hormone replacement therapy: In cases of hypopituitarism, hormone replacement therapy may be necessary to replace deficient hormones.

There are several types of osteoporosis, including:

1. Postmenopausal osteoporosis: This type of osteoporosis is caused by hormonal changes that occur during menopause. It is the most common form of osteoporosis and affects women more than men.
2. Senile osteoporosis: This type of osteoporosis is caused by aging and is the most common form of osteoporosis in older adults.
3. Juvenile osteoporosis: This type of osteoporosis affects children and young adults and can be caused by a variety of genetic disorders or other medical conditions.
4. secondary osteoporosis: This type of osteoporosis is caused by other medical conditions, such as rheumatoid arthritis, Crohn's disease, or ulcerative colitis.

The symptoms of osteoporosis can be subtle and may not appear until a fracture has occurred. They can include:

1. Back pain or loss of height
2. A stooped posture
3. Fractures, especially in the spine, hips, or wrists
4. Loss of bone density, as determined by a bone density test

The diagnosis of osteoporosis is typically made through a combination of physical examination, medical history, and imaging tests, such as X-rays or bone density tests. Treatment for osteoporosis can include medications, such as bisphosphonates, hormone therapy, or rANK ligand inhibitors, as well as lifestyle changes, such as regular exercise and a balanced diet.

Preventing osteoporosis is important, as it can help to reduce the risk of fractures and other complications. To prevent osteoporosis, individuals can:

1. Get enough calcium and vitamin D throughout their lives
2. Exercise regularly, especially weight-bearing activities such as walking or running
3. Avoid smoking and excessive alcohol consumption
4. Maintain a healthy body weight
5. Consider taking medications to prevent osteoporosis, such as bisphosphonates, if recommended by a healthcare provider.

Types of Parathyroid Neoplasms: There are several types of parathyroid neoplasms, including:

1. Adenoma: A benign tumor that is the most common type of parathyroid neoplasm. It usually causes hyperparathyroidism, a condition characterized by high levels of calcium in the blood.
2. Hyperplasia: A condition where the parathyroid glands become enlarged and produce excessive amounts of parathyroid hormone, leading to hyperparathyroidism.
3. Carcinoma: A malignant tumor that is rare and usually occurs in patients with a history of radiation exposure or familial adenomatous polyposis (FAP).

Symptoms of Parathyroid Neoplasms: The symptoms of parathyroid neoplasms can vary depending on the type and size of the tumor. Some common symptoms include:

1. Hyperparathyroidism: High levels of calcium in the blood, which can lead to symptoms such as fatigue, nausea, vomiting, and weakness.
2. Enlarged thyroid gland: A swelling in the neck due to an enlarged thyroid gland, which can cause difficulty swallowing or breathing.
3. Pain in the neck or throat: A painful lump in the neck or throat that can be caused by a tumor pressing on nearby structures.
4. Fever: An elevated body temperature that can occur if the tumor becomes infected or inflamed.
5. Weight loss: Unexplained weight loss, which can occur if the tumor is secreting excessive amounts of parathyroid hormone.

Diagnosis of Parathyroid Neoplasms: The diagnosis of parathyroid neoplasms typically involves a combination of imaging studies and laboratory tests. Some common diagnostic procedures include:

1. Ultrasound: A non-invasive imaging technique that uses high-frequency sound waves to produce images of the thyroid gland and any tumors present.
2. Thyroid scan: A nuclear medicine test that involves injecting a small amount of radioactive material into the bloodstream to visualize the thyroid gland and any tumors present.
3. Calcium levels: Blood tests to measure calcium levels, which can be elevated in hyperparathyroidism.
4. Parathyroid hormone (PTH) level: A blood test to measure PTH levels, which can be elevated in hyperparathyroidism.
5. Biopsy: A procedure that involves removing a small sample of tissue from the thyroid gland and examining it under a microscope for cancer cells.

Treatment of Parathyroid Neoplasms: The treatment of parathyroid neoplasms depends on the type and size of the tumor, as well as the severity of hyperparathyroidism. Some common treatments include:

1. Surgery: The primary treatment for parathyroid neoplastic diseases is surgical removal of the affected parathyroid gland(s).
2. Radioactive iodine ablation: A therapy that involves taking a small dose of radioactive iodine to destroy any remaining thyroid tissue that may be producing excessive amounts of thyroid hormones.
3. Thyroid hormone medications: Medications that are used to control hyperthyroidism and hypothyroidism.
4. Calcium and vitamin D supplements: Medications that are used to treat hypocalcemia and vitamin D deficiency.
5. Monitoring: Regular monitoring of calcium levels, PTH levels, and symptoms is important to ensure that the treatment is effective and to detect any recurrences or complications.

Prognosis: The prognosis for patients with parathyroid neoplasms depends on the type and size of the tumor, as well as the severity of hyperparathyroidism. In general, the prognosis is good for patients who undergo surgical removal of the affected gland(s), but it may be poorer for those with more advanced or invasive tumors.

Complications: Complications of parathyroid neoplasms include:

1. Hyperparathyroidism: Excessive production of PTH can lead to hyperthyroidism, hypocalcemia, and other complications.
2. Recurrence: There is a risk of recurrence after surgical removal of the affected gland(s).
3. Spread of disease: In rare cases, parathyroid tumors can spread to other parts of the body (such as the lymph nodes or bones) and cause metastatic disease.
4. Hypoparathyroidism: Removal of all four parathyroid glands can lead to hypoparathyroidism, which can be life-threatening if not treated promptly.
5. Pancreatitis: Some studies have suggested that there may be an increased risk of pancreatitis in patients with parathyroid neoplasms.

In extreme cases, hypoglycemia can lead to seizures, loss of consciousness, and even coma. It is important to recognize the symptoms of hypoglycemia early on and seek medical attention if they persist or worsen over time. Treatment typically involves raising blood sugar levels through the consumption of quick-acting carbohydrates such as glucose tablets, fruit juice, or hard candy.

If left untreated, hypoglycemia can have serious consequences, including long-term damage to the brain, heart, and other organs. It is important for individuals with diabetes to monitor their blood sugar levels regularly and work with their healthcare provider to manage their condition effectively.

1. Hypothyroidism: An underactive thyroid gland can cause the gland to become enlarged as it tries to produce more hormones to compensate for the lack of production.
2. Hyperthyroidism: An overactive thyroid gland can also cause the gland to become enlarged as it produces excessive amounts of hormones.
3. Thyroid nodules: These are abnormal growths within the thyroid gland that can cause the gland to become enlarged.
4. Thyroiditis: This is an inflammation of the thyroid gland that can cause it to become enlarged.
5. Iodine deficiency: Iodine is essential for the production of thyroid hormones, and a lack of iodine in the diet can cause the gland to become enlarged as it tries to produce more hormones.
6. Pituitary gland problems: The pituitary gland, located at the base of the brain, regulates the production of thyroid hormones. Problems with the pituitary gland can cause the thyroid gland to become enlarged.
7. Genetic conditions: Some genetic conditions, such as familial goiter, can cause the thyroid gland to become enlarged.

Symptoms of goiter may include:

* A noticeable lump in the neck
* Difficulty swallowing or breathing
* Hoarseness or vocal cord paralysis
* Fatigue
* Weight gain
* Cold intolerance

Goiter can be diagnosed through a physical examination, blood tests to measure thyroid hormone levels, and imaging studies such as ultrasound or radionuclide scans to evaluate the size and function of the gland. Treatment options for goiter depend on the underlying cause and may include medication, surgery, or radioactive iodine therapy.

Grave's disease is the most common cause of hyperthyroidism and affects about 1 in 200 people. It can occur at any age but is more common in women and tends to run in families. The exact cause of Grave's disease is not known, but it may be related to a combination of genetic and environmental factors.

Symptoms of Grave's disease can vary from person to person, but common signs include:

* Weight loss
* Nervousness or anxiety
* Irregular heartbeat (palpitations)
* Increased sweating
* Heat intolerance
* Fatigue
* Changes in menstrual cycle in women
* Enlargement of the thyroid gland, known as a goiter
* Bulging eyes (exophthalmos)

Grave's disease can be diagnosed through blood tests and scans. Treatment options include medication to reduce the production of thyroxine, radioactive iodine therapy to destroy part of the thyroid gland, and surgery to remove part or all of the thyroid gland.

It is important to seek medical attention if you experience any symptoms of Grave's disease, as untreated hyperthyroidism can lead to complications such as heart problems, osteoporosis, and eye problems. With proper treatment, most people with Grave's disease can manage their symptoms and lead a normal life.

POI can be caused by several factors, including:

1. Genetic mutations
2. Autoimmune disorders
3. Chemotherapy or radiation therapy
4. Infections such as mumps or rubella
5. Radiation exposure
6. Unknown causes (idiopathic POI)

Symptoms of POI can include:

1. Irregular or absent menstrual periods
2. Fertility problems
3. Hot flashes and night sweats
4. Vaginal dryness
5. Mood changes such as depression and anxiety
6. Bone loss (osteoporosis)

Diagnosis of POI is based on a combination of medical history, physical examination, and laboratory tests, including:

1. Blood tests to measure hormone levels
2. Ultrasound or pelvic imaging to evaluate ovarian function
3. Genetic testing to identify genetic causes

Treatment for POI typically focuses on managing symptoms and addressing any underlying causes. Options may include:

1. Hormone replacement therapy (HRT) to alleviate hot flashes, vaginal dryness, and mood changes
2. Fertility treatments such as in vitro fertilization (IVF) or egg donation
3. Medications to stimulate ovulation
4. Bone density testing and treatment for osteoporosis
5. Psychological support to address emotional aspects of the condition.

It is important for women with POI to work closely with their healthcare provider to develop a personalized treatment plan that addresses their specific needs and goals. With appropriate care, many women with POI can lead fulfilling lives and achieve their reproductive goals.

There are several different types of weight gain, including:

1. Clinical obesity: This is defined as a BMI of 30 or higher, and is typically associated with a range of serious health problems, such as heart disease, type 2 diabetes, and certain types of cancer.
2. Central obesity: This refers to excess fat around the waistline, which can increase the risk of health problems such as heart disease and type 2 diabetes.
3. Muscle gain: This occurs when an individual gains weight due to an increase in muscle mass, rather than fat. This type of weight gain is generally considered healthy and can improve overall fitness and athletic performance.
4. Fat gain: This occurs when an individual gains weight due to an increase in body fat, rather than muscle or bone density. Fat gain can increase the risk of health problems such as heart disease and type 2 diabetes.

Weight gain can be measured using a variety of methods, including:

1. Body mass index (BMI): This is a widely used measure of weight gain that compares an individual's weight to their height. A BMI of 18.5-24.9 is considered normal, while a BMI of 25-29.9 is considered overweight, and a BMI of 30 or higher is considered obese.
2. Waist circumference: This measures the distance around an individual's waistline and can be used to assess central obesity.
3. Skinfold measurements: These involve measuring the thickness of fat at specific points on the body, such as the abdomen or thighs.
4. Dual-energy X-ray absorptiometry (DXA): This is a non-invasive test that uses X-rays to measure bone density and body composition.
5. Bioelectrical impedance analysis (BIA): This is a non-invasive test that uses electrical impulses to measure body fat percentage and other physiological parameters.

Causes of weight gain:

1. Poor diet: Consuming high amounts of processed foods, sugar, and saturated fats can lead to weight gain.
2. Lack of physical activity: Engaging in regular exercise can help burn calories and maintain a healthy weight.
3. Genetics: An individual's genetic makeup can affect their metabolism and body composition, making them more prone to weight gain.
4. Hormonal imbalances: Imbalances in hormones such as insulin, thyroid, and cortisol can contribute to weight gain.
5. Medications: Certain medications, such as steroids and antidepressants, can cause weight gain as a side effect.
6. Sleep deprivation: Lack of sleep can disrupt hormones that regulate appetite and metabolism, leading to weight gain.
7. Stress: Chronic stress can lead to emotional eating and weight gain.
8. Age: Metabolism slows down with age, making it more difficult to maintain a healthy weight.
9. Medical conditions: Certain medical conditions such as hypothyroidism, Cushing's syndrome, and polycystic ovary syndrome (PCOS) can also contribute to weight gain.

Treatment options for obesity:

1. Lifestyle modifications: A combination of diet, exercise, and stress management techniques can help individuals achieve and maintain a healthy weight.
2. Medications: Prescription medications such as orlistat, phentermine-topiramate, and liraglutide can aid in weight loss.
3. Bariatric surgery: Surgical procedures such as gastric bypass surgery and sleeve gastrectomy can be effective for severe obesity.
4. Behavioral therapy: Cognitive-behavioral therapy (CBT) and other forms of counseling can help individuals develop healthy eating habits and improve their physical activity levels.
5. Meal replacement plans: Meal replacement plans such as Medifast can provide individuals with a structured diet that is high in protein, fiber, and vitamins, and low in calories and sugar.
6. Weight loss supplements: Supplements such as green tea extract, garcinia cambogia, and forskolin can help boost weight loss efforts.
7. Portion control: Using smaller plates and measuring cups can help individuals regulate their portion sizes and maintain a healthy weight.
8. Mindful eating: Paying attention to hunger and fullness cues, eating slowly, and savoring food can help individuals develop healthy eating habits.
9. Physical activity: Engaging in regular physical activity such as walking, running, swimming, or cycling can help individuals burn calories and maintain a healthy weight.

It's important to note that there is no one-size-fits-all approach to treating obesity, and the most effective treatment plan will depend on the individual's specific needs and circumstances. Consulting with a healthcare professional such as a registered dietitian or a physician can help individuals develop a personalized treatment plan that is safe and effective.

Craniopharyngiomas are classified into three main types based on their location and characteristics:

1. Suprasellar craniopharyngioma: This type of tumor grows near the pineal gland and can affect the hypothalamus.
2. Intrasellar craniopharyngioma: This type of tumor grows within the sella turcica, a bony cavity in the sphenoid sinus that contains the pituitary gland.
3. Posterior craniopharyngioma: This type of tumor grows near the optic nerve and hypothalamus.

Craniopharyngiomas are usually treated with surgery, and in some cases, radiation therapy may be recommended to remove any remaining cancer cells. The prognosis for this condition is generally good, but it can vary depending on the size and location of the tumor, as well as the age of the patient.

In addition to surgery and radiation therapy, hormone replacement therapy may also be necessary to treat hormonal imbalances caused by the tumor. It is important for patients with craniopharyngioma to receive ongoing medical care to monitor their condition and address any complications that may arise.

The most common paraneoplastic endocrine syndromes include:

1. Paraneoplastic hypogonadism (PHG): This syndrome is caused by autoantibodies that target the pituitary gland and disrupt the normal functioning of the hypothalamus-pituitary-gonadal axis, leading to low levels of sex hormones.
2. Paraneoplastic syndrome of multiple endocrine neoplasia type 1 (MEN1): This syndrome is caused by autoantibodies that target the MEN1 gene, which is a tumor suppressor gene that regulates the growth and development of various endocrine tissues.
3. Paraneoplastic Cushing's syndrome (PCS): This syndrome is caused by autoantibodies that target the adrenal glands, leading to excessive production of cortisol and other steroid hormones.
4. Paraneoplastic hypophyseal syndrome (PHS): This syndrome is caused by autoantibodies that target the pituitary gland and disrupt the normal functioning of the hypothalamus-pituitary-adrenal axis, leading to a range of symptoms including hypopituitarism, hypercortisolism, and hypothyroidism.

The exact cause of paraneoplastic endocrine syndromes is not fully understood, but it is believed that they are triggered by the presence of cancer cells in the body, which can lead to an immune response and the production of autoantibodies. The diagnosis of a paraneoplastic endocrine syndrome typically involves a combination of clinical evaluation, laboratory tests, and imaging studies to identify the underlying cancer and determine the specific hormonal abnormalities present. Treatment typically involves managing the symptoms of the endocrine disorder, as well as treating the underlying cancer. This may involve medications to regulate hormone levels, surgery to remove the tumor, or other therapies depending on the specific type and location of the cancer.

Some common types of parathyroid diseases include:

1. Hyperparathyroidism: This is a condition in which the parathyroid glands produce too much PTH, leading to high levels of calcium in the blood. It can be caused by a benign tumor or by genetic mutations.
2. Hypoparathyroidism: This is a condition in which the parathyroid glands do not produce enough PTH, leading to low levels of calcium in the blood. It can be caused by autoimmune disorders, radiation therapy, or surgical removal of the parathyroid glands.
3. Parathyroid cancer: This is a rare type of cancer that affects the parathyroid glands. It can cause symptoms such as neck swelling, hoarseness, and difficulty swallowing.
4. Familial isolated hyperparathyroidism (FIH): This is a genetic condition that causes benign tumors to grow on one or more of the parathyroid glands, leading to high levels of calcium in the blood.
5. Parathyroid hormone-secreting pancreatic neuroendocrine tumors (PTH-Secreting PNETs): These are rare tumors that occur in the pancreas and produce excessive amounts of PTH, leading to high levels of calcium in the blood.

Treatment options for parathyroid diseases depend on the specific type and severity of the condition. Surgery is often necessary to remove affected glands or tumors, and medications may be used to manage symptoms such as high blood pressure and kidney stones. In some cases, hormone replacement therapy may be needed to replace missing PTH.

Treatment for uremia typically involves dialysis or kidney transplantation to remove excess urea from the blood and restore normal kidney function. In some cases, medications may be prescribed to help manage symptoms such as high blood pressure, anemia, or electrolyte imbalances.

The term "uremia" is derived from the Greek words "oura," meaning "urea," and "emia," meaning "in the blood." It was first used in the medical literature in the late 19th century to describe a condition caused by excess urea in the blood. Today, it remains an important diagnostic term in nephrology and is often used interchangeably with the term "uremic syndrome."

The most common cause of thyrotoxicosis is an overactive thyroid gland, known as hyperthyroidism. This can be caused by a variety of factors, including:

* Graves' disease: An autoimmune disorder that causes the thyroid gland to produce too much thyroid hormone.
* Toxic multinodular goiter: A condition in which one or more nodules in the thyroid gland become overactive and produce excessive amounts of thyroid hormone.
* Thyroid adenoma: A benign tumor of the thyroid gland that can cause hyperthyroidism.
* Thyroid cancer: A malignant tumor of the thyroid gland that can cause hyperthyroidism.

Symptoms of thyrotoxicosis can vary depending on the severity of the condition and the individual affected, but may include:

* Weight loss
* Increased heart rate
* Anxiety
* Sweating
* Tremors
* Nervousness
* Fatigue
* Heat intolerance
* Increased bowel movements
* Muscle weakness

Thyrotoxicosis can be diagnosed through a series of tests, including:

* Blood tests: To measure thyroid hormone levels in the blood.
* Thyroid scan: To visualize the thyroid gland and identify any nodules or tumors.
* Ultrasound: To evaluate the structure of the thyroid gland and detect any abnormalities.

Treatment for thyrotoxicosis depends on the underlying cause, but may include:

* Medications to reduce thyroid hormone production.
* Radioactive iodine therapy to destroy part or all of the thyroid gland.
* Surgery to remove part or all of the thyroid gland.

It is important to note that untreated thyrotoxicosis can lead to complications such as heart problems, osteoporosis, and eye problems, so it is important to seek medical attention if symptoms persist or worsen over time.

During menopause, the levels of estrogen in the body decrease significantly, which can lead to a loss of bone density and an increased risk of developing osteoporosis. Other risk factors for postmenopausal osteoporosis include:

* Family history of osteoporosis
* Early menopause (before age 45)
* Poor diet or inadequate calcium and vitamin D intake
* Sedentary lifestyle or lack of exercise
* Certain medications, such as glucocorticoids and anticonvulsants
* Other medical conditions, such as rheumatoid arthritis and liver or kidney disease.

Postmenopausal osteoporosis can be diagnosed through a variety of tests, including bone mineral density (BMD) measurements, which can determine the density of bones and detect any loss of bone mass. Treatment options for postmenopausal osteoporosis typically involve a combination of medications and lifestyle changes, such as:

* Bisphosphonates, which help to slow down bone loss and reduce the risk of fractures
* Hormone replacement therapy (HRT), which can help to replace the estrogen that is lost during menopause and improve bone density
* Selective estrogen receptor modulators (SERMs), which mimic the effects of estrogen on bone density but have fewer risks than HRT
* RANK ligand inhibitors, which can help to slow down bone loss and reduce the risk of fractures
* Parathyroid hormone (PTH) analogues, which can help to increase bone density and improve bone quality.

It is important for women to discuss their individual risks and benefits with their healthcare provider when determining the best course of treatment for postmenopausal osteoporosis. Additionally, lifestyle changes such as regular exercise, a balanced diet, and avoiding substances that can harm bone health (such as smoking and excessive alcohol consumption) can also help to manage the condition.

Cryptorchidism can be classified into two types:

1. Abdomenal cryptorchidism: In this type, the testis is located in the abdominal cavity above the inguinal ring and is not covered by any skin or membrane.
2. Inguinoscrotal cryptorchidism: In this type, the testis is located in the inguinal canal and may be covered by a thin layer of skin or membrane.

Cryptorchidism is usually diagnosed at birth or during childhood, and it can occur as an isolated condition or as part of other congenital anomalies. Treatment options for cryptorchidism include:

1. Watchful waiting: In mild cases, doctors may choose to monitor the child's development and delay any treatment until they are older.
2. Surgical repair: In more severe cases or those that cause discomfort or other complications, surgery may be recommended to move the testes into the scrotum.
3. Hormone therapy: In some cases, hormone therapy may be used to stimulate the descent of the testes.
4. Assisted reproductive technology (ART): In cases where fertility is a concern, ART such as in vitro fertilization (IVF) may be recommended.

It's important to note that cryptorchidism can increase the risk of complications such as testicular cancer, infertility, and twisting or inflammation of the testes (torsion). Regular check-ups with a healthcare provider are essential for monitoring and managing this condition.

A condition in which the kidneys gradually lose their function over time, leading to the accumulation of waste products in the body. Also known as chronic kidney disease (CKD).

Prevalence:

Chronic kidney failure affects approximately 20 million people worldwide and is a major public health concern. In the United States, it is estimated that 1 in 5 adults has CKD, with African Americans being disproportionately affected.

Causes:

The causes of chronic kidney failure are numerous and include:

1. Diabetes: High blood sugar levels can damage the kidneys over time.
2. Hypertension: Uncontrolled high blood pressure can cause damage to the blood vessels in the kidneys.
3. Glomerulonephritis: An inflammation of the glomeruli, the tiny blood vessels in the kidneys that filter waste and excess fluids from the blood.
4. Interstitial nephritis: Inflammation of the tissue between the kidney tubules.
5. Pyelonephritis: Infection of the kidneys, usually caused by bacteria or viruses.
6. Polycystic kidney disease: A genetic disorder that causes cysts to grow on the kidneys.
7. Obesity: Excess weight can increase blood pressure and strain on the kidneys.
8. Family history: A family history of kidney disease increases the risk of developing chronic kidney failure.

Symptoms:

Early stages of chronic kidney failure may not cause any symptoms, but as the disease progresses, symptoms can include:

1. Fatigue: Feeling tired or weak.
2. Swelling: In the legs, ankles, and feet.
3. Nausea and vomiting: Due to the buildup of waste products in the body.
4. Poor appetite: Loss of interest in food.
5. Difficulty concentrating: Cognitive impairment due to the buildup of waste products in the brain.
6. Shortness of breath: Due to fluid buildup in the lungs.
7. Pain: In the back, flank, or abdomen.
8. Urination changes: Decreased urine production, dark-colored urine, or blood in the urine.
9. Heart problems: Chronic kidney failure can increase the risk of heart disease and heart attack.

Diagnosis:

Chronic kidney failure is typically diagnosed based on a combination of physical examination findings, medical history, laboratory tests, and imaging studies. Laboratory tests may include:

1. Blood urea nitrogen (BUN) and creatinine: Waste products in the blood that increase with decreased kidney function.
2. Electrolyte levels: Imbalances in electrolytes such as sodium, potassium, and phosphorus can indicate kidney dysfunction.
3. Kidney function tests: Measurement of glomerular filtration rate (GFR) to determine the level of kidney function.
4. Urinalysis: Examination of urine for protein, blood, or white blood cells.

Imaging studies may include:

1. Ultrasound: To assess the size and shape of the kidneys, detect any blockages, and identify any other abnormalities.
2. Computed tomography (CT) scan: To provide detailed images of the kidneys and detect any obstructions or abscesses.
3. Magnetic resonance imaging (MRI): To evaluate the kidneys and detect any damage or scarring.

