An AT-hook-containing (AT-HOOK MOTIFS) nuclear protein that is expressed predominantly in proliferating and undifferentiated mesenchymal cells.
An 11-kDa AT-hook motif-containing (AT-HOOK MOTIFS) protein that binds to the minor grove of AT-rich regions of DNA. It is the full-length product of the alternatively-spliced HMGA1 gene and may function as an architectural chromatin binding protein that is involved in transcriptional regulation.
An AT-hook motif-containing protein (AT-HOOK MOTIFS) that binds to the minor grove of AT-rich regions of DNA. It is a truncated form of HMGA1a protein that is produced by alternative-splicing of the HMGA1 gene. It may function as an architectural chromatin binding protein that is involved in transcriptional regulation.
A calcium-binding protein that is 92 AA long, contains 2 EF-hand domains, and is concentrated mainly in GLIAL CELLS. Elevation of S100B levels in brain tissue correlates with a role in neurological disorders.
Proteins transcribed from the E1B region of ADENOVIRUSES which are involved in regulation of the levels of early and late viral gene expression.
A family of highly acidic calcium-binding proteins found in large concentration in the brain and believed to be glial in origin. They are also found in other organs in the body. They have in common the EF-hand motif (EF HAND MOTIFS) found on a number of calcium binding proteins. The name of this family derives from the property of being soluble in a 100% saturated ammonium sulfate solution.
A genus of plant viruses of the family BROMOVIRIDAE, which infect cucurbits and solanaceous plants. Transmission occurs via aphids in a non-persistent manner, and also via seeds. The type species Cucumber mosaic virus, a CUCUMOVIRUS, should not be confused with Cucumber green mottle mosaic virus, a TOBAMOVIRUS.
DNA-binding motifs, first described in one of the HMGA PROTEINS: HMG-I(Y) PROTEIN. They consist of positively charged sequences of nine amino acids centered on the invariant tripeptide glycine-arginine-proline. They act to fasten the protein to an AT RICH SEQUENCE in the DNA.
An AT-hook-containing (AT-HOOK MOTIFS) nuclear protein that may be involved in retinoid-dependent transcriptional activity.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Proteins encoded by a VIRAL GENOME that are produced in the organisms they infect, but not packaged into the VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Factors which enhance the growth potentialities of sensory and sympathetic nerve cells.
A benign tumor composed of fat cells (ADIPOCYTES). It can be surrounded by a thin layer of connective tissue (encapsulated), or diffuse without the capsule.
A mononuclear Fe(II)-dependent oxygenase, this enzyme catalyzes the conversion of homogentisate to 4-maleylacetoacetate, the third step in the pathway for the catabolism of TYROSINE. Deficiency in the enzyme causes ALKAPTONURIA, an autosomal recessive disorder, characterized by homogentisic aciduria, OCHRONOSIS and ARTHRITIS. This enzyme was formerly characterized as EC 1.13.1.5 and EC 1.99.2.5.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX.
Established cell cultures that have the potential to propagate indefinitely.
A class of closely related heterogeneous-nuclear ribonucleoproteins of approximately 34-40 kDa in size. Although they are generally found in the nucleoplasm, they also shuttle between the nucleus and the cytoplasm. Members of this class have been found to have a role in mRNA transport, telomere biogenesis and RNA SPLICING.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Proteins found in any species of virus.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
An HMG-box domain (HMG-BOX DOMAINS) found highly expressed in embryonic tissue and in placenta.
A family of inhibitory proteins which bind to the REL PROTO-ONCOGENE PROTEINS and modulate their activity. In the CYTOPLASM, I-kappa B proteins bind to the transcription factor NF-KAPPA B. Cell stimulation causes its dissociation and translocation of active NF-kappa B to the nucleus.
A temperate coliphage, in the genus Mu-like viruses, family MYOVIRIDAE, composed of a linear, double-stranded molecule of DNA, which is able to insert itself randomly at any point on the host chromosome. It frequently causes a mutation by interrupting the continuity of the bacterial OPERON at the site of insertion.
A cell line derived from cultured tumor cells.
Enzymes that are involved in the reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule, which contained damaged regions.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Found in large amounts in the plasma and urine of patients with malignant melanoma. It is therefore used in the diagnosis of melanoma and for the detection of postoperative metastases. Cysteinyldopa is believed to be formed by the rapid enzymatic hydrolysis of 5-S-glutathionedopa found in melanin-producing cells.

Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. (1/11)

A drastic reduction in BRCA1 gene expression is a characteristic feature of aggressive sporadic breast carcinoma. However, the mechanisms underlying BRCA1 downregulation in breast cancer are not well understood. Here we report that both in vitro and in vivo HMGA1b protein binds to and inhibits the activity of both human and mouse BRCA1 promoters. Consistently, murine embryonic stem (ES) cells with the Hmga1 gene deleted display higher Brca1 mRNA and protein levels than do wild-type ES cells. Stable transfection of MCF-7 cells with the HMGA1b cDNA results in a decrease of BRCA1 gene expression and in a lack of BRCA1 induction after estrogen treatment. Finally, we found an inverse correlation between HMGA1 and BRCA1 mRNA and protein expression in human mammary carcinoma cell lines and tissues. These data indicate that HMGA1 proteins are involved in transcriptional regulation of the BRCA1 gene, and their overexpression may have a role in BRCA1 downregulation observed in aggressive mammary carcinomas.  (+info)

Construction and analysis of cells lacking the HMGA gene family. (2/11)

The high mobility group A (HMGA) family of non-histone chromosomal proteins is encoded by two related genes, HMGA1 and HMGA2. HMGA proteins are architectural transcription factors that have been found to regulate the transcription of a large number of genes. They are also some of the most commonly dysregulated genes in human neoplasias, highlighting a role in growth control. HMGA1 and HMGA2 have also been found to stimulate retroviral integration in vitro. In this study, we have cloned chicken HMGA1, and used the chicken DT40 B-cell lymphoma line to generate cells lacking HMGA1, HMGA2 and both in combination. We tested these lines for effects on cellular growth, gene control and retroviral integration. Surprisingly, we found that the HMGA gene family is dispensable for growth in DT40 cells, and that there is no apparent defect in retroviral integration in the absence of HMGA1 or HMGA2. We also analyzed the activity of approximately 4000 chicken genes, but found no significant changes. We conclude that HMGA proteins are not strictly required for growth control or retroviral integration in DT40 cells and may well be redundant with other factors.  (+info)

Derepression of HMGA2 gene expression in retinoblastoma is associated with cell proliferation. (3/11)

To assess whether retinoblastoma formation is associated with the expression of high mobility group (HMG) A2 protein, a transcription factor that is highly expressed during embryogenesis and completely repressed in normal adult tissues, we performed Northern and Western blots and RT-PCR analyses, and immunohistochemistry to test for HMGA2 expression. We used established retinoblastoma cell lines in tumors grown in nude mice and clinical retinoblastoma specimens, and contrasted these tumors with normal embryonic and adult retina. Adenoviral-mediated antisense experiments were conducted on the retinoblastoma cell lines to suppress HMGA2 expression and determine if cell proliferation is HMGA2-dependent. We also transfected a retinoblastoma cell line to identify cis-regulatory elements and transcription initiation sites on the HMGA2 gene promoter. HMGA2 gene expression was silenced in terminally differentiated retina of 6-wk-old mice, but it was detected in retina of a 13.5-d postcoitum embryo. Reactivation of HMGA2 gene expression was observed in the retinoblastoma cell lines Y79, WERI-Rb1, and TOTL-1, in tumors derived from some of these cells propagated in nude mice, and in a high frequency of retinoblastomas excised from human patients. This suggests that expression of HMGA2 gene in retinoblastoma cells involves a derepression process. By using an antisense approach to block HMGA2 expression, we observed a decrease in the number of proliferating retinoblastoma cells. As a 1st step toward understanding HMGA2 gene reactivation in retinoblastoma, we mapped the 2 transcription initiation sites and associated positive regulatory elements within the WERI-Rb1 cells. Our discovery of derepression of HMGA2 gene expression in retinoblastoma provides the 1st evidence that this protein might contribute to neoplastic transformation of retina cells.  (+info)

Dynamic and differential in vivo modifications of the isoform HMGA1a and HMGA1b chromatin proteins. (4/11)

