Cis-acting regulatory sequences in the HIV long terminal repeat (LTR) which play a major role in induction or augmentation of HIV gene expression in response to environmental stimuli such as mitogens, phorbol esters, or other viruses. The HIV enhancer is the binding site for many cellular transcription factors including the nuclear factor NF-kappa B.
Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter.
Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS).
Development of neutralizing antibodies in individuals who have been exposed to the human immunodeficiency virus (HIV/HTLV-III/LAV).
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Studies of the number of cases where human immunodeficiency virus (HIV) is present in a specific population at a designated time. The presence in a given individual is determined by the finding of HIV antibodies in the serum (HIV SEROPOSITIVITY).
Immune status consisting of non-production of HIV antibodies, as determined by various serological tests.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Established cell cultures that have the potential to propagate indefinitely.
Nucleic acid sequences involved in regulating the expression of genes.
The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.

Inhibition of Ets-1 DNA binding and ternary complex formation between Ets-1, NF-kappaB, and DNA by a designed DNA-binding ligand. (1/44)

Sequence-specific pyrrole-imidazole polyamides can be designed to interfere with transcription factor binding and to regulate gene expression, both in vitro and in living cells. Polyamides bound adjacent to the recognition sites for TBP, Ets-1, and LEF-1 in the human immunodeficiency virus, type 1 (HIV-1), long terminal repeat inhibited transcription in cell-free assays and viral replication in human peripheral blood lymphocytes. The DNA binding activity of the transcription factor Ets-1 is specifically inhibited by a polyamide bound in the minor groove. Ets-1 is a member of the winged-helix-turn-helix family of transcription factors and binds DNA through a recognition helix bound in the major groove with additional phosphate contacts on either side of this major groove interaction. The inhibitory polyamide possibly interferes with phosphate contacts made by Ets-1, by occupying the adjacent minor groove. Full-length Ets-1 binds the HIV-1 enhancer through cooperative interactions with the p50 subunit of NF-kappaB, and the Ets-inhibitory polyamide also blocks formation of ternary Ets-1. NF-kappaB.DNA complexes on the HIV-1 enhancer. A polyamide bound adjacent to the recognition site for NF-kappaB also inhibits NF-kappaB binding and ternary complex formation. These results broaden the application range of minor groove-binding polyamides and demonstrate that these DNA ligands are powerful inhibitors of DNA-binding proteins that predominantly use major groove contacts and of cooperative protein-DNA ternary complexes.  (+info)

Hydroxyurea inhibits the transactivation of the HIV-long-terminal repeat (LTR) promoter. (2/44)

HIV-1 gene expression is regulated by the promoter/enhancer located within the U3 region of the proviral 5' LTR that contains multiple potential cis-acting regulatory sites. Here we describe that the inhibitor of the cellular ribonucleoside reductase, hydroxyurea (HU), inhibited phorbol myristate acetate- or tumour necrosis factor-alpha-induced HIV-1-LTR transactivation in both lymphoid and non-lymphoid cells in a dose-dependent manner within the first 6 h of treatment, with a 50% inhibitory concentration of 0.5 mM. This inhibition was found to be specific for the HIV-1-LTR since transactivation of either an AP-1-dependent promoter or the CD69 gene promoter was not affected by the presence of HU. Moreover, gel-shift assays in 5.1 cells showed that HU prevented the binding of the NF-kappaB to the kappaB sites located in the HIV-1-LTR region, but it did not affect the binding of both the AP-1 and the Sp-1 transcription factors. By Western blots and cell cycle analyses we detected that HU induced a rapid dephosphorylation of the pRB, the product of the retinoblastoma tumour suppressor gene, and the cell cycle arrest was evident after 24 h of treatment. Thus, HU inhibits HIV-1 promoter activity by a novel pathway that implies an inhibition of the NF-kappaB binding to the LTR promoter. The present study suggests that HU may be useful as a potential therapeutic approach for inhibition of HIV-1 replication through different pathways.  (+info)

Protein phosphatase 2A activates the HIV-2 promoter through enhancer elements that include the pets site. (3/44)

Human immunodeficiency virus type 2 (HIV-2) gene expression is regulated by upstream promoter elements, including the peri-Ets (pets) site, which mediate enhancer stimulation following treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). We previously showed that the oncoprotein DEK binds to the pets site in a site-specific manner. In this report, we show that binding to the HIV-2 pets site is modulated by treatment of U937 monocytic cells with TPA, an activator of protein kinase C. TPA treatment resulted in a reduction in the levels of DEK and the formation of a faster migrating pets complex in gel shift assays. We show further that the actions of TPA on pets binding can be duplicated by phosphatase treatment of nuclear proteins and is blocked with okadaic acid, a protein phospatase-2A (PP2A) inhibitor. Finally, we demonstrate that ectopic expression of the catalytic domain of PP2A can activate the HIV-2 enhancer/promoter alone or in synergy with TPA, an effect mediated in part through the pets site. These results suggest that, through an interaction with the protein kinase C pathway, PP2A is strongly involved in regulating HIV-2 enhancer-mediated transcription. This is a consequence of its effects on DEK expression and binding to the pets site, as well as its effects on other promoter elements. These findings have implications not only for HIV-2 transcription but also for multiple cellular processes involving DEK or PP2A.  (+info)

