A condition produced by a deficiency of CHOLINE in animals. Choline is known as a lipotropic agent because it has been shown to promote the transport of excess fat from the liver under certain conditions in laboratory animals. Combined deficiency of choline (included in the B vitamin complex) and all other methyl group donors causes liver cirrhosis in some animals. Unlike compounds normally considered as vitamins, choline does not serve as a cofactor in enzymatic reactions. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.
An enzyme that is active in the first step of choline phosphoglyceride (lecithin) biosynthesis by catalyzing the phosphorylation of choline to phosphorylcholine in the presence of ATP. Ethanolamine and its methyl and ethyl derivatives can also act as acceptors. EC 2.7.1.32.
An enzyme that catalyses three sequential METHYLATION reactions for conversion of phosphatidylethanolamine to PHOSPHATIDYLCHOLINE.
2-Amino-4-(ethylthio)butyric acid. An antimetabolite and methionine antagonist that interferes with amino acid incorporation into proteins and with cellular ATP utilization. It also produces liver neoplasms.
A component of PHOSPHATIDYLCHOLINES or LECITHINS, in which the two hydroxy groups of GLYCEROL are esterified with fatty acids. (From Stedman, 26th ed) It counteracts the effects of urea on enzymes and other macromolecules.
Calcium and magnesium salts used therapeutically in hepatobiliary dysfunction.
A naturally occurring compound that has been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1341)
An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a choline moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and choline and 2 moles of fatty acids.
A sulfur-containing essential L-amino acid that is important in many body functions.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
5'-S-(3-Amino-3-carboxypropyl)-5'-thioadenosine. Formed from S-adenosylmethionine after transmethylation reactions.
AMINO ALCOHOLS containing the ETHANOLAMINE; (-NH2CH2CHOH) group and its derivatives.
Physiologic methyl radical donor involved in enzymatic transmethylation reactions and present in all living organisms. It possesses anti-inflammatory activity and has been used in treatment of chronic liver disease. (From Merck, 11th ed)
A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia.
Lipid infiltration of the hepatic parenchymal cells resulting in a yellow-colored liver. The abnormal lipid accumulation is usually in the form of TRIGLYCERIDES, either as a single large droplet or multiple small droplets. Fatty liver is caused by an imbalance in the metabolism of FATTY ACIDS.
Regular course of eating and drinking adopted by a person or animal.
A potent inhibitor of the high affinity uptake system for CHOLINE. It has less effect on the low affinity uptake system. Since choline is one of the components of ACETYLCHOLINE, treatment with hemicholinium can deplete acetylcholine from cholinergic terminals. Hemicholinium 3 is commonly used as a research tool in animal and in vitro experiments.
Donor of choline in biosynthesis of choline-containing phosphoglycerides.
An enzyme bound to the inner mitochondrial membrane that catalyzes the oxidation of CHOLINE to BETAINE.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.

Choline deficiency is a condition that occurs when an individual's diet does not provide adequate amounts of choline, which is an essential nutrient required for various bodily functions. Choline plays a crucial role in the synthesis of phospholipids, which are critical components of cell membranes, and it also serves as a precursor to the neurotransmitter acetylcholine, which is involved in memory, muscle control, and other nervous system functions.

Choline deficiency can lead to several health problems, including fatty liver disease, muscle damage, and cognitive impairment. Symptoms of choline deficiency may include fatigue, memory loss, cognitive decline, and peripheral neuropathy. In severe cases, it can also cause liver dysfunction and even liver failure.

It is important to note that choline deficiency is relatively rare in the general population, as many foods contain choline, including eggs, meat, fish, dairy products, and certain vegetables such as broccoli and Brussels sprouts. However, some individuals may be at higher risk of choline deficiency, including pregnant women, postmenopausal women, and those with certain genetic mutations that affect choline metabolism. In these cases, supplementation with choline may be necessary to prevent deficiency.

Choline is an essential nutrient that is vital for the normal functioning of all cells, particularly those in the brain and liver. It is a water-soluble compound that is neither a vitamin nor a mineral, but is often grouped with vitamins because it has many similar functions. Choline is a precursor to the neurotransmitter acetylcholine, which plays an important role in memory, mood, and other cognitive processes. It also helps to maintain the structural integrity of cell membranes and is involved in the transport and metabolism of fats.