Most naturally occurring mammalian cancers and immortalized tissue culture cell lines share a common characteristic, the overexpression of full-length HMGA1 (high mobility group A1) proteins. The HMGA1 protooncogene codes for two closely related isoform proteins, HMGA1a and HMGA1b, and causes cancerous cellular transformation when overexpressed in either transgenic mice or "normal" cultured cell lines. Previous work has suggested that the in vivo types and patterns of the HMGA1 post-translational modifications (PTMs) differ between normal and malignant cells. The present study focuses on the important question of whether HMGA1a and HMGA1b proteins isolated from the same cell type have identical or different PTM patterns and also whether these isoform patterns differ between non-malignant and malignant cells. Two independent mass spectrometry methods were used to identify the types of PTMs found on specific amino acid residues on the endogenous HMGA1a and HMGA1b proteins isolated from a non-metastatic human mammary epithelial cell line, MCF-7, and a malignant metastatic cell line derived from MCF-7 cells that overexpressed the transgenic HMGA1a protein. Although some of the PTMs were the same on both the HMGA1a and HMGA1b proteins isolated from a given cell type, many other modifications were present on one but not the other isoform. Furthermore, we demonstrate that both HMGA1 isoforms are di-methylated on arginine and lysine residues. Most importantly, however, the PTM patterns on the endogenous HMGA1a and HMGA1b proteins isolated from non-metastatic and metastatic cells were consistently different, suggesting that the isoforms likely exhibit differences in their biological functions/activities in these cell types.  (+info)

High Mobility Group A1 (HMGA1) proteins interact with p53 and inhibit its apoptotic activity. (5/11)

HMGA gene overexpression and rearrangements are frequent in several tumours, but their oncogenic function is still unclear. Here we report of a physical and functional interaction between High Mobility Group A1 (HMGA1) protein and p53 oncosuppressor. We found that HMGA1 binds p53 in vitro and in vivo, and both proteins are present in the same complexes bound to the Bax gene promoter. HMGA1 interferes with the p53-mediated transcription of p53 effectors Bax and p21(waf1) while cooperates with p53 in the transcriptional activation of the p53 inhibitor mdm2. This transcriptional modulation is associated with a reduced p53-dependent apoptosis in cells expressing exogenous HMGA1 and p53, or in cells expressing endogenously the proteins and in which p53 was activated by UV-irradiation. Furthermore, antisense inhibition of HMGA1b expression dramatically increases the UV-induced p53-mediated apoptosis. These data define a new physical and functional interaction between HMGA1 and p53 that modulates transcription of p53 target genes and inhibits apoptosis.  (+info)

Dual role for SUMO E2 conjugase Ubc9 in modulating the transforming and growth-promoting properties of the HMGA1b architectural transcription factor. (6/11)

Members of the HMGA1 (high mobility group A1) family of architectural transcription factors, HMGA1a and HMGA1b, play important roles in many normal cellular processes and in tumorigenesis. We performed a yeast two-hybrid screen for HMGA1-interacting proteins and identified the SUMO E2 conjugase Ubc9 as one such partner. The Ubc9-interacting domain of HMGA1 is bipartite, consisting of a proline-rich region near the N terminus and an acidic domain at the extreme C terminus, whereas the HMGA1-interacting domain of Ubc9 comprises a single region previously shown to associate with and SUMOylate other transcription factors. Consistent with these findings, endogenous HMGA1 proteins and Ubc9 could be co-immunoprecipitated from several human cell lines. Studies with HMGA1b proteins containing mutations of either or both Ubc9-interacting domains and with Ubc9-depleted cell lines indicated that the proline-rich domain of HMGA1b positively influences transformation and growth, whereas the acidic domain negatively influences these properties. None of the changes in HMGA1 protein functions mediated by Ubc9 appears to require SUMOylation. These findings are consistent with the idea that Ubc9 can act as both a positive and negative regulator of proliferation and transformation via its non-SUMO-dependent interaction with HMGA1 proteins.  (+info)

A quantitative study on the in vitro and in vivo acetylation of high mobility group A1 proteins. (7/11)