HIV-1 Vpr transactivates LTR-directed expression through sequences present within -278 to -176 and increases virus replication in vitro. (4/44)

Human immunodeficiency virus type 1 (HIV-1) Vpr, a 14-kDa virion-associated protein, plays an important role in the viral life cycle. Using a panel of truncated HIV-1 LTR-CAT constructs and Vpr expression plasmid, we have identified sequences from nucleotide -278 to -176 in LTR as Vpr-mediated transactivation domain. This region includes the glucocorticoid response element (GRE) in HIV-1 LTR. Transactivation by Vpr was noted with the HIV-1 LTR reporter constructs containing CAT or luciferase. A similar effect was also observed with a construct in which the GRE motif was linked to CAT. Studies involving Vpr mutants identified that helical domains I and III, and amino acid residues at G75 and C76, are responsible for GRE-mediated LTR transactivation. The transactivation function of Vpr is independent of its cell cycle arrest activity. Further, viral replication studies indicated that Vpr-mediated increase in viral replication is directly correlated with the ability of Vpr to transactivate HIV-1 LTR. The results presented here demonstrate that Vpr activates HIV-1 LTR through the host GR pathway and suggest that an intact GRE in the LTR is critical for Vpr activity.  (+info)

Modulation of HIV-1 enhancer activity and virus production by cAMP. (5/44)

The effect of cAMP on the transcriptional activity of the HIV-1 long terminal repeat/enhancer was investigated and compared to the effect of cAMP on virus replication. In culture cAMP repressed virus replication in vivo using different cell types. Transient transfection studies with HIV-1 enhancer-derived luciferase reporter gene constructs identified the minimal DNA sequence mediating the negative regulatory effect of cAMP on HIV-1 transcription. A single nuclear factor kappaB element from the HIV-1 enhancer mediates the repressive effect on transcription. AP-2 is not involved in cAMP repression. Stable transfection of Jurkat T cells with the co-activators CREB binding protein (CBP) and p300 completely abolished the cAMP repressive effect, supporting the hypothesis that elevation of intracellular cAMP increases phosphorylation of CREB, which then competes with phosphorylated p65 and Ets-1 for limiting amounts of CBP/p300 thereby mediating the observed repressive effect on transcription. These findings suggest an important role of cAMP on HIV-1 transcription.  (+info)

Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement. (6/44)

Gene therapy of many genetic diseases requires permanent gene transfer into self-renewing stem cells and restriction of transgene expression to specific progenies. Human immunodeficiency virus (HIV)-derived lentiviral vectors are very effective in transducing rare, nondividing stem cell populations (e.g., hematopoietic stem cells) without altering their long-term repopulation and differentiation capacities. We developed a strategy for transcriptional targeting of lentiviral vectors based on replacing the viral long terminal repeat (LTR) enhancer with cell lineage-specific, genomic control elements. An upstream enhancer (HS2) of the erythroid-specific GATA-1 gene was used to replace most of the U3 region of the LTR, immediately upstream of the HIV type 1 (HIV-1) promoter. The modified LTR was used to drive the expression of a reporter gene (the green fluorescent protein [GFP] gene), while a second gene (a truncated form of the p75 nerve growth factor receptor [DeltaLNGFR]) was placed under the control of an internal constitutive promoter to monitor cell transduction, or to immunoselect transduced cells, independently from the expression of the targeted promoter. The transcriptionally targeted vectors were used to transduce cell lines, human CD34+ hematopoietic stem-progenitor cells, and murine bone marrow (BM)-repopulating stem cells. Gene expression was analyzed in the stem cell progeny in vitro and in vivo after xenotransplantation into nonobese diabetic-SCID mice or BM transplantation in coisogenic mice. The modified LTR directed high levels of transgene expression specifically in mature erythroblasts, in a TAT-independent fashion and with no alteration in titer, infectivity, and genomic stability of the lentiviral vector. Expression from the modified LTR was higher, better restricted, and showed less position-effect variegation than that obtained by the same combination of enhancer-promoter elements placed in a conventional, internal position. Cloning of the woodchuck hepatitis virus posttranscriptional regulatory element at a defined position in the targeted vector allowed selective accumulation of the genomic transcripts with respect to the internal RNA transcript, with no loss of cell-type restriction. A critical advantage of this targeting strategy is the use of a spliced, major viral transcript to express a therapeutic gene and that of an internal, independently regulated promoter to express an additional gene for either cell marking or in vivo selection purposes.  (+info)

Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. (7/44)

The major group of human immunodeficiency viruses (HIV-1) that comprise the current global pandemic have diversified during their worldwide spread and may be divided into at least 10 distinct subtypes or clades, A through J. Subtype B predominates in North America and Europe, subtype E predominates in Southeast Asia, and subtype C predominates in sub-Saharan Africa. Functional distinctions in long terminal repeat (LTR) architecture among HIV subtypes have been identified, thus raising the possibility that regulatory divergence among the subtypes of HIV-1 has occurred. In addition to the transcriptional specificity of the HIV-1 LTR, productive HIV-1 replication is also dependent upon the viral Tat protein. Therefore, we sought to investigate whether interactions between host signaling pathways and the NF-kappaB regions of different HIV-1 subtypes, together with subtype-specific interactions between Tat, TAR, and cellular proteins, modulate the efficiency of HIV-1 clade-specific gene transcription. We demonstrate that the NF-kappaB sites of subtypes B and E both bind NF-kappaB-related complexes. However, the duplicated kappaB sites of the C subtype do not compete for NF-kappaB binding. Also, clade E Tat protein possesses the highest transactivation capacity, regardless of the LTR context. Furthermore, preliminary evidence suggests that the acetylation of subtype-specific Tat proteins may correlate with their transactivation efficiency.  (+info)

HIV-1 transcription and virus production are both accentuated by the proinflammatory myeloid-related proteins in human CD4+ T lymphocytes. (8/44)

S100A8, S100A9, and S100A12, collectively known as myeloid-related proteins (MRPs), are highly expressed by the myeloid cell lineage and are found in the extracellular milieu during infections and inflammatory conditions. Recent data showed high levels of MRPs in the serum of HIV type 1 (HIV-1)-infected patients which correlated with disease progression and low CD4(+) counts. Therefore, we set out to investigate the effect of MRPs on HIV-1 replication. We observed a 4- to 5-fold induction of virus production in J1.1, a human T lymphoid cell line latently infected with HIV-1, following treatment with MRPs. Using luciferase-based reporter gene assays, we demonstrated that MRPs induce a dose- and time-dependent activation of the HIV-1 long terminal repeat promoter region that could be blocked by specific anti-MRP polyclonal Abs and by physical denaturation of these proteins. The MRP-mediated induction was acting through the HIV-1 enhancer sequence and was dependent upon NF-kappaB activity. These latter results were also confirmed by EMSA experiments conducted in Jurkat cells and freshly isolated PBMCs. In conclusion, we demonstrate that MRPs induce HIV-1 transcriptional activity and viral replication in infected CD4(+) T-lymphocytes at concentrations similar to those found in the serum of HIV-1-infected patients.  (+info)

An "HIV enhancer" is not a widely recognized or used term in the field of medicine or virology. However, I can provide some context that might help you understand where this term could be coming from.

In the genome of HIV (the Human Immunodeficiency Virus), there are regulatory regions called enhancers that play a crucial role in controlling the transcription of the viral genes. These enhancers are DNA sequences that serve as binding sites for various proteins, including transcription factors, which regulate the initiation and efficiency of gene transcription.

In some cases, researchers might refer to an "HIV enhancer" when discussing specific regulatory elements within the HIV genome that enhance (up-regulate) viral replication or transcription. One well-known example is the long terminal repeat (LTR) region of HIV, which contains enhancers and promoters that are critical for viral gene expression.

However, it's essential to clarify the context in which the term "HIV enhancer" is being used, as it may not be universally understood without additional information. I would recommend consulting the source or author for a more precise definition if you encounter this term in a specific scientific context.

Genetic enhancer elements are DNA sequences that increase the transcription of specific genes. They work by binding to regulatory proteins called transcription factors, which in turn recruit RNA polymerase II, the enzyme responsible for transcribing DNA into messenger RNA (mRNA). This results in the activation of gene transcription and increased production of the protein encoded by that gene.

Enhancer elements can be located upstream, downstream, or even within introns of the genes they regulate, and they can act over long distances along the DNA molecule. They are an important mechanism for controlling gene expression in a tissue-specific and developmental stage-specific manner, allowing for the precise regulation of gene activity during embryonic development and throughout adult life.

It's worth noting that genetic enhancer elements are often referred to simply as "enhancers," and they are distinct from other types of regulatory DNA sequences such as promoters, silencers, and insulators.

HIV (Human Immunodeficiency Virus) infection is a viral illness that progressively attacks and weakens the immune system, making individuals more susceptible to other infections and diseases. The virus primarily infects CD4+ T cells, a type of white blood cell essential for fighting off infections. Over time, as the number of these immune cells declines, the body becomes increasingly vulnerable to opportunistic infections and cancers.

