Protein factors that promote the exchange of GTP for GDP bound to GTP-BINDING PROTEINS.
Signaling proteins which function as master molecular switches by activating Rho GTPases through conversion of guanine nucleotides. Rho GTPases in turn control many aspects of cell behavior through the regulation of multiple downstream signal transduction pathways.
A family of GUANINE NUCLEOTIDE EXCHANGE FACTORS that are specific for RAS PROTEINS.
Guanine nucleotides are cyclic or linear molecules that consist of a guanine base, a pentose sugar (ribose in the cyclic form, deoxyribose in the linear form), and one or more phosphate groups, playing crucial roles in signal transduction, protein synthesis, and regulation of enzymatic activities.
Proto-oncogene proteins that are guanine nucleotide exchange factors for RHO GTPASES. They also function as signal transducing adaptor proteins.
A guanine nucleotide containing two phosphate groups esterified to the sugar moiety.
A guanine nucleotide exchange factor that is expressed primarily in neuronal tissue and may be specific for the Ha-ras homolog of the RAS PROTEINS.
A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS. It is associated with a diverse array of cellular functions including cytoskeletal changes, filopodia formation and transport through the GOLGI APPARATUS. This enzyme was formerly listed as EC 3.6.1.47.
Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety.
A rac GTP-binding protein involved in regulating actin filaments at the plasma membrane. It controls the development of filopodia and lamellipodia in cells and thereby influences cellular motility and adhesion. It is also involved in activation of NADPH OXIDASE. This enzyme was formerly listed as EC 3.6.1.47.
A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47.
MONOMERIC GTP-BINDING PROTEINS that were initially recognized as allosteric activators of the MONO(ADP-RIBOSE) TRANSFERASE of the CHOLERA TOXIN catalytic subunit. They are involved in vesicle trafficking and activation of PHOSPHOLIPASE D. This enzyme was formerly listed as EC 3.6.1.47
A sub-family of RHO GTP-BINDING PROTEINS that is involved in regulating the organization of cytoskeletal filaments. This enzyme was formerly listed as EC 3.6.1.47.
A genetically related subfamily of RAP GTP-BINDING PROTEINS that share homology with RAS PROTEINS. They bind to Ras effectors but do not activate them, therefore they may antagonize the effects of RAS PROTEINS. This enzyme was formerly listed as EC 3.6.1.47.
A RHO GTP-BINDING PROTEIN involved in regulating signal transduction pathways that control assembly of focal adhesions and actin stress fibers. This enzyme was formerly listed as EC 3.6.1.47.
A 145-kDa guanine nucleotide exchange factor that is specific for rap1 and ras GTP-BINDING PROTEINS. It associates with SH3 domains of the crk family of signaling proteins.
Proteins that activate the GTPase of specific GTP-BINDING PROTEINS.
A mammalian homolog of the DROSOPHILA SON OF SEVENLESS PROTEIN. It is a guanine nucleotide exchange factor for RAS PROTEINS.
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.
ADP-RIBOSYLATION FACTOR 1 is involved in regulating intracellular transport by modulating the interaction of coat proteins with organelle membranes in the early secretory pathway. It is a component of COAT PROTEIN COMPLEX I. This enzyme was formerly listed as EC 3.6.1.47.
Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A guanine nucleotide exchange factor that stimulates the dissociation of GDP from RAL GTP-BINDING PROTEINS. It also has GDP exchange activity towards other MONOMERIC GTP-BINDING PROTEINS.
A class of RAS GUANINE NUCLEOTIDE EXCHANGE FACTORS that are genetically related to the Son of Sevenless gene from DROSOPHILA. Sevenless refers to genetic mutations in DROSOPHILA that cause loss of the R7 photoreceptor which is required to see UV light.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A guanine nucleotide exchange factor that acts to restore EUKARYOTIC INITIATION FACTOR-2 to its GTP bound form.
A large family of MONOMERIC GTP-BINDING PROTEINS that play a key role in cellular secretory and endocytic pathways. EC 3.6.1.-.
Small, monomeric GTP-binding proteins encoded by ras genes (GENES, RAS). The protooncogene-derived protein, PROTO-ONCOGENE PROTEIN P21(RAS), plays a role in normal cellular growth, differentiation and development. The oncogene-derived protein (ONCOGENE PROTEIN P21(RAS)) can play a role in aberrant cellular regulation during neoplastic cell transformation (CELL TRANSFORMATION, NEOPLASTIC). This enzyme was formerly listed as EC 3.6.1.47.
Guanine is a purine nucleobase, one of the four nucleobases in the nucleic acid of DNA and RNA, involved in forming hydrogen bonds between complementary base pairs in double-stranded DNA molecules.
A family of ubiquitously expressed MONOMERIC GTP-BINDING PROTEINS that are involved in intracellular signal transduction. This enzyme was formerly listed as EC 3.6.1.47.
A family of MONOMERIC GTP-BINDING PROTEINS that are related to RAS PROTEINS.This enzyme was formerly listed as EC 3.6.1.47.
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Protein factors that inhibit the dissociation of GDP from GTP-BINDING PROTEINS.
The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed)
A genetically related subfamily of RAB GTP-BINDING PROTEINS involved in transport from the cell membrane to early endosomes. This enzyme was formerly listed as EC 3.6.1.47.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A ubiquitously expressed family of heterotrimeric GTP-binding protein alpha subunits that signal through interactions with a variety of second messengers as GTPASE-ACTIVATING PROTEINS; GUANINE NUCLEOTIDE EXCHANGE FACTORS; and HEAT SHOCK PROTEINS. The G12-G13 part of the name is also spelled G12/G13.
A protein complex comprised of COATOMER PROTEIN and ADP RIBOSYLATION FACTOR 1. It is involved in transport of vesicles between the ENDOPLASMIC RETICULUM and the GOLGI APPARATUS.
A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes
A class of monomeric, low molecular weight (20-25 kDa) GTP-binding proteins that regulate a variety of intracellular processes. The GTP bound form of the protein is active and limited by its inherent GTPase activity, which is controlled by an array of GTPase activators, GDP dissociation inhibitors, and guanine nucleotide exchange factors. This enzyme was formerly listed as EC 3.6.1.47
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Established cell cultures that have the potential to propagate indefinitely.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes.
A family of serine-threonine kinases that bind to and are activated by MONOMERIC GTP-BINDING PROTEINS such as RAC GTP-BINDING PROTEINS and CDC42 GTP-BINDING PROTEIN. They are intracellular signaling kinases that play a role the regulation of cytoskeletal organization.
Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
Eukaryotic initiation factor of protein synthesis. In higher eukaryotes the factor consists of three subunits: alpha, beta, and gamma. As initiation proceeds, eIF-2 forms a ternary complex with Met-tRNAi and GTP.
A monomeric GTP-binding protein involved in nucleocytoplasmic transport of proteins into the nucleus and RNA into the cytoplasm. This enzyme was formerly listed as EC 3.6.1.47.
A group of eukaryotic high-molecular mass heat-shock proteins that represent a subfamily of HSP70 HEAT-SHOCK PROTEINS. Hsp110 proteins prevent protein aggregation and can maintain denatured proteins in folding-competent states.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
Cellular proteins encoded by the H-ras, K-ras and N-ras genes. The proteins have GTPase activity and are involved in signal transduction as monomeric GTP-binding proteins. Elevated levels of p21 c-ras have been associated with neoplasia. This enzyme was formerly listed as EC 3.6.1.47.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.
A genetically related subfamily of RAB GTP-BINDING PROTEINS involved in vesicle transport between the ENDOPLASMIC RETICULUM and the GOLGI APPARATUS and through early Golgi compartments. This enzyme was formerly listed as EC 3.6.1.47.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
A fungal metabolite which is a macrocyclic lactone exhibiting a wide range of antibiotic activity.
A continuous cell line of high contact-inhibition established from NIH Swiss mouse embryo cultures. The cells are useful for DNA transfection and transformation studies. (From ATCC [Internet]. Virginia: American Type Culture Collection; c2002 [cited 2002 Sept 26]. Available from http://www.atcc.org/)
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A subcategory of guanine nucleotide dissociation inhibitors that are specific for RHO GTP-BINDING PROTEINS.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Transport proteins that carry specific substances in the blood or across cell membranes.
The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm.
Proteins coded by oncogenes. They include proteins resulting from the fusion of an oncogene and another gene (ONCOGENE PROTEINS, FUSION).
Regions of AMINO ACID SEQUENCE similarity in the SRC-FAMILY TYROSINE KINASES that fold into specific functional tertiary structures. The SH1 domain is a CATALYTIC DOMAIN. SH2 and SH3 domains are protein interaction domains. SH2 usually binds PHOSPHOTYROSINE-containing proteins and SH3 interacts with CYTOSKELETAL PROTEINS.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
A structurally-diverse family of intracellular-signaling adaptor proteins that selectively tether specific protein kinase A subtypes to distinct subcellular sites. They play a role in focusing the PROTEIN KINASE A activity toward relevant substrates. Over fifty members of this family exist, most of which bind specifically to regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASE TYPE II such as CAMP PROTEIN KINASE RIIALPHA or CAMP PROTEIN KINASE RIIBETA.
The rate dynamics in chemical or physical systems.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Bundles of actin filaments (ACTIN CYTOSKELETON) and myosin-II that span across the cell attaching to the cell membrane at FOCAL ADHESIONS and to the network of INTERMEDIATE FILAMENTS that surrounds the nucleus.
Proteins found in any species of fungus.
A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS from SACCHAROMYCES CEREVISIAE. It is involved in morphological events related to the cell cycle. This enzyme was formerly listed as EC 3.6.1.47.
A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990)
A signal transducing adaptor protein that links extracellular signals to the MAP KINASE SIGNALING SYSTEM. Grb2 associates with activated EPIDERMAL GROWTH FACTOR RECEPTOR and PLATELET-DERIVED GROWTH FACTOR RECEPTORS via its SH2 DOMAIN. It also binds to and translocates the SON OF SEVENLESS PROTEINS through its SH3 DOMAINS to activate PROTO-ONCOGENE PROTEIN P21(RAS).
Proteins prepared by recombinant DNA technology.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
PROTEINS that specifically activate the GTP-phosphohydrolase activity of RAS PROTEINS.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
The GTPase-containing subunits of heterotrimeric GTP-binding proteins. When dissociated from the heterotrimeric complex these subunits interact with a variety of second messenger systems. Hydrolysis of GTP by the inherent GTPase activity of the subunit causes it to revert to its inactive (heterotrimeric) form. The GTP-Binding protein alpha subunits are grouped into families according to the type of action they have on second messenger systems.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
A broad category of proteins involved in the formation, transport and dissolution of TRANSPORT VESICLES. They play a role in the intracellular transport of molecules contained within membrane vesicles. Vesicular transport proteins are distinguished from MEMBRANE TRANSPORT PROTEINS, which move molecules across membranes, by the mode in which the molecules are transported.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A GTP-BINDING PROTEIN involved in regulating a signal transduction pathway that controls assembly of focal adhesions and actin stress fibers. This enzyme was formerly listed as EC 3.6.1.47.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
GTP-BINDING PROTEINS that contain three non-identical subunits. They are found associated with members of the seven transmembrane domain superfamily of G-PROTEIN-COUPLED RECEPTORS. Upon activation the GTP-BINDING PROTEIN ALPHA SUBUNIT of the complex dissociates leaving a dimer of a GTP-BINDING PROTEIN BETA SUBUNIT bound to a GTP-BINDING PROTEIN GAMMA SUBUNIT.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
Signal transducing adaptor proteins that contain SRC HOMOLOGY DOMAINS and play a role in CYTOSKELETON reorganization. c-crk protein is closely related to ONCOGENE PROTEIN V-CRK and includes several alternatively spliced isoforms.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
A DNA sequence that is found in the promoter region of many growth-related genes. The regulatory transcription factor SERUM RESPONSE FACTOR binds to and regulates the activity of genes containing this element.
A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite.
A dynamic actin-rich extension of the surface of an animal cell used for locomotion or prehension of food.
Peptide elongation factor 1 is a multisubunit protein that is responsible for the GTP-dependent binding of aminoacyl-tRNAs to eukaryotic ribosomes. The alpha subunit (EF-1alpha) binds aminoacyl-tRNA and transfers it to the ribosome in a process linked to GTP hydrolysis. The beta and delta subunits (EF-1beta, EF-1delta) are involved in exchanging GDP for GTP. The gamma subunit (EF-1gamma) is a structural component.
A guanine nucleotide exchange factor from DROSOPHILA. Sevenless refers to genetic mutations in DROSOPHILA that cause loss of the R7 photoreceptor which is required to see UV light.
A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5.
Phosphatidylinositols in which one or more alcohol group of the inositol has been substituted with a phosphate group.
The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
A family of heterotrimeric GTP-binding protein alpha subunits that were originally identified by their ability to inhibit ADENYLYL CYCLASES. Members of this family can couple to beta and gamma G-protein subunits that activate POTASSIUM CHANNELS. The Gi-Go part of the name is also spelled Gi/Go.
Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
A class of proteins involved in the transport of molecules via TRANSPORT VESICLES. They perform functions such as binding to the cell membrane, capturing cargo molecules and promoting the assembly of CLATHRIN. The majority of adaptor proteins exist as multi-subunit complexes, however monomeric varieties have also been found.
The process by which the CYTOPLASM of a cell is divided.
Transforming protein encoded by ras oncogenes. Point mutations in the cellular ras gene (c-ras) can also result in a mutant p21 protein that can transform mammalian cells. Oncogene protein p21(ras) has been directly implicated in human neoplasms, perhaps accounting for as much as 15-20% of all human tumors. This enzyme was formerly listed as EC 3.6.1.47.
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Specialized structures of the cell that extend the cell membrane and project out from the cell surface.
An eph family receptor found exclusively in BRAIN. EphA8 receptors may play a role in the axonal guidance of a subset of tectal commissural NEURONS.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Retroviral proteins that have the ability to transform cells. They can induce sarcomas, leukemias, lymphomas, and mammary carcinomas. Not all retroviral proteins are oncogenic.
Adherence of cells to surfaces or to other cells.
A group of intracellular-signaling serine threonine kinases that bind to RHO GTP-BINDING PROTEINS. They were originally found to mediate the effects of rhoA GTP-BINDING PROTEIN on the formation of STRESS FIBERS and FOCAL ADHESIONS. Rho-associated kinases have specificity for a variety of substrates including MYOSIN-LIGHT-CHAIN PHOSPHATASE and LIM KINASES.
A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
An abundantly-expressed rho GDP-dissociation inhibitor subtype that regulates a broad variety of RHO GTPASES.
A network of membrane compartments, located at the cytoplasmic side of the GOLGI APPARATUS, where proteins and lipids are sorted for transport to various locations in the cell or cell membrane.
A post-translational modification of proteins by the attachment of an isoprenoid to the C-terminal cysteine residue. The isoprenoids used, farnesyl diphosphate or geranylgeranyl diphosphate, are derived from the same biochemical pathway that produces cholesterol.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
An anchoring junction of the cell to a non-cellular substrate. It is composed of a specialized area of the plasma membrane where bundles of the ACTIN CYTOSKELETON terminate and attach to the transmembrane linkers, INTEGRINS, which in turn attach through their extracellular domains to EXTRACELLULAR MATRIX PROTEINS.
A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.
Nucleotides in which the base moiety is substituted with one or more sulfur atoms.
Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.
A signal transducing adaptor protein that is encoded by the crk ONCOGENE from TYPE C AVIAN RETROVIRUSES. It contains SRC HOMOLOGY DOMAINS and is closely related to its cellular homolog, PROTO-ONCOGENE PROTEIN C-CRK.
Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis.
Macromolecular complexes formed from the association of defined protein subunits.
Elements of limited time intervals, contributing to particular results or situations.
The quality of surface form or outline of CELLS.
Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell.
A family of heterotrimeric GTP-binding protein alpha subunits that activate TYPE C PHOSPHOLIPASES dependent signaling pathways. The Gq-G11 part of the name is also spelled Gq/G11.
An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC 4.6.1.1.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
An ephrin that was originally identified as the product of an early response gene induced by TUMOR NECROSIS FACTORS. It is linked to the CELL MEMBRANE via a GLYCOINOSITOL PHOSPHOLIPID MEMBRANE ANCHOR and binds EPHA2 RECEPTOR with high affinity. During embryogenesis high levels of ephrin-A1 are expressed in LUNG; KIDNEY; SALIVARY GLANDS; and INTESTINE.
In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell.
Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING.
Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
A CELL LINE derived from human T-CELL LEUKEMIA and used to determine the mechanism of differential susceptibility to anti-cancer drugs and radiation.
Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.
One of the virulence factors produced by BORDETELLA PERTUSSIS. It is a multimeric protein composed of five subunits S1 - S5. S1 contains mono ADPribose transferase activity.
Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION.
A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The process of cleaving a chemical compound by the addition of a molecule of water.
A transfer RNA which is specific for carrying methionine to sites on the ribosomes. During initiation of protein synthesis, tRNA(f)Met in prokaryotic cells and tRNA(i)Met in eukaryotic cells binds to the start codon (CODON, INITIATOR).
Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell.
A class of MOLECULAR CHAPERONES found in both prokaryotes and in several compartments of eukaryotic cells. These proteins can interact with polypeptides during a variety of assembly processes in such a way as to prevent the formation of nonfunctional structures.
A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.
A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis.
The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.
Bulbous enlargement of the growing tip of nerve axons and dendrites. They are crucial to neuronal development because of their pathfinding ability and their role in synaptogenesis.
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.
Protein interaction domains of about 70-90 amino acid residues, named after a common structure found in PSD-95, Discs Large, and Zona Occludens 1 proteins. PDZ domains are involved in the recruitment and interaction of proteins, and aid the formation of protein scaffolds and signaling networks. This is achieved by sequence-specific binding between a PDZ domain in one protein and a PDZ motif in another protein.
A type C phospholipase with specificity towards PHOSPHATIDYLINOSITOLS that contain INOSITOL 1,4,5-TRISPHOSPHATE. Many of the enzymes listed under this classification are involved in intracellular signaling.
A superfamily of PROTEIN-SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES).
A PROTEIN-TYROSINE KINASE family that was originally identified by homology to the Rous sarcoma virus ONCOGENE PROTEIN PP60(V-SRC). They interact with a variety of cell-surface receptors and participate in intracellular signal transduction pathways. Oncogenic forms of src-family kinases can occur through altered regulation or expression of the endogenous protein and by virally encoded src (v-src) genes.
Deletion of sequences of nucleic acids from the genetic material of an individual.
Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
A family of heterotrimeric GTP-binding protein alpha subunits that activate ADENYLYL CYCLASES.
Methods for determining interaction between PROTEINS.
The subfamily of myosin proteins that are commonly found in muscle fibers. Myosin II is also involved a diverse array of cellular functions including cell division, transport within the GOLGI APPARATUS, and maintaining MICROVILLI structure.
The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors.
A ubiquitously expressed raf kinase subclass that plays an important role in SIGNAL TRANSDUCTION. The c-raf Kinases are MAP kinase kinase kinases that have specificity for MAP KINASE KINASE 1 and MAP KINASE KINASE 2.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Protein factors uniquely required during the elongation phase of protein synthesis.

Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth. (1/3221)

Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.  (+info)

A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. (2/3221)

Small GTP-binding proteins of the Rho family play a critical role in signal transduction. However, there is still very limited information on how they are activated by cell surface receptors. Here, we used a consensus sequence for Dbl domains of Rho guanine nucleotide exchange factors (GEFs) to search DNA data bases, and identified a novel human GEF for Rho-related GTPases harboring structural features indicative of its possible regulatory mechanism(s). This protein contained a tandem DH/PH domain closely related to those of Rho-specific GEFs, a PDZ domain, a proline-rich domain, and an area of homology to Lsc, p115-RhoGEF, and a Drosophila RhoGEF that was termed Lsc-homology (LH) domain. This novel molecule, designated PDZ-RhoGEF, activated biological and biochemical pathways specific for Rho, and activation of these pathways required an intact DH and PH domain. However, the PDZ domain was dispensable for these functions, and mutants lacking the LH domain were more active, suggesting a negative regulatory role for the LH domain. A search for additional molecules exhibiting an LH domain revealed a limited homology with the catalytic region of a newly identified GTPase-activating protein for heterotrimeric G proteins, RGS14. This prompted us to investigate whether PDZ-RhoGEF could interact with representative members of each G protein family. We found that PDZ-RhoGEF was able to form, in vivo, stable complexes with two members of the Galpha12 family, Galpha12 and Galpha13, and that this interaction was mediated by the LH domain. Furthermore, we obtained evidence to suggest that PDZ-RhoGEF mediates the activation of Rho by Galpha12 and Galpha13. Together, these findings suggest the existence of a novel mechanism whereby the large family of cell surface receptors that transmit signals through heterotrimeric G proteins activate Rho-dependent pathways: by stimulating the activity of members of the Galpha12 family which, in turn, activate an exchange factor acting on Rho.  (+info)

Regulation of p190 Rho-GAP by v-Src is linked to cytoskeletal disruption during transformation. (3/3221)

The v-Src oncoprotein perturbs the dynamic regulation of the cellular cytoskeletal and adhesion network by a mechanism that is poorly understood. Here, we have examined in detail the effects of a temperature-dependent v-Src protein on the regulation of p190 RhoGAP, a GTPase activating protein (GAP) that has been implicated in disruption of the organised actin cytoskeleton, and addressed the dependence of v-Src-induced stress fibre loss on inhibition of Rho activity. We found that activation of v-Src induced association of tyrosine phosphorylated p190 with p120(RasGAP) and stimulation of p120(RasGAP)-associated RhoGAP activity, although p120(RasGAP) itself was not a target for phosphorylation by v-Src in chicken embryo cells. These events required the catalytic activity of v-Src and were linked to loss of actin stress fibres during morphological transformation and not mitogenic signalling. Furthermore, these effects were rapidly reversible since switching off v-Src led to dissociation of the p190/p120(RasGAP) complex, inactivation of p120(RasGAP)-associated RhoGAP activity and re-induction of actin stress fibres. In addition, transient transfection of Val14-RhoA, a constitutively active Rho protein that is insensitive to RhoGAPs, suppressed v-Src-induced stress fibre loss and cell transformation. Thus, we show here for the first time that an activated Src kinase requires the inactivation of Rho-mediated actin stress fibre assembly to induce its effects on actin disorganisation. Moreover, our work supports p190 as a strong candidate effector of v-Src-induced cytoskeletal disruption, most likely mediated by antagonism of the cellular function of Rho.  (+info)

Facilitation of signal onset and termination by adenylyl cyclase. (4/3221)

The alpha subunit (Gsalpha) of the stimulatory heterotrimeric guanosine triphosphate binding protein (G protein) Gs activates all isoforms of mammalian adenylyl cyclase. Adenylyl cyclase (Type V) and its subdomains, which interact with Gsalpha, promoted inactivation of the G protein by increasing its guanosine triphosphatase (GTPase) activity. Adenylyl cyclase and its subdomains also augmented the receptor-mediated activation of heterotrimeric Gs and thereby facilitated the rapid onset of signaling. These findings demonstrate that adenylyl cyclase functions as a GTPase activating protein (GAP) for the monomeric Gsalpha and enhances the GTP/GDP exchange factor (GEF) activity of receptors.  (+info)

alphaPix stimulates p21-activated kinase activity through exchange factor-dependent and -independent mechanisms. (5/3221)

Activation of p21-activated kinases (Paks) is achieved through binding of the GTPases Rac or Cdc42 to a conserved domain in the N-terminal regulatory region of Pak. Additional signaling components are also likely to be important in regulating Pak activation. Recently, a family of Pak-interacting guanine nucleotide exchange factors (Pix) have been identified and which are good candidates for regulating Pak activity. Using an active, truncated form of alphaPix (amino acids 155-545), we observe stimulation of Pak1 kinase activity when alphaPix155-545 is co-expressed with Cdc42 and wild-type Pak1 in COS-1 cells. This activation does not occur when we co-express a Pak1 mutant unable to bind alphaPix. The activation of wild-type Pak1 by alphaPix155-545 also requires that alphaPix155-545 retain functional exchange factor activity. However, the Pak1(H83,86L) mutant that does not bind Rac or Cdc42 is activated in the absence of GTPase by alphaPix155-545 and by a mutant of alphaPix155-545 that no longer has exchange factor activity. Pak1 activity stimulated in vitro using GTPgammaS-loaded Cdc42 was also enhanced by recombinant alphaPix155-545 in a binding-dependent manner. These data suggest that Pak activity can be modulated by physical interaction with alphaPix and that this specific effect involves both exchange factor-dependent and -independent mechanisms.  (+info)

EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. (6/3221)

We have identified a human cDNA encoding a novel protein, exchange factor for ARF6 (EFA6), which contains Sec7 and pleckstrin homology domains. EFA6 promotes efficient guanine nucleotide exchange on ARF6 and is distinct from the ARNO family of ARF1 exchange factors. The protein localizes to a dense matrix on the cytoplasmic face of plasma membrane invaginations, induced on its expression. We show that EFA6 regulates endosomal membrane recycling and promotes the redistribution of transferrin receptors to the cell surface. Furthermore, expression of EFA6 induces actin-based membrane ruffles that are inhibited by co-expression of dominant-inhibitory mutant forms of ARF6 or Rac1. Our results demonstrate that by catalyzing nucleotide exchange on ARF6 at the plasma membrane and by regulating Rac1 activation, EFA6 coordinates endocytosis with cytoskeletal rearrangements.  (+info)

Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. (7/3221)

In the initiation phase of eukaryotic translation, eIF5 stimulates the hydrolysis of GTP bound to eIF2 in the 40S ribosomal pre-initiation complex, and the resultant GDP on eIF2 is replaced with GTP by the complex nucleotide exchange factor, eIF2B. Bipartite motifs rich in aromatic and acidic residues are conserved at the C-termini of eIF5 and the catalytic (epsilon) subunit of eIF2B. Here we show that these bipartite motifs are important for the binding of these factors, both in vitro and in vivo, to the beta subunit of their common substrate eIF2. We also find that three lysine-rich boxes in the N-terminal segment of eIF2beta mediate the binding of eIF2 to both eIF5 and eIF2B. Thus, eIF5 and eIF2Bepsilon employ the same sequence motif to facilitate interaction with the same segment of their common substrate. In agreement with this, archaea appear to lack eIF5, eIF2B and the lysine-rich binding domain for these factors in their eIF2beta homolog. The eIF5 bipartite motif is also important for its interaction with the eIF3 complex through the NIP1-encoded subunit of eIF3. Thus, the bipartite motif in eIF5 appears to be multifunctional, stimulating its recruitment to the 40S pre-initiation complex through interaction with eIF3 in addition to binding of its substrate eIF2.  (+info)

Structural basis for the inhibitory effect of brefeldin A on guanine nucleotide-exchange proteins for ADP-ribosylation factors. (8/3221)

Protein secretion through the endoplasmic reticulum and Golgi vesicular trafficking system is initiated by the binding of ADP-ribosylation factors (ARFs) to donor membranes, leading to recruitment of coatomer, bud formation, and eventual vesicle release. ARFs are approximately 20-kDa GTPases that are active with bound GTP and inactive with GDP bound. Conversion of ARF-GDP to ARF-GTP is regulated by guanine nucleotide-exchange proteins. All known ARF guanine nucleotide-exchange proteins contain a Sec7 domain of approximately 200 amino acids that includes the active site and fall into two classes that differ in molecular size and susceptibility to inhibition by the fungal metabolite brefeldin A (BFA). To determine the structural basis of BFA sensitivity, chimeric molecules were constructed by using sequences from the Sec7 domains of BFA-sensitive yeast Sec7 protein (ySec7d) and the insensitive human cytohesin-1 (C-1Sec7). Based on BFA inhibition of the activities of these molecules with recombinant yeast ARF2 as substrate, the Asp965-Met975 sequence in ySec7d was shown to be responsible for BFA sensitivity. A C-1Sec7 mutant in which Ser199, Asn204, and Pro209 were replaced with the corresponding ySec7d amino acids, Asp965, Gln970, and Met975, exhibited BFA sensitivity similar to that of recombinant ySec7d (rySec7d). Single replacement in C-1Sec7 of Ser199 or Pro209 resulted in partial inhibition by BFA, whereas replacement of Gln970 in ySec7d with Asn (as found in C-1Sec7) had no effect. As predicted, the double C-1Sec7 mutant with S199D and P209M was BFA-sensitive, demonstrating that Asp965 and Met975 in ySec7d are major molecular determinants of BFA sensitivity.  (+info)

Guanine Nucleotide Exchange Factors (GEFs) are a group of regulatory proteins that play a crucial role in the activation of GTPases, which are enzymes that regulate various cellular processes such as signal transduction, cytoskeleton reorganization, and vesicle trafficking.