High mobility group (HMG) A1 proteins are subject to a number of post-translational modifications, which may regulate their function in gene transcription and other cellular processes. We examined, by using mass spectrometry, the acetylation of HMGA1a and HMGA1b proteins induced by histone acetyltransferases p300 and PCAF in vitro and in PC-3 human prostate cancer cells in vivo. It turned out that five lysine residues in HMGA1a, i.e., Lys-14, Lys-64, Lys-66, Lys-70, and Lys-73, could be acetylated by both p300 and PCAF. We further quantified the level of acetylation by analyzing, with LC-MS/MS, the proteolytic peptides of the in vitro or in vivo acetylated HMGA1 proteins where the unmodified lysine residues were chemically derivatized with a perdeuterated acetyl group. Quantification results revealed that p300 and PCAF exhibited different site preferences for the acetylation; the preference of p300 acetylation followed the order of Lys-64 approximately Lys-70 > Lys-66 > Lys-14 approximately Lys73, whereas the selectivity of PCAF acetylation followed the sequence of Lys-70 approximately Lys-73 > Lys-64 approximately Lys-66 > Lys-14. HMGA1b was acetylated in a very similar fashion as HMGA1a. We also demonstrated that C-terminal phosphorylation of HMGA1 proteins did not affect the in vitro acetylation of the two proteins by either p300 or PCAF. Moreover, we examined the acetylation of lysine residues in HMGA1a and HMGA1b isolated from PC-3 human prostate cancer cells. Our results showed that all the above five lysine residues were also acetylated in vivo, with Lys-64, Lys-66 and Lys-70 in HMGA1a exhibiting higher levels of acetylation than Lys-14 and Lys-73.  (+info)

Homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and modulates its DNA binding affinity. (8/11)

The chromosomal high-mobility group A (HMGA) proteins, composed of HMGA1a, HMGA1b and HMGA2, play important roles in the regulation of numerous processes in eukaryotic cells, such as transcriptional regulation, DNA repair, RNA processing, and chromatin remodeling. The biological activities of HMGA1 proteins are highly regulated by their post-translational modifications (PTMs), including acetylation, methylation, and phosphorylation. Recently, it was found that the homeodomain-interacting protein kinase-2 (HIPK2), a newly identified serine/threonine kinase, co-immunoprecipitated with, and phosphorylated, HMGA1 proteins. However, the sites and the biological significance of the phosphorylation have not been elucidated. Here, we found that HIPK2 phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77, and HMGA1b at Thr-41 and Thr-66. In addition, we demonstrated that cdc2, which is known to phosphorylate HMGA1 proteins, could induce the phosphorylation of HMGA1 proteins at the same Ser/Thr sites. The two kinases, however, exhibited different site preferences for the phosphorylation: The preference for HIPK2 phosphorylation followed the order of Thr-77 > Thr-52 > Ser-35, whereas the order for cdc2 phosphorylation was Thr-52 > Thr-77 > Ser-35. Moreover, we found that the HIPK2-phosphorylated HMGA1a reduced the binding affinity of HMGA1a to human germ line promoter, and the drop in binding affinity induced by HIPK2 phosphorylation was lower than that introduced by cdc2 phosphorylation, which is consistent with the notion that the second AT-hook in HMGA1a is more important for DNA binding than the third AT-hook.  (+info)

High Mobility Group AT-Hook 2 (HMGA2) protein is a non-histone chromatin protein that belongs to the HMGA family. This protein contains structural DNA-binding domains called AT-hooks, which allow it to bind to the minor groove of AT-rich sequences in the promoter or enhancer regions of genes.

HMGA2 protein plays a crucial role in regulating gene transcription, chromatin architecture, and nuclear organization during development and differentiation. It is involved in various cellular processes such as proliferation, apoptosis, and senescence. Moreover, HMGA2 has been implicated in several human diseases, including cancer, where its overexpression is often associated with poor prognosis and aggressive tumor behavior.

In summary, HMGA2 protein is a DNA-binding protein that regulates gene expression and is involved in development, differentiation, and disease, particularly cancer.

High Mobility Group AT-Hook 1 (HMGA1) is a non-histone chromosomal protein that belongs to the HMGA family. The HMGA proteins are characterized by their ability to bind to AT-rich regions in the minor groove of DNA and modulate the chromatin structure, thereby regulating gene transcription.

The HMGA1 protein exists in two isoforms, HMGA1a and HMGA1b, which differ in their amino acid sequences due to alternative splicing of the HMGA1 pre-mRNA. The HMGA1a isoform has 108 amino acids, while HMGA1b has 109 amino acids.

HMGA1 proteins play crucial roles in various cellular processes, including proliferation, differentiation, and apoptosis. Dysregulation of HMGA1 expression has been implicated in several human diseases, such as cancer, where it functions as a transcriptional regulator of genes involved in tumorigenesis.