Treatment:

Treatment for chronic kidney failure depends on the underlying cause and the severity of the disease. The goals of treatment are to slow progression of the disease, manage symptoms, and improve quality of life. Treatment may include:

1. Medications: To control high blood pressure, lower cholesterol levels, reduce proteinuria, and manage anemia.
2. Diet: A healthy diet that limits protein intake, controls salt and water intake, and emphasizes low-fat dairy products, fruits, and vegetables.
3. Fluid management: Monitoring and control of fluid intake to prevent fluid buildup in the body.
4. Dialysis: A machine that filters waste products from the blood when the kidneys are no longer able to do so.
5. Transplantation: A kidney transplant may be considered for some patients with advanced chronic kidney failure.

Complications:

Chronic kidney failure can lead to several complications, including:

1. Heart disease: High blood pressure and anemia can increase the risk of heart disease.
2. Anemia: A decrease in red blood cells can cause fatigue, weakness, and shortness of breath.
3. Bone disease: A disorder that can lead to bone pain, weakness, and an increased risk of fractures.
4. Electrolyte imbalance: Imbalances of electrolytes such as potassium, phosphorus, and sodium can cause muscle weakness, heart arrhythmias, and other complications.
5. Infections: A decrease in immune function can increase the risk of infections.
6. Nutritional deficiencies: Poor appetite, nausea, and vomiting can lead to malnutrition and nutrient deficiencies.
7. Cardiovascular disease: High blood pressure, anemia, and other complications can increase the risk of cardiovascular disease.
8. Pain: Chronic kidney failure can cause pain, particularly in the back, flank, and abdomen.
9. Sleep disorders: Insomnia, sleep apnea, and restless leg syndrome are common complications.
10. Depression and anxiety: The emotional burden of chronic kidney failure can lead to depression and anxiety.

Vitamin D deficiency can occur due to several reasons, including:

1. Limited sun exposure: Vitamin D is produced in the skin when it is exposed to sunlight. People who live in regions with limited sunlight, such as far north or south latitudes, may experience vitamin D deficiency.
2. Poor dietary intake: Vitamin D is found in few foods, such as fatty fish, egg yolks, and fortified dairy products. People who follow a restrictive diet or do not consume enough of these foods may develop vitamin D deficiency.
3. Inability to convert vitamin D: Vitamin D undergoes two stages of conversion in the body before it becomes active. The first stage occurs in the skin, and the second stage occurs in the liver. People who have a genetic disorder or certain medical conditions may experience difficulty converting vitamin D, leading to deficiency.
4. Certain medications: Some medications, such as anticonvulsants and glucocorticoids, can interfere with vitamin D metabolism and lead to deficiency.
5. Increased demand: Vitamin D deficiency can occur in people who have high demands for vitamin D, such as pregnant or lactating women, older adults, and individuals with certain medical conditions like osteomalacia or rickets.

Vitamin D deficiency can cause a range of health problems, including:

1. Osteomalacia (softening of the bones)
2. Rickets (a childhood disease that causes softening of the bones)
3. Increased risk of fractures
4. Muscle weakness and pain
5. Fatigue and malaise
6. Depression and seasonal affective disorder
7. Autoimmune diseases, such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis
8. Cardiovascular disease
9. Certain types of cancer, such as colorectal, breast, and prostate cancer

If you suspect you may have a vitamin D deficiency, it's important to speak with your healthcare provider, who can diagnose the deficiency through a blood test and recommend appropriate treatment. Treatment for vitamin D deficiency typically involves taking supplements or increasing exposure to sunlight.

The symptoms of hyperprolactinemia can vary depending on the underlying cause but may include:

1. Galactorrhea (spontaneous milk production)
2. Amenorrhea (loss of menstrual period)
3. Infertility
4. Erectile dysfunction
5. Decreased libido
6. Headaches
7. Vision changes
8. Fatigue
9. Nausea and vomiting
10. Weight gain.

If you suspect that you or someone you know may have hyperprolactinemia, it is essential to consult a healthcare professional for proper diagnosis and treatment. The diagnosis of hyperprolactinemia typically involves blood tests to measure prolactin levels, as well as other tests to rule out other potential causes of the symptoms. Treatment options vary depending on the underlying cause but may include medications to reduce prolactin levels, surgery to remove pituitary tumors, or other therapies to address related issues such as hypogonadism or infertility.

There are two main types of DI: central diabetes insipidus (CDI) and nephrogenic diabetes insipidus (NDI). CDI is caused by a defect in the hypothalamus or pituitary gland, which can lead to a lack of vasopressin. NDI is caused by a problem with the kidneys, which can prevent them from responding properly to vasopressin.

Symptoms of DI include excessive thirst and urination, fatigue, headaches, and dehydration. Treatment for DI typically involves replacing vasopressin through injections or oral medications, as well as addressing any underlying causes. In some cases, DI can be managed with desmopressin, a synthetic version of vasopressin.

Overall, diabetes insipidus is a rare and complex condition that requires careful management to prevent complications such as dehydration and electrolyte imbalances.

Endometrial neoplasms are abnormal growths or tumors that develop in the lining of the uterus, known as the endometrium. These growths can be benign (non-cancerous) or malignant (cancerous). The most common type of endometrial neoplasm is endometrial hyperplasia, which is a condition where the endometrium grows too thick and can become cancerous if left untreated. Other types of endometrial neoplasms include endometrial adenocarcinoma, which is the most common type of uterine cancer, and endometrial sarcoma, which is a rare type of uterine cancer that develops in the muscle or connective tissue of the uterus.

Endometrial neoplasms can be caused by a variety of factors, including hormonal imbalances, genetic mutations, and exposure to certain chemicals or radiation. Risk factors for developing endometrial neoplasms include obesity, early onset of menstruation, late onset of menopause, never being pregnant or having few or no full-term pregnancies, and taking hormone replacement therapy or other medications that can increase estrogen levels.

Symptoms of endometrial neoplasms can include abnormal vaginal bleeding, painful urination, and pelvic pain or discomfort. Treatment for endometrial neoplasms depends on the type and stage of the condition, and may involve surgery, radiation therapy, chemotherapy, or hormone therapy. In some cases, a hysterectomy (removal of the uterus) may be necessary.

In summary, endometrial neoplasms are abnormal growths that can develop in the lining of the uterus and can be either benign or malignant. They can be caused by a variety of factors and can cause symptoms such as abnormal bleeding and pelvic pain. Treatment depends on the type and stage of the condition, and may involve surgery, radiation therapy, chemotherapy, or hormone therapy.

These tumors typically affect adult men and are relatively slow-growing. They can cause symptoms such as painless testicular swelling, difficulty urinating, or abdominal discomfort due to pressure on surrounding organs.

Leydig cell tumors are relatively rare, accounting for less than 1% of all testicular tumors. They are usually benign (non-cancerous), but in some cases can be malignant (cancerous). Treatment typically involves surgical removal of the affected testicle (orchiectomy) and may also involve hormone therapy to reduce levels of male hormones, such as testosterone.

Leydig cell tumors are classified into two main types: Leydig cell adenoma and Leydig cell carcinoma. Leydig cell adenoma is the more common type and typically grows slowly, while Leydig cell carcinoma is less common but can grow faster and be more aggressive.

Overall, Leydig cell tumors are rare and often slow-growing, but they can cause significant symptoms and may require surgical intervention to treat.

Causes: Thyroiditis can be caused by a viral or bacterial infection, autoimmune disorders, or radiation exposure.

Symptoms: Symptoms of thyroiditis may include pain and swelling in the neck, difficulty swallowing, hoarseness, fatigue, weight gain, muscle weakness, and depression.

Types: There are several types of thyroiditis, including subacute thyroiditis, silent thyroiditis, and postpartum thyroiditis.

Diagnosis: Thyroiditis is typically diagnosed through a combination of physical examination, blood tests, and imaging studies such as ultrasound or CT scans.

Treatment: Treatment for thyroiditis usually involves antibiotics to treat any underlying infection, pain relief medication to manage neck swelling and discomfort, and hormone replacement therapy to address hormonal imbalances. In some cases, surgery may be necessary to remove part or all of the affected thyroid gland.

Complications: Untreated thyroiditis can lead to complications such as hypothyroidism (underactive thyroid), hyperthyroidism (overactive thyroid), and thyroid nodules or cancer.

Prevention: Preventing thyroiditis is challenging, but maintaining good overall health, avoiding exposure to radiation, and managing any underlying autoimmune disorders can help reduce the risk of developing the condition.

Prognosis: With proper treatment, most people with thyroiditis experience a full recovery and normalization of thyroid function. However, in some cases, long-term hormone replacement therapy may be necessary to manage persistent hypothyroidism or hyperthyroidism.

There are several factors that can contribute to the development of insulin resistance, including:

1. Genetics: Insulin resistance can be inherited, and some people may be more prone to developing the condition based on their genetic makeup.
2. Obesity: Excess body fat, particularly around the abdominal area, can contribute to insulin resistance.
3. Physical inactivity: A sedentary lifestyle can lead to insulin resistance.
4. Poor diet: Consuming a diet high in refined carbohydrates and sugar can contribute to insulin resistance.
5. Other medical conditions: Certain medical conditions, such as polycystic ovary syndrome (PCOS) and Cushing's syndrome, can increase the risk of developing insulin resistance.
6. Medications: Certain medications, such as steroids and some antipsychotic drugs, can increase insulin resistance.
7. Hormonal imbalances: Hormonal changes during pregnancy or menopause can lead to insulin resistance.
8. Sleep apnea: Sleep apnea can contribute to insulin resistance.
9. Chronic stress: Chronic stress can lead to insulin resistance.
10. Aging: Insulin resistance tends to increase with age, particularly after the age of 45.

There are several ways to diagnose insulin resistance, including:

1. Fasting blood sugar test: This test measures the level of glucose in the blood after an overnight fast.
2. Glucose tolerance test: This test measures the body's ability to regulate blood sugar levels after consuming a sugary drink.
3. Insulin sensitivity test: This test measures the body's ability to respond to insulin.
4. Homeostatic model assessment (HOMA): This is a mathematical formula that uses the results of a fasting glucose and insulin test to estimate insulin resistance.
5. Adiponectin test: This test measures the level of adiponectin, a protein produced by fat cells that helps regulate blood sugar levels. Low levels of adiponectin are associated with insulin resistance.

There is no cure for insulin resistance, but it can be managed through lifestyle changes and medication. Lifestyle changes include:

1. Diet: A healthy diet that is low in processed carbohydrates and added sugars can help improve insulin sensitivity.
2. Exercise: Regular physical activity, such as aerobic exercise and strength training, can improve insulin sensitivity.
3. Weight loss: Losing weight, particularly around the abdominal area, can improve insulin sensitivity.
4. Stress management: Strategies to manage stress, such as meditation or yoga, can help improve insulin sensitivity.
5. Sleep: Getting adequate sleep is important for maintaining healthy insulin levels.

Medications that may be used to treat insulin resistance include:

1. Metformin: This is a commonly used medication to treat type 2 diabetes and improve insulin sensitivity.
2. Thiazolidinediones (TZDs): These medications, such as pioglitazone, improve insulin sensitivity by increasing the body's ability to use insulin.
3. Sulfonylureas: These medications stimulate the release of insulin from the pancreas, which can help improve insulin sensitivity.
4. DPP-4 inhibitors: These medications, such as sitagliptin, work by reducing the breakdown of the hormone incretin, which helps to increase insulin secretion and improve insulin sensitivity.
5. GLP-1 receptor agonists: These medications, such as exenatide, mimic the action of the hormone GLP-1 and help to improve insulin sensitivity.

It is important to note that these medications may have side effects, so it is important to discuss the potential benefits and risks with your healthcare provider before starting treatment. Additionally, lifestyle modifications such as diet and exercise can also be effective in improving insulin sensitivity and managing blood sugar levels.

Prenatal Exposure Delayed Effects can affect various aspects of the child's development, including:

1. Physical growth and development: PDEDs can lead to changes in the child's physical growth patterns, such as reduced birth weight, short stature, or delayed puberty.
2. Brain development: Prenatal exposure to certain substances can affect brain development, leading to learning disabilities, memory problems, and cognitive delays.
3. Behavioral and emotional development: Children exposed to PDEDs may exhibit behavioral and emotional difficulties, such as anxiety, depression, or attention deficit hyperactivity disorder (ADHD).
4. Immune system functioning: Prenatal exposure to certain substances can affect the immune system's development, making children more susceptible to infections and autoimmune diseases.
5. Reproductive health: Exposure to certain chemicals during fetal development may disrupt the reproductive system, leading to fertility problems or an increased risk of infertility later in life.

The diagnosis of Prenatal Exposure Delayed Effects often requires a comprehensive medical history and physical examination, as well as specialized tests such as imaging studies or laboratory assessments. Treatment for PDEDs typically involves addressing the underlying cause of exposure and providing appropriate interventions to manage any associated symptoms or developmental delays.

In summary, Prenatal Exposure Delayed Effects can have a profound impact on a child's growth, development, and overall health later in life. It is essential for healthcare providers to be aware of the potential risks and to monitor children exposed to substances during fetal development for any signs of PDEDs. With early diagnosis and appropriate interventions, it may be possible to mitigate or prevent some of these effects and improve outcomes for affected children.

People with Laron syndrome have a very low risk of developing cancer, particularly breast, ovarian, and prostate cancers. This has led researchers to investigate the possibility that the disorder may be useful in preventing or treating certain types of cancer.

There is currently no cure for Laron syndrome, and treatment is focused on managing the symptoms and preventing complications. Hormone replacement therapy may be used to stimulate growth and development, while surgery may be necessary to correct physical abnormalities such as hip dysplasia or heart defects.

Laron syndrome is a rare disorder, and it is estimated that only about 100 cases have been diagnosed worldwide. It is important for individuals with the disorder to work closely with their healthcare provider to manage their symptoms and prevent complications. With appropriate treatment and support, individuals with Laron syndrome can lead fulfilling lives.

1. Endometrial carcinoma (cancer that starts in the lining of the uterus)
2. Uterine papillary serous carcinoma (cancer that starts in the muscle layer of the uterus)
3. Leiomyosarcoma (cancer that starts in the smooth muscle of the uterus)
4. Adenocarcinoma (cancer that starts in the glands of the endometrium)
5. Clear cell carcinoma (cancer that starts in the cells that resemble the lining of the uterus)
6. Sarcoma (cancer that starts in the connective tissue of the uterus)
7. Mixed tumors (cancers that have features of more than one type of uterine cancer)

These types of cancers can affect women of all ages and are more common in postmenopausal women. Risk factors for developing uterine neoplasms include obesity, tamoxifen use, and a history of endometrial hyperplasia (thickening of the lining of the uterus).

Symptoms of uterine neoplasms can include:

1. Abnormal vaginal bleeding (heavy or prolonged menstrual bleeding, spotting, or postmenopausal bleeding)
2. Postmenopausal bleeding
3. Pelvic pain or discomfort
4. Vaginal discharge
5. Weakness and fatigue
6. Weight loss
7. Pain during sex
8. Increased urination or frequency of urination
9. Abnormal Pap test results (abnormal cells found on the cervix)

If you have any of these symptoms, it is essential to consult your healthcare provider for proper evaluation and treatment. A diagnosis of uterine neoplasms can be made through several methods, including:

1. Endometrial biopsy (a small sample of tissue is removed from the lining of the uterus)
2. Dilation and curettage (D&C; a surgical procedure to remove tissue from the inside of the uterus)
3. Hysteroscopy (a thin, lighted tube with a camera is inserted through the cervix to view the inside of the uterus)
4. Imaging tests (such as ultrasound or MRI)

Treatment for uterine neoplasms depends on the type and stage of cancer. Common treatments include:

1. Hysterectomy (removal of the uterus)
2. Radiation therapy (uses high-energy rays to kill cancer cells)
3. Chemotherapy (uses drugs to kill cancer cells)
4. Targeted therapy (uses drugs to target specific cancer cells)
5. Clinical trials (research studies to test new treatments)

It is essential for women to be aware of their bodies and any changes that occur, particularly after menopause. Regular pelvic exams and screenings can help detect uterine neoplasms at an early stage, when they are more treatable. If you experience any symptoms or have concerns about your health, talk to your healthcare provider. They can help determine the cause of your symptoms and recommend appropriate treatment.

There are several types of thyroid neoplasms, including:

1. Thyroid nodules: These are abnormal growths or lumps that can develop in the thyroid gland. Most thyroid nodules are benign (non-cancerous), but some can be malignant (cancerous).
2. Thyroid cancer: This is a type of cancer that develops in the thyroid gland. There are several types of thyroid cancer, including papillary, follicular, and medullary thyroid cancer.
3. Thyroid adenomas: These are benign tumors that develop in the thyroid gland. They are usually non-cancerous and do not spread to other parts of the body.
4. Thyroid cysts: These are fluid-filled sacs that can develop in the thyroid gland. They are usually benign and do not cause any symptoms.

Thyroid neoplasms can be caused by a variety of factors, including genetic mutations, exposure to radiation, and certain medical conditions, such as thyroiditis (inflammation of the thyroid gland).

Symptoms of thyroid neoplasms can include:

* A lump or swelling in the neck
* Pain in the neck or throat
* Difficulty swallowing or breathing
* Hoarseness or voice changes
* Weight loss or fatigue

Diagnosis of thyroid neoplasms usually involves a combination of physical examination, imaging tests (such as ultrasound or CT scans), and biopsies. Treatment depends on the type and severity of the neoplasm, and can include surgery, radiation therapy, and medications.

There are different types of hyperplasia, depending on the location and cause of the condition. Some examples include:

1. Benign hyperplasia: This type of hyperplasia is non-cancerous and does not spread to other parts of the body. It can occur in various tissues and organs, such as the uterus (fibroids), breast tissue (fibrocystic changes), or prostate gland (benign prostatic hyperplasia).
2. Malignant hyperplasia: This type of hyperplasia is cancerous and can invade nearby tissues and organs, leading to serious health problems. Examples include skin cancer, breast cancer, and colon cancer.
3. Hyperplastic polyps: These are abnormal growths that occur in the gastrointestinal tract and can be precancerous.
4. Adenomatous hyperplasia: This type of hyperplasia is characterized by an increase in the number of glandular cells in a specific organ, such as the colon or breast. It can be a precursor to cancer.

The symptoms of hyperplasia depend on the location and severity of the condition. In general, they may include:

* Enlargement or swelling of the affected tissue or organ
* Pain or discomfort in the affected area
* Abnormal bleeding or discharge
* Changes in bowel or bladder habits
* Unexplained weight loss or gain

Hyperplasia is diagnosed through a combination of physical examination, imaging tests such as ultrasound or MRI, and biopsy. Treatment options depend on the underlying cause and severity of the condition, and may include medication, surgery, or other interventions.

Delayed puberty, also known as constitutional delay of growth and development, is a condition in which a child's physical development and sexual maturation are significantly later than their peers. This can be due to a variety of factors, including genetics, hormonal imbalances, chronic illnesses, and nutritional deficiencies.

Delayed puberty can have both physical and emotional effects on a child. Physically, it may cause a child's body to appear younger than their age, and they may experience delayed growth spurts and the development of secondary sex characteristics such as breast development in girls or testicular enlargement in boys. Emotionally, delayed puberty can lead to feelings of isolation, low self-esteem, and anxiety about not fitting in with their peers.

It is important to note that some children may experience a delay in puberty due to normal variations in growth and development, while others may have a more serious underlying medical condition that needs to be evaluated by a healthcare provider. If you suspect that your child is experiencing delayed puberty, it is important to consult with their pediatrician or an endocrinologist for proper evaluation and treatment.

Adrenocortical hyperfunction can be caused by a variety of factors, including:

1. Cushing's syndrome: This is a rare hormonal disorder caused by excessive production of cortisol by the adrenal glands. It can be caused by a benign tumor in the pituitary gland or an adrenal gland, or by taking too much corticosteroid medication.
2. Adrenocortical carcinoma: This is a rare and aggressive type of cancer that affects the adrenal glands. It can cause excessive production of cortisol and other hormones.
3. Familial Cushing's syndrome: This is a genetic disorder that causes excessive production of cortisol by the adrenal glands.
4. Glucocorticoid-remediable aldosteronism (GRA): This is a rare genetic disorder that affects the production of hormones by the adrenal glands, leading to excessive production of cortisol and aldosterone.
5. Licorice ingestion: Consuming large amounts of licorice can cause an increase in the production of cortisol and other hormones by the adrenal glands.
6. Primary aldosteronism (PA): This is a group of rare genetic disorders that affect the production of hormones by the adrenal glands, leading to excessive production of aldosterone and cortisol.
7. Secondary adrenocortical hyperfunction: This can occur due to various conditions such as thyroid disorders, pituitary tumors, or other endocrine disorders that affect the regulation of hormone production by the adrenal glands.

Symptoms of adrenocortical hyperfunction may include:

1. Weight gain and central obesity
2. Increased appetite and food cravings
3. Fatigue and weakness
4. Mood changes, such as anxiety or depression
5. Insomnia and sleep disturbances
6. High blood pressure and cardiovascular risk factors
7. Easy bruising and poor wound healing
8. Muscle weakness and fatigue
9. Thinning of the skin and bones (osteoporosis)
10. Increased risk of infections and decreased immune function.

If you suspect that you or someone you know may have adrenocortical hyperfunction, it is essential to consult with a healthcare professional for proper diagnosis and treatment. A doctor may perform several tests, including:

1. Blood tests to measure hormone levels in the body, such as cortisol and aldosterone.
2. Saliva tests to measure cortisol levels throughout the day.
3. Urine tests to measure cortisol levels over a 24-hour period.
4. Imaging tests, such as CT scans or MRI scans, to examine the adrenal glands and look for any signs of tumors or other abnormalities.
5. Other tests to assess the body's response to stress, such as a corticotropin (ACTH) stimulation test.

Treatment options for adrenocortical hyperfunction depend on the underlying cause of the condition and may include:

1. Medications to reduce hormone production in the adrenal glands, such as metyrapone or ketoconazole.
2. Surgery to remove any tumors or cysts in the adrenal glands.
3. Radiation therapy to shrink tumors and reduce hormone production.
4. Lifestyle changes, such as weight loss, stress management techniques, and regular exercise.
5. Monitoring of hormone levels and other health markers to ensure that the condition is under control.

Causes of Hypophosphatemia
-----------------------

There are several possible causes of hypophosphatemia, including:

1. Malnutrition or a poor diet that is deficient in phosphorus.
2. Gastrointestinal disorders such as celiac disease, inflammatory bowel disease, or gastrointestinal surgery.
3. Kidney problems such as chronic kidney disease, renal tubular acidosis, or distal renal tubular phosphate loss.
4. Hormonal imbalances such as hypoparathyroidism (underactive parathyroid glands) or hyperparathyroidism (overactive parathyroid glands).
5. Medications such as diuretics, antacids, and certain antibiotics.
6. Chronic alcoholism.
7. Genetic disorders such as X-linked hypophosphatemic rickets or familial hypophosphatemic rickets.

Symptoms of Hypophosphatemia
-------------------------

The symptoms of hypophosphatemia can vary depending on the severity and duration of the condition, but may include:

1. Weakness, fatigue, or muscle cramps.
2. Bone pain or joint stiffness.
3. Difficulty healing from injuries or infections.
4. Numbness or tingling sensations in the extremities.
5. Seizures or other neurological symptoms.
6. Respiratory problems such as shortness of breath or difficulty breathing.
7. Heart arrhythmias or cardiac failure.

Diagnosis and Treatment of Hypophosphatemia
---------------------------------------

Hypophosphatemia can be diagnosed through blood tests that measure the levels of phosphate in the blood. Treatment for hypophosphatemia typically involves correcting any underlying causes, such as stopping medications that may be causing the condition or treating underlying medical conditions.

In some cases, treatment may involve supplements to increase phosphate levels in the blood. Vitamin D and calcium supplements may also be prescribed to help maintain bone health. In severe cases of hypophosphatemia, hospitalization may be necessary to manage symptoms and prevent complications.

Prognosis and Complications of Hypophosphatemia
-----------------------------------------------

The prognosis for hypophosphatemia is generally good if the underlying cause is identified and treated promptly. However, untreated hypophosphatemia can lead to a number of complications, including:

1. Osteomalacia or osteoporosis.
2. Rickets in children.
3. Weakened immune system.
4. Increased risk of infections.
5. Nerve damage or neuropathy.
6. Cardiovascular problems such as heart arrhythmias or cardiac failure.
7. Respiratory failure.
8. Kidney damage or kidney failure.

It is important to seek medical attention if symptoms persist or worsen over time, as hypophosphatemia can lead to serious complications if left untreated.

Conclusion
----------

Hypophosphatemia is a condition characterized by low levels of phosphate in the blood. It can be caused by a variety of factors and may present with symptoms such as weakness, bone pain, and respiratory problems. Treatment typically involves correcting any underlying causes and supplements to increase phosphate levels in the blood.