GEFs function by promoting the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on GTPases. GTP is the active form of the GTPase, and its binding to the GTPase leads to a conformational change that activates the enzyme's function.

In the absence of GEFs, GTPases remain in their inactive GDP-bound state, and cellular signaling pathways are not activated. Therefore, GEFs play a critical role in regulating the activity of GTPases and ensuring proper signal transduction in cells.

There are many different GEFs that are specific to various GTPase families, including Ras, Rho, and Arf families. Dysregulation of GEFs has been implicated in various diseases, including cancer and neurological disorders.

Rho Guanine Nucleotide Exchange Factors (Rho-GEFs) are a group of proteins that play a crucial role in the regulation of intracellular signaling pathways. They function as molecular switches that activate Rho GTPases, which are important regulators of various cellular processes such as cytoskeleton reorganization, gene expression, cell cycle progression, and cell migration.

Rho-GEFs catalyze the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on Rho GTPases, leading to their activation. This process is tightly regulated and occurs in response to various extracellular signals, such as hormones, growth factors, and integrin-mediated adhesion. Once activated, Rho GTPases interact with downstream effectors to modulate cell behavior.

There are several families of Rho-GEFs, including the Dbl family, the Vav family, and the Trio family, among others. Each family has distinct structural features and regulatory mechanisms that allow for specificity in Rho GTPase activation and downstream signaling. Dysregulation of Rho-GEFs and Rho GTPases has been implicated in various human diseases, including cancer, neurological disorders, and cardiovascular disease.

Ras Guanine Nucleotide Exchange Factors (Ras-GEFs) are a group of proteins that play a crucial role in the activation of Ras signaling pathways. Ras is a small GTPase protein that acts as a molecular switch, cycling between an inactive GDP-bound state and an active GTP-bound state.

Ras-GEFs function as catalysts to promote the exchange of GDP for GTP on Ras, thereby promoting its activation. This activation leads to the initiation of various downstream signaling cascades that regulate diverse cellular processes such as proliferation, differentiation, and survival.

Ras-GEFs can be classified into two main families based on their structure and mechanism of action: the Dbl family and the non-Dbl family. The Dbl family members contain a conserved Dbl homology (DH) domain that is responsible for catalyzing the exchange of GDP for GTP on Ras. In contrast, non-Dbl family members use alternative mechanisms to promote Ras activation.

Abnormal regulation of Ras-GEFs has been implicated in various human diseases, including cancer and developmental disorders. Therefore, understanding the function and regulation of Ras-GEFs is essential for developing novel therapeutic strategies to target these diseases.

Guanine nucleotides are molecules that play a crucial role in intracellular signaling, cellular regulation, and various biological processes within cells. They consist of a guanine base, a sugar (ribose or deoxyribose), and one or more phosphate groups. The most common guanine nucleotides are GDP (guanosine diphosphate) and GTP (guanosine triphosphate).

GTP is hydrolyzed to GDP and inorganic phosphate by certain enzymes called GTPases, releasing energy that drives various cellular functions such as protein synthesis, signal transduction, vesicle transport, and cell division. On the other hand, GDP can be rephosphorylated back to GTP by nucleotide diphosphate kinases, allowing for the recycling of these molecules within the cell.

In addition to their role in signaling and regulation, guanine nucleotides also serve as building blocks for RNA (ribonucleic acid) synthesis during transcription, where they pair with cytosine nucleotides via hydrogen bonds to form base pairs in the resulting RNA molecule.

Proto-oncogene proteins c-Vav are a family of intracellular signaling proteins that play crucial roles in various cellular processes, including hematopoiesis, cell survival, proliferation, differentiation, and migration. The c-Vav family consists of three members: Vav1, Vav2, and Vav3, which are expressed in different patterns across various tissues. They primarily function as guanine nucleotide exchange factors (GEFs) for the Rho family of small GTPases, such as Rac, Cdc42, and Ras.

Upon activation through receptor tyrosine kinases or other signaling pathways, c-Vav proteins become phosphorylated and activated, leading to their ability to exchange GDP for GTP on their target small GTPases. This activation results in the downstream regulation of various cellular responses, such as actin cytoskeleton reorganization, gene transcription, and cell cycle progression.

Dysregulation or overactivation of c-Vav proteins has been implicated in oncogenesis, as they can contribute to uncontrolled cell growth, survival, and migration, ultimately leading to the development of various types of cancer. For this reason, c-Vav proteins are considered proto-oncogene proteins, as their normal physiological functions are essential for proper cellular homeostasis, but their aberrant activation can promote tumorigenesis.

Guanosine diphosphate (GDP) is a nucleotide that consists of a guanine base, a sugar molecule called ribose, and two phosphate groups. It is an ester of pyrophosphoric acid with the hydroxy group of the ribose sugar at the 5' position. GDP plays a crucial role as a secondary messenger in intracellular signaling pathways and also serves as an important intermediate in the synthesis of various biomolecules, such as proteins and polysaccharides.

In cells, GDP is formed from the hydrolysis of guanosine triphosphate (GTP) by enzymes called GTPases, which convert GTP to GDP and release energy that can be used to power various cellular processes. The conversion of GDP back to GTP can be facilitated by nucleotide diphosphate kinases, allowing for the recycling of these nucleotides within the cell.

It is important to note that while guanosine diphosphate has a significant role in biochemical processes, it is not typically associated with medical conditions or diseases directly. However, understanding its function and regulation can provide valuable insights into various physiological and pathophysiological mechanisms.

Ras-GRF1 is not a medical condition or disease, but rather a protein that plays a role in cell signaling pathways. Ras-GRF1 stands for "Ras protein-specific guanine nucleotide releasing factor 1." It is a type of guanine nucleotide exchange factor (GEF) that specifically activates the Ras family of small GTPases by promoting the exchange of GDP for GTP. This activation of Ras proteins is crucial for various cellular processes, including proliferation, differentiation, and survival.

Ras-GRF1 has been implicated in several physiological and pathological conditions, such as learning and memory, neurodevelopmental disorders, and cancers. Mutations or dysregulation of Ras-GRF1 have been associated with abnormalities in these processes. However, it is essential to note that the medical definition of a protein like Ras-GRF1 would typically be found within the context of biochemistry, cell biology, or molecular genetics rather than general clinical medicine.

CDC42 is a small GTP-binding protein that belongs to the Rho family of GTPases. It acts as a molecular switch, cycling between an inactive GDP-bound state and an active GTP-bound state, and plays a critical role in regulating various cellular processes, including actin cytoskeleton organization, cell polarity, and membrane trafficking.

When CDC42 is activated by Guanine nucleotide exchange factors (GEFs), it interacts with downstream effectors to modulate the assembly of actin filaments and the formation of membrane protrusions, such as lamellipodia and filopodia. These cellular structures are essential for cell migration, adhesion, and morphogenesis.

CDC42 also plays a role in intracellular signaling pathways that regulate gene expression, cell cycle progression, and apoptosis. Dysregulation of CDC42 has been implicated in various human diseases, including cancer, neurodegenerative disorders, and immune disorders.

In summary, CDC42 is a crucial GTP-binding protein involved in regulating multiple cellular processes, and its dysfunction can contribute to the development of several pathological conditions.

Guanosine triphosphate (GTP) is a nucleotide that plays a crucial role in various cellular processes, such as protein synthesis, signal transduction, and regulation of enzymatic activities. It serves as an energy currency, similar to adenosine triphosphate (ATP), and undergoes hydrolysis to guanosine diphosphate (GDP) or guanosine monophosphate (GMP) to release energy required for these processes. GTP is also a precursor for the synthesis of other essential molecules, including RNA and certain signaling proteins. Additionally, it acts as a molecular switch in many intracellular signaling pathways by binding and activating specific GTPase proteins.

Rac1 (Ras-related C3 botulinum toxin substrate 1) is a GTP-binding protein, which belongs to the Rho family of small GTPases. These proteins function as molecular switches that regulate various cellular processes such as actin cytoskeleton organization, gene expression, cell proliferation, and differentiation.

Rac1 cycles between an inactive GDP-bound state and an active GTP-bound state. When Rac1 is in its active form (GTP-bound), it interacts with various downstream effectors to modulate the actin cytoskeleton dynamics, cell adhesion, and motility. Activation of Rac1 has been implicated in several cellular responses, including cell migration, membrane ruffling, and filopodia formation.

Rac1 GTP-binding protein plays a crucial role in many physiological processes, such as embryonic development, angiogenesis, and wound healing. However, dysregulation of Rac1 activity has been associated with various pathological conditions, including cancer, inflammation, and neurological disorders.

Rho GTP-binding proteins are a subfamily of the Ras superfamily of small GTPases, which function as molecular switches in various cellular signaling pathways. These proteins play crucial roles in regulating diverse cellular processes such as actin cytoskeleton dynamics, gene expression, cell cycle progression, and cell migration.

Rho GTP-binding proteins cycle between an active GTP-bound state and an inactive GDP-bound state. In the active state, they interact with various downstream effectors to regulate their respective cellular functions. Guanine nucleotide exchange factors (GEFs) activate Rho GTP-binding proteins by promoting the exchange of GDP for GTP, while GTPase-activating proteins (GAPs) inactivate them by enhancing their intrinsic GTP hydrolysis activity.

There are several members of the Rho GTP-binding protein family, including RhoA, RhoB, RhoC, Rac1, Rac2, Rac3, Cdc42, and Rnd proteins, each with distinct functions and downstream effectors. Dysregulation of Rho GTP-binding proteins has been implicated in various human diseases, including cancer, cardiovascular disease, neurological disorders, and inflammatory diseases.

ADP-ribosylation factors (ARFs) are a family of small GTP-binding proteins that play a crucial role in intracellular membrane traffic, actin dynamics, and signal transduction. They function as molecular switches, cycling between an active GTP-bound state and an inactive GDP-bound state.

ARFs are involved in the regulation of vesicle formation, budding, and transport, primarily through their ability to activate phospholipase D and recruit coat proteins to membranes. There are six isoforms of ARFs (ARF1-6) that share a high degree of sequence similarity but have distinct cellular functions and subcellular localizations.

ADP-ribosylation factors get their name from the fact that they were originally identified as proteins that become ADP-ribosylated by cholera toxin, an enzyme produced by Vibrio cholerae bacteria. However, this post-translational modification is not required for their cellular functions.

Defects in ARF function have been implicated in various human diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the regulation and function of ARFs is an important area of research in biology and medicine.

Rac (Ras-related C3 botulinum toxin substrate) GTP-binding proteins are a subfamily of the Rho family of small GTPases, which function as molecular switches that regulate various cellular processes, including actin cytoskeleton organization, cell adhesion, and gene transcription.

Rac GTP-binding proteins cycle between an inactive GDP-bound state and an active GTP-bound state. When Rac is in its active state, it interacts with downstream effectors to regulate various signaling pathways that control cell behavior. Activation of Rac promotes the formation of lamellipodia and membrane ruffles, which are important for cell migration and invasion.

Rac GTP-binding proteins have been implicated in a variety of physiological and pathological processes, including embryonic development, immune function, and cancer. Dysregulation of Rac signaling has been associated with various diseases, such as inflammatory disorders, neurological disorders, and cancer. Therefore, understanding the regulation and function of Rac GTP-binding proteins is crucial for developing therapeutic strategies to target these diseases.

Rap1 GTP-binding proteins are a subfamily of the Ras superfamily of small GTPases, which function as molecular switches that regulate various cellular processes, including cell growth, differentiation, and motility. Rap1 proteins cycle between an inactive GDP-bound state and an active GTP-bound state, and this cycling is regulated by guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP, and GTPase-activating proteins (GAPs) that stimulate the intrinsic GTPase activity of Rap1, promoting its return to the inactive state.

Rap1 has been implicated in a variety of cellular processes, including cell adhesion, migration, and polarity, as well as cell cycle progression and transcriptional regulation. In particular, Rap1 has been shown to play important roles in the regulation of integrin-mediated adhesion and signaling, and in the control of endothelial cell barrier function. Dysregulation of Rap1 activity has been implicated in a number of human diseases, including cancer and inflammatory disorders.

RhoA (Ras Homolog Family Member A) is a small GTPase protein that acts as a molecular switch, cycling between an inactive GDP-bound state and an active GTP-bound state. It plays a crucial role in regulating various cellular processes such as actin cytoskeleton organization, gene expression, cell cycle progression, and cell migration.

RhoA GTP-binding protein becomes activated when it binds to GTP, and this activation leads to the recruitment of downstream effectors that mediate its functions. The activity of RhoA is tightly regulated by several proteins, including guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP, GTPase-activating proteins (GAPs) that stimulate the intrinsic GTPase activity of RhoA to hydrolyze GTP to GDP and return it to an inactive state, and guanine nucleotide dissociation inhibitors (GDIs) that sequester RhoA in the cytoplasm and prevent its association with the membrane.

Mutations or dysregulation of RhoA GTP-binding protein have been implicated in various human diseases, including cancer, neurological disorders, and cardiovascular diseases.

Guanine Nucleotide-Releasing Factor 2 (GNRF2) is not a widely recognized or established term in medicine or molecular biology. However, based on the component words, it can be inferred that GNRF2 might refer to a protein or molecule that plays a role in releasing guanine nucleotides.

Guanine nucleotides are important signaling molecules within cells and are involved in various cellular processes such as signal transduction, protein synthesis, and regulation of enzyme activity. Guanine nucleotide-releasing factors (GNRFs) are a class of proteins that help regulate the release of these guanine nucleotides from their bound state to become available for cellular signaling.

However, GNRF2 does not appear in any major medical or scientific databases such as Medline, PubMed, or Google Scholar. Therefore, it is difficult to provide a specific medical definition for this term without additional context.

GTPase-activating proteins (GAPs) are a group of regulatory proteins that play a crucial role in the regulation of intracellular signaling pathways, particularly those involving GTP-binding proteins. GTPases are enzymes that can bind and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP). This biochemical reaction is essential for the regulation of various cellular processes, such as signal transduction, vesicle trafficking, and cytoskeleton organization.

GAPs function as negative regulators of GTPases by accelerating the rate of GTP hydrolysis, thereby promoting the inactive GDP-bound state of the GTPase. By doing so, GAPs help terminate GTPase-mediated signaling events and ensure proper control of downstream cellular responses.

There are various families of GAPs, each with specificity towards particular GTPases. Some well-known GAP families include:

1. p50/RhoGAP: Regulates Rho GTPases involved in cytoskeleton organization and cell migration.
2. GIT (G protein-coupled receptor kinase interactor 1) family: Regulates Arf GTPases involved in vesicle trafficking and actin remodeling.
3. IQGAPs (IQ motif-containing GTPase-activating proteins): Regulate Rac and Cdc42 GTPases, which are involved in cell adhesion, migration, and cytoskeleton organization.

In summary, GTPase-activating proteins (GAPs) are regulatory proteins that accelerate the GTP hydrolysis of GTPases, thereby acting as negative regulators of various intracellular signaling pathways and ensuring proper control of downstream cellular responses.

SOS1 (also known as HEA25 or SIRPA adaptor protein) is a protein that in humans is encoded by the SOS1 gene. It is a member of the SOS family of proteins, which are Ras-specific guanine nucleotide exchange factors (GEFs). GEFs are important regulatory molecules that activate small GTPases by promoting the exchange of bound GDP for GTP.

SOS1 protein is composed of several functional domains, including a Dbl homology (DH) domain, a pleckstrin homology (PH) domain, and a proline-rich region. The DH domain is responsible for the GEF activity of SOS1, while the PH domain binds to phospholipids and regulates the localization and activity of the protein. The proline-rich region interacts with various SH3 domain-containing proteins, allowing SOS1 to participate in a variety of signaling pathways.

SOS1 plays important roles in several cellular processes, including cell growth, differentiation, and survival. It is also involved in the regulation of cytoskeletal dynamics and cell motility. Dysregulation of SOS1 has been implicated in various diseases, including cancer and developmental disorders.

GTP-binding proteins, also known as G proteins, are a family of molecular switches present in many organisms, including humans. They play a crucial role in signal transduction pathways, particularly those involved in cellular responses to external stimuli such as hormones, neurotransmitters, and sensory signals like light and odorants.

G proteins are composed of three subunits: α, β, and γ. The α-subunit binds GTP (guanosine triphosphate) and acts as the active component of the complex. When a G protein-coupled receptor (GPCR) is activated by an external signal, it triggers a conformational change in the associated G protein, allowing the α-subunit to exchange GDP (guanosine diphosphate) for GTP. This activation leads to dissociation of the G protein complex into the GTP-bound α-subunit and the βγ-subunit pair. Both the α-GTP and βγ subunits can then interact with downstream effectors, such as enzymes or ion channels, to propagate and amplify the signal within the cell.

The intrinsic GTPase activity of the α-subunit eventually hydrolyzes the bound GTP to GDP, which leads to re-association of the α and βγ subunits and termination of the signal. This cycle of activation and inactivation makes G proteins versatile signaling elements that can respond quickly and precisely to changing environmental conditions.

Defects in G protein-mediated signaling pathways have been implicated in various diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the function and regulation of GTP-binding proteins is essential for developing targeted therapeutic strategies.

ADP-Ribosylation Factor 1 (ARF1) is a small GTP-binding protein that belongs to the ADP-ribosylation factor family. It plays a crucial role in intracellular membrane traffic, actin dynamics, and signal transduction pathways. ARF1 functions as a molecular switch by cycling between an active GTP-bound state and an inactive GDP-bound state.

In the active state, ARF1 regulates the recruitment of coat proteins to membranes, which facilitates vesicle formation and transport. It also activates phospholipase D, which generates second messengers that regulate various cellular processes. In contrast, in the inactive state, ARF1 is bound to GDP and cannot participate in these functions.

Mutations or dysregulation of ARF1 have been implicated in several human diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the structure, function, and regulation of ARF1 is essential for developing new therapeutic strategies to treat these conditions.

GTP (Guanosine Triphosphate) Phosphohydrolases are a group of enzymes that catalyze the hydrolysis of GTP to GDP (Guanosine Diphosphate) and inorganic phosphate. This reaction plays a crucial role in regulating various cellular processes, including signal transduction pathways, protein synthesis, and vesicle trafficking.

The human genome encodes several different types of GTP Phosphohydrolases, such as GTPase-activating proteins (GAPs), GTPase effectors, and G protein-coupled receptors (GPCRs). These enzymes share a common mechanism of action, in which they utilize the energy released from GTP hydrolysis to drive conformational changes that enable them to interact with downstream effector molecules and modulate their activity.

Dysregulation of GTP Phosphohydrolases has been implicated in various human diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the structure, function, and regulation of these enzymes is essential for developing novel therapeutic strategies to target these conditions.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

A Ral Guanine Nucleotide Exchange Factor (RalGEF) is a type of enzyme that activates the small GTPase proteins known as Ral by promoting the exchange of GDP for GTP. This activation plays a crucial role in various cellular processes, including cell growth, differentiation, and migration. RalGEFs are often targeted in cancer and other diseases due to their involvement in these important signaling pathways.

Son of Sevenless (SOS) proteins are a family of intracellular signal transduction molecules that play a crucial role in regulating cell growth, differentiation, and survival. They are named after the Drosophila melanogaster gene "Son of Sevenless," which was initially identified as a gene necessary for the development of the fly's eye.

In humans, SOS proteins are primarily involved in the Ras/MAPK signaling pathway, which is a critical regulator of cellular processes such as proliferation, differentiation, and survival. SOS proteins function as guanine nucleotide exchange factors (GEFs) for the Ras family of GTPases, which are small signaling proteins that cycle between an inactive GDP-bound state and an active GTP-bound state.

SOS proteins bind to Ras and catalyze the exchange of GDP for GTP, thereby activating Ras and initiating downstream signaling cascades. SOS proteins contain several functional domains, including a Dbl homology (DH) domain that is responsible for GEF activity, an SH3 domain that mediates protein-protein interactions, and an SH2 domain that binds to phosphotyrosine residues on activated receptor tyrosine kinases.

Abnormal regulation of SOS proteins has been implicated in various human diseases, including cancer, developmental disorders, and neurological conditions. Therefore, understanding the structure and function of SOS proteins is essential for developing novel therapeutic strategies to target these diseases.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Eukaryotic Initiation Factor-2B (eIF-2B) is a multi-subunit protein complex that plays a crucial role in the initiation phase of protein synthesis in eukaryotic cells. It is also known as the guanine nucleotide exchange factor for eIF-2 because its primary function is to catalyze the exchange of GDP (guanosine diphosphate) for GTP (guanosine triphosphate) on the alpha subunit of eukaryotic Initiation Factor-2 (eIF-2). This exchange is essential for the recycling of eIF-2, allowing it to participate in another round of initiation.

The eIF-2B complex consists of five subunits, denoted as p130, p125, p116, p100, and p65 (also known as eIF2B1, eIF2B2, eIF2B3, eIF2B4, and eIF2B5, respectively). The activity of eIF-2B is regulated by phosphorylation, particularly at the alpha subunit of eIF-2 (eIF2α), which can lead to an inhibition of its guanine nucleotide exchange factor activity. This phosphorylation event plays a critical role in the regulation of protein synthesis during cellular stress responses and is involved in various cellular processes, including growth, differentiation, and apoptosis.

Rab GTP-binding proteins, also known as Rab GTPases or simply Rabs, are a large family of small GTP-binding proteins that play a crucial role in regulating intracellular vesicle trafficking. They function as molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state.

In the active state, Rab proteins interact with various effector molecules to mediate specific membrane trafficking events such as vesicle budding, transport, tethering, and fusion. Each Rab protein is thought to have a unique function and localize to specific intracellular compartments or membranes, where they regulate the transport of vesicles and organelles within the cell.

Rab proteins are involved in several important cellular processes, including endocytosis, exocytosis, Golgi apparatus function, autophagy, and intracellular signaling. Dysregulation of Rab GTP-binding proteins has been implicated in various human diseases, such as cancer, neurodegenerative disorders, and infectious diseases.

Ras proteins are a group of small GTPases that play crucial roles as regulators of intracellular signaling pathways in cells. They are involved in various cellular processes, such as cell growth, differentiation, and survival. Ras proteins cycle between an inactive GDP-bound state and an active GTP-bound state to transmit signals from membrane receptors to downstream effectors. Mutations in Ras genes can lead to constitutive activation of Ras proteins, which has been implicated in various human cancers and developmental disorders.

Guanine is not a medical term per se, but it is a biological molecule that plays a crucial role in the body. Guanine is one of the four nucleobases found in the nucleic acids DNA and RNA, along with adenine, cytosine, and thymine (in DNA) or uracil (in RNA). Specifically, guanine pairs with cytosine via hydrogen bonds to form a base pair.

Guanine is a purine derivative, which means it has a double-ring structure. It is formed through the synthesis of simpler molecules in the body and is an essential component of genetic material. Guanine's chemical formula is C5H5N5O.

While guanine itself is not a medical term, abnormalities or mutations in genes that contain guanine nucleotides can lead to various medical conditions, including genetic disorders and cancer.

Ral GTP-binding proteins are a subfamily of the Ras superfamily of small GTPases, which are molecular switches that regulate various cellular processes, including signal transduction, membrane trafficking, and cytoskeleton dynamics. Ral proteins exist in two isoforms, RalA and RalB, which bind to and hydrolyze GTP (guanosine triphosphate) and GDP (guanosine diphosphate).

Ral GTP-binding proteins are activated by guanine nucleotide exchange factors (GEFs), which promote the exchange of GDP for GTP, thereby converting Ral proteins into their active state. Once activated, Ral proteins interact with various downstream effectors to regulate diverse cellular functions, such as cell growth, differentiation, survival, and motility.

Ral GTP-binding proteins have been implicated in several human diseases, including cancer, where they contribute to tumor progression and metastasis by promoting cell invasion, migration, and angiogenesis. Therefore, Ral GTP-binding proteins are considered promising targets for the development of novel anti-cancer therapies.

Rap GTP-binding proteins, also known as Ras-associated binding (Rab) proteins, are a large family of small GTPases that play crucial roles in regulating intracellular vesicle trafficking and membrane transport. These proteins function as molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state. In the active state, Rab proteins interact with various effector molecules to mediate specific steps in vesicle budding, transport, tethering, and fusion.

Rab proteins are involved in several cellular processes, including exocytosis, endocytosis, phagocytosis, autophagy, and Golgi apparatus function. Each Rab protein has a specific subcellular localization and is responsible for regulating distinct steps in membrane trafficking pathways. Dysregulation of Rab GTPases has been implicated in various human diseases, including cancer, neurodegenerative disorders, and infectious diseases.

