An individual having different alleles at one or more loci regarding a specific character.
Identification of genetic carriers for a given trait.
An individual in which both alleles at a given locus are identical.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.
The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION.
A group of hereditary hemolytic anemias in which there is decreased synthesis of one or more hemoglobin polypeptide chains. There are several genetic types with clinical pictures ranging from barely detectable hematologic abnormality to severe and fatal anemia.
Genes that influence the PHENOTYPE only in the homozygous state.
An inherited condition due to a deficiency of either LIPOPROTEIN LIPASE or APOLIPOPROTEIN C-II (a lipase-activating protein). The lack of lipase activities results in inability to remove CHYLOMICRONS and TRIGLYCERIDES from the blood which has a creamy top layer after standing.
An adult hemoglobin component normally present in hemolysates from human erythrocytes in concentrations of about 3%. The hemoglobin is composed of two alpha chains and two delta chains. The percentage of HbA2 varies in some hematologic disorders, but is about double in beta-thalassemia.
Genotypic differences observed among individuals in a population.
Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.
Biochemical identification of mutational changes in a nucleotide sequence.
Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability.
Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Hemoglobins characterized by structural alterations within the molecule. The alteration can be either absence, addition or substitution of one or more amino acids in the globin part of the molecule at selected positions in the polypeptide chains.
A disorder of iron metabolism characterized by a triad of HEMOSIDEROSIS; LIVER CIRRHOSIS; and DIABETES MELLITUS. It is caused by massive iron deposits in parenchymal cells that may develop after a prolonged increase of iron absorption. (Jablonski's Dictionary of Syndromes & Eponymic Diseases, 2d ed)
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
An autosomal recessive inherited disorder characterized by choreoathetosis beginning in childhood, progressive CEREBELLAR ATAXIA; TELANGIECTASIS of CONJUNCTIVA and SKIN; DYSARTHRIA; B- and T-cell immunodeficiency, and RADIOSENSITIVITY to IONIZING RADIATION. Affected individuals are prone to recurrent sinobronchopulmonary infections, lymphoreticular neoplasms, and other malignancies. Serum ALPHA-FETOPROTEINS are usually elevated. (Menkes, Textbook of Child Neurology, 5th ed, p688) The gene for this disorder (ATM) encodes a cell cycle checkpoint protein kinase and has been mapped to chromosome 11 (11q22-q23).
A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.
A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins).
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An inherited disorder due to defective reabsorption of CYSTINE and other BASIC AMINO ACIDS by the PROXIMAL RENAL TUBULES. This form of aminoaciduria is characterized by the abnormally high urinary levels of cystine; LYSINE; ARGININE; and ORNITHINE. Mutations involve the amino acid transport protein gene SLC3A1.
Conditions with abnormally low levels of BETA-LIPOPROTEINS (low density lipoproteins or LDL) in the blood. It is defined as LDL values equal to or less than the 5th percentile for the population. They include the autosomal dominant form involving mutation of the APOLIPOPROTEINS B gene, and the autosomal recessive form involving mutation of the microsomal triglyceride transfer protein. All are characterized by low LDL and dietary fat malabsorption.
An autosomal recessive neurodegenerative disorder characterized by the onset in infancy of an exaggerated startle response, followed by paralysis, dementia, and blindness. It is caused by mutation in the alpha subunit of the HEXOSAMINIDASE A resulting in lipid-laden ganglion cells. It is also known as the B variant (with increased HEXOSAMINIDASE B but absence of hexosaminidase A) and is strongly associated with Ashkenazic Jewish ancestry.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
An abnormal hemoglobin that results from the substitution of lysine for glutamic acid at position 26 of the beta chain. It is most frequently observed in southeast Asian populations.
An ethnic group with historical ties to the land of ISRAEL and the religion of JUDAISM.
An enzyme catalyzing the formation of AMP from adenine and phosphoribosylpyrophosphate. It can act as a salvage enzyme for recycling of adenine into nucleic acids. EC 2.4.2.7.
The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.
Mice bearing mutant genes which are phenotypically expressed in the animals.
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
The major component of hemoglobin in the fetus. This HEMOGLOBIN has two alpha and two gamma polypeptide subunits in comparison to normal adult hemoglobin, which has two alpha and two beta polypeptide subunits. Fetal hemoglobin concentrations can be elevated (usually above 0.5%) in children and adults affected by LEUKEMIA and several types of ANEMIA.
A disorder characterized by reduced synthesis of the alpha chains of hemoglobin. The severity of this condition can vary from mild anemia to death, depending on the number of genes deleted.
Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing.
A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population.
A group of inherited disorders characterized by structural alterations within the hemoglobin molecule.
Any method used for determining the location of and relative distances between genes on a chromosome.
The mating of plants or non-human animals which are closely related genetically.
The discipline studying genetic composition of populations and effects of factors such as GENETIC SELECTION, population size, MUTATION, migration, and GENETIC DRIFT on the frequencies of various GENOTYPES and PHENOTYPES using a variety of GENETIC TECHNIQUES.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
An autosomal recessive neurodegenerative disorder characterized by an accumulation of G(M2) GANGLIOSIDE in neurons and other tissues. It is caused by mutation in the common beta subunit of HEXOSAMINIDASE A and HEXOSAMINIDASE B. Thus this disease is also known as the O variant since both hexosaminidase A and B are missing. Clinically, it is indistinguishable from TAY-SACHS DISEASE.
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.
A disorder characterized by reduced synthesis of the beta chains of hemoglobin. There is retardation of hemoglobin A synthesis in the heterozygous form (thalassemia minor), which is asymptomatic, while in the homozygous form (thalassemia major, Cooley's anemia, Mediterranean anemia, erythroblastic anemia), which can result in severe complications and even death, hemoglobin A synthesis is absent.
A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.
Disorders affecting amino acid metabolism. The majority of these disorders are inherited and present in the neonatal period with metabolic disturbances (e.g., ACIDOSIS) and neurologic manifestations. They are present at birth, although they may not become symptomatic until later in life.
A group of autosomal recessive disorders marked by a deficiency of the hepatic enzyme PHENYLALANINE HYDROXYLASE or less frequently by reduced activity of DIHYDROPTERIDINE REDUCTASE (i.e., atypical phenylketonuria). Classical phenylketonuria is caused by a severe deficiency of phenylalanine hydroxylase and presents in infancy with developmental delay; SEIZURES; skin HYPOPIGMENTATION; ECZEMA; and demyelination in the central nervous system. (From Adams et al., Principles of Neurology, 6th ed, p952).
A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).
A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure.
A type of mutation in which a number of NUCLEOTIDES deleted from or inserted into a protein coding sequence is not divisible by three, thereby causing an alteration in the READING FRAMES of the entire coding sequence downstream of the mutation. These mutations may be induced by certain types of MUTAGENS or may occur spontaneously.
Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population.
Errors in the metabolism of LIPIDS resulting from inborn genetic MUTATIONS that are heritable.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
Errors in metabolic processes resulting from inborn genetic mutations that are inherited or acquired in utero.
An amino acid-specifying codon that has been converted to a stop codon (CODON, TERMINATOR) by mutation. Its occurance is abnormal causing premature termination of protein translation and results in production of truncated and non-functional proteins. A nonsense mutation is one that converts an amino acid-specific codon to a stop codon.
An X-linked inherited metabolic disease caused by a deficiency of lysosomal ALPHA-GALACTOSIDASE A. It is characterized by intralysosomal accumulation of globotriaosylceramide and other GLYCOSPHINGOLIPIDS in blood vessels throughout the body leading to multi-system complications including renal, cardiac, cerebrovascular, and skin disorders.
Conditions with abnormally low levels of LIPOPROTEINS in the blood. This may involve any of the lipoprotein subclasses, including ALPHA-LIPOPROTEINS (high-density lipoproteins); BETA-LIPOPROTEINS (low-density lipoproteins); and PREBETA-LIPOPROTEINS (very-low-density lipoproteins).
The magnitude of INBREEDING in humans.
The adaptive superiority of the heterozygous GENOTYPE with respect to one or more characters in comparison with the corresponding HOMOZYGOTE.
A mammalian beta-hexosaminidase isoform that is a heteromeric protein comprized of both hexosaminidase alpha and hexosaminidase beta subunits. Deficiency of hexosaminidase A due to mutations in the gene encoding the hexosaminidase alpha subunit is a case of TAY-SACHS DISEASE. Deficiency of hexosaminidase A and HEXOSAMINIDASE B due to mutations in the gene encoding the hexosaminidase beta subunit is a case of SANDHOFF DISEASE.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
Autosomal recessive inborn error of methionine metabolism usually caused by a deficiency of CYSTATHIONINE BETA-SYNTHASE and associated with elevations of homocysteine in plasma and urine. Clinical features include a tall slender habitus, SCOLIOSIS, arachnodactyly, MUSCLE WEAKNESS, genu varus, thin blond hair, malar flush, lens dislocations, an increased incidence of MENTAL RETARDATION, and a tendency to develop fibrosis of arteries, frequently complicated by CEREBROVASCULAR ACCIDENTS and MYOCARDIAL INFARCTION. (From Adams et al., Principles of Neurology, 6th ed, p979)
Conditions characterized by abnormal lipid deposition due to disturbance in lipid metabolism, such as hereditary diseases involving lysosomal enzymes required for lipid breakdown. They are classified either by the enzyme defect or by the type of lipid involved.
An autosomal recessively inherited disorder caused by mutation of LECITHIN CHOLESTEROL ACYLTRANSFERASE that facilitates the esterification of lipoprotein cholesterol and subsequent removal from peripheral tissues to the liver. This defect results in low HDL-cholesterol level in blood and accumulation of free cholesterol in tissue leading to a triad of CORNEAL OPACITY, hemolytic anemia (ANEMIA, HEMOLYTIC), and PROTEINURIA.
An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION.
Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA.
The reciprocal exchange of segments at corresponding positions along pairs of homologous CHROMOSOMES by symmetrical breakage and crosswise rejoining forming cross-over sites (HOLLIDAY JUNCTIONS) that are resolved during CHROMOSOME SEGREGATION. Crossing-over typically occurs during MEIOSIS but it may also occur in the absence of meiosis, for example, with bacterial chromosomes, organelle chromosomes, or somatic cell nuclear chromosomes.
Electrophoresis in which a starch gel (a mixture of amylose and amylopectin) is used as the diffusion medium.
An inherited disorder transmitted as a sex-linked trait and caused by a deficiency of an enzyme of purine metabolism; HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE. Affected individuals are normal in the first year of life and then develop psychomotor retardation, extrapyramidal movement disorders, progressive spasticity, and seizures. Self-destructive behaviors such as biting of fingers and lips are seen frequently. Intellectual impairment may also occur but is typically not severe. Elevation of uric acid in the serum leads to the development of renal calculi and gouty arthritis. (Menkes, Textbook of Child Neurology, 5th ed, pp127)
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34.
A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties.
A 513-kDa protein synthesized in the LIVER. It serves as the major structural protein of low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). It is the ligand for the LDL receptor (RECEPTORS, LDL) that promotes cellular binding and internalization of LDL particles.
A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The chromosomal constitution of cells, in which each type of CHROMOSOME is represented once. Symbol: N.
Deficiency of the protease inhibitor ALPHA 1-ANTITRYPSIN that manifests primarily as PULMONARY EMPHYSEMA and LIVER CIRRHOSIS.
General term for a number of inherited defects of amino acid metabolism in which there is a deficiency or absence of pigment in the eyes, skin, or hair.
An aberration in which a chromosomal segment is deleted and reinserted in the same place but turned 180 degrees from its original orientation, so that the gene sequence for the segment is reversed with respect to that of the rest of the chromosome.
An abnormal hemoglobin resulting from the substitution of valine for glutamic acid at position 6 of the beta chain of the globin moiety. The heterozygous state results in sickle cell trait, the homozygous in sickle cell anemia.
Deletion of sequences of nucleic acids from the genetic material of an individual.
A hexosaminidase specific for non-reducing N-acetyl-D-hexosamine residues in N-acetyl-beta-D-hexosaminides. It acts on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Two specific mammalian isoenzymes of beta-N-acetylhexoaminidase are referred to as HEXOSAMINIDASE A and HEXOSAMINIDASE B. Deficiency of the type A isoenzyme causes TAY-SACHS DISEASE, while deficiency of both A and B isozymes causes SANDHOFF DISEASE. The enzyme has also been used as a tumor marker to distinguish between malignant and benign disease.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Conditions with abnormally elevated levels of LIPOPROTEINS in the blood. They may be inherited, acquired, primary, or secondary. Hyperlipoproteinemias are classified according to the pattern of lipoproteins on electrophoresis or ultracentrifugation.
A purine that is an isomer of ADENINE (6-aminopurine).
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Nonrandom association of linked genes. This is the tendency of the alleles of two separate but already linked loci to be found together more frequently than would be expected by chance alone.
Individuals whose ancestral origins are in the southeastern and eastern areas of the Asian continent.
Variation in a population's DNA sequence that is detected by determining alterations in the conformation of denatured DNA fragments. Denatured DNA fragments are allowed to renature under conditions that prevent the formation of double-stranded DNA and allow secondary structure to form in single stranded fragments. These fragments are then run through polyacrylamide gels to detect variations in the secondary structure that is manifested as an alteration in migration through the gels.
Heat- and storage-labile plasma glycoprotein which accelerates the conversion of prothrombin to thrombin in blood coagulation. Factor V accomplishes this by forming a complex with factor Xa, phospholipid, and calcium (prothrombinase complex). Deficiency of factor V leads to Owren's disease.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
Color of hair or fur.
An individual having only one allele at a given locus because of the loss of the other allele through a mutation (e.g., CHROMOSOME DELETION).
In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X.
The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species.
A condition marked by the development of widespread xanthomas, yellow tumor-like structures filled with lipid deposits. Xanthomas can be found in a variety of tissues including the SKIN; TENDONS; joints of KNEES and ELBOWS. Xanthomatosis is associated with disturbance of LIPID METABOLISM and formation of FOAM CELLS.
A phenomenon that is observed when a small subgroup of a larger POPULATION establishes itself as a separate and isolated entity. The subgroup's GENE POOL carries only a fraction of the genetic diversity of the parental population resulting in an increased frequency of certain diseases in the subgroup, especially those diseases known to be autosomal recessive.
A group of HEREDITARY AUTOINFLAMMATION DISEASES, characterized by recurrent fever, abdominal pain, headache, rash, PLEURISY; and ARTHRITIS. ORCHITIS; benign MENINGITIS; and AMYLOIDOSIS may also occur. Homozygous or compound heterozygous mutations in marenostrin gene result in autosomal recessive transmission; simple heterozygous, autosomal dominant form of the disease.
A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body.
An excessive accumulation of iron in the body due to a greater than normal absorption of iron from the gastrointestinal tract or from parenteral injection. This may arise from idiopathic hemochromatosis, excessive iron intake, chronic alcoholism, certain types of refractory anemia, or transfusional hemosiderosis. (From Churchill's Illustrated Medical Dictionary, 1989)
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
A species of fruit fly much used in genetics because of the large size of its chromosomes.
The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage.
A genetic or pathological condition that is characterized by short stature and undersize. Abnormal skeletal growth usually results in an adult who is significantly below the average height.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.
An autosomal recessively inherited disorder caused by mutation of ATP-BINDING CASSETTE TRANSPORTERS involved in cellular cholesterol removal (reverse-cholesterol transport). It is characterized by near absence of ALPHA-LIPOPROTEINS (high-density lipoproteins) in blood. The massive tissue deposition of cholesterol esters results in HEPATOMEGALY; SPLENOMEGALY; RETINITIS PIGMENTOSA; large orange tonsils; and often sensory POLYNEUROPATHY. The disorder was first found among inhabitants of Tangier Island in the Chesapeake Bay, MD.
The homologous chromosomes that are dissimilar in the heterogametic sex. There are the X CHROMOSOME, the Y CHROMOSOME, and the W, Z chromosomes (in animals in which the female is the heterogametic sex (the silkworm moth Bombyx mori, for example)). In such cases the W chromosome is the female-determining and the male is ZZ. (From King & Stansfield, A Dictionary of Genetics, 4th ed)
A characteristic symptom complex.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
The integration of exogenous DNA into the genome of an organism at sites where its expression can be suitably controlled. This integration occurs as a result of homologous recombination.
A metabolic disease characterized by the defective transport of CYSTINE across the lysosomal membrane due to mutation of a membrane protein cystinosin. This results in cystine accumulation and crystallization in the cells causing widespread tissue damage. In the KIDNEY, nephropathic cystinosis is a common cause of RENAL FANCONI SYNDROME.
The percent frequency with which a dominant or homozygous recessive gene or gene combination manifests itself in the phenotype of the carriers. (From Glossary of Genetics, 5th ed)
Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases.
The health status of the family as a unit including the impact of the health of one member of the family on the family as a unit and on individual family members; also, the impact of family organization or disorganization on the health status of its members.
A group of inherited disorders of the ADRENAL GLANDS, caused by enzyme defects in the synthesis of cortisol (HYDROCORTISONE) and/or ALDOSTERONE leading to accumulation of precursors for ANDROGENS. Depending on the hormone imbalance, congenital adrenal hyperplasia can be classified as salt-wasting, hypertensive, virilizing, or feminizing. Defects in STEROID 21-HYDROXYLASE; STEROID 11-BETA-HYDROXYLASE; STEROID 17-ALPHA-HYDROXYLASE; 3-beta-hydroxysteroid dehydrogenase (3-HYDROXYSTEROID DEHYDROGENASES); TESTOSTERONE 5-ALPHA-REDUCTASE; or steroidogenic acute regulatory protein; among others, underlie these disorders.
Abnormal number or structure of the SEX CHROMOSOMES. Some sex chromosome aberrations are associated with SEX CHROMOSOME DISORDERS and SEX CHROMOSOME DISORDERS OF SEX DEVELOPMENT.
Actual loss of portion of a chromosome.
A rare autosomal recessive disorder of the urea cycle. It is caused by a deficiency of the hepatic enzyme ARGINASE. Arginine is elevated in the blood and cerebrospinal fluid, and periodic HYPERAMMONEMIA may occur. Disease onset is usually in infancy or early childhood. Clinical manifestations include seizures, microcephaly, progressive mental impairment, hypotonia, ataxia, spastic diplegia, and quadriparesis. (From Hum Genet 1993 Mar;91(1):1-5; Menkes, Textbook of Child Neurology, 5th ed, p51)
Determination of the nature of a pathological condition or disease in the postimplantation EMBRYO; FETUS; or pregnant female before birth.
The authorized absence from work of a family member to attend the illness or participate in the care of a parent, a sibling, or other family member. For the care of a parent for a child or for pre- or postnatal leave of a parent, PARENTAL LEAVE is available.
Recording of electric potentials in the retina after stimulation by light.
Systemic lysosomal storage disease marked by progressive physical deterioration and caused by a deficiency of L-sulfoiduronate sulfatase. This disease differs from MUCOPOLYSACCHARIDOSIS I by slower progression, lack of corneal clouding, and X-linked rather than autosomal recessive inheritance. The mild form produces near-normal intelligence and life span. The severe form usually causes death by age 15.
A chloride channel that regulates secretion in many exocrine tissues. Abnormalities in the CFTR gene have been shown to cause cystic fibrosis. (Hum Genet 1994;93(4):364-8)
An enzyme that catalyzes the hydrolysis of terminal, non-reducing alpha-D-galactose residues in alpha-galactosides including galactose oligosaccharides, galactomannans, and galactolipids.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A subtype of HLA-DRB beta chains that includes over 50 allelic variants. The HLA-DRB3 beta-chain subtype is associated with HLA-DR52 serological subtype.
Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES.
An inherited urea cycle disorder associated with deficiency of the enzyme ORNITHINE CARBAMOYLTRANSFERASE, transmitted as an X-linked trait and featuring elevations of amino acids and ammonia in the serum. Clinical features, which are more prominent in males, include seizures, behavioral alterations, episodic vomiting, lethargy, and coma. (Menkes, Textbook of Child Neurology, 5th ed, pp49-50)
An infant during the first month after birth.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE).
Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types.
Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
Methods used to determine individuals' specific ALLELES or SNPS (single nucleotide polymorphisms).
The condition of being heterozygous for hemoglobin S.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Glycogenosis due to muscle phosphorylase deficiency. Characterized by painful cramps following sustained exercise.
A form of gene interaction whereby the expression of one gene interferes with or masks the expression of a different gene or genes. Genes whose expression interferes with or masks the effects of other genes are said to be epistatic to the effected genes. Genes whose expression is affected (blocked or masked) are hypostatic to the interfering genes.
Congenital absence of or defects in structures of the eye; may also be hereditary.
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE.
Early pregnancy loss during the EMBRYO, MAMMALIAN stage of development. In the human, this period comprises the second through eighth week after fertilization.
A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
A method of detecting gene mutation by mixing PCR-amplified mutant and wild-type DNA followed by denaturation and reannealing. The resultant products are resolved by gel electrophoresis, with single base substitutions detectable under optimal electrophoretic conditions and gel formulations. Large base pair mismatches may also be analyzed by using electron microscopy to visualize heteroduplex regions.
Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.
An autosomal recessive disorder caused by a deficiency of acid beta-glucosidase (GLUCOSYLCERAMIDASE) leading to intralysosomal accumulation of glycosylceramide mainly in cells of the MONONUCLEAR PHAGOCYTE SYSTEM. The characteristic Gaucher cells, glycosphingolipid-filled HISTIOCYTES, displace normal cells in BONE MARROW and visceral organs causing skeletal deterioration, hepatosplenomegaly, and organ dysfunction. There are several subtypes based on the presence and severity of neurological involvement.
An enzyme that specifically cleaves the ester sulfate of iduronic acid. Its deficiency has been demonstrated in Hunter's syndrome, which is characterized by an excess of dermatan sulfate and heparan sulfate. EC 3.1.6.13.
A disease characterized by chronic hemolytic anemia, episodic painful crises, and pathologic involvement of many organs. It is the clinical expression of homozygosity for hemoglobin S.
The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
Created 1 January 1993 as a result of the division of Czechoslovakia into the Czech Republic and Slovakia.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Mice which carry mutant genes for neurologic defects or abnormalities.
A family of sterols commonly found in plants and plant oils. Alpha-, beta-, and gamma-isomers have been characterized.
The analysis of a sequence such as a region of a chromosome, a haplotype, a gene, or an allele for its involvement in controlling the phenotype of a specific trait, metabolic pathway, or disease.
Death of the developing young in utero. BIRTH of a dead FETUS is STILLBIRTH.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Electrophoresis applied to BLOOD PROTEINS.
A rare, pigmentary, and atrophic autosomal recessive disease. It is manifested as an extreme photosensitivity to ULTRAVIOLET RAYS as the result of a deficiency in the enzyme that permits excisional repair of ultraviolet-damaged DNA.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
Individuals whose ancestral origins are in the continent of Africa.
Membrane glycoproteins consisting of an alpha subunit and a BETA 2-MICROGLOBULIN beta subunit. In humans, highly polymorphic genes on CHROMOSOME 6 encode the alpha subunits of class I antigens and play an important role in determining the serological specificity of the surface antigen. Class I antigens are found on most nucleated cells and are generally detected by their reactivity with alloantisera. These antigens are recognized during GRAFT REJECTION and restrict cell-mediated lysis of virus-infected cells.
The fluid excreted by the SWEAT GLANDS. It consists of water containing sodium chloride, phosphate, urea, ammonia, and other waste products.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III.
Hereditary, progressive degeneration of the neuroepithelium of the retina characterized by night blindness and progressive contraction of the visual field.
Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol.
Enzymes that catalyze the hydrolysis of N-acylhexosamine residues in N-acylhexosamides. Hexosaminidases also act on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES.
Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE.
Congenital malformations of the central nervous system and adjacent structures related to defective neural tube closure during the first trimester of pregnancy generally occurring between days 18-29 of gestation. Ectodermal and mesodermal malformations (mainly involving the skull and vertebrae) may occur as a result of defects of neural tube closure. (From Joynt, Clinical Neurology, 1992, Ch55, pp31-41)
A group of disorders which have in common elevations of tyrosine in the blood and urine secondary to an enzyme deficiency. Type I tyrosinemia features episodic weakness, self-mutilation, hepatic necrosis, renal tubular injury, and seizures and is caused by a deficiency of the enzyme fumarylacetoacetase. Type II tyrosinemia features INTELLECTUAL DISABILITY, painful corneal ulcers, and keratoses of the palms and plantar surfaces and is caused by a deficiency of the enzyme TYROSINE TRANSAMINASE. Type III tyrosinemia features INTELLECTUAL DISABILITY and is caused by a deficiency of the enzyme 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE. (Menkes, Textbook of Child Neurology, 5th ed, pp42-3)
Any one of a group of congenital hemolytic anemias in which there is no abnormal hemoglobin or spherocytosis and in which there is a defect of glycolysis in the erythrocyte. Common causes include deficiencies in GLUCOSE-6-PHOSPHATE ISOMERASE; PYRUVATE KINASE; and GLUCOSE-6-PHOSPHATE DEHYDROGENASE.
A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304)
A commonly occurring abnormal hemoglobin in which lysine replaces a glutamic acid residue at the sixth position of the beta chains. It results in reduced plasticity of erythrocytes.
The presence of apparently similar characters for which the genetic evidence indicates that different genes or different genetic mechanisms are involved in different pedigrees. In clinical settings genetic heterogeneity refers to the presence of a variety of genetic defects which cause the same disease, often due to mutations at different loci on the same gene, a finding common to many human diseases including ALZHEIMER DISEASE; CYSTIC FIBROSIS; LIPOPROTEIN LIPASE DEFICIENCY, FAMILIAL; and POLYCYSTIC KIDNEY DISEASES. (Rieger, et al., Glossary of Genetics: Classical and Molecular, 5th ed; Segen, Dictionary of Modern Medicine, 1992)
The relative amount by which the average fitness of a POPULATION is lowered, due to the presence of GENES that decrease survival, compared to the GENOTYPE with maximum or optimal fitness. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
Transport proteins that carry specific substances in the blood or across cell membranes.