Early detection and treatment are important to prevent complications of hypophosphatemia, which can include osteomalacia or osteoporosis, nerve damage, cardiovascular problems, respiratory failure, and kidney damage. If you suspect you may have hypophosphatemia, it is important to seek medical attention as soon as possible to receive proper diagnosis and treatment.

Some common types of adrenal gland diseases include:

1. Cushing's syndrome: A hormonal disorder caused by excessive production of cortisol, a hormone produced by the adrenal glands. This can be caused by a tumor on one of the adrenal glands or by taking too much corticosteroid medication.
2. Addison's disease: A rare disorder caused by the destruction of the adrenal glands, typically due to an autoimmune response. This results in a deficiency of cortisol and aldosterone hormones, leading to symptoms such as fatigue, weight loss, and skin changes.
3. Adrenocortical carcinoma: A rare type of cancer that affects the adrenal glands. This can cause symptoms such as weight gain, skin changes, and abdominal pain.
4. Pheochromocytoma: A rare type of tumor that develops on one of the adrenal glands, typically causing high blood pressure and other symptoms due to excessive production of hormones such as epinephrine and norepinephrine.
5. Adrenal insufficiency: A condition in which the adrenal glands do not produce enough cortisol and aldosterone hormones, often caused by a autoimmune response or a viral infection. This can lead to symptoms such as fatigue, weight loss, and skin changes.
6. Primary aldosteronism: A condition in which the adrenal glands produce too much aldosterone hormone, leading to high blood pressure and other symptoms.
7. Adrenal incidentalomas: Tumors that are found on the adrenal glands, but do not produce excessive hormones or cause symptoms. These tumors can be benign or malignant.
8. Adrenal metastases: Tumors that have spread to the adrenal glands from another part of the body, often causing symptoms such as high blood pressure and abdominal pain.
9. Adrenal cysts: Fluid-filled sacs that form on the adrenal glands, which can cause symptoms such as abdominal pain and weight loss.
10. Adrenal hemorrhage: Bleeding in the adrenal glands, often caused by trauma or a blood clotting disorder. This can lead to symptoms such as severe abdominal pain and shock.

It is important to note that this list is not exhaustive and there may be other rare conditions that affect the adrenal glands not included here. If you suspect you have any of these conditions, it is important to seek medical attention from a qualified healthcare professional for proper diagnosis and treatment.

Treatment for oligomenorrhea depends on the underlying cause, but may include hormone replacement therapy, birth control pills, or other medications to regulate menstrual cycles. In some cases, surgery may be necessary to correct anatomical abnormalities or remove cysts that are interfering with normal menstruation.

Oligomenorrhea can have significant impacts on women's lives, including difficulty becoming pregnant due to irregular ovulation and increased risk of developing endometrial cancer. Therefore, early diagnosis and treatment are important to manage the condition and prevent potential complications.

Male infertility can be caused by a variety of factors, including:

1. Low sperm count or poor sperm quality: This is one of the most common causes of male infertility. Sperm count is typically considered low if less than 15 million sperm are present in a sample of semen. Additionally, sperm must be of good quality to fertilize an egg successfully.
2. Varicocele: This is a swelling of the veins in the scrotum that can affect sperm production and quality.
3. Erectile dysfunction: Difficulty achieving or maintaining an erection can make it difficult to conceive.
4. Premature ejaculation: This can make it difficult for the sperm to reach the egg during sexual intercourse.
5. Blockages or obstructions: Blockages in the reproductive tract, such as a blockage of the epididymis or vas deferens, can prevent sperm from leaving the body during ejaculation.
6. Retrograde ejaculation: This is a condition in which semen is released into the bladder instead of being expelled through the penis during ejaculation.
7. Hormonal imbalances: Imbalances in hormones such as testosterone and inhibin can affect sperm production and quality.
8. Medical conditions: Certain medical conditions, such as diabetes, hypogonadism, and hyperthyroidism, can affect fertility.
9. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and stress can all impact fertility.
10. Age: Male fertility declines with age, especially after the age of 40.

There are several treatment options for male infertility, including:

1. Medications to improve sperm count and quality
2. Surgery to repair blockages or obstructions in the reproductive tract
3. Artificial insemination (IUI) or in vitro fertilization (IVF) to increase the chances of conception
4. Donor sperm
5. Assisted reproductive technology (ART) such as ICSI (intracytoplasmic sperm injection)
6. Hormone therapy to improve fertility
7. Lifestyle changes such as quitting smoking and alcohol, losing weight, and reducing stress.

It's important to note that male infertility is a common condition and there are many treatment options available. If you're experiencing difficulty conceiving, it's important to speak with a healthcare provider to determine the cause of infertility and discuss potential treatment options.

According to the World Health Organization (WHO), gender incongruence, which is the distress that can occur when a person's gender identity does not align with the sex they were assigned at birth, should be treated with gender-affirming care rather than pathologized as a mental disorder.

Therefore, instead of transsexualism, individuals who experience gender dysphoria are now diagnosed with Gender Dysphoria according to the ICD-11 (International Classification of Diseases, 11th Revision). This diagnosis is intended to help clinicians provide appropriate care and support for individuals struggling with gender incongruence.

In conclusion, transsexualism is an outdated term that is no longer used in modern medicine to describe individuals who experience gender dysphoria. Instead, the more accurate and respectful term is Gender Dysphoria, which acknowledges the distress caused by gender incongruence without pathologizing the individual.

* Osteogenesis imperfecta (OI): A genetic disorder that affects the formation of bone tissue, leading to fragile bones and an increased risk of fractures.
* Rickets: A vitamin D-deficient disease that causes softening of the bones in children.
* Osteomalacia: A condition similar to rickets, but affecting adults and caused by a deficiency of vitamin D or calcium.
* Hyperparathyroidism: A condition in which the parathyroid glands produce too much parathyroid hormone (PTH), leading to an imbalance in bone metabolism and an increase in bone resorption.
* Hypoparathyroidism: A condition in which the parathyroid glands produce too little PTH, leading to low levels of calcium and vitamin D and an increased risk of osteoporosis.

Bone diseases, metabolic are typically diagnosed through a combination of physical examination, imaging studies such as X-rays or CT scans, and laboratory tests to evaluate bone metabolism. Treatment depends on the specific underlying cause of the disease and may include medications, dietary changes, or surgery.

There are several subtypes of carcinoma, including:

1. Adenocarcinoma: This type of carcinoma originates in glandular cells, which produce fluids or mucus. Examples include breast cancer, prostate cancer, and colon cancer.
2. Squamous cell carcinoma: This type of carcinoma originates in squamous cells, which are found on the surface layers of skin and mucous membranes. Examples include head and neck cancers, cervical cancer, and anal cancer.
3. Basal cell carcinoma: This type of carcinoma originates in the deepest layer of skin, called the basal layer. It is the most common type of skin cancer and tends to grow slowly.
4. Neuroendocrine carcinoma: This type of carcinoma originates in cells that produce hormones and neurotransmitters. Examples include lung cancer, pancreatic cancer, and thyroid cancer.
5. Small cell carcinoma: This type of carcinoma is a highly aggressive form of lung cancer that spreads quickly to other parts of the body.

The signs and symptoms of carcinoma depend on the location and stage of the cancer. Some common symptoms include:

* A lump or mass
* Pain
* Skin changes, such as a new mole or a change in the color or texture of the skin
* Changes in bowel or bladder habits
* Abnormal bleeding

The diagnosis of carcinoma typically involves a combination of imaging tests, such as X-rays, CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a small sample of tissue for examination under a microscope. Treatment options for carcinoma depend on the location and stage of the cancer and may include surgery, radiation therapy, chemotherapy, or a combination of these.

In conclusion, carcinoma is a type of cancer that originates in epithelial cells and can occur in various parts of the body. Early detection and treatment are important for improving outcomes.

References:

1. American Cancer Society. (2022). Carcinoma. Retrieved from
2. Mayo Clinic. (2022). Carcinoma. Retrieved from
3. MedlinePlus. (2022). Carcinoma. Retrieved from

Infertility can be classified into two main categories:

1. Primary infertility: This type of infertility occurs when a couple has not been able to conceive a child after one year of regular sexual intercourse, and there is no known cause for the infertility.
2. Secondary infertility: This type of infertility occurs when a couple has been able to conceive at least once before but is now experiencing difficulty in conceiving again.

There are several factors that can contribute to infertility, including:

1. Age: Women's fertility declines with age, especially after the age of 35.
2. Hormonal imbalances: Imbalances of hormones such as progesterone, estrogen, and thyroid hormones can affect ovulation and fertility.
3. Polycystic ovary syndrome (PCOS): A common condition that affects ovulation and can cause infertility.
4. Endometriosis: A condition in which the tissue lining the uterus grows outside the uterus, causing inflammation and scarring that can lead to infertility.
5. Male factor infertility: Low sperm count, poor sperm quality, and blockages in the reproductive tract can all contribute to infertility.
6. Lifestyle factors: Smoking, excessive alcohol consumption, being overweight or underweight, and stress can all affect fertility.
7. Medical conditions: Certain medical conditions such as diabetes, hypertension, and thyroid disorders can affect fertility.
8. Uterine or cervical abnormalities: Abnormalities in the shape or structure of the uterus or cervix can make it difficult for a fertilized egg to implant in the uterus.
9. Previous surgeries: Surgeries such as hysterectomy, tubal ligation, and cesarean section can affect fertility.
10. Age: Both male and female age can impact fertility, with a decline in fertility beginning in the mid-30s and a significant decline after age 40.

It's important to note that many of these factors can be treated with medical interventions or lifestyle changes, so it's important to speak with a healthcare provider if you are experiencing difficulty getting pregnant.

The word "myxedema" comes from the Greek words "myxo," meaning "mucus," and "едема," meaning "swelling." This is because the nodules that form in patients with myxedema are typically filled with a thick, mucous-like substance.

Myxedema can affect various parts of the body, including the skin, subcutaneous tissues, and organs. The condition is usually diagnosed through a combination of physical examination, imaging studies such as ultrasound or MRI, and biopsy. Treatment for myxedema typically involves addressing the underlying cause, such as hypothyroidism, and managing any symptoms that arise. In some cases, surgery may be necessary to remove the nodules.

There are several types of gonadal disorders, including:

1. Hypogonadism: This is a condition in which the gonads do not produce enough sex hormones, leading to symptoms such as low libido, erectile dysfunction, and infertility.
2. Hypergonadism: This is a condition in which the gonads produce too much of one or both of the sex hormones, leading to symptoms such as excessive hair growth, acne, and irregular menstrual cycles.
3. Ovarian disorders: These include conditions such as polycystic ovary syndrome (PCOS), which can cause irregular menstrual cycles, cysts on the ovaries, and infertility. Other ovarian disorders include endometriosis and pelvic inflammatory disease.
4. Testicular disorders: These include conditions such as testicular torsion, which is a twisting of the testicle that can cut off blood flow and cause damage to the testicle, and varicocele, which is a swelling of the veins in the scrotum.
5. Gonadal dysgenesis: This is a condition in which the gonads do not develop properly, leading to infertility, ambiguous genitalia, and other symptoms.
6. Premature ovarian failure: This is a condition in which the ovaries stop functioning before the age of 40, leading to premature menopause and infertility.
7. Primary ovarian insufficiency: This is a condition in which the ovaries stop functioning before the age of 40, leading to premature menopause and infertility.
8. Ovary tumors: These are abnormal growths on the ovary that can cause symptoms such as pelvic pain, irregular menstrual cycles, and infertility.
9. Testicular tumors: These are abnormal growths on the testicle that can cause symptoms such as testicular pain, swelling, and infertility.
10. Epididymitis: This is an inflammation of the epididymis, a tube that runs along the back of the testicle and stores sperm. It can cause symptoms such as scrotal pain, swelling, and fever.
11. Orchitis: This is an inflammation of the testicle that can be caused by a virus or bacteria. It can cause symptoms such as scrotal pain, swelling, and fever.
12. Proctitis: This is an inflammation of the rectum and anus that can be caused by a viral or bacterial infection. It can cause symptoms such as rectal pain, bleeding, and discharge.
13. Rectocele: This is a bulge of the rectum into the vagina that can cause symptoms such as rectal pressure, pain during sex, and difficulty with bowel movements.
14. Cystoceles: These are bulges of the bladder into the vagina that can cause symptoms such as bladder pressure, pain during sex, and difficulty with urination.
15. Uterine prolapse: This is a condition in which the uterus drops down into the vagina and can cause symptoms such as vaginal bulging, pain during sex, and difficulty with bowel movements.

It's important to note that this is not an exhaustive list and there may be other causes of pelvic pain. If you are experiencing persistent or severe pelvic pain, it's important to see a healthcare provider for a proper evaluation and diagnosis.

The symptoms of Kallmann syndrome can vary in severity and may include:

1. Delayed or absent puberty
2. Infertility or azoospermia (absence of sperm) in males
3. Ovarian dysgenesis or premature ovarian failure in females
4. Hypogonadism (low levels of sex hormones)
5. Short stature and growth hormone deficiency
6. Sense of smell impairment or anosmia (absence of sense of smell)
7. Other associated symptoms such as craniofacial abnormalities, hearing loss, and developmental delays.

Kallmann syndrome is diagnosed through a combination of clinical evaluation, laboratory tests, and imaging studies. Treatment options for Kallmann syndrome are limited and may include hormone replacement therapy, growth hormone therapy, and assisted reproductive technologies (ART) such as in vitro fertilization (IVF).

The prognosis for Kallmann syndrome varies depending on the severity of the symptoms and the presence of any associated conditions. With appropriate treatment, individuals with Kallmann syndrome can lead fulfilling lives, but they may require ongoing medical care and monitoring throughout their lives.

The exact cause of ductal carcinoma is unknown, but certain risk factors such as family history, genetics, hormone replacement therapy, obesity, and delayed childbearing have been linked to its development. Early detection through mammography and breast self-examination can improve survival rates, which are generally high for women diagnosed with this type of cancer if caught early. Treatment typically involves surgery to remove the tumor (lumpectomy or mastectomy), followed by radiation therapy and/or chemotherapy.

The symptoms of choriocarcinoma can vary depending on the location and size of the tumor, but they may include:

* Abnormal vaginal bleeding
* Pelvic pain
* Abdominal pain
* Weakness and fatigue
* Shortness of breath
* Nausea and vomiting

If choriocarcinoma is suspected, a variety of tests may be performed to confirm the diagnosis. These may include:

* Ultrasound: This imaging test uses high-frequency sound waves to create pictures of the uterus and ovaries. It can help doctors identify any abnormal growths or tumors in the area.
* Hysteroscopy: This procedure involves inserting a thin, lighted tube through the cervix to visualize the inside of the uterus. Doctors may use hysteroscopy to collect samples of tissue for testing.
* Laparoscopy: This procedure involves making small incisions in the abdomen and using a thin, lighted tube to visualize the inside of the pelvis. Doctors may use laparoscopy to collect samples of tissue for testing or to remove any tumors that are found.
* Biopsy: In this test, doctors take a small sample of tissue from the uterus and examine it under a microscope for cancer cells.

If choriocarcinoma is confirmed, treatment may involve a combination of surgery, chemotherapy, and radiation therapy. The specific treatment plan will depend on the stage and location of the cancer, as well as the patient's overall health.

Prognosis for choriocarcinoma varies depending on the stage of the cancer when it is diagnosed. In general, the prognosis is good if the cancer is caught early and treated promptly. However, if the cancer has spread to other parts of the body (metastasized), the prognosis may be poorer.

It's important for women who have had a molar pregnancy or choriocarcinoma to follow up with their healthcare provider regularly to ensure that any remaining tissue is removed and to monitor for any signs of recurrence.

ROD can lead to a range of symptoms, including:

* Weakened bones and increased risk of fractures
* Tooth decay and gum disease
* Rickets-like symptoms in children
* Osteoporosis
* Difficulty healing from injuries or surgery

The condition is typically diagnosed through a combination of physical examination, laboratory tests (such as blood and urine tests), and imaging studies (such as X-rays or bone density scans).

Treatment for ROD typically involves managing the underlying kidney disease, correcting any nutritional imbalances, and implementing measures to strengthen bones. This may include:

* Medications to lower phosphate levels and increase calcium absorption
* Dietary modifications to reduce phosphate intake and increase calcium intake
* Vitamin D and calcium supplements
* Regular exercise and weight-bearing activities to promote bone strength

In severe cases of ROD, surgical interventions may be necessary, such as bone transplantation or the use of bone-forming medications.

ROD is a serious complication of CKD that can significantly impact quality of life and increase the risk of mortality. Early detection and management are essential to prevent or delay the progression of this condition.

Also known as: Menstrual Disorders, Menstrual Abnormalities, Dysmenorrhea, Amenorrhea, Oligomenorrhea, Polymenorrhea.

Starvation is a condition where an individual's body does not receive enough nutrients to maintain proper bodily functions and growth. It can be caused by a lack of access to food, poverty, poor nutrition, or other factors that prevent the intake of sufficient calories and essential nutrients. Starvation can lead to severe health consequences, including weight loss, weakness, fatigue, and even death.

Types of Starvation:

There are several types of starvation, each with different causes and effects. These include:

1. Acute starvation: This occurs when an individual suddenly stops eating or has a limited access to food for a short period of time.
2. Chronic starvation: This occurs when an individual consistently does not consume enough calories and nutrients over a longer period of time, leading to gradual weight loss and other health problems.
3. Malnutrition starvation: This occurs when an individual's diet is deficient in essential nutrients, leading to malnutrition and other health problems.
4. Marasmus: This is a severe form of starvation that occurs in children, characterized by extreme weight loss, weakness, and wasting of muscles and organs.
5. Kwashiorkor: This is a form of malnutrition caused by a diet lacking in protein, leading to edema, diarrhea, and other health problems.

Effects of Starvation on the Body:

Starvation can have severe effects on the body, including:

1. Weight loss: Starvation causes weight loss, which can lead to a decrease in muscle mass and a loss of essential nutrients.
2. Fatigue: Starvation can cause fatigue, weakness, and a lack of energy, making it difficult to perform daily activities.
3. Weakened immune system: Starvation can weaken the immune system, making an individual more susceptible to illnesses and infections.
4. Nutrient deficiencies: Starvation can lead to a deficiency of essential nutrients, including vitamins and minerals, which can cause a range of health problems.
5. Increased risk of disease: Starvation can increase the risk of diseases such as tuberculosis, pellagra, and other infections.
6. Mental health issues: Starvation can lead to mental health issues such as depression, anxiety, and irritability.
7. Reproductive problems: Starvation can cause reproductive problems, including infertility and miscarriage.
8. Hair loss: Starvation can cause hair loss, which can be a sign of malnutrition.
9. Skin problems: Starvation can cause skin problems, such as dryness, irritation, and infections.
10. Increased risk of death: Starvation can lead to increased risk of death, especially in children and the elderly.

It is important to note that these effects can be reversed with proper nutrition and care. If you or someone you know is experiencing starvation, it is essential to seek medical attention immediately.

Types of Ovarian Cysts:

1. Functional cysts: These cysts form during the menstrual cycle and are usually small and disappear on their own within a few days or weeks.
2. Follicular cysts: These cysts form when a follicle (a tiny sac containing an egg) does not release an egg and instead fills with fluid.
3. Corpus luteum cysts: These cysts form when the corpus luteum (the sac that holds an egg after it's released from the ovary) does not dissolve after pregnancy or does not produce hormones properly.
4. Endometrioid cysts: These cysts are formed when endometrial tissue (tissue that lines the uterus) grows outside of the uterus and forms a cyst.
5. Cystadenomas: These cysts are benign tumors that grow on the surface of an ovary or inside an ovary. They can be filled with a clear liquid or a thick, sticky substance.
6. Dermoid cysts: These cysts are formed when cells from the skin or other organs grow inside an ovary. They can contain hair follicles, sweat glands, and other tissues.

Symptoms of Ovarian Cysts:

1. Pelvic pain or cramping
2. Bloating or discomfort in the abdomen
3. Heavy or irregular menstrual bleeding
4. Pain during sex
5. Frequent urination or difficulty emptying the bladder
6. Abnormal vaginal bleeding or spotting

Diagnosis and Treatment of Ovarian Cysts:

1. Pelvic examination: A doctor will check for any abnormalities in the reproductive organs.
2. Ultrasound: An ultrasound can help identify the presence of a cyst and determine its size, location, and composition.
3. Blood tests: Blood tests can be used to check hormone levels and rule out other conditions that may cause similar symptoms.
4. Laparoscopy: A laparoscope (a thin tube with a camera and light) is inserted through a small incision in the abdomen to visualize the ovaries and remove any cysts.
5. Surgical removal of cysts: Cysts can be removed by surgery, either through laparoscopy or open surgery.
6. Medications: Hormonal medications may be prescribed to shrink the cyst and alleviate symptoms.

It is important to note that not all ovarian cysts cause symptoms, and some may go away on their own without treatment. However, if you experience any of the symptoms mentioned above or have concerns about an ovarian cyst, it is essential to consult a healthcare provider for proper diagnosis and treatment.

Causes of Premature Menopause:

1. Genetic factors: Women with a family history of premature menopause are more likely to experience it themselves.
2. Autoimmune disorders: Conditions such as thyroiditis, type 1 diabetes, and lupus can increase the risk of premature menopause.
3. Chemotherapy and radiation therapy: These cancer treatments can damage the ovaries and cause premature menopause.
4. Surgery: Removal of the ovaries or hysterectomy (removal of the uterus) can cause premature menopause.
5. Premature birth: Babies born prematurely are at a higher risk of developing premature menopause later in life.
6. Ovarian torsion: This is a rare condition where the ovary becomes twisted, cutting off blood flow and causing premature menopause.
7. Endometriosis: This condition can cause inflammation of the ovaries, leading to premature menopause.
8. Pelvic adhesions: Scar tissue in the pelvis can cause the ovaries to become damaged, leading to premature menopause.
9. Radiation exposure: Exposure to high levels of radiation, such as during a nuclear accident, can damage the ovaries and cause premature menopause.
10. Tobacco smoke: Exposure to secondhand smoke can increase the risk of premature menopause.

Symptoms of Premature Menopause:

1. Amenorrhea (absence of periods)
2. Infertility
3. Hot flashes and night sweats
4. Vaginal dryness and pain during sex
5. Mood changes, such as anxiety and depression
6. Sleep disturbances
7. Weight gain and fatigue
8. Memory problems and difficulty concentrating
9. Thinning hair and skin changes
10. Increased risk of osteoporosis and heart disease.

Diagnosis and Treatment:

1. Blood tests to check for hormone levels and follicle-stimulating hormone (FSH) levels.
2. Ultrasound to check for ovary size and egg quantity.
3. Hysterosalpingography (HSG) or laparoscopy to check for blockages in the reproductive tract.
4. Genetic testing to identify genetic mutations that may be causing premature menopause.
5. Hormone replacement therapy (HRT) to relieve symptoms and prevent bone loss.
6. Medications to treat hot flashes and sleep disturbances.
7. Lifestyle changes, such as avoiding smoking, alcohol, and caffeine, and exercising regularly.
8. Infertility treatment, such as in vitro fertilization (IVF), if desired.
9. Management of related health risks, such as osteoporosis and heart disease prevention.

Prognosis:
The prognosis for premature menopause is generally good, but it can be challenging to adjust to the changes that come with it. Women who experience premature menopause may need to make significant lifestyle changes to manage symptoms and prevent health risks. However, many women are able to lead fulfilling lives and have successful pregnancies with the help of medical treatment and lifestyle modifications.

Infantile spasms typically occur in children under the age of 2, with the peak incidence between 6-12 months. They are more common in boys than girls and can be associated with other conditions such as fragile X syndrome, tuberous sclerosis, and other genetic disorders.

The exact cause of infantile spasms is not fully understood, but they are believed to be related to abnormal electrical activity in the brain. Treatment options for infantile spasms include anticonvulsant medications such as adrenocorticotropic hormone (ACTH) and vigabatrin, as well as surgical interventions in some cases.

It is important to seek medical attention if your child exhibits signs of infantile spasms, as early diagnosis and treatment can improve outcomes and reduce the risk of long-term complications such as developmental delays and intellectual disability.

Anorexia Nervosa can be further divided into two subtypes:

1. Restrictive Type: This type of anorexia is characterized by restrictive eating patterns, such as limiting food intake and avoiding certain types of food. People with this type may have a fear of gaining weight or becoming fat.
2. Binge/Purge Type: This type of anorexia is characterized by episodes of binge eating followed by purging behaviors, such as vomiting, using laxatives, or exercising excessively. People with this type may feel a loss of control during binge episodes and may experience guilt or shame afterward.

Symptoms of Anorexia Nervosa can include:

* Restrictive eating habits
* Obsession with weight loss or body image
* Denial of hunger or fatigue
* Excessive exercise
* Difficulty maintaining a healthy weight
* Osteoporosis or other medical complications

Treatment for Anorexia Nervosa typically involves a combination of psychotherapy, nutrition counseling, and medication. Cognitive-behavioral therapy (CBT) is a common form of psychotherapy used to help individuals with anorexia nervosa change their negative thought patterns and behaviors related to food and body image. Family-based therapy can also be effective in treating adolescents with anorexia nervosa.