HIV infection has three stages:

1. Acute HIV infection: This is the initial stage that occurs within 2-4 weeks after exposure to the virus. During this period, individuals may experience flu-like symptoms such as fever, fatigue, rash, swollen glands, and muscle aches. The virus replicates rapidly, and the viral load in the body is very high.
2. Chronic HIV infection (Clinical latency): This stage follows the acute infection and can last several years if left untreated. Although individuals may not show any symptoms during this phase, the virus continues to replicate at low levels, and the immune system gradually weakens. The viral load remains relatively stable, but the number of CD4+ T cells declines over time.
3. AIDS (Acquired Immunodeficiency Syndrome): This is the most advanced stage of HIV infection, characterized by a severely damaged immune system and numerous opportunistic infections or cancers. At this stage, the CD4+ T cell count drops below 200 cells/mm3 of blood.

It's important to note that with proper antiretroviral therapy (ART), individuals with HIV infection can effectively manage the virus, maintain a healthy immune system, and significantly reduce the risk of transmission to others. Early diagnosis and treatment are crucial for improving long-term health outcomes and reducing the spread of HIV.

HIV seropositivity is a term used to describe a positive result on an HIV antibody test. This means that the individual has developed antibodies against the Human Immunodeficiency Virus (HIV), indicating that they have been infected with the virus. However, it's important to note that this does not necessarily mean that the person has AIDS, as there can be a long period between HIV infection and the development of AIDS.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

HIV seroprevalence refers to the proportion or percentage of a population that has antibodies against the Human Immunodeficiency Virus (HIV) in their blood, indicating current or previous HIV infection. It is often determined through serological testing methods that detect the presence of HIV antibodies in blood samples. The data from HIV seroprevalence studies are essential for understanding the spread and distribution of HIV within a specific population or geographic area, helping to inform public health policies and interventions aimed at controlling and preventing HIV transmission.

HIV seronegativity is a term used to describe a person who has tested negative for HIV (Human Immunodeficiency Virus) antibodies in their blood. This means that the individual does not show evidence of current or past infection with HIV, which can cause AIDS (Acquired Immune Deficiency Syndrome). However, it's important to note that there is a window period after initial infection during which a person may test negative for HIV antibodies, even though they are indeed infected. This window period typically lasts between 2-6 weeks but can extend up to 3 months in some cases. Therefore, if someone believes they have been exposed to HIV, they should consider getting tested again after this window period has passed.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Regulatory sequences in nucleic acid refer to specific DNA or RNA segments that control the spatial and temporal expression of genes without encoding proteins. They are crucial for the proper functioning of cells as they regulate various cellular processes such as transcription, translation, mRNA stability, and localization. Regulatory sequences can be found in both coding and non-coding regions of DNA or RNA.

Some common types of regulatory sequences in nucleic acid include:

1. Promoters: DNA sequences typically located upstream of the gene that provide a binding site for RNA polymerase and transcription factors to initiate transcription.
2. Enhancers: DNA sequences, often located at a distance from the gene, that enhance transcription by binding to specific transcription factors and increasing the recruitment of RNA polymerase.
3. Silencers: DNA sequences that repress transcription by binding to specific proteins that inhibit the recruitment of RNA polymerase or promote chromatin compaction.
4. Intron splice sites: Specific nucleotide sequences within introns (non-coding regions) that mark the boundaries between exons (coding regions) and are essential for correct splicing of pre-mRNA.
5. 5' untranslated regions (UTRs): Regions located at the 5' end of an mRNA molecule that contain regulatory elements affecting translation efficiency, stability, and localization.
6. 3' untranslated regions (UTRs): Regions located at the 3' end of an mRNA molecule that contain regulatory elements influencing translation termination, stability, and localization.
7. miRNA target sites: Specific sequences in mRNAs that bind to microRNAs (miRNAs) leading to translational repression or degradation of the target mRNA.

HIV-1 (Human Immunodeficiency Virus type 1) is a species of the retrovirus genus that causes acquired immunodeficiency syndrome (AIDS). It is primarily transmitted through sexual contact, exposure to infected blood or blood products, and from mother to child during pregnancy, childbirth, or breastfeeding. HIV-1 infects vital cells in the human immune system, such as CD4+ T cells, macrophages, and dendritic cells, leading to a decline in their numbers and weakening of the immune response over time. This results in the individual becoming susceptible to various opportunistic infections and cancers that ultimately cause death if left untreated. HIV-1 is the most prevalent form of HIV worldwide and has been identified as the causative agent of the global AIDS pandemic.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

No FAQ available that match "hiv enhancer"

No images available that match "hiv enhancer"