High Mobility Group AT-Hook 1b (HMGA1b) protein is a subtype of the HMGA1 protein, which belongs to the High Mobility Group AT-hook (HMGA) family of non-histone chromatin proteins. These proteins are characterized by their ability to bind to the minor groove of AT-rich DNA sequences and modulate chromatin structure and gene expression.

The HMGA1 protein exists in two isoforms, HMGA1a and HMGA1b, which are generated through alternative splicing of the same gene. Both isoforms share a similar structure, consisting of three AT-hook DNA binding domains and a C-terminal acidic tail. However, they differ in their N-terminal regions, with HMGA1b having a unique 29-amino acid sequence that is not present in HMGA1a.

HMGA1 proteins play important roles in various cellular processes, including transcription regulation, DNA replication, and repair. Dysregulation of HMGA1 expression has been implicated in several human diseases, such as cancer, where it can act as a potent oncogene by promoting tumor cell proliferation, migration, and invasion.

The S100 calcium binding protein beta subunit, also known as S100B, is a member of the S100 family of proteins. These proteins are characterized by their ability to bind calcium ions and play a role in intracellular signaling pathways. The S100B protein is made up of two subunits, alpha and beta, which form a homodimer. It is primarily expressed in astrocytes, a type of glial cell found in the central nervous system.

S100B has been shown to have both intracellular and extracellular functions. Inside cells, it regulates various processes such as the dynamics of cytoskeleton, calcium homeostasis and cell proliferation. Extracellularly, S100B acts as a damage-associated molecular pattern (DAMP) molecule, released from damaged or stressed cells, where it can interact with receptors on other cells to induce inflammatory responses, neuronal death and contribute to the pathogenesis of several neurological disorders.

Elevated levels of S100B in cerebrospinal fluid (CSF) or blood are associated with various central nervous system injuries such as traumatic brain injury, spinal cord injury, stroke, neurodegenerative diseases and some types of cancer. Therefore, it is considered a biomarker for these conditions.

Adenovirus E1B proteins are proteins encoded by the early region 1B (E1B) gene of adenoviruses. There are two main E1B proteins, E1B-55kD and E1B-19kD, which play crucial roles during the viral life cycle and in tumorigenesis.

1. E1B-55kD: This protein is a potent transcriptional repressor that inhibits the expression of host cell genes involved in DNA damage response, apoptosis, and antiviral defense mechanisms. By doing so, it creates a favorable environment for viral replication and evades the host's immune surveillance. E1B-55kD also interacts with p53, a tumor suppressor protein, leading to its degradation and further contributing to oncogenesis.

2. E1B-19kD: This protein is involved in blocking apoptosis or programmed cell death, which would otherwise be triggered by the host's defense mechanisms during viral infection. E1B-19kD forms a complex with another adenoviral protein, E4orf6, and together they inhibit the activity of several pro-apoptotic proteins, thus promoting viral replication and persistence in the host cell.

In summary, Adenovirus E1B proteins are essential for the viral life cycle by counteracting host defense mechanisms, particularly through the inhibition of apoptosis and transcriptional repression. Additionally, their interaction with crucial cellular regulatory proteins like p53 contributes to oncogenic transformation in certain contexts.

S100 proteins are a family of calcium-binding proteins that are involved in the regulation of various cellular processes, including cell growth and differentiation, intracellular signaling, and inflammation. They are found in high concentrations in certain types of cells, such as nerve cells (neurons), glial cells (supporting cells in the nervous system), and skin cells (keratinocytes).

The S100 protein family consists of more than 20 members, which are divided into several subfamilies based on their structural similarities. Some of the well-known members of this family include S100A1, S100B, S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9).

Abnormal expression or regulation of S100 proteins has been implicated in various pathological conditions, such as neurodegenerative diseases, cancer, and inflammatory disorders. For example, increased levels of S100B have been found in the brains of patients with Alzheimer's disease, while overexpression of S100A8 and S100A9 has been associated with the development and progression of certain types of cancer.

Therefore, understanding the functions and regulation of S100 proteins is important for developing new diagnostic and therapeutic strategies for various diseases.

A cucumovirus is a type of plant virus that belongs to the family Bromoviridae and the genus Cucumovirus. These viruses have a single-stranded, positive-sense RNA genome and are transmitted by various means, including mechanical inoculation, seed transmission, and insect vectors such as aphids.