It is important to note that Anorexia Nervosa is a serious mental health condition that can have life-threatening consequences if left untreated. If you or someone you know is struggling with anorexia, it is important to seek professional help as soon as possible. With appropriate treatment and support, individuals with anorexia nervosa can recover and lead a healthy, fulfilling life.

Chromophobe adenomas are relatively rare, accounting for only about 1-3% of all colorectal adenomas and 5-10% of all pancreatic adenomas. They tend to affect younger patients (most commonly in their 4th or 5th decade of life) and have a slightly higher male predilection.

The clinical presentation and biological behavior of chromophobe adenomas are distinct from those of other types of adenomas, such as tubulopapillary adenomas or villous adenomas. In general, chromophobe adenomas tend to grow more slowly and have a lower risk of developing into cancer than other types of adenomas. However, they can still cause symptoms such as abdominal pain, bleeding, or obstruction, and may require surgical resection if they become large enough.

The exact causes of chromophobe adenoma are not well understood, but genetic mutations and environmental factors are thought to play a role. These tumors often have a characteristic histological appearance, with cells that are arranged in a glandular or acinar pattern and lack any detectable pigmentation.

There is ongoing research into the molecular mechanisms underlying chromophobe adenoma development and progression, as well as the clinical features and outcomes of patients with this condition.

Some common types of lactation disorders include:

1. Difficulty initiating milk flow (engorgement)
2. Inconsistent milk supply
3. Painful breastfeeding or nipple soreness
4. Mastitis (breast infection)
5. Plugged ducts or breast engorgement
6. Breastfeeding jaundice
7. Thrush (a fungal infection of the mouth and throat)
8. Galactorrhea (excessive milk production)
9. Breast abscesses
10. Mammary duct ectasia (abnormalities in the milk ducts).

Lactation disorders can be diagnosed through physical examination, medical history, and additional tests such as nipple aspiration or ductal lavage. Treatment options vary depending on the specific disorder and may include medications, breastfeeding techniques, or in some cases, surgical intervention.

It is important for breastfeeding mothers to seek professional help if they experience any lactation disorders, as early diagnosis and treatment can help resolve issues quickly and ensure a healthy milk supply for their baby.

1. Coronary artery disease: The narrowing or blockage of the coronary arteries, which supply blood to the heart.
2. Heart failure: A condition in which the heart is unable to pump enough blood to meet the body's needs.
3. Arrhythmias: Abnormal heart rhythms that can be too fast, too slow, or irregular.
4. Heart valve disease: Problems with the heart valves that control blood flow through the heart.
5. Heart muscle disease (cardiomyopathy): Disease of the heart muscle that can lead to heart failure.
6. Congenital heart disease: Defects in the heart's structure and function that are present at birth.
7. Peripheral artery disease: The narrowing or blockage of blood vessels that supply oxygen and nutrients to the arms, legs, and other organs.
8. Deep vein thrombosis (DVT): A blood clot that forms in a deep vein, usually in the leg.
9. Pulmonary embolism: A blockage in one of the arteries in the lungs, which can be caused by a blood clot or other debris.
10. Stroke: A condition in which there is a lack of oxygen to the brain due to a blockage or rupture of blood vessels.

Benign ovarian neoplasms include:

1. Serous cystadenoma: A fluid-filled sac that develops on the surface of the ovary.
2. Mucinous cystadenoma: A tumor that is filled with mucin, a type of protein.
3. Endometrioid tumors: Tumors that are similar to endometrial tissue (the lining of the uterus).
4. Theca cell tumors: Tumors that develop in the supportive tissue of the ovary called theca cells.

Malignant ovarian neoplasms include:

1. Epithelial ovarian cancer (EOC): The most common type of ovarian cancer, which arises from the surface epithelium of the ovary.
2. Germ cell tumors: Tumors that develop from germ cells, which are the cells that give rise to eggs.
3. Stromal sarcomas: Tumors that develop in the supportive tissue of the ovary.

Ovarian neoplasms can cause symptoms such as pelvic pain, abnormal bleeding, and abdominal swelling. They can also be detected through pelvic examination, imaging tests such as ultrasound and CT scan, and biopsy. Treatment options for ovarian neoplasms depend on the type, stage, and location of the tumor, and may include surgery, chemotherapy, and radiation therapy.

Examples of syndromes include:

1. Down syndrome: A genetic disorder caused by an extra copy of chromosome 21 that affects intellectual and physical development.
2. Turner syndrome: A genetic disorder caused by a missing or partially deleted X chromosome that affects physical growth and development in females.
3. Marfan syndrome: A genetic disorder affecting the body's connective tissue, causing tall stature, long limbs, and cardiovascular problems.
4. Alzheimer's disease: A neurodegenerative disorder characterized by memory loss, confusion, and changes in personality and behavior.
5. Parkinson's disease: A neurological disorder characterized by tremors, rigidity, and difficulty with movement.
6. Klinefelter syndrome: A genetic disorder caused by an extra X chromosome in males, leading to infertility and other physical characteristics.
7. Williams syndrome: A rare genetic disorder caused by a deletion of genetic material on chromosome 7, characterized by cardiovascular problems, developmental delays, and a distinctive facial appearance.
8. Fragile X syndrome: The most common form of inherited intellectual disability, caused by an expansion of a specific gene on the X chromosome.
9. Prader-Willi syndrome: A genetic disorder caused by a defect in the hypothalamus, leading to problems with appetite regulation and obesity.
10. Sjogren's syndrome: An autoimmune disorder that affects the glands that produce tears and saliva, causing dry eyes and mouth.

Syndromes can be diagnosed through a combination of physical examination, medical history, laboratory tests, and imaging studies. Treatment for a syndrome depends on the underlying cause and the specific symptoms and signs presented by the patient.

Also called: adenocarcinoma, acidophilic gastric carcinoma

There are several types of hypertrophy, including:

1. Muscle hypertrophy: The enlargement of muscle fibers due to increased protein synthesis and cell growth, often seen in individuals who engage in resistance training exercises.
2. Cardiac hypertrophy: The enlargement of the heart due to an increase in cardiac workload, often seen in individuals with high blood pressure or other cardiovascular conditions.
3. Adipose tissue hypertrophy: The excessive growth of fat cells, often seen in individuals who are obese or have insulin resistance.
4. Neurological hypertrophy: The enlargement of neural structures such as brain or spinal cord due to an increase in the number of neurons or glial cells, often seen in individuals with neurodegenerative diseases such as Alzheimer's or Parkinson's.
5. Hepatic hypertrophy: The enlargement of the liver due to an increase in the number of liver cells, often seen in individuals with liver disease or cirrhosis.
6. Renal hypertrophy: The enlargement of the kidneys due to an increase in blood flow and filtration, often seen in individuals with kidney disease or hypertension.
7. Ovarian hypertrophy: The enlargement of the ovaries due to an increase in the number of follicles or hormonal imbalances, often seen in individuals with polycystic ovary syndrome (PCOS).

Hypertrophy can be diagnosed through various medical tests such as imaging studies (e.g., CT scans, MRI), biopsies, and blood tests. Treatment options for hypertrophy depend on the underlying cause and may include medications, lifestyle changes, and surgery.

In conclusion, hypertrophy is a growth or enlargement of cells, tissues, or organs in response to an excessive stimulus. It can occur in various parts of the body, including the brain, liver, kidneys, heart, muscles, and ovaries. Understanding the underlying causes and diagnosis of hypertrophy is crucial for effective treatment and management of related health conditions.

The causes of pituitary ACTH hypersecretion can be divided into two main categories:

1. Pituitary tumors or adenomas: These are abnormal growths in the pituitary gland that can cause excessive production and release of ACTH. The most common type of pituitary tumor responsible for ACTH hypersecretion is a corticotroph adenoma.
2. Secondary causes: These include conditions that damage or disrupt the normal functioning of the pituitary gland, such as traumatic brain injury, radiation therapy, or infections like meningitis or hypopituitarism.

Symptoms of pituitary ACTH hypersecretion can vary depending on the severity of the condition and the duration of excessive ACTH production. Common symptoms include:

* Weight gain, particularly in the face, neck, and abdomen
* High blood pressure
* Easy bruising or bleeding
* Muscle weakness
* Fatigue
* Mood changes, such as anxiety or depression
* Insomnia
* Increased appetite

If left untreated, pituitary ACTH hypersecretion can lead to serious complications, such as:

* Cushing's syndrome: This is a condition caused by excessive levels of cortisol in the body, which can damage various organs and systems, including the skin, bones, and cardiovascular system.
* Adrenal insufficiency: Prolonged exposure to high levels of ACTH can lead to adrenal fatigue, making the adrenal glands less effective in producing steroid hormones.

Diagnosis of pituitary ACTH hypersecretion typically involves a combination of physical examination, laboratory tests, and imaging studies. Treatment options vary depending on the underlying cause of the condition and can include medications to reduce cortisol levels, surgery to remove a tumor or other abnormality in the pituitary gland, or radiation therapy to destroy affected cells.

In conclusion, pituitary ACTH hypersecretion is a rare but potentially serious condition that can lead to Cushing's syndrome and other complications if left untreated. Prompt diagnosis and appropriate treatment are essential to prevent long-term damage and improve quality of life for individuals affected by this condition.

There are several key features of inflammation:

1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.

Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.

There are several types of inflammation, including:

1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.

There are several ways to reduce inflammation, including:

1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.

It's important to note that chronic inflammation can lead to a range of health problems, including:

1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.

Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.

Carcinoma, lobular (also known as lobular carcinoma in situ or LCIS) is a type of cancer that originates in the milk-producing glands (lobules) of the breast. It is a precancerous condition that can progress to invasive breast cancer if left untreated.

Precancerous changes occur within the lobules, leading to an abnormal growth of cells that can eventually break through the basement membrane and invade surrounding tissues. The risk of developing invasive breast cancer is increased in individuals with LCIS, especially if there are multiple areas of involvement.

Diagnosis is typically made through a combination of clinical breast examination, mammography, and histopathological analysis of a biopsy sample. Treatment options for LCIS include close surveillance, surgery, or radiation therapy, depending on the extent of the condition and the individual patient's risk factors.

Medical Specialty:

The medical specialty that deals with carcinoma, lobular is breast surgical oncology. Breast surgical oncologists are trained to diagnose and treat all types of breast cancer, including ductal and lobular carcinomas. They work in collaboration with other healthcare professionals, such as radiation oncologists and medical oncologists, to develop a comprehensive treatment plan for each patient.

Other relevant information:

* Lobular carcinoma in situ (LCIS) is a precancerous condition that affects the milk-producing glands (lobules) of the breast.
* It is estimated that 10-15% of all breast cancers are derived from LCIS.
* Women with a history of LCIS have a higher risk of developing invasive breast cancer in the future.
* The exact cause of LCIS is not fully understood, but it is thought to be linked to hormonal and genetic factors.

Open fracture: The bone breaks through the skin, exposing the bone to the outside environment.

Closed fracture: The bone breaks, but does not penetrate the skin.

Comminuted fracture: The bone is broken into many pieces.

Hairline fracture: A thin crack in the bone that does not fully break it.

Non-displaced fracture: The bone is broken, but remains in its normal position.

Displaced fracture: The bone is broken and out of its normal position.

Stress fracture: A small crack in the bone caused by repetitive stress or overuse.

The causes of virilism can be due to various factors including:

1. Congenital adrenal hyperplasia (CAH): A genetic disorder that affects the production of hormones by the adrenal glands, leading to excessive levels of androgens such as testosterone.
2. Androgen insensitivity syndrome (AIS): A condition where the body is unable to respond to androgens, leading to virilization.
3. 5-alpha-reductase deficiency: A rare genetic disorder that affects the production of the enzyme 5-alpha-reductase, which is important for the development of male characteristics.
4. Genetic mutations: Some individuals may have genetic mutations that lead to the overproduction of androgens or the underproduction of anti-androgens.
5. Hormonal imbalances: Imbalances in hormone levels, such as high testosterone and low estrogen, can also cause virilism.

Virilism can be diagnosed through a combination of physical examination, medical history, and laboratory tests such as hormone level measurements. Treatment options for virilism depend on the underlying cause and may include hormone replacement therapy, surgery, or psychological counseling.

In summary, virilism is a condition characterized by the excessive development of male characteristics in individuals who are not biologically male, and it can be caused by various genetic or hormonal factors. It is important to seek medical attention if symptoms persist or worsen over time, as early diagnosis and treatment can improve outcomes.

There are several types of osteosarcomas, including:

1. High-grade osteosarcoma: This is the most common type of osteosarcoma and tends to grow quickly.
2. Low-grade osteosarcoma: This type of osteosarcoma grows more slowly than high-grade osteosarcoma.
3. Chondrosarcoma: This is a type of osteosarcoma that arises in the cartilage cells of the bone.
4. Ewing's family of tumors: These are rare types of osteosarcoma that can occur in any bone of the body.

The exact cause of osteosarcoma is not known, but certain risk factors may increase the likelihood of developing the disease. These include:

1. Previous radiation exposure
2. Paget's disease of bone
3. Li-Fraumeni syndrome (a genetic disorder that increases the risk of certain types of cancer)
4. Familial retinoblastoma (a rare inherited condition)
5. Exposure to certain chemicals, such as herbicides and industrial chemicals.

Symptoms of osteosarcoma may include:

1. Pain in the affected bone, which may be worse at night or with activity
2. Swelling and redness around the affected area
3. Limited mobility or stiffness in the affected limb
4. A visible lump or mass on the affected bone
5. Fractures or breaks in the affected bone

If osteosarcoma is suspected, a doctor may perform several tests to confirm the diagnosis and determine the extent of the disease. These may include:

1. Imaging studies, such as X-rays, CT scans, or MRI scans
2. Biopsy, in which a sample of tissue is removed from the affected bone and examined under a microscope for cancer cells
3. Blood tests to check for elevated levels of certain enzymes that are produced by osteosarcoma cells
4. Bone scans to look for areas of increased activity or metabolism in the bones.

Galactorrhea can cause embarrassment and distress for men who experience it, and it may also be a sign of an underlying medical issue that needs to be addressed. Treatment options for galactorrhea depend on the underlying cause and may include hormone therapy, medications to reduce prolactin levels, or surgery to remove a pituitary tumor.

It is important for men who experience galactorrhea to seek medical attention to determine the underlying cause and receive appropriate treatment.

Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.

Types of Neoplasms

There are many different types of neoplasms, including:

1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.

Causes and Risk Factors of Neoplasms

The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:

1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.

Signs and Symptoms of Neoplasms

The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:

1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.

Diagnosis and Treatment of Neoplasms

The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.

The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:

1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.

Prevention of Neoplasms

While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:

1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.

It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.

Symptoms of ectopic ACTH syndrome can vary depending on the location and size of the tumor, but may include:

* Weight gain and obesity
* High blood pressure
* Diabetes
* Cardiovascular problems such as heart disease and stroke
* Fatigue and weakness
* Muscle wasting and osteoporosis
* Sexual dysfunction
* Menstrual irregularities in women
* Breathing difficulties due to a large tumor pressing on the lungs or airways.

Ectopic ACTH syndrome is usually diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood cortisol levels and imaging studies (e.g., CT scans, MRI). Treatment typically involves surgery to remove the tumor, as well as medications to control cortisol levels and manage symptoms. Radiation therapy may also be used in some cases.

Ectopic ACTH syndrome is a rare condition that can have serious consequences if left untreated. Early diagnosis and treatment are essential to prevent long-term complications and improve quality of life.

Some common types of adrenal gland neoplasms include:

1. Adrenocortical carcinoma: A rare and aggressive malignancy that arises in the outer layer of the adrenal cortex.
2. Adrenocortical adenoma: A benign tumor that arises in the outer layer of the adrenal cortex.
3. Pheochromocytoma: A rare tumor that arises in the inner part of the adrenal medulla and produces excessive amounts of hormones such as epinephrine and norepinephrine.
4. Paraganglioma: A rare tumor that arises in the sympathetic nervous system, often near the adrenal glands.

Symptoms of adrenal gland neoplasms can include:

* Weight gain or weight loss
* High blood pressure
* Fatigue
* Abdominal pain
* Headache
* Nausea and vomiting
* Palpitations

Diagnosis of adrenal gland neoplasms typically involves imaging tests such as computed tomography (CT) scans, magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, as well as hormone level assessments. Treatment options vary depending on the type and size of the tumor, and may include surgery, chemotherapy, and hormone therapy.

Anorexia can have serious physical and emotional consequences, including:

* Malnutrition and nutrient deficiencies
* Osteoporosis and bone loss
* Heart problems and low blood pressure
* Hormonal imbalances
* Depression, anxiety, and other mood disorders
* Social isolation and difficulties in relationships

There are two main types of anorexia:

* Restrictive type: Characterized by restrictive eating habits and a fear of gaining weight.
* Binge/purge type: Characterized by episodes of binge eating followed by purging behaviors, such as vomiting or using laxatives.

Treatment for anorexia typically involves a combination of psychotherapy, nutrition counseling, and medication. Family-based therapy, cognitive-behavioral therapy, and interpersonal psychotherapy are some of the common approaches used to treat anorexia. Medications such as antidepressants and anti-anxiety drugs may also be prescribed to help manage symptoms.

In conclusion, anorexia is a complex and serious eating disorder that can have long-lasting physical and emotional consequences. It is important to seek professional help if symptoms persist or worsen over time. With appropriate treatment, individuals with anorexia can recover and lead a healthy and fulfilling life.

The term "eunuch" originally referred to men who were castrated or had their testicles removed for various reasons, such as to serve in a royal court or to prevent them from reproducing. In modern medical terms, eunuchism is used to describe the condition of being castrated or having missing testes, regardless of the reason or context.

Eunuchism can occur due to various causes, such as:

1. Castration: This is the surgical removal of one or both testes, usually performed for medical reasons, such as to treat prostate cancer or to reduce sex drive in individuals with certain medical conditions.
2. Congenital absence: In some cases, individuals may be born without one or both testes due to genetic or developmental abnormalities.
3. Trauma: Testicular injury or trauma can result in the loss of one or both testes.
4. Cancer: Testicular cancer can sometimes require the removal of one or both testes.
5. Hormonal disorders: Certain hormonal disorders, such as hypogonadism, can result in the absence or underdevelopment of one or both testes.

The physical and hormonal changes resulting from eunuchism can include:

1. Infertility: Without testes, individuals cannot produce sperm and are therefore unable to father children.
2. Low testosterone levels: The absence of testes leads to decreased production of testosterone, which can result in a range of symptoms, including low libido, erectile dysfunction, and osteoporosis.
3. Changes in body hair: Eunuchs may experience less body hair growth due to the lack of testosterone.
4. Reduced muscle mass: Testosterone plays a role in muscle development and maintenance, so eunuchs may experience reduced muscle mass and strength.
5. Increased risk of osteoporosis: Low testosterone levels can increase the risk of osteoporosis, particularly in older individuals.
6. Emotional changes: The physical changes resulting from eunuchism can also have emotional and psychological effects, including low self-esteem, depression, and anxiety.

It is important to note that not all individuals who undergo castration or hormonal therapy for medical reasons will experience these changes in the same way, and some may experience few or no noticeable physical changes at all. Additionally, many of these physical changes can be managed with hormone replacement therapy and other treatments.

Definition: Hyperphagia is a condition characterized by excessive hunger and overeating, often seen in individuals with certain medical or psychiatric conditions.

More Information

Hyperphagia can be caused by a variety of factors, including:

* Hormonal imbalances, such as low levels of leptin or high levels of ghrelin
* Certain medications, such as steroids and some antidepressants
* Medical conditions, such as diabetes, hypothyroidism, and polycystic ovary syndrome (PCOS)
* Psychiatric conditions, such as binge eating disorder and other eating disorders
* Sleep deprivation or disruptions in the body's circadian rhythms

Symptoms of hyperphagia may include:

* Increased hunger and desire to eat
* Overeating or consuming large amounts of food
* Difficulty controlling food intake
* Feeling anxious or irritable when unable to eat
* Weight gain or obesity

Treatment for hyperphagia typically involves addressing the underlying cause, such as hormonal imbalances or psychiatric conditions. This may involve medication, therapy, or lifestyle changes. In some cases, weight loss strategies and nutrition counseling may also be helpful.

It is important to note that hyperphagia can have serious health consequences, including obesity, type 2 diabetes, and other metabolic disorders. If you suspect you or someone you know may be experiencing hyperphagia, it is important to seek medical attention to determine the cause and develop an appropriate treatment plan.

Types of Adrenal Cortex Neoplasms:

1. Adrenocortical carcinoma (ACC): A rare and aggressive malignant tumor that originates in the adrenal cortex. It is often associated with virilization (excessive masculinization) in women.
2. Adrenocortical adenoma (ACA): A benign tumor that originates in the adrenal cortex. It is less common than ACC and may not cause any symptoms.
3. Pheochromocytoma: A rare tumor that originates in the adrenal medulla, which is the inner part of the adrenal gland. It can secrete excessive amounts of hormones that regulate blood pressure and heart rate.
4. Paraganglioma: A rare tumor that originates in the paraganglia, which are clusters of cells located near the adrenal glands. These tumors can produce excessive amounts of hormones and cause similar symptoms as pheochromocytoma.

Symptoms of Adrenal Cortex Neoplasms:

1. Virilization (excessive masculinization) in women, such as deepening of the voice, excessive body hair growth, and clitoral enlargement.
2. Headache, fatigue, and weight gain due to excessive production of steroid hormones.
3. High blood pressure and heart rate due to excessive production of catecholamines (hormones that regulate blood pressure and heart rate).
4. Abdominal pain, nausea, and vomiting due to the tumor's size and location.

Diagnosis of Adrenal Cortex Neoplasms:

1. Imaging tests such as CT scans or MRI to visualize the tumor and determine its size and location.
2. Laboratory tests to measure hormone levels in the blood, including cortisol, aldosterone, and catecholamines.
3. Biopsy to obtain a tissue sample for further examination under a microscope.

Treatment of Adrenal Cortex Neoplasms:

1. Surgery to remove the tumor, which is usually curative.
2. Medications to control symptoms such as high blood pressure and hormone levels.
3. Radiation therapy may be used in cases where surgery is not feasible or if there is a risk of recurrence.

Prognosis of Adrenal Cortex Neoplasms:

The prognosis for adrenal cortex neoplasms depends on the type and size of the tumor, as well as the extent of hormone production. In general, the prognosis is good for patients with benign tumors that are removed surgically. However, malignant tumors can have a poorer prognosis and may require additional treatments such as radiation therapy or chemotherapy.

Prevention of Adrenal Cortex Neoplasms:

There is no known prevention for adrenal cortex neoplasms, but early detection and treatment can improve outcomes. Regular monitoring of hormone levels and imaging tests can help detect tumors at an early stage.

Lifestyle Changes:

1. Reduce stress: High levels of cortisol can be caused by stress, so finding ways to manage stress can help prevent adrenal cortex neoplasms.
2. Maintain a healthy diet: Eating a balanced diet that includes plenty of fruits, vegetables, and whole grains can help support overall health and well-being.
3. Exercise regularly: Regular physical activity can help reduce stress and improve overall health.
4. Get enough sleep: Aim for 7-8 hours of sleep per night to help regulate hormone levels.
5. Limit caffeine and alcohol: Both substances can disrupt hormone levels and contribute to the development of adrenal cortex neoplasms.

Endometriosis can cause a range of symptoms, including:

* Painful periods (dysmenorrhea)
* Heavy menstrual bleeding
* Pelvic pain or cramping
* Infertility or difficulty getting pregnant
* Abnormal bleeding or spotting
* Bowel or urinary symptoms such as constipation, diarrhea, or painful urination during menstruation

The exact cause of endometriosis is not known, but it is thought to involve a combination of genetic, hormonal, and environmental factors. Some possible causes include:

* Retrograde menstruation: The backflow of endometrial tissue through the fallopian tubes into the pelvic cavity during menstruation
* Coelomic metaplasia: The transformation of cells that line the abdominal cavity (coelom) into endometrial cells
* Immunological factors: Abnormal immune responses that lead to the growth and accumulation of endometrial cells outside of the uterus
* Hormonal factors: Fluctuations in estrogen levels, which can stimulate the growth of endometrial cells
* Genetic factors: Inherited traits that increase the risk of developing endometriosis

There are several risk factors for developing endometriosis, including:

* Family history: A woman's risk increases if she has a mother, sister, or daughter with endometriosis
* Early onset of menstruation: Women who start menstruating at a younger age may be more likely to develop endometriosis
* Frequent or heavy menstrual bleeding: Women who experience heavy or prolonged menstrual bleeding may be more likely to develop endometriosis
* Polycystic ovary syndrome (PCOS): Women with PCOS are at higher risk for developing endometriosis
* Obesity: Being overweight or obese may increase the risk of developing endometriosis

There is no cure for endometriosis, but there are several treatment options available to manage symptoms and improve quality of life. These may include:

* Hormonal therapies: Medications that reduce estrogen levels or block the effects of estrogen on the endometrium can help manage symptoms such as pain and heavy bleeding
* Surgery: Laparoscopic surgery can be used to remove endometrial tissue and scar tissue, and improve fertility
* Alternative therapies: Acupuncture, herbal remedies, and other alternative therapies may help manage symptoms and improve quality of life

It's important for women with endometriosis to work closely with their healthcare provider to find the best treatment plan for their individual needs. With proper diagnosis and treatment, many women with endometriosis can go on to lead fulfilling lives.