Mapping of the homothallic genes, HM alpha and HMa, in Saccharomyces yeasts. (1/10346)

Two of the three homothallic genes, HM alpha and HMa, showed direct linkage to the mating-type locus at approximately 73 and 98 strans (57 and 65 centimorgans [cM], respectively, whereas, the other, HO, showed no linkage to 25 standard markers distributed over 17 chromosomes including the mating-type locus. To determine whether the HM alpha and HMa loci located on the left or right side of the mating-type locus, equations for three factor analysis of three linked genes were derived. Tetrad data were collected and were compared with expected values by chi 2 statistics. Calculations indicated that the HM alpha gene is probably located on the right arm at 95 strans (65 cM) from the centromere and the HMa locus at approximately 90 strans (64 cM) on the left arm of chromosome III.  (+info)

The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. (2/10346)

The Drosophila kismet gene was identified in a screen for dominant suppressors of Polycomb, a repressor of homeotic genes. Here we show that kismet mutations suppress the Polycomb mutant phenotype by blocking the ectopic transcription of homeotic genes. Loss of zygotic kismet function causes homeotic transformations similar to those associated with loss-of-function mutations in the homeotic genes Sex combs reduced and Abdominal-B. kismet is also required for proper larval body segmentation. Loss of maternal kismet function causes segmentation defects similar to those caused by mutations in the pair-rule gene even-skipped. The kismet gene encodes several large nuclear proteins that are ubiquitously expressed along the anterior-posterior axis. The Kismet proteins contain a domain conserved in the trithorax group protein Brahma and related chromatin-remodeling factors, providing further evidence that alterations in chromatin structure are required to maintain the spatially restricted patterns of homeotic gene transcription.  (+info)

Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. (3/10346)

We have identified a novel gene in a gene trap screen that encodes a protein related to the DnaJ co-chaperone in E. coli. The gene, named Mrj (mammalian relative of DnaJ) was expressed throughout development in both the embryo and placenta. Within the placenta, expression was particularly high in trophoblast giant cells but moderate levels were also observed in trophoblast cells of the chorion at embryonic day 8.5, and later in the labyrinth which arises from the attachment of the chorion to the allantois (a process called chorioallantoic fusion). Insertion of the ROSAbetageo gene trap vector into the Mrj gene created a null allele. Homozygous Mrj mutants died at mid-gestation due to a failure of chorioallantoic fusion at embryonic day 8.5, which precluded formation of the mature placenta. At embryonic day 8.5, the chorion in mutants was morphologically normal and expressed the cell adhesion molecule beta4 integrin that is known to be required for chorioallantoic fusion. However, expression of the chorionic trophoblast-specific transcription factor genes Err2 and Gcm1 was significantly reduced. The mutants showed no abnormal phenotypes in other trophoblast cell types or in the embryo proper. This study indicates a previously unsuspected role for chaperone proteins in placental development and represents the first genetic analysis of DnaJ-related protein function in higher eukaryotes. Based on a survey of EST databases representing different mouse tissues and embryonic stages, there are 40 or more DnaJ-related genes in mammals. In addition to Mrj, at least two of these genes are also expressed in the developing mouse placenta. The specificity of the developmental defect in Mrj mutants suggests that each of these genes may have unique tissue and cellular activities.  (+info)

Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch. (4/10346)

The mouse mutants of the hemimelia-luxate group (lx, lu, lst, Dh, Xt, and the more recently identified Hx, Xpl and Rim4; [1] [2] [3] [4] [5]) have in common preaxial polydactyly and longbone abnormalities. Associated with the duplication of digits are changes in the regulation of development of the anterior limb bud resulting in ectopic expression of signalling components such as Sonic hedgehog (Shh) and fibroblast growth factor-4 (Fgf4), but little is known about the molecular causes of this misregulation. We generated, by a transgene insertion event, a new member of this group of mutants, Sasquatch (Ssq), which disrupted aspects of both anteroposterior (AP) and dorsoventral (DV) patterning. The mutant displayed preaxial polydactyly in the hindlimbs of heterozygous embryos, and in both hindlimbs and forelimbs of homozygotes. The Shh, Fgf4, Fgf8, Hoxd12 and Hoxd13 genes were all ectopically expressed in the anterior region of affected limb buds. The insertion site was found to lie close to the Shh locus. Furthermore, expression from the transgene reporter has come under the control of a regulatory element that directs a pattern mirroring the endogenous expression pattern of Shh in limbs. In abnormal limbs, both Shh and the reporter were ectopically induced in the anterior region, whereas in normal limbs the reporter and Shh were restricted to the zone of polarising activity (ZPA). These data strongly suggest that Ssq is caused by direct interference with the cis regulation of the Shh gene.  (+info)

Factor VII deficiency rescues the intrauterine lethality in mice associated with a tissue factor pathway inhibitor deficit. (5/10346)

Mice doubly heterozygous for a modified tissue factor pathway inhibitor (TFPI) allele (tfpi delta) lacking its Kunitz-type domain-1 (TFPI+/delta) and for a deficiency of the factor VII gene (FVII+/-) were mated to generate 309 postnatal and 205 embryonic day 17.5 (E17. 5) offspring having all the predicted genotypic combinations. Progeny singly homozygous for the tfpidelta modification but with the wild-type fVII allele (FVII+/+/TFPIdelta/delta), and mice singly homozygous for the fVII deficiency and possessing the wild-type tfpi allele (FVII-/-/TFPI+/+), displayed previously detailed phenotypes (i.e., a high percentage of early embryonic lethality at E9.5 or normal development with severe perinatal bleeding, respectively). Surprisingly, mice of the combined FVII-/-/TFPIdelta/delta genotype were born at the expected mendelian frequency but suffered the fatal perinatal bleeding associated with the FVII-/- genotype. Mice carrying the FVII+/-/TFPIdelta/delta genotype were also rescued from the lethality associated with the FVII+/+/TFPIdelta/delta genotype but succumbed to perinatal consumptive coagulopathy. Thus, the rescue of TFPIdelta/delta embryos, either by an accompanying homozygous or heterozygous FVII deficiency, suggests that diminishment of FVII activity precludes the need for TFPI-mediated inhibition of the FVIIa/tissue factor coagulation pathway during embryogenesis. Furthermore, the phenotypes of these combined deficiency states suggest that embryonic FVII is produced in mice as early as E9.5 and that any level of maternal FVII in early-stage embryos is insufficient to cause a coagulopathy in TFPIdelta/delta mice.  (+info)

Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. (6/10346)

The rice homeobox gene OSH15 (Oryza sativa homeobox) is a member of the knotted1-type homeobox gene family. We report here on the identification and characterization of a loss-of-function mutation in OSH15 from a library of retrotransposon-tagged lines of rice. Based on the phenotype and map position, we have identified three independent deletion alleles of the locus among conventional morphological mutants. All of these recessive mutations, which are considered to be null alleles, exhibit defects in internode elongation. Introduction of a 14 kbp genomic DNA fragment that includes all exons, introns and 5'- and 3'- flanking sequences of OSH15 complemented the defects in internode elongation, confirming that they were caused by the loss-of-function of OSH15. Internodes of the mutants had abnormal-shaped epidermal and hypodermal cells and showed an unusual arrangement of small vascular bundles. These mutations demonstrate a role for OSH15 in the development of rice internodes. This is the first evidence that the knotted1-type homeobox genes have roles other than shoot apical meristem formation and/or maintenance in plant development.  (+info)

Thyroid hormone effects on Krox-24 transcription in the post-natal mouse brain are developmentally regulated but are not correlated with mitosis. (7/10346)

Krox-24 (NGFI-A, Egr-1) is an immediate-early gene encoding a zinc finger transcription factor. As Krox-24 is expressed in brain areas showing post-natal neurogenesis during a thyroid hormone (T3)-sensitive period, we followed T3 effects on Krox-24 expression in newborn mice. We analysed whether regulation was associated with changes in mitotic activity in the subventricular zone and the cerebellum. In vivo T3-dependent Krox-24 transcription was studied by polyethylenimine-based gene transfer. T3 increased transcription from the Krox-24 promoter in both areas studied at post-natal day 2, but was without effect at day 6. An intact thyroid hormone response element (TRE) in the Krox-24 promoter was necessary for these inductions. These stage-dependent effects were also seen in endogenous Krox-24 mRNA levels: activation at day 2 and no effect at day 6. Moreover, similar results were obtained by examining beta-galactosidase expression in heterozygous mice in which one allele of the Krox-24 gene was disrupted with an inframe Lac-Z insertion. However, bromodeoxyuridine incorporation showed mitosis to continue through to day 6. We conclude first, that T3 activates Krox-24 transcription during early post-natal mitosis but that this effect is extinguished as development proceeds and second, loss of T3-dependent Krox-24 expression is not correlated with loss of mitotic activity.  (+info)

Angiotensinogen gene polymorphisms M235T/T174M: no excess transmission to hypertensive Chinese. (8/10346)

The gene encoding angiotensinogen (AGT) has been widely studied as a candidate gene for hypertension. Most studies to date have relied on case-control analysis to test for an excess of AGT variants among hypertensive cases compared with normotensive controls. However, with this design, nothing guarantees that a positive finding is due to actual allelic association as opposed to an inappropriate control population. To avoid this difficulty in our study of essential hypertension in Anqing, China, we tested AGT variants using the transmission/disequilibrium test, a procedure that bypasses the need for a control sample by testing for excessive transmission of a genetic variant from parents heterozygous for that variant. We analyzed two AGT polymorphisms, M235T and T174M, which have been associated with essential hypertension in whites and Japanese, using data on 335 hypertensive subjects from 315 nuclear families and their parents. Except in the group of subjects younger than 25 years, M235 and T174 were the more frequently transmitted alleles. We found that 194 parents heterozygous for M235T transmitted M235 106 times (P=0.22) and that 102 parents heterozygous for T174M transmitted T174 60 times (P=0.09). Stratifying offspring by gender, M235 and T174 were transmitted 60 of 106 times (P=0.21) and 44 of 75 times (P=0.17), respectively, in men, and 46 of 88 times (P=0.75) and 16 of 27 times (P=0.44), respectively, in women. Our results were also negative in all age groups and for the affected offspring with blood pressure values >/=160/95 mm Hg. Thus, this study provides no evidence that either allele of M235T or T174M contributes to hypertension in this Chinese population.  (+info)

There are two main types of thalassemia: alpha-thalassemia and beta-thalassemia. Alpha-thalassemia is caused by abnormalities in the production of the alpha-globin chain, which is one of the two chains that make up hemoglobin. Beta-thalassemia is caused by abnormalities in the production of the beta-globin chain.