Cucumoviruses infect a wide range of plants, causing symptoms such as mosaic patterns on leaves, stunted growth, and reduced yield. The type species of the genus Cucumovirus is cucumber mosaic virus (CMV), which is one of the most widespread and economically important plant viruses worldwide. Other important cucumoviruses include tomato aspermy virus (TAV) and peanut stunt virus (PSV).

Cucumoviruses have a tripartite genome, meaning that the RNA genome is divided into three segments, each of which encodes one or more viral proteins. The coat protein of cucumoviruses plays an important role in virus transmission by insect vectors and in the induction of symptoms in infected plants.

Preventing the spread of cucumoviruses involves using good hygiene practices, such as cleaning tools and equipment, removing infected plants, and using resistant plant varieties when available. There are no known treatments for plants infected with cucumoviruses, so prevention is key to managing these viruses in agricultural settings.

AT-hook motifs are short DNA-binding domains that are found in many eukaryotic transcription factors and other proteins that interact with chromatin. These motifs are typically composed of 6-8 amino acid residues, characterized by the presence of a highly conserved tripeptide sequence (PWK, PWV, or PWY), which is responsible for their ability to bind to the minor groove of AT-rich DNA sequences.

The AT-hook motifs can bend and kink the DNA helix, leading to changes in chromatin structure and modulation of gene expression. They play important roles in various nuclear processes, including transcriptional regulation, DNA replication, and repair. The presence of multiple AT-hook motifs in a single protein can enhance its DNA-binding affinity and specificity, allowing it to interact with specific regulatory elements in the genome.

High Mobility Group AT-Hook 1 (HMGA1) is a protein that belongs to the non-histone chromosomal high mobility group (HMG) family. HMGA1 has been shown to play a role in the regulation of gene transcription by binding to DNA and modifying its structure, thereby influencing the interaction between DNA and other proteins involved in transcription.

The HMGA1 protein exists in several isoforms due to alternative splicing, one of which is HMGA1c. HMGA1c is a splicing variant of HMGA1 that contains an additional 39 amino acids at its C-terminus compared to other isoforms.

It's important to note that there seems to be some confusion in the literature regarding the definition and naming of HMGA1 isoforms, including HMGA1c. Therefore, it's crucial to consider the context and specific nomenclature used in each study when interpreting results related to this protein.

In summary, HMGA1c is a splicing variant of the HMGA1 protein that has an additional 39 amino acids at its C-terminus and plays a role in gene transcription regulation by binding to DNA and modifying its structure.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Viral nonstructural proteins (NS) are viral proteins that are not part of the virion structure. They play various roles in the viral life cycle, such as replication of the viral genome, transcription, translation regulation, and modulation of the host cell environment to favor virus replication. These proteins are often produced in large quantities during infection and can manipulate or disrupt various cellular pathways to benefit the virus. They may also be involved in evasion of the host's immune response. The specific functions of viral nonstructural proteins vary depending on the type of virus.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Nerve Growth Factors (NGFs) are a family of proteins that play an essential role in the growth, maintenance, and survival of certain neurons (nerve cells). They were first discovered by Rita Levi-Montalcini and Stanley Cohen in 1956. NGF is particularly crucial for the development and function of the peripheral nervous system, which connects the central nervous system to various organs and tissues throughout the body.

NGF supports the differentiation and survival of sympathetic and sensory neurons during embryonic development. In adults, NGF continues to regulate the maintenance and repair of these neurons, contributing to neuroplasticity – the brain's ability to adapt and change over time. Additionally, NGF has been implicated in pain transmission and modulation, as well as inflammatory responses.

Abnormal levels or dysfunctional NGF signaling have been associated with various medical conditions, including neurodegenerative diseases (e.g., Alzheimer's and Parkinson's), chronic pain disorders, and certain cancers (e.g., small cell lung cancer). Therefore, understanding the role of NGF in physiological and pathological processes may provide valuable insights into developing novel therapeutic strategies for these conditions.