Choline can be synthesized by the body in small amounts, but it is also found in a variety of foods such as eggs, meat, fish, nuts, and cruciferous vegetables. Some people may require additional choline through supplementation, particularly if they follow a vegetarian or vegan diet, are pregnant or breastfeeding, or have certain medical conditions that affect choline metabolism.

Deficiency in choline can lead to a variety of health problems, including liver disease, muscle damage, and neurological disorders. On the other hand, excessive intake of choline can cause fishy body odor, sweating, and gastrointestinal symptoms such as diarrhea and vomiting. It is important to maintain adequate levels of choline through a balanced diet and, if necessary, supplementation under the guidance of a healthcare professional.

Choline kinase is an enzyme that plays a role in the synthesis of phosphatidylcholine, a major component of cell membranes. It catalyzes the phosphorylation of choline to form phosphocholine, which is then used in the synthesis of phosphatidylcholine. Choline kinase exists as multiple isoforms, and its activity has been found to be elevated in some types of cancer cells, making it a potential target for cancer therapy.

Phosphatidylethanolamine N-Methyltransferase (PEMT) is an enzyme that plays a role in the synthesis of phosphatidylcholine, a major phospholipid component of cell membranes. The enzyme catalyzes the transfer of methyl groups from S-adenosylmethionine to phosphatidylethanolamine, converting it into phosphatidylcholine in a three-step methylation process. This enzyme is found primarily in the endoplasmic reticulum and mitochondria of cells and has implications in lipid metabolism, liver function, and inflammation. Genetic variations and altered expression levels of PEMT have been associated with various diseases, including non-alcoholic fatty liver disease, cardiovascular disease, and neurological disorders.

Ethionine is a toxic, synthetic analog of the amino acid methionine. It is an antimetabolite that inhibits the enzyme methionine adenosyltransferase, which plays a crucial role in methionine metabolism. Ethionine is often used in research to study the effects of methionine deficiency and to create animal models of various human diseases. It is not a natural component of human nutrition and has no known medical uses. Prolonged exposure or high levels of ethionine can lead to liver damage, growth impairment, and other harmful health effects.

Glycerylphosphorylcholine (GPC) is not typically considered a medical term, but it is a choline-containing phospholipid that can be found in various tissues and fluids within the human body. It is also available as a dietary supplement. Here's a definition of Glycerylphosphorylcholine:

Glycerylphosphorylcholine (GPC) is a natural choline-containing compound that is present in various tissues and fluids within the human body, including neural tissue, muscle, and blood. It plays an essential role in the synthesis of the neurotransmitter acetylcholine, which is involved in memory, learning, and other cognitive functions. GPC can also be found in some foods, such as egg yolks and soybeans, and is available as a dietary supplement. In the body, GPC can be converted to phosphatidylcholine, another important phospholipid that is necessary for maintaining cell membrane structure and function.

Phosphorylcholine is not a medical condition or disease, but rather a chemical compound. It is the choline ester of phosphoric acid, and it plays an important role in the structure and function of cell membranes. Phosphorylcholine is also found in certain types of lipoproteins, including low-density lipoprotein (LDL) or "bad" cholesterol.

In the context of medical research and therapy, phosphorylcholine has been studied for its potential role in various diseases, such as atherosclerosis, Alzheimer's disease, and other inflammatory conditions. Some studies have suggested that phosphorylcholine may contribute to the development of these diseases by promoting inflammation and immune responses. However, more research is needed to fully understand the role of phosphorylcholine in human health and disease.

Betaine, also known as trimethylglycine, is a naturally occurring compound that can be found in various foods such as beets, spinach, and whole grains. In the body, betaine functions as an osmolyte, helping to regulate water balance in cells, and as a methyl donor, contributing to various metabolic processes including the conversion of homocysteine to methionine.

In medical terms, betaine is also used as a dietary supplement and medication. Betaine hydrochloride is a form of betaine that is sometimes used as a supplement to help with digestion by providing additional stomach acid. Betaine anhydrous, on the other hand, is often used as a supplement for improving athletic performance and promoting liver health.

Betaine has also been studied for its potential role in protecting against various diseases, including cardiovascular disease, diabetes, and neurological disorders. However, more research is needed to fully understand its mechanisms of action and therapeutic potential.