OHSS typically occurs when too many eggs are stimulated to mature during ovulation, leading to an imbalance in hormone levels. The syndrome is more common in women who undergo IVF with high-dose fertility medications, multiple embryo transfer, or those with polycystic ovary syndrome (PCOS).

Symptoms of OHSS may include:

1. Enlarged ovaries that are painful to the touch
2. Abdominal bloating and discomfort
3. Pelvic pain
4. Nausea and vomiting
5. Diarrhea or constipation
6. Abnormal vaginal bleeding
7. Elevated hormone levels (estradiol and/or LH)

OHSS can be diagnosed through ultrasound and blood tests. Treatment options for OHSS include:

1. Cancellation of further fertility treatment until symptoms resolve
2. Medications to reduce hormone levels and inflammation
3. Ultrasound-guided aspiration of fluid from the ovaries
4. Hospitalization for monitoring and supportive care

Prevention is key, and fertility specialists take several measures to minimize the risk of OHSS, such as:

1. Monitoring hormone levels and ultrasound assessment of ovarian response during treatment
2. Adjusting medication dosages based on individual patient needs
3. Limited embryo transfer to reduce the risk of multiple pregnancies
4. Avoiding the use of high-dose stimulation protocols in women with PCOS or other risk factors

Early detection and proper management are crucial to prevent complications and ensure a successful outcome for fertility treatment. If you suspect you may have OHSS, it is essential to consult a fertility specialist immediately.

Adenocarcinoma is a term used to describe a variety of different types of cancer that arise in glandular tissue, including:

1. Colorectal adenocarcinoma (cancer of the colon or rectum)
2. Breast adenocarcinoma (cancer of the breast)
3. Prostate adenocarcinoma (cancer of the prostate gland)
4. Pancreatic adenocarcinoma (cancer of the pancreas)
5. Lung adenocarcinoma (cancer of the lung)
6. Thyroid adenocarcinoma (cancer of the thyroid gland)
7. Skin adenocarcinoma (cancer of the skin)

The symptoms of adenocarcinoma depend on the location of the cancer and can include:

1. Blood in the stool or urine
2. Abdominal pain or discomfort
3. Changes in bowel habits
4. Unusual vaginal bleeding (in the case of endometrial adenocarcinoma)
5. A lump or thickening in the breast or elsewhere
6. Weight loss
7. Fatigue
8. Coughing up blood (in the case of lung adenocarcinoma)

The diagnosis of adenocarcinoma is typically made through a combination of imaging tests, such as CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a sample of tissue from the affected area and examining it under a microscope for cancer cells.

Treatment options for adenocarcinoma depend on the location of the cancer and can include:

1. Surgery to remove the tumor
2. Chemotherapy, which involves using drugs to kill cancer cells
3. Radiation therapy, which involves using high-energy X-rays or other particles to kill cancer cells
4. Targeted therapy, which involves using drugs that target specific molecules on cancer cells to kill them
5. Immunotherapy, which involves using drugs that stimulate the immune system to fight cancer cells.

The prognosis for adenocarcinoma is generally good if the cancer is detected and treated early, but it can be more challenging to treat if the cancer has spread to other parts of the body.

In the medical field, the term is often used to describe various conditions that affect gender development or sexual differentiation in individuals with variations in sex chromosomes, hormones, or genitalia. Feminization can occur in individuals assigned male at birth but who exhibit female physical characteristics, such as those with congenital adrenal hyperplasia (CAH) or other intersex traits.

The term is also used to describe the effects of estrogen on the male body, particularly during puberty. For example, boys taking estrogen medication for hormone therapy may experience feminization of their physical features, such as breast tissue growth and a softer voice.

It's important to note that the term feminization is sometimes used in medical contexts to describe a process or outcome that is perceived as negative or undesirable, particularly when it comes to gender identity or expression. However, it's essential to recognize that all individuals, regardless of their gender identity or expression, deserve respect and support in their healthcare needs.

In summary, feminization within the medical field refers to a process or condition whereby male characteristics are acquired by an individual or group, often as a result of hormonal or genetic factors. The term is used to describe various conditions affecting gender development or sexual differentiation and the effects of estrogen on the male body. However, it's important to recognize that the term can be perceived as negative, and healthcare providers should approach patients with respect and sensitivity regardless of their gender identity or expression.

PWS is characterized by a range of physical, cognitive, and behavioral symptoms, including:

1. Delayed growth and development: Individuals with PWS often have slowed growth before birth and may be born with low birth weight. They may also experience delayed puberty and short stature compared to their peers.
2. Intellectual disability: Many individuals with PWS have intellectual disability, which can range from mild to severe.
3. Behavioral problems: PWS is often associated with behavioral challenges, such as attention deficit hyperactivity disorder (ADHD), anxiety, and obsessive-compulsive disorder (OCD).
4. Feeding and eating difficulties: Individuals with PWS may have difficulty feeding and swallowing, which can lead to nutritional deficiencies and other health problems. They may also experience a condition called "hyperphagia," which is characterized by excessive hunger and overeating.
5. Sleep disturbances: PWS is often associated with sleep disturbances, such as insomnia and restlessness.
6. Short stature: Individuals with PWS tend to be shorter than their peers, with an average adult height of around 4 feet 10 inches (147 cm).
7. Body composition: PWS is often characterized by a high percentage of body fat, which can increase the risk of obesity and other health problems.
8. Hormonal imbalances: PWS can disrupt the balance of hormones in the body, leading to issues such as hypogonadism (low testosterone levels) and hypothyroidism (underactive thyroid).
9. Dental problems: Individuals with PWS are at increased risk of dental problems, including tooth decay and gum disease.
10. Vision and hearing problems: Some individuals with PWS may experience vision and hearing problems, such as nearsightedness, farsightedness, and hearing loss.

It's important to note that every individual with PWS is unique, and not all will experience all of these symptoms. Additionally, the severity of the disorder can vary widely from person to person. With proper medical care and management, however, many individuals with PWS can lead fulfilling and productive lives.

Some of the symptoms of hirsutism include:

* Thick, dark hair on the face, chest, back, and buttocks
* Hair growth on the arms, legs, and other areas of the body
* Thinning or loss of hair on the head
* Acne and oily skin

Hirsutism can be caused by a variety of factors, including:

* Hormonal imbalances: Excessive levels of androgens, such as testosterone, can cause hirsutism.
* Genetics: Inheritance plays a role in the development of hirsutism.
* Medications: Certain medications, such as anabolic steroids and certain antidepressants, can cause hirsutism as a side effect.
* Other medical conditions: Polycystic ovary syndrome (PCOS), congenital adrenal hyperplasia (CAH), and other endocrine disorders can also cause hirsutism.

There are several treatment options for hirsutism, including:

* Medications such as anti-androgens and retinoids to reduce hair growth and improve skin texture
* Electrolysis and laser therapy to remove unwanted hair
* Hormonal therapies such as birth control pills and spironolactone to regulate hormone levels and reduce hair growth
* Plastic surgery to remove excess hair-bearing skin.

It is important for individuals with hirsutism to seek medical attention if they experience any of the following symptoms:

* Sudden or excessive hair growth
* Hair growth on the face, chest, back, or buttocks
* Thinning or loss of hair on the head
* Acne and oily skin.

Early diagnosis and treatment can help manage the symptoms of hirsutism and improve quality of life for individuals affected by this condition.

The symptoms of ESS can vary depending on the specific hormone deficiency present and may include:

1. Growth retardation in children
2. Short stature as an adult
3. Delayed puberty or irregular menstrual cycles in females
4. Hypothyroidism (low thyroid hormone levels)
5. Adrenal insufficiency (low cortisol levels)
6. Infertility or irregular menstrual cycles in females
7. Erectile dysfunction or decreased libido in males
8. Fatigue, weakness, and malaise
9. Headaches, vision problems, or other symptoms related to hormone deficiencies.

The exact cause of empty sella syndrome is not fully understood, but it is believed to be due to a combination of genetic and environmental factors. Some cases have been linked to a family history of the condition, while others may be caused by a tumor or other structural abnormality in the pituitary gland.

There is no specific treatment for empty sella syndrome, but hormone replacement therapy may be recommended to treat any underlying hormone deficiencies. In some cases, surgery may be necessary to remove a tumor or other structural abnormality in the pituitary gland. The prognosis for ESS varies depending on the specific cause of the condition and the presence of any underlying hormone deficiencies. With appropriate treatment, many individuals with ESS can lead normal lives, but some may experience ongoing symptoms or complications related to hormone deficiencies.

Carcinoid tumors are usually found in the appendix, small intestine, rectum, or other parts of the gastrointestinal tract. They can also occur in the lungs, pancreas, or other organs. These tumors tend to grow slowly and often do not cause any symptoms until they have grown quite large.

Carcinoid tumors are diagnosed through a combination of imaging tests such as CT scans, MRI scans, and endoscopies, along with a biopsy to confirm the presence of cancer cells. Treatment for carcinoid tumors depends on the location, size, and stage of the tumor, as well as the patient's overall health. Treatment options may include surgery, chemotherapy, radiation therapy, or a combination of these.

Some of the symptoms that may be associated with carcinoid tumors include:

* Flushing (redness and warmth of the skin)
* Wheezing
* Shortness of breath
* Abdominal pain
* Diarrhea
* Weight loss

Carcinoid tumors are relatively rare, accounting for only about 1% to 5% of all cancer cases. However, they tend to be more common in certain parts of the world, such as North America and Europe. The exact cause of carcinoid tumors is not known, but they are thought to be linked to genetic mutations that occur during fetal development.

Overall, while carcinoid tumors are rare and can be challenging to diagnose and treat, advances in medical technology and cancer research have improved the outlook for patients with these types of tumors. With early detection and appropriate treatment, many people with carcinoid tumors can achieve long-term survival and a good quality of life.

The exact cause of follicular cysts is not known, but they may be related to hormonal changes, genetic factors, or blockages within the hair follicle. Treatment options include observation, antibiotics, and surgical removal if the cyst becomes inflamed or infected.

A Follicular Cyst is a benign cystic lesion that forms in the scalp or face and typically arises from the hair follicle. They are usually small, soft to the touch, and painless unless they become inflamed or infected.

Follicular cysts are more common in women than men, and often appear during childhood or adolescence. Although their exact cause is unknown, they may be related to hormonal changes, genetic factors, or blockages within the hair follicle.

Small, soft, painless cysts that form on the scalp or face are usually Follicular Cysts, which are benign and do not produce any symptoms unless they become inflamed or infected. They appear more frequently in women than men and often develop during childhood or adolescence. Their exact cause is unknown but may be related to hormonal fluctuations, genetic factors, or blockages within the hair follicle.

Adenomas are typically benign (non-cancerous) growths, but they can sometimes become malignant (cancerous) over time if left untreated. Islet cell tumors are relatively rare, making up only about 5% of all pancreatic tumors. They can occur in anyone, regardless of age or gender, although they are most commonly diagnosed in adults between the ages of 40 and 60.

Symptoms of an adenoma, islet cell can vary depending on the size and location of the tumor, but they may include abdominal pain, weight loss, diabetes, and changes in bowel movements or urination patterns. Treatment options for an adenoma, islet cell depend on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.

In summary, an adenoma, islet cell is a rare type of cancer that develops in the cells of the pancreas, specifically in the islets of Langerhans. It can be benign or malignant, and symptoms can vary depending on the size and location of the tumor. Treatment options depend on the type and stage of the tumor.

There are several possible causes of oligospermia, including:

* Hormonal imbalances
* Varicocele (a swelling of the veins in the scrotum)
* Infections such as epididymitis or prostatitis
* Blockages such as a vasectomy or epididymal obstruction
* Certain medications such as anabolic steroids and chemotherapy drugs
* Genetic disorders
* Environmental factors such as exposure to toxins or radiation

Symptoms of oligospermia may include:

* Difficulty getting an erection
* Premature ejaculation
* Low sex drive
* Painful ejaculation

Diagnosis of oligospermia typically involves a physical exam, medical history, and semen analysis. Treatment will depend on the underlying cause of the condition, but may include medications to improve sperm count and quality, surgery to correct blockages or varicoceles, or assisted reproductive technologies such as in vitro fertilization (IVF).

It's important to note that a low sperm count does not necessarily mean a man is infertile. However, it can make it more difficult to conceive a child. With appropriate treatment and lifestyle changes, some men with oligospermia may be able to improve their fertility and have children.

Nodular goiter is often caused by an imbalance in thyroid hormone production, which can lead to the growth of abnormal cells within the gland. It can also be caused by inflammation or infection of the thyroid gland, as well as by inherited genetic conditions that affect the development of the gland.

Symptoms of nodular goiter can include:

* Enlargement of the neck and swelling in the throat
* Difficulty swallowing or breathing
* Hoarseness or voice changes
* Pain in the neck or throat
* Fatigue, weight gain, or cold intolerance (if hypothyroidism is present)
* Weight loss, nervousness, or heat intolerance (if hyperthyroidism is present)

Diagnosis of nodular goiter typically involves a combination of physical examination, imaging tests such as ultrasound or CT scans, and laboratory tests to evaluate thyroid hormone levels. Treatment depends on the underlying cause and severity of the condition and may include medication to regulate thyroid hormone production, surgery to remove part or all of the thyroid gland, or radioactive iodine therapy to destroy abnormal cells within the gland.

The term "Disorders of Sex Development" was introduced in the early 2000s as a more inclusive and neutral way to describe these conditions, replacing outdated and stigmatizing terms such as "intersex." DSD includes a wide range of conditions, some of which may be genetic in origin, while others may result from hormonal or environmental factors.

The diagnosis and management of DSD can be complex and require a multidisciplinary team of healthcare providers, including endocrinologists, geneticists, urologists, and psychologists. Treatment options may include hormone therapy, surgery, and counseling, and the goals of treatment are to alleviate symptoms, improve quality of life, and support the individual's self-identification and gender expression.

It is important to note that DSD is a medical term and does not have any implications for an individual's gender identity or expression. All individuals with DSD have the right to live as their authentic selves, regardless of their gender identity or expression.

There are many different approaches to weight loss, and what works best for one person may not work for another. Some common strategies for weight loss include:

* Caloric restriction: Reducing daily caloric intake to create a calorie deficit that promotes weight loss.
* Portion control: Eating smaller amounts of food and avoiding overeating.
* Increased physical activity: Engaging in regular exercise, such as walking, running, swimming, or weightlifting, to burn more calories and build muscle mass.
* Behavioral modifications: Changing habits and behaviors related to eating and exercise, such as keeping a food diary or enlisting the support of a weight loss buddy.

Weight loss can have numerous health benefits, including:

* Improved blood sugar control
* Reduced risk of heart disease and stroke
* Lowered blood pressure
* Improved joint health and reduced risk of osteoarthritis
* Improved sleep quality
* Boosted mood and reduced stress levels
* Increased energy levels

However, weight loss can also be challenging, and it is important to approach it in a healthy and sustainable way. Crash diets and other extreme weight loss methods are not effective in the long term and can lead to nutrient deficiencies and other negative health consequences. Instead, it is important to focus on making sustainable lifestyle changes that can be maintained over time.

Some common misconceptions about weight loss include:

* All weight loss methods are effective for everyone.
* Weight loss should always be the primary goal of a fitness or health program.
* Crash diets and other extreme weight loss methods are a good way to lose weight quickly.
* Weight loss supplements and fad diets are a reliable way to achieve significant weight loss.

The most effective ways to lose weight and maintain weight loss include:

* Eating a healthy, balanced diet that is high in nutrient-dense foods such as fruits, vegetables, whole grains, lean proteins, and healthy fats.
* Engaging in regular physical activity, such as walking, running, swimming, or weight training.
* Getting enough sleep and managing stress levels.
* Aiming for a gradual weight loss of 1-2 pounds per week.
* Focusing on overall health and wellness rather than just the number on the scale.

It is important to remember that weight loss is not always linear and can vary from week to week. It is also important to be patient and consistent with your weight loss efforts, as it can take time to see significant results.

Overall, weight loss can be a challenging but rewarding process, and it is important to approach it in a healthy and sustainable way. By focusing on overall health and wellness rather than just the number on the scale, you can achieve a healthy weight and improve your overall quality of life.

The exact cause of fibrous dysplasia is unknown, but genetic factors are suspected to play a role. It can occur sporadically or as part of certain inherited medical conditions. Fibrous dysplasia is more common in males than females and typically affects children and young adults.

The symptoms of fibrous dysplasia depend on the bones affected and may include pain, limb deformity, and difficulty moving or using affected limbs. Diagnosis is based on a combination of clinical evaluation, imaging studies such as X-rays, CT scans or MRI, and biopsy to confirm the presence of fibrous tissue in affected bones.

Treatment for fibrous dysplasia depends on the severity of symptoms and the specific bones involved, but may include medications such as bisphosphonates to slow bone growth, surgery to remove affected bone tissue or correct deformities, or radiation therapy to reduce pain and improve function. In some cases, surgical removal of affected bone tissue may be necessary.

Prognosis for fibrous dysplasia varies depending on the severity of symptoms and the specific bones involved, but in general, with appropriate treatment, most individuals with this condition can achieve significant improvement in symptoms and function. However, some individuals may experience chronic pain or disability despite treatment.

In summary, fibrous dysplasia is a developmental disorder that affects multiple bones in the body, causing pain, deformity, and impaired function of affected limbs. Diagnosis is based on clinical evaluation, imaging studies, and biopsy, and treatment options include medications, surgery, or radiation therapy. Prognosis varies depending on severity and specific bones involved.

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.

What is a Chronic Disease?

A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:

1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke

Impact of Chronic Diseases

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.

Addressing Chronic Diseases

Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:

1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.

Conclusion

Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.

Type 2 diabetes can be managed through a combination of diet, exercise, and medication. In some cases, lifestyle changes may be enough to control blood sugar levels, while in other cases, medication or insulin therapy may be necessary. Regular monitoring of blood sugar levels and follow-up with a healthcare provider are important for managing the condition and preventing complications.

Common symptoms of type 2 diabetes include:

* Increased thirst and urination
* Fatigue
* Blurred vision
* Cuts or bruises that are slow to heal
* Tingling or numbness in the hands and feet
* Recurring skin, gum, or bladder infections

If left untreated, type 2 diabetes can lead to a range of complications, including:

* Heart disease and stroke
* Kidney damage and failure
* Nerve damage and pain
* Eye damage and blindness
* Foot damage and amputation

The exact cause of type 2 diabetes is not known, but it is believed to be linked to a combination of genetic and lifestyle factors, such as:

* Obesity and excess body weight
* Lack of physical activity
* Poor diet and nutrition
* Age and family history
* Certain ethnicities (e.g., African American, Hispanic/Latino, Native American)
* History of gestational diabetes or delivering a baby over 9 lbs.

There is no cure for type 2 diabetes, but it can be managed and controlled through a combination of lifestyle changes and medication. With proper treatment and self-care, people with type 2 diabetes can lead long, healthy lives.

The symptoms of short bowel syndrome can vary depending on the severity of the condition and may include:

* Diarrhea
* Abdominal pain
* Nausea and vomiting
* Weight loss
* Fatigue
* Dehydration
* Malnutrition

Treatment for short bowel syndrome typically involves a combination of dietary modifications, medications, and supplements to help manage symptoms and improve nutrient absorption. In some cases, intravenous feeding may be necessary to ensure adequate nutrition.

Short bowel syndrome can be caused by a variety of factors, including:

* Intestinal surgery
* Inflammatory bowel disease (such as Crohn's disease or ulcerative colitis)
* Infections (such as Clostridium difficile or viral infections)
* Radiation therapy
* Trauma to the abdomen
* Congenital conditions (such as short gut syndrome)

Overall, short bowel syndrome can have a significant impact on quality of life and can be challenging to manage. However, with proper treatment and support, it is possible for individuals with this condition to lead active and fulfilling lives.

Disease progression can be classified into several types based on the pattern of worsening:

1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.

Disease progression can be influenced by various factors, including:

1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.

Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.

Synonyms: GH-secreting pituitary adenoma, growth hormone-producing pituitary adenoma.

Note: This definition is intended for use by medical professionals and may not be easily understandable by the general public. It is important to consult a qualified healthcare professional for an accurate diagnosis and appropriate treatment.

1. Ovarian cysts: These are fluid-filled sacs that form on the ovaries. They can be benign (non-cancerous) or malignant (cancerous). Common symptoms include pelvic pain, bloating, and irregular periods.
2. Polycystic ovary syndrome (PCOS): This is a hormonal disorder that affects ovulation and can cause cysts on the ovaries. Symptoms include irregular periods, acne, and excess hair growth.
3. Endometriosis: This is a condition in which tissue similar to the lining of the uterus grows outside the uterus, often on the ovaries. Symptoms include pelvic pain, heavy bleeding, and infertility.
4. Ovarian cancer: This is a type of cancer that affects the ovaries. It is rare, but can be aggressive and difficult to treat. Symptoms include abdominal pain, bloating, and vaginal bleeding.
5. Premature ovarian failure (POF): This is a condition in which the ovaries stop functioning before the age of 40. Symptoms include hot flashes, vaginal dryness, and infertility.
6. Ovarian torsion: This is a condition in which the ovary becomes twisted, cutting off blood flow. Symptoms include severe pelvic pain, nausea, and vomiting.
7. Ovarian abscess: This is an infection that forms on the ovaries. Symptoms include fever, abdominal pain, and vaginal discharge.
8. Ectopic pregnancy: This is a condition in which a fertilized egg implants outside the uterus, often on the ovaries. Symptoms include severe pelvic pain, bleeding, and fainting.
9. Ovarian cysts: These are fluid-filled sacs that form on the ovaries. They can be benign or cancerous. Symptoms include abdominal pain, bloating, and irregular periods.
10. Polycystic ovary syndrome (PCOS): This is a hormonal disorder that affects the ovaries, causing symptoms such as irregular periods, cysts on the ovaries, and excess hair growth.

It's important to note that these are just a few examples of the many possible conditions that can affect the ovaries. If you experience any persistent or severe symptoms in your pelvic area, it is important to seek medical attention to determine the cause and receive proper treatment.

Causes of Hyperphosphatemia:

There are several possible causes of hyperphosphatemia, including:

1. Kidney disease or failure: The kidneys regulate the levels of phosphate in the blood, and if they are not functioning properly, phosphate levels can become elevated.
2. Resistance to parathyroid hormone (PTH): PTH is a hormone that helps regulate calcium and phosphate levels in the body. If there is resistance to PTH, phosphate levels can become elevated.
3. Vitamin D deficiency: Vitamin D is important for the absorption of phosphate from food in the gut. A deficiency in vitamin D can lead to an excessive amount of phosphate in the blood.
4. Certain medications: Some medications, such as certain antacids and nutritional supplements, can contain high levels of phosphate and cause hyperphosphatemia.
5. Poor dietary habits: Consuming a diet that is high in phosphate-rich foods, such as meat and processed foods, can lead to elevated phosphate levels in the blood.

Symptoms of Hyperphosphatemia:

The symptoms of hyperphosphatemia can vary depending on the severity of the condition, but may include:

1. Bone pain or weakness
2. Fatigue
3. Nausea and vomiting
4. Weakness in the muscles
5. Rickets (in children)
6. Osteoporosis (in adults)
7. Kidney damage or failure

Diagnosis of Hyperphosphatemia:

Hyperphosphatemia is typically diagnosed through blood tests that measure the level of phosphate in the blood. Other tests may also be performed to assess kidney function and rule out other potential causes of elevated phosphate levels. These tests may include:

1. Serum creatinine test: This test measures the level of creatinine, a waste product that is produced by the muscles and removed from the blood by the kidneys. Elevated levels of creatinine can indicate kidney damage or failure.
2. Urine test: A urine test may be performed to check for proteinuria (excess protein in the urine), which can be a sign of kidney damage.
3. Parathyroid hormone (PTH) test: This test measures the level of PTH, a hormone that regulates calcium and phosphate levels in the blood. Elevated levels of PTH can indicate hyperparathyroidism, a condition in which the parathyroid glands produce too much PTH.
4. 24-hour urine phosphate test: This test measures the amount of phosphate excreted in the urine over a 24-hour period.