In summary, Rap GTP-binding proteins are a family of small GTPases that regulate intracellular vesicle trafficking and membrane transport by functioning as molecular switches in specific steps of these processes.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Guanine Nucleotide Dissociation Inhibitors (GDI) are a group of proteins that bind to and inhibit the dissociation of guanine nucleotides from small GTPases, which are important regulatory molecules involved in various cellular processes such as signal transduction, vesicle trafficking, and cytoskeleton organization.

GDI's function is to maintain these small GTPases in their inactive state by keeping them bound to guanine nucleotides, specifically GDP (guanosine diphosphate). By doing so, GDIs help regulate the activity of small GTPases and control their subcellular localization.

GDIs have been identified in various organisms, including bacteria, yeast, and mammals. In humans, there are two major types of GDIs: RhoGDI (also known as D4-GDI) and RacGDI (also known as GDI-α). These GDIs play crucial roles in regulating the activity of Rho family GTPases, which are involved in various cellular functions such as cell motility, membrane trafficking, and gene expression.

Overall, Guanine Nucleotide Dissociation Inhibitors are essential regulators of small GTPases, controlling their activity and localization to ensure proper cellular function.

Nucleotides are the basic structural units of nucleic acids, such as DNA and RNA. They consist of a nitrogenous base (adenine, guanine, cytosine, thymine or uracil), a pentose sugar (ribose in RNA and deoxyribose in DNA) and one to three phosphate groups. Nucleotides are linked together by phosphodiester bonds between the sugar of one nucleotide and the phosphate group of another, forming long chains known as polynucleotides. The sequence of these nucleotides determines the genetic information carried in DNA and RNA, which is essential for the functioning, reproduction and survival of all living organisms.

Rab5 GTP-binding proteins are a subfamily of Rab (Ras-related in brain) proteins that function as molecular switches in the regulation of intracellular membrane trafficking. They play a crucial role in the early stages of endocytosis, including the formation and movement of early endosomes.

Rab5 GTP-binding proteins cycle between an active GTP-bound state and an inactive GDP-bound state. In their active form, they interact with various effector proteins to regulate vesicle transport, tethering, and fusion. Specifically, Rab5 GTP-binding proteins are involved in the homotypic fusion of early endosomes, promoting the maturation of early endosomes into late endosomes.

There are multiple isoforms of Rab5 GTP-binding proteins (Rab5A, Rab5B, and Rab5C) that share a high degree of sequence similarity but may have distinct functions in different cellular contexts. Dysregulation of Rab5 GTP-binding proteins has been implicated in various human diseases, including cancer and neurodegenerative disorders.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

GTP-binding protein alpha subunits, G12-G13, are a type of heterotrimeric G proteins that play a crucial role in intracellular signaling pathways. These proteins are composed of three subunits: alpha, beta, and gamma. The alpha subunit of G12-G13 proteins is referred to as Gα12 or Gα13 and binds to guanosine triphosphate (GTP) and guanosine diphosphate (GDP).

When a G protein-coupled receptor (GPCR) is activated by an extracellular signal, it catalyzes the exchange of GDP for GTP on the alpha subunit. This leads to a conformational change in the alpha subunit, causing it to dissociate from the beta and gamma subunits and interact with downstream effectors.

Gα12 and Gα13 are unique among the heterotrimeric G proteins because they preferentially activate Rho guanine nucleotide exchange factors (RhoGEFs), which in turn activate Rho GTPases, leading to changes in the actin cytoskeleton and cellular responses such as cell migration, proliferation, and differentiation.

Dysregulation of GTP-binding protein alpha subunits, G12-G13, has been implicated in various diseases, including cancer and neurological disorders.

Coat Protein Complex I (CPCI or COPI) is a protein complex involved in the intracellular transport of proteins within eukaryotic cells. It functions primarily in the retrograde transport of proteins from the Golgi apparatus to the endoplasmic reticulum (ER). The complex is composed of seven subunits, known as alpha, beta, gamma, delta, epsilon, zeta, and eta COPs (coat proteins), which form a cage-like structure around transport vesicles. This coat assists in the selection of cargo proteins, vesicle budding, and subsequent fusion with target membranes during the recycling of ER-derived proteins.

Adaptor proteins are a type of protein that play a crucial role in intracellular signaling pathways by serving as a link between different components of the signaling complex. Specifically, "signal transducing adaptor proteins" refer to those adaptor proteins that are involved in signal transduction processes, where they help to transmit signals from the cell surface receptors to various intracellular effectors. These proteins typically contain modular domains that allow them to interact with multiple partners, thereby facilitating the formation of large signaling complexes and enabling the integration of signals from different pathways.

Signal transducing adaptor proteins can be classified into several families based on their structural features, including the Src homology 2 (SH2) domain, the Src homology 3 (SH3) domain, and the phosphotyrosine-binding (PTB) domain. These domains enable the adaptor proteins to recognize and bind to specific motifs on other signaling molecules, such as receptor tyrosine kinases, G protein-coupled receptors, and cytokine receptors.

One well-known example of a signal transducing adaptor protein is the growth factor receptor-bound protein 2 (Grb2), which contains an SH2 domain that binds to phosphotyrosine residues on activated receptor tyrosine kinases. Grb2 also contains an SH3 domain that interacts with proline-rich motifs on other signaling proteins, such as the guanine nucleotide exchange factor SOS. This interaction facilitates the activation of the Ras small GTPase and downstream signaling pathways involved in cell growth, differentiation, and survival.

Overall, signal transducing adaptor proteins play a critical role in regulating various cellular processes by modulating intracellular signaling pathways in response to extracellular stimuli. Dysregulation of these proteins has been implicated in various diseases, including cancer and inflammatory disorders.

Monomeric GTP-binding proteins, also known as small GTPases, are a family of proteins that bind and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP). These proteins function as molecular switches, cycling between an inactive GDP-bound state and an active GTP-bound state. They play crucial roles in regulating various cellular processes such as signal transduction, vesicle trafficking, cytoskeleton organization, and cell cycle progression. Examples of monomeric GTP-binding proteins include Ras, Rho, Rab, and Ran families.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

P21-activated kinases (PAKs) are a family of serine/threonine protein kinases that play crucial roles in various cellular processes, including cytoskeletal reorganization, cell motility, and gene transcription. They are activated by binding to small GTPases of the Rho family, such as Cdc42 and Rac, which become active upon stimulation of various extracellular signals. Once activated, PAKs phosphorylate a range of downstream targets, leading to changes in cell behavior and function. Aberrant regulation of PAKs has been implicated in several human diseases, including cancer and neurological disorders.

A two-hybrid system technique is a type of genetic screening method used in molecular biology to identify protein-protein interactions within an organism, most commonly baker's yeast (Saccharomyces cerevisiae) or Escherichia coli. The name "two-hybrid" refers to the fact that two separate proteins are being examined for their ability to interact with each other.

The technique is based on the modular nature of transcription factors, which typically consist of two distinct domains: a DNA-binding domain (DBD) and an activation domain (AD). In a two-hybrid system, one protein of interest is fused to the DBD, while the second protein of interest is fused to the AD. If the two proteins interact, the DBD and AD are brought in close proximity, allowing for transcriptional activation of a reporter gene that is linked to a specific promoter sequence recognized by the DBD.

The main components of a two-hybrid system include:

1. Bait protein (fused to the DNA-binding domain)
2. Prey protein (fused to the activation domain)
3. Reporter gene (transcribed upon interaction between bait and prey proteins)
4. Promoter sequence (recognized by the DBD when brought in proximity due to interaction)

The two-hybrid system technique has several advantages, including:

1. Ability to screen large libraries of potential interacting partners
2. High sensitivity for detecting weak or transient interactions
3. Applicability to various organisms and protein types
4. Potential for high-throughput analysis

However, there are also limitations to the technique, such as false positives (interactions that do not occur in vivo) and false negatives (lack of detection of true interactions). Additionally, the fusion proteins may not always fold or localize correctly, leading to potential artifacts. Despite these limitations, two-hybrid system techniques remain a valuable tool for studying protein-protein interactions and have contributed significantly to our understanding of various cellular processes.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Eukaryotic Initiation Factor-2 (eIF-2) is a crucial protein complex in the process of protein synthesis, also known as translation, in eukaryotic cells. It plays a role in the initiation phase of translation, where it helps to recruit and position the initiator tRNA (tRNAiMet) at the start codon on the mRNA molecule.

The eIF-2 complex is made up of three subunits: α, β, and γ. Phosphorylation of the α subunit (eIF-2α) plays a regulatory role in protein synthesis. When eIF-2α is phosphorylated by one of several eIF-2 kinases in response to various stress signals, it leads to a decrease in global protein synthesis, allowing the cell to conserve resources and survive during times of stress. This process is known as the integrated stress response (ISR).

In summary, Eukaryotic Initiation Factor-2 (eIF-2) is a protein complex that plays a critical role in the initiation phase of protein synthesis in eukaryotic cells, and its activity can be regulated by phosphorylation of the α subunit.

Ran GTP-binding protein, also known as Ran or Ras-related nuclear protein, is a small GTPase that plays a crucial role in the regulation of nucleocytoplasmic transport in eukaryotic cells. It binds to and hydrolyzes guanosine triphosphate (GTP) and acts as a molecular switch that controls various cellular processes, including nuclear import and export, mitotic spindle assembly, and nuclear envelope formation during cell division.

Ran exists in two interconvertible forms: the GTP-bound form, which is active and can bind to importin-β and other transport factors, and the GDP-bound form, which is inactive and localized mainly in the cytoplasm. The RanGAP protein (Ran GTPase-activating protein) catalyzes the hydrolysis of GTP to GDP, while the RanGEF protein (Ran guanine nucleotide exchange factor) facilitates the exchange of GDP for GTP.

The regulation of Ran GTPase activity is critical for maintaining the proper functioning of the nuclear transport machinery and ensuring the integrity of the genome. Dysregulation of Ran GTPase has been implicated in various human diseases, including cancer, neurodegenerative disorders, and viral infections.

HSP110 (heat shock protein 110) is a type of heat shock protein (HSP) that functions as a molecular chaperone, helping to facilitate the proper folding and assembly of other proteins. HSPs are produced by cells in response to stressful conditions, such as high temperature, which can cause proteins to unfold or misfold. By assisting in the refolding of denatured proteins, HSPs help protect cells from damage and promote their survival under stressful conditions.

HSP110 is a member of the HSP70 family of heat shock proteins, which are characterized by their ability to bind and hydrolyze ATP. HSP110 is unique within this family in that it has an extended C-terminal domain that allows it to interact with a wider range of protein substrates. This property, along with its high expression levels in response to stress, makes HSP110 an important player in the cellular stress response.

In addition to their role in protein folding, HSPs have been implicated in various other cellular processes, including protein degradation, signal transduction, and immune function. Dysregulation of HSP expression has been linked to a variety of diseases, including cancer, neurodegenerative disorders, and infectious diseases.

3T3 cells are a type of cell line that is commonly used in scientific research. The name "3T3" is derived from the fact that these cells were developed by treating mouse embryo cells with a chemical called trypsin and then culturing them in a flask at a temperature of 37 degrees Celsius.

Specifically, 3T3 cells are a type of fibroblast, which is a type of cell that is responsible for producing connective tissue in the body. They are often used in studies involving cell growth and proliferation, as well as in toxicity tests and drug screening assays.

One particularly well-known use of 3T3 cells is in the 3T3-L1 cell line, which is a subtype of 3T3 cells that can be differentiated into adipocytes (fat cells) under certain conditions. These cells are often used in studies of adipose tissue biology and obesity.

It's important to note that because 3T3 cells are a type of immortalized cell line, they do not always behave exactly the same way as primary cells (cells that are taken directly from a living organism). As such, researchers must be careful when interpreting results obtained using 3T3 cells and consider any potential limitations or artifacts that may arise due to their use.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

Proto-oncogene proteins are normal cellular proteins that play crucial roles in various cellular processes, such as signal transduction, cell cycle regulation, and apoptosis (programmed cell death). They are involved in the regulation of cell growth, differentiation, and survival under physiological conditions.

When proto-oncogene proteins undergo mutations or aberrations in their expression levels, they can transform into oncogenic forms, leading to uncontrolled cell growth and division. These altered proteins are then referred to as oncogene products or oncoproteins. Oncogenic mutations can occur due to various factors, including genetic predisposition, environmental exposures, and aging.

Examples of proto-oncogene proteins include:

1. Ras proteins: Involved in signal transduction pathways that regulate cell growth and differentiation. Activating mutations in Ras genes are found in various human cancers.
2. Myc proteins: Regulate gene expression related to cell cycle progression, apoptosis, and metabolism. Overexpression of Myc proteins is associated with several types of cancer.
3. EGFR (Epidermal Growth Factor Receptor): A transmembrane receptor tyrosine kinase that regulates cell proliferation, survival, and differentiation. Mutations or overexpression of EGFR are linked to various malignancies, such as lung cancer and glioblastoma.
4. Src family kinases: Intracellular tyrosine kinases that regulate signal transduction pathways involved in cell proliferation, survival, and migration. Dysregulation of Src family kinases is implicated in several types of cancer.
5. Abl kinases: Cytoplasmic tyrosine kinases that regulate various cellular processes, including cell growth, differentiation, and stress responses. Aberrant activation of Abl kinases, as seen in chronic myelogenous leukemia (CML), leads to uncontrolled cell proliferation.

Understanding the roles of proto-oncogene proteins and their dysregulation in cancer development is essential for developing targeted cancer therapies that aim to inhibit or modulate these aberrant signaling pathways.

RAB1 GTP-binding proteins are a subfamily of the RAS superfamily of small GTPases, which function as molecular switches in intracellular vesicle trafficking. RAB1 proteins exist in two forms, RAB1A and RAB1B, that bind to guanosine triphosphate (GTP) and guanosine diphosphate (GDP).

In their GTP-bound form, RAB1 proteins interact with effector molecules to regulate the formation of transport vesicles at the endoplasmic reticulum (ER) and their subsequent fusion with the cis-Golgi apparatus. This process is critical for the proper sorting and transport of proteins and lipids between the ER, Golgi, and other cellular membranes.

RAB1 proteins play a crucial role in maintaining the integrity of the early secretory pathway and have been implicated in various cellular processes, including autophagy, mitochondrial dynamics, and cytokinesis. Dysregulation of RAB1 GTP-binding proteins has been linked to several human diseases, such as cancer, neurodegenerative disorders, and infectious diseases.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Brefeldin A is a fungal metabolite that inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus. It disrupts the organization of the Golgi complex and causes the redistribution of its proteins to the endoplasmic reticulum. Brefeldin A is used in research to study various cellular processes, including vesicular transport, protein trafficking, and signal transduction pathways. In medicine, it has been studied as a potential anticancer agent due to its ability to induce apoptosis (programmed cell death) in certain types of cancer cells. However, its clinical use is not yet approved.

NIH 3T3 cells are a type of mouse fibroblast cell line that was developed by the National Institutes of Health (NIH). The "3T3" designation refers to the fact that these cells were derived from embryonic Swiss mouse tissue and were able to be passaged (i.e., subcultured) more than three times in tissue culture.

NIH 3T3 cells are widely used in scientific research, particularly in studies involving cell growth and differentiation, signal transduction, and gene expression. They have also been used as a model system for studying the effects of various chemicals and drugs on cell behavior. NIH 3T3 cells are known to be relatively easy to culture and maintain, and they have a stable, flat morphology that makes them well-suited for use in microscopy studies.

It is important to note that, as with any cell line, it is essential to verify the identity and authenticity of NIH 3T3 cells before using them in research, as contamination or misidentification can lead to erroneous results.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Rho-specific guanine nucleotide dissociation inhibitors (RhoGDI) are a group of proteins that regulate the function of Rho GTPases, which are important signaling molecules involved in various cellular processes such as actin cytoskeleton regulation, gene expression, and cell cycle progression.

RhoGDIs bind to Rho GTPases in their inactive state, preventing them from interacting with guanine nucleotide exchange factors (GEFs) that would activate them. By doing so, RhoGDIs help regulate the spatial and temporal activation of Rho GTPases, ensuring that they are activated only when and where needed in the cell.

RhoGDI proteins have been identified as potential targets for therapeutic intervention in various diseases, including cancer, inflammation, and neurological disorders. Inhibitors of RhoGDI function have been shown to disrupt Rho GTPase signaling and may have therapeutic benefits in these conditions.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

The cytoskeleton is a complex network of various protein filaments that provides structural support, shape, and stability to the cell. It plays a crucial role in maintaining cellular integrity, intracellular organization, and enabling cell movement. The cytoskeleton is composed of three major types of protein fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. These filaments work together to provide mechanical support, participate in cell division, intracellular transport, and help maintain the cell's architecture. The dynamic nature of the cytoskeleton allows cells to adapt to changing environmental conditions and respond to various stimuli.

Oncogene proteins are derived from oncogenes, which are genes that have the potential to cause cancer. Normally, these genes help regulate cell growth and division, but when they become altered or mutated, they can become overactive and lead to uncontrolled cell growth and division, which is a hallmark of cancer. Oncogene proteins can contribute to tumor formation and progression by promoting processes such as cell proliferation, survival, angiogenesis, and metastasis. Examples of oncogene proteins include HER2/neu, EGFR, and BCR-ABL.

SRC homology domains, often abbreviated as SH domains, are conserved protein modules that were first identified in the SRC family of non-receptor tyrosine kinases. These domains are involved in various intracellular signaling processes and mediate protein-protein interactions. There are several types of SH domains, including:

1. SH2 domain: This domain is approximately 100 amino acids long and binds to specific phosphotyrosine-containing motifs in other proteins, thereby mediating signal transduction.
2. SH3 domain: This domain is about 60 amino acids long and recognizes proline-rich sequences in target proteins, playing a role in protein-protein interactions and intracellular signaling.
3. SH1 domain: Also known as the tyrosine kinase catalytic domain, this region contains the active site responsible for transferring a phosphate group from ATP to specific tyrosine residues on target proteins.
4. SH4 domain: This domain is present in some SRC family members and serves as a membrane-targeting module by interacting with lipids or transmembrane proteins.

These SH domains allow SRC kinases and other proteins containing them to participate in complex signaling networks that regulate various cellular processes, such as proliferation, differentiation, survival, and migration.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

A kinase anchor protein (AKAP) is a type of scaffolding protein that plays a role in organizing and targeting various signaling molecules within cells. AKAPs are so named because they can bind to and anchor protein kinases, enzymes that add phosphate groups to other proteins, thereby modulating their activity. This allows for the localized regulation of signaling pathways and helps ensure that specific cellular responses occur in the correct location and at the right time. AKAPs can also bind to other signaling molecules, such as phosphatases, ion channels, and second messenger systems, forming large complexes that facilitate efficient communication between different parts of the cell.

There are many different AKAPs identified in various organisms, and they play crucial roles in a wide range of cellular processes, including cell division, signal transduction, and gene expression. Mutations or dysregulation of AKAPs have been implicated in several diseases, including cancer, cardiovascular disease, and neurological disorders. Therefore, understanding the structure, function, and regulation of AKAPs is an important area of research with potential therapeutic implications.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Stress fibers are specialized cytoskeletal structures composed primarily of actin filaments, along with myosin II and other associated proteins. They are called "stress" fibers because they are thought to provide cells with the ability to resist and respond to mechanical stresses. These structures play a crucial role in maintaining cell shape, facilitating cell migration, and mediating cell-cell and cell-matrix adhesions. Stress fibers form bundles that span the length of the cell and connect to focal adhesion complexes at their ends, allowing for the transmission of forces between the extracellular matrix and the cytoskeleton. They are dynamic structures that can undergo rapid assembly and disassembly in response to various stimuli, including changes in mechanical stress, growth factor signaling, and cellular differentiation.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

CDC42 is a small GTPase protein that is widely conserved in eukaryotic cells and plays a crucial role in regulating various cellular processes, including actin cytoskeleton organization, cell polarity, and membrane trafficking. In the yeast Saccharomyces cerevisiae, CDC42 is an essential gene product that was initially identified due to its role in controlling the cell cycle.

CDC42 cycles between an active GTP-bound state and an inactive GDP-bound state. When CDC42 is bound to GTP, it can interact with downstream effectors to regulate various signaling pathways that control actin dynamics, membrane trafficking, and cell polarity. In contrast, when CDC42 is bound to GDP, it is inactive and cannot interact with its downstream effectors.

CDC42 has been implicated in a variety of human diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the regulation and function of CDC42 is essential for developing new therapeutic strategies to treat these conditions.

The Golgi apparatus, also known as the Golgi complex or simply the Golgi, is a membrane-bound organelle found in the cytoplasm of most eukaryotic cells. It plays a crucial role in the processing, sorting, and packaging of proteins and lipids for transport to their final destinations within the cell or for secretion outside the cell.

The Golgi apparatus consists of a series of flattened, disc-shaped sacs called cisternae, which are stacked together in a parallel arrangement. These stacks are often interconnected by tubular structures called tubules or vesicles. The Golgi apparatus has two main faces: the cis face, which is closest to the endoplasmic reticulum (ER) and receives proteins and lipids directly from the ER; and the trans face, which is responsible for sorting and dispatching these molecules to their final destinations.

The Golgi apparatus performs several essential functions in the cell:

1. Protein processing: After proteins are synthesized in the ER, they are transported to the cis face of the Golgi apparatus, where they undergo various post-translational modifications, such as glycosylation (the addition of sugar molecules) and sulfation. These modifications help determine the protein's final structure, function, and targeting.
2. Lipid modification: The Golgi apparatus also modifies lipids by adding or removing different functional groups, which can influence their properties and localization within the cell.
3. Protein sorting and packaging: Once proteins and lipids have been processed, they are sorted and packaged into vesicles at the trans face of the Golgi apparatus. These vesicles then transport their cargo to various destinations, such as lysosomes, plasma membrane, or extracellular space.
4. Intracellular transport: The Golgi apparatus serves as a central hub for intracellular trafficking, coordinating the movement of vesicles and other transport carriers between different organelles and cellular compartments.
5. Cell-cell communication: Some proteins that are processed and packaged in the Golgi apparatus are destined for secretion, playing crucial roles in cell-cell communication and maintaining tissue homeostasis.

In summary, the Golgi apparatus is a vital organelle involved in various cellular processes, including post-translational modification, sorting, packaging, and intracellular transport of proteins and lipids. Its proper functioning is essential for maintaining cellular homeostasis and overall organismal health.

The GRB2 (Growth Factor Receptor-Bound Protein 2) adaptor protein is a cytoplasmic signaling molecule that plays a crucial role in intracellular signal transduction pathways, particularly those involved in cell growth, differentiation, and survival. It acts as a molecular adapter or scaffold, facilitating the interaction between various proteins to form multi-protein complexes and propagate signals from activated receptor tyrosine kinases (RTKs) to downstream effectors.

GRB2 contains several functional domains, including an N-terminal SH3 domain, a central SH2 domain, and a C-terminal SH3 domain. The SH2 domain is responsible for binding to specific phosphotyrosine residues on activated RTKs or other adaptor proteins, while the SH3 domains mediate interactions with proline-rich sequences in partner proteins.

Once GRB2 binds to an activated RTK, it recruits and activates the guanine nucleotide exchange factor SOS (Son of Sevenless), which in turn activates the RAS GTPase. Activated RAS then initiates a signaling cascade involving various kinases such as Raf, MEK, and ERK, ultimately leading to changes in gene expression and cellular responses.

In summary, GRB2 is an essential adaptor protein that facilitates the transmission of signals from activated growth factor receptors to downstream effectors, playing a critical role in regulating various cellular processes.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Ras GTPase-activating proteins (GAPs) are a group of regulatory proteins that play an essential role in the intracellular signaling pathways associated with cell growth, differentiation, and survival. They function as negative regulators of Ras small GTPases, which are crucial components of many signal transduction cascades.

Ras GTPases cycle between an active GTP-bound state and an inactive GDP-bound state. Ras GAPs enhance the intrinsic GTPase activity of Ras proteins, promoting the hydrolysis of GTP to GDP and thereby switching off the signal transduction pathway. This conversion from the active to the inactive form of Ras helps maintain proper cellular function and prevent uncontrolled cell growth, which can lead to diseases such as cancer.

There are several families of Ras GAPs, including p120GAP, neurofibromin (NF1), and IQGAPs, among others. Each family has distinct structural features and functions, but they all share the ability to stimulate the GTPase activity of Ras proteins. Dysregulation or mutations in Ras GAPs can result in aberrant Ras signaling, contributing to various pathological conditions, including cancer and developmental disorders.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

Phosphoproteins are proteins that have been post-translationally modified by the addition of a phosphate group (-PO3H2) onto specific amino acid residues, most commonly serine, threonine, or tyrosine. This process is known as phosphorylation and is mediated by enzymes called kinases. Phosphoproteins play crucial roles in various cellular processes such as signal transduction, cell cycle regulation, metabolism, and gene expression. The addition or removal of a phosphate group can activate or inhibit the function of a protein, thereby serving as a switch to control its activity. Phosphoproteins can be detected and quantified using techniques such as Western blotting, mass spectrometry, and immunofluorescence.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

GTP-binding protein (G protein) alpha subunits are a family of proteins that play a crucial role in cell signaling pathways, particularly those involved in the transmission of signals across the plasma membrane in response to hormones, neurotransmitters, and other extracellular signals. These proteins bind to guanosine triphosphate (GTP) and undergo conformational changes upon activation, which enables them to interact with downstream effectors and modulate various cellular responses.

There are several classes of G protein alpha subunits, including Gs, Gi/o, Gq/11, and G12/13, each of which activates distinct signaling cascades upon activation. For instance, Gs alpha subunits activate adenylyl cyclase, leading to increased levels of cAMP and the activation of protein kinase A (PKA), while Gi/o alpha subunits inhibit adenylyl cyclase and reduce cAMP levels. Gq/11 alpha subunits activate phospholipase C-beta (PLC-β), which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG), while G12/13 alpha subunits modulate cytoskeletal rearrangements through activation of Rho GTPases.

Mutations in G protein alpha subunits have been implicated in various human diseases, including cancer, neurological disorders, and cardiovascular disease. Therefore, understanding the structure, function, and regulation of these proteins is essential for developing novel therapeutic strategies to target these conditions.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Vesicular transport proteins are specialized proteins that play a crucial role in the intracellular trafficking and transportation of various biomolecules, such as proteins and lipids, within eukaryotic cells. These proteins facilitate the formation, movement, and fusion of membrane-bound vesicles, which are small, spherical structures that carry cargo between different cellular compartments or organelles.