Choline O-Acetyltransferase (COAT, ChAT) is an enzyme that plays a crucial role in the synthesis of the neurotransmitter acetylcholine. It catalyzes the transfer of an acetyl group from acetyl CoA to choline, resulting in the formation of acetylcholine. Acetylcholine is a vital neurotransmitter involved in various physiological processes such as memory, cognition, and muscle contraction. COAT is primarily located in cholinergic neurons, which are nerve cells that use acetylcholine to transmit signals to other neurons or muscles. Inhibition of ChAT can lead to a decrease in acetylcholine levels and may contribute to neurological disorders such as Alzheimer's disease and myasthenia gravis.

Phosphatidylcholines (PtdCho) are a type of phospholipids that are essential components of cell membranes in living organisms. They are composed of a hydrophilic head group, which contains a choline moiety, and two hydrophobic fatty acid chains. Phosphatidylcholines are crucial for maintaining the structural integrity and function of cell membranes, and they also serve as important precursors for the synthesis of signaling molecules such as acetylcholine. They can be found in various tissues and biological fluids, including blood, and are abundant in foods such as soybeans, eggs, and meat. Phosphatidylcholines have been studied for their potential health benefits, including their role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It plays a crucial role in various biological processes, including:

1. Protein synthesis: Methionine is one of the building blocks of proteins, helping to create new proteins and maintain the structure and function of cells.
2. Methylation: Methionine serves as a methyl group donor in various biochemical reactions, which are essential for DNA synthesis, gene regulation, and neurotransmitter production.
3. Antioxidant defense: Methionine can be converted to cysteine, which is involved in the formation of glutathione, a potent antioxidant that helps protect cells from oxidative damage.
4. Homocysteine metabolism: Methionine is involved in the conversion of homocysteine back to methionine through a process called remethylation, which is essential for maintaining normal homocysteine levels and preventing cardiovascular disease.
5. Fat metabolism: Methionine helps facilitate the breakdown and metabolism of fats in the body.

Foods rich in methionine include meat, fish, dairy products, eggs, and some nuts and seeds.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

S-Adenosylhomocysteine (SAH) is a metabolic byproduct formed from the demethylation of various compounds or from the breakdown of S-adenosylmethionine (SAM), which is a major methyl group donor in the body. SAH is rapidly hydrolyzed to homocysteine and adenosine by the enzyme S-adenosylhomocysteine hydrolase. Increased levels of SAH can inhibit many methyltransferases, leading to disturbances in cellular metabolism and potential negative health effects.

Ethanolamines are a class of organic compounds that contain an amino group (-NH2) and a hydroxyl group (-OH) attached to a carbon atom. They are derivatives of ammonia (NH3) in which one or two hydrogen atoms have been replaced by a ethanol group (-CH2CH2OH).

The most common ethanolamines are:

* Monethanolamine (MEA), also called 2-aminoethanol, with the formula HOCH2CH2NH2.
* Diethanolamine (DEA), also called 2,2'-iminobisethanol, with the formula HOCH2CH2NHCH2CH2OH.
* Triethanolamine (TEA), also called 2,2',2''-nitrilotrisethanol, with the formula N(CH2CH2OH)3.

Ethanolamines are used in a wide range of industrial and consumer products, including as solvents, emulsifiers, detergents, pharmaceuticals, and personal care products. They also have applications as intermediates in the synthesis of other chemicals. In the body, ethanolamines play important roles in various biological processes, such as neurotransmission and cell signaling.

S-Adenosylmethionine (SAMe) is a physiological compound involved in methylation reactions, transulfuration pathways, and aminopropylation processes in the body. It is formed from the coupling of methionine, an essential sulfur-containing amino acid, and adenosine triphosphate (ATP) through the action of methionine adenosyltransferase enzymes.

SAMe serves as a major methyl donor in various biochemical reactions, contributing to the synthesis of numerous compounds such as neurotransmitters, proteins, phospholipids, nucleic acids, and other methylated metabolites. Additionally, SAMe plays a crucial role in the detoxification process within the liver by participating in glutathione production, which is an important antioxidant and detoxifying agent.

In clinical settings, SAMe supplementation has been explored as a potential therapeutic intervention for various conditions, including depression, osteoarthritis, liver diseases, and fibromyalgia, among others. However, its efficacy remains a subject of ongoing research and debate within the medical community.

Folic acid is the synthetic form of folate, a type of B vitamin (B9). It is widely used in dietary supplements and fortified foods because it is more stable and has a longer shelf life than folate. Folate is essential for normal cell growth and metabolism, and it plays a critical role in the formation of DNA and RNA, the body's genetic material. Folic acid is also crucial during early pregnancy to prevent birth defects of the brain and spine called neural tube defects.