A lipoma is a common, benign (non-cancerous) soft tissue growth. It is composed of adipose or fatty tissue and typically found just beneath the skin, but they can also occur deeper within the body. Lipomas are usually round, moveable, and painless, although they may cause discomfort if they grow large enough to put pressure on nearby nerves or if they're located in a sensitive area. They generally grow slowly over time. Surgical removal is an option if the lipoma becomes bothersome or grows significantly in size. It's important to note that while lipomas are typically harmless, any new lumps or bumps should be evaluated by a healthcare professional to confirm the diagnosis and rule out other more serious conditions.

Homogentisate 1,2-dioxygenase (HGD) is an enzyme that plays a crucial role in the catabolism of tyrosine, an aromatic amino acid. This enzyme is involved in the third step of the tyrosine degradation pathway, also known as the tyrosine breakdown or catabolic pathway.

The homogentisate 1,2-dioxygenase enzyme catalyzes the conversion of homogentisic acid (HGA) into maleylacetoacetic acid. This reaction involves the cleavage of the aromatic ring of HGA and the introduction of oxygen, hence the name 'dioxygenase.' The reaction can be summarized as follows:

Homogentisate + O2 → Maleylacetoacetate

Deficiency or dysfunction in homogentisate 1,2-dioxygenase leads to a rare genetic disorder called alkaptonuria. In this condition, the body cannot break down tyrosine properly, resulting in an accumulation of HGA and its oxidation product, alkapton, which can cause damage to connective tissues and joints over time.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Light-harvesting protein complexes are specialized structures in photosynthetic organisms, such as plants, algae, and some bacteria, that capture and transfer light energy to the reaction centers where the initial chemical reactions of photosynthesis occur. These complexes consist of proteins and pigments (primarily chlorophylls and carotenoids) arranged in a way that allows them to absorb light most efficiently. The absorbed light energy is then converted into electrical charges, which are transferred to the reaction centers for further chemical reactions leading to the production of organic compounds and oxygen. The light-harvesting protein complexes play a crucial role in initiating the process of photosynthesis and optimizing its efficiency by capturing and distributing light energy.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Heterogeneous Nuclear Ribonucleoproteins (hnRNPs) are a group of nuclear proteins that are involved in the processing and metabolism of messenger RNA (mRNA). They were named "heterogeneous" because they were initially found to be associated with a heterogeneous population of RNA molecules. The hnRNPs are divided into several subfamilies, A and B being two of them.

The hnRNP A-B group is composed of proteins that share structural similarities and have overlapping functions in the regulation of mRNA metabolism. These proteins play a role in various aspects of RNA processing, including splicing, 3' end processing, transport, stability, and translation.

The hnRNP A-B group includes several members, such as hnRNPA1, hnRNPA2/B1, and hnRNPC. These proteins contain RNA recognition motifs (RRMs) that allow them to bind to specific sequences in the RNA molecules. They can also interact with other proteins and form complexes that regulate mRNA function.

Mutations in genes encoding hnRNP A-B group members have been associated with several human diseases, including neurodegenerative disorders, myopathies, and cancer. Therefore, understanding the structure and function of these proteins is essential for elucidating their role in disease pathogenesis and developing potential therapeutic strategies.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

High Mobility Group Box 3 (HMGB3) protein, also known as HMG-IY, is a member of the high mobility group box (HMGB) family of proteins. These proteins are characterized by their ability to bind to DNA and function as architectural factors in the regulation of gene transcription, DNA replication, and repair.

HMGB3 protein is widely expressed in various tissues, including the testis, brain, heart, lung, liver, skeletal muscle, and kidney. It has been implicated in several biological processes, such as embryonic development, cell differentiation, and tumorigenesis. HMGB3 can act as a transcriptional regulator by binding to specific DNA sequences and interacting with other proteins involved in gene expression.

In cancer, HMGB3 has been found to be overexpressed in several types of malignancies, including hepatocellular carcinoma, colorectal cancer, gastric cancer, and breast cancer. High levels of HMGB3 have been associated with poor prognosis, increased tumor growth, and metastasis. Therefore, HMGB3 is considered a potential therapeutic target for cancer treatment.

I-kappa B (IκB) proteins are a family of inhibitory proteins that play a crucial role in regulating the activity of nuclear factor kappa B (NF-κB), a key transcription factor involved in inflammation, immune response, and cell survival. In resting cells, NF-κB is sequestered in the cytoplasm by binding to IκB proteins, which prevents NF-κB from translocating into the nucleus and activating its target genes.