There are several types of vesicular transport proteins involved in this process:

1. Coat Proteins (COPs): These proteins form a coat around the vesicle membrane and help shape it into its spherical form during the budding process. They also participate in selecting and sorting cargo for transportation. Two main types of COPs exist: COPI, which is involved in transport between the Golgi apparatus and the endoplasmic reticulum (ER), and COPII, which mediates transport from the ER to the Golgi apparatus.

2. SNARE Proteins: These proteins are responsible for the specific recognition and docking of vesicles with their target membranes. They form complexes that bring the vesicle and target membranes close together, allowing for fusion and the release of cargo into the target organelle. There are two types of SNARE proteins: v-SNAREs (vesicle SNAREs) and t-SNAREs (target SNAREs), which interact to form a stable complex during membrane fusion.

3. Rab GTPases: These proteins act as molecular switches that regulate the recruitment of coat proteins, motor proteins, and SNAREs during vesicle transport. They cycle between an active GTP-bound state and an inactive GDP-bound state, controlling the various stages of vesicular trafficking, such as budding, transport, tethering, and fusion.

4. Tethering Proteins: These proteins help to bridge the gap between vesicles and their target membranes before SNARE-mediated fusion occurs. They play a role in ensuring specificity during vesicle docking and may also contribute to regulating the timing of membrane fusion events.

5. Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptors (SNAREs): These proteins are involved in intracellular transport, particularly in the trafficking of vesicles between organelles. They consist of a family of coiled-coil domain-containing proteins that form complexes to mediate membrane fusion events.

Overall, these various classes of proteins work together to ensure the specificity and efficiency of vesicular transport in eukaryotic cells. Dysregulation or mutation of these proteins can lead to various diseases, including neurodegenerative disorders and cancer.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

RhoB GTP-binding protein is a member of the Rho family of small GTPases, which are involved in regulating various cellular processes such as actin cytoskeleton organization, gene expression, and cell cycle progression. Specifically, RhoB functions as a molecular switch that cycles between an inactive GDP-bound state and an active GTP-bound state.

When RhoB is activated by GTP binding, it interacts with various downstream effectors to regulate the dynamics of the actin cytoskeleton, which is important for cell motility, adhesion, and membrane trafficking. RhoB has been implicated in several physiological processes, including angiogenesis, wound healing, and immune response.

RhoB is unique among the Rho GTPases because it can be localized to both the plasma membrane and endosomal compartments, allowing it to regulate various cellular processes in different subcellular locations. Dysregulation of RhoB has been associated with various pathological conditions, including cancer, inflammation, and neurodegenerative diseases.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Heterotrimeric GTP-binding proteins, also known as G proteins, are a type of guanine nucleotide-binding protein that are composed of three subunits: alpha (α), beta (β), and gamma (γ). These proteins play a crucial role in signal transduction pathways that regulate various cellular responses, including gene expression, metabolism, cell growth, and differentiation.

The α-subunit binds to GTP and undergoes conformational changes upon activation by G protein-coupled receptors (GPCRs). This leads to the dissociation of the βγ-subunits from the α-subunit, which can then interact with downstream effector proteins to propagate the signal. The α-subunit subsequently hydrolyzes the GTP to GDP, leading to its inactivation and reassociation with the βγ-subunits to form the inactive heterotrimeric complex again.

Heterotrimeric G proteins are classified into four major families based on the identity of their α-subunits: Gs, Gi/o, Gq/11, and G12/13. Each family has distinct downstream effectors and regulates specific cellular responses. Dysregulation of heterotrimeric G protein signaling has been implicated in various human diseases, including cancer, cardiovascular disease, and neurological disorders.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Guanylyl Imidodiphosphate (GIP) is not a medical term itself, but it is a biochemical compound that plays a crucial role in the body's signaling pathways. It is a vital intracellular second messenger involved in various physiological processes, including vasodilation and smooth muscle relaxation.

To be more specific, GIP is a nucleotide that activates a family of enzymes called guanylyl cyclases (GCs). Once activated, these enzymes convert guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP), another essential second messenger. The increased levels of cGMP then mediate the relaxation of smooth muscle and vasodilation by activating protein kinases and ion channels, among other mechanisms.

In summary, Guanylyl Imidodiphosphate (GIP) is a biochemical compound that plays a critical role in intracellular signaling pathways, leading to vasodilation and smooth muscle relaxation.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Proto-oncogene proteins, such as the c-Crk protein, are normal cellular proteins that play crucial roles in various cellular processes including regulation of cell growth, division, and survival. When proto-oncogenes are mutated or functionally altered, they can become oncogenes, promoting uncontrolled cell growth and leading to cancer.

The c-Crk protein is a non-receptor tyrosine kinase adapter protein that plays a significant role in signal transduction pathways, particularly those involved in cell adhesion, migration, differentiation, and oncogenic transformation. It has two main isoforms, CrkI and CrkII, which differ in their structural organization but share a similar functional domain structure. These domains include an N-terminal Src homology 3 (SH3) domain, a central SH2 domain, and a C-terminal SH3 domain.

The SH3 domains of c-Crk proteins are responsible for binding to various partner proteins containing proline-rich motifs, while the SH2 domain binds to phosphorylated tyrosine residues on target proteins. Through these interactions, c-Crk proteins facilitate the formation of multi-protein complexes and help transmit signals from activated receptor tyrosine kinases (RTKs) or non-receptor tyrosine kinases (NRTKs) to downstream effectors.

Dysregulation of c-Crk proteins, through genetic alterations or aberrant signaling, can contribute to oncogenic transformation and tumor progression. For example, increased c-Crk expression or activation has been implicated in several types of cancer, including leukemias, lymphomas, and solid tumors.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

A Serum Response Element (SRE) is a specific sequence in the DNA that can bind to certain transcription factors and regulate gene expression. It is named "serum response" because it was initially discovered to be activated by serum factors present in the blood, such as growth factors and cytokines.

The SRE is typically bound by the transcription factor complex made up of serum response factor (SRF) and ternary complex factors (TCFs), which include Elk-1, Sap-1, and Net. When activated by signals such as mitogens or growth factors, these transcription factors can bind to the SRE and induce the expression of target genes involved in various cellular processes, including proliferation, differentiation, and survival.

The SRE is a crucial regulatory element in many physiological and pathological processes, such as cardiovascular development, muscle differentiation, cancer, and inflammation.

Glutathione transferases (GSTs) are a group of enzymes involved in the detoxification of xenobiotics and endogenous compounds. They facilitate the conjugation of these compounds with glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, which results in more water-soluble products that can be easily excreted from the body.

GSTs play a crucial role in protecting cells against oxidative stress and chemical injury by neutralizing reactive electrophilic species and peroxides. They are found in various tissues, including the liver, kidneys, lungs, and intestines, and are classified into several families based on their structure and function.

Abnormalities in GST activity have been associated with increased susceptibility to certain diseases, such as cancer, neurological disorders, and respiratory diseases. Therefore, GSTs have become a subject of interest in toxicology, pharmacology, and clinical research.

Pseudopodia are temporary projections or extensions of the cytoplasm in certain types of cells, such as white blood cells (leukocytes) and some amoebas. They are used for locomotion and engulfing particles or other cells through a process called phagocytosis.

In simpler terms, pseudopodia are like "false feet" that some cells use to move around and interact with their environment. The term comes from the Greek words "pseudes," meaning false, and "podos," meaning foot.

Peptide Elongation Factor 1 (PEF1) is not a commonly used medical term, but it is a term used in biochemistry and molecular biology. Here's the definition:

Peptide Elongation Factor 1 (also known as EF-Tu in prokaryotes or EFT1A/EFT1B in eukaryotes) is a protein involved in the elongation phase of protein synthesis, specifically during translation. It plays a crucial role in delivering aminoacyl-tRNAs to the ribosome, enabling the addition of new amino acids to the growing polypeptide chain.

In eukaryotic cells, EF1A and EF1B (also known as EF-Ts) form a complex that helps facilitate the binding of aminoacyl-tRNAs to the ribosome. In prokaryotic cells, EF-Tu forms a complex with GTP and aminoacyl-tRNA, which then binds to the ribosome. Once bound, GTP is hydrolyzed to GDP, causing a conformational change that releases the aminoacyl-tRNA into the acceptor site of the ribosome, allowing for peptide bond formation. The EF-Tu/GDP complex then dissociates from the ribosome and is recycled by another protein called EF-G (EF-G in prokaryotes or EFL1 in eukaryotes).

Therefore, Peptide Elongation Factor 1 plays a critical role in ensuring that the correct amino acids are added to the growing peptide chain during protein synthesis.

The Son of Sevenless (SOS) protein in Drosophila melanogaster is a crucial component of the Ras signaling pathway, which plays a central role in various cellular processes such as growth, differentiation, and proliferation. The SOS protein functions as a guanine nucleotide exchange factor (GEF), activating the Ras protein by promoting the exchange of GDP for GTP. This activation ultimately leads to the initiation of downstream signaling cascades that regulate various cellular responses.

The Drosophila SOS protein is encoded by the gene called *dSos* and shares significant homology with its mammalian counterpart, human SOS1. The name "Son of Sevenless" originates from the genetic studies in Drosophila, where the mutation in this gene was initially identified as a recessive allele that failed to complement the sevenless (sev) mutant phenotype. Further investigation revealed that dSos is required for the proper functioning of the sev tyrosine kinase receptor and subsequent Ras-mediated signaling events during eye development in Drosophila.

HEK293 cells, also known as human embryonic kidney 293 cells, are a line of cells used in scientific research. They were originally derived from human embryonic kidney cells and have been adapted to grow in a lab setting. HEK293 cells are widely used in molecular biology and biochemistry because they can be easily transfected (a process by which DNA is introduced into cells) and highly express foreign genes. As a result, they are often used to produce proteins for structural and functional studies. It's important to note that while HEK293 cells are derived from human tissue, they have been grown in the lab for many generations and do not retain the characteristics of the original embryonic kidney cells.

Phosphatidylinositol phosphates (PIPs) are a family of lipid molecules that play crucial roles as secondary messengers in intracellular signaling pathways. They are formed by the phosphorylation of the hydroxyl group on the inositol ring of phosphatidylinositol (PI), a fundamental component of cell membranes.

There are seven main types of PIPs, classified based on the number and position of phosphate groups attached to the inositol ring:

1. Phosphatidylinositol 4-monophosphate (PI4P) - one phosphate group at the 4th position
2. Phosphatidylinositol 5-monophosphate (PI5P) - one phosphate group at the 5th position
3. Phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) - two phosphate groups at the 3rd and 4th positions
4. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) - two phosphate groups at the 3rd and 5th positions
5. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] - two phosphate groups at the 4th and 5th positions
6. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] - three phosphate groups at the 3rd, 4th, and 5th positions
7. Phosphatidylinositol 3-phosphate (PI3P) - one phosphate group at the 3rd position

These PIPs are involved in various cellular processes such as membrane trafficking, cytoskeleton organization, cell survival, and metabolism. Dysregulation of PIP metabolism has been implicated in several diseases, including cancer, diabetes, and neurological disorders.

Immunoprecipitation (IP) is a research technique used in molecular biology and immunology to isolate specific antigens or antibodies from a mixture. It involves the use of an antibody that recognizes and binds to a specific antigen, which is then precipitated out of solution using various methods, such as centrifugation or chemical cross-linking.

In this technique, an antibody is first incubated with a sample containing the antigen of interest. The antibody specifically binds to the antigen, forming an immune complex. This complex can then be captured by adding protein A or G agarose beads, which bind to the constant region of the antibody. The beads are then washed to remove any unbound proteins, leaving behind the precipitated antigen-antibody complex.

Immunoprecipitation is a powerful tool for studying protein-protein interactions, post-translational modifications, and signal transduction pathways. It can also be used to detect and quantify specific proteins in biological samples, such as cells or tissues, and to identify potential biomarkers of disease.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

GTP-binding protein alpha subunits, Gi-Go, are a type of heterotrimeric G proteins that play a crucial role in signal transduction pathways associated with many hormones and neurotransmitters. These G proteins are composed of three subunits: alpha, beta, and gamma. The "Gi-Go" specifically refers to the alpha subunit of these G proteins, which can exist in two isoforms, Gi and Go.

When a G protein-coupled receptor (GPCR) is activated by an agonist, it undergoes a conformational change that allows it to act as a guanine nucleotide exchange factor (GEF). The GEF activity of the GPCR promotes the exchange of GDP for GTP on the alpha subunit of the heterotrimeric G protein. Once GTP is bound, the alpha subunit dissociates from the beta-gamma dimer and can then interact with downstream effectors to modulate various cellular responses.

The Gi-Go alpha subunits are inhibitory in nature, meaning that they typically inhibit the activity of adenylyl cyclase, an enzyme responsible for converting ATP to cAMP. This reduction in cAMP levels can have downstream effects on various cellular processes, such as gene transcription, ion channel regulation, and metabolic pathways.

In summary, GTP-binding protein alpha subunits, Gi-Go, are heterotrimeric G proteins that play an essential role in signal transduction pathways by modulating adenylyl cyclase activity upon GPCR activation, ultimately influencing various cellular responses through cAMP regulation.

Endosomes are membrane-bound compartments within eukaryotic cells that play a critical role in intracellular trafficking and sorting of various cargoes, including proteins and lipids. They are formed by the invagination of the plasma membrane during endocytosis, resulting in the internalization of extracellular material and cell surface receptors.

Endosomes can be classified into early endosomes, late endosomes, and recycling endosomes based on their morphology, molecular markers, and functional properties. Early endosomes are the initial sorting stations for internalized cargoes, where they undergo sorting and processing before being directed to their final destinations. Late endosomes are more acidic compartments that mature from early endosomes and are responsible for the transport of cargoes to lysosomes for degradation.

Recycling endosomes, on the other hand, are involved in the recycling of internalized cargoes back to the plasma membrane or to other cellular compartments. Endosomal sorting and trafficking are regulated by a complex network of molecular interactions involving various proteins, lipids, and intracellular signaling pathways.

Defects in endosomal function have been implicated in various human diseases, including neurodegenerative disorders, developmental abnormalities, and cancer. Therefore, understanding the mechanisms underlying endosomal trafficking and sorting is of great importance for developing therapeutic strategies to treat these conditions.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

Adaptor proteins play a crucial role in vesicular transport, which is the process by which materials are transported within cells in membrane-bound sacs called vesicles. These adaptor proteins serve as a bridge between vesicle membranes and cytoskeletal elements or other cellular structures, facilitating the movement of vesicles throughout the cell.

There are several different types of adaptor proteins involved in vesicular transport, each with specific functions and localizations within the cell. Some examples include:

1. Clathrin Adaptor Protein Complex (AP-1, AP-2, AP-3, AP-4): These complexes are responsible for recruiting clathrin to membranes during vesicle formation, which helps to shape and stabilize the vesicle. They also play a role in sorting cargo into specific vesicles.

2. Coat Protein Complex I (COPI): This complex is involved in the transport of proteins between the endoplasmic reticulum (ER) and the Golgi apparatus, as well as within the Golgi itself. COPI-coated vesicles are formed by the assembly of coatomer proteins around the membrane, which helps to deform the membrane into a vesicle shape.

3. Coat Protein Complex II (COPII): This complex is involved in the transport of proteins from the ER to the Golgi apparatus. COPII-coated vesicles are formed by the assembly of Sar1, Sec23/24, and Sec13/31 proteins around the membrane, which helps to select cargo and form a vesicle.

4. BAR (Bin/Amphiphysin/Rvs) Domain Proteins: These proteins are involved in shaping and stabilizing membranes during vesicle formation. They can sense and curve membranes, recruiting other proteins to help form the vesicle.

5. SNARE Proteins: While not strictly adaptor proteins, SNAREs play a critical role in vesicle fusion by forming complexes that bring the vesicle and target membrane together. These complexes provide the energy required for membrane fusion, allowing for the release of cargo into the target compartment.

Overall, adaptor proteins are essential components of the cellular machinery that regulates intracellular trafficking. They help to select cargo, deform membranes, and facilitate vesicle formation, ensuring that proteins and lipids reach their correct destinations within the cell.

Cytokinesis is the part of the cell division process (mitosis or meiosis) in which the cytoplasm of a single eukaryotic cell divides into two daughter cells. It usually begins after telophase, and it involves the constriction of a contractile ring composed of actin filaments and myosin motor proteins that forms at the equatorial plane of the cell. This results in the formation of a cleavage furrow, which deepens and eventually leads to the physical separation of the two daughter cells. Cytokinesis is essential for cell reproduction and growth in multicellular organisms, and its failure can lead to various developmental abnormalities or diseases.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

Cell surface extensions, also known as cellular processes or protrusions, are specialized structures that extend from the plasma membrane of a eukaryotic cell. These extensions include various types of projections such as cilia, flagella, and filopodia, as well as larger and more complex structures like lamellipodia and pseudopodia.

Cilia and flagella are hair-like structures that are involved in cell movement and the sensation of external stimuli. They are composed of a core of microtubules surrounded by the plasma membrane.

Filopodia are thin, finger-like protrusions that contain bundles of actin filaments and are involved in cell motility, sensing the environment, and establishing cell-cell contacts.

Lamellipodia are sheet-like extensions composed of a branched network of actin filaments and are involved in cell migration.

Pseudopodia are large, irregularly shaped protrusions that contain a mixture of actin filaments and other cytoskeletal elements, and are involved in phagocytosis and cell motility.

These cell surface extensions play important roles in various biological processes, including cell motility, sensing the environment, establishing cell-cell contacts, and the uptake of extracellular material.

EphA8 is a type of receptor tyrosine kinase (RTK) that belongs to the Eph receptor subfamily, which is the largest subfamily of RTKs. These receptors are involved in various biological processes, including cell-cell communication, cell migration, and tissue boundary formation during development.

EphA8 receptors specifically bind to ephrin-A ligands, which are membrane-bound proteins expressed on adjacent cells. The binding of ephrin-A to EphA8 initiates a bidirectional signaling process that affects both the receptor-expressing and ligand-expressing cells. This interaction can result in either attraction or repulsion between the cells, depending on the context and the specific ephrin-A/EphA8 pair involved.

In summary, EphA8 is a cell surface receptor that binds to ephrin-A ligands to mediate cell-cell communication and regulate various developmental processes.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

A precipitin test is a type of immunodiagnostic test used to detect and measure the presence of specific antibodies or antigens in a patient's serum. The test is based on the principle of antigen-antibody interaction, where the addition of an antigen to a solution containing its corresponding antibody results in the formation of an insoluble immune complex known as a precipitin.

In this test, a small amount of the patient's serum is added to a solution containing a known antigen or antibody. If the patient has antibodies or antigens that correspond to the added reagent, they will bind and form a visible precipitate. The size and density of the precipitate can be used to quantify the amount of antibody or antigen present in the sample.

Precipitin tests are commonly used in the diagnosis of various infectious diseases, autoimmune disorders, and allergies. They can also be used in forensic science to identify biological samples. However, they have largely been replaced by more modern immunological techniques such as enzyme-linked immunosorbent assays (ELISAs) and radioimmunoassays (RIAs).

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Retroviridae proteins, oncogenic, refer to the proteins expressed by retroviruses that have the ability to transform normal cells into cancerous ones. These oncogenic proteins are typically encoded by viral genes known as "oncogenes," which are acquired through the process of transduction from the host cell's DNA during retroviral replication.

The most well-known example of an oncogenic retrovirus is the Human T-cell Leukemia Virus Type 1 (HTLV-1), which encodes the Tax and HBZ oncoproteins. These proteins manipulate various cellular signaling pathways, leading to uncontrolled cell growth and malignant transformation.

It is important to note that not all retroviruses are oncogenic, and only a small subset of them have been associated with cancer development in humans or animals.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

Rho-associated kinases (ROCKs) are serine/threonine kinases that are involved in the regulation of various cellular processes, including actin cytoskeleton organization, cell migration, and gene expression. They are named after their association with the small GTPase RhoA, which activates them upon binding.

ROCKs exist as two isoforms, ROCK1 and ROCK2, which share a high degree of sequence homology and have similar functions. They contain several functional domains, including a kinase domain, a coiled-coil region that mediates protein-protein interactions, and a Rho-binding domain (RBD) that binds to active RhoA.

Once activated by RhoA, ROCKs phosphorylate a variety of downstream targets, including myosin light chain (MLC), LIM kinase (LIMK), and moesin, leading to the regulation of actomyosin contractility, stress fiber formation, and focal adhesion turnover. Dysregulation of ROCK signaling has been implicated in various pathological conditions, such as cancer, cardiovascular diseases, neurological disorders, and fibrosis. Therefore, ROCKs have emerged as promising therapeutic targets for the treatment of these diseases.

PC12 cells are a type of rat pheochromocytoma cell line, which are commonly used in scientific research. Pheochromocytomas are tumors that develop from the chromaffin cells of the adrenal gland, and PC12 cells are a subtype of these cells.

PC12 cells have several characteristics that make them useful for research purposes. They can be grown in culture and can be differentiated into a neuron-like phenotype when treated with nerve growth factor (NGF). This makes them a popular choice for studies involving neuroscience, neurotoxicity, and neurodegenerative disorders.

PC12 cells are also known to express various neurotransmitter receptors, ion channels, and other proteins that are relevant to neuronal function, making them useful for studying the mechanisms of drug action and toxicity. Additionally, PC12 cells can be used to study the regulation of cell growth and differentiation, as well as the molecular basis of cancer.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

Intracellular signaling peptides and proteins are molecules that play a crucial role in transmitting signals within cells, which ultimately lead to changes in cell behavior or function. These signals can originate from outside the cell (extracellular) or within the cell itself. Intracellular signaling molecules include various types of peptides and proteins, such as:

1. G-protein coupled receptors (GPCRs): These are seven-transmembrane domain receptors that bind to extracellular signaling molecules like hormones, neurotransmitters, or chemokines. Upon activation, they initiate a cascade of intracellular signals through G proteins and secondary messengers.
2. Receptor tyrosine kinases (RTKs): These are transmembrane receptors that bind to growth factors, cytokines, or hormones. Activation of RTKs leads to autophosphorylation of specific tyrosine residues, creating binding sites for intracellular signaling proteins such as adapter proteins, phosphatases, and enzymes like Ras, PI3K, and Src family kinases.
3. Second messenger systems: Intracellular second messengers are small molecules that amplify and propagate signals within the cell. Examples include cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), diacylglycerol (DAG), inositol triphosphate (IP3), calcium ions (Ca2+), and nitric oxide (NO). These second messengers activate or inhibit various downstream effectors, leading to changes in cellular responses.
4. Signal transduction cascades: Intracellular signaling proteins often form complex networks of interacting molecules that relay signals from the plasma membrane to the nucleus. These cascades involve kinases (protein kinases A, B, C, etc.), phosphatases, and adapter proteins, which ultimately regulate gene expression, cell cycle progression, metabolism, and other cellular processes.
5. Ubiquitination and proteasome degradation: Intracellular signaling pathways can also control protein stability by modulating ubiquitin-proteasome degradation. E3 ubiquitin ligases recognize specific substrates and conjugate them with ubiquitin molecules, targeting them for proteasomal degradation. This process regulates the abundance of key signaling proteins and contributes to signal termination or amplification.

In summary, intracellular signaling pathways involve a complex network of interacting proteins that relay signals from the plasma membrane to various cellular compartments, ultimately regulating gene expression, metabolism, and other cellular processes. Dysregulation of these pathways can contribute to disease development and progression, making them attractive targets for therapeutic intervention.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Rho Guanine Nucleotide Dissociation Inhibitor alpha (RhoGDIα) is a protein that regulates the Rho family of small GTPases, which are important signaling molecules involved in various cellular processes such as actin cytoskeleton regulation, cell motility, and gene expression.

RhoGDIα functions by binding to and inhibiting the dissociation of GDP from Rho GTPases, thereby keeping them in an inactive state in the cytoplasm. When a signal is received, RhoGDIα releases the Rho GTPase, allowing it to exchange GDP for GTP and become activated. Once activated, the Rho GTPase can then interact with downstream effectors to carry out its functions.

RhoGDIα has been implicated in various physiological and pathological processes, including cancer, inflammation, and neurological disorders.

The trans-Golgi network (TGN) is a structure in the cell's endomembrane system that is involved in the sorting and distribution of proteins and lipids to their final destinations within the cell or for secretion. It is a part of the Golgi apparatus, which consists of a series of flattened, membrane-bound sacs called cisternae. The TGN is located at the trans face (or "exit" side) of the Golgi complex and is the final stop for proteins that have been modified as they pass through the Golgi stacks.

At the TGN, proteins are sorted into different transport vesicles based on their specific targeting signals. These vesicles then bud off from the TGN and move to their respective destinations, such as endosomes, lysosomes, the plasma membrane, or secretory vesicles for exocytosis. The TGN also plays a role in the modification of lipids and the formation of primary lysosomes.

In summary, the trans-Golgi network is a crucial sorting and distribution center within the cell that ensures proteins and lipids reach their correct destinations to maintain proper cellular function.

Protein prenylation is a post-translational modification process in which a lipophilic group, such as a farnesyl or geranylgeranyl moiety, is covalently attached to specific cysteine residues near the carboxy-terminus of proteins. This modification plays a crucial role in membrane targeting and protein-protein interactions, particularly for proteins involved in signal transduction pathways, such as Ras family GTPases. The enzymes responsible for prenylation are called protein prenyltransferases, and their dysfunction has been implicated in various diseases, including cancer and neurodegenerative disorders.

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Cell polarity refers to the asymmetric distribution of membrane components, cytoskeleton, and organelles in a cell. This asymmetry is crucial for various cellular functions such as directed transport, cell division, and signal transduction. The plasma membrane of polarized cells exhibits distinct domains with unique protein and lipid compositions that define apical, basal, and lateral surfaces of the cell.

In epithelial cells, for example, the apical surface faces the lumen or external environment, while the basolateral surface interacts with other cells or the extracellular matrix. The establishment and maintenance of cell polarity are regulated by various factors including protein complexes, lipids, and small GTPases. Loss of cell polarity has been implicated in several diseases, including cancer and neurological disorders.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Focal adhesions are specialized structures found in cells that act as points of attachment between the intracellular cytoskeleton and the extracellular matrix (ECM). They are composed of a complex network of proteins, including integrins, talin, vinculin, paxillin, and various others.

Focal adhesions play a crucial role in cellular processes such as adhesion, migration, differentiation, and signal transduction. They form when integrin receptors in the cell membrane bind to specific ligands within the ECM, leading to the clustering of these receptors and the recruitment of various adaptor and structural proteins. This results in the formation of a stable linkage between the cytoskeleton and the ECM, which helps maintain cell shape, provide mechanical stability, and facilitate communication between the intracellular and extracellular environments.

Focal adhesions are highly dynamic structures that can undergo rapid assembly and disassembly in response to various stimuli, allowing cells to adapt and respond to changes in their microenvironment. Dysregulation of focal adhesion dynamics has been implicated in several pathological conditions, including cancer metastasis, fibrosis, and impaired wound healing.