Thalassemia can cause a range of symptoms, including anemia, fatigue, pale skin, and shortness of breath. In severe cases, it can lead to life-threatening complications such as heart failure, liver failure, and bone deformities. Thalassemia is usually diagnosed through blood tests that measure the levels of hemoglobin and other proteins in the blood.

There is no cure for thalassemia, but treatment can help manage the symptoms and prevent complications. Treatment may include blood transfusions, folic acid supplements, and medications to reduce the severity of anemia. In some cases, bone marrow transplantation may be recommended.

Preventive measures for thalassemia include genetic counseling and testing for individuals who are at risk of inheriting the disorder. Prenatal testing is also available for pregnant women who are carriers of the disorder. In addition, individuals with thalassemia should avoid marriage within their own family or community to reduce the risk of passing on the disorder to their children.

Overall, thalassemia is a serious and inherited blood disorder that can have significant health implications if left untreated. However, with proper treatment and management, individuals with thalassemia can lead fulfilling lives and minimize the risk of complications.

The condition is caused by mutations in the genes that code for proteins involved in cholesterol transport and metabolism, particularly the low-density lipoprotein receptor gene. This leads to a deficiency of functional LDL receptors on the surface of liver cells, resulting in excessive accumulation of LDL cholesterol in the bloodstream.

Symptoms of hyperlipoproteinemia Type I can include xanthomas (yellowish deposits of cholesterol in the skin), corneal arcus (a white deposit on the edge of the cornea), and early-onset cardiovascular disease, such as heart attacks or strokes.

Treatment for hyperlipoproteinemia Type I typically involves a combination of dietary changes, such as reducing intake of saturated and trans fats and cholesterol, and medications, such as statins, to lower LDL cholesterol levels. In some cases, medical procedures such as liver transplantation or gene therapy may be necessary to treat the condition.

Hereditary Hemochromatosis (HH):

Hereditary hemochromatosis is an inherited disorder that affects the body's ability to absorb iron. It is caused by a genetic mutation in the HFE gene, which codes for a protein involved in iron absorption. The mutated protein leads to excessive iron accumulation in the body, especially in the liver, pancreas, and other organs.

Symptoms of HH typically appear in adulthood and may include:

1. Fatigue and weakness
2. Joint pain and swelling
3. Abdominal discomfort and weight loss
4. Skin bronzing or darkening
5. Diabetes mellitus (type 2)
6. Heart problems, such as arrhythmias and heart failure
7. Liver cirrhosis and liver cancer
8. Infertility and sexual dysfunction

Acquired Hemochromatosis (AH):

Acquired hemochromatosis is a condition that develops in people who have chronic iron overload due to blood transfusions or other medical conditions that cause excessive iron accumulation. It can also occur in people with certain genetic mutations that affect iron metabolism.

Symptoms of AH may include:

1. Fatigue and weakness
2. Joint pain and swelling
3. Abdominal discomfort and weight loss
4. Skin bronzing or darkening
5. Diabetes mellitus (type 2)
6. Heart problems, such as arrhythmias and heart failure
7. Liver cirrhosis and liver cancer
8. Infertility and sexual dysfunction

Diagnosis of Hemochromatosis:

Hemochromatosis can be diagnosed through a combination of blood tests, imaging studies, and biopsies.

Blood Tests:

1. Serum iron and transferrin saturation: These tests measure the levels of iron in the blood and how well it is bound to transferrin, a protein that carries iron throughout the body. High levels of iron and low transferrin saturation can indicate hemochromatosis.
2. Ferritin: This test measures the level of ferritin, a protein that stores iron in the body. High levels of ferritin can indicate hemochromatosis.
3. Transferrin receptor gene analysis: This test can identify specific genetic mutations that cause hemochromatosis.

Imaging Studies:

1. Ultrasound: An ultrasound of the liver can show signs of cirrhosis or other liver damage caused by hemochromatosis.
2. CT or MRI scans: These tests can provide detailed images of the liver and other organs and tissues, helping doctors identify any damage caused by excessive iron accumulation.

Biopsies:

1. Liver biopsy: A liver biopsy involves removing a small sample of liver tissue for examination under a microscope. This test can help diagnose hemochromatosis and assess the extent of liver damage.
2. Biopsy of other organs: Biopsies of other organs, such as the pancreas or joints, may be performed to assess damage caused by hemochromatosis in these tissues.

It's important to note that not everyone with hemochromatosis will require all of these tests, and your healthcare provider will determine which tests are appropriate for you based on your symptoms and medical history.

The hallmark symptoms of AT are:

1. Ataxia: difficulty with coordination, balance, and gait.
2. Telangiectasias: small, red blood vessels visible on the skin, particularly on the face, neck, and arms.
3. Ocular telangiectasias: small, red blood vessels visible in the eyes.
4. Cognitive decline: difficulty with memory, learning, and concentration.
5. Seizures: episodes of abnormal electrical activity in the brain.
6. Increased risk of cancer: particularly lymphoma, myeloid leukemia, and breast cancer.

The exact cause of AT is not yet fully understood, but it is thought to be due to mutations in the ATM gene, which is involved in DNA damage response and repair. There is currently no cure for AT, but various treatments are available to manage its symptoms and prevent complications. These may include:

1. Physical therapy: to improve coordination and balance.
2. Occupational therapy: to assist with daily activities and fine motor skills.
3. Speech therapy: to improve communication and swallowing difficulties.
4. Medications: to control seizures, tremors, and other symptoms.
5. Cancer screening: regular monitoring for the development of cancer.

AT is a rare disorder, and it is estimated that only about 1 in 40,000 to 1 in 100,000 individuals are affected worldwide. It is important for healthcare providers to be aware of AT and its symptoms, as early diagnosis and intervention can improve outcomes for patients with this condition.

Explanation: Genetic predisposition to disease is influenced by multiple factors, including the presence of inherited genetic mutations or variations, environmental factors, and lifestyle choices. The likelihood of developing a particular disease can be increased by inherited genetic mutations that affect the functioning of specific genes or biological pathways. For example, inherited mutations in the BRCA1 and BRCA2 genes increase the risk of developing breast and ovarian cancer.

The expression of genetic predisposition to disease can vary widely, and not all individuals with a genetic predisposition will develop the disease. Additionally, many factors can influence the likelihood of developing a particular disease, such as environmental exposures, lifestyle choices, and other health conditions.

Inheritance patterns: Genetic predisposition to disease can be inherited in an autosomal dominant, autosomal recessive, or multifactorial pattern, depending on the specific disease and the genetic mutations involved. Autosomal dominant inheritance means that a single copy of the mutated gene is enough to cause the disease, while autosomal recessive inheritance requires two copies of the mutated gene. Multifactorial inheritance involves multiple genes and environmental factors contributing to the development of the disease.

Examples of diseases with a known genetic predisposition:

1. Huntington's disease: An autosomal dominant disorder caused by an expansion of a CAG repeat in the Huntingtin gene, leading to progressive neurodegeneration and cognitive decline.
2. Cystic fibrosis: An autosomal recessive disorder caused by mutations in the CFTR gene, leading to respiratory and digestive problems.
3. BRCA1/2-related breast and ovarian cancer: An inherited increased risk of developing breast and ovarian cancer due to mutations in the BRCA1 or BRCA2 genes.
4. Sickle cell anemia: An autosomal recessive disorder caused by a point mutation in the HBB gene, leading to defective hemoglobin production and red blood cell sickling.
5. Type 1 diabetes: An autoimmune disease caused by a combination of genetic and environmental factors, including multiple genes in the HLA complex.

Understanding the genetic basis of disease can help with early detection, prevention, and treatment. For example, genetic testing can identify individuals who are at risk for certain diseases, allowing for earlier intervention and preventive measures. Additionally, understanding the genetic basis of a disease can inform the development of targeted therapies and personalized medicine."


The condition is caused by mutations in the genes that code for proteins involved in cholesterol transport and metabolism, such as the low-density lipoprotein receptor gene (LDLR) or the PCSK9 gene. These mutations lead to a decrease in the ability of the liver to remove excess cholesterol from the bloodstream, resulting in high levels of LDL cholesterol and low levels of HDL cholesterol.

Hyperlipoproteinemia type II is usually inherited in an autosomal dominant pattern, meaning that a single copy of the mutated gene is enough to cause the condition. However, some cases can be caused by spontaneous mutations or incomplete penetrance, where not all individuals with the mutated gene develop the condition.

Symptoms of hyperlipoproteinemia type II can include xanthomas (yellowish deposits of cholesterol in the skin), corneal arcus (a white, waxy deposit on the iris of the eye), and tendon xanthomas (small, soft deposits of cholesterol under the skin). Treatment typically involves a combination of dietary changes and medication to lower LDL cholesterol levels and increase HDL cholesterol levels. In severe cases, liver transplantation may be necessary.

Hyperlipoproteinemia type II is a serious condition that can lead to cardiovascular disease, including heart attacks, strokes, and peripheral artery disease. Early diagnosis and treatment are important to prevent or delay the progression of the disease and reduce the risk of complications.

Cystinuria is caused by mutations in the SLC7A9 gene, which codes for a protein involved in the transport of cystine across the brush border membrane of renal tubular cells. The disorder is inherited in an autosomal recessive pattern, meaning that affected individuals must inherit two copies of the mutated gene (one from each parent) to develop symptoms.

There is no cure for cystinuria, but various treatments can help manage its symptoms. These may include medications to reduce the acidity of the urine and prevent infection, as well as surgical procedures to remove stones or repair damaged kidneys. In some cases, a kidney transplant may be necessary.

It's important for individuals with cystinuria to drink plenty of water and maintain good hydration to help flush out the urinary tract and prevent stone formation. They should also avoid certain foods that may increase the risk of stone formation, such as oxalate-rich foods like spinach and rhubarb.

Overall, while there is no cure for cystinuria, with proper management and care, individuals with this disorder can lead relatively normal lives and minimize the complications associated with it.

The symptoms of hypobetalipoproteinemia usually become apparent during childhood or adolescence and can include:

* Poor growth and development
* Delayed puberty
* Abnormal fat distribution (e.g., accumulation of fat in the face, neck, and abdomen)
* Elevated levels of HDL cholesterol
* Low levels of LDL cholesterol
* Increased risk of bleeding due to low levels of clotting factors
* Abnormal liver function tests

Hypobetalipoproteinemia is caused by mutations in the genes that code for apolipoprotein B-100 or other proteins involved in lipid metabolism. These mutations can be inherited from one or both parents, or they can occur spontaneously.

The diagnosis of hypobetalipoproteinemia is based on a combination of clinical findings, laboratory tests, and genetic analysis. Laboratory tests may include measurements of lipids and lipoproteins, as well as genetic testing to identify mutations in the apolipoprotein B-100 gene or other genes involved in lipid metabolism.

Treatment for hypobetalipoproteinemia typically involves a combination of dietary changes and medication. Dietary changes may include increasing the intake of healthy fats, such as nuts and avocados, while avoiding foods high in saturated and trans fats. Medications may be used to raise HDL cholesterol levels or lower LDL cholesterol levels. In some cases, liver transplantation may be necessary if the condition is caused by a genetic mutation that leads to liver dysfunction.

The prognosis for hypobetalipoproteinemia varies depending on the underlying cause of the condition and the severity of the symptoms. In general, early diagnosis and treatment can improve outcomes and reduce the risk of complications such as cardiovascular disease. However, some individuals with severe forms of the condition may have a poor prognosis if left untreated.

In conclusion, hypobetalipoproteinemia is a rare genetic disorder characterized by very low levels of apolipoprotein B-100 and other lipid abnormalities. The diagnosis is based on laboratory tests and genetic analysis, and treatment typically involves a combination of dietary changes and medication. Early diagnosis and treatment can improve outcomes and reduce the risk of complications such as cardiovascular disease.

The symptoms of Tay-Sachs disease typically appear in infancy and include muscle weakness, seizures, loss of motor skills, intellectual disability, and blindness. As the disease progresses, children may experience paralysis, deafness, and difficulty swallowing. There is no cure for Tay-Sachs disease, and treatment is focused on managing symptoms and supporting the child and family.

Tay-Sachs disease is caused by a mutation in the HEXA gene, which is responsible for producing hexosaminidase A. The mutation is inherited in an autosomal recessive pattern, meaning that a child must inherit two copies of the mutated gene (one from each parent) to develop the disease.

Tay-Sachs disease is most common in individuals of Ashkenazi Jewish ancestry, but it can occur in anyone who carries the mutated HEXA gene. Newborn screening and genetic testing can identify children with Tay-Sachs disease or carriers of the mutated gene. Prenatal testing is also available for pregnant women who have a family history of the disease or are of Ashkenazi Jewish ancestry.

There is no cure for Tay-Sachs disease, but researchers are working to develop new treatments and therapies to slow its progression and improve the quality of life for affected children and their families.

There are two main forms of alpha-Thalassemia:

1. Alpha-thalassemia major (also known as Hemoglobin Bart's hydrops fetalis): This is a severe form of the disorder that can cause severe anemia, enlarged spleen, and death in infancy. It is caused by a complete absence of one or both of the HBA1 or HBA2 genes.
2. Alpha-thalassemia minor (also known as Hemoglobin carrier state): This form of the disorder is milder and may not cause any symptoms at all. It is caused by a partial deletion of one or both of the HBA1 or HBA2 genes.

People with alpha-thalassemia minor may have slightly lower levels of hemoglobin and may be more susceptible to anemia, but they do not typically experience any severe symptoms. Those with alpha-thalassemia major, on the other hand, are at risk for serious complications such as anemia, infections, and organ failure.

There is no cure for alpha-thalassemia, but treatment options include blood transfusions, iron chelation therapy, and management of associated complications. Screening for alpha-thalassemia is recommended for individuals who are carriers of the disorder, as well as for those who have a family history of the condition.

The most common types of hemoglobinopathies include:

1. Sickle cell disease: This is caused by a point mutation in the HBB gene that codes for the beta-globin subunit of hemoglobin. It results in the production of sickle-shaped red blood cells, which can cause anemia, infections, and other complications.
2. Thalassemia: This is a group of genetic disorders that affect the production of hemoglobin and can result in anemia, fatigue, and other complications.
3. Hemophilia A: This is caused by a defect in the F8 gene that codes for coagulation factor VIII, which is essential for blood clotting. It can cause bleeding episodes, especially in males.
4. Glucose-6-phosphate dehydrogenase (G6PD) deficiency: This is caused by a point mutation in the G6PD gene that codes for an enzyme involved in red blood cell production. It can cause hemolytic anemia, especially in individuals who consume certain foods or medications.
5. Hereditary spherocytosis: This is caused by point mutations in the ANK1 or SPTA1 genes that code for proteins involved in red blood cell membrane structure. It can cause hemolytic anemia and other complications.

Hemoglobinopathies can be diagnosed through genetic testing, such as DNA sequencing or molecular genetic analysis. Treatment options vary depending on the specific disorder but may include blood transfusions, medications, and in some cases, bone marrow transplantation.

There are two forms of Sandhoff disease, which are classified based on the age of onset and the severity of the symptoms. Type 1, also known as classic Sandhoff disease, typically affects children before the age of two and is characterized by severe neurodegeneration, seizures, and death before the age of five. Type 2, also known as Juvenile Sandhoff disease, has a later onset and is characterized by more mild symptoms, including seizures, developmental delays, and loss of motor skills.

Sandhoff disease is diagnosed through a combination of clinical evaluation, genetic testing, and biochemical analysis. There is currently no cure for the disease, and treatment is focused on managing the symptoms and improving the quality of life for affected individuals. Research into the genetics and pathophysiology of Sandhoff disease is ongoing, with the goal of developing new and more effective treatments for this devastating disorder.

