HEPES: A dipolar ionic buffer.Buffers: A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer.Tromethamine: An organic amine proton acceptor. It is used in the synthesis of surface-active agents and pharmaceuticals; as an emulsifying agent for cosmetic creams and lotions, mineral oil and paraffin wax emulsions, as a biological buffer, and used as an alkalizer. (From Merck, 11th ed; Martindale, The Extra Pharmacopoeia, 30th ed, p1424)Amino Acids, Neutral: Amino acids with uncharged R groups or side chains.Bicarbonates: Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity.Hydrogen-Ion Concentration: The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid: An inhibitor of anion conductance including band 3-mediated anion transport.Fraxinus: A plant genus of the family OLEACEAE. Members contain secoiridoid glucosides.Lichens: Any of a group of plants formed by a symbiotic combination of a fungus with an algae or CYANOBACTERIA, and sometimes both. The fungal component makes up the bulk of the lichen and forms the basis for its name.GermanyPhysician Assistants: Health professionals who practice medicine as members of a team with their supervising physicians. They deliver a broad range of medical and surgical services to diverse populations in rural and urban settings. Duties may include physical exams, diagnosis and treatment of disease, interpretation of tests, assist in surgery, and prescribe medications. (from http://www.aapa.orglabout-pas accessed 2114/2011)Salts: Substances produced from the reaction between acids and bases; compounds consisting of a metal (positive) and nonmetal (negative) radical. (Grant & Hackh's Chemical Dictionary, 5th ed)Sodium: A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.Phenolsulfonphthalein: Red dye, pH indicator, and diagnostic aid for determination of renal function. It is used also for studies of the gastrointestinal and other systems.Phenolphthaleins: A family of 3,3-bis(p-hydroxyphenyl)phthalides. They are used as CATHARTICS, indicators, and COLORING AGENTS.Phenol: An antiseptic and disinfectant aromatic alcohol.Culture Media: Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Cricetinae: A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.Carbonic Anhydrase I: A cytosolic carbonic anhydrase isoenzyme primarily expressed in ERYTHROCYTES, vascular endothelial cells, and the gastrointestinal mucosa. EC 4.2.1.-Catalogs, LibraryDNA Damage: Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.Catalogs as Topic: Ordered compilations of item descriptions and sufficient information to afford access to them.Prostaglandins F, Synthetic: Analogs or derivatives of prostaglandins F that do not occur naturally in the body. They do not include the product of the chemical synthesis of hormonal PGF.Physical Fitness: The ability to carry out daily tasks and perform physical activities in a highly functional state, often as a result of physical conditioning.Organic Chemicals: A broad class of substances containing carbon and its derivatives. Many of these chemicals will frequently contain hydrogen with or without oxygen, nitrogen, sulfur, phosphorus, and other elements. They exist in either carbon chain or carbon ring form.Nanoparticles: Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging.Multiple Myeloma: A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY.Publications: Copies of a work or document distributed to the public by sale, rental, lease, or lending. (From ALA Glossary of Library and Information Science, 1983, p181)Glutamine: A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.Click Chemistry: Organic chemistry methodology that mimics the modular nature of various biosynthetic processes. It uses highly reliable and selective reactions designed to "click" i.e., rapidly join small modular units together in high yield, without offensive byproducts. In combination with COMBINATORIAL CHEMISTRY TECHNIQUES, it is used for the synthesis of new compounds and combinatorial libraries.Periodicals as Topic: A publication issued at stated, more or less regular, intervals.Bibliometrics: The use of statistical methods in the analysis of a body of literature to reveal the historical development of subject fields and patterns of authorship, publication, and use. Formerly called statistical bibliography. (from The ALA Glossary of Library and Information Science, 1983)Journal Impact Factor: A quantitative measure of the frequency on average with which articles in a journal have been cited in a given period of time.Containment of Biohazards: Provision of physical and biological barriers to the dissemination of potentially hazardous biologically active agents (bacteria, viruses, recombinant DNA, etc.). Physical containment involves the use of special equipment, facilities, and procedures to prevent the escape of the agent. Biological containment includes use of immune personnel and the selection of agents and hosts that will minimize the risk should the agent escape the containment facility.Surgery, Veterinary: A board-certified specialty of VETERINARY MEDICINE, requiring at least four years of special education, training, and practice of veterinary surgery after graduation from veterinary school. In the written, oral, and practical examinations candidates may choose either large or small animal surgery. (From AVMA Directory, 43d ed, p278)Autonomic Pathways: Nerves and plexuses of the autonomic nervous system. The central nervous system structures which regulate the autonomic nervous system are not included.Sinoatrial Node: The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE).Search Engine: Software used to locate data or information stored in machine-readable form locally or at a distance such as an INTERNET site.Biofuels: Hydrocarbon-rich byproducts from the non-fossilized BIOMASS that are combusted to generate energy as opposed to fossilized hydrocarbon deposits (FOSSIL FUELS).Molecular Biology: A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules.Terminology as Topic: The terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area.Nuclear Magnetic Resonance, Biomolecular: NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope.Protons: Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion.Proton Pumps: Integral membrane proteins that transport protons across a membrane. This transport can be linked to the hydrolysis of ADENOSINE TRIPHOSPHATE. What is referred to as proton pump inhibitors frequently is about POTASSIUM HYDROGEN ATPASE.