Upon stimulation of various signaling pathways, such as those triggered by proinflammatory cytokines, bacterial or viral components, and stress signals, IκB proteins become phosphorylated, ubiquitinated, and subsequently degraded by the 26S proteasome. This process allows NF-κB to dissociate from IκB, translocate into the nucleus, and bind to specific DNA sequences, leading to the expression of various genes involved in immune response, inflammation, cell growth, differentiation, and survival.

There are several members of the IκB protein family, including IκBα, IκBβ, IκBε, IκBγ, and Bcl-3. Each member has distinct functions and regulatory mechanisms in controlling NF-κB activity. Dysregulation of IκB proteins and NF-κB signaling has been implicated in various pathological conditions, such as chronic inflammation, autoimmune diseases, and cancer.

Bacteriophage mu, also known as Mucoid Bacteriophage or Phage Mu, is a type of bacterial virus that infects and replicates within the genetic material of specific bacteria, primarily belonging to the genus Pseudomonas. This phage is characterized by its unique ability to integrate its genome into the host bacterium's chromosome at random locations, which can result in mutations or alterations in the bacterial genome.

Phage Mu has a relatively large genome and encodes various proteins that facilitate its replication, packaging, and release from the host cell. When Phage Mu infects a bacterium, it injects its genetic material into the host cytoplasm, where it circularizes and then integrates itself into the host's chromosome via a process called transposition. This integration can lead to significant changes in the host bacterium's genome, potentially altering its phenotype or even converting it into a lysogenic state, where the phage remains dormant within the host cell until environmental conditions trigger its replication and release.

Phage Mu is widely used as a tool for genetic research due to its ability to introduce random mutations into bacterial genomes, facilitating the study of gene function and regulation. Additionally, Phage Mu has been explored for potential applications in phage therapy, where it could be used to target and eliminate specific bacterial pathogens without adversely affecting other beneficial microorganisms present in the host organism or environment.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

DNA repair enzymes are a group of enzymes that are responsible for identifying and correcting damage to the DNA molecule. These enzymes play a critical role in maintaining the integrity of an organism's genetic material, as they help to ensure that the information stored in DNA is accurately transmitted during cell division and reproduction.

There are several different types of DNA repair enzymes, each responsible for correcting specific types of damage. For example, base excision repair enzymes remove and replace damaged or incorrect bases, while nucleotide excision repair enzymes remove larger sections of damaged DNA and replace them with new nucleotides. Other types of DNA repair enzymes include mismatch repair enzymes, which correct errors that occur during DNA replication, and double-strand break repair enzymes, which are responsible for fixing breaks in both strands of the DNA molecule.

Defects in DNA repair enzymes have been linked to a variety of diseases, including cancer, neurological disorders, and premature aging. For example, individuals with xeroderma pigmentosum, a rare genetic disorder characterized by an increased risk of skin cancer, have mutations in genes that encode nucleotide excision repair enzymes. Similarly, defects in mismatch repair enzymes have been linked to hereditary nonpolyposis colorectal cancer, a type of colon cancer that is inherited and tends to occur at a younger age than sporadic colon cancer.

Overall, DNA repair enzymes play a critical role in maintaining the stability and integrity of an organism's genetic material, and defects in these enzymes can have serious consequences for human health.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Cysteinyldopa is a metabolic byproduct that is formed when the amino acid dopa (dihydroxyphenylalanine) is modified in the body. Specifically, it is created when dopa reacts with cysteine, another amino acid, through a process called protein sulfuration. Cysteinyldopa is primarily known for its role as a marker of the neurodegenerative disorder dopamine responsive dystonia (DRD), which is caused by mutations in the tyrosine hydroxylase gene.

In DRD, there is a deficiency of the enzyme tyrosine hydroxylase, which is responsible for converting the amino acid tyrosine to dopa. As a result, dopamine levels are reduced, leading to symptoms such as muscle stiffness, tremors, and difficulty with movement. Cysteinyldopa is elevated in the cerebrospinal fluid (CSF) of individuals with DRD due to the accumulation of dopa that cannot be converted to dopamine.

Therefore, measuring cysteinyldopa levels in the CSF can be helpful in diagnosing DRD and differentiating it from other movement disorders. However, it is important to note that elevated cysteinyldopa levels are not specific to DRD and can also be found in other neurological conditions such as Parkinson's disease.

No FAQ available that match "hmga1b protein"

No images available that match "hmga1b protein"