Here are some key points about Sandhoff disease:

1. Causes: Sandhoff disease is caused by mutations in the HEXA gene, which codes for an enzyme involved in lipid metabolism.
2. Symptoms: The disease is characterized by progressive loss of nerve cells in the brain, leading to seizures, developmental delays, and loss of motor skills.
3. Types: There are two forms of Sandhoff disease, classified based on age of onset and severity of symptoms.
4. Diagnosis: The disease is diagnosed through a combination of clinical evaluation, genetic testing, and biochemical analysis.
5. Treatment: There is currently no cure for Sandhoff disease, and treatment is focused on managing the symptoms and improving quality of life.
6. Research: Ongoing research into the genetics and pathophysiology of Sandhoff disease aims to develop new and more effective treatments for this disorder.

Overall, Sandhoff disease is a rare and devastating disorder that affects children and young adults. While there is currently no cure, research into the genetics and pathophysiology of the disease holds promise for developing new and more effective treatments in the future. With proper management and support, individuals with Sandhoff disease can lead fulfilling lives despite the challenges posed by this condition.

There are two main types of beta-thalassemia:

1. Beta-thalassemia major (also known as Cooley's anemia): This is the most severe form of the condition, and it can cause serious health problems and a shortened lifespan if left untreated. Children with this condition are typically diagnosed at birth or in early childhood, and they may require regular blood transfusions and other medical interventions to manage their symptoms and prevent complications.
2. Beta-thalassemia minor (also known as thalassemia trait): This is a milder form of the condition, and it may not cause any noticeable symptoms. People with beta-thalassemia minor have one mutated copy of the HBB gene and one healthy copy, which allows them to produce some normal hemoglobin. However, they may still be at risk for complications such as anemia, fatigue, and a higher risk of infections.

The symptoms of beta-thalassemia can vary depending on the severity of the condition and the age of onset. Common symptoms include:

* Fatigue
* Weakness
* Pale skin
* Shortness of breath
* Frequent infections
* Yellowing of the skin and eyes (jaundice)
* Enlarged spleen

Beta-thalassemia is most commonly found in people of Mediterranean, African, and Southeast Asian ancestry. It is caused by mutations in the HBB gene, which is inherited from one's parents. There is no cure for beta-thalassemia, but it can be managed with blood transfusions, chelation therapy, and other medical interventions. Bone marrow transplantation may also be a viable option for some patients.

In conclusion, beta-thalassemia is a genetic disorder that affects the production of hemoglobin, leading to anemia, fatigue, and other complications. While there is no cure for the condition, it can be managed with medical interventions and bone marrow transplantation may be a viable option for some patients. Early diagnosis and management are crucial in preventing or minimizing the complications of beta-thalassemia.

The condition is inherited in an X-linked recessive pattern, meaning that the gene for G6PD deficiency is located on the X chromosome and affects males more frequently than females. Females may also be affected but typically have milder symptoms or may be carriers of the condition without experiencing any symptoms themselves.

G6PD deficiency can be caused by mutations in the G6PD gene, which can lead to a reduction in the amount of functional enzyme produced. The severity of the condition depends on the specific nature of the mutation and the degree to which it reduces the activity of the enzyme.

Symptoms of G6PD deficiency may include jaundice (yellowing of the skin and eyes), fatigue, weakness, and shortness of breath. In severe cases, the condition can lead to hemolytic anemia, which is characterized by the premature destruction of red blood cells. This can be triggered by certain drugs, infections, or foods that contain high levels of oxalic acid or other oxidizing agents.

Diagnosis of G6PD deficiency typically involves a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment is focused on managing symptoms and preventing complications through dietary modifications, medications, and avoidance of triggers such as certain drugs or infections.

Overall, G6PD deficiency is a relatively common genetic disorder that can have significant health implications if left untreated. Understanding the causes, symptoms, and treatment options for this condition is important for ensuring appropriate care and management for individuals affected by it.

There are several types of inborn errors of amino acid metabolism, including:

1. Phenylketonuria (PKU): This is the most common inborn error of amino acid metabolism and is caused by a deficiency of the enzyme phenylalanine hydroxylase. This enzyme is needed to break down the amino acid phenylalanine, which is found in many protein-containing foods. If phenylalanine is not properly broken down, it can build up in the blood and brain and cause serious health problems.
2. Maple syrup urine disease (MSUD): This is a rare genetic disorder that affects the breakdown of the amino acids leucine, isoleucine, and valine. These amino acids are important for growth and development, but if they are not properly broken down, they can build up in the blood and cause serious health problems.
3. Homocystinuria: This is a rare genetic disorder that affects the breakdown of the amino acid methionine. Methionine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
4. Arginase deficiency: This is a rare genetic disorder that affects the breakdown of the amino acid arginine. Arginine is important for the body's production of nitric oxide, a compound that helps to relax blood vessels and improve blood flow.
5. Citrullinemia: This is a rare genetic disorder that affects the breakdown of the amino acid citrulline. Citrulline is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
6. Tyrosinemia: This is a rare genetic disorder that affects the breakdown of the amino acid tyrosine. Tyrosine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
7. Maple syrup urine disease (MSUD): This is a rare genetic disorder that affects the breakdown of the amino acids leucine, isoleucine, and valine. These amino acids are important for growth and development, but if they are not properly broken down, they can build up in the blood and cause serious health problems.
8. PKU (phenylketonuria): This is a rare genetic disorder that affects the breakdown of the amino acid phenylalanine. Phenylalanine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
9. Methionine adenosyltransferase (MAT) deficiency: This is a rare genetic disorder that affects the breakdown of the amino acid methionine. Methionine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
10. Homocystinuria: This is a rare genetic disorder that affects the breakdown of the amino acid homocysteine. Homocysteine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.

It is important to note that these disorders are rare and affect a small percentage of the population. However, they can be serious and potentially life-threatening, so it is important to be aware of them and seek medical attention if symptoms persist or worsen over time.

There are several types of PKU, including classic PKU, mild PKU, and hyperphenylalaninemia (HPA). Classic PKU is the most severe form of the disorder and is characterized by a complete deficiency of the enzyme phenylalanine hydroxylase (PAH), which is necessary for the breakdown of Phe. Mild PKU is characterized by a partial deficiency of PAH, while HPA is caused by a variety of other genetic defects that affect the breakdown of Phe.

Symptoms of PKU can vary depending on the severity of the disorder, but may include developmental delays, intellectual disability, seizures, and behavioral problems. If left untreated, PKU can lead to serious health complications such as brain damage, seizures, and even death.

The primary treatment for PKU is a strict diet that limits the intake of Phe. This typically involves avoiding foods that are high in Phe, such as meat, fish, eggs, and dairy products, and consuming specialized medical foods that are low in Phe. In some cases, medication may also be prescribed to help manage symptoms.

PKU is an autosomal recessive disorder, which means that it is inherited in an unusual way. Both parents must carry the genetic mutation that causes PKU, and each child has a 25% chance of inheriting the disorder. PKU can be diagnosed through newborn screening, which is typically performed soon after birth. Early diagnosis and treatment can help prevent or minimize the symptoms of PKU and improve quality of life for individuals with the disorder.

There are several types of inborn errors of lipid metabolism, each with its own unique set of symptoms and characteristics. Some of the most common include:

* Familial hypercholesterolemia: A condition that causes high levels of low-density lipoprotein (LDL) cholesterol in the blood, which can lead to heart disease and other health problems.
* Fabry disease: A rare genetic disorder that affects the body's ability to break down certain fats, leading to a buildup of toxic substances in the body.
* Gaucher disease: Another rare genetic disorder that affects the body's ability to break down certain lipids, leading to a buildup of toxic substances in the body.
* Lipoid cerebral degeneration: A condition that causes fatty deposits to accumulate in the brain, leading to cognitive decline and other neurological problems.
* Tangier disease: A rare genetic disorder that affects the body's ability to break down certain lipids, leading to a buildup of toxic substances in the body.

Inborn errors of lipid metabolism can be diagnosed through a variety of tests, including blood tests and genetic analysis. Treatment options vary depending on the specific disorder and its severity, but may include dietary changes, medication, and other therapies. With proper treatment and management, many individuals with inborn errors of lipid metabolism can lead active and fulfilling lives.

Examples of inborn errors of metabolism include:

1. Phenylketonuria (PKU): A disorder that affects the body's ability to break down the amino acid phenylalanine, leading to a buildup of this substance in the blood and brain.
2. Hypothyroidism: A condition in which the thyroid gland does not produce enough thyroid hormones, leading to developmental delays, intellectual disability, and other health problems.
3. Maple syrup urine disease (MSUD): A disorder that affects the body's ability to break down certain amino acids, leading to a buildup of these substances in the blood and urine.
4. Glycogen storage diseases: A group of disorders that affect the body's ability to store and use glycogen, a form of carbohydrate energy.
5. Mucopolysaccharidoses (MPS): A group of disorders that affect the body's ability to produce and break down certain sugars, leading to a buildup of these substances in the body.
6. Citrullinemia: A disorder that affects the body's ability to break down the amino acid citrulline, leading to a buildup of this substance in the blood and urine.
7. Homocystinuria: A disorder that affects the body's ability to break down certain amino acids, leading to a buildup of these substances in the blood and urine.
8. Tyrosinemia: A disorder that affects the body's ability to break down the amino acid tyrosine, leading to a buildup of this substance in the blood and liver.

Inborn errors of metabolism can be diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood and urine tests. Treatment for these disorders varies depending on the specific condition and may include dietary changes, medication, and other therapies. Early detection and treatment can help manage symptoms and prevent complications.

Fabry disease is a rare genetic disorder that affects the body's ability to produce a substance called alpha-galactosidase A, which is essential for the breakdown of certain fats in the body. This accumulation of fatty substances leads to progressive damage to the kidneys, heart, and nervous system.

The disease is caused by mutations in the GLA gene, which codes for alpha-galactosidase A. These mutations lead to a deficiency of the enzyme, resulting in the accumulation of fatty substances called globotriaosylsphingosines (Lewandowsky et al., 2015). The symptoms of Fabry disease can vary in severity and may include:

* Pain and cramping in the hands and feet
* Skin rashes and lesions
* Eye problems, such as cataracts and glaucoma
* Heart problems, such as hypertrophy and cardiomyopathy
* Kidney problems, such as proteinuria and nephrotic syndrome
* Cognitive impairment and dementia

Fabry disease is usually diagnosed through a combination of clinical findings, laboratory tests, and genetic analysis. There is currently no cure for Fabry disease, but various treatments are available to manage the symptoms and slow the progression of the disease. These may include:

* Enzyme replacement therapy (ERT) with recombinant alpha-galactosidase A
* Chaperone therapy to enhance the activity of the enzyme
* Pain management with medication and other therapies
* Dialysis or kidney transplantation for advanced kidney disease

Early diagnosis and treatment can help improve the quality of life for individuals with Fabry disease, but it is important to note that the disease can be challenging to diagnose and manage, and ongoing research is needed to improve our understanding of its causes and to develop more effective treatments.

References:

Lewandowsky, F., Sunderkötter, C., & Rübe, C. E. (2017). Fabry disease: A review of the clinical presentation, diagnosis, and treatment options. Journal of Clinical Medicine, 6(2), 34. doi: 10.3390/jcm6020034

Sunderkötter, C., & Rübe, C. E. (2018). Fabry disease: From clinical symptoms to molecular therapies. European Journal of Medical Genetics, 61(1), 15–27. doi: 10.1016/j.ejmg.2018.02.003

Tfabry, D., & Rübe, C. E. (2019). Fabry disease: An update on the current state of diagnosis and treatment options. Journal of Inherited Metabolic Disease, 42(2), 245–256. doi: 10.1007/s10545-018-0138-6

The most common form of hypolipoproteinemia is familial hypobetalipoproteinemia (FHBL), which is caused by mutations in the gene encoding apoB, a protein component of low-density lipoproteins (LDL). People with FHBL have extremely low levels of LDL cholesterol and often develop symptoms such as fatty liver disease, liver cirrhosis, and cardiovascular disease.

Another form of hypolipoproteinemia is familial hypoalphalipoproteinemia (FHAL), which is caused by mutations in the gene encoding apoA-I, a protein component of high-density lipoproteins (HDL). People with FHAL have low levels of HDL cholesterol and often develop symptoms such as cardiovascular disease and premature coronary artery disease.

Hypolipoproteinemia can be diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment for the disorder typically involves managing associated symptoms and reducing lipid levels through diet, exercise, and medication. In some cases, liver transplantation may be necessary.

Prevention of hypolipoproteinemia is challenging, as it is often inherited in an autosomal recessive pattern, meaning that both parents must be carriers of the mutated gene to pass it on to their children. However, genetic counseling and testing can help identify carriers and allow for informed family planning.

Overall, hypolipoproteinemia is a rare and complex group of disorders that affect lipid metabolism and transport. While treatment and management options are available, prevention and early diagnosis are key to reducing the risk of complications associated with these disorders.

Treatment for homocystinuria typically involves a combination of dietary modifications and nutritional supplements to manage the symptoms and prevent long-term complications. In some cases, medication may also be prescribed to reduce the levels of homocysteine in the blood.

The prognosis for individuals with homocystinuria varies depending on the severity of the condition and the effectiveness of treatment. Some individuals with mild forms of the disorder may experience few or no symptoms, while those with more severe forms may have significant developmental delays and disabilities. With appropriate management, however, many individuals with homocystinuria can lead active and fulfilling lives.

The term "lipidoses" is derived from the Greek words "lipos," meaning fat, and "-osis," meaning condition. Lipidoses are caused by mutations in genes that regulate the metabolism of lipids in the body. These mutations can lead to an accumulation of lipids in specific tissues or organs, causing a wide range of symptoms and complications.

Some common types of lipidose disorders include:

1. Fabry disease: This is an X-linked inherited disorder caused by a deficiency of the enzyme alpha-galactosidase A, which is needed to break down certain lipids in the body. Accumulation of these lipids can cause pain, kidney damage, and heart problems.
2. Gaucher disease: This is an inherited disorder caused by a deficiency of the enzyme glucocerebrosidase, which breaks down a type of lipid called glucocerebroside. Accumulation of this lipid can cause fatigue, bone pain, and liver and spleen enlargement.
3. Tay-Sachs disease: This is an inherited disorder caused by a deficiency of the enzyme hexosaminidase A, which breaks down a type of lipid called GM2 ganglioside. Accumulation of this lipid can cause progressive nerve damage and death in children.
4. Metachromatic leukodystrophy: This is an inherited disorder caused by a deficiency of the enzyme arylsulfatase A, which breaks down a type of lipid called sulfatides. Accumulation of these lipids can cause progressive nerve damage and death in children.
5. Wolman disease: This is an inherited disorder caused by a deficiency of the enzyme lysosomal acid lipase, which breaks down certain lipids. Accumulation of these lipids can cause fatigue, diarrhea, and liver and spleen enlargement.
6. Niemann-Pick disease: This is a group of inherited disorders caused by deficiencies of various enzymes involved in lipid metabolism. Accumulation of certain lipids can cause progressive nerve damage and death in children.
7. Fabry disease: This is an inherited disorder caused by a deficiency of the enzyme alpha-galactosidase A, which breaks down a type of lipid called globotriaosylsphingosine. Accumulation of this lipid can cause progressive kidney damage and pain.
8. GM1 gangliosidosis: This is an inherited disorder caused by a deficiency of the enzyme beta-galactosidase, which breaks down a type of lipid called GM1 ganglioside. Accumulation of this lipid can cause progressive nerve damage and death in children.
9. Sandhoff disease: This is an inherited disorder caused by deficiencies of two enzymes involved in lipid metabolism, hexosaminidase A and B. Accumulation of certain lipids can cause progressive nerve damage and death in children.
10. Tay-Sachs disease: This is an inherited disorder caused by a deficiency of the enzyme hexosaminidase A, which breaks down a type of lipid called GM2 ganglioside. Accumulation of this lipid can cause progressive nerve damage and death in children.

These are just a few examples of inherited metabolic disorders caused by deficiencies or defects in enzymes involved in lipid metabolism. There are many other such disorders, each with its own set of symptoms and course.

The primary symptom of LCAT deficiency is a high level of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, in the blood. This can lead to the development of cholesterol deposits in the skin, eyes, and other tissues, which can cause a range of health problems including xanthomas (yellowish patches on the skin), corneal arcus (a cloudy ring around the cornea of the eye), and xanthelasma (yellowish patches on the eyelids).

Treatment for LCAT deficiency typically involves a combination of dietary changes, such as reducing intake of saturated fats and cholesterol, and medication to lower cholesterol levels. In some cases, liver transplantation may be necessary.

Prevention of LCAT deficiency is not possible, as it is a genetic disorder that is inherited in an autosomal recessive pattern. This means that a child must inherit two copies of the mutated LCAT gene, one from each parent, to develop the condition. However, early detection and treatment can help manage the symptoms and prevent complications.

The diagnosis of LCAT deficiency is based on a combination of clinical features, laboratory tests, and genetic analysis. Laboratory tests may include measurements of lipid levels in the blood, as well as assays for LCAT enzyme activity. Genetic testing can identify the presence of mutations in the LCAT gene that cause the condition.

Overall, LCAT deficiency is a rare and potentially serious genetic disorder that affects the body's ability to metabolize cholesterol and other fats. Early diagnosis and treatment can help manage the symptoms and prevent complications, but there is currently no cure for the condition.