Cyclic AMP (cAMP)-dependent protein kinases, also known as protein kinase A (PKA), are a family of enzymes that play a crucial role in intracellular signaling pathways. These enzymes are responsible for the regulation of various cellular processes, including metabolism, gene expression, and cell growth and differentiation.

PKA is composed of two regulatory subunits and two catalytic subunits. When cAMP binds to the regulatory subunits, it causes a conformational change that leads to the dissociation of the catalytic subunits. The freed catalytic subunits then phosphorylate specific serine and threonine residues on target proteins, thereby modulating their activity.

The cAMP-dependent protein kinases are activated in response to a variety of extracellular signals, such as hormones and neurotransmitters, that bind to G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). These signals lead to the activation of adenylyl cyclase, which catalyzes the conversion of ATP to cAMP. The resulting increase in intracellular cAMP levels triggers the activation of PKA and the downstream phosphorylation of target proteins.

Overall, cAMP-dependent protein kinases are essential regulators of many fundamental cellular processes and play a critical role in maintaining normal physiology and homeostasis. Dysregulation of these enzymes has been implicated in various diseases, including cancer, diabetes, and neurological disorders.

Thionucleotides are chemical compounds that are analogs of nucleotides, which are the building blocks of DNA and RNA. In thionucleotides, one or more of the oxygen atoms in the nucleotide's chemical structure is replaced by a sulfur atom. This modification can affect the way the thionucleotide interacts with other molecules, including enzymes that work with nucleotides and nucleic acids.

Thionucleotides are sometimes used in research to study the biochemistry of nucleic acids and their interactions with other molecules. They can also be used as inhibitors of certain enzymes, such as reverse transcriptase, which is an important target for HIV/AIDS therapy. However, thionucleotides are not normally found in natural biological systems and are not themselves components of DNA or RNA.

Dominant genes refer to the alleles (versions of a gene) that are fully expressed in an individual's phenotype, even if only one copy of the gene is present. In dominant inheritance patterns, an individual needs only to receive one dominant allele from either parent to express the associated trait. This is in contrast to recessive genes, where both copies of the gene must be the recessive allele for the trait to be expressed. Dominant genes are represented by uppercase letters (e.g., 'A') and recessive genes by lowercase letters (e.g., 'a'). If an individual inherits one dominant allele (A) from either parent, they will express the dominant trait (A).

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Mutagenesis is the process by which the genetic material (DNA or RNA) of an organism is changed in a way that can alter its phenotype, or observable traits. These changes, known as mutations, can be caused by various factors such as chemicals, radiation, or viruses. Some mutations may have no effect on the organism, while others can cause harm, including diseases and cancer. Mutagenesis is a crucial area of study in genetics and molecular biology, with implications for understanding evolution, genetic disorders, and the development of new medical treatments.

The Crk protein is a human homolog of the viral oncogene v-crk, which was first discovered in the avian retrovirus CT10. The v-crk oncogene encodes for a truncated and constitutively active version of the Crk protein, which has been shown to contribute to cancer development by promoting cell growth signaling and inhibiting apoptosis (programmed cell death).

The human Crk protein is a cytoplasmic adaptor protein that plays a role in various intracellular signaling pathways. It contains several domains, including an N-terminal Src homology 2 (SH2) domain and two C-terminal Src homology 3 (SH3) domains, which allow it to interact with other signaling proteins and transmit signals from cell surface receptors to downstream effectors.

Crk protein has been implicated in several cellular processes, including cell proliferation, differentiation, migration, and adhesion. Dysregulation of Crk protein function or expression has been associated with various human diseases, including cancer. In particular, overexpression or hyperactivation of Crk protein has been observed in several types of cancer, such as leukemia, lymphoma, and solid tumors, and has been linked to increased cell proliferation, survival, and invasiveness.

Therefore, the oncogene protein v-crk is a truncated and constitutively active version of the Crk protein that contributes to cancer development by promoting aberrant signaling pathways leading to uncontrolled cell growth and inhibition of apoptosis.

Endocytosis is the process by which cells absorb substances from their external environment by engulfing them in membrane-bound structures, resulting in the formation of intracellular vesicles. This mechanism allows cells to take up large molecules, such as proteins and lipids, as well as small particles, like bacteria and viruses. There are two main types of endocytosis: phagocytosis (cell eating) and pinocytosis (cell drinking). Phagocytosis involves the engulfment of solid particles, while pinocytosis deals with the uptake of fluids and dissolved substances. Other specialized forms of endocytosis include receptor-mediated endocytosis and caveolae-mediated endocytosis, which allow for the specific internalization of molecules through the interaction with cell surface receptors.

Medical Definition of "Multiprotein Complexes" :

Multiprotein complexes are large molecular assemblies composed of two or more proteins that interact with each other to carry out specific cellular functions. These complexes can range from relatively simple dimers or trimers to massive structures containing hundreds of individual protein subunits. They are formed through a process known as protein-protein interaction, which is mediated by specialized regions on the protein surface called domains or motifs.

Multiprotein complexes play critical roles in many cellular processes, including signal transduction, gene regulation, DNA replication and repair, protein folding and degradation, and intracellular transport. The formation of these complexes is often dynamic and regulated in response to various stimuli, allowing for precise control of their function.

Disruption of multiprotein complexes can lead to a variety of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the structure, composition, and regulation of these complexes is an important area of research in molecular biology and medicine.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Cell shape refers to the physical form or configuration of a cell, which is determined by the cytoskeleton (the internal framework of the cell) and the extracellular matrix (the external environment surrounding the cell). The shape of a cell can vary widely depending on its type and function. For example, some cells are spherical, such as red blood cells, while others are elongated or irregularly shaped. Changes in cell shape can be indicative of various physiological or pathological processes, including development, differentiation, migration, and disease.

Phosphatidylinositol 3-Kinases (PI3Ks) are a family of enzymes that play a crucial role in intracellular signal transduction. They phosphorylate the 3-hydroxyl group of the inositol ring in phosphatidylinositol and its derivatives, which results in the production of second messengers that regulate various cellular processes such as cell growth, proliferation, differentiation, motility, and survival.

PI3Ks are divided into three classes based on their structure and substrate specificity. Class I PI3Ks are further subdivided into two categories: class IA and class IB. Class IA PI3Ks are heterodimers consisting of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85α, p85β, p55γ, or p50γ). They are primarily activated by receptor tyrosine kinases and G protein-coupled receptors. Class IB PI3Ks consist of a catalytic subunit (p110γ) and a regulatory subunit (p101 or p84/87). They are mainly activated by G protein-coupled receptors.

Dysregulation of PI3K signaling has been implicated in various human diseases, including cancer, diabetes, and autoimmune disorders. Therefore, PI3Ks have emerged as important targets for drug development in these areas.

GTP-binding protein alpha subunits, Gq-G11, are a family of heterotrimeric G proteins that play a crucial role in intracellular signaling transduction pathways. They are composed of three subunits: alpha, beta, and gamma. The alpha subunit of this family is referred to as Gαq, Gα11, Gα14, or Gα15/16, depending on the specific type.

These G proteins are activated by G protein-coupled receptors (GPCRs) upon binding of an agonist to the receptor. The activation leads to the exchange of GDP for GTP on the alpha subunit, causing it to dissociate from the beta and gamma subunits and further interact with downstream effector proteins. This interaction ultimately results in the activation of various signaling cascades, including the phospholipase C beta (PLCβ) pathway, which leads to the production of second messengers such as inositol trisphosphate (IP3) and diacylglycerol (DAG), and subsequently calcium mobilization.

Defects or mutations in GTP-binding protein alpha subunits, Gq-G11, have been implicated in several diseases, such as cancer, cardiovascular disorders, and neurological conditions.

Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). It plays a crucial role in various cellular processes, including signal transduction and metabolism. Adenylate cyclase is activated by hormones and neurotransmitters that bind to G-protein-coupled receptors on the cell membrane, leading to the production of cAMP, which then acts as a second messenger to regulate various intracellular responses. There are several isoforms of adenylate cyclase, each with distinct regulatory properties and subcellular localization.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Ephrin-A1 is a type of protein that belongs to the ephrin family. It is a membrane-bound ligand for Eph receptors, which are tyrosine kinase receptors located on the cell surface. Ephrin-A1 and its receptors play critical roles in various biological processes, including cell migration, axon guidance, and tissue boundary formation during embryonic development. Ephrin-A1 is also involved in angiogenesis, tumorigenesis, and metastasis in cancer. It is encoded by the EFNAs gene in humans.

Neurites are extensions of a neuron (a type of cell in the nervous system) that can be either an axon or a dendrite. An axon is a thin, cable-like extension that carries signals away from the cell body, while a dendrite is a branching extension that receives signals from other neurons. Neurites play a crucial role in the communication between neurons and the formation of neural networks. They are involved in the transmission of electrical and chemical signals, as well as in the growth and development of the nervous system.

Protein isoforms are different forms or variants of a protein that are produced from a single gene through the process of alternative splicing, where different exons (or parts of exons) are included in the mature mRNA molecule. This results in the production of multiple, slightly different proteins that share a common core structure but have distinct sequences and functions. Protein isoforms can also arise from genetic variations such as single nucleotide polymorphisms or mutations that alter the protein-coding sequence of a gene. These differences in protein sequence can affect the stability, localization, activity, or interaction partners of the protein isoform, leading to functional diversity and specialization within cells and organisms.

Neuropeptides are small protein-like molecules that are used by neurons to communicate with each other and with other cells in the body. They are produced in the cell body of a neuron, processed from larger precursor proteins, and then transported to the nerve terminal where they are stored in secretory vesicles. When the neuron is stimulated, the vesicles fuse with the cell membrane and release their contents into the extracellular space.

Neuropeptides can act as neurotransmitters or neuromodulators, depending on their target receptors and the duration of their effects. They play important roles in a variety of physiological processes, including pain perception, appetite regulation, stress response, and social behavior. Some neuropeptides also have hormonal functions, such as oxytocin and vasopressin, which are produced in the hypothalamus and released into the bloodstream to regulate reproductive and cardiovascular function, respectively.

There are hundreds of different neuropeptides that have been identified in the nervous system, and many of them have multiple functions and interact with other signaling molecules to modulate neural activity. Dysregulation of neuropeptide systems has been implicated in various neurological and psychiatric disorders, such as chronic pain, addiction, depression, and anxiety.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Jurkat cells are a type of human immortalized T lymphocyte (a type of white blood cell) cell line that is commonly used in scientific research. They were originally isolated from the peripheral blood of a patient with acute T-cell leukemia. Jurkat cells are widely used as a model system to study T-cell activation, signal transduction, and apoptosis (programmed cell death). They are also used in the study of HIV infection and replication, as they can be infected with the virus and used to investigate viral replication and host cell responses.

Neoplastic cell transformation is a process in which a normal cell undergoes genetic alterations that cause it to become cancerous or malignant. This process involves changes in the cell's DNA that result in uncontrolled cell growth and division, loss of contact inhibition, and the ability to invade surrounding tissues and metastasize (spread) to other parts of the body.

Neoplastic transformation can occur as a result of various factors, including genetic mutations, exposure to carcinogens, viral infections, chronic inflammation, and aging. These changes can lead to the activation of oncogenes or the inactivation of tumor suppressor genes, which regulate cell growth and division.

The transformation of normal cells into cancerous cells is a complex and multi-step process that involves multiple genetic and epigenetic alterations. It is characterized by several hallmarks, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabling replicative immortality, induction of angiogenesis, activation of invasion and metastasis, reprogramming of energy metabolism, and evading immune destruction.

Neoplastic cell transformation is a fundamental concept in cancer biology and is critical for understanding the molecular mechanisms underlying cancer development and progression. It also has important implications for cancer diagnosis, prognosis, and treatment, as identifying the specific genetic alterations that underlie neoplastic transformation can help guide targeted therapies and personalized medicine approaches.

Pertussis toxin is an exotoxin produced by the bacterium Bordetella pertussis, which is responsible for causing whooping cough in humans. This toxin has several effects on the host organism, including:

1. Adenylyl cyclase activation: Pertussis toxin enters the host cell and modifies a specific G protein (Gαi), leading to the continuous activation of adenylyl cyclase. This results in increased levels of intracellular cAMP, which disrupts various cellular processes.
2. Inhibition of immune response: Pertussis toxin impairs the host's immune response by inhibiting the migration and function of immune cells like neutrophils and macrophages. It also interferes with antigen presentation and T-cell activation, making it difficult for the body to clear the infection.
3. Increased inflammation: The continuous activation of adenylyl cyclase by pertussis toxin leads to increased production of proinflammatory cytokines, contributing to the severe coughing fits and other symptoms associated with whooping cough.

Pertussis toxin is an essential virulence factor for Bordetella pertussis, and its effects contribute significantly to the pathogenesis of whooping cough. Vaccination against pertussis includes inactivated or genetically detoxified forms of pertussis toxin, which provide immunity without causing disease symptoms.

Peptide initiation factors are a group of proteins involved in the process of protein synthesis in cells, specifically during the initial stage of elongation called initiation. In this phase, they assist in the assembly of the ribosome, an organelle composed of ribosomal RNA and proteins, at the start codon of a messenger RNA (mRNA) molecule. This marks the beginning of the translation process where the genetic information encoded in the mRNA is translated into a specific protein sequence.

There are three main peptide initiation factors in eukaryotic cells:

1. eIF-2 (eukaryotic Initiation Factor 2): This factor plays a crucial role in binding methionyl-tRNAi, the initiator tRNA, to the small ribosomal subunit. It does so by forming a complex with GTP and the methionyl-tRNAi, which then binds to the 40S ribosomal subunit. Once bound, eIF-2-GTP-Met-tRNAi recognizes the start codon (AUG) on the mRNA.

2. eIF-3: This is a large multiprotein complex that interacts with both the small and large ribosomal subunits and helps stabilize their interaction during initiation. It also plays a role in recruiting other initiation factors to the preinitiation complex.

3. eIF-4F: This factor is a heterotrimeric protein complex consisting of eIF-4A (an ATP-dependent RNA helicase), eIF-4E (which binds the m7G cap structure at the 5' end of most eukaryotic mRNAs), and eIF-4G (a scaffolding protein that bridges interactions between eIF-4A, eIF-4E, and other initiation factors). eIF-4F helps unwind secondary structures in the 5' untranslated region (5' UTR) of mRNAs, promoting efficient recruitment of the 43S preinitiation complex to the mRNA.

Together, these peptide initiation factors facilitate the recognition of the correct start codon and ensure efficient translation initiation in eukaryotic cells.

Magnesium is an essential mineral that plays a crucial role in various biological processes in the human body. It is the fourth most abundant cation in the body and is involved in over 300 enzymatic reactions, including protein synthesis, muscle and nerve function, blood glucose control, and blood pressure regulation. Magnesium also contributes to the structural development of bones and teeth.

In medical terms, magnesium deficiency can lead to several health issues, such as muscle cramps, weakness, heart arrhythmias, and seizures. On the other hand, excessive magnesium levels can cause symptoms like diarrhea, nausea, and muscle weakness. Magnesium supplements or magnesium-rich foods are often recommended to maintain optimal magnesium levels in the body.

Some common dietary sources of magnesium include leafy green vegetables, nuts, seeds, legumes, whole grains, and dairy products. Magnesium is also available in various forms as a dietary supplement, including magnesium oxide, magnesium citrate, magnesium chloride, and magnesium glycinate.

Blood proteins, also known as serum proteins, are a group of complex molecules present in the blood that are essential for various physiological functions. These proteins include albumin, globulins (alpha, beta, and gamma), and fibrinogen. They play crucial roles in maintaining oncotic pressure, transporting hormones, enzymes, vitamins, and minerals, providing immune defense, and contributing to blood clotting.

Albumin is the most abundant protein in the blood, accounting for about 60% of the total protein mass. It functions as a transporter of various substances, such as hormones, fatty acids, and drugs, and helps maintain oncotic pressure, which is essential for fluid balance between the blood vessels and surrounding tissues.

Globulins are divided into three main categories: alpha, beta, and gamma globulins. Alpha and beta globulins consist of transport proteins like lipoproteins, hormone-binding proteins, and enzymes. Gamma globulins, also known as immunoglobulins or antibodies, are essential for the immune system's defense against pathogens.

Fibrinogen is a protein involved in blood clotting. When an injury occurs, fibrinogen is converted into fibrin, which forms a mesh to trap platelets and form a clot, preventing excessive bleeding.

Abnormal levels of these proteins can indicate various medical conditions, such as liver or kidney disease, malnutrition, infections, inflammation, or autoimmune disorders. Blood protein levels are typically measured through laboratory tests like serum protein electrophoresis (SPE) and immunoelectrophoresis (IEP).

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Transfer RNA (tRNA) is a type of RNA molecule that plays a crucial role in protein synthesis, the process by which cells create proteins. During protein synthesis, tRNAs serve as adaptors, translating the genetic code present in messenger RNA (mRNA) into the corresponding amino acids required to build a protein.

Each tRNA molecule has an anticodon region that can base-pair with specific codons (three-nucleotide sequences) on the mRNA. At the other end of the tRNA is the acceptor stem, which contains a binding site for the corresponding amino acid. When an amino acid attaches to the tRNA, it forms an ester bond between the carboxyl group of the amino acid and the 3'-hydroxyl group of the ribose in the tRNA. This aminoacylated tRNA then participates in the translation process, delivering the amino acid to the growing polypeptide chain at the ribosome.

In summary, transfer RNA (tRNA) is a type of RNA molecule that facilitates protein synthesis by transporting and delivering specific amino acids to the ribosome for incorporation into a polypeptide chain, based on the codon-anticodon pairing between tRNAs and messenger RNA (mRNA).

Cytoskeletal proteins are a type of structural proteins that form the cytoskeleton, which is the internal framework of cells. The cytoskeleton provides shape, support, and structure to the cell, and plays important roles in cell division, intracellular transport, and maintenance of cell shape and integrity.

There are three main types of cytoskeletal proteins: actin filaments, intermediate filaments, and microtubules. Actin filaments are thin, rod-like structures that are involved in muscle contraction, cell motility, and cell division. Intermediate filaments are thicker than actin filaments and provide structural support to the cell. Microtubules are hollow tubes that are involved in intracellular transport, cell division, and maintenance of cell shape.

Cytoskeletal proteins are composed of different subunits that polymerize to form filamentous structures. These proteins can be dynamically assembled and disassembled, allowing cells to change their shape and move. Mutations in cytoskeletal proteins have been linked to various human diseases, including cancer, neurological disorders, and muscular dystrophies.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Microfilament proteins are a type of structural protein that form part of the cytoskeleton in eukaryotic cells. They are made up of actin monomers, which polymerize to form long, thin filaments. These filaments are involved in various cellular processes such as muscle contraction, cell division, and cell motility. Microfilament proteins also interact with other cytoskeletal components like intermediate filaments and microtubules to maintain the overall shape and integrity of the cell. Additionally, they play a crucial role in the formation of cell-cell junctions and cell-matrix adhesions, which are essential for tissue structure and function.

HSP70 heat-shock proteins are a family of highly conserved molecular chaperones that play a crucial role in protein folding and protection against stress-induced damage. They are named after the fact that they were first discovered in response to heat shock, but they are now known to be produced in response to various stressors, such as oxidative stress, inflammation, and exposure to toxins.

HSP70 proteins bind to exposed hydrophobic regions of unfolded or misfolded proteins, preventing their aggregation and assisting in their proper folding. They also help target irreversibly damaged proteins for degradation by the proteasome. In addition to their role in protein homeostasis, HSP70 proteins have been shown to have anti-inflammatory and immunomodulatory effects, making them a subject of interest in various therapeutic contexts.

A conserved sequence in the context of molecular biology refers to a pattern of nucleotides (in DNA or RNA) or amino acids (in proteins) that has remained relatively unchanged over evolutionary time. These sequences are often functionally important and are highly conserved across different species, indicating strong selection pressure against changes in these regions.

In the case of protein-coding genes, the corresponding amino acid sequence is deduced from the DNA sequence through the genetic code. Conserved sequences in proteins may indicate structurally or functionally important regions, such as active sites or binding sites, that are critical for the protein's activity. Similarly, conserved non-coding sequences in DNA may represent regulatory elements that control gene expression.

Identifying conserved sequences can be useful for inferring evolutionary relationships between species and for predicting the function of unknown genes or proteins.

Peptide chain initiation in translational terms refers to the process by which the synthesis of a protein begins on a ribosome. This is the first step in translation, where the small ribosomal subunit binds to an mRNA molecule at the start codon (usually AUG), bringing with it the initiator tRNA charged with a specific amino acid (often N-formylmethionine in prokaryotes or methionine in eukaryotes). The large ribosomal subunit then joins this complex, forming a functional initiation complex. This marks the beginning of the elongation phase, where subsequent amino acids are added to the growing peptide chain until termination is reached.

Gene knockdown techniques are methods used to reduce the expression or function of specific genes in order to study their role in biological processes. These techniques typically involve the use of small RNA molecules, such as siRNAs (small interfering RNAs) or shRNAs (short hairpin RNAs), which bind to and promote the degradation of complementary mRNA transcripts. This results in a decrease in the production of the protein encoded by the targeted gene.

Gene knockdown techniques are often used as an alternative to traditional gene knockout methods, which involve completely removing or disrupting the function of a gene. Knockdown techniques allow for more subtle and reversible manipulation of gene expression, making them useful for studying genes that are essential for cell survival or have redundant functions.

These techniques are widely used in molecular biology research to investigate gene function, genetic interactions, and disease mechanisms. However, it is important to note that gene knockdown can have off-target effects and may not completely eliminate the expression of the targeted gene, so results should be interpreted with caution.

Growth cones are specialized structures found at the tips of growing neurites (axons and dendrites) during the development and regeneration of the nervous system. They were first described by Santiago Ramón y Cajal in the late 19th century. Growth cones play a crucial role in the process of neurogenesis, guiding the extension and pathfinding of axons to their appropriate targets through a dynamic interplay with environmental cues. These cues include various guidance molecules, such as netrins, semaphorins, ephrins, and slits, which bind to receptors on the growth cone membrane and trigger intracellular signaling cascades that ultimately determine the direction of axonal outgrowth.

Morphologically, a growth cone consists of three main parts: the central domain (or "C-domain"), the peripheral domain (or "P-domain"), and the transition zone connecting them. The C-domain contains microtubules and neurofilaments, which provide structural support and transport materials to the growing neurite. The P-domain is rich in actin filaments and contains numerous membrane protrusions called filopodia and lamellipodia, which explore the environment for guidance cues and facilitate motility.

The dynamic behavior of growth cones allows them to navigate complex environments, make decisions at choice points, and ultimately form precise neural circuits during development. Understanding the mechanisms that regulate growth cone function is essential for developing strategies to promote neural repair and regeneration in various neurological disorders and injuries.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

PDZ domains are protein interaction modules, which are named after the first letters of three proteins in which they were originally discovered: PSD-95, DLG, and ZO-1. These domains are typically located at the C-terminal region of a protein and have a length of approximately 80-90 amino acids. They play a crucial role in organizing and assembling signaling complexes by binding to specific motifs found on other proteins, such as C-terminal PDZ-binding motifs or internal PDZ-binding sites. This ability to interact with multiple partners enables PDZ domains to function as molecular scaffolds that help regulate various cellular processes, including signal transduction, cell adhesion, and trafficking of proteins to specific subcellular locations.

Phosphoinositide Phospholipase C (PI-PLC) is an enzyme that plays a crucial role in intracellular signaling pathways. It catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid component of the cell membrane, into two second messengers: inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).

IP3 is responsible for triggering the release of calcium ions from intracellular stores, while DAG remains in the membrane and activates certain protein kinase C (PKC) isoforms. These second messengers then go on to modulate various cellular processes such as gene expression, metabolism, secretion, and cell growth or differentiation. PI-PLC exists in multiple isoforms, which are classified based on their structure and activation mechanisms. They can be activated by a variety of extracellular signals, including hormones, neurotransmitters, and growth factors, making them important components in signal transduction cascades.

Mitogen-Activated Protein Kinases (MAPKs) are a family of serine/threonine protein kinases that play crucial roles in various cellular processes, including proliferation, differentiation, transformation, and apoptosis, in response to diverse stimuli such as mitogens, growth factors, hormones, cytokines, and environmental stresses. They are highly conserved across eukaryotes and consist of a three-tiered kinase module composed of MAPK kinase kinases (MAP3Ks), MAPK kinases (MKKs or MAP2Ks), and MAPKs.

Activation of MAPKs occurs through a sequential phosphorylation and activation cascade, where MAP3Ks phosphorylate and activate MKKs, which in turn phosphorylate and activate MAPKs at specific residues (Thr-X-Tyr or Ser-Pro motifs). Once activated, MAPKs can further phosphorylate and regulate various downstream targets, including transcription factors and other protein kinases.

There are four major groups of MAPKs in mammals: extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 MAPKs (p38α/β/γ/δ), and ERK5/BMK1. Each group of MAPKs has distinct upstream activators, downstream targets, and cellular functions, allowing for a high degree of specificity in signal transduction and cellular responses. Dysregulation of MAPK signaling pathways has been implicated in various human diseases, including cancer, diabetes, neurodegenerative disorders, and inflammatory diseases.

SRC-family kinases (SFKs) are a group of non-receptor tyrosine kinases that play important roles in various cellular processes, including cell proliferation, differentiation, survival, and migration. They are named after the founding member, SRC, which was first identified as an oncogene in Rous sarcoma virus.

SFKs share a common structure, consisting of an N-terminal unique domain, a SH3 domain, a SH2 domain, a catalytic kinase domain, and a C-terminal regulatory tail with a negative regulatory tyrosine residue (Y527 in human SRC). In their inactive state, SFKs are maintained in a closed conformation through intramolecular interactions between the SH3 domain, SH2 domain, and the phosphorylated C-terminal tyrosine.

Upon activation by various signals, such as growth factors, cytokines, or integrin engagement, SFKs are activated through a series of events that involve dephosphorylation of the regulatory tyrosine residue, recruitment to membrane receptors via their SH2 and SH3 domains, and trans-autophosphorylation of the activation loop in the kinase domain.

Once activated, SFKs can phosphorylate a wide range of downstream substrates, including other protein kinases, adaptor proteins, and cytoskeletal components, thereby regulating various signaling pathways that control cell behavior. Dysregulation of SFK activity has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

A sequence deletion in a genetic context refers to the removal or absence of one or more nucleotides (the building blocks of DNA or RNA) from a specific region in a DNA or RNA molecule. This type of mutation can lead to the loss of genetic information, potentially resulting in changes in the function or expression of a gene. If the deletion involves a critical portion of the gene, it can cause diseases, depending on the role of that gene in the body. The size of the deleted sequence can vary, ranging from a single nucleotide to a large segment of DNA.