Medical Definition: "Folic acid is the synthetic form of folate (vitamin B9), a water-soluble vitamin involved in DNA synthesis, repair, and methylation. It is used in dietary supplementation and food fortification due to its stability and longer shelf life compared to folate. Folic acid is critical for normal cell growth, development, and red blood cell production."

Fatty liver, also known as hepatic steatosis, is a medical condition characterized by the abnormal accumulation of fat in the liver. The liver's primary function is to process nutrients, filter blood, and fight infections, among other tasks. When excess fat builds up in the liver cells, it can impair liver function and lead to inflammation, scarring, and even liver failure if left untreated.

Fatty liver can be caused by various factors, including alcohol consumption, obesity, nonalcoholic fatty liver disease (NAFLD), viral hepatitis, and certain medications or medical conditions. NAFLD is the most common cause of fatty liver in the United States and other developed countries, affecting up to 25% of the population.

Symptoms of fatty liver may include fatigue, weakness, weight loss, loss of appetite, nausea, abdominal pain or discomfort, and jaundice (yellowing of the skin and eyes). However, many people with fatty liver do not experience any symptoms, making it essential to diagnose and manage the condition through regular check-ups and blood tests.

Treatment for fatty liver depends on the underlying cause. Lifestyle changes such as weight loss, exercise, and dietary modifications are often recommended for people with NAFLD or alcohol-related fatty liver disease. Medications may also be prescribed to manage related conditions such as diabetes, high cholesterol, or metabolic syndrome. In severe cases of liver damage, a liver transplant may be necessary.

A diet, in medical terms, refers to the planned and regular consumption of food and drinks. It is a balanced selection of nutrient-rich foods that an individual eats on a daily or periodic basis to meet their energy needs and maintain good health. A well-balanced diet typically includes a variety of fruits, vegetables, whole grains, lean proteins, and low-fat dairy products.

A diet may also be prescribed for therapeutic purposes, such as in the management of certain medical conditions like diabetes, hypertension, or obesity. In these cases, a healthcare professional may recommend specific restrictions or modifications to an individual's regular diet to help manage their condition and improve their overall health.

It is important to note that a healthy and balanced diet should be tailored to an individual's age, gender, body size, activity level, and any underlying medical conditions. Consulting with a healthcare professional, such as a registered dietitian or nutritionist, can help ensure that an individual's dietary needs are being met in a safe and effective way.

Hemicholinium 3 is not a medical term, but it is a chemical compound that has been used in research related to the nervous system. It is primarily used as a research tool to study the transmission of nerve impulses.

In scientific terms, Hemicholinium 3 is an inhibitor of choline transport. Choline is a molecule required for the synthesis of acetylcholine, a neurotransmitter that plays a crucial role in transmitting signals between nerves and muscles. By blocking the reuptake of choline into the presynaptic nerve terminal, Hemicholinium 3 reduces the amount of acetylcholine available for release, which can affect nerve impulse transmission.

While Hemicholinium 3 has been used in research to help understand the mechanisms of nerve impulse transmission and cholinergic neurotransmission, it is not used clinically in medical practice.

Cytidine diphosphate choline (CDP-choline) is a biomolecule that plays a crucial role in the synthesis of phosphatidylcholine, a major component of cellular membranes. It is formed from the reaction between cytidine triphosphate (CTP) and choline, catalyzed by the enzyme CTP:phosphocholine cytidylyltransferase. CDP-choline serves as an essential intermediate in the Kennedy pathway of phosphatidylcholine synthesis. This molecule is also involved in various cellular processes, including signal transduction and neurotransmitter synthesis. CDP-choline has been studied for its potential therapeutic benefits in several neurological disorders due to its role in supporting membrane integrity and promoting neuronal health.

Choline dehydrogenase is an enzyme that plays a role in the metabolism of choline, a nutrient that is essential for the normal functioning of cells. Specifically, choline dehydrogenase helps to catalyze the oxidation of choline to betaine aldehyde, which is then further metabolized to betaine. This reaction is an important step in the conversion of choline to a molecule called glycine betaine, which helps to regulate cell volume and protect cells from osmotic stress. Choline dehydrogenase is found in various tissues throughout the body, including the liver, kidneys, and brain. Deficiencies in choline or dysfunction of choline dehydrogenase can lead to a variety of health problems, including fatty liver disease, muscle damage, and neurological disorders.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

No FAQ available that match "high in choline choline deficiency"

No images available that match "high in choline choline deficiency"