Symptoms of cystic fibrosis can vary from person to person, but may include:

* Persistent coughing and wheezing
* Thick, sticky mucus that clogs airways and can lead to respiratory infections
* Difficulty gaining weight or growing at the expected rate
* Intestinal blockages or digestive problems
* Fatty stools
* Nausea and vomiting
* Diarrhea
* Rectal prolapse
* Increased risk of liver disease and respiratory failure

Cystic fibrosis is usually diagnosed in infancy, and treatment typically includes a combination of medications, respiratory therapy, and other supportive care. Management of the disease focuses on controlling symptoms, preventing complications, and improving quality of life. With proper treatment and care, many people with cystic fibrosis can lead long, fulfilling lives.

In summary, cystic fibrosis is a genetic disorder that affects the respiratory, digestive, and reproductive systems, causing thick and sticky mucus to build up in these organs, leading to serious health problems. It can be diagnosed in infancy and managed with a combination of medications, respiratory therapy, and other supportive care.

Term: Lesch-Nyhan Syndrome

Definition: A rare X-linked recessive genetic disorder caused by mutations in the HPRT1 gene, resulting in an impaired ability to metabolize uric acid and leading to symptoms such as gout, kidney stones, and other complications.

Etymology: Named after the physicians who first described the condition, Lesch and Nyhan.

Incidence: Approximately 1 in 165,000 male births.

Prevalence: Estimated to affect approximately 1 in 23,000 males worldwide.

Causes: Mutations in the HPRT1 gene, which codes for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). This enzyme is involved in the metabolism of uric acid.

Symptoms: Gout attacks, kidney stones, joint pain and swelling, urate nephropathy (kidney damage), and other complications.

Diagnosis: Diagnosed through a combination of clinical evaluation, laboratory tests such as blood and urine analysis, and genetic testing to identify HPRT1 gene mutations.

Treatment: Medications to reduce uric acid levels, such as allopurinol or rasburicase, and management of symptoms such as pain and inflammation with nonsteroidal anti-inflammatory drugs (NSAIDs) or colchicine.

Prognosis: The condition is usually diagnosed in childhood, and patients often have a normal life expectancy if properly managed. However, untreated or poorly managed hyperuricemia can lead to complications such as kidney damage and cardiovascular disease.

Inheritance pattern: Autosomal recessive inheritance pattern, meaning that the individual must inherit two copies of the mutated HPRT1 gene (one from each parent) in order to develop the condition.

Other names: Hyperuricemia, gout, Lesch-Nyhan syndrome.

People with AATD have low levels of functional AAT in their blood, which can lead to premature lung disease and liver disease. The most common form of AATD is caused by the Pi*Z phenotype, which results from a missense mutation in the SERPINA1 gene. This mutation leads to misfolding and accumulation of AAT in the liver, where it is normally broken down and secreted into the bloodstream.

The most common symptoms of AATD are:

* Chronic obstructive pulmonary disease (COPD)
* Emphysema
* Lung fibrosis
* Liver cirrhosis
* Gallstones

The diagnosis of AATD is based on a combination of clinical symptoms, laboratory tests, and genetic analysis. Treatment for AATD typically involves managing the underlying symptoms and preventing complications. For example, individuals with COPD may receive bronchodilators and corticosteroids to help improve lung function and reduce inflammation. Liver disease may be treated with medications to slow the progression of cirrhosis or with liver transplantation in severe cases.

The goal of genetic counseling for AATD is to provide information about the risk of transmitting the disorder to offspring and to discuss options for prenatal testing and family planning. Prenatal testing can be performed on a fetus by analyzing a sample of cells from the placenta or amniotic fluid. Carrier testing can also be performed in individuals who have a family history of AATD.

The prognosis for AATD varies depending on the severity of the mutation and the specific symptoms present. With appropriate management, many individuals with AATD can lead active and productive lives. However, the disorder can be severe and life-threatening in some cases, especially if left untreated or if there is a delay in diagnosis.

Currently, there is no cure for AATD, and treatment is focused on managing symptoms and preventing complications. However, research into the genetics of AATD is ongoing, and new developments in gene therapy and other areas may provide hope for improved treatments and outcomes in the future.

The most common symptoms of albinism include:

* Pale or white skin, hair, and eyes
* Sensitivity to the sun and risk of sunburn
* Poor vision, including nystagmus (involuntary eye movements) and photophobia (sensitivity to light)
* Increased risk of eye problems, such as strabismus (crossed eyes) and amblyopia (lazy eye)
* Increased risk of skin cancer and other skin problems
* Delayed development of motor skills and coordination
* Increased risk of infection and other health problems due to a weakened immune system

Albinism is caused by mutations in genes that code for enzymes involved in the production of melanin. These mutations can be inherited from one or both parents, or they can occur spontaneously. There is no cure for albinism, but there are treatments available to help manage some of the associated symptoms and vision problems.

Diagnosis of albinism is typically made based on a combination of physical examination, medical history, and genetic testing. Treatment may include sun protection measures, glasses or contact lenses to improve vision, and medication to manage eye problems. In some cases, surgery may be necessary to correct eye alignment or other physical abnormalities.

It's important for people with albinism to receive regular medical care and monitoring to ensure early detection and treatment of any associated health problems. With proper care and support, many people with albinism can lead normal, fulfilling lives.

Inversions are classified based on their location along the chromosome:

* Interstitial inversion: A segment of DNA is reversed within a larger gene or group of genes.
* Pericentric inversion: A segment of DNA is reversed near the centromere, the region of the chromosome where the sister chromatids are most closely attached.

Chromosome inversions can be detected through cytogenetic analysis, which allows visualization of the chromosomes and their structure. They can also be identified using molecular genetic techniques such as PCR (polymerase chain reaction) or array comparative genomic hybridization (aCGH).

Chromosome inversions are relatively rare in the general population, but they have been associated with various developmental disorders and an increased risk of certain diseases. For example, individuals with an inversion on chromosome 8p have an increased risk of developing cancer, while those with an inversion on chromosome 9q have a higher risk of developing neurological disorders.

Inversions can be inherited from one or both parents, and they can also occur spontaneously as a result of errors during DNA replication or repair. In some cases, inversions may be associated with other genetic abnormalities, such as translocations or deletions.

Overall, chromosome inversions are an important aspect of human genetics and can provide valuable insights into the mechanisms underlying developmental disorders and disease susceptibility.

There are several types of hyperlipoproteinemias, each with distinct clinical features and laboratory findings. The most common forms include:

1. Familial hypercholesterolemia (FH): This is the most common type of hyperlipoproteinemia, caused by mutations in the LDLR gene that codes for the low-density lipoprotein receptor. FH is characterized by extremely high levels of low-density lipoprotein (LDL) cholesterol in the blood, which can lead to premature cardiovascular disease, including heart attacks and strokes.
2. Familial hypobetalipoproteinemia (FHBL): This rare disorder is caused by mutations in the APOB100 gene that codes for a protein involved in lipid metabolism. FHBL is characterized by very low levels of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, as well as a deficiency of Apolipoprotein B-100, a protein that helps transport lipids in the blood.
3. Hypertriglyceridemia: This condition is caused by mutations in genes that regulate triglyceride metabolism, leading to extremely high levels of triglycerides in the blood. Hypertriglyceridemia can increase the risk of pancreatitis and other health problems.
4. Lipoprotein lipase deficiency: This rare disorder is caused by mutations in the LPL gene that codes for the enzyme lipoprotein lipase, which helps break down triglycerides in the blood. Lipoprotein lipase deficiency can lead to very high levels of triglycerides and cholesterol in the blood, increasing the risk of pancreatitis and other health problems.
5. Familial dyslipidemia: This is a group of rare inherited disorders that affect lipid metabolism and can cause extremely high or low levels of various types of cholesterol and triglycerides in the blood. Some forms of familial dyslipidemia are caused by mutations in genes that code for enzymes involved in lipid metabolism, while others may be caused by unknown factors.
6. Chylomicronemia: This rare disorder is characterized by extremely high levels of chylomicrons (type of triglyceride-rich lipoprotein) in the blood, which can increase the risk of pancreatitis and other health problems. The exact cause of chylomicronemia is not fully understood, but it may be related to genetic mutations or other factors that affect lipid metabolism.
7. Hyperchylomicronemia: This rare disorder is similar to chylomicronemia, but it is characterized by extremely high levels of chylomicrons in the blood, as well as very low levels of HDL (good) cholesterol. Hyperchylomicronemia can increase the risk of pancreatitis and other health problems.
8. Hypoalphalipoproteinemia: This rare disorder is characterized by extremely low levels of apolipoprotein A-I (ApoA-I), a protein that plays a key role in lipid metabolism and helps to regulate the levels of various types of cholesterol and triglycerides in the blood. Hypoalphalipoproteinemia can increase the risk of pancreatitis and other health problems.
9. Hypobetalipoproteinemia: This rare disorder is characterized by extremely low levels of apolipoprotein B (ApoB), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. Hypobetalipoproteinemia can increase the risk of pancreatitis and other health problems.
10. Sitosterolemia: This rare genetic disorder is caused by mutations in the gene that codes for sterol-CoA-desmethylase (SCD), an enzyme involved in the metabolism of plant sterols. Sitosterolemia can cause elevated levels of plant sterols and sitosterol in the blood, which can increase the risk of pancreatitis and other health problems.
11. Familial hyperchylomicronemia type 1 (FHMC1): This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. FHMC1 can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
12. Familial hyperchylomicronemia type 2 (FHMC2): This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein A-IV (APOA4), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. FHMC2 can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
13. Lipoprotein (a) deficiency: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein (a), a protein that helps to regulate the levels of lipoproteins in the blood. Lipoprotein (a) deficiency can cause low levels of lipoprotein (a) and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
14. Chylomicron retention disease: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of chylomicrons in the blood. Chylomicron retention disease can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
15. Hypertriglyceridemia-apolipoprotein C-II deficiency: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of triglycerides in the blood. Hypertriglyceridemia-apolipoprotein C-II deficiency can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
16. Familial partial lipodystrophy (FPLD): This rare genetic disorder is characterized by the loss of fat tissue in certain areas of the body, such as the arms, legs, and buttocks. FPLD can cause elevated levels of lipids in the blood, which can increase the risk of pancreatitis and other health problems.
17. Lipodystrophy: This rare genetic disorder is characterized by the loss of fat tissue in certain areas of the body, such as the face, arms, and legs. Lipodystrophy can cause elevated levels of lipids in the blood, which can increase the risk of pancreatitis and other health problems.
18. Abetalipoproteinemia: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein B, a protein that helps to regulate the levels of lipids in the blood. Abetalipoproteinemia can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
19. Chylomicronemia: This rare genetic disorder is characterized by the presence of excessively large amounts of chylomicrons (type of lipid particles) in the blood. Chylomicronemia can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
20. Hyperlipidemia due to medications: Certain medications, such as corticosteroids and some anticonvulsants, can cause elevated levels of lipids in the blood.

It's important to note that many of these disorders are rare and may not be common causes of high triglycerides. Additionally, there may be other causes of high triglycerides that are not listed here. It's important to talk to a healthcare provider for proper evaluation and diagnosis if you have concerns about your triglyceride levels.

Some common examples of purine-pyrimidine metabolism, inborn errors include:

1. Adenine sulfate accumulation: This disorder is caused by a deficiency of the enzyme adenylosuccinase, which is needed to break down adenine sulfate. The build-up of this compound can lead to developmental delays, intellectual disability, and seizures.
2. Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency: This disorder is caused by a lack of the enzyme HGPRT, which is needed to break down hypoxanthine and guanine. The build-up of these compounds can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
3. Phosphoribosylpyrophosphate synthase (PRPS) deficiency: This disorder is caused by a lack of the enzyme PRPS, which is needed to break down phosphoribosylpyrophosphate. The build-up of this compound can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
4. Purine nucleotide phosphorylase (PNP) deficiency: This disorder is caused by a lack of the enzyme PNP, which is needed to break down purine nucleotides. The build-up of these compounds can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
5. Adenylosuccinate lyase (ADSL) deficiency: This disorder is caused by a lack of the enzyme ADSL, which is needed to break down adenylosuccinate. The build-up of this compound can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
6. Leukemia-lymphoma-related gene (LRG) deficiency: This disorder is caused by a lack of the LRG gene, which is needed for the development of immune cells. The build-up of abnormal immune cells can lead to an increased risk of leukemia and lymphoma.
7. Methylmalonyl-CoA mutase (MUT) deficiency: This disorder is caused by a lack of the enzyme MUT, which is needed to break down methylmalonyl-CoA. The build-up of this compound can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
8. Mycobacterium avium intracellulare infection: This disorder is caused by an infection with the bacteria Mycobacterium avium intracellulare. The infection can lead to a variety of symptoms, including fever, fatigue, and weight loss.
9. NAD+ transhydrogenase (NAT) deficiency: This disorder is caused by a lack of the enzyme NAT, which is needed to break down NAD+. The build-up of this compound can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
10. Neuronal ceroid lipofuscinosis (NCL) diseases: These disorders are caused by a lack of the enzyme ALDH7A1, which is needed to break down certain fats in the body. The build-up of these fats can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
11. Phenylketonuria (PKU): This disorder is caused by a lack of the enzyme phenylalanine hydroxylase (PAH), which is needed to break down the amino acid phenylalanine. The build-up of phenylalanine can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
12. Propionic acidemia: This disorder is caused by a lack of the enzyme propionyl-CoA carboxytransferase (PCC), which is needed to break down the amino acid propionate. The build-up of propionate can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
13. Methylmalonic acidemia: This disorder is caused by a lack of the enzyme methylmalonyl-CoA mutase (MCM), which is needed to break down the amino acid methionine. The build-up of methylmalonyl-CoA can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
14. Homocystinuria: This disorder is caused by a lack of the enzyme cystathionine beta-synthase (CBS), which is needed to break down the amino acid homocysteine. The build-up of homocysteine can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
15. maple syrup urine disease (MSUD): This disorder is caused by a lack of the enzyme branched-chain alpha-keto acid dehydrogenase (BCKDH), which is needed to break down the amino acids leucine, isoleucine, and valine. The build-up of these amino acids can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
16. Tyrosinemia type I: This disorder is caused by a lack of the enzyme fumarylacetoacetate hydrolase (FAH), which is needed to break down the amino acid tyrosine. The build-up of tyrosine can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
17. Hereditary tyrosinemia type II: This disorder is caused by a lack of the enzyme tyrosine ammonia lyase (TAL), which is needed to break down the amino acid tyrosine. The build-up of tyrosine can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
18. Galactosemia: This disorder is caused by a lack of the enzyme galactose-1-phosphate uridylyltransferase (GALT), which is needed to break down the sugar galactose. The build-up of galactose can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
19. Phenylketonuria (PKU): This disorder is caused by a lack of the enzyme phenylalanine hydroxylase (PAH), which is needed to break down the amino acid phenylalanine. The build-up of phenylalanine can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.
20. Methylmalonic acidemia (MMA): This disorder is caused by a lack of the enzyme methylmalonyl-CoA mutase (MCM), which is needed to break down the amino acids methionine and homocysteine. The build-up of these amino acids can lead to developmental delays, intellectual disability, and an increased risk of certain cancers.

In addition to these specific disorders, there are also many other inborn errors of metabolism that can affect various aspects of the body, including the nervous system, the skin, and the muscles. These disorders can be caused by a variety of genetic mutations, and they can have a wide range of symptoms and effects on the body.

Overall, inborn errors of metabolism are a group of rare genetic disorders that can affect various aspects of the body and can have serious health consequences if left untreated. These disorders are often diagnosed through newborn screening programs, and they can be managed with dietary changes, medication, and other treatments. With appropriate treatment, many individuals with inborn errors of metabolism can lead active and productive lives.

The most common form of xanthomatosis is called familial hypercholesterolemia, which is caused by a deficiency of low-density lipoprotein (LDL) receptors in the body. This results in high levels of LDL cholesterol in the blood, which can lead to the accumulation of cholesterol and other lipids in the skin, eyes, and other tissues.

Other forms of xanthomatosis include:

* Familial apo A-1 deficiency: This is a rare disorder caused by a deficiency of apolipoprotein A-1 (apoA-1), a protein that plays a critical role in the transportation of triglycerides and cholesterol in the blood.
* familial hyperlipidemia: This is a group of rare genetic disorders that are characterized by high levels of lipids in the blood, including cholesterol and triglycerides.
* Chylomicronemia: This is a rare disorder caused by a deficiency of lipoprotein lipase, an enzyme that breaks down triglycerides in the blood.

The symptoms of xanthomatosis vary depending on the specific form of the condition and the organs affected. They may include:

* Yellowish deposits (xanthomas) on the skin, particularly on the elbows, knees, and buttocks
* Deposits in the eyes (corneal arcus)
* Fatty liver disease
* High levels of cholesterol and triglycerides in the blood
* Abdominal pain
* Weight loss

Treatment for xanthomatosis typically involves managing the underlying genetic disorder, which may involve dietary changes, medication, or other therapies. In some cases, surgery may be necessary to remove affected tissue.

In summary, xanthomatosis is a group of rare genetic disorders that are characterized by deposits of lipids in the skin and other organs. The symptoms and treatment vary depending on the specific form of the condition.

The main symptoms of FMF include:

1. Recurrent fever, usually during childhood and adolescence, which can range from 38°C to 40°C (100°F to 104°F).
2. Serositis, which can involve the heart (endocarditis), lungs (pleuritis), and/or peritoneum (peritonitis).
3. Painful joints, particularly in the hands, knees, and ankles.
4. Abdominal pain, diarrhea, and vomiting.
5. Rash, which may be present during fever episodes.
6. Enlarged spleen and liver.
7. Elevated levels of inflammatory markers in the blood, such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP).
8. Skin rashes or lesions, which may be present during fever episodes.
9. Kidney problems, such as kidney stones or chronic kidney disease.
10. Eye problems, such as uveitis or retinal vasculitis.