Treatment of Hyperphosphatemia:

The treatment of hyperphosphatemia depends on the underlying cause of the condition. Here are some possible treatment options:

1. Phosphate-binding agents: These medications, such as sevelamer and lanthanum carbonate, bind to phosphate in the gut and prevent it from being absorbed into the bloodstream.
2. Calcium supplements: Calcium can help to lower phosphate levels by binding to it and removing it from the bloodstream.
3. Dietary changes: A dietitian can work with you to develop a meal plan that limits phosphate-rich foods, such as meat, dairy products, and processed foods, while emphasizing fruits, vegetables, and whole grains.
4. Dialysis: In cases where the condition is caused by kidney failure, dialysis may be necessary to remove excess phosphate from the blood.
5. Surgery: In cases where the condition is caused by a parathyroid adenoma or hyperplasia, surgery may be necessary to remove the affected gland(s).

It's important to note that hyperphosphatemia can lead to complications such as mineral bone disease, which can cause weakened bones, bone pain, and an increased risk of fractures. Therefore, it's important to work with your healthcare provider to manage the condition and prevent these complications.

Some common types of bone diseases include:

1. Osteoporosis: A condition characterized by brittle, porous bones that are prone to fracture.
2. Osteoarthritis: A degenerative joint disease that causes pain and stiffness in the joints.
3. Rheumatoid arthritis: An autoimmune disorder that causes inflammation and pain in the joints.
4. Bone cancer: A malignant tumor that develops in the bones.
5. Paget's disease of bone: A condition characterized by abnormal bone growth and deformity.
6. Osteogenesis imperfecta: A genetic disorder that affects the formation of bone and can cause brittle bones and other skeletal deformities.
7. Fibrous dysplasia: A rare condition characterized by abnormal growth and development of bone tissue.
8. Multiple myeloma: A type of cancer that affects the plasma cells in the bone marrow.
9. Bone cysts: Fluid-filled cavities that can form in the bones and cause pain, weakness, and deformity.
10. Bone spurs: Abnormal growths of bone that can form along the edges of joints and cause pain and stiffness.

Bone diseases can be diagnosed through a variety of tests, including X-rays, CT scans, MRI scans, and bone biopsies. Treatment options vary depending on the specific disease and can include medication, surgery, or a combination of both.

Types of Experimental Diabetes Mellitus include:

1. Streptozotocin-induced diabetes: This type of EDM is caused by administration of streptozotocin, a chemical that damages the insulin-producing beta cells in the pancreas, leading to high blood sugar levels.
2. Alloxan-induced diabetes: This type of EDM is caused by administration of alloxan, a chemical that also damages the insulin-producing beta cells in the pancreas.
3. Pancreatectomy-induced diabetes: In this type of EDM, the pancreas is surgically removed or damaged, leading to loss of insulin production and high blood sugar levels.

Experimental Diabetes Mellitus has several applications in research, including:

1. Testing new drugs and therapies for diabetes treatment: EDM allows researchers to evaluate the effectiveness of new treatments on blood sugar control and other physiological processes.
2. Studying the pathophysiology of diabetes: By inducing EDM in animals, researchers can study the progression of diabetes and its effects on various organs and tissues.
3. Investigating the role of genetics in diabetes: Researchers can use EDM to study the effects of genetic mutations on diabetes development and progression.
4. Evaluating the efficacy of new diagnostic techniques: EDM allows researchers to test new methods for diagnosing diabetes and monitoring blood sugar levels.
5. Investigating the complications of diabetes: By inducing EDM in animals, researchers can study the development of complications such as retinopathy, nephropathy, and cardiovascular disease.

In conclusion, Experimental Diabetes Mellitus is a valuable tool for researchers studying diabetes and its complications. The technique allows for precise control over blood sugar levels and has numerous applications in testing new treatments, studying the pathophysiology of diabetes, investigating the role of genetics, evaluating new diagnostic techniques, and investigating complications.

Types of experimental neoplasms include:

* Xenografts: tumors that are transplanted into animals from another species, often humans.
* Transgenic tumors: tumors that are created by introducing cancer-causing genes into an animal's genome.
* Chemically-induced tumors: tumors that are caused by exposure to certain chemicals or drugs.

The use of experimental neoplasms in research has led to significant advances in our understanding of cancer biology and the development of new treatments for the disease. However, the use of animals in cancer research is a controversial topic and alternatives to animal models are being developed and implemented.

There are two types of hypertension:

1. Primary Hypertension: This type of hypertension has no identifiable cause and is also known as essential hypertension. It accounts for about 90% of all cases of hypertension.
2. Secondary Hypertension: This type of hypertension is caused by an underlying medical condition or medication. It accounts for about 10% of all cases of hypertension.

Some common causes of secondary hypertension include:

* Kidney disease
* Adrenal gland disorders
* Hormonal imbalances
* Certain medications
* Sleep apnea
* Cocaine use

There are also several risk factors for hypertension, including:

* Age (the risk increases with age)
* Family history of hypertension
* Obesity
* Lack of exercise
* High sodium intake
* Low potassium intake
* Stress

Hypertension is often asymptomatic, and it can cause damage to the blood vessels and organs over time. Some potential complications of hypertension include:

* Heart disease (e.g., heart attacks, heart failure)
* Stroke
* Kidney disease (e.g., chronic kidney disease, end-stage renal disease)
* Vision loss (e.g., retinopathy)
* Peripheral artery disease

Hypertension is typically diagnosed through blood pressure readings taken over a period of time. Treatment for hypertension may include lifestyle changes (e.g., diet, exercise, stress management), medications, or a combination of both. The goal of treatment is to reduce the risk of complications and improve quality of life.

Rickets is caused by a deficiency of vitamin D, usually due to inadequate sunlight exposure, breastfeeding, or a diet that is low in calcium and vitamin D. It can also be caused by certain medical conditions, such as kidney disease, or by taking certain medications that interfere with vitamin D production.

Symptoms of rickets may include:

* Bowed legs or other deformities of the bones
* Pain in the bones and joints
* Softening of the bones (osteomalacia)
* Difficulty walking or standing
* delayed tooth development
* Frequent infections

If rickets is suspected, a doctor may perform a physical examination, take a medical history, and order diagnostic tests such as X-rays or blood tests to confirm the diagnosis. Treatment typically involves correcting any underlying nutritional deficiencies and managing any related health issues. In severe cases, surgery may be necessary to repair damaged bones.

Prevention is key in avoiding rickets, so it's important for parents to ensure their children are getting enough vitamin D and calcium through a balanced diet and adequate sunlight exposure. In regions with limited sunlight, fortified foods such as milk and cereal can be helpful. Breastfeeding mothers may need to supplement their diets with vitamin D to ensure their babies are getting enough.

Here are some of the possible causes of magnesium deficiency:

1. Poor diet: A diet low in magnesium-rich foods such as dark leafy greens, nuts, seeds, and whole grains can lead to a deficiency.
2. Gastrointestinal disorders: Certain conditions such as irritable bowel syndrome (IBS), Crohn's disease, and celiac disease can make it difficult for the body to absorb magnesium from food.
3. Medications: Diuretics, antibiotics, and proton pump inhibitors can cause magnesium deficiency by increasing urinary excretion or interfering with absorption.
4. Malabsorption: Conditions such as celiac disease, pancreatic insufficiency, and small intestine bacterial overgrowth (SIBO) can lead to malabsorption of magnesium.
5. Chronic alcoholism: Alcohol can interfere with magnesium absorption and increase urinary excretion.
6. Chronic stress: Stress can cause the body to excrete more magnesium, leading to a deficiency.
7. Genetic disorders: Certain genetic disorders such as Bartter's syndrome and Gitelman's syndrome can affect the body's ability to absorb or retain magnesium.

Symptoms of magnesium deficiency can include muscle cramps, twitching, weakness, fatigue, anxiety, depression, insomnia, seizures, and heart arrhythmias. If left untreated, magnesium deficiency can lead to more severe complications such as osteoporosis, cardiovascular disease, and kidney stones.

Treatment of magnesium deficiency typically involves correcting the underlying cause and increasing dietary intake of magnesium. Supplements may also be prescribed to restore normal levels of magnesium in the body. It is important to consult with a healthcare professional before starting any supplements or making significant changes to your diet.

The term "gynecomastia" comes from the Greek words "gyneco," meaning "womanlike," and "mastos," meaning "breast." The condition can occur at any age, but it is most common in infants, teenagers, and older men.

Gynecomastia can be caused by a variety of factors, including:

1. Hormonal imbalance: An imbalance of testosterone and estrogen hormones can lead to breast tissue growth.
2. Medications: Certain medications, such as antidepressants, anti-anxiety drugs, and heart medications, can cause gynecomastia as a side effect.
3. Medical conditions: Conditions such as hypogonadism (low testosterone levels), hyperthyroidism (high thyroid hormone levels), and liver or kidney disease can contribute to gynecomastia.
4. Genetic factors: Some men may inherit a tendency to develop gynecomastia due to genetic mutations.
5. Other factors: Gynecomastia can also be caused by other factors such as obesity, alcohol consumption, and certain types of foods or supplements.

Symptoms of gynecomastia may include:

* Enlarged breasts
* Breast tenderness
* Nipple sensitivity
* Pain in the breasts
* Swelling in the armpits

Gynecomastia is usually diagnosed through a physical examination and medical history. Imaging tests such as mammography or ultrasound may also be used to help rule out other conditions.

Treatment for gynecomastia depends on the underlying cause of the condition. In some cases, medications may be prescribed to address hormonal imbalances or other medical conditions that are contributing to the development of gynecomastia. Surgery may also be an option to remove excess breast tissue and improve the appearance of the chest.

In conclusion, gynecomastia is a relatively common condition in men that can have a significant impact on their self-esteem and quality of life. Understanding the causes and symptoms of gynecomastia is essential for proper diagnosis and effective treatment.

Here are some key points to consider when discussing azoospermia:

1. Causes: Azoospermia can be caused by various factors, including blockages due to surgery, injury, or infection, hormonal imbalances, anatomical abnormalities like varicocele, and chromosomal abnormalities.
2. Diagnosis: Azoospermia is typically diagnosed through semen analysis, which involves examining a semen sample under a microscope to determine the presence of sperm cells. Other tests may also be performed to identify any underlying causes, such as hormone level testing and ultrasound imaging.
3. Treatment: Treatment for azoospermia depends on the underlying cause, but may include medications to address hormonal imbalances or surgery to correct anatomical abnormalities. Assisted reproductive technologies (ART) like IVF or ICSI can also be used to help achieve pregnancy.
4. Prognosis: The prognosis for azoospermia varies depending on the underlying cause and the effectiveness of treatment. In general, the earlier the condition is diagnosed and treated, the better the prognosis.
5. Impact on fertility: Azoospermia can significantly impact fertility, as the absence of sperm in the semen makes it difficult or impossible to achieve pregnancy through natural means. However, with the help of ART, many men with azoospermia can still achieve fatherhood.
6. Psychological impact: Azoospermia can have significant psychological and emotional impacts on men and their partners, particularly if they are trying to conceive. It is important to provide support and counseling to help cope with the challenges of this condition.
7. Prevention: There is no known prevention for azoospermia, as it is often caused by underlying genetic or hormonal factors. However, identifying and addressing any underlying causes early on can improve outcomes and increase the chances of achieving pregnancy.

Types of Nutrition Disorders:

1. Malnutrition: This occurs when the body does not receive enough nutrients to maintain proper bodily functions. Malnutrition can be caused by a lack of access to healthy food, digestive problems, or other underlying health issues.
2. Obesity: This is a condition where excess body fat accumulates to the point that it negatively affects health. Obesity can increase the risk of various diseases, such as diabetes, heart disease, and certain types of cancer.
3. Anorexia Nervosa: This is an eating disorder characterized by a fear of gaining weight or becoming obese. People with anorexia nervosa may restrict their food intake to an extreme degree, leading to malnutrition and other health problems.
4. Bulimia Nervosa: This is another eating disorder where individuals engage in binge eating followed by purging or other compensatory behaviors to rid the body of calories consumed. Bulimia nervosa can also lead to malnutrition and other health issues.
5. Diabetes Mellitus: This is a group of metabolic disorders characterized by high blood sugar levels. Type 2 diabetes, in particular, has been linked to poor dietary habits and a lack of physical activity.
6. Cardiovascular Disease: Poor dietary habits and a lack of physical activity can increase the risk of cardiovascular disease, which includes heart disease and stroke.
7. Osteoporosis: A diet low in calcium and vitamin D can contribute to the development of osteoporosis, a condition characterized by brittle bones and an increased risk of fractures.
8. Gout: This is a type of arthritis caused by high levels of uric acid in the blood. A diet rich in purine-containing foods such as red meat, seafood, and certain grains can increase the risk of developing gout.
9. Dental Problems: Poor dietary habits, particularly a diet high in sugar, can contribute to dental problems such as cavities and gum disease.
10. Mental Health Disorders: Malnutrition and other health problems caused by poor dietary habits can also contribute to mental health disorders such as depression and anxiety.

In conclusion, poor dietary habits can have significant negative effects on an individual's overall health and well-being. It is essential to adopt healthy dietary habits such as consuming a balanced diet, limiting processed foods and sugars, and increasing physical activity to maintain good health and prevent chronic diseases.

The exact cause of PMS is not known, but it is thought to be related to changes in hormone levels, particularly estrogen and progesterone, which can affect the brain and body. Some women may be more susceptible to PMS due to factors such as stress, genetics, or other medical conditions.

Common symptoms of PMS include:

1. Mood changes: anxiety, irritability, sadness, and mood swings
2. Physical symptoms: breast tenderness, bloating, cramps, headaches, and fatigue
3. Behavioral changes: changes in appetite, sleep patterns, and social withdrawal
4. Cognitive changes: difficulty concentrating, memory problems, and confusion

There is no single test for PMS, and diagnosis is based on a combination of symptoms, medical history, and ruling out other conditions that may cause similar symptoms. Treatment for PMS usually involves a combination of lifestyle changes, over-the-counter medications, and prescription medications, depending on the severity of symptoms.

Some common lifestyle changes that can help manage PMS include:

1. Exercise regularly: regular physical activity can help reduce symptoms of PMS
2. Eat a balanced diet: a healthy, nutrient-rich diet can help alleviate symptoms
3. Get enough sleep: adequate rest and relaxation can help improve mood and reduce fatigue
4. Reduce stress: stress management techniques such as meditation, yoga, or deep breathing can help reduce the impact of PMS

Over-the-counter medications that may be used to treat PMS include:

1. Nonsteroidal anti-inflammatory drugs (NSAIDs): these medications can help reduce cramps, bloating, and breast tenderness
2. Antihistamines: these medications can help with sleep disturbances and mood changes
3. Acetaminophen: this medication can help with headaches and other painful symptoms

Prescription medications that may be used to treat PMS include:

1. Hormonal birth control: oral contraceptives can help regulate hormones and reduce symptoms of PMS
2. Selective serotonin reuptake inhibitors (SSRIs): these medications can help with mood changes, anxiety, and depression associated with PMS
3. Gabapentin: this medication can help with painful symptoms such as cramps and breast tenderness

It's important to note that the specific treatment plan for PMS will depend on the severity of symptoms and individual factors such as medical history, age, and other health conditions. It's best to consult a healthcare provider to determine the most appropriate course of treatment.

There are several types of diabetes mellitus, including:

1. Type 1 DM: This is an autoimmune condition in which the body's immune system attacks and destroys the cells in the pancreas that produce insulin, resulting in a complete deficiency of insulin production. It typically develops in childhood or adolescence, and patients with this condition require lifelong insulin therapy.
2. Type 2 DM: This is the most common form of diabetes, accounting for around 90% of all cases. It is caused by a combination of insulin resistance (where the body's cells do not respond properly to insulin) and impaired insulin secretion. It is often associated with obesity, physical inactivity, and a diet high in sugar and unhealthy fats.
3. Gestational DM: This type of diabetes develops during pregnancy, usually in the second or third trimester. Hormonal changes and insulin resistance can cause blood sugar levels to rise, putting both the mother and baby at risk.
4. LADA (Latent Autoimmune Diabetes in Adults): This is a form of type 1 DM that develops in adults, typically after the age of 30. It shares features with both type 1 and type 2 DM.
5. MODY (Maturity-Onset Diabetes of the Young): This is a rare form of diabetes caused by genetic mutations that affect insulin production. It typically develops in young adulthood and can be managed with lifestyle changes and/or medication.

The symptoms of diabetes mellitus can vary depending on the severity of the condition, but may include:

1. Increased thirst and urination
2. Fatigue
3. Blurred vision
4. Cuts or bruises that are slow to heal
5. Tingling or numbness in hands and feet
6. Recurring skin, gum, or bladder infections
7. Flu-like symptoms such as weakness, dizziness, and stomach pain
8. Dark, velvety skin patches (acanthosis nigricans)
9. Yellowish color of the skin and eyes (jaundice)
10. Delayed healing of cuts and wounds

If left untreated, diabetes mellitus can lead to a range of complications, including:

1. Heart disease and stroke
2. Kidney damage and failure
3. Nerve damage (neuropathy)
4. Eye damage (retinopathy)
5. Foot damage (neuropathic ulcers)
6. Cognitive impairment and dementia
7. Increased risk of infections and other diseases, such as pneumonia, gum disease, and urinary tract infections.

It is important to note that not all individuals with diabetes will experience these complications, and that proper management of the condition can greatly reduce the risk of developing these complications.

Explanation: Genetic predisposition to disease is influenced by multiple factors, including the presence of inherited genetic mutations or variations, environmental factors, and lifestyle choices. The likelihood of developing a particular disease can be increased by inherited genetic mutations that affect the functioning of specific genes or biological pathways. For example, inherited mutations in the BRCA1 and BRCA2 genes increase the risk of developing breast and ovarian cancer.

The expression of genetic predisposition to disease can vary widely, and not all individuals with a genetic predisposition will develop the disease. Additionally, many factors can influence the likelihood of developing a particular disease, such as environmental exposures, lifestyle choices, and other health conditions.

Inheritance patterns: Genetic predisposition to disease can be inherited in an autosomal dominant, autosomal recessive, or multifactorial pattern, depending on the specific disease and the genetic mutations involved. Autosomal dominant inheritance means that a single copy of the mutated gene is enough to cause the disease, while autosomal recessive inheritance requires two copies of the mutated gene. Multifactorial inheritance involves multiple genes and environmental factors contributing to the development of the disease.

Examples of diseases with a known genetic predisposition:

1. Huntington's disease: An autosomal dominant disorder caused by an expansion of a CAG repeat in the Huntingtin gene, leading to progressive neurodegeneration and cognitive decline.
2. Cystic fibrosis: An autosomal recessive disorder caused by mutations in the CFTR gene, leading to respiratory and digestive problems.
3. BRCA1/2-related breast and ovarian cancer: An inherited increased risk of developing breast and ovarian cancer due to mutations in the BRCA1 or BRCA2 genes.
4. Sickle cell anemia: An autosomal recessive disorder caused by a point mutation in the HBB gene, leading to defective hemoglobin production and red blood cell sickling.
5. Type 1 diabetes: An autoimmune disease caused by a combination of genetic and environmental factors, including multiple genes in the HLA complex.

Understanding the genetic basis of disease can help with early detection, prevention, and treatment. For example, genetic testing can identify individuals who are at risk for certain diseases, allowing for earlier intervention and preventive measures. Additionally, understanding the genetic basis of a disease can inform the development of targeted therapies and personalized medicine."


The disease is named after Hakama Hashimoto, a Japanese physician who first described it in 1912. It is characterized by the presence of inflammatory cells in the thyroid gland, which can lead to damage to the gland and disrupt its ability to produce thyroid hormones.

The symptoms of Hashimoto's disease are similar to those of hypothyroidism and can include fatigue, weight gain, cold intolerance, dry skin, constipation, and depression. The disease is more common in women than men and typically affects people between the ages of 30 and 50.

Hashimoto's disease is diagnosed based on a combination of symptoms, physical examination findings, and laboratory tests, such as blood tests to measure thyroid hormone levels and an ultrasound or biopsy to examine the thyroid gland. Treatment typically involves replacing missing thyroid hormones with synthetic hormones, but in some cases, surgery may be necessary to remove part or all of the thyroid gland.

While Hashimoto's disease is a chronic condition and cannot be cured, it can be effectively managed with appropriate treatment. With early diagnosis and proper management, most people with Hashimoto's disease can lead normal, healthy lives.

Leiomyomas are the most common type of gynecologic tumor and affect up to 80% of women at some point in their lifetime. They are more common in women who have a family history of leiomyomas or who are obese.

There are several different types of leiomyomas, including:

1. Submucosal leiomyomas: These tumors grow into the uterine cavity and can cause bleeding and other symptoms.
2. Intramural leiomyomas: These tumors grow within the muscle of the uterus and can cause pelvic pain and heavy menstrual bleeding.
3. Pedunculated leiomyomas: These tumors are attached to the uterine wall by a stalk-like structure and can be felt during a pelvic exam.
4. Broad ligament leiomyomas: These tumors grow on the broad ligament, which is a band of tissue that connects the uterus to the pelvis.

Leiomyomas are typically diagnosed through a combination of pelvic examination, ultrasound, and hysteroscopy (a procedure in which a small camera is inserted into the uterus to examine the inside of the organ). Treatment options for leiomyomas depend on the size and location of the tumors, as well as the severity of symptoms. Treatment may include watchful waiting, medications to regulate hormones or shrink the tumors, or surgery to remove the tumors.

In some cases, leiomyomas can be associated with other conditions such as endometriosis or adenomyosis, and it is important for women with these tumors to receive ongoing care from a healthcare provider to monitor for any changes in their condition.

There are several possible causes of hyperglycemia, including:

1. Diabetes: This is a chronic condition where the body either does not produce enough insulin or cannot use insulin effectively.
2. Insulin resistance: This occurs when the body's cells become less responsive to insulin, leading to high blood sugar levels.
3. Pancreatitis: This is inflammation of the pancreas, which can lead to high blood sugar levels.
4. Cushing's syndrome: This is a rare hormonal disorder that can cause high blood sugar levels.
5. Medications: Certain medications, such as steroids and some types of antidepressants, can raise blood sugar levels.
6. Stress: Stress can cause the release of hormones such as cortisol and adrenaline, which can raise blood sugar levels.
7. Infections: Certain infections, such as pneumonia or urinary tract infections, can cause high blood sugar levels.
8. Trauma: Traumatic injuries can cause high blood sugar levels due to the release of stress hormones.
9. Surgery: Some types of surgery, such as heart bypass surgery, can cause high blood sugar levels.
10. Pregnancy: High blood sugar levels can occur during pregnancy, especially in women who have a history of gestational diabetes.

Hyperglycemia can cause a range of symptoms, including:

1. Increased thirst and urination
2. Fatigue
3. Blurred vision
4. Headaches
5. Cuts or bruises that are slow to heal
6. Tingling or numbness in the hands and feet
7. Dry, itchy skin
8. Flu-like symptoms, such as weakness, dizziness, and stomach pain
9. Recurring skin, gum, or bladder infections
10. Sexual dysfunction in men and women

If left untreated, hyperglycemia can lead to serious complications, including:

1. Diabetic ketoacidosis (DKA): A life-threatening condition that occurs when the body produces high levels of ketones, which are acidic substances that can cause confusion, nausea, and vomiting.
2. Hypoglycemia: Low blood sugar levels that can cause dizziness, confusion, and even loss of consciousness.
3. Nerve damage: High blood sugar levels over an extended period can damage the nerves, leading to numbness, tingling, and pain in the hands and feet.
4. Kidney damage: The kidneys may become overworked and damaged if they are unable to filter out the excess glucose in the blood.
5. Eye damage: High blood sugar levels can cause damage to the blood vessels in the eyes, leading to vision loss and blindness.
6. Cardiovascular disease: Hyperglycemia can increase the risk of cardiovascular disease, including heart attacks, strokes, and peripheral artery disease.
7. Cognitive impairment: Hyperglycemia has been linked to cognitive impairment and an increased risk of dementia.

It is essential to manage hyperglycemia by making lifestyle changes, such as following a healthy diet, regular exercise, and taking medication if prescribed by a healthcare professional. Monitoring blood sugar levels regularly can help identify the signs of hyperglycemia and prevent long-term complications.