Macromolecular substances, also known as macromolecules, are large, complex molecules made up of repeating subunits called monomers. These substances are formed through polymerization, a process in which many small molecules combine to form a larger one. Macromolecular substances can be naturally occurring, such as proteins, DNA, and carbohydrates, or synthetic, such as plastics and synthetic fibers.

In the context of medicine, macromolecular substances are often used in the development of drugs and medical devices. For example, some drugs are designed to bind to specific macromolecules in the body, such as proteins or DNA, in order to alter their function and produce a therapeutic effect. Additionally, macromolecular substances may be used in the creation of medical implants, such as artificial joints and heart valves, due to their strength and durability.

It is important for healthcare professionals to have an understanding of macromolecular substances and how they function in the body, as this knowledge can inform the development and use of medical treatments.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

GTP-binding protein alpha subunits, Gs, are a type of heterotrimeric G proteins that play a crucial role in the transmission of signals within cells. These proteins are composed of three subunits: alpha, beta, and gamma. The alpha subunit of Gs proteins (Gs-alpha) is responsible for activating adenylyl cyclase, an enzyme that converts ATP to cyclic AMP (cAMP), a secondary messenger involved in various cellular processes.

When a G protein-coupled receptor (GPCR) is activated by an extracellular signal, it interacts with and activates the Gs protein. This activation causes the exchange of guanosine diphosphate (GDP) bound to the alpha subunit with guanosine triphosphate (GTP). The GTP-bound Gs-alpha then dissociates from the beta-gamma subunits and interacts with adenylyl cyclase, activating it and leading to an increase in cAMP levels. This signaling cascade ultimately results in various cellular responses, such as changes in gene expression, metabolism, or cell growth and differentiation.

It is important to note that mutations in the GNAS gene, which encodes the Gs-alpha subunit, can lead to several endocrine and non-endocrine disorders, such as McCune-Albright syndrome, fibrous dysplasia, and various hormone-related diseases.

Protein interaction mapping is a research approach used to identify and characterize the physical interactions between different proteins within a cell or organism. This process often involves the use of high-throughput experimental techniques, such as yeast two-hybrid screening, mass spectrometry-based approaches, or protein fragment complementation assays, to detect and quantify the binding affinities of protein pairs. The resulting data is then used to construct a protein interaction network, which can provide insights into functional relationships between proteins, help elucidate cellular pathways, and inform our understanding of biological processes in health and disease.

Myosin Type II, also known as myosin II or heavy meromyosin, is a type of motor protein involved in muscle contraction and other cellular movements. It is a hexameric protein composed of two heavy chains and four light chains. The heavy chains have a head domain that binds to actin filaments and an tail domain that forms a coiled-coil structure, allowing the formation of filaments. Myosin II uses the energy from ATP hydrolysis to move along actin filaments, generating force and causing muscle contraction or other cell movements. It plays a crucial role in various cellular processes such as cytokinesis, cell motility, and maintenance of cell shape.

G-protein-coupled receptors (GPCRs) are a family of membrane receptors that play an essential role in cellular signaling and communication. These receptors possess seven transmembrane domains, forming a structure that spans the lipid bilayer of the cell membrane. They are called "G-protein-coupled" because they interact with heterotrimeric G proteins upon activation, which in turn modulate various downstream signaling pathways.

When an extracellular ligand binds to a GPCR, it causes a conformational change in the receptor's structure, leading to the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on the associated G protein's α subunit. This exchange triggers the dissociation of the G protein into its α and βγ subunits, which then interact with various effector proteins to elicit cellular responses.

There are four main families of GPCRs, classified based on their sequence similarities and downstream signaling pathways:

1. Gq-coupled receptors: These receptors activate phospholipase C (PLC), which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces calcium release from intracellular stores, while DAG activates protein kinase C (PKC).
2. Gs-coupled receptors: These receptors activate adenylyl cyclase, which increases the production of cyclic adenosine monophosphate (cAMP) and subsequently activates protein kinase A (PKA).
3. Gi/o-coupled receptors: These receptors inhibit adenylyl cyclase, reducing cAMP levels and modulating PKA activity. Additionally, they can activate ion channels or regulate other signaling pathways through the βγ subunits.
4. G12/13-coupled receptors: These receptors primarily activate RhoGEFs, which in turn activate RhoA and modulate cytoskeletal organization and cellular motility.

GPCRs are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and sensory perception. Dysregulation of GPCR function has been implicated in numerous diseases, making them attractive targets for drug development.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Luminescent proteins are a type of protein that emit light through a chemical reaction, rather than by absorbing and re-emitting light like fluorescent proteins. This process is called bioluminescence. The light emitted by luminescent proteins is often used in scientific research as a way to visualize and track biological processes within cells and organisms.

One of the most well-known luminescent proteins is Green Fluorescent Protein (GFP), which was originally isolated from jellyfish. However, GFP is actually a fluorescent protein, not a luminescent one. A true example of a luminescent protein is the enzyme luciferase, which is found in fireflies and other bioluminescent organisms. When luciferase reacts with its substrate, luciferin, it produces light through a process called oxidation.

Luminescent proteins have many applications in research, including as reporters for gene expression, as markers for protein-protein interactions, and as tools for studying the dynamics of cellular processes. They are also used in medical imaging and diagnostics, as well as in the development of new therapies.

Proto-oncogene proteins c-RAF, also known as RAF kinases, are serine/threonine protein kinases that play crucial roles in regulating cell growth, differentiation, and survival. They are part of the RAS/RAF/MEK/ERK signaling pathway, which is a key intracellular signaling cascade that conveys signals from various extracellular stimuli, such as growth factors and hormones, to the nucleus.

The c-RAF protein exists in three isoforms: A-RAF, B-RAF, and C-RAF (also known as RAF-1). These isoforms share a common structure, consisting of several functional domains, including an N-terminal regulatory region, a central kinase domain, and a C-terminal autoinhibitory region. In their inactive state, c-RAF proteins are bound to the cell membrane through interactions with RAS GTPases and other regulatory proteins.

Upon activation of RAS GTPases by upstream signals, c-RAF becomes recruited to the plasma membrane, where it undergoes a conformational change that leads to its activation. Activated c-RAF then phosphorylates and activates MEK (MAPK/ERK kinase) proteins, which in turn phosphorylate and activate ERK (Extracellular Signal-Regulated Kinase) proteins. Activated ERK proteins can translocate to the nucleus and regulate the expression of various genes involved in cell growth, differentiation, and survival.

Mutations in c-RAF proto-oncogenes can lead to their constitutive activation, resulting in uncontrolled cell growth and division, which can contribute to the development of various types of cancer. In particular, B-RAF mutations have been identified in several human malignancies, including melanoma, colorectal cancer, and thyroid cancer.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Peptide elongation factors are a group of proteins that play a crucial role in the process of protein synthesis in cells, specifically during the elongation stage of translation. They assist in the addition of amino acids to the growing polypeptide chain by facilitating the binding of aminoacyl-tRNAs (transfer RNAs with attached amino acids) to the ribosome, where protein synthesis occurs.

In prokaryotic cells, there are two main peptide elongation factors: EF-Tu and EF-G. EF-Tu forms a complex with aminoacyl-tRNA and delivers it to the ribosome's acceptor site (A-site), where the incoming amino acid is matched with the corresponding codon on the mRNA. Once the correct match is made, GTP hydrolysis occurs, releasing EF-Tu from the complex, allowing for peptide bond formation between the new amino acid and the growing polypeptide chain.

EF-G then enters the scene to facilitate translocation, the movement of the ribosome along the mRNA, which shifts the newly formed peptidyl-tRNA from the A-site to the P-site (peptidyl-tRNA site) and makes room for another aminoacyl-tRNA in the A-site. This process continues until protein synthesis is complete.

In eukaryotic cells, the equivalent proteins are called EF1α, EF1β, EF1γ, and EF2 (also known as eEF1A, eEF1B, eEF1G, and eEF2). The overall function remains similar to that in prokaryotes, but the specific mechanisms and protein names differ.

'Caenorhabditis elegans' (C. elegans) is a type of free-living, transparent nematode (roundworm) that is often used as a model organism in scientific research. C. elegans proteins refer to the various types of protein molecules that are produced by the organism's genes and play crucial roles in maintaining its biological functions.

Proteins are complex molecules made up of long chains of amino acids, and they are involved in virtually every cellular process, including metabolism, DNA replication, signal transduction, and transportation of molecules within the cell. In C. elegans, proteins are encoded by genes, which are transcribed into messenger RNA (mRNA) molecules that are then translated into protein sequences by ribosomes.

Studying C. elegans proteins is important for understanding the basic biology of this organism and can provide insights into more complex biological systems, including humans. Because C. elegans has a relatively simple nervous system and a short lifespan, it is often used to study neurobiology, aging, and development. Additionally, because many of the genes and proteins in C. elegans have counterparts in other organisms, including humans, studying them can provide insights into human disease processes and potential therapeutic targets.

Adenine nucleotides are molecules that consist of a nitrogenous base called adenine, which is linked to a sugar molecule (ribose in the case of adenosine monophosphate or AMP, and deoxyribose in the case of adenosine diphosphate or ADP and adenosine triphosphate or ATP) and one, two, or three phosphate groups. These molecules play a crucial role in energy transfer and metabolism within cells.

AMP contains one phosphate group, while ADP contains two phosphate groups, and ATP contains three phosphate groups. When a phosphate group is removed from ATP, energy is released, which can be used to power various cellular processes such as muscle contraction, nerve impulse transmission, and protein synthesis. The reverse reaction, in which a phosphate group is added back to ADP or AMP to form ATP, requires energy input and often involves the breakdown of nutrients such as glucose or fatty acids.

In addition to their role in energy metabolism, adenine nucleotides also serve as precursors for other important molecules, including DNA and RNA, coenzymes, and signaling molecules.

Protein interaction domains and motifs refer to specific regions or sequences within proteins that are involved in mediating interactions between two or more proteins. These elements can be classified into two main categories: domains and motifs.

Domains are structurally conserved regions of a protein that can fold independently and perform specific functions, such as binding to other molecules like DNA, RNA, or other proteins. They typically range from 25 to 500 amino acids in length and can be found in multiple copies within a single protein or shared among different proteins.

Motifs, on the other hand, are shorter sequences of 3-10 amino acids that mediate more localized interactions with other molecules. Unlike domains, motifs may not have well-defined structures and can be found in various contexts within a protein.

Together, these protein interaction domains and motifs play crucial roles in many biological processes, including signal transduction, gene regulation, enzyme function, and protein complex formation. Understanding the specificity and dynamics of these interactions is essential for elucidating cellular functions and developing therapeutic strategies.

JNK (c-Jun N-terminal kinase) Mitogen-Activated Protein Kinases are a subgroup of the Ser/Thr protein kinases that are activated by stress stimuli and play important roles in various cellular processes, including inflammation, apoptosis, and differentiation. They are involved in the regulation of gene expression through phosphorylation of transcription factors such as c-Jun. JNKs are activated by a variety of upstream kinases, including MAP2Ks (MKK4/SEK1 and MKK7), which are in turn activated by MAP3Ks (such as ASK1, MEKK1, MLKs, and TAK1). JNK signaling pathways have been implicated in various diseases, including cancer, neurodegenerative disorders, and inflammatory diseases.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

RGS (Regulator of G-protein Signaling) proteins are a group of regulatory molecules that interact with and modulate the activity of heterotrimeric G proteins, which are involved in various cellular signaling pathways. These proteins contain a conserved RGS domain, which functions as a GTPase-activating protein (GAP) for the alpha subunit of G proteins, thereby promoting the hydrolysis of GTP to GDP and terminating the signal transduction process. By regulating G protein signaling, RGS proteins play crucial roles in various physiological processes, including neurotransmission, cardiovascular function, immune response, and cell growth and differentiation. Dysregulation of RGS proteins has been implicated in several diseases, such as hypertension, cancer, and neurological disorders.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Ras genes are a group of genes that encode for proteins involved in cell signaling pathways that regulate cell growth, differentiation, and survival. Mutations in Ras genes have been associated with various types of cancer, as well as other diseases such as developmental disorders and autoimmune diseases. The Ras protein family includes H-Ras, K-Ras, and N-Ras, which are activated by growth factor receptors and other signals to activate downstream effectors involved in cell proliferation and survival. Abnormal activation of Ras signaling due to mutations or dysregulation can contribute to tumor development and progression.

Lysophospholipids are a type of glycerophospholipid, which is a major component of cell membranes. They are characterized by having only one fatty acid chain attached to the glycerol backbone, as opposed to two in regular phospholipids. This results in a more polar and charged molecule, which can play important roles in cell signaling and regulation.

Lysophospholipids can be derived from the breakdown of regular phospholipids through the action of enzymes such as phospholipase A1 or A2. They can also be synthesized de novo in the cell. Some lysophospholipids, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), have been found to act as signaling molecules that bind to specific G protein-coupled receptors and regulate various cellular processes, including proliferation, survival, and migration.

Abnormal levels of lysophospholipids have been implicated in several diseases, such as cancer, inflammation, and neurological disorders. Therefore, understanding the biology of lysophospholipids has important implications for developing new therapeutic strategies.

Epidermal Growth Factor (EGF) is a small polypeptide that plays a significant role in various biological processes, including cell growth, proliferation, differentiation, and survival. It primarily binds to the Epidermal Growth Factor Receptor (EGFR) on the surface of target cells, leading to the activation of intracellular signaling pathways that regulate these functions.

EGF is naturally produced in various tissues, such as the skin, and is involved in wound healing, tissue regeneration, and maintaining the integrity of epithelial tissues. In addition to its physiological roles, EGF has been implicated in several pathological conditions, including cancer, where it can contribute to tumor growth and progression by promoting cell proliferation and survival.

As a result, EGF and its signaling pathways have become targets for therapeutic interventions in various diseases, particularly cancer. Inhibitors of EGFR or downstream signaling components are used in the treatment of several types of malignancies, such as non-small cell lung cancer, colorectal cancer, and head and neck cancer.

Mitogen-activated protein kinase (MAPK) signaling system is a crucial pathway for the transmission and regulation of various cellular responses in eukaryotic cells. It plays a significant role in several biological processes, including proliferation, differentiation, apoptosis, inflammation, and stress response. The MAPK cascade consists of three main components: MAP kinase kinase kinase (MAP3K or MEKK), MAP kinase kinase (MAP2K or MEK), and MAP kinase (MAPK).

The signaling system is activated by various extracellular stimuli, such as growth factors, cytokines, hormones, and stress signals. These stimuli initiate a phosphorylation cascade that ultimately leads to the activation of MAPKs. The activated MAPKs then translocate into the nucleus and regulate gene expression by phosphorylating various transcription factors and other regulatory proteins.

There are four major MAPK families: extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 MAPKs (p38α/β/γ/δ), and ERK5. Each family has distinct functions, substrates, and upstream activators. Dysregulation of the MAPK signaling system can lead to various diseases, including cancer, diabetes, cardiovascular diseases, and neurological disorders. Therefore, understanding the molecular mechanisms underlying this pathway is crucial for developing novel therapeutic strategies.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Cytoplasm is the material within a eukaryotic cell (a cell with a true nucleus) that lies between the nuclear membrane and the cell membrane. It is composed of an aqueous solution called cytosol, in which various organelles such as mitochondria, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, and vacuoles are suspended. Cytoplasm also contains a variety of dissolved nutrients, metabolites, ions, and enzymes that are involved in various cellular processes such as metabolism, signaling, and transport. It is where most of the cell's metabolic activities take place, and it plays a crucial role in maintaining the structure and function of the cell.

Exocytosis is the process by which cells release molecules, such as hormones or neurotransmitters, to the extracellular space. This process involves the transport of these molecules inside vesicles (membrane-bound sacs) to the cell membrane, where they fuse and release their contents to the outside of the cell. It is a crucial mechanism for intercellular communication and the regulation of various physiological processes in the body.

Phospholipase D is an enzyme that catalyzes the hydrolysis of phosphatidylcholine and other glycerophospholipids to produce phosphatidic acid and a corresponding alcohol. This reaction plays a crucial role in various cellular processes, including signal transduction, membrane trafficking, and lipid metabolism. There are several isoforms of Phospholipase D identified in different tissues and organisms, each with distinct regulatory mechanisms and functions. The enzyme's activity can be modulated by various factors such as calcium ions, protein kinases, and G proteins, making it a critical component in the regulation of cellular homeostasis.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Microtubules are hollow, cylindrical structures composed of tubulin proteins in the cytoskeleton of eukaryotic cells. They play crucial roles in various cellular processes such as maintaining cell shape, intracellular transport, and cell division (mitosis and meiosis). Microtubules are dynamic, undergoing continuous assembly and disassembly, which allows them to rapidly reorganize in response to cellular needs. They also form part of important cellular structures like centrioles, basal bodies, and cilia/flagella.

A "gene library" is not a recognized term in medical genetics or molecular biology. However, the closest concept that might be referred to by this term is a "genomic library," which is a collection of DNA clones that represent the entire genetic material of an organism. These libraries are used for various research purposes, such as identifying and studying specific genes or gene functions.

'Drosophila proteins' refer to the proteins that are expressed in the fruit fly, Drosophila melanogaster. This organism is a widely used model system in genetics, developmental biology, and molecular biology research. The study of Drosophila proteins has contributed significantly to our understanding of various biological processes, including gene regulation, cell signaling, development, and aging.

Some examples of well-studied Drosophila proteins include:

1. HSP70 (Heat Shock Protein 70): A chaperone protein involved in protein folding and protection from stress conditions.
2. TUBULIN: A structural protein that forms microtubules, important for cell division and intracellular transport.
3. ACTIN: A cytoskeletal protein involved in muscle contraction, cell motility, and maintenance of cell shape.
4. BETA-GALACTOSIDASE (LACZ): A reporter protein often used to monitor gene expression patterns in transgenic flies.
5. ENDOGLIN: A protein involved in the development of blood vessels during embryogenesis.
6. P53: A tumor suppressor protein that plays a crucial role in preventing cancer by regulating cell growth and division.
7. JUN-KINASE (JNK): A signaling protein involved in stress response, apoptosis, and developmental processes.
8. DECAPENTAPLEGIC (DPP): A member of the TGF-β (Transforming Growth Factor Beta) superfamily, playing essential roles in embryonic development and tissue homeostasis.

These proteins are often studied using various techniques such as biochemistry, genetics, molecular biology, and structural biology to understand their functions, interactions, and regulation within the cell.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

1. Receptors: In the context of physiology and medicine, receptors are specialized proteins found on the surface of cells or inside cells that detect and respond to specific molecules, known as ligands. These interactions can trigger a range of responses within the cell, such as starting a signaling pathway or changing the cell's behavior. There are various types of receptors, including ion channels, G protein-coupled receptors, and enzyme-linked receptors.

2. Antigen: An antigen is any substance (usually a protein) that can be recognized by the immune system, specifically by antibodies or T-cells, as foreign and potentially harmful. Antigens can be derived from various sources, such as bacteria, viruses, fungi, parasites, or even non-living substances like pollen, chemicals, or toxins. An antigen typically contains epitopes, which are the specific regions that antibodies or T-cell receptors recognize and bind to.

3. T-Cell: Also known as T lymphocytes, T-cells are a type of white blood cell that plays a crucial role in cell-mediated immunity, a part of the adaptive immune system. They are produced in the bone marrow and mature in the thymus gland. There are several types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs). T-cells recognize antigens presented to them by antigen-presenting cells (APCs) via their surface receptors called the T-cell receptor (TCR). Once activated, T-cells can proliferate and differentiate into various effector cells that help eliminate infected or damaged cells.

Serum Response Factor (SRF) is a transcription factor that binds to the serum response element (SRE) in the promoter region of many immediate early genes and some cell type-specific genes. SRF plays a crucial role in regulating various cellular processes, including gene expression related to differentiation, proliferation, and survival of cells. It is activated by various signals such as growth factors, cytokines, and mechanical stress, which leads to changes in the actin cytoskeleton and gene transcription. SRF also interacts with other cofactors to modulate its transcriptional activity, contributing to the specificity of gene regulation in different cell types.

Protein-Tyrosine Kinases (PTKs) are a type of enzyme that plays a crucial role in various cellular functions, including signal transduction, cell growth, differentiation, and metabolism. They catalyze the transfer of a phosphate group from ATP to the tyrosine residues of proteins, thereby modifying their activity, localization, or interaction with other molecules.

PTKs can be divided into two main categories: receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). RTKs are transmembrane proteins that become activated upon binding to specific ligands, such as growth factors or hormones. NRTKs, on the other hand, are intracellular enzymes that can be activated by various signals, including receptor-mediated signaling and intracellular messengers.

Dysregulation of PTK activity has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders. Therefore, PTKs are important targets for drug development and therapy.

Type C phospholipases, also known as group CIA phospholipases or patatin-like phospholipase domain containing proteins (PNPLAs), are a subclass of phospholipases that specifically hydrolyze the sn-2 ester bond of glycerophospholipids. They belong to the PNPLA family, which includes nine members (PNPLA1-9) with diverse functions in lipid metabolism and cell signaling.

Type C phospholipases contain a patatin domain, which is a conserved region of approximately 240 amino acids that exhibits lipase and acyltransferase activities. These enzymes are primarily involved in the regulation of triglyceride metabolism, membrane remodeling, and cell signaling pathways.

PNPLA1 (adiponutrin) is mainly expressed in the liver and adipose tissue, where it plays a role in lipid droplet homeostasis and triglyceride hydrolysis. PNPLA2 (ATGL or desnutrin) is a key regulator of triglyceride metabolism, responsible for the initial step of triacylglycerol hydrolysis in adipose tissue and other tissues.

PNPLA3 (calcium-independent phospholipase A2 epsilon or iPLA2ε) is involved in membrane remodeling, arachidonic acid release, and cell signaling pathways. Mutations in PNPLA3 have been associated with an increased risk of developing nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease, and hepatic steatosis.

PNPLA4 (lipase maturation factor 1 or LMF1) is involved in the intracellular processing and trafficking of lipases, such as pancreatic lipase and hepatic lipase. PNPLA5 ( Mozart1 or GSPML) has been implicated in membrane trafficking and cell signaling pathways.

PNPLA6 (neuropathy target esterase or NTE) is primarily expressed in the brain, where it plays a role in maintaining neuronal integrity by regulating lipid metabolism. Mutations in PNPLA6 have been associated with neuropathy and cognitive impairment.

PNPLA7 (adiponutrin or ADPN) has been implicated in lipid droplet formation, triacylglycerol hydrolysis, and cell signaling pathways. Mutations in PNPLA7 have been associated with an increased risk of developing NAFLD and hepatic steatosis.

PNPLA8 (diglyceride lipase or DGLα) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA9 (calcium-independent phospholipase A2 gamma or iPLA2γ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA10 (calcium-independent phospholipase A2 delta or iPLA2δ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA11 (calcium-independent phospholipase A2 epsilon or iPLA2ε) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA12 (calcium-independent phospholipase A2 zeta or iPLA2ζ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA13 (calcium-independent phospholipase A2 eta or iPLA2η) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA14 (calcium-independent phospholipase A2 theta or iPLA2θ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA15 (calcium-independent phospholipase A2 iota or iPLA2ι) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA16 (calcium-independent phospholipase A2 kappa or iPLA2κ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA17 (calcium-independent phospholipase A2 lambda or iPLA2λ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA18 (calcium-independent phospholipase A2 mu or iPLA2μ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA19 (calcium-independent phospholipase A2 nu or iPLA2ν) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA20 (calcium-independent phospholipase A2 xi or iPLA2ξ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA21 (calcium-independent phospholipase A2 omicron or iPLA2ο) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA22 (calcium-independent phospholipase A2 pi or iPLA2π) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA23 (calcium-independent phospholipase A2 rho or iPLA2ρ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA24 (calcium-independent phospholipase A2 sigma or iPLA2σ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA25 (calcium-independent phospholipase A2 tau or iPLA2τ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA26 (calcium-independent phospholipase A2 upsilon or iPLA2υ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA27 (calcium-independent phospholipase A2 phi or iPLA2φ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA28 (calcium-independent phospholipase A2 chi or iPLA2χ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA29 (calcium-independent phospholipase A2 psi or iPLA2ψ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA30 (calcium-independent phospholipase A2 omega or iPLA2ω) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA31 (calcium-independent phospholipase A2 pi or iPLA2π) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA32 (calcium-independent phospholipase A2 rho or iPLA2ρ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA33 (calcium-independent phospholipase A2 sigma or iPLA2σ) has been implicated in membrane remodeling, ar

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

A "cell line, transformed" is a type of cell culture that has undergone a stable genetic alteration, which confers the ability to grow indefinitely in vitro, outside of the organism from which it was derived. These cells have typically been immortalized through exposure to chemical or viral carcinogens, or by introducing specific oncogenes that disrupt normal cell growth regulation pathways.

Transformed cell lines are widely used in scientific research because they offer a consistent and renewable source of biological material for experimentation. They can be used to study various aspects of cell biology, including signal transduction, gene expression, drug discovery, and toxicity testing. However, it is important to note that transformed cells may not always behave identically to their normal counterparts, and results obtained using these cells should be validated in more physiologically relevant systems when possible.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Vacuoles are membrane-bound organelles found in the cells of most eukaryotic organisms. They are essentially fluid-filled sacs that store various substances, such as enzymes, waste products, and nutrients. In plants, vacuoles often contain water, ions, and various organic compounds, while in fungi, they may store lipids or pigments. Vacuoles can also play a role in maintaining the turgor pressure of cells, which is critical for cell shape and function.

In animal cells, vacuoles are typically smaller and less numerous than in plant cells. Animal cells have lysosomes, which are membrane-bound organelles that contain digestive enzymes and break down waste materials, cellular debris, and foreign substances. Lysosomes can be considered a type of vacuole, but they are more specialized in their function.

Overall, vacuoles are essential for maintaining the health and functioning of cells by providing a means to store and dispose of various substances.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Confocal microscopy is a powerful imaging technique used in medical and biological research to obtain high-resolution, contrast-rich images of thick samples. This super-resolution technology provides detailed visualization of cellular structures and processes at various depths within a specimen.

In confocal microscopy, a laser beam focused through a pinhole illuminates a small spot within the sample. The emitted fluorescence or reflected light from this spot is then collected by a detector, passing through a second pinhole that ensures only light from the focal plane reaches the detector. This process eliminates out-of-focus light, resulting in sharp images with improved contrast compared to conventional widefield microscopy.