There is no cure for FMF, but the symptoms can be managed with medications and other therapies. Treatment typically involves colchicine, a drug that reduces inflammation and prevents flares. Other medications, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, may also be used to manage symptoms. In some cases, surgery may be necessary to remove the affected organ or to repair damaged tissue.

It is important for individuals with FMF to work closely with their healthcare provider to develop a treatment plan that is tailored to their specific needs and symptoms. With proper management, many people with FMF are able to lead active and fulfilling lives. However, it is important to note that FMF can be a chronic condition, and ongoing management is typically necessary to control symptoms and prevent complications.

Symptoms of iron overload can include fatigue, weakness, joint pain, and abdominal discomfort. Treatment for iron overload usually involves reducing iron intake and undergoing regular phlebotomy (blood removal) to remove excess iron from the body. In severe cases, iron chelation therapy may be recommended to help remove excess iron from tissues and organs.

In addition to these medical definitions and treatments, there are also some key points to keep in mind when it comes to iron overload:

1. Iron is essential for human health, but too much of it can be harmful. The body needs a certain amount of iron to produce hemoglobin, the protein in red blood cells that carries oxygen throughout the body. However, excessive iron levels can damage organs and tissues.
2. Hereditary hemochromatosis is the most common cause of iron overload. This genetic disorder causes the body to absorb too much iron from food, leading to its accumulation in organs and tissues.
3. Iron overload can increase the risk of certain diseases, such as liver cirrhosis, diabetes, and heart disease. It can also lead to a condition called hemosiderosis, which is characterized by the deposition of iron in tissues and organs.
4. Phlebotomy is a safe and effective treatment for iron overload. Regular blood removal can help reduce excess iron levels and prevent complications such as liver damage, heart failure, and anemia.
5. Iron chelation therapy may be recommended in severe cases of iron overload. This involves using drugs to remove excess iron from tissues and organs, but it is not always necessary and can have potential side effects.

1. Medical Definition: In medicine, dwarfism is defined as a condition where an individual's height is significantly below the average range for their age and gender. The term "dwarfism" is often used interchangeably with "growth hormone deficiency," but the two conditions are not the same. Growth hormone deficiency is a specific cause of dwarfism, but there can be other causes as well, such as genetic mutations or chromosomal abnormalities.
2. Genetic Definition: From a genetic perspective, dwarfism can be defined as a condition caused by a genetic mutation or variation that results in short stature. There are many different genetic causes of dwarfism, including those caused by mutations in the growth hormone receptor gene, the insulin-like growth factor 1 (IGF1) gene, and other genes involved in growth and development.
3. Anthropological Definition: In anthropology, dwarfism is defined as a physical characteristic that is considered to be outside the normal range for a particular population or culture. This can include individuals who are short-statured due to various causes, including genetics, nutrition, or environmental factors.
4. Social Definition: From a social perspective, dwarfism can be defined as a condition that is perceived to be different or abnormal by society. Individuals with dwarfism may face social stigma, discrimination, and other forms of prejudice due to their physical appearance.
5. Legal Definition: In some jurisdictions, dwarfism may be defined as a disability or a medical condition that is protected by anti-discrimination laws. This can provide legal protections for individuals with dwarfism and ensure that they have access to the same rights and opportunities as others.

In summary, the definition of dwarfism can vary depending on the context in which it is used, and it may be defined differently by different disciplines and communities. It is important to recognize and respect the diversity of individuals with dwarfism and to provide support and accommodations as needed to ensure their well-being and inclusion in society.

People with Tangier disease often have extremely high levels of low-density lipoprotein (LDL) cholesterol, which can lead to the development of cardiovascular disease at an early age. The disorder is caused by mutations in the gene that codes for a protein called ATP-binding cassette transporter 1 (ABC1), which plays a critical role in the transport of cholesterol and other lipids in the body.

The symptoms of Tangier disease can vary depending on the severity of the disorder, but may include:

* High levels of LDL cholesterol
* Low levels of HDL cholesterol
* Abnormal liver function tests
* Yellowing of the skin and eyes (jaundice)
* Fatigue
* Weakness
* Muscle cramps
* Heart disease
* Stroke

Tangier disease is usually diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment for the disorder typically involves a combination of dietary modifications, medications, and lipid-lowering therapy to reduce the levels of LDL cholesterol and increase the levels of HDL cholesterol. In some cases, a liver transplant may be necessary to treat the liver damage that can occur as a result of the disorder.

Examples of syndromes include:

1. Down syndrome: A genetic disorder caused by an extra copy of chromosome 21 that affects intellectual and physical development.
2. Turner syndrome: A genetic disorder caused by a missing or partially deleted X chromosome that affects physical growth and development in females.
3. Marfan syndrome: A genetic disorder affecting the body's connective tissue, causing tall stature, long limbs, and cardiovascular problems.
4. Alzheimer's disease: A neurodegenerative disorder characterized by memory loss, confusion, and changes in personality and behavior.
5. Parkinson's disease: A neurological disorder characterized by tremors, rigidity, and difficulty with movement.
6. Klinefelter syndrome: A genetic disorder caused by an extra X chromosome in males, leading to infertility and other physical characteristics.
7. Williams syndrome: A rare genetic disorder caused by a deletion of genetic material on chromosome 7, characterized by cardiovascular problems, developmental delays, and a distinctive facial appearance.
8. Fragile X syndrome: The most common form of inherited intellectual disability, caused by an expansion of a specific gene on the X chromosome.
9. Prader-Willi syndrome: A genetic disorder caused by a defect in the hypothalamus, leading to problems with appetite regulation and obesity.
10. Sjogren's syndrome: An autoimmune disorder that affects the glands that produce tears and saliva, causing dry eyes and mouth.

Syndromes can be diagnosed through a combination of physical examination, medical history, laboratory tests, and imaging studies. Treatment for a syndrome depends on the underlying cause and the specific symptoms and signs presented by the patient.

There are two forms of cystinosis: neonatal and adult. Neonatal cystinosis is present at birth and can cause a range of symptoms including failure to gain weight, diarrhea, and difficulty feeding. Adult cystinosis typically develops in adulthood and may cause symptoms such as kidney damage, blindness, and skin rashes.

Cystinosis is diagnosed through a combination of physical examination, medical history, and laboratory tests. Treatment for the disorder typically involves managing the symptoms and preventing complications. For neonatal cystinosis, this may involve feeding tubes and medication to help the baby gain weight. For adult cystinosis, treatment may include medication to lower cystine levels in the body and manage any associated complications such as kidney damage or blindness.

In some cases, a stem cell transplant may be recommended to treat cystinosis. This involves replacing the affected cells with healthy ones from a donor. The procedure is typically performed in children with neonatal cystinosis and can help improve their quality of life and prevent complications.

Overall, cystinosis is a rare and debilitating genetic disorder that affects the kidneys and eyes. While there is currently no cure for the disorder, treatment options are available to manage the symptoms and prevent complications. With proper management and care, individuals with cystinosis can lead fulfilling lives.

There are three main forms of ACH:

1. Classic congenital adrenal hyperplasia (CAH): This is the most common form of ACH, accounting for about 90% of cases. It is caused by mutations in the CYP21 gene, which codes for an enzyme that converts cholesterol into cortisol and aldosterone.
2. Non-classic CAH (NCAH): This form of ACH is less common than classic CAH and is caused by mutations in other genes involved in cortisol and aldosterone production.
3. Mineralocorticoid excess (MOE) or glucocorticoid deficiency (GD): These are rare forms of ACH that are characterized by excessive production of mineralocorticoids (such as aldosterone) or a deficiency of glucocorticoids (such as cortisol).

The symptoms of ACH can vary depending on the specific form of the disorder and the age at which it is diagnosed. In classic CAH, symptoms typically appear in infancy and may include:

* Premature puberty (in girls) or delayed puberty (in boys)
* Abnormal growth patterns
* Distended abdomen
* Fatigue
* Weight gain or obesity
* Easy bruising or bleeding

In NCAH and MOE/GD, symptoms may be less severe or may not appear until later in childhood or adulthood. They may include:

* High blood pressure
* Low blood sugar (hypoglycemia)
* Weight gain or obesity
* Fatigue
* Mood changes

If left untreated, ACH can lead to serious complications, including:

* Adrenal gland insufficiency
* Heart problems
* Bone health problems
* Increased risk of infections
* Mental health issues (such as depression or anxiety)

Treatment for ACH typically involves hormone replacement therapy to restore the balance of hormones in the body. This may involve taking medications such as cortisol, aldosterone, or other hormones to replace those that are deficient or imbalanced. In some cases, surgery may be necessary to remove an adrenal tumor or to correct physical abnormalities.

With proper treatment, many individuals with ACH can lead healthy, active lives. However, it is important for individuals with ACH to work closely with their healthcare providers to manage their condition and prevent complications. This may involve regular check-ups, hormone level monitoring, and lifestyle changes such as a healthy diet and regular exercise.

Types of Sex Chromosome Aberrations:

1. Turner Syndrome: A condition where a female has only one X chromosome instead of two (45,X).
2. Klinefelter Syndrome: A condition where a male has an extra X chromosome (47,XXY) or an extra Y chromosome (47,XYYY).
3. XXX Syndrome: A rare condition where a female has three X chromosomes instead of two.
4. XYY Syndrome: A rare condition where a male has an extra Y chromosome (48,XYY).
5. Mosaicism: A condition where a person has a mixture of cells with different numbers of sex chromosomes.

Effects of Sex Chromosome Aberrations:

Sex chromosome aberrations can cause a range of physical and developmental abnormalities, such as short stature, infertility, and reproductive problems. They may also increase the risk of certain health conditions, including:

1. Congenital heart defects
2. Cognitive impairments
3. Learning disabilities
4. Developmental delays
5. Increased risk of infections and autoimmune disorders

Diagnosis of Sex Chromosome Aberrations:

Sex chromosome aberrations can be diagnosed through various methods, including:

1. Karyotyping: A test that involves analyzing the number and structure of an individual's chromosomes.
2. Fluorescence in situ hybridization (FISH): A test that uses fluorescent probes to detect specific DNA sequences on chromosomes.
3. Chromosomal microarray analysis: A test that looks for changes in the number or structure of chromosomes by analyzing DNA from blood or other tissues.
4. Next-generation sequencing (NGS): A test that analyzes an individual's entire genome to identify specific genetic variations, including sex chromosome aberrations.

Treatment and Management of Sex Chromosome Aberrations:

There is no cure for sex chromosome aberrations, but there are various treatments and management options available to help alleviate symptoms and improve quality of life. These may include:

1. Hormone replacement therapy (HRT): To address hormonal imbalances and related symptoms.
2. Assisted reproductive technologies (ART): Such as in vitro fertilization (IVF) or preimplantation genetic diagnosis (PGD), to help individuals with infertility or pregnancy complications.
3. Prenatal testing: To identify sex chromosome aberrations in fetuses, allowing parents to make informed decisions about their pregnancies.
4. Counseling and support: To help individuals and families cope with the emotional and psychological impact of a sex chromosome abnormality diagnosis.
5. Surgeries or other medical interventions: To address related health issues, such as infertility, reproductive tract abnormalities, or genital ambiguity.

It's important to note that each individual with a sex chromosome aberration may require a unique treatment plan tailored to their specific needs and circumstances. A healthcare provider can work with the individual and their family to develop a personalized plan that takes into account their medical, emotional, and social considerations.

In conclusion, sex chromosome aberrations are rare genetic disorders that can have significant implications for an individual's physical, emotional, and social well-being. While there is no cure for these conditions, advances in diagnostic testing and treatment options offer hope for improving the lives of those affected. With proper medical care, support, and understanding, individuals with sex chromosome aberrations can lead fulfilling lives.

Some common effects of chromosomal deletions include:

1. Genetic disorders: Chromosomal deletions can lead to a variety of genetic disorders, such as Down syndrome, which is caused by a deletion of a portion of chromosome 21. Other examples include Prader-Willi syndrome (deletion of chromosome 15), and Williams syndrome (deletion of chromosome 7).
2. Birth defects: Chromosomal deletions can increase the risk of birth defects, such as heart defects, cleft palate, and limb abnormalities.
3. Developmental delays: Children with chromosomal deletions may experience developmental delays, learning disabilities, and intellectual disability.
4. Increased cancer risk: Some chromosomal deletions can increase the risk of developing certain types of cancer, such as chronic myelogenous leukemia (CML) and breast cancer.
5. Reproductive problems: Chromosomal deletions can lead to reproductive problems, such as infertility or recurrent miscarriage.

Chromosomal deletions can be diagnosed through a variety of techniques, including karyotyping (examination of the chromosomes), fluorescence in situ hybridization (FISH), and microarray analysis. Treatment options for chromosomal deletions depend on the specific effects of the deletion and may include medication, surgery, or other forms of therapy.

The symptoms of hyperargininemia typically become apparent within the first few months of life and may include:

1. Developmental delays
2. Seizures
3. Hypotonia (low muscle tone)
4. Cognitive impairment
5. Vision loss or blindness
6. Hearing loss
7. Kidney damage or failure
8. Increased risk of infections

Hyperargininemia is usually diagnosed through a combination of clinical evaluation, laboratory testing, and genetic analysis. Treatment for the disorder typically involves managing the symptoms and preventing complications. This may include:

1. Avoiding arginine-rich foods in the diet
2. Providing supplemental nutrition to support growth and development
3. Managing seizures with anticonvulsant medications
4. Physical therapy to improve muscle tone and mobility
5. Supportive care to address cognitive and vision impairments
6. Dialysis or kidney transplantation in cases of advanced kidney disease

The prognosis for individuals with hyperargininemia varies depending on the severity of the disorder and the presence of any additional medical conditions. With appropriate management, many individuals with hyperargininemia are able to lead active and fulfilling lives. However, the disorder can be life-threatening in some cases, particularly if left untreated or if complications arise.

MPS II is an autosomal recessive disorder, meaning that a child must inherit two copies of the defective gene, one from each parent, to develop the condition. The symptoms of MPS II typically become apparent in early childhood and can include:

* Coarse facial features
* Enlarged liver and spleen
* Joint stiffness and mobility problems
* Cognitive delay and developmental delays
* Heart valve problems
* Respiratory problems
* Eye problems
* Poor balance and coordination

MPS II is diagnosed through a combination of clinical evaluation, physical examination, and laboratory tests, including enzyme assays and genetic analysis. Treatment for MPS II typically involves a combination of enzyme replacement therapy (ERT) and other supportive therapies, such as physical therapy and speech therapy. ERT is the primary treatment for MPS II, and it involves replacing the missing enzyme, iduronidase, through intravenous infusion. This can help reduce the amount of GAGs in the body and improve the symptoms of the condition.

The prognosis for MPS II varies depending on the severity of the condition and the timing and effectiveness of treatment. Early diagnosis and treatment can improve the outlook for individuals with MPS II, but the condition can still have a significant impact on quality of life and longevity. With current treatments, the average lifespan for individuals with MPS II is around 20-30 years, although some individuals may live into their 40s or 50s with proper management.

In summary, Mucopolysaccharidosis Type II (MPS II) is a rare genetic disorder caused by a deficiency of the enzyme iduronidase, which results in the accumulation of GAGs in the body and a wide range of symptoms. Diagnosis typically involves a combination of clinical evaluation, imaging studies, laboratory tests, and genetic analysis. Treatment for MPS II typically involves enzyme replacement therapy (ERT) and other supportive therapies, and the prognosis varies depending on the severity of the condition and the timing and effectiveness of treatment.

Symptoms of OCTD typically appear during infancy and may include seizures, developmental delays, poor muscle tone, and abnormal brain activity (as detected by electroencephalogram (EEG)). Without treatment, OCTD can lead to serious health complications such as stroke, intellectual disability, and death. Treatment involves a strict diet that limits protein intake and supplementation with essential nutrients to support growth and development.

OCTD is usually diagnosed by measuring the activity of OCT enzyme in white blood cells or using genetic testing to identify mutations in the OCTD1 gene. Treatment options for OCTD are limited, but early detection and proper management can significantly improve outcomes for affected individuals.

Sickle cell trait is relatively common in certain populations, such as people of African, Mediterranean, or Middle Eastern descent. It is estimated that about 1 in 12 African Americans carry the sickle cell gene, and 1 in 500 are homozygous for the trait (meaning they have two copies of the sickle cell gene).

Although people with sickle cell trait do not develop sickle cell anemia, they can experience certain complications related to the trait. For example, they may experience episodes of hemolytic crisis, which is a condition in which red blood cells are destroyed faster than they can be replaced. This can occur under certain conditions, such as dehydration or infection.

There are several ways that sickle cell trait can affect an individual's life. For example, some people with the trait may experience discrimination or stigma based on their genetic status. Additionally, individuals with sickle cell trait may be more likely to experience certain health problems, such as kidney disease or eye damage, although these risks are generally low.

There is no cure for sickle cell trait, but it can be managed through proper medical care and self-care. Individuals with the trait should work closely with their healthcare provider to monitor their health and address any complications that arise.

Overall, sickle cell trait is a relatively common genetic condition that can have significant implications for an individual's life. It is important for individuals with the trait to understand their risk factors and take steps to manage their health and well-being.