Transcriptional regulation of the esp genes of enterohemorrhagic Escherichia coli. (1/141)

We have determined that the genes encoding the secreted proteins EspA, EspD, and EspB of enterohemorrhagic Escherichia coli (EHEC) are organized in a single operon. The esp operon is controlled by a promoter located 94 bp upstream from the ATG start codon of the espA gene. The promoter is activated in the early logarithmic growth phase, upon bacterial contact with eukaryotic cells and in response to Ca2+, Mn2+, and HEPES. Transcription of the esp operon seems to be switched off in tightly attached bacteria. The activation process is regulated by osmolarity (induction at high osmolarities), modulated by temperature, and influenced by the degree of DNA supercoiling. Transcription is sigmaS dependent, and the H-NS protein contributes to its fine tuning. Identification of the factors involved in activation of the esp operon and the signals responsible for modulation may facilitate understanding of the underlying molecular events leading to sequential expression of virulence factors during natural infections caused by EHEC.  (+info)

Generation of intracellular pH gradients in single cardiac myocytes with a microperfusion system. (2/141)

This study describes the use of a microperfusion system to create rapid, large regional changes in intracellular pH (pH(i)) within single ventricular myocytes. The spatial distribution of pH(i) in single myocytes was measured with seminaphthorhodafluor-1 fluorescence using confocal imaging. Changes in pH(i) were induced by local external application of NH(4)Cl, CO(2), or sodium propionate. Local application was achieved by simultaneously directing two parallel square microstreams, each 275 microm wide, over a single myocyte oriented perpendicular to the direction of flow. One stream contained the control solution, and the other contained a weak acid or base. End-to-end, stable pH(i) gradients as large as 1 pH unit were readily created with this technique. This result indicates that pH within a single cardiac cell may not always be spatially uniform, particularly when weak acid or base gradients are present, which can occur, for example, in regional myocardial ischemia. The microperfusion method should be useful for studying the effects of localized acidosis on myocyte function, estimating intracellular ion diffusion rates, and, possibly, inducing regional changes in other important intracellular ions.  (+info)

Augmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway. (3/141)

Previous studies have suggested that voltage-gated Ca(2+) influx in glomus cells plays a critical role in sensory transduction at the carotid body chemoreceptors. The purpose of the present study was to determine the effects of hypoxia on the Ca(2+) current in glomus cells and to elucidate the underlying mechanism(s). Experiments were performed on freshly dissociated glomus cells from rabbit carotid bodies. Ca(2+) current was monitored using the whole cell configuration of the patch-clamp technique, with Ba(2+) as the charge carrier. Hypoxia (pO(2) = 40 mmHg) augmented the Ca(2+) current by 24 +/- 3% (n = 42, at 0 mV) in a voltage-independent manner. This effect was seen in a CO(2)/HCO(3)(-)-, but not in a HEPES-buffered extracellular solution at pH 7.4 (n = 6). When the pH of a HEPES-buffered extracellular solution was lowered from 7.4 to 7. 0, hypoxia augmented the Ca(2+) current by 20 +/- 5% (n = 4, at 0 mV). Nisoldipine, an L-type Ca(2+) channel blocker (2 microM, n = 6), prevented, whereas, omega-conotoxin MVIIC (2 microM, n = 6), an inhibitor of N and P/Q type Ca(2+) channels, did not prevent augmentation of the Ca(2+) current by hypoxia, implying that low oxygen affects L-type Ca(2+) channels in glomus cells. Protein kinase C (PKC) inhibitors, staurosporine (100 nM, n = 6) and bisindolylmaleimide (2 microM, n = 8, at 0 mV), prevented, whereas, a protein kinase A inhibitor (4 nM PKAi, n = 10) did not prevent the hypoxia-induced increase of the Ca(2+) current. Phorbol 12-myristate 13-acetate (PMA, 100 nM), a PKC activator, augmented the Ca(2+) current by 20 +/- 3% (n = 8, at 0 mV). In glomus cells treated with PMA overnight (100 nM), hypoxia did not augment the Ca(2+) current (-3 + 4%, n = 5, at 0 mV). Immunocytochemical analysis revealed PKCdelta-like immunoreactivity in the cytosol of the glomus cells. Following hypoxia (6% O(2) for 5 min), PKCdelta-like immunoreactivity translocated to the plasma membrane in 87 +/- 3% of the cells, indicating PKC activation. These results demonstrate that hypoxia augments Ca(2+) current through L-type Ca(2+) channels via a PKC-sensitive mechanism.  (+info)