Types of Kidney Diseases:

1. Acute Kidney Injury (AKI): A sudden and reversible loss of kidney function that can be caused by a variety of factors, such as injury, infection, or medication.
2. Chronic Kidney Disease (CKD): A gradual and irreversible loss of kidney function that can lead to end-stage renal disease (ESRD).
3. End-Stage Renal Disease (ESRD): A severe and irreversible form of CKD that requires dialysis or a kidney transplant.
4. Glomerulonephritis: An inflammation of the glomeruli, the tiny blood vessels in the kidneys that filter waste products.
5. Interstitial Nephritis: An inflammation of the tissue between the tubules and blood vessels in the kidneys.
6. Kidney Stone Disease: A condition where small, hard mineral deposits form in the kidneys and can cause pain, bleeding, and other complications.
7. Pyelonephritis: An infection of the kidneys that can cause inflammation, damage to the tissues, and scarring.
8. Renal Cell Carcinoma: A type of cancer that originates in the cells of the kidney.
9. Hemolytic Uremic Syndrome (HUS): A condition where the immune system attacks the platelets and red blood cells, leading to anemia, low platelet count, and damage to the kidneys.

Symptoms of Kidney Diseases:

1. Blood in urine or hematuria
2. Proteinuria (excess protein in urine)
3. Reduced kidney function or renal insufficiency
4. Swelling in the legs, ankles, and feet (edema)
5. Fatigue and weakness
6. Nausea and vomiting
7. Abdominal pain
8. Frequent urination or polyuria
9. Increased thirst and drinking (polydipsia)
10. Weight loss

Diagnosis of Kidney Diseases:

1. Physical examination
2. Medical history
3. Urinalysis (test of urine)
4. Blood tests (e.g., creatinine, urea, electrolytes)
5. Imaging studies (e.g., X-rays, CT scans, ultrasound)
6. Kidney biopsy
7. Other specialized tests (e.g., 24-hour urinary protein collection, kidney function tests)

Treatment of Kidney Diseases:

1. Medications (e.g., diuretics, blood pressure medication, antibiotics)
2. Diet and lifestyle changes (e.g., low salt intake, increased water intake, physical activity)
3. Dialysis (filtering waste products from the blood when the kidneys are not functioning properly)
4. Kidney transplantation ( replacing a diseased kidney with a healthy one)
5. Other specialized treatments (e.g., plasmapheresis, hemodialysis)

Prevention of Kidney Diseases:

1. Maintaining a healthy diet and lifestyle
2. Monitoring blood pressure and blood sugar levels
3. Avoiding harmful substances (e.g., tobacco, excessive alcohol consumption)
4. Managing underlying medical conditions (e.g., diabetes, high blood pressure)
5. Getting regular check-ups and screenings

Early detection and treatment of kidney diseases can help prevent or slow the progression of the disease, reducing the risk of complications and improving quality of life. It is important to be aware of the signs and symptoms of kidney diseases and seek medical attention if they are present.

Examples of experimental liver neoplasms include:

1. Hepatocellular carcinoma (HCC): This is the most common type of primary liver cancer and can be induced experimentally by injecting carcinogens such as diethylnitrosamine (DEN) or dimethylbenz(a)anthracene (DMBA) into the liver tissue of animals.
2. Cholangiocarcinoma: This type of cancer originates in the bile ducts within the liver and can be induced experimentally by injecting chemical carcinogens such as DEN or DMBA into the bile ducts of animals.
3. Hepatoblastoma: This is a rare type of liver cancer that primarily affects children and can be induced experimentally by administering chemotherapy drugs to newborn mice or rats.
4. Metastatic tumors: These are tumors that originate in other parts of the body and spread to the liver through the bloodstream or lymphatic system. Experimental models of metastatic tumors can be studied by injecting cancer cells into the liver tissue of animals.

The study of experimental liver neoplasms is important for understanding the underlying mechanisms of liver cancer development and progression, as well as identifying potential therapeutic targets for the treatment of this disease. Animal models can be used to test the efficacy of new drugs or therapies before they are tested in humans, which can help to accelerate the development of new treatments for liver cancer.

Neoplastic metastasis can occur in any type of cancer but are more common in solid tumors such as carcinomas (breast, lung, colon). It is important for cancer diagnosis and prognosis because metastasis indicates that the cancer has spread beyond its original site and may be more difficult to treat.

Metastases can appear at any distant location but commonly found sites include the liver, lungs, bones, brain, and lymph nodes. The presence of metastases indicates a higher stage of cancer which is associated with lower survival rates compared to localized cancer.

The effects of sleep deprivation can be severe and long-lasting, including:

1. Impaired cognitive function: Sleep deprivation can affect attention, memory, and decision-making skills, making it more difficult to perform daily tasks and make sound judgments.
2. Emotional distress: Lack of sleep can lead to irritability, anxiety, and depression, which can negatively impact relationships and overall well-being.
3. Physical health problems: Chronic sleep deprivation has been linked to an increased risk of obesity, diabetes, cardiovascular disease, and immune system dysfunction.
4. Impaired motor function: Sleep deprivation can cause coordination problems, clumsiness, and a higher risk of accidents, particularly in activities that require attention and quick reflexes (e.g., driving).
5. Premature aging: Chronic sleep deprivation can accelerate the aging process and reduce the body's ability to repair and regenerate cells.
6. Reduced productivity and performance: Sleep deprivation can lead to decreased productivity, poor work quality, and increased absenteeism, which can negatively impact career advancement and financial stability.
7. Increased risk of accidents and injuries: Drowsy driving and workplace accidents are common consequences of sleep deprivation, which can result in fatalities and long-term disabilities.
8. Weakened immune system: Sleep deprivation can weaken the immune system, making it more difficult to fight off infections and diseases.
9. Negative impact on relationships: Sleep deprivation can lead to mood swings, irritability, and difficulty interacting with others, which can strain personal and professional relationships.
10. Increased risk of mental health disorders: Chronic sleep deprivation has been linked to an increased risk of developing anxiety, depression, and other mental health disorders.

To avoid these negative consequences, it's essential to prioritize sleep and make it a critical component of your daily routine. Establishing a consistent sleep schedule, creating a sleep-conducive environment, and practicing relaxation techniques can help improve sleep quality and duration. Additionally, avoiding stimulating activities before bedtime, limiting exposure to electronic screens, and seeking professional help if sleep problems persist can contribute to better overall health and well-being.

Water-electrolyte imbalance can be caused by various factors such as excessive sweating, diarrhea, vomiting, burns, and certain medications. It can also be a complication of other medical conditions like kidney disease, heart failure, and liver disease.

Symptoms of water-electrolyte imbalance may include:

* Dehydration or overhydration
* Changes in blood pH (acidosis or alkalosis)
* Electrolyte abnormalities (such as low sodium, high potassium, or low bicarbonate)
* Muscle weakness or cramping
* Confusion or disorientation
* Heart arrhythmias

Treatment of water-electrolyte imbalance depends on the underlying cause and the severity of symptoms. Fluid replacement, electrolyte supplements, and medications to correct pH levels may be prescribed by a healthcare professional. In severe cases, hospitalization may be necessary to monitor and treat the condition.

It is important to seek medical attention if you experience any symptoms of water-electrolyte imbalance, as untreated imbalances can lead to serious complications such as seizures, coma, and even death.

Hypotonia is a state of decreased muscle tone, which can be caused by various conditions, such as injury, disease, or disorders that affect the nervous system. It is characterized by a decrease in muscle stiffness and an increase in joint range of motion. Muscle hypotonia can result in difficulty with movement, coordination, and balance.

There are several types of muscle hypotonia, including:

1. Central hypotonia: This type is caused by dysfunction in the central nervous system and results in a decrease in muscle tone throughout the body.
2. Peripheral hypotonia: This type is caused by dysfunction in the peripheral nervous system and results in a selective decrease in muscle tone in specific muscle groups.
3. Mixed hypotonia: This type combines central and peripheral hypotonia.

Muscle hypotonia can be associated with a variety of symptoms, such as fatigue, weakness, poor coordination, and difficulty with speech and swallowing. Treatment options vary depending on the underlying cause of the condition and may include physical therapy, medication, and lifestyle modifications.

Muscle hypotonia is a common condition that can affect people of all ages, from children to adults. Early diagnosis and treatment are important to help manage symptoms and improve quality of life. If you suspect you or your child may have muscle hypotonia, consult with a healthcare professional for proper evaluation and treatment.

Adenomas have a high risk of becoming malignant (cancerous) over time if left untreated. Treatment options include surgery to remove the tumor or endoscopic mucosal resection, where a flexible tube with a camera and specialized tools is used to remove the tumor through the mouth or nose.