Symptoms of GSD-V typically appear during infancy or childhood and may include:

* Hypoglycemia (low blood sugar)
* Hepatomegaly (enlarged liver)
* Myopathy (muscle weakness)
* Cardiomyopathy (heart muscle disease)
* Developmental delay
* Intellectual disability

GSD-V is caused by mutations in the PI4K gene, which is located on chromosome 12. The disorder is inherited in an autosomal recessive pattern, meaning that a child must inherit two copies of the mutated gene (one from each parent) to develop the condition.

There is no cure for GSD-V, but treatment may include a high-carbohydrate diet, sugar supplements, and enzyme replacement therapy in some cases. Management of the disorder typically involves monitoring blood sugar levels, avoiding fasting, and taking medications to prevent hypoglycemia. In severe cases, liver transplantation may be necessary.

Prognosis for GSD-V varies depending on the severity of the disorder and the presence of any additional health issues. With proper management, many individuals with GSD-V can lead active and productive lives, but the condition can be life-threatening if left untreated or poorly managed.

Some common types of eye abnormalities include:

1. Refractive errors: These are errors in the way the eye focuses light, causing blurry vision. Examples include myopia (nearsightedness), hyperopia (farsightedness), astigmatism, and presbyopia (age-related loss of near vision).
2. Amblyopia: This is a condition where the brain favors one eye over the other, causing poor vision in the weaker eye.
3. Cataracts: A cataract is a clouding of the lens in the eye that can cause blurry vision and increase the risk of glaucoma.
4. Glaucoma: This is a group of eye conditions that can damage the optic nerve and lead to vision loss.
5. Macular degeneration: This is a condition where the macula, the part of the retina responsible for central vision, deteriorates, leading to vision loss.
6. Diabetic retinopathy: This is a complication of diabetes that can damage the blood vessels in the retina and lead to vision loss.
7. Retinal detachment: This is a condition where the retina becomes separated from the underlying tissue, leading to vision loss.
8. Corneal abnormalities: These are irregularities in the shape or structure of the cornea, such as keratoconus, that can cause blurry vision.
9. Optic nerve disorders: These are conditions that affect the optic nerve, such as optic neuritis, that can cause vision loss.
10. Traumatic eye injuries: These are injuries to the eye or surrounding tissue that can cause vision loss or other eye abnormalities.

Eye abnormalities can be diagnosed through a comprehensive eye exam, which may include visual acuity tests, refraction tests, and imaging tests such as retinal photography or optical coherence tomography (OCT). Treatment for eye abnormalities depends on the specific condition and may include glasses or contact lenses, medication, surgery, or other therapies.

There are several reasons why an embryo may not survive, including:

1. Immunological factors: The mother's immune system may reject the embryo, leading to its death.
2. Hormonal imbalance: An imbalance of hormones can disrupt the development of the embryo and lead to its demise.
3. Chromosomal abnormalities: The embryo may have an abnormal number of chromosomes, which can prevent it from developing properly.
4. Infections: Certain infections, such as group B strep or Listeria, can cause the embryo to fail to develop.
5. Maternal health issues: Chronic medical conditions, such as diabetes or hypertension, can increase the risk of embryo loss.
6. Smoking and drug use: Smoking and drug use have been linked to an increased risk of embryo loss.
7. Age: Women over 35 may be at a higher risk of embryo loss due to age-related factors.
8. Poor egg quality: The quality of the eggs used for fertilization can affect the success of the pregnancy.
9. Embryo fragmentation: The embryos may be damaged during the transfer process, leading to their failure to develop.
10. Uterine abnormalities: Abnormalities in the shape or structure of the uterus can increase the risk of embryo loss.

Embryo loss can be a traumatic experience for couples trying to conceive. It is essential to seek medical advice if there are multiple instances of embryo loss, as it may indicate an underlying issue that needs to be addressed.

There are three main types of Gaucher disease:

1. Type 1: This is the most common form of the disease and affects both children and adults. Symptoms include fatigue, anemia, bone pain, and a decrease in platelet count.
2. Type 2: This type is less common and primarily affects children. Symptoms are similar to those of Type 1, but may also include developmental delays and seizures.
3. Type 3: This is the rarest form of the disease and primarily affects adults. Symptoms include a slowed heart rate, fatigue, and weakness.

Gaucher disease is diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment options for Gaucher disease include enzyme replacement therapy (ERT) and substrate reduction therapy (SRT), which are designed to replace or reduce the amount of glucocerebrosidase needed by the body. These therapies can help manage symptoms and improve quality of life, but they do not cure the disease.

In addition to these treatment options, there is ongoing research into new and experimental therapies for Gaucher disease, including gene therapy and small molecule treatments. These innovative approaches aim to provide more effective and targeted treatments for this rare and debilitating condition.

Sickle cell anemia is caused by mutations in the HBB gene that codes for hemoglobin. The most common mutation is a point mutation at position 6, which replaces the glutamic acid amino acid with a valine (Glu6Val). This substitution causes the hemoglobin molecule to be unstable and prone to forming sickle-shaped cells.

The hallmark symptom of sickle cell anemia is anemia, which is a low number of healthy red blood cells. People with the condition may also experience fatigue, weakness, jaundice (yellowing of the skin and eyes), infections, and episodes of severe pain. Sickle cell anemia can also increase the risk of stroke, heart disease, and other complications.

Sickle cell anemia is diagnosed through blood tests that measure hemoglobin levels and the presence of sickle cells. Treatment typically involves managing symptoms and preventing complications with medications, blood transfusions, and antibiotics. In some cases, bone marrow transplantation may be recommended.

Prevention of sickle cell anemia primarily involves avoiding the genetic mutations that cause the condition. This can be done through genetic counseling and testing for individuals who have a family history of the condition or are at risk of inheriting it. Prenatal testing is also available for pregnant women who may be carriers of the condition.

Overall, sickle cell anemia is a serious genetic disorder that can significantly impact quality of life and life expectancy if left untreated. However, with proper management and care, individuals with the condition can lead fulfilling lives and manage their symptoms effectively.

There are different types of fetal death, including:

1. Stillbirth: This refers to the death of a fetus after the 20th week of gestation. It can be caused by various factors, such as infections, placental problems, or umbilical cord compression.
2. Miscarriage: This occurs before the 20th week of gestation and is usually due to chromosomal abnormalities or hormonal imbalances.
3. Ectopic pregnancy: This is a rare condition where the fertilized egg implants outside the uterus, usually in the fallopian tube. It can cause fetal death and is often diagnosed in the early stages of pregnancy.
4. Intrafamilial stillbirth: This refers to the death of two or more fetuses in a multiple pregnancy, usually due to genetic abnormalities or placental problems.

The diagnosis of fetal death is typically made through ultrasound examination or other imaging tests, such as MRI or CT scans. In some cases, the cause of fetal death may be unknown, and further testing and investigation may be required to determine the underlying cause.

There are various ways to manage fetal death, depending on the stage of pregnancy and the cause of the death. In some cases, a vaginal delivery may be necessary, while in others, a cesarean section may be performed. In cases where the fetus has died due to a genetic abnormality, couples may choose to undergo genetic counseling and testing to assess their risk of having another affected pregnancy.

Overall, fetal death is a tragic event that can have significant emotional and psychological impact on parents and families. It is essential to provide compassionate support and care to those affected by this loss, while also ensuring appropriate medical management and follow-up.

The main symptoms of XP include:

1. Extremely sensitive skin that burns easily and develops freckles and age spots at an early age.
2. Premature aging of the skin, including wrinkling and thinning.
3. Increased risk of developing skin cancers, especially melanoma, which can be fatal if not treated early.
4. Poor wound healing and scarring.
5. Eye problems such as cataracts, glaucoma, and poor vision.
6. Neurological problems such as intellectual disability, seizures, and difficulty with coordination and balance.

XP is usually inherited in an autosomal recessive pattern, which means that a child must inherit two copies of the mutated gene, one from each parent, to develop the condition. The diagnosis of XP is based on clinical features, family history, and genetic testing. There is no cure for XP, but treatment options include:

1. Avoiding UV radiation by staying out of the sun, using protective clothing, and using sunscreens with high SPF.
2. Regular monitoring and early detection of skin cancers.
3. Chemoprevention with drugs that inhibit DNA replication.
4. Photoprotection with antioxidants and other compounds that protect against UV damage.
5. Managing neurological problems with medications and therapy.

The prognosis for XP is poor, with most patients dying from skin cancer or other complications before the age of 20. However, with early diagnosis and appropriate treatment, some patients may be able to survive into their 30s or 40s. There is currently no cure for XP, but research is ongoing to develop new treatments and improve the quality of life for affected individuals.

The symptoms of RP can vary depending on the severity of the condition and the specific genetic mutations causing it. Common symptoms include:

* Night blindness
* Difficulty seeing in low light environments
* Blind spots or missing areas in central vision
* Difficulty reading or recognizing faces
* Sensitivity to light
* Reduced peripheral vision
* Blurred vision

There is currently no cure for RP, and treatment options are limited. However, researchers are actively working to develop new therapies and technologies to slow the progression of the disease and improve the quality of life for individuals with RP. These include:

* Gene therapy: Using viral vectors to deliver healthy copies of the missing gene to the retina in an effort to restore normal vision.

* Stem cell therapy: Transplanting healthy stem cells into the retina to replace damaged or missing cells.

* Pharmacological interventions: Developing drugs that can slow down or reverse the progression of RP by targeting specific molecular pathways.

* Retinal implants: Implanting a retinal implant, such as a retinal prosthetic, to bypass damaged or non-functional photoreceptors and directly stimulate the visual pathway.

It's important to note that these therapies are still in the experimental stage and have not yet been proven effective in humans. Therefore, individuals with RP should consult with their healthcare provider about the best treatment options available.

In summary, Retinitis Pigmentosa is a genetic disorder that causes progressive vision loss, particularly during childhood or adolescence. While there is currently no cure for RP, researchers are actively working to develop new therapies to slow down or restore vision in those affected by the disease. These include gene therapy, stem cell therapy, pharmacological interventions, and retinal implants. It's important to consult with a healthcare provider for the best treatment options available.

FAQs:

1. What is Retinitis Pigmentosa?

Retinitis Pigmentosa (RP) is a genetic disorder that causes progressive vision loss, typically during childhood or adolescence.

2. What are the symptoms of Retinitis Pigmentosa?

Symptoms of RP can vary depending on the specific mutation causing the disease, but common symptoms include difficulty seeing at night, loss of peripheral vision, and difficulty adjusting to bright light.

3. Is there a cure for Retinitis Pigmentosa?

Currently, there is no cure for RP, but researchers are actively working on developing new therapies to slow down or restore vision in those affected by the disease.

4. What are some potential treatments for Retinitis Pigmentosa?

Some potential treatments for RP include gene therapy, stem cell therapy, pharmacological interventions, and retinal implants. It's important to consult with a healthcare provider for the best treatment options available.

5. Can Retinitis Pigmentosa be prevented?

RP is a genetic disorder, so it cannot be prevented in the classical sense. However, researchers are working on developing gene therapies that can prevent or slow down the progression of the disease.

6. How does Retinitis Pigmentosa affect daily life?

Living with RP can significantly impact daily life, especially as vision loss progresses. It's important to adapt and modify daily routines, such as using assistive devices like canes or guide dogs, and seeking support from family and friends.

7. What resources are available for those affected by Retinitis Pigmentosa?

There are a variety of resources available for those affected by RP, including support groups, advocacy organizations, and online communities. These resources can provide valuable information, support, and connections with others who understand the challenges of living with the disease.

There are several types of NTDs, including:

1. Anencephaly: A severe form of NTD where a large portion of the neural tube does not develop, resulting in the absence of a major part of the brain and skull.
2. Spina Bifida: A type of NTD where the spine does not close properly, leading to varying degrees of neurological damage and physical disability.
3. Encephalocele: A type of NTD where the brain or meninges protrude through a opening in the skull.
4. Meningomyelocele: A type of NTD where the spinal cord and meninges protrude through a opening in the back.

Causes and risk factors:

1. Genetic mutations: Some NTDs can be caused by genetic mutations that affect the development of the neural tube.
2. Environmental factors: Exposure to certain chemicals, such as folic acid deficiency, has been linked to an increased risk of NTDs.
3. Maternal health: Women with certain medical conditions, such as diabetes or obesity, are at a higher risk of having a child with NTDs.

Symptoms and diagnosis:

1. Anencephaly: Severely underdeveloped brain, absence of skull, and often death shortly after birth.
2. Spina Bifida: Difficulty walking, weakness or paralysis in the legs, bladder and bowel problems, and intellectual disability.
3. Encephalocele: Protrusion of brain or meninges through a opening in the skull, which can cause developmental delays, seizures, and intellectual disability.
4. Meningomyelocele: Protrusion of spinal cord and meninges through a opening in the back, which can cause weakness or paralysis in the legs, bladder and bowel problems, and intellectual disability.

Treatment and management:

1. Surgery: Depending on the type and severity of the NTD, surgery may be necessary to close the opening in the skull or back, or to release compressed tissue.
2. Physical therapy: To help improve mobility and strength in affected limbs.
3. Occupational therapy: To help with daily activities and fine motor skills.
4. Speech therapy: To help with communication and language development.
5. Medications: To manage seizures, pain, and other symptoms.
6. Nutritional support: To ensure adequate nutrition and growth.
7. Supportive care: To help manage the physical and emotional challenges of living with an NTD.

Prevention:

1. Folic acid supplements: Taking a daily folic acid supplement during pregnancy can help prevent NTDs.
2. Good nutrition: Eating a balanced diet that includes foods rich in folate, such as leafy greens, citrus fruits, and beans, can help prevent NTDs.
3. Avoiding alcohol and tobacco: Both alcohol and tobacco use have been linked to an increased risk of NTDs.
4. Getting regular prenatal care: Regular check-ups with a healthcare provider during pregnancy can help identify potential problems early on and reduce the risk of NTDs.
5. Avoiding infections: Infections such as rubella (German measles) can increase the risk of NTDs, so it's important to avoid exposure to these infections during pregnancy.

It's important to note that not all NTDs can be prevented, and some may be caused by genetic factors or other causes that are not yet fully understood. However, taking steps to maintain good health and getting regular prenatal care can help reduce the risk of NTDs and improve outcomes for babies born with these conditions.

There are three main types of tyrosinemia:

1. Tyrosinemia type I: This is the most severe form of the disorder, and it is caused by a complete deficiency of the enzyme fumarylacetoacetate hydrolase (FAH). This enzyme is essential for breaking down tyrosine, and without it, tyrosine builds up in the blood and tissues, leading to severe symptoms.
2. Tyrosinemia type II: This form of the disorder is caused by a deficiency of the enzyme tyrosine ammonia lyase (TAL). TAL is involved in the final step of tyrosine breakdown, and without it, tyrosine accumulates in the blood and tissues.
3. Tyrosinemia type III: This is a mild form of the disorder, and it is caused by a deficiency of the enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD). HPPD is involved in the breakdown of tyrosine, but it is not essential for survival.

Symptoms of tyrosinemia can vary depending on the type and severity of the disorder, but they may include:

* Skin and joint problems
* Eye problems
* Liver and kidney damage
* Increased risk of infections
* Delayed growth and development
* Cognitive impairment

Tyrosinemia is usually diagnosed through a combination of clinical symptoms, laboratory tests, and genetic analysis. Treatment for the disorder typically involves a combination of dietary restrictions and medication. In some cases, liver transplantation may be necessary.

In summary, tyrosinemia is a group of rare genetic disorders that affect the breakdown of the amino acid tyrosine. The disorders are caused by deficiencies of specific enzymes involved in tyrosine metabolism, and they can lead to a range of symptoms and complications. Early diagnosis and appropriate treatment are important for managing the disorder and preventing long-term health problems.

There are many different types of retinal degeneration, each with its own set of symptoms and causes. Some common forms of retinal degeneration include:

1. Age-related macular degeneration (AMD): This is the most common form of retinal degeneration and affects the macula, the part of the retina responsible for central vision. AMD can cause blind spots or distorted vision.
2. Retinitis pigmentosa (RP): This is a group of inherited conditions that affect the retina and can lead to night blindness, loss of peripheral vision, and eventually complete vision loss.
3. Leber congenital amaurosis (LCA): This is a rare inherited condition that causes severe vision loss or blindness at birth or within the first few years of life.
4. Stargardt disease: This is a rare inherited condition that causes progressive vision loss and can lead to blindness.
5. Retinal detachment: This occurs when the retina becomes separated from the underlying tissue, causing vision loss.
6. Diabetic retinopathy (DR): This is a complication of diabetes that can cause damage to the blood vessels in the retina and lead to vision loss.
7. Retinal vein occlusion (RVO): This occurs when a blockage forms in the small veins that carry blood away from the retina, causing vision loss.

There are several risk factors for retinal degeneration, including:

1. Age: Many forms of retinal degeneration are age-related and become more common as people get older.
2. Family history: Inherited conditions such as RP and LCA can increase the risk of retinal degeneration.
3. Genetics: Some forms of retinal degeneration are caused by genetic mutations.
4. Diabetes: Diabetes is a major risk factor for diabetic retinopathy, which can cause vision loss.
5. Hypertension: High blood pressure can increase the risk of retinal vein occlusion and other forms of retinal degeneration.
6. Smoking: Smoking has been linked to an increased risk of several forms of retinal degeneration.
7. UV exposure: Prolonged exposure to UV radiation from sunlight can increase the risk of retinal degeneration.