By scanning the laser beam across the sample in a raster pattern and collecting fluorescence at each point, confocal microscopy generates optical sections of the specimen. These sections can be combined to create three-dimensional reconstructions, allowing researchers to study cellular architecture and interactions within complex tissues.

Confocal microscopy has numerous applications in medical research, including studying protein localization, tracking intracellular dynamics, analyzing cell morphology, and investigating disease mechanisms at the cellular level. Additionally, it is widely used in clinical settings for diagnostic purposes, such as analyzing skin lesions or detecting pathogens in patient samples.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Calcium-calmodulin-dependent protein kinases (CAMKs) are a family of enzymes that play a crucial role in intracellular signaling pathways. They are activated by the binding of calcium ions and calmodulin, a ubiquitous calcium-binding protein, to their regulatory domain.

Once activated, CAMKs phosphorylate specific serine or threonine residues on target proteins, thereby modulating their activity, localization, or stability. This post-translational modification is essential for various cellular processes, including synaptic plasticity, gene expression, metabolism, and cell cycle regulation.

There are several subfamilies of CAMKs, including CaMKI, CaMKII, CaMKIII (also known as CaMKIV), and CaMK kinase (CaMKK). Each subfamily has distinct structural features, substrate specificity, and regulatory mechanisms. Dysregulation of CAMK signaling has been implicated in various pathological conditions, such as neurodegenerative diseases, cancer, and cardiovascular disorders.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Luciferases are a class of enzymes that catalyze the oxidation of their substrates, leading to the emission of light. This bioluminescent process is often associated with certain species of bacteria, insects, and fish. The term "luciferase" comes from the Latin word "lucifer," which means "light bearer."

The most well-known example of luciferase is probably that found in fireflies, where the enzyme reacts with a compound called luciferin to produce light. This reaction requires the presence of oxygen and ATP (adenosine triphosphate), which provides the energy needed for the reaction to occur.

Luciferases have important applications in scientific research, particularly in the development of sensitive assays for detecting gene expression and protein-protein interactions. By labeling a protein or gene of interest with luciferase, researchers can measure its activity by detecting the light emitted during the enzymatic reaction. This allows for highly sensitive and specific measurements, making luciferases valuable tools in molecular biology and biochemistry.

Dimerization is a process in which two molecules, usually proteins or similar structures, bind together to form a larger complex. This can occur through various mechanisms, such as the formation of disulfide bonds, hydrogen bonding, or other non-covalent interactions. Dimerization can play important roles in cell signaling, enzyme function, and the regulation of gene expression.

In the context of medical research and therapy, dimerization is often studied in relation to specific proteins that are involved in diseases such as cancer. For example, some drugs have been developed to target and inhibit the dimerization of certain proteins, with the goal of disrupting their function and slowing or stopping the progression of the disease.

Peptide Elongation Factor Tu, also known as EF-Tu or Tuf, is a protein involved in the process of protein synthesis in prokaryotic cells. It plays a crucial role in the elongation phase of translation, where it facilitates the addition of amino acids to the growing polypeptide chain during protein synthesis.

EF-Tu functions as a binding protein for aminoacyl-tRNA (transfer RNA) complexes. In this role, EF-Tu forms a ternary complex with GTP (guanosine triphosphate) and an aminoacyl-tRNA, which then binds to the A (acceptor) site of the small ribosomal subunit. Once aligned, the GTP in the EF-Tu-tRNA complex is hydrolyzed to GDP (guanosine diphosphate), causing a conformational change that releases the aminoacyl-tRNA into the A site for peptide bond formation.

After releasing the tRNA, EF-Tu recharges with another GTP molecule and is ready to form another ternary complex, thus continuing its role in the elongation of protein synthesis. The recycling of EF-Tu between GDP and GTP forms is facilitated by another elongation factor, EF-Ts (or Tsf).

In summary, Peptide Elongation Factor Tu (EF-Tu) is a vital protein in prokaryotic cells that binds to aminoacyl-tRNA and GTP, forming a ternary complex. This complex delivers the aminoacyl-tRNA to the ribosome for peptide bond formation during protein synthesis elongation.

Serine is an amino acid, which is a building block of proteins. More specifically, it is a non-essential amino acid, meaning that the body can produce it from other compounds, and it does not need to be obtained through diet. Serine plays important roles in the body, such as contributing to the formation of the protective covering of nerve fibers (myelin sheath), helping to synthesize another amino acid called tryptophan, and taking part in the metabolism of fatty acids. It is also involved in the production of muscle tissues, the immune system, and the forming of cell structures. Serine can be found in various foods such as soy, eggs, cheese, meat, peanuts, lentils, and many others.

Subcellular fractions refer to the separation and collection of specific parts or components of a cell, including organelles, membranes, and other structures, through various laboratory techniques such as centrifugation and ultracentrifugation. These fractions can be used in further biochemical and molecular analyses to study the structure, function, and interactions of individual cellular components. Examples of subcellular fractions include nuclear extracts, mitochondrial fractions, microsomal fractions (membrane vesicles), and cytosolic fractions (cytoplasmic extracts).

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Purine nucleotides are fundamental units of life that play crucial roles in various biological processes. A purine nucleotide is a type of nucleotide, which is the basic building block of nucleic acids such as DNA and RNA. Nucleotides consist of a nitrogenous base, a pentose sugar, and at least one phosphate group.

In purine nucleotides, the nitrogenous bases are either adenine (A) or guanine (G). These bases are attached to a five-carbon sugar called ribose in the case of RNA or deoxyribose for DNA. The sugar and base together form the nucleoside, while the addition of one or more phosphate groups creates the nucleotide.

Purine nucleotides have several vital functions within cells:

1. Energy currency: Adenosine triphosphate (ATP) is a purine nucleotide that serves as the primary energy currency in cells, storing and transferring chemical energy for various cellular processes.
2. Genetic material: Both DNA and RNA contain purine nucleotides as essential components of their structures. Adenine pairs with thymine (in DNA) or uracil (in RNA), while guanine pairs with cytosine.
3. Signaling molecules: Purine nucleotides, such as adenosine monophosphate (AMP) and cyclic adenosine monophosphate (cAMP), act as intracellular signaling molecules that regulate various cellular functions, including metabolism, gene expression, and cell growth.
4. Coenzymes: Purine nucleotides can also function as coenzymes, assisting enzymes in catalyzing biochemical reactions. For example, nicotinamide adenine dinucleotide (NAD+) is a purine nucleotide that plays a critical role in redox reactions and energy metabolism.

In summary, purine nucleotides are essential biological molecules involved in various cellular functions, including energy transfer, genetic material formation, intracellular signaling, and enzyme cofactor activity.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Phosphotyrosine is not a medical term per se, but rather a biochemical term used in the field of medicine and life sciences.

Phosphotyrosine is a post-translational modification of tyrosine residues in proteins, where a phosphate group is added to the hydroxyl side chain of tyrosine by protein kinases. This modification plays a crucial role in intracellular signaling pathways and regulates various cellular processes such as cell growth, differentiation, and apoptosis. Abnormalities in phosphotyrosine-mediated signaling have been implicated in several diseases, including cancer and diabetes.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Dendritic spines are small, specialized protrusions found on the dendrites of neurons, which are cells that transmit information in the nervous system. These structures receive and process signals from other neurons. Dendritic spines have a small head connected to the dendrite by a thin neck, and they vary in shape, size, and number depending on the type of neuron and its function. They are dynamic structures that can change their morphology and strength of connections with other neurons in response to various stimuli, such as learning and memory processes.

Gene expression regulation in fungi refers to the complex cellular processes that control the production of proteins and other functional gene products in response to various internal and external stimuli. This regulation is crucial for normal growth, development, and adaptation of fungal cells to changing environmental conditions.

In fungi, gene expression is regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational modifications. Key regulatory mechanisms include:

1. Transcription factors (TFs): These proteins bind to specific DNA sequences in the promoter regions of target genes and either activate or repress their transcription. Fungi have a diverse array of TFs that respond to various signals, such as nutrient availability, stress, developmental cues, and quorum sensing.
2. Chromatin remodeling: The organization and compaction of DNA into chromatin can influence gene expression. Fungi utilize ATP-dependent chromatin remodeling complexes and histone modifying enzymes to alter chromatin structure, thereby facilitating or inhibiting the access of transcriptional machinery to genes.
3. Non-coding RNAs: Small non-coding RNAs (sncRNAs) play a role in post-transcriptional regulation of gene expression in fungi. These sncRNAs can guide RNA-induced transcriptional silencing (RITS) complexes to specific target loci, leading to the repression of gene expression through histone modifications and DNA methylation.
4. Alternative splicing: Fungi employ alternative splicing mechanisms to generate multiple mRNA isoforms from a single gene, thereby increasing proteome diversity. This process can be regulated by RNA-binding proteins that recognize specific sequence motifs in pre-mRNAs and promote or inhibit splicing events.
5. Protein stability and activity: Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and sumoylation, can influence their stability, localization, and activity. These PTMs play a crucial role in regulating various cellular processes, including signal transduction, stress response, and cell cycle progression.

Understanding the complex interplay between these regulatory mechanisms is essential for elucidating the molecular basis of fungal development, pathogenesis, and drug resistance. This knowledge can be harnessed to develop novel strategies for combating fungal infections and improving agricultural productivity.

A "reporter gene" is a type of gene that is linked to a gene of interest in order to make the expression or activity of that gene detectable. The reporter gene encodes for a protein that can be easily measured and serves as an indicator of the presence and activity of the gene of interest. Commonly used reporter genes include those that encode for fluorescent proteins, enzymes that catalyze colorimetric reactions, or proteins that bind to specific molecules.

In the context of genetics and genomics research, a reporter gene is often used in studies involving gene expression, regulation, and function. By introducing the reporter gene into an organism or cell, researchers can monitor the activity of the gene of interest in real-time or after various experimental treatments. The information obtained from these studies can help elucidate the role of specific genes in biological processes and diseases, providing valuable insights for basic research and therapeutic development.

I apologize for any confusion, but "Schizosaccharomyces" is not a medical term. It is a genus name in the field of microbiology and genetics, referring to a group of budding, tear-shaped yeasts that are widely used as model organisms in scientific research. The most well-known species within this genus is Schizosaccharomyces pombe, which has been extensively studied for its cell cycle regulation, DNA repair mechanisms, and other fundamental biological processes.

If you have any questions related to medical terminology or health-related topics, I would be happy to help.

RAB4 GTP-binding proteins are a subfamily of RAB proteins, which are small guanosine triphosphatases (GTPases) that play crucial roles in regulating intracellular vesicle trafficking. Specifically, RAB4 GTP-binding proteins are involved in the early stages of endocytic recycling, a process by which internalized membrane receptors and cargo are transported back to the plasma membrane for reuse.

RAB4 proteins exist in two distinct conformational states: an active, GTP-bound state and an inactive, GDP-bound state. In the active state, RAB4 proteins interact with various effector molecules to facilitate vesicle transport and fusion events. Upon hydrolysis of GTP to GDP, RAB4 proteins switch to their inactive state, which leads to dissociation from effector molecules and subsequent recycling of the RAB4 protein back to the donor membrane compartment.

There are two isoforms of RAB4 proteins, RAB4A and RAB4B, which share a high degree of sequence similarity but have distinct cellular localization patterns and functions. Dysregulation of RAB4 GTP-binding proteins has been implicated in various human diseases, including cancer and neurodegenerative disorders.

'Caenorhabditis elegans' is a species of free-living, transparent nematode (roundworm) that is widely used as a model organism in scientific research, particularly in the fields of biology and genetics. It has a simple anatomy, short lifespan, and fully sequenced genome, making it an ideal subject for studying various biological processes and diseases.

Some notable features of C. elegans include:

* Small size: Adult hermaphrodites are about 1 mm in length.
* Short lifespan: The average lifespan of C. elegans is around 2-3 weeks, although some strains can live up to 4 weeks under laboratory conditions.
* Development: C. elegans has a well-characterized developmental process, with adults developing from eggs in just 3 days at 20°C.
* Transparency: The transparent body of C. elegans allows researchers to observe its internal structures and processes easily.
* Genetics: C. elegans has a fully sequenced genome, which contains approximately 20,000 genes. Many of these genes have human homologs, making it an excellent model for studying human diseases.
* Neurobiology: C. elegans has a simple nervous system, with only 302 neurons in the hermaphrodite and 383 in the male. This simplicity makes it an ideal organism for studying neural development, function, and behavior.

Research using C. elegans has contributed significantly to our understanding of various biological processes, including cell division, apoptosis, aging, learning, and memory. Additionally, studies on C. elegans have led to the discovery of many genes associated with human diseases such as cancer, neurodegenerative disorders, and metabolic conditions.

Phosphatidylinositol 4,5-Diphosphate (PIP2) is a phospholipid molecule that plays a crucial role as a secondary messenger in various cell signaling pathways. It is a constituent of the inner leaflet of the plasma membrane and is formed by the phosphorylation of Phosphatidylinositol 4-Phosphate (PIP) at the 5th position of the inositol ring by enzyme Phosphoinositide kinase.

PIP2 is involved in several cellular processes, including regulation of ion channels, cytoskeleton dynamics, and membrane trafficking. It also acts as a substrate for the generation of two important secondary messengers, Inositol 1,4,5-Trisphosphate (IP3) and Diacylglycerol (DAG), which are produced by the action of Phospholipase C enzyme in response to various extracellular signals. These second messengers then mediate a variety of cellular responses such as calcium mobilization, gene expression, and cell proliferation.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Transducin is a G protein found in the rod cells of the retina and plays a crucial role in the visual signal transduction pathway. It is responsible for converting the light-induced isomerization of rhodopsin into a biochemical signal, which ultimately leads to the activation of downstream effectors and the generation of a neural response.

Transducin has three subunits: alpha (Tα), beta (Tβ), and gamma (Tγ). When light activates rhodopsin, it interacts with the Tα subunit, causing it to exchange GDP for GTP and dissociate from the Tβγ complex. The activated Tα then interacts with a downstream effector called phosphodiesterase (PDE), which leads to the hydrolysis of cGMP and the closure of cGMP-gated ion channels in the plasma membrane. This results in the hyperpolarization of the rod cell, which is the initial step in the visual signal transduction pathway.

Overall, transducin is a key player in the conversion of light energy into neural signals, allowing us to see and perceive our visual world.

A mutant protein is a protein that has undergone a genetic mutation, resulting in an altered amino acid sequence and potentially changed structure and function. These changes can occur due to various reasons such as errors during DNA replication, exposure to mutagenic substances, or inherited genetic disorders. The alterations in the protein's structure and function may have no significant effects, lead to benign phenotypic variations, or cause diseases, depending on the type and location of the mutation. Some well-known examples of diseases caused by mutant proteins include cystic fibrosis, sickle cell anemia, and certain types of cancer.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Phosphatidylinositols (PIs) are a type of phospholipid that are abundant in the cell membrane. They contain a glycerol backbone, two fatty acid chains, and a head group consisting of myo-inositol, a cyclic sugar molecule, linked to a phosphate group.

Phosphatidylinositols can be phosphorylated at one or more of the hydroxyl groups on the inositol ring, forming various phosphoinositides (PtdInsPs) with different functions. These signaling molecules play crucial roles in regulating cellular processes such as membrane trafficking, cytoskeletal organization, and signal transduction pathways that control cell growth, differentiation, and survival.

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a prominent phosphoinositide involved in the regulation of ion channels, enzymes, and cytoskeletal proteins. Upon activation of certain receptors, PIP2 can be cleaved by the enzyme phospholipase C into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3), which act as second messengers to trigger downstream signaling events.

Inosine Monophosphate Dehydrogenase (IMDH or IMPDH) is an enzyme that is involved in the de novo biosynthesis of guanine nucleotides. It catalyzes the conversion of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), which is the rate-limiting step in the synthesis of guanosine triphosphate (GTP).

There are two isoforms of IMPDH, type I and type II, which are encoded by separate genes. Type I IMPDH is expressed in most tissues, while type II IMPDH is primarily expressed in lymphocytes and other cells involved in the immune response. Inhibitors of IMPDH have been developed as immunosuppressive drugs to prevent rejection of transplanted organs. Defects in the gene encoding IMPDH type II have been associated with retinal degeneration and hearing loss.

Nuclear factor of activated T-cells (NFAT) transcription factors are a group of proteins that play a crucial role in the regulation of gene transcription in various cells, including immune cells. They are involved in the activation of genes responsible for immune responses, cell survival, differentiation, and development.

NFAT transcription factors can be divided into five main members: NFATC1 (also known as NFAT2 or NFATp), NFATC2 (or NFAT1), NFATC3 (or NFATc), NFATC4 (or NFAT3), and NFAT5 (or TonEBP). These proteins share a highly conserved DNA-binding domain, known as the Rel homology region, which allows them to bind to specific sequences in the promoter or enhancer regions of target genes.

NFATC transcription factors are primarily located in the cytoplasm in their inactive form, bound to inhibitory proteins. Upon stimulation of the cell, typically through calcium-dependent signaling pathways, NFAT proteins get dephosphorylated by calcineurin phosphatase, leading to their nuclear translocation and activation. Once in the nucleus, NFATC transcription factors can form homodimers or heterodimers with other transcription factors, such as AP-1, to regulate gene expression.

In summary, NFATC transcription factors are a family of proteins involved in the regulation of gene transcription, primarily in immune cells, and play critical roles in various cellular processes, including immune responses, differentiation, and development.

Chemotaxis is a term used in biology and medicine to describe the movement of an organism or cell towards or away from a chemical stimulus. This process plays a crucial role in various biological phenomena, including immune responses, wound healing, and the development and progression of diseases such as cancer.

In chemotaxis, cells can detect and respond to changes in the concentration of specific chemicals, known as chemoattractants or chemorepellents, in their environment. These chemicals bind to receptors on the cell surface, triggering a series of intracellular signaling events that ultimately lead to changes in the cytoskeleton and directed movement of the cell towards or away from the chemical gradient.

For example, during an immune response, white blood cells called neutrophils use chemotaxis to migrate towards sites of infection or inflammation, where they can attack and destroy invading pathogens. Similarly, cancer cells can use chemotaxis to migrate towards blood vessels and metastasize to other parts of the body.

Understanding chemotaxis is important for developing new therapies and treatments for a variety of diseases, including cancer, infectious diseases, and inflammatory disorders.

Reticulocytes are immature red blood cells that still contain remnants of organelles, such as ribosomes and mitochondria, which are typically found in developing cells. These organelles are involved in the process of protein synthesis and energy production, respectively. Reticulocytes are released from the bone marrow into the bloodstream, where they continue to mature into fully developed red blood cells called erythrocytes.

Reticulocytes can be identified under a microscope by their staining characteristics, which reveal a network of fine filaments or granules known as the reticular apparatus. This apparatus is composed of residual ribosomal RNA and other proteins that have not yet been completely eliminated during the maturation process.

The percentage of reticulocytes in the blood can be used as a measure of bone marrow function and erythropoiesis, or red blood cell production. An increased reticulocyte count may indicate an appropriate response to blood loss, hemolysis, or other conditions that cause anemia, while a decreased count may suggest impaired bone marrow function or a deficiency in erythropoietin, the hormone responsible for stimulating red blood cell production.

"Spodoptera" is not a medical term, but a genus name in the insect family Noctuidae. It includes several species of moths commonly known as armyworms or cutworms due to their habit of consuming leaves and roots of various plants, causing significant damage to crops.

Some well-known species in this genus are Spodoptera frugiperda (fall armyworm), Spodoptera litura (tobacco cutworm), and Spodoptera exigua (beet armyworm). These pests can be a concern for medical entomology when they transmit pathogens or cause allergic reactions. For instance, their frass (feces) and shed skins may trigger asthma symptoms in susceptible individuals. However, the insects themselves are not typically considered medical issues unless they directly affect human health.

The actin cytoskeleton is a complex, dynamic network of filamentous (threadlike) proteins that provides structural support and shape to cells, allows for cell movement and division, and plays a role in intracellular transport. Actin filaments are composed of actin monomers that polymerize to form long, thin fibers. These filaments can be organized into different structures, such as stress fibers, which provide tension and support, or lamellipodia and filopodia, which are involved in cell motility. The actin cytoskeleton is constantly remodeling in response to various intracellular and extracellular signals, allowing for changes in cell shape and behavior.

Crk-associated substrate protein, often abbreviated as CAS or CAS-L (for Crk-associated substrate lymphocyte type), is a signaling adaptor protein that plays a role in various cellular processes such as proliferation, differentiation, and survival. It is called a "substrate" because it can be phosphorylated by various kinases and serves as a platform for the assembly of signaling complexes.

CAS contains several domains that allow it to interact with other proteins, including Src homology 3 (SH3) domains, which bind to proline-rich sequences in partner proteins, and a SH2 domain, which binds to phosphorylated tyrosine residues. These interactions enable CAS to link upstream signaling events with downstream effectors, thereby regulating various cellular responses.

CAS is often found downstream of receptor tyrosine kinases (RTKs) and integrins, and has been implicated in the regulation of several signaling pathways, including the Ras/MAPK, PI3K/Akt, and JNK pathways. Mutations or dysregulation of CAS have been associated with various diseases, including cancer and neurological disorders.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Protein stability refers to the ability of a protein to maintain its native structure and function under various physiological conditions. It is determined by the balance between forces that promote a stable conformation, such as intramolecular interactions (hydrogen bonds, van der Waals forces, and hydrophobic effects), and those that destabilize it, such as thermal motion, chemical denaturation, and environmental factors like pH and salt concentration. A protein with high stability is more resistant to changes in its structure and function, even under harsh conditions, while a protein with low stability is more prone to unfolding or aggregation, which can lead to loss of function or disease states, such as protein misfolding diseases.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

The endoplasmic reticulum (ER) is a network of interconnected tubules and sacs that are present in the cytoplasm of eukaryotic cells. It is a continuous membranous organelle that plays a crucial role in the synthesis, folding, modification, and transport of proteins and lipids.

The ER has two main types: rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER). RER is covered with ribosomes, which give it a rough appearance, and is responsible for protein synthesis. On the other hand, SER lacks ribosomes and is involved in lipid synthesis, drug detoxification, calcium homeostasis, and steroid hormone production.

In summary, the endoplasmic reticulum is a vital organelle that functions in various cellular processes, including protein and lipid metabolism, calcium regulation, and detoxification.

Guanosine monophosphate (GMP) is a nucleotide that is a fundamental unit of genetic material in DNA and RNA. It consists of a guanine base, a pentose sugar (ribose in the case of RNA, deoxyribose in DNA), and one phosphate group. GMP plays crucial roles in various biochemical reactions within cells, including energy transfer and signal transduction pathways. Additionally, it is involved in the synthesis of important molecules like nucleic acids, neurotransmitters, and hormones.

Single Nucleotide Polymorphism (SNP) is a type of genetic variation that occurs when a single nucleotide (A, T, C, or G) in the DNA sequence is altered. This alteration must occur in at least 1% of the population to be considered a SNP. These variations can help explain why some people are more susceptible to certain diseases than others and can also influence how an individual responds to certain medications. SNPs can serve as biological markers, helping scientists locate genes that are associated with disease. They can also provide information about an individual's ancestry and ethnic background.

Phospholipase C gamma (PLCγ) is an enzyme that plays a crucial role in intracellular signaling transduction pathways, particularly in the context of growth factor receptor-mediated signals and immune cell activation. It is a member of the phospholipase C family, which hydrolyzes phospholipids into secondary messengers to mediate various cellular responses.

PLCγ has two isoforms, PLCγ1 and PLCγ2, encoded by separate genes. These isoforms share structural similarities but have distinct expression patterns and functions. PLCγ1 is widely expressed in various tissues, while PLCγ2 is primarily found in hematopoietic cells.

PLCγ is activated through tyrosine phosphorylation by receptor tyrosine kinases (RTKs) or non-receptor tyrosine kinases such as Src and Syk family kinases. Once activated, PLCγ hydrolyzes the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), into two secondary messengers: inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates the release of calcium ions from intracellular stores, while DAG activates protein kinase C (PKC), leading to a cascade of downstream signaling events that regulate cell proliferation, differentiation, survival, and migration.

In summary, Phospholipase C gamma (PLCγ) is an enzyme involved in intracellular signaling pathways by generating secondary messengers IP3 and DAG upon activation through tyrosine phosphorylation, ultimately regulating various cellular responses.

Virulence factors in Bordetella pertussis, the bacterium that causes whooping cough, refer to the characteristics or components of the organism that contribute to its ability to cause disease. These virulence factors include:

1. Pertussis Toxin (PT): A protein exotoxin that inhibits the immune response and affects the nervous system, leading to the characteristic paroxysmal cough of whooping cough.
2. Adenylate Cyclase Toxin (ACT): A toxin that increases the levels of cAMP in host cells, disrupting their function and contributing to the pathogenesis of the disease.
3. Filamentous Hemagglutinin (FHA): A surface protein that allows the bacterium to adhere to host cells and evade the immune response.
4. Fimbriae: Hair-like appendages on the surface of the bacterium that facilitate adherence to host cells.
5. Pertactin (PRN): A surface protein that also contributes to adherence and is a common component of acellular pertussis vaccines.
6. Dermonecrotic Toxin: A toxin that causes localized tissue damage and necrosis, contributing to the inflammation and symptoms of whooping cough.
7. Tracheal Cytotoxin: A toxin that damages ciliated epithelial cells in the respiratory tract, impairing mucociliary clearance and increasing susceptibility to infection.

These virulence factors work together to enable Bordetella pertussis to colonize the respiratory tract, evade the host immune response, and cause the symptoms of whooping cough.

Cell compartmentation, also known as intracellular compartmentalization, refers to the organization of cells into distinct functional and spatial domains. This is achieved through the separation of cellular components and biochemical reactions into membrane-bound organelles or compartments. Each compartment has its unique chemical composition and environment, allowing for specific biochemical reactions to occur efficiently and effectively without interfering with other processes in the cell.

Some examples of membrane-bound organelles include the nucleus, mitochondria, chloroplasts, endoplasmic reticulum, Golgi apparatus, lysosomes, peroxisomes, and vacuoles. These organelles have specific functions, such as energy production (mitochondria), protein synthesis and folding (endoplasmic reticulum and Golgi apparatus), waste management (lysosomes), and lipid metabolism (peroxisomes).

Cell compartmentation is essential for maintaining cellular homeostasis, regulating metabolic pathways, protecting the cell from potentially harmful substances, and enabling complex biochemical reactions to occur in a controlled manner. Dysfunction of cell compartmentation can lead to various diseases, including neurodegenerative disorders, cancer, and metabolic disorders.