Pore block versus intrinsic gating in the mechanism of inward rectification in strongly rectifying IRK1 channels. (4/141)

The IRK1 channel is inhibited by intracellular cations such as Mg(2+) and polyamines in a voltage-dependent manner, which renders its I-V curve strongly inwardly rectifying. However, even in excised patches exhaustively perfused with a commonly used artificial intracellular solution nominally free of Mg(2+) and polyamines, the macroscopic I-V curve of the channels displays modest rectification. This observation forms the basis of a hypothesis, alternative to the pore-blocking hypothesis, that inward rectification reflects the enhancement of intrinsic channel gating by intracellular cations. We find, however, that residual rectification is caused primarily by the commonly used pH buffer HEPES and/or some accompanying impurity. Therefore, inward rectification in the strong rectifier IRK1, as in the weak rectifier ROMK1, can be accounted for by voltage-dependent block of its ion conduction pore by intracellular cations.  (+info)

Contributions of protein disulfide isomerase domains to its chaperone activity. (5/141)

Protein disulfide isomerase (PDI), a member of the thioredoxin (Trx) superfamily, consists of five consecutive domains, a-b-b'-a'-c. Domain combinations, AB, A'C, B'A'C and AB-C, and hybrids of PDI domains with Trx, Trx-C and Trx-B'A'C, have been constructed and expressed in Escherichia coli to examine the contributions of PDI domains to its enzyme and chaperone activities. All the combination and hybrid products are considerably less active than intact PDI in their enzyme activities. Recombinant products containing C, at low concentrations, inhibit the reactivation of lysozyme in HEPES buffer, while those without C do not. Only the intact PDI molecule and the hybrid molecule, Trx-B'A'C, but to a much lower level, show general chaperone activity in assisting the reactivation of denatured D-glyceraldehyde-3-phosphate dehydrogenase. It is suggested that all domains of PDI contribute to the binding of target protein for its chaperone activity.  (+info)

Mechanisms of endothelial cell swelling from lactacidosis studied in vitro. (6/141)

One of the early sequelae of ischemia is an increase of circulating lactic acid that occurs in response to anaerobic metabolism. The purpose of the present study was to investigate whether lactic acidosis can induce endothelial swelling in vitro under closely controlled extracellular conditions. Cell volume of suspended cultured bovine aortic endothelial cells was measured by use of an advanced Coulter technique employing the "pulse area analysis" signal-processing technique (CASY1). The isosmotic reduction of pH from 7.4 to 6.8 had no effect on cell volume. Lowering of pH to 6.6, 6.4, or 6.0, however, led to significant, pH-dependent increases of cell volume. Swelling was more pronounced in bicarbonate-buffered media than in HEPES buffer. Specific inhibition of Na(+)/H(+) exchange by ethylisopropylamiloride completely prevented swelling in HEPES-buffered media. Pretreatment with ouabain to partially depolarize the cells did not affect the degree of acidosis-induced swelling. In bicarbonate-buffered media, the inhibition of transmembrane HCO(3)(-) transport by DIDS reduced swelling to a level comparable with that seen in the absence of bicarbonate ions. Lactacidosis-induced endothelial swelling, therefore, is a result of intracellular pH regulatory mechanisms, namely, Na(+)/H(+) exchange and bicarbonate-transporting carriers.  (+info)

Regulation of the epithelial Na(+) channel by extracellular acidification. (7/141)