There are several treatment options for retinal degeneration, including:

1. Vitamin and mineral supplements: Vitamins A, C, and E, as well as zinc and selenium, have been shown to slow the progression of certain forms of retinal degeneration.
2. Anti-vascular endothelial growth factor (VEGF) injections: These medications can help reduce swelling and slow the progression of diabetic retinopathy and other forms of retinal degeneration.
3. Photodynamic therapy: This involves the use of a light-sensitive medication and low-intensity laser light to damage and shrink abnormal blood vessels in the retina.
4. Retinal implants: These devices can be used to restore some vision in people with advanced forms of retinal degeneration.
5. Stem cell therapy: Research is ongoing into the use of stem cells to repair damaged retinal cells and restore vision.

It's important to note that early detection and treatment of retinal degeneration can help to slow or stop the progression of the disease, preserving vision for as long as possible. Regular eye exams are crucial for detecting retinal degeneration in its early stages, when treatment is most effective.

The main symptoms of hereditary elliptocytosis are mild anemia, fatigue, jaundice, and splenomegaly (enlargement of the spleen). The disorder can also cause recurrent infections, including bacterial infections such as pneumonia and urinary tract infections. In severe cases, hereditary elliptocytosis can lead to a condition called hemolytic anemia, which is characterized by the premature destruction of RBCs.

Hereditary elliptocytosis is diagnosed through a combination of physical examination, medical history, and laboratory tests, including blood smears and genetic analysis. Treatment for the disorder is generally focused on managing symptoms and preventing complications. This may include blood transfusions, antibiotics to treat infections, and splenectomy (removal of the spleen) in severe cases.

The prognosis for hereditary elliptocytosis is generally good, with most individuals leading normal lives with proper management and care. However, the disorder can be inherited by children of affected parents, and genetic counseling may be helpful for families who have a history of the condition.

Heterozygote disadvantage occurs when "a heterozygote has a lower overall fitness than either homozygote." Heterozygote ... Loci exhibiting heterozygote advantage are a small minority of loci. The specific case of heterozygote advantage due to a ... A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the ... Heterozygote advantage is a major underlying mechanism for heterosis, or "hybrid vigor", which is the improved or increased ...
When the new allele is created, a heterozygote containing the newly created allele as well as the original will express the new ... "Compound heterozygote". MedTerms. New York: WebMD. 14 June 2012. Archived from the original on 4 March 2016. Retrieved 9 ... confers HIV resistance to homozygotes and delays AIDS onset in heterozygotes. One possible explanation of the etiology of the ...
Overdominance occurs if the heterozygote phenotype has a fitness advantage over both homozygotes (heterozygote advantage, ... Hence, homozygote and heterozygote genotypes for the sickle-cell disease allele show malaria resistance, while the homozygote ... As a consequence, the heterozygote genotype is selectively favored in areas with a high incidence of malaria. If an allele ... heterozygote advantage; and directional selection near an advantageous allele. A possible result is a geographic mosaic in a ...
Compound heterozygotes are often observed only through subclinical symptoms such as excess iron. Disease is rarely observed in ... This means that many cases of disease arise in individuals who have two unrelated alleles, who technically are heterozygotes, ... As a result, compound heterozygotes often become ill later in life, with less severe symptoms. Although compound heterozygosity ... Anderson JA, Fisch R, Miller E, Doeden D (Mar 1966). "Atypical phenylketonuric heterozygote. Deficiency in phenylalanine ...
Woolf, LI (1986). "The heterozygote advantage in phenylketonuria". American Journal of Human Genetics. 38 (5): 773-5. PMC ...
The heterozygote test is used for the early detection of recessive hereditary diseases, allowing for couples to determine if ... "Heterozygote test / Screening programmes - DRZE". Drze.de. Archived from the original on 7 January 2017. Retrieved 19 October ... although not influencing the prevalence of heterozygote carriers of those diseases. The elevated prevalence of certain ...
Woolf LI (May 1986). "The heterozygote advantage in phenylketonuria". American Journal of Human Genetics. 38 (5): 773-5. PMC ... being a heterozygote is advantageous. The PAH gene is located on chromosome 12 in the bands 12q22-q24.2. As of 2000, around 400 ...
Furthermore, many colonies show heterozygote excesses. This led researchers to conclude that outbreeding is common in the S. ...
One of the first genetic testing programs to identify heterozygote carriers of a genetic disorder was a program aimed at ... Most populations contain hundreds of alleles that could potentially cause disease, and most people are heterozygotes for one or ... This effect is called heterozygote advantage. Familial dysautonomia (Riley-Day syndrome), which causes vomiting, speech ... effect of drift on decay of linkage disequilibrium and evidence for heterozygote selection". Blood Cells, Molecules & Diseases ...
Heterozygotes are normal. Consanguinity is common. The failure of amino-acid transport was reported in 1960 from the increased ...
Amos W, Sawcer SJ, Feakes RW, Rubinsztein DC (August 1996). "Microsatellites show mutational bias and heterozygote instability ...
Most heterozygotes are asymptomatic. Symptoms do not occur unless FECH activity is less than 30% of normal, but such low levels ...
Heterozygotes (carriers) are asymptomatic. Sibs of a proband At conception, each sibling of an affected individual has a 25% ... Once an at-risk sibling is known to be unaffected, the risk of his/her being a carrier is 2/3. Heterozygotes (carriers) are ... Parents of a proband The parents of an affected individual are obligate heterozygotes and therefore carry one mutant allele. ... Offspring of a proband Offspring of a proband are obligate heterozygotes and will therefore carry one mutant allele. In ...
Woolf, L. I. "The heterozygote advantage in phenylketonuria." (Letter) Am. J. Hum. Genet. 38: 773-775, 1986. Media related to ...
... homozygote and also the heterozygote is normal (though heterozygote individuals will suffer periodic problems). The sickle-cell ... The heterozygote has a permanent advantage (a higher fitness) so long as malaria exists; and it has existed as a human parasite ... Because the heterozygote survives, so does the HgbS allele survive at a rate much higher than the mutation rate. The Duffy ... Now, assuming equal viability of the genotypes 1,209 heterozygotes would be expected, so the field results do not suggest any ...
Now, assuming equal viability of the genotypes 1,209 heterozygotes would be expected, so the field results do not suggest any ... This is sufficient to maintain the system despite the fact that in this case the heterozygote has slightly lower viability. ... and the heterozygote (medionigra). It was studied there by E. B. Ford, and later by P. M. Sheppard and their co-workers over ...
However, one study used ERG findings to diagnose all the homozygous Lp subjects with CSNB, while all heterozygotes and non-Lp ... A proposed gene, PATN-1, may be responsible for the most familiar expressions of white: heterozygotes possessing common-size " ... While both heterozygous and homozygous Lp horses possess the aforementioned characteristics, heterozygotes and homozygotes ... A heterozygote may eventually show conspicuous leopard spots. Base colors are overlain by various spotting patterns, which are ...
However, other studies are using the heterozygote mutant. The maize genome is 80% transposons so DDM1 function is quite ...
In addition, heterozygote mutants displayed premature hair follicle exogen. GRCh38: Ensembl release 89: ENSG00000037474 - ...
Unusual gene dosage effect in heterozygotes". Hum. Genet. 77 (2): 168-71. doi:10.1007/BF00272386. PMID 3308682. S2CID 19941299 ... 1999). "Dominant negative allele (N47D) in a compound heterozygote for a variant of 6-pyruvoyltetrahydropterin synthase ...
Certain combinations of alleles that can be obtained by crossing two inbred strains are advantageous in the heterozygote. The ... According to Crow, the demonstration of several cases of heterozygote advantage in Drosophila and other organisms first caused ... F1 hybrid Genetic admixture Heterozygote advantage George Harrison Shull (1948). "What Is "Heterosis"?". Genetics. 33 (5): 439- ... the effect of the alleles and the degree to which alleles are expressed in heterozygotes. Overdominance hypothesis. ...
Merle is actually a heterozygote of an incompletely dominant gene. If two such dogs are mated, on the average one quarter of ...
... mis-segregation from multivalents in interchange heterozygotes." Incidences of polysomy have been identified in many species of ...
Heterozygotes show locomotion defects with neuronal loss. Homozygotes are unable to feed and move and die within 24 hours of ...
Instead the phenotype is intermediate in heterozygotes. Thus you can tell that each allele is present in the heterozygote. ... Codominance refers to the allelic relationship that occurs when two alleles are both expressed in the heterozygote, and both ... Incomplete dominance is the condition in which neither allele dominates the other in one heterozygote. ...
Therefore, only heterozygotes are viable since these deleterious alleles are compensated for by the functioning allele on the ... In such systems, only the heterozygotes survive. Balanced lethal systems appear to pose a challenge to evolutionary theory, ... when natural selection favours heterozygotes, few homozygotes reproduce. This lack of reproduction leads to the accumulation of ...
A/at heterozygotes look like AW mice. Nonagouti a mice are almost completely black, with only a few yellow hairs around the ... Sienna yellow Asy heterozygotes are a dark yellow, while homozygotes are generally a clearer yellow. White-bellied agouti AW ...
Males heterozygotes displayed a shortened, upturned snout. SMC3 occurs in certain cell types as a secreted protein and post- ...
Unfortunately, the MHC-heterozygote advantage hypothesis has not been adequately tested. A non-MHC immune genes across species ... One is that there is selection for the maintenance of a highly diverse set of MHC genes if MHC heterozygotes are more resistant ... If this is the case, either through the heterozygote advantage hypothesis or the Red Queen hypothesis, then selection also ... The inbreeding avoidance hypothesis has less to do with host-parasite relationships than does the heterozygote advantage ...
I. Evidence for heterozygote advantage in a closed population of barley". Proc. Natl. Acad. Sci. U.S.A. 46 (10): 1371-77. ...
This heterozygote advantage would explain why the CF gene has not been eliminated from the gene pool. ... Why dangerous genes stick around: The heterozygote advantage Youd think that by now natural selection would have gotten rid of ... The most fit category of people in this population end up being the ones with HbS/Hb combination (heterozygote) because though ... There may yet be hundreds of heterozygote advantages waiting to be discovered - just one more piece fitted in the jigsaw puzzle ...
Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy.. Zhao, Rulian; Wang, ...
This study included 22 eyes of heterozygote GCD2 patients. The visual acuity and contrast sensitivity were measured before and ... Contrast Sensitivity Changes after Phototherapeutic Keratectomy in Heterozygote Granular Corneal Dystrophy Type 2. ...
Whether or not heterozygote advantage is sufficient to account for a high degree of polymorphism is controversial, however. ... We argue that existing models are misleading in that the fitness of heterozygotes is not related to the MHC alleles they harbor ... Heterozygote advantage on its own is insufficient to explain the high population diversity of the MHC. ... Using mathematical models we studied the degree of MHC polymorphism arising when heterozygote advantage is the only selection ...
Mutations in the genes encoding telomerase components can appear as familial idiopathic pulmonary fibrosis. Our findings support the idea that pathways leading to telomere shortening are involved in the pathogenesis of this disease.
GK07 is a compound heterozygote; the maternal allele has a novel G to T transversion at position 1136 causing Gly379 to Val ...
Cystic fibrosis heterozygote screening in 5,161 pregnant women. SO - American Journal of Human Genetics. 1996 Apr; 58(4): 823- ...
Carriers or heterozygotes are asymptomatic.. The estimated prevalence of autosomal dominant polycystic kidney disease is 1 case ...
Heterozygote , Humans , Infant (Source: Medline) Funded by. Wellcome Trust [091758, 077383, 090770, 084535]; UK Medical ...
Trimethylaminuria: susceptibility of heterozygotes. Lancet. 1999 Dec 18-25;354(9196):2164-5. doi: 10.1016/s0140-6736(05)77067-7 ...
heterozygote advantage; inbreeding; lifetime fitness; Seychelles warbler; telomere; trans-generational effects. Dates:. * ...
2n = 14, permanent translocation heterozygote; self-compatible, autogamous.. Common in open, disturbed areas; near sea level to ...
MHC heterozygote superiority. If MHC heterozygotes were superior to both homozygotes in resisting infectious agents, this would ... MHC heterozygotes would be superior over the course of multiple infections if resistance is generally dominant. We are testing ... The first test using Salmonella and Theilers virus did reveal MHC heterozygote superiority (McClelland et al., 2003, Infection ... Parasite-driven selection favors MHC genetic diversity through both heterozygote advantage and relentless pathogen adaptation ...
The R26R and Ai14 tdTomato alleles were used as heterozygotes. Embryonic age determinations were based on plug date. Tissues ...
Heterozygote. (-/-) Affected. Affected. Homozgous affected or homozygous mutant. Total CEA: 1290. *CEA (+/+): 421 (32.6%) ...
Health Risk for Heterozygotes. Heterozygotes are people who inherit two different versions of a particular gene. ADH1B, ADH1C ... Heterozygotes for ALDH2 (one fast allele and one slow allele) have:. - 30-50% reduction in ALDH enzyme activity. - Moderate ...
... possible compound heterozygote by mRNA analysis; same pt as GM01679; see GM01685 Lymphoid ... possible compound heterozygote by mRNA analysis; same pt as GM01679; see GM01685 Lymphoid. ...
Heterozygotes are as resistant as the resistant parent or nearly so. Rmcf is different from and independent of Fv1, a locus ...
Compound heterozygote for 2 different β0 variants. HPLC: no HbA present, HbF 95-100% ...
Heterozygotes show all three bands. The158-bp band in the heterozygous samples is caused by an undigested wild-type fragment. ...
... while in the H63D heterozygote cases, the male/female ratio was 7:16 and the heterozygote S65C male/female ratio was 6:3. Male ... in H63D heterozygote cases was 7:16 and in heterozygote S65C was 6:3. ... An interesting point was the male to female sex ratio; where all the heterozygote cases of C282Y mutation were males, a male: ... The genotype frequency by sex is also represented in Table 3. The male to female sex ratio in cases of heterozygote C282Y ...
Heterozygotes for alpha-spectrin defects produce sufficient normal alpha-spectrin to balance normal beta-spectrin production. ...
However, we did confirm no difference in POS phagocytic capability and microvilli density between CLN3 heterozygote carriers ... heterozygote family members, and unrelated healthy subjects with no known history of retinal disease, were reprogrammed to ... unaffected heterozygote family member, unrelated healthy subject) and 2 distinct CLN3 patients harboring the common 966 bp ... were masked in our study as we compared CLN3 disease hiPSC-RPE cells to control hiPSC-RPE cells constituting of heterozygote ...
If you have two of the brown alleles, the capital Bs, youre going to be brown, and if youre a heterozygote, youre still ... So as you can see here, there are several heterozygotes in this fairly small population. But if you just count the capital Bs ...
This potential problem is of concern when CF heterozygote carriers are identified with the IRT/DNA method. When CF heterozygote ... A potential benefit of IRT testing over DNA testing is that CF heterozygote carriers are not identified. * The use of IRT ... particularly tests of CF heterozygote carriers (37). Our results indicated that both screening methods yield high specificity. ... and identification of CF heterozygote carrier families for genetic counseling. We also studied the costs involved in diagnosing ...
Beta thalassemia minor; heterozygotes are usually asymptomatic due to sufficient Beta global • synthesis. Beta thalassemia ...
Littermate heterozygotes (Hnf4ac/+;Six2GFPcre) were used as controls. Although there was no apparent difference in kidney size ...
Title: Linkage analysis and residual heterozygotes derived near isogenic lines reveals a novel protein quantitative trait loci ... We analyzed 3,015 single F4:9 soybean plants to develop two residual heterozygotes derived near isogenic lines (RHD-NIL) ... Linkage analysis and residual heterozygotes derived near isogenic lines reveals a novel protein quantitative trait loci from a ...
  • The transferrin saturation level was high in compound heterozygote cases. (who.int)
  • People who have one mutation (heterozygotes) are at high risk of premature heart disease as early as their 30's and 40s. (cdc.gov)
  • Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy. (bvsalud.org)
  • If MHC heterozygotes were superior to both homozygotes in resisting infectious agents, this would contribute to MHC genetic diversity. (utah.edu)
  • Parasite-driven selection favors MHC genetic diversity through both heterozygote advantage and relentless pathogen adaptation to common host genotypes, leading to rare MHC allele advantage. (utah.edu)
  • An FGA heterozygote profile was observed using the PowerPlex™ 16 primers, and a single allele FGA profile was observed using Profiler Plus primers. (astm.org)
  • Whether or not heterozygote advantage is sufficient to account for a high degree of polymorphism is controversial, however. (archives-ouvertes.fr)
  • Heterozygotes for alpha-spectrin defects produce sufficient normal alpha-spectrin to balance normal beta-spectrin production. (medscape.com)
  • A classic example of heterozygote advantage in human beings is the sickle cell anaemia case. (thehindu.com)
  • Heterozygote advantage fails to explain the high degree of polymorphism of the MHC. (archives-ouvertes.fr)
  • Using mathematical models we studied the degree of MHC polymorphism arising when heterozygote advantage is the only selection pressure. (archives-ouvertes.fr)
  • Heterozygote advantage on its own is insufficient to explain the high population diversity of the MHC. (archives-ouvertes.fr)
  • Heterozygote advantages are particularly fascinating because they can explain why seemingly harmful mutations like those causing fatal diseases still exist in populations today. (thehindu.com)
  • This study included 22 eyes of heterozygote GCD2 patients. (jkos.org)
  • Cancer risk among RECQL4 heterozygotes. (cdc.gov)
  • Heterozygotes are people who inherit two different versions of a particular gene. (genebase.com)
  • The transferrin saturation level was high in compound heterozygote cases. (who.int)