Hormones Official Thai Trailer on YouTube Hormones at Siam Zone (in Thai) Hormones at the Internet Movie Database (CS1 errors: ... Hormones (Thai: ปิดเทอมใหญ่ หัวใจว้าวุ่น; RTGS: Pit Thoem Yai Hua Chai Wa Wun) is a 2008 Thai romantic comedy film directed by ... "With help from Sora Aoi, Hormones wins jury prize at Japan's Asian Marine Film Festival". thaifilmjournal.blogspot.com. 12 ... cite journal}}: Cite journal requires ,journal= (help). "Pid Term Yai Huajai Wawun (Hormones)". Daily XPress.
Hormones of the thyroid gland, Thyroid hormone receptor agonists, Thyroid, Hormones of the hypothalamus-pituitary-thyroid axis ... The thyroid hormones are essential to proper development and differentiation of all cells of the human body. These hormones ... Some natural thyroid hormone brands are FDA approved, but some are not. Thyroid hormones are generally well tolerated. Thyroid ... Thyroid hormones are any hormones produced and released by the thyroid gland, namely triiodothyronine (T3) and thyroxine (T4). ...
Research into the adipose-derived hormones adiponectin and resistin is ongoing. Like leptin, these hormones also affect energy ... These hormones generally influence energy metabolism, which is of great interest to the understanding and treatment of type 2 ... Adipose tissue is an endocrine organ that secretes numerous protein hormones, including leptin, adiponectin, and resistin. ... the notion of resistin as a genuine adipose-derived hormone remains questionable. Coelho, Marisa; Oliveira, Teresa; Fernandes, ...
Hormones (Full title: Hormones: Wai Wawun, "Hormones: วัยว้าวุ่น"), promoted as Hormones: The Series, is a Thai teen drama ... Songyos Sugmakanan (director) (10 August 2013). HORMONES วัยว้าวุ่น EP.12 โกรทฮอร์โมน (Growth Hormones) ฮอร์โมนแห่งการเจริญเติบ ... Tantisangwarakun, Puchong (director) (18 May 2013). HORMONES วัยว้าวุ่น EP.0 ตอนพิเศษ 18 พ
... are hormones that regulate water balance through diuretic action. The insect excretory system, ... Before a factor can be attributed with the role of hormone, it needs to meet certain criteria. While there is evidence that ... "Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects". Proceedings of the National Academy of ... To date, the only insect for which both diuretic and antidiuretic hormones (acting directly on tubules) have been isolated is a ...
... is a peer-reviewed scientific journal covering behavioral endocrinology. It is published by Elsevier and ... The journal covers hormone-brain relationships and publishes original research articles from laboratory or field studies on ... "Hormones and Behavior". NLM Catalog. National Center for Biotechnology Information. Retrieved 2014-06-23. Official website ( ... Hormones and Behavior, Elsevier, retrieved 21 June 2014 "Society of Behavioral Neuroendocrinology". Society for Behavioral ...
Singla, Nirmish; Ghandour, Rashed A.; Raj, Ganesh V. (2019). "Investigational luteinizing hormone releasing hormone (LHRH) ... "Prostate Adenocarcinoma TransCutaneous Hormones (PATCH)". ClinicalTrials.gov. U.S. National Library of Medicine. Retrieved 21 ... Prostate Adenocarcinoma TransCutaneous Hormones (PATCH) - ClinicalTrials.gov (Prostate cancer, Clinical trials). ... The Prostate Adenocarcinoma: TransCutaneous Hormones (PATCH) study is a large randomized controlled trial in the United Kingdom ...
The following is a list of hormones found in Homo sapiens. Spelling is not uniform for many hormones. For example, current ... Placental Hormones Nosek, Thomas M. "Section 5/5ch9/s5ch9_13". Essentials of Human Physiology. Archived from the original on ...
Peptide hormones, Hormones of the ovary, Hormones of the placenta, Hormones of the pregnant female, Human female endocrine ... Relaxin family peptide hormones in humans are represented by seven members: three relaxin-like (RLN) and four insulin-like ( ... All members of the relaxin family peptide hormones bind to their cognate receptors via residues present in their α- and β- ... Dschietzig T, Bartsch C, Greinwald M, Baumann G, Stangl K (May 2005). "The pregnancy hormone relaxin binds to and activates the ...
Releasing hormones and inhibiting hormones are hormones whose main purpose is to control the release of other hormones, either ... The main releasing hormones are as follows: The hypothalamus uses thyrotropin-releasing hormone (TRH or thyroliberin) to tell ... The main release-inhibiting hormones or inhibiting hormones are as follows: The hypothalamus uses somatostatin to tell the ... The hypothalamus uses growth hormone-releasing hormone (GHRH or somatoliberin) to tell the pituitary to release somatotropin. ...
The gonadotropin hormones, human chorionic gonadotropin (hCG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), ... Glycoprotein hormones, alpha polypeptide is a protein that in humans is encoded by the CGA gene. ... The protein encoded by this gene is the alpha subunit and belongs to the glycoprotein hormones alpha chain family. GRCh38: ... Moyle WR, Bahl OP, März L (Dec 1975). "Role of carbohydrate of human chorionic gonadotropin in the mechanism of hormone action ...
Some hormones, such as insulin and growth hormones, can be released into the bloodstream already fully active. Other hormones, ... Storage and secretion of the hormone. Transport of the hormone to the target cell(s). Recognition of the hormone by an ... Hormone secretion can be stimulated and inhibited by: Other hormones (stimulating- or releasing -hormones) Plasma ... bound hormones will replace the unbound hormones when these are eliminated). An example of the usage of hormone-binding ...
Such agents are not hormones. They should not be expected to act precisely as hormones." Biology and sexual orientation ... The study of the organizational theory of prenatal hormones can be difficult, as ethically researchers cannot alter hormones in ... male hormone' and/or more 'female hormone' in male homosexuals and vice versa in female homosexuals". However, these findings ... Male hormone levels in womb may affect sexual orientation Can hormones affect sexual orientation? The Influence of Prenatal ...
A steroid hormone is a steroid that acts as a hormone. Steroid hormones can be grouped into two classes: corticosteroids ( ... Steroid hormones are generally carried in the blood, bound to specific carrier proteins such as sex hormone-binding globulin or ... The first identified mechanisms of steroid hormone action were the genomic effects. In this pathway, the free hormones first ... These energy barriers and wells are reversed for hormones exiting membranes. Steroid hormones easily enter and exit the ...
The neurohypophysial hormones form a family of structurally and functionally related peptide hormones. Their representatives in ... "40D". Handbook of Hormones. 2016. doi:10.1016/B978-0-12-801028-0.00203-8. This article incorporates text from the public domain ... Due to the similarity of the two hormones, there is cross-reaction: oxytocin has a slight antidiuretic function, and high ... Jones CW, Pickering BT (December 1972). "Intra-axonal transport and turnover of neurohypophysial hormones in the rat". J. ...
... (ACTH; also adrenocorticotropin, corticotropin) is a polypeptide tropic hormone produced by and ... of the pituitary gland in response to the hormone corticotropin-releasing hormone (CRH) released by the hypothalamus. ACTH is ... Anterior pituitary hormones, Peptide hormones, Melanocortin receptor agonists, World Anti-Doping Agency prohibited substances) ... Adrenocorticotropic+Hormone at the US National Library of Medicine Medical Subject Headings (MeSH) (Articles with short ...
... receptor agonists, Peptide hormones, Hormones of the parathyroid glands, Hormones of calcium metabolism). ... Parathyroid hormone (PTH), also called parathormone or parathyrin, is a peptide hormone secreted by the parathyroid glands that ... Its action is opposed by the hormone calcitonin. There are two types of PTH receptors. Parathyroid hormone 1 receptors, ... Media related to Parathyroid hormone at Wikimedia Commons Parathyroid hormone: analyte monograph - the Association for Clinical ...
Endocrine system Tropic hormone Non-tropic hormone Look up trophic hormone in Wiktionary, the free dictionary. v t e (Articles ... Trophic hormones are hormones of the anterior lobe of the pituitary. These hormones affect growth, function, or nutrition of ... Trophic hormones from the anterior pituitary include: Thyroid-stimulating hormone (TSH or thyrotropin) - stimulates the thyroid ... Luteinizing hormone (LH)/ Follicle-stimulating hormone (FSH) - regulate reproductive function in both males and females. ...
Stress hormones include, but are not limited to: Cortisol, the main human stress hormone Catecholamines such as adrenaline and ... stress hormones promote the survival of the organism. The secretions of some hormones are also downplayed during stress. ... Stress hormones are secreted by endocrine glands to modify one's internal environment during times of stress. By performing ... norepinephrine Vasopressin Growth hormone Ranabir, Salam; Reetu, K. (2011). "Stress and hormones". Indian Journal of ...
Most hormones can be classified as either amino acid-based hormones (amine, peptide, or protein) or steroid hormones. The ... Peptide hormones or protein hormones are hormones whose molecules are peptide, or proteins, respectively. The latter have ... insulin leptin luteinizing hormone (LH) melanocyte-stimulating hormone (MSH) oxytocin parathyroid hormone (PTH) prolactin renin ... Some peptide/protein hormones (angiotensin II, basic fibroblast growth factor-2, parathyroid hormone-related protein) also ...
The gastrointestinal hormones (or gut hormones) constitute a group of hormones secreted by enteroendocrine cells in the stomach ... This hormone stimulates growth hormone release. Amylin controls glucose homeostasis and gastric motility Glucose-dependent ... Ghrelin is a peptide hormone released from the stomach and liver and is often referred to as the "hunger hormone" since high ... The gastrointestinal hormones can be divided into three main groups based upon their chemical structure. Gastrin- ...
A counterregulatory hormone is a hormone that opposes the action of another. The action of insulin is counterregulated by ... and growth hormone. The rise in blood concentrations of these counterregulatory hormones is dependent upon both exercise ... These counterregulatory hormones-the term is usually used in the plural-raise the level of glucose in the blood by promoting ... In healthy people, counterregulatory hormones constitute a principal defense against hypoglycemia, and levels are expected to ...
Plant cells produce hormones that affect even different regions of the cell producing the hormone. Hormones are transported ... Plant hormones frequently regulate the concentrations of other plant hormones. Plants also move hormones around the plant ... The word hormone is derived from Greek, meaning set in motion. Plant hormones affect gene expression and transcription levels, ... Different hormones can be sorted into different classes, depending on their chemical structures. Within each class of hormone, ...
Tropic hormones are hormones that have other endocrine glands as their target. Most tropic hormones are produced and secreted ... Tropic hormones are contrasted with non-tropic hormones, which directly stimulate target cells. Tropic hormones from the ... 718 Luteinizing hormone (LH) - stimulates the release of steroid hormones in gonads-the ovary and testes.: 718 Follicle- ... 720-721 Endocrine system Non-tropic hormone Trophic hormone Purves, William K.; David Sadava; Gordon H. Orians; H. Craig Heller ...
For the use of hormone antagonists in cancer, see hormonal therapy (oncology) A hormone antagonist is a specific type of ... Hormone+antagonists at the US National Library of Medicine Medical Subject Headings (MeSH) v t e (Hormonal agents, Receptor ... receptor antagonist which acts upon hormone receptors. Such pharmaceutical drugs are used in antihormone therapy. ...
Watt, G. R.; Davey, K. G. (1996). "Cellular and Molecular Actions of Juvenile Hormone. II. Roles of Juvenile Hormone in Adult ... JH is principally degraded by the enzymes juvenile-hormone esterase (JHE) or juvenile hormone epoxide hydrolase (JHEH). JHE and ... "Juvenile Hormone Bisepoxide Biosynthesis in vitro by the Ring Gland of Drosophila melanogaster: A putative juvenile Hormone in ... Juvenile hormone paces behavioral development in the adult worker honey bee. Hormones and Behavior. 37, 1-14 Rachinsky A., ...
These hormones can cause cancer to not survive in the human body. Hormone receptor proteins bind to a hormone as a result of an ... "e.hormone , Endocrine System : Types of Hormones". e.hormone.tulane.edu. Retrieved 2017-04-06. "The Endocrine System". classes. ... and peptide hormones composed of polypeptides, e.g. thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing ... A hormone receptor is a receptor molecule that binds to a specific chemical messenger . Hormone receptors are a wide family of ...
Genes for human growth hormone, known as growth hormone 1 (somatotropin; pituitary growth hormone) and growth hormone 2 ( ... These cells release the peptides growth hormone-releasing hormone (GHRH or somatocrinin) and growth hormone-inhibiting hormone ... Growth hormone (GH) or somatotropin, also known as human growth hormone (hGH or HGH) in its human form, is a peptide hormone ... Peptide hormones GHRH (somatocrinin) through binding to the growth hormone-releasing hormone receptor (GHRHR) Ghrelin through ...
... was a scientific genius who developed powerful "hormones" which were capable of creating great changes in the ... who were using the hormones to create armies of part animal/part human men. Later, Doctor Hormone was employed as a researcher ... Doctor Hormone is a fictional character created by Bob Bugg, who briefly appeared in comic books published by Dell Comics in ... Doctor Hormone was later summoned by a disembodied voice called the Thinker who temporarily endowed him with superhuman powers ...
Later it was established that the insect brain produces a number of hormones, but the hormone which was the cause of the ... Prothoracicotropic hormone (PTTH) was the first insect hormone to be discovered.The chemical symbol for prothoracicotropic ... which respond by releasing molting hormone (an ecdysteroid) into the haemolymph. Molting hormone stimulates the molting process ... Thus, the brain was originally thought to be the source of the hormone that induces molting in insects. ...
Hormone Standardization Programs for Testosterone and Estradiolplus icon *Assessment of Accuracy and Precision ... The Hormone Reference Method Laboratory (HRML) utilizes reference methods for total testosterone and estradiol in serum. These ... and can be used to assess the measurement accuracy of clinical steroid hormone tests. These methods are not intended for use in ...
Home Science Biology Life Cycle, Processes & Properties growth hormone growth hormone: Media. Share Share ... growth hormone Chemical structure of human growth hormone. The image at left is a space-filling,... ... Growth hormone is secreted by the anterior lobe of the pituitary gland and is vital... ...
... is the effector of growth induced by growth hormone (GH). IGF-I deficiency can be the result of GH resistance or insensitivity ... encoded search term (Growth Hormone Resistance) and Growth Hormone Resistance What to Read Next on Medscape ... Pediatric Growth Hormone Deficiency: Examining Once-Weekly Treatments to Improve Adherence and Outcomes 0.5 CME / CE Credits ... Growth Hormone Resistance Differential Diagnoses. Updated: Jan 15, 2019 * Author: Arlan L Rosenbloom, MD; Chief Editor: Robert ...
Hormones and anatomy make women more prone to knee injuries. WebMD Feature Feb. 21, 2000 (Billings, Montana) -- You might not ... Anatomy, Hormones, and Technique Why are women so prone to knee trouble? Biology is partly to blame. A womans relatively wide ... A woman cant do much about her anatomy or hormones, but other factors are within her control. First of all, women can learn to ... hips put extra stress on her joints, and female hormones seem to weaken ligaments, Hewett says. ...
The Endocrine system has eight major glands that make hormones. Diabetes is the most common endocrine disease in the USA. ... If your hormone levels are too high or too low, you may have a hormone disorder. Hormone diseases also occur if your body does ... Hormones are chemical messengers. They travel through your bloodstream to tissues or organs. Hormones work slowly and affect ... They are usually treated by controlling how much hormone your body makes. Hormone supplements can help if the problem is too ...
4 "Your Body In Balance:The New Science of Food, Hormones, and Health". Human hormones [...] ...
Luteinizing hormone (IU/L). English Text: Luteinizing hormone (IU/L) Target: Females only 35 YEARS - 60 YEARS. Code or Value. ... Luteinizing hormone (mIU/mL). English Text: Luteinizing hormone (mIU/mL). Target: Females only 35 YEARS - 60 YEARS. Code or ... LBXFSH - Follicle stimulating hormone (mIU/mL). Variable Name: LBXFSH. SAS Label: Follicle stimulating hormone (mIU/mL). ... LBDFSHSI - Follicle stimulating hormone (IU/L). Variable Name: LBDFSHSI. SAS Label: Follicle stimulating hormone (IU/L). ...
... follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These hormones stimulate the ovaries to produce sex hormones. ... Researchers in the US have bioengineered an artificial ovary that makes sex hormones in the same proportions as a healthy one. ... They report that in the lab setting at least, the bioengineered ovary shows sustained released of sex hormones estrogen and ... The multilayer 3D scheme also secreted inhibin and activin, two hormones that interact with the pituitary and hypothalamus and ...
Learn more about breast cancer hormone receptors and how to interpret your hormone receptor test results within your pathology ...
((SL Advertiser)) enVoqueMD Personalized Wellness has 2 locations, Scottsdale - 10155 E. Via Linda suite H136 and Mesa - 1423 s Higley suite 122 (480) 447-3213 or visitwww.enVoqueMD.com
JavaScript is disabled for your browser. Some features of this site may not work without it ...
Does anybody know of any studies that effect how society regulates neurotransmitters and/or hormones in the body; especially ... Suggested for: Effects of Social Situations on Neurotransmitters and Hormones Toxic mushrooms and fungi, their toxins and ... As far as hormones, there are many that are thought to selectively sensitize certian neural circuits throuhout the brainstem ... As far as hormones, there are many that are thought to selectively sensitize certian neural circuits throuhout the brainstem ...
Hormone replacement therapy, also known as HRT, is a very controversial subject when it comes to womens health issues. ... There are many ways hormones can be taken:. • Systemic therapy - Hormones are given to the whole body either through a patch or ... Hormones are chemicals that act as messengers inside our bodies. Some hormones have specific functions in reproductive health. ... Hormones used for HRT. Hormones that can be replaced include estrogen, progestin, and testosterone. Standard HRT for ...
WOMENS METABOLISM/HORMONE EXPERT provides Personal Training, Nutritionist services. See their reviews & get quotes today. ... Enter Jen .... she was able to help me figure out what worked for my body and my hormones. Within the first 3 months of working ... Introduction: *REMOTE SERVICES ONLY Hi, Im Jen! Female Metabolism/Hormone Expert 👋 I am a female fat loss expert with over 25 ... Jen Vigil- WOMENS METABOLISM/HORMONE EXPERTs reply. Awww my friend. I am so grateful our paths crossed too. Love getting to ...
Shop Thorne for the highest quality Hormone Support supplements. Subscribe to your favorite supplements and save up to 20% on ...
LBXTSH - Thyroid stim hormone (TSH) (IU/L). Variable Name: LBXTSH. SAS Label: Thyroid stim hormone (TSH) (IU/L). English Text: ... Thyroid hormones Subsample 2 yr Mec Wgt. English Text: Thyroid hormones Subsample 2 yr Mec Wgt. Target: Both males and females ... Thyroid hormones Subsample 4 yr Mec Wgt. English Text: Thyroid hormones Subsample 4 yr Mec Wgt. Target: Both males and females ... Thyroid stimulating hormone (IU/L). Target: Both males and females 12 YEARS - 150 YEARS. Code or Value. Value Description. ...
Hormonal Imbalance In Women , 5 Natural Ways To Balance Your Hormones With Diet & Lifestyle Changes. Duration: 03:39 23-03-2023 ... Hormonal Imbalance In Women , 5 Natural Ways To Balance Your Hormones With Diet & Lifestyle Changes. Firstpost ...
The action sites for parathyroid hormone (PTH), salmon calcitonin (SCT), and arginine-vasopressin (AVP) were investigated along ... Adenylate cyclase responsiveness to hormones in various portions of the human nephron.. ... Adenylate cyclase responsiveness to hormones in various portions of the human nephron.. ... suggesting that enzyme sensitivity to hormones as well preserved under the conditions used in this study. ...
Transgender Hormone Therapy in Fairbanks, AK Fairbanks Health Center offers the following services specifically for clients who ...
Or will the once-bitten women who have filed more than 5,000 law suits claiming the hormones gave them cancer feel fooled twice ... But if US women embrace a major psychiatric drug with possible liver and heart complication side effects after the hormone hoax ... Can Hormone Maker Wyeth Fool American Women Twice?. by Martha Rosenberg / June 21st, 2008 ... Was it Wyeths fault that the hormone "therapy" it pushed for decades actually increases breast cancer by 26 percent, heart ...
In order to counteract the effect of these stress hormones, Dr. Rui and colleagues turned to another hormone, called prolactin ... Recently, researchers have discovered that the hormone progesterone, an ingredient in contraceptives and menopausal hormone ... "The data we have collected suggests that hormones used in breast cancer treatment, which are also produced by the body in ... "Although prolactin appears to be an excellent candidate to counteract the effect of stress hormones on women with this subtype ...
NBCA provides the information and materials on this site for general information purposes only. You should not rely on the information provided as a substitute for actual professional medical advice, care, or treatment. This site is not designed to and does not provide medical advice, professional diagnosis, opinion, treatment, or services to you or any individual. If you believe you have a medical emergency, call 911 immediately. ...
The optimal age for women to begin hormone replacement therapy varies depending on their specific health situation, but ... So older women (women in their 60s) are taking more of a risk than younger women when starting hormone replacement therapy.". ... He added, "These women often take hormone therapy because their bodies will have been deprived of estrogen for a much longer ... The optimal age for women to begin hormone replacement therapy varies depending on their specific health situation, but ...
Dr Zava has just completed a study of more than 250 herbal extracts and their ability to bind to hormone receptors in breast ... So you think you need . . . A natural hormone supplement. What Doctors Dont Tell You4 min read ... Tagged asabsorptionbreast cancerDr David ZavaGenisteinhormone supplementsHRTmenopausal symptomsplant oestrogensprogesterone ... For example, genistein can be bought over the counter in potent dosages that are virtually equivalent to those in hormone ...
If you want a breakfast for healthy hormones, endocrinologists reccomend a bowl of savory oatmeal with greens, eggs and avocado ... Satiety, aka how full you feel after a meal, is tied to hormone health in an intricate way. Hunger is dictated by hormones that ... The One Breakfast Endocrinologists Want You to Eat for Healthy Hormones By Lauren OConnor, MS, RDN, RYT May 29, 2022 ... Keeping these hormones balanced is a major factor in your metabolic health. For example, high levels of ghrelin in relation to ...
The Effects of Hormones and the Environment on Brain Development. This module presents some startling and significant findings ... Classroom Resources > The Brain: Teaching Modules > 2. The Effects of Hormones and the Environment on Brain Development ... Animated diagrams show the brain releasing hormones, followed by a role-playing situation illustrating on-the-job stress that ... 2 The Effects of Hormones and the Environment on Brain Development. This module presents some startling and significant ...
Although monitoring salivary hormone levels is promoted by some as a means of tailoring a hormone treatment to an individual ... Companies that make bioidentical hormones (also called natural or compounded hormones) have been quick to jump into the void, ... ACOG also stresses that salivary testing of a womans hormone levels is not useful because they vary within each woman ... Ever since the Womens Health Initiative study found that women taking supplemental hormones had an increased risk of breast ...
Fruit is seriously messing with your hormones. Heres what its doing-and how to mitigate its negative impact. ...
Hormones are the primary reason for hair loss in women, with the specific hormone responsible being DHT or dihydrotestosterone ... Hormones And Hair Loss, In Women. Jun 19, 2020. by grannymed_e6d2p7 in Health Spartanburg-hair-topper ... Probably the most common cause of an extreme drop in this hormone in women is menopause, and hair loss is a common symptom. The ...
Sachdev Sidhus lab contains the insert ESRRA_Hormone-recep. This plasmid is available through Addgene. ... pHH0103_ESRRA_Hormone-recep was a gift from Sachdev Sidhu (Addgene plasmid # 109908 ; http://n2t.net/addgene:109908 ; RRID: ...
  • The FDA seems particularly upset with "marketing" claims that bio-identical hormones are a better choice than "FDA approved menopausal hormone therapy drug products. (weeksmd.com)
  • Serum thyroid-stimulating hormone (TSH) and thyroxine (T4) levels will be used to assess thyroid function and will provide population-based reference information on these hormone levels. (cdc.gov)
  • Result: The thyroid stimulating hormone (TSH) and total cholesterol, LDL, VLDL values were significantly higher, whereas T3, T4 and HDL values were in a decreasing order with that of control group. (who.int)
  • They report that in the lab setting at least, the bioengineered ovary shows sustained released of sex hormones estrogen and progesterone, and suggest it may provide a more natural option for women than hormone replacement therapy. (medicalnewstoday.com)
  • But while drug-based hormone replacement therapy (HRT) can help, it is often not recommended for long-term use due to the increased risk of heart disease and breast cancer . (medicalnewstoday.com)
  • Hormone replacement therapy, also known as HRT, is a very controversial subject when it comes to women's health issues. (empowher.com)
  • Hormone replacement therapy is typically triggered by the onset of the symptoms of menopause or perimenopause. (empowher.com)
  • That is the basic purpose for hormone replacement therapy. (empowher.com)
  • An article to follow will explain how bio-identical hormone replacement therapy differs from tradition HRT. (empowher.com)
  • The optimal age for women to begin hormone replacement therapy varies depending on their specific health situation, but physicians suggest the treatment tends to be safer for women in their 40s or 50s than those who are older. (newsmax.com)
  • So older women (women in their 60s) are taking more of a risk than younger women when starting hormone replacement therapy. (newsmax.com)
  • For example, genistein can be bought over the counter in potent dosages that are virtually equivalent to those in hormone replacement therapy. (healthy.net)
  • The FDA is ignoring the fact that before Premarin the work on hormone replacement therapy was with "bio-identical" hormones. (weeksmd.com)
  • Growth hormone is secreted by the anterior lobe of the pituitary gland and is vital. (britannica.com)
  • Reporting in the March issue of Biomaterials , Emmanuel Opara at Wake Forest University, North Carolina, and colleagues, describe how using tissue from rats, they made a bioartificial ovary by placing two hormone-producing ovary cells in an algal capsule to simulate the natural follicular environment, and then stimulated it using pituitary gland hormones. (medicalnewstoday.com)
  • The team then assessed the function and performance of the three capsule systems in the lab by exposing them to two hormones released by the pituitary gland: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). (medicalnewstoday.com)
  • Systemic therapy - Hormones are given to the whole body either through a patch or as pills that are absorbed either through the skin or in the digestive system. (empowher.com)
  • Topical therapy - Hormones mainly reach areas near where they are given, rather than reaching the whole body. (empowher.com)
  • Was it Wyeth's fault that the hormone "therapy" it pushed for decades actually increases breast cancer by 26 percent, heart attacks by 29 percent, stroke by 41 percent and doubles the risk of blood clots and dementia? (dissidentvoice.org)
  • Recently, researchers have discovered that the hormone progesterone, an ingredient in contraceptives and menopausal hormone replacement therapies, might stimulate the growth of breast cancer cells that are resistant to anti-estrogen therapy and chemotherapy. (health.am)
  • He added, "These women often take hormone therapy because their bodies will have been deprived of estrogen for a much longer period of time, and that can bring on a host of other health problems. (newsmax.com)
  • Although monitoring salivary hormone levels is promoted by some as a means of 'tailoring' a hormone treatment to an individual, hormone therapy does not require customized dosing. (ourbodiesourselves.org)
  • By targeting estriol and indicating that they are planning on banning its importation, this will effectively end compounded hormones for women because 80% of all bio-identical hormone therapy uses estriol. (weeksmd.com)
  • The primary female sex hormones are estrogen and progesterone, although testosterone is needed by the body to make estrogen. (empowher.com)
  • For more information about how these hormones function in the body, read the articles on estrogen , progesterone , and testosterone . (empowher.com)
  • Hormones that can be replaced include estrogen, progestin, and testosterone. (empowher.com)
  • HRT treats menopause symptoms by regularly providing female hormones the body has stopped producing - such as testosterone, progesterone and estrogen - to stabilize and raise hormone levels, according to WebMD . (newsmax.com)
  • DHEA is known to be a precursor to the numerous steroid sex hormones (including estrogen and testosterone) which serve well-known functions, but the specific biological role of DHEA itself is not so well understood. (directlabs.com)
  • The Hormone Reference Method Laboratory (HRML) utilizes reference methods for total testosterone and estradiol in serum. (cdc.gov)
  • The primary male sex hormone is testosterone. (empowher.com)
  • Progesterone, however, belongs to a family of hormones called 3-ketosteroids that are often produced by the body in times of stress. (health.am)
  • Studies have shown that patients with uraemia may manifest some varie-ties of hormonal abnormality, including decreased serum concentrations of thyroid and gonadal hormones and increased serum levels of growth hormone and prolactin [5-8]. (who.int)
  • Hormones are chemical messengers. (medlineplus.gov)
  • Hormones are chemicals that act as messengers inside our bodies. (empowher.com)
  • Hormones are chemical messengers that affect hundreds of mechanisms that keep your body functioning, according to the Cleveland Clinic . (livestrong.com)
  • Pediatric endocrinology is the study of a child's endocrine system, which controls the hormones in the body. (bannerhealth.com)
  • The foods you eat affect the production and secretion of hormones, according to the Institute for Functional Medicine . (livestrong.com)
  • Research shows that eating a breakfast high in protein may help regulate the secretion of ghrelin, the hormone responsible for short-term appetite regulation, per a Feburary 2006 study in the ‌ American Journal of Clinical Nutrition ‌ . (livestrong.com)
  • Secretion of thyroid hormones and their metabolism in humans are controlled at 2 levels: the hypothalamic-pituitary-thyroid negative feedback axis controls thyroidal secretion, while extra-thyroidal tissues regulate the production of triiodothyronine (T3) and are responsible for thyroid hormone degradation [5-7]. (who.int)
  • The action sites for parathyroid hormone (PTH), salmon calcitonin (SCT), and arginine-vasopressin (AVP) were investigated along the human nephron by measuring adenylate cyclase activity, using a single tubule in vitro microassay. (jci.org)
  • This ensures measurement results are highly certain, and can be used to assess the measurement accuracy of clinical steroid hormone tests. (cdc.gov)
  • Dehydroepiandrosterone (pronounced dee-hi-dro-epp-ee-ann-dro-stehr-own), or DHEA as it is more often called, is a steroid hormone produced in the adrenal gland. (directlabs.com)
  • Editorial: Steroid hormone receptors in cardiometabolic disease. (bvsalud.org)
  • In order to counteract the effect of these stress hormones, Dr. Rui and colleagues turned to another hormone, called prolactin. (health.am)
  • When the hormones levels become low enough, a woman stops having her period and is said to have reached menopause. (empowher.com)
  • Probably the most common cause of an extreme drop in this hormone in women is menopause, and hair loss is a common symptom. (grannymed.com)
  • The researchers see this ability to allow the body's own feedback mechanisms to control the release of ovarian hormones as another potential advantage of the bioartificial ovary over drug-based HRT. (medicalnewstoday.com)
  • Even tried-and-tested hormone treatments like tamoxifen, used in high doses to block oestrogen-sensitive cancers, can cause other cancers, like ovarian cancer. (healthy.net)
  • The thyroid gland produces thyroxine (T4) but only 20% of the most metabolically active thyroid hormone T3 and 5% to 8% of the calorigenically inactive reverse T3 (RT3) hormone and T4 in tissues such as liver, kidneys and muscles [8,9]. (who.int)
  • Growth factors may emerge as an interesting alternative in the reconstruction of tissues, highlighting the growth hormone (GH), a regulator of bone growth and remodeling, which plays a key role affecting chondrocytes, osteoclasts, and osteoblasts. (bvsalud.org)
  • Companies that make bioidentical hormones (also called natural or compounded hormones) have been quick to jump into the void, often claiming that their products are safer and more effective than traditional "synthetic" hormones. (ourbodiesourselves.org)
  • Remember when Wyeth Pharmaceuticals, the number one manufacturer of synthetic hormone products, petitioned the FDA in October 2005 to restrict access to bio-identical hormones? (weeksmd.com)
  • The fate of synthetic and endogenous hormones used in the US beef and dairy industries and the potential for human exposure. (cdc.gov)
  • Female Metabolism/Hormone Expert 👋 I am a female fat loss expert with over 25 years experience. (thumbtack.com)
  • I created my Signature 4M Formula to give women a plug and play blueprint to understand how their metabolism ACTUALLY works, how to balance out their hormones, how to effectively burn fat and build a lean body WHILE creating a sustainable lifestyle that works for them. (thumbtack.com)
  • While some women can use hormone blockers such as tamoxifen or aromatase inhibitors to control their cancer for a decade or more, one of four will develop resistance. (health.am)
  • Not only are these steroids sometimes used in cancer treatment, glucocorticoid hormones are also naturally produced by the body in response to stress ," says first author Chelain Goodman, an M.D./Ph.D. student in Dr. Rui's lab. (health.am)
  • Chemical structure of human growth hormone. (britannica.com)
  • Rosenbloom AL, Guevara-Aguirre J, Rosenfeld RG, Francke U. Growth hormone receptor deficiency in Ecuador. (medscape.com)
  • Kranzler JH, Rosenbloom AL, Martinez V, Guevara-Aguirre J. Normal intelligence with severe insulin-like growth factor I deficiency due to growth hormone receptor deficiency: a controlled study in a genetically homogeneous population. (medscape.com)
  • When it comes to your child's growth, puberty and any disorders related to hormones, it's important to understand pediatric endocrinology. (bannerhealth.com)
  • The FDA is using a multi-prong approach that started last year with a Congressional Hearing before the Aging Committee, and continuing with banning estriol, denying the term "bio-identical" to characterize compounded hormones therapies, and encouraging consumers to use drugs instead. (weeksmd.com)
  • Hormone supplements can help if the problem is too little of a hormone. (medlineplus.gov)
  • When confronted with hot flashes, night sweats, mood swings, and depression, some women chose to "tough it out" while others try to help their bodies adjust by taking supplements of the hormones that their bodies are lacking. (empowher.com)
  • We suggest that a feedback relationship exists between the major end catabolic products (creatinine and blood urea nitrogen) and thyroid hormone serum levels. (who.int)
  • The aim of this study was to compare the serum levels of thyroid hormones T3 and T4 with blood urea nitrogen (BUN) and creatinine serum levels in patients with chronic renal failure, before and after haemodialysis. (who.int)
  • After a diagnosis, a person may need to monitor levels of certain hormones. (medicalnewstoday.com)
  • If your hormone levels are too high or too low, you may have a hormone disorder. (medlineplus.gov)
  • Stress, infection and changes in your blood's fluid and electrolyte balance can also influence hormone levels. (medlineplus.gov)
  • By mid-life, a woman's reproductive system starts to shut down and the levels of these hormones begin to fluctuate. (empowher.com)
  • Other symptoms that can be caused by low hormone levels include dryness and thinness of the tissue in the vagina (birth canal) which can make sexual intercourse painful. (empowher.com)
  • ACOG also stresses that salivary testing of a woman's hormone levels is not useful because they vary within each woman depending on her diet, time of day, the specific hormone being tested, and other variables. (ourbodiesourselves.org)
  • Your doctor can test your child's blood or urine to determine hormone levels and any endocrine disorders. (bannerhealth.com)
  • The FDA also downplays the lack of adverse event reports in relation to bio-identical hormones. (weeksmd.com)
  • Hormones and anatomy make women more prone to knee injuries . (medicinenet.com)
  • Women who are post-menopausal or whose ovaries are damaged or have been removed, don't produce sex hormones, which can lead to undesirable effects ranging from hot flashes and vaginal dryness to infertility . (medicalnewstoday.com)
  • Can Hormone Maker Wyeth Fool American Women Twice? (dissidentvoice.org)
  • Or will the once-bitten women who have filed more than 5,000 law suits claiming the hormones gave them cancer feel fooled twice? (dissidentvoice.org)
  • Now, new research published June 22nd in the journal Oncogene, a Nature publication, shows that additional hormones, including stress hormones that are frequently used to treat the side effects of common chemotherapy, could make these effective cancer drugs fail sooner in some women with breast cancer. (health.am)
  • Ever since the Women's Health Initiative study found that women taking supplemental hormones had an increased risk of breast cancer, heart disease, and stroke, women struggling with menopausal symptoms have searched for safer alternatives. (ourbodiesourselves.org)
  • The FDA has also set up a page for consumers of myths vs. facts about compounded "bioidentical" hormones , and expressed concern that "claims like these [about the effects of the hormones] mislead women and health care professionals, giving them a false sense of assurance about using potentially dangerous hormone products. (ourbodiesourselves.org)
  • Hormones are the primary reason for hair loss in women, with the specific hormone responsible being DHT or dihydrotestosterone. (grannymed.com)
  • In a series of warning letters to compounding pharmacies across the country, the FDA is asserting a policy that would deny hundreds of thousands of women access to many compounded bio-identical hormones, substituting the FDA's judgment for that of doctors. (weeksmd.com)
  • Ovaries produce eggs and also secrete sex hormones that are important for women's bone and heart health. (medicalnewstoday.com)
  • In particular, your diet affects a hormone called insulin. (livestrong.com)
  • Keeping your hormones happy means eating a balanced diet of whole, nutrient-dense foods. (livestrong.com)
  • Hunger is dictated by hormones that send chemical signals to your brain which tell us it's time to eat, namely, ghrelin and leptin. (livestrong.com)
  • Hormone diseases also occur if your body does not respond to hormones the way it is supposed to. (medlineplus.gov)
  • It was concluded that the administration of hormones is an attempt to control the future, but also as a technology for the control and management of bodies, engendering a series of practices that institutionalize certain modes of subjectivation. (bvsalud.org)
  • A woman's relatively wide hips put extra stress on her joints, and female hormones seem to weaken ligaments, Hewett says. (medicinenet.com)
  • The multilayer 3D scheme also secreted inhibin and activin, two hormones that interact with the pituitary and hypothalamus and are important for regulating the production of female sex hormones. (medicalnewstoday.com)
  • Some hormones have specific functions in reproductive health. (empowher.com)
  • Eating meals rich in protein, fiber and healthy fats can help support your hormone health. (livestrong.com)
  • Maybe you've been diagnosed with an imbalance or maybe you're just looking to change your eating habits with hormone health in mind. (livestrong.com)
  • A bowl of savory oats with an egg, greens and avocado provides you with lean protein, complex carbs, healthy fats, antioxidants and fiber - all of which play a role in hormone health, according to a February 2018 review in ‌ Nutrients ‌. (livestrong.com)
  • Satiety, aka how full you feel after a meal, is tied to hormone health in an intricate way. (livestrong.com)
  • Keeping these hormones balanced is a major factor in your metabolic health. (livestrong.com)
  • You may blame it on your hormones - that stubborn acne, those mood swings, the weight gain. (livestrong.com)
  • Adenylate cyclase responsiveness to hormones in various portions of the human nephron. (jci.org)
  • Hormones, understood as products and as part of processes that produce human dynamics, have acted innumerable practices in our society, including risky practices. (bvsalud.org)
  • Since these symptoms are caused by a lack of certain hormones, so it stands to reason that replacing that hormone would eliminate the symptoms. (empowher.com)
  • The data we have collected suggests that hormones used in breast cancer treatment, which are also produced by the body in response to stress, could have a major impact on disease progression and outcomes in some patients ," says Hallgeir Rui, M.D., Ph.D., a Professor of Cancer Biology, Pathology and Medical Oncology at Thomas Jefferson University. (health.am)
  • a small number of additional cases are caused by neurosurgical instrument contamination, corneal grafts, gonadotrophic hormone, and secondary infection with variant CJD transmitted by transfusion of blood products. (cdc.gov)
  • As measured in one experiment, nearly one-half maximal responses were obtained with 0.1 IU/ml PTH or 0.3 ng/ml SCT in thick ascending limbs and with 1 nM AVP in collecting tubules, suggesting that enzyme sensitivity to hormones as well preserved under the conditions used in this study. (jci.org)
  • Bandi A, Pyadala N, Srivani N, Borugadda R, Maity SN, BN RK, Polavarapu R.. A comparative assessment of thyroid hormones and lipid profile among hypothyroid patients: A hospital based case control study. (who.int)
  • Hormones work slowly and affect body processes from head to toe. (medlineplus.gov)
  • Sex hormones / this publication is the outcome of the meeting of the IARC Working Group on the Evaluation of the Carcinogenic Risk of Chemicals to Man, Lyon, 4-11 February 1974. (who.int)
  • Researchers in the US have bioengineered an artificial ovary that makes sex hormones in the same proportions as a healthy one. (medicalnewstoday.com)
  • They are usually treated by controlling how much hormone your body makes. (medlineplus.gov)
  • These conditions can occur when the body produces too much or too little endocrine hormones. (bannerhealth.com)
  • The Food and Drug Administration (FDA) has announced a major assault on compounding medicine and bio-identical hormones. (weeksmd.com)
  • Previous studies using thyroid function test shows lower thyroid hormone concentrations in haemodialysed patients [1-6]. (who.int)
  • This module presents some startling and significant findings relating to the effects of sex hormones on brain development. (learner.org)
  • The chapter contends that DHEA is perhaps the most significant endocrine biomarker known, and further postulates that all of the steroid's effects may be explained by its action as a precursor hormone which provides "a host of steroid progeny with which to maintain the broad balance of host response related to species and individual survival. (directlabs.com)
  • A woman can't do much about her anatomy or hormones, but other factors are within her control. (medicinenet.com)