The effect of extracellular acidification was tested on the native epithelial Na(+) channel (ENaC) in A6 epithelia and on the cloned ENaC expressed in Xenopus oocytes. Channel activity was determined utilizing blocker-induced fluctuation analysis in A6 epithelia and dual electrode voltage clamp in oocytes. In A6 cells, a decrease of extracellular pH (pH(o)) from 7.4 to 6.4 caused a slow stimulation of the amiloride-sensitive short-circuit current (I(Na)) by 68.4 +/- 11% (n = 9) at 60 min. This increase of I(Na) was attributed to an increase of open channel and total channel (N(T)) densities. Similar changes were observed with pH(o) 5.4. The effects of pH(o) were blocked by buffering intracellular Ca(2+) with 5 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. In oocytes, pH(o) 6.4 elicited a small transient increase of the slope conductance of the cloned ENaC (11.4 +/- 2.2% at 2 min) followed by a decrease to 83.7 +/- 11.7% of control at 60 min (n = 6). Thus small decreases of pH(o) stimulate the native ENaC by increasing N(T) but do not appreciably affect ENaC expressed in Xenopus oocytes. These effects are distinct from those observed with decreasing intracellular pH with permeant buffers that are known to inhibit ENaC.  (+info)

Binding of dystrophin's tandem calponin homology domain to F-actin is modulated by actin's structure. (8/141)

Dystrophin has been shown to be associated in cells with actin bundles. Dys-246, an N-terminal recombinant protein encoding the first 246 residues of dystrophin, includes two calponin-homology (CH) domains, and is similar to a large class of F-actin cross-linking proteins including alpha-actinin, fimbrin, and spectrin. It has been shown that expression or microinjection of amino-terminal fragments of dystrophin or the closely related utrophin resulted in the localization of these protein domains to actin bundles. However, in vitro studies have failed to detect any bundling of actin by either intact dystrophin or Dys-246. We show here that the structure of F-actin can be modulated so that there are two modes of Dys-246 binding, from bundling actin filaments to only binding to single filaments. The changes in F-actin structure that allow Dys-246 to bundle filaments are induced by covalent modification of Cys-374, proteolytic cleavage of F-actin's C-terminus, mutation of yeast actin's N-terminus, and different buffers. The present results suggest that F-actin's structural state can have a large influence on the nature of actin's interaction with other proteins, and these different states need to be considered when conducting in vitro assays.  (+info)

  • HEPES (N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid) is a general purpose zwitterionic organic chemical buffering agent which does not bind magnesium, calcium, manganese(II) or copper (II) ions. (mpbio.com)
  • 1) Hegetschweiler and Saltman, Interaction of copper(II) with N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES), Inorg. (p212121.com)
  • In this work, three-dimensional branched gold nanocrystals were produced at high yield by reacting an aqueous solution of chloroauric acid with a Good's buffer, HEPES, at room temperature. (p212121.com)
  • A HEPES that is ethanesulfonic acid in which one of the methyl hydrogens is replaced by a 4-(2-hydroxyethyl)piperazin-1-yl group. (ebi.ac.uk)
  • Studies have indicated that 20 mM HEPES is the most satisfactory concentration of the buffer when both Hanks' and Earle's solutions are used. (mpbio.com)
  • Maximum activation was reached at different K+ concentrations depending on the buffering species: in TRIS/HCl buffer, 100 mM K+ was the most effective, whereas in HEPES/KOH buffer, maximum activity was reached at about 200 mM K+ concentration. (ctskinhibito.com)
  • A simple mixing table for preparing 0.05 M HEPES/NaOH has been published. (mpbio.com)
  • HEPES is a good buffering choice for many cell culture systems because it is membrane impermeable, has limited effect on biochemical reactions, is chemically and enzymatically stable, and has very low visible and UV light absorbance. (mpbio.com)
  • This makes HEPES RPMI 25 milli-molar media with or without L-glutamine a more effective buffering agent for maintaining enzyme structure and function at low temperatures. (gentaur.com)
  • HEPES is the recommended buffer for the glutamate binding assay because it prevents binding to non-receptor materials. (mpbio.com)
  • HEPES has been evaluated and shown to be suitable for use with Ampholines in generating pH gradients less than 1 pH unit wide for isolectric focusing applications. (mpbio.com)
  • HEPES is like water in that its dissociation decreases as the temperature decreases. (wikipedia.org)
  • Furthermore, evaluation of HEPES contents using both TLC assays by 28 subjects supported the conclusion that the newly developed TLC method is clearly favorable. (ejnmmigateway.net)