Proto-oncogene proteins c-bcr are a group of intracellular signaling proteins that play a role in regulating cell growth, differentiation, and apoptosis (programmed cell death). They are encoded by the c-bcr gene located on chromosome 22. The c-bcr gene can fuse with the c-abl gene (located on chromosome 9) as a result of a chromosomal translocation, leading to the formation of the BCR-ABL fusion protein. This fusion protein has constitutively active tyrosine kinase activity and is associated with the development of certain types of leukemia, such as chronic myelogenous leukemia (CML).

The c-bcr gene can also fuse with other genes, leading to the formation of different fusion proteins that have been implicated in the development of other types of cancer. The normal function of c-bcr proteins is not fully understood, but they are thought to play a role in regulating the actin cytoskeleton and intracellular signaling pathways.

Nuclear Magnetic Resonance (NMR) Biomolecular is a research technique that uses magnetic fields and radio waves to study the structure and dynamics of biological molecules, such as proteins and nucleic acids. This technique measures the magnetic properties of atomic nuclei within these molecules, specifically their spin, which can be influenced by the application of an external magnetic field.

When a sample is placed in a strong magnetic field, the nuclei absorb and emit electromagnetic radiation at specific frequencies, known as resonance frequencies, which are determined by the molecular structure and environment of the nuclei. By analyzing these resonance frequencies and their interactions, researchers can obtain detailed information about the three-dimensional structure, dynamics, and interactions of biomolecules.

NMR spectroscopy is a non-destructive technique that allows for the study of biological molecules in solution, which makes it an important tool for understanding the function and behavior of these molecules in their natural environment. Additionally, NMR can be used to study the effects of drugs, ligands, and other small molecules on biomolecular structure and dynamics, making it a valuable tool in drug discovery and development.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

Genetic suppression is a concept in genetics that refers to the phenomenon where the expression or function of one gene is reduced or silenced by another gene. This can occur through various mechanisms such as:

* Allelic exclusion: When only one allele (version) of a gene is expressed, while the other is suppressed.
* Epigenetic modifications: Chemical changes to the DNA or histone proteins that package DNA can result in the suppression of gene expression.
* RNA interference: Small RNAs can bind to and degrade specific mRNAs (messenger RNAs), preventing their translation into proteins.
* Transcriptional repression: Proteins called transcription factors can bind to DNA and prevent the recruitment of RNA polymerase, which is necessary for gene transcription.

Genetic suppression plays a crucial role in regulating gene expression and maintaining proper cellular function. It can also contribute to diseases such as cancer when genes that suppress tumor growth are suppressed themselves.

Cell size refers to the volume or spatial dimensions of a cell, which can vary widely depending on the type and function of the cell. In general, eukaryotic cells (cells with a true nucleus) tend to be larger than prokaryotic cells (cells without a true nucleus). The size of a cell is determined by various factors such as genetic makeup, the cell's role in the organism, and its environment.

The study of cell size and its relationship to cell function is an active area of research in biology, with implications for our understanding of cellular processes, evolution, and disease. For example, changes in cell size have been linked to various pathological conditions, including cancer and neurodegenerative disorders. Therefore, measuring and analyzing cell size can provide valuable insights into the health and function of cells and tissues.

"Drosophila" is a genus of small flies, also known as fruit flies. The most common species used in scientific research is "Drosophila melanogaster," which has been a valuable model organism for many areas of biological and medical research, including genetics, developmental biology, neurobiology, and aging.

The use of Drosophila as a model organism has led to numerous important discoveries in genetics and molecular biology, such as the identification of genes that are associated with human diseases like cancer, Parkinson's disease, and obesity. The short reproductive cycle, large number of offspring, and ease of genetic manipulation make Drosophila a powerful tool for studying complex biological processes.

RCC1 is the guanine nucleotide exchange factor for Ran GTPase. It localizes to the nucleus and catalyzes the activation of Ran ... Guanine nucleotide exchange factors (GEFs) are proteins or protein domains involved in the activation of small GTPases. Small ... G proteins Guanine Nucleotide exchange factor Small GTPases Cherfils J, Zeghouf M (January 2013). "Regulation of small GTPases ... Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the ...
... is a guanine nucleotide exchange factor. Its function is to release guanosine diphosphate, GDP, from the signaling ... "Derangement of Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) and Extracellular Signal-Regulated Kinase (ERK) Dependent ...
This subunit functions as guanine nucleotide exchange factor. It is reported that this subunit interacts with HIV-1 Tat, and ... "Entrez Gene: EEF1D eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)". Sang Lee J, Gyu ... "The human leucine zipper-containing guanine-nucleotide exchange protein elongation factor-1 delta". Biochimica et Biophysica ... Elongation factor 1-delta is a protein that in humans is encoded by the EEF1D gene. This gene encodes a subunit of the ...
Nucleoside-diphosphate kinase Guanine nucleotide exchange factor Buday, L; Downward J (1993). "Epidermal growth factor ... Nucleotide exchange factors (NEFs) are proteins that stimulate the exchange (replacement) of nucleoside diphosphates for ... Nucleotide exchange factors actively assist in the exchange of depleted nucleoside diphosphates for fresh nucleoside ... "Epac is a Rap1 guanine- nucleotide-exchange factor directly activated by cyclic AMP" (PDF). Nature. 396 (6710): 474-477. ...
ECT2 is a Guanine nucleotide-exchange factor for RhoA. Cytokinesis is initiated when RhoA is activated by ECT2. RacGAP1 is also ... "Human Ect2 Is an Exchange Factor for Rho Gtpases, Phosphorylated in G2/M Phases, and Involved in Cytokinesis", Journal of Cell ...
Rho guanine nucleotide exchange factor (GEF) 35 is a protein in humans that is encoded by the ARHGEF35 gene. ENSG00000288422 ... "Entrez Gene: Rho guanine nucleotide exchange factor (GEF) 35". Retrieved 2013-02-17. v t e (Articles with short description, ...
Rap guanine nucleotide exchange factor 2 is a protein that in humans is encoded by the RAPGEF2 gene. RAPGEF2 is a cyclic AMP ... Guanine nucleotide exchange factors (GEFs) such as RAPGEF2 serve as RAS activators by promoting acquisition of GTP to maintain ... "Entrez Gene: RAPGEF2 Rap guanine nucleotide exchange factor (GEF) 2". Pham N, Cheglakov I, Koch CA, de Hoog CL, Moran MF, Rotin ... 2000). "PDZ-GEF1, a guanine nucleotide exchange factor specific for Rap1 and Rap2". J. Biol. Chem. 274 (53): 38125-30. doi: ...
"The trio guanine nucleotide exchange factor is a RhoA target. Binding of RhoA to the trio immunoglobulin-like domain". The ... "The trio guanine nucleotide exchange factor is a RhoA target. Binding of RhoA to the trio immunoglobulin-like domain". The ... "The C-terminal basic tail of RhoG assists the guanine nucleotide exchange factor trio in binding to phospholipids". The Journal ... "Trio amino-terminal guanine nucleotide exchange factor domain expression promotes actin cytoskeleton reorganization, cell ...
Rho guanine nucleotide exchange factor 5 is a protein that in humans is encoded by the ARHGEF5 gene. Rho GTPases play a ... "Entrez Gene: ARHGEF5 Rho guanine nucleotide exchange factor (GEF) 5". Human ARHGEF5 genome location and ARHGEF5 gene details ... 2002). "Structural basis for the selective activation of Rho GTPases by Dbl exchange factors". Nat. Struct. Biol. 9 (6): 468-75 ... 2005). "Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling ...
... a new guanine-nucleotide exchange factor for Rac". FEBS Lett. 572 (1-3): 172-6. doi:10.1016/j.febslet.2004.06.096. PMID ... specificity and recognition is conferred by the pleckstrin homology domain of the Dbl family guanine nucleotide exchange factor ... Rosenfeldt H, Vázquez-Prado J, Gutkind JS (August 2004). "P-REX2, a novel PI-3-kinase sensitive Rac exchange factor". FEBS Lett ... Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 is a protein that in humans is encoded by the PREX2 ...
Rho guanine nucleotide exchange factor 4 is a protein that in humans is encoded by the ARHGEF4 gene. Rho GTPases play a ... "Entrez Gene: ARHGEF4 Rho guanine nucleotide exchange factor (GEF) 4". "Dysmorphology data for Arhgef4". Wellcome Trust Sanger ...
"Entrez Gene: RABGEF1 RAB guanine nucleotide exchange factor (GEF) 1". Maruyama K, Sugano S (1994). "Oligo-capping: a simple ... 1997). "A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and ... and it serves as a specific guanine nucleotide exchange factor for RAB5(RAB5A; MIM 179512) (Horiuchi et al., 1997) [supplied by ... Rab5 GDP/GTP exchange factor is a protein that in humans is encoded by the RABGEF1 gene. RABGEF1 forms a complex with rabaptin- ...
Rho guanine nucleotide exchange factor 1 is guanine nucleotide exchange factor (GEF) for the RhoA small GTPase protein. Rho is ... Rho guanine nucleotide exchange factor 1 is a protein that in humans is encoded by the ARHGEF1 gene. This protein is also ... "Entrez Gene: ARHGEF1 Rho guanine nucleotide exchange factor (GEF) 1". Hart MJ, Sharma S, elMasry N, Qiu RG, McCabe P, Polakis P ... Bollag G (October 1996). "Identification of a novel guanine nucleotide exchange factor for the Rho GTPase". The Journal of ...
... of the novel human guanine nucleotide exchange factor Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF ... It functions as a guanine nucleotide exchange factor (GEF) for RhoG, a small G protein of the Rho family. SGEF was discovered ... "Entrez Gene: Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF)". Qi H, Fournier A, Grenier J (May 2003 ... Samson et al 2013 "The Guanine-Nucleotide Exchange Factor SGEF Plays a Crucial Role in the Formation of Atherosclerosis" ...
Mohl M, Winkler S, Wieland T, Lutz S (Aug 2006). "Gef10--the third member of a Rho-specific guanine nucleotide exchange factor ... The human ARHGEF10 gene encodes the protein Rho guanine nucleotide exchange factor 10. Rho GTPases play a fundamental role in ... "Entrez Gene: ARHGEF10 Rho guanine nucleotide exchange factor (GEF) 10". Human ARHGEF10 genome location and ARHGEF10 gene ... "Slowed Conduction and Thin Myelination of Peripheral Nerves Associated with Mutant Rho Guanine-Nucleotide Exchange Factor 10". ...
Dunphy JL, Ye K, Casanova JE (2007). "Nuclear functions of the Arf guanine nucleotide exchange factor BRAG2". Traffic. 8 (6): ... "Phospholipase C gamma 1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE". Nature. 415 (6871 ... phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton". J. Biol. Chem. ...
... conducted simultaneously via guanine nucleotide exchange factors and GTPase activating factor). RhoA is activated primarily by ... Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg K (November 2002). "XPLN, a guanine nucleotide exchange factor for ... "The trio guanine nucleotide exchange factor is a RhoA target. Binding of RhoA to the trio immunoglobulin-like domain". The ... "p63RhoGEF and GEFT are Rho-specific guanine nucleotide exchange factors encoded by the same gene". Naunyn-Schmiedeberg's ...
Rho guanine nucleotide exchange factor 12 is guanine nucleotide exchange factor (GEF) for the RhoA small GTPase protein. Rho is ... "Structural determinants of RhoA binding and nucleotide exchange in leukemia-associated Rho guanine-nucleotide exchange factor ... Rho guanine nucleotide exchange factor 12 is a protein that in humans is encoded by the ARHGEF12 gene. This protein is also ... February 2000). "Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with ...
Rap guanine nucleotide exchange factor 5 is a protein that in humans is encoded by the RAPGEF5 gene. Members of the RAS ... Guanine nucleotide exchange factors (GEFs), such as RAPGEF5, serve as RAS activators by promoting acquisition of GTP to ... Ichiba T, Hoshi Y, Eto Y, Tajima N, Kuraishi Y (Oct 1999). "Characterization of GFR, a novel guanine nucleotide exchange factor ... "Entrez Gene: RAPGEF5 Rap guanine nucleotide exchange factor (GEF) 5". de Rooij J, Rehmann H, van Triest M, et al. (2000). " ...
Rho guanine nucleotide exchange factor 7 is a protein that in humans is encoded by the ARHGEF7 gene. ARHGEF7 is commonly known ... βPIX contains a central DH/PH RhoGEF domain that functions as a guanine nucleotide exchange factor (GEF) for small GTPases of ... "Entrez Gene: ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7". Zhou W, Li X, Premont RT (May 2016). "Expanding functions ... PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes". Journal of Cell Science. 129 (10): 1963-1974. doi:10.1242/ ...
The first are known as Guanine nucleotide exchange factors (GEFs) and these facilitate the exchange of GDP for GTP so as to ... Bellanger JM, Lazaro JB, Diriong S, Fernandez A, Lamb N, Debant A (January 1998). "The two guanine nucleotide exchange factor ... Another GEF, known as SGEF (Src homology 3 domain-containing Guanine nucleotide Exchange Factor), is thought to be RhoG- ... a RhoG guanine nucleotide exchange factor that stimulates macropinocytosis". Molecular Biology of the Cell. 15 (7): 3309-19. ...
Rap guanine nucleotide exchange factor (GEF) 4 (RAPGEF4), also known as exchange protein directly activated by cAMP 2 (EPAC2) ... Epac2 functions as a guanine nucleotide exchange factor for the Ras-like small GTPase Rap upon cAMP stimulation. Epac2 is ... "Entrez Gene: RAPGEF4 Rap guanine nucleotide exchange factor (GEF) 4". Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, ... Zhong N, Zucker RS (Jan 2005). "cAMP acts on exchange protein activated by cAMP/cAMP-regulated guanine nucleotide exchange ...
Rho guanine nucleotide exchange factor 11 is guanine nucleotide exchange factor (GEF) for the RhoA small GTPase protein. Rho is ... "A nonsynonymous single-nucleotide polymorphism in the PDZ-Rho guanine nucleotide exchange factor (Ser1416Gly) modulates the ... Rho guanine nucleotide exchange factor 11 is a protein that in humans is encoded by the ARHGEF11 gene. This protein is also ... "Entrez Gene: ARHGEF11 Rho guanine nucleotide exchange factor (GEF) 11". Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS (Feb ...
Rho guanine nucleotide exchange factor (GEF) 3, also known as ARHGEF3, is a human gene. Rho GTPases play a fundamental role in ... Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg K (2003). "XPLN, a guanine nucleotide exchange factor for RhoA and ... "Entrez Gene: ARHGEF3 Rho guanine nucleotide exchange factor (GEF) 3". Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg ... a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC". J. Biol. Chem. 277 (45): 42964-72. doi:10.1074/jbc. ...
Rho guanine nucleotide exchange factor 9 is a protein that in humans is encoded by the ARHGEF9 gene. ARHGEF9 belongs to a ... "Entrez Gene: ARHGEF9 Cdc42 guanine nucleotide exchange factor (GEF) 9". Kins S, Betz H, Kirsch J (2000). "Collybistin, a newly ... a guanine nucleotide exchange factor specific for Cdc42". J Biol Chem. 274 (47): 33587-93. doi:10.1074/jbc.274.47.33587. PMID ... "The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering" (PDF). J. Neurosci. 24 (25 ...
Rap guanine nucleotide exchange factor 6 is a protein that in humans is encoded by the RAPGEF6 gene. GRCh38: Ensembl release 89 ... "Entrez Gene: RAPGEF6 Rap guanine nucleotide exchange factor (GEF) 6". Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in ... 2003). "Characterisation of PDZ-GEFs, a family of guanine nucleotide exchange factors specific for Rap1 and Rap2". Biochim. ... a Rap guanine nucleotide exchange factor that serves as a downstream target of M-Ras". J Biol Chem. 276 (45): 42219-42225. doi: ...
"Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors". Nature. 447 (7144): 596-600. Bibcode ...
Rebhun JF, Castro AF, Quilliam LA (Nov 2000). "Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase ...
... the nucleotide exchange factor for Ran. RCC1 is also known as RanGEF (Ran Guanine nucleotide Exchange Factor). Ran's intrinsic ... Steggerda SM, Paschal BM (2000). "The mammalian Mog1 protein is a guanine nucleotide release factor for Ran". J. Biol. Chem. ... Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001). "Structural basis for guanine nucleotide exchange on Ran by the ... RanGTP concentration stays high around the chromosomes as RCC1, a nucleotide exchange factor, stays attached to chromatin. ...
2005). "Decreased guanine nucleotide exchange factor activity in eIF2B-mutated patients". Eur. J. Hum. Genet. 12 (7): 561-6. ... within the epsilon-subunit of the translation initiation factor eIF2B that are necessary for guanine nucleotide exchange ... required for guanine nucleotide exchange reveals a novel activation function promoted by eIF2B complex formation". Mol. Cell. ... Translation initiation factor eIF-2B subunit gamma is a protein that in humans is encoded by the EIF2B3 gene. GRCh38: Ensembl ...
RCC1 is the guanine nucleotide exchange factor for Ran GTPase. It localizes to the nucleus and catalyzes the activation of Ran ... Guanine nucleotide exchange factors (GEFs) are proteins or protein domains involved in the activation of small GTPases. Small ... G proteins Guanine Nucleotide exchange factor Small GTPases Cherfils J, Zeghouf M (January 2013). "Regulation of small GTPases ... Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the ...
Timeline for Protein Rho guanine nucleotide exchange factor 11, PDZ-RhoGEF from b.55.1.1: Pleckstrin-homology domain (PH domain ... Lineage for Protein: Rho guanine nucleotide exchange factor 11, PDZ-RhoGEF. *Root: SCOPe 2.08 *. Class b: All beta proteins [ ... Protein Rho guanine nucleotide exchange factor 11, PDZ-RhoGEF from b.55.1.1: Pleckstrin-homology domain (PH domain) appears in ... Protein Rho guanine nucleotide exchange factor 11, PDZ-RhoGEF from b.55.1.1: Pleckstrin-homology domain (PH domain) first ...
Lawn, Samuel Oliver (2008) Invesitagating the role of the guanine nucleotide exchange factor P-Rex1 in cell invasion. PhD ... P-Rex1, a Rac guanine nucleotide exchange factor (GEF), was previously identified in this lab in a transcriptional screen for ... Invesitagating the role of the guanine nucleotide exchange factor P-Rex1 in cell invasion ... These phenotypes are dependent on Rac1, PI3 kinase and GPCR signalling and can be stimulated by growth factor mediated ...
C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor. PeerJ. 2018 Oct ... C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor. In: PeerJ. 2018 ... C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor. / Iyer, Shalini ... keywords = "ALS, C9orf72, Guanine nucleotide exchange factor, Neurodegeneration, Protein expression, Protein purification, Rab ...
enwiki Guanine nucleotide exchange factor * eswiki Factor intercambiador de nucleótido de guanina ... guanine nucleotide exchange factors. proteins which remove GDP from GTPases. *guanine nucleotide exchange factor ...
"Guanine Nucleotide Exchange Factors" by people in this website by year, and whether "Guanine Nucleotide Exchange Factors" was a ... Guanine Nucleotide Exchange Factors*Guanine Nucleotide Exchange Factors. *Guanine-Nucleotide-Releasing Factor ... "Guanine Nucleotide Exchange Factors" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, ... Below are the most recent publications written about "Guanine Nucleotide Exchange Factors" by people in Profiles. ...
Phenotype data for mouse gene Arhgef38. Discover Arhgef38s significant phenotypes, expression, images, histopathology and more. Data for gene Arhgef38 is all freely available for download.
Guanine-nucleotide exchange factors. (GEFs). Proteins that stimulate the release of GDP to allow exchange for GTP, thereby ... A family of guanine-nucleotide-binding proteins that are important for signal transduction. Their activity is regulated by ... Hypermethylated GPR135 gene expression is a favorable independent prognostic factor in nasopharyngeal carcinoma *Chunqiao Gan ... Hypermethylated GPR135 gene expression is a favorable independent prognostic factor in nasopharyngeal carcinoma *Chunqiao Gan ...
Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathogens. 2008 Mar 7;4(3):e1000014. doi: ... Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. B Josh Lane, Charla Mutchler, Souhaila Al Khodor ... Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. In: PLoS Pathogens. 2008 ; Vol. 4, No. 3. ... Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. / Lane, B Josh; Mutchler, Charla; Al Khodor, ...
RAPGEF3-Rap guanine nucleotide exchange factor 3; RGS14-regulator of G-protein signaling 14; PLA2G2F-phospholipase A2 group IIF ... Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development ... At colonic level, it may accelerate motility and has been found to act as an anti-inflammatory factor, protecting the gut ... A total of 105 bacterial genomes, including those of 23 Lactobacillus species, were examined (Table S3). Predicted nucleotide ...
Guanine Nucleotide Exchange Factors * Homeodomain Proteins * Nerve Tissue Proteins * Nuclear Proteins * PCGF2 protein, human ...
Guanine Nucleotide Exchange Factors / classification * Guanine Nucleotide Exchange Factors / genetics* * Guanine Nucleotide ... including guanine nucleotide exchange on small GTP-binding proteins, enzyme inhibition or interaction with proteins and lipids ...
Altered Cortical Expression of a RhoA-specific Guanine Nucleotide Exchange Factor in Bipolar Disorder Causes Altered Synaptic ... CAN SEMINAR SERIES: Altered Cortical Expression of a RhoA-specific Guanine Nucleotide Exchange Factor in Bipolar Disorder ... "Altered Cortical Expression of a RhoA-specific Guanine Nucleotide Exchange Factor in Bipolar Disorder Causes Altered Synaptic ...
Contribution of guanine nucleotide exchange factor Vav2 to NLRP3 inflammasome activation in mouse podocytes during ... Dive into the research topics of Contribution of guanine nucleotide exchange factor Vav2 to NLRP3 inflammasome activation in ...
These results provide the first genetic evidence on the role of the guanine exchange factor Vav in immune responses to viral ... The guanine-nucleotide exchange factor Vav is a crucial regulator of B cell receptor activation and B cell responses to ... The guanine-nucleotide exchange factor Vav is a crucial regulator of B cell receptor activation and B cell responses to ... These results provide the first genetic evidence on the role of the guanine exchange factor Vav in immune responses to viral ...
Structural determinants of RhoA binding and nucleotide exchange in leukemia-associated Rho guanine-nucleotide exchange factor. ... A novel group of bacterial virulence factors termed the WXXXE family has emerged as guanine nucleotide exchange factors (GEFs) ... A novel group of bacterial virulence factors termed the WXXXE family has emerged as guanine nucleotide exchange factors (GEFs) ... Bacterial guanine nucleotide exchange factors SopE-like and WxxxE effectors. * Authors: Bulgin R, Raymond B, Garnett JA, ...
A rat gene, mss4, that encodes a guanine nucleotide exchange factor (GEF) for Sec4 was recently cloned by its ability to rescue ... A rat gene, mss4, that encodes a guanine nucleotide exchange factor (GEF) for Sec4 was recently cloned by its ability to rescue ... A rat gene, mss4, that encodes a guanine nucleotide exchange factor (GEF) for Sec4 was recently cloned by its ability to rescue ... A rat gene, mss4, that encodes a guanine nucleotide exchange factor (GEF) for Sec4 was recently cloned by its ability to rescue ...
Dive into the research topics of Dynamic and coordinated expression profile of dbl-family guanine nucleotide exchange factors ... Dynamic and coordinated expression profile of dbl-family guanine nucleotide exchange factors in the developing mouse brain. ...
ALSIN RHO GUANINE NUCLEOTIDE EXCHANGE FACTOR ALS2; ALS2. Gene and Variant Databases. *NCBI Gene ... Two of the mutations that cause this disorder delete nucleotides, and one mutation replaces one nucleotide with an incorrect ... nucleotide. These mutations alter the instructions for producing alsin. As a result, alsin is unstable and is broken down ...
Guanine nucleotide exchange factors Is the Subject Area "Guanine nucleotide exchange factors" applicable to this article? Yes. ...
Triple functional domain protein (Trio) is an evolutionarily conserved protein with guanine nucleotide exchange factors that ... guanyl-nucleotide exchange factor activity - intracellular - nerve growth factor receptor signaling pathway - phospholipid ... Rho guanyl-nucleotide exchange factor activity - small GTPase mediated signal transduction - transmembrane receptor protein ... This gene encodes a large protein that functions as a GDP to GTP exchange factor. This protein promotes the reorganization of ...
RefSeq) Rho/Rac guanine nucleotide exchange factor 2. KO. K12791 Rho guanine nucleotide exchange factor 2. ...
... and other guanine nucleotide exchange factors) act by binding Ras-GTPases and forcing them to release of their bound nucleotide ... In cell signalling, Son of Sevenless, or SOS, is a gene encoding a guanine nucleotide exchange factor that acts on Ras-GTPases ... the Ras-GTPase quickly binds fresh guanine nucleotide from the cytosol. Since GTP is roughly ten times more abundant than GDP ... Guanosine nucleotide dissociation inhibitors. Categories: Genes on chromosome 2 , Genes on chromosome 14 , GTP-Binding Protein ...
Nucleotide exchange activity of Sos is stimulated by allosteric Ras binding. By another (separable) guanine exchange factor ... The guanine nucleotide exchange factor Sos (Son-of-sevenless) is a complex multidomain protein that activates the small GTPase ...
ARHGEF12; Rho guanine nucleotide exchange factor 12 [KO:K07532]. 387 RHOA; ras homolog family member A [KO:K04513]. ... RFXAP; regulatory factor X associated protein [KO:K08063]. 4800 NFYA; nuclear transcription factor Y subunit alpha [KO:K08064] ... NFYB; nuclear transcription factor Y subunit beta [KO:K08065]. 4802 NFYC; nuclear transcription factor Y subunit gamma [KO: ... TGFB3; transforming growth factor beta 3 [KO:K13377]. 1594 CYP27B1; cytochrome P450 family 27 subfamily B member 1 [KO:K07438 ...
Ras family guanine nucleotide exchange factor BUD5 Feature Type. ORF , Verified Resources. AlphaFold Protein Structure , Gene/ ...
The Sec7 domain is a guanine-nucleotide-exchange-factor (GEF) for the pfam00025 family ... The Sec7 domain is a guanine-nucleotide-exchange-factor (GEF) for the pfam00025 family. ...
DEF6 guanine nucleotide exchange factor. Protein classi Assigned HPA protein class(es) for the encoded protein(s). ... Vav guanine nucleotide exchange factor 1. 0.5753. 14. NRROS. Negative regulator of reactive oxygen species. 0.5634. 14. ...
Several studies investigated the factors associated with severe COVID-19 outcomes that can be either environmental, population ... RAPGEF5 encodes Rap guanine nucleotide exchange factor 5 protein and belongs to the Ras family of GTPases that plays an ... Ichiba, T.; Hoshi, Y.; Eto, Y.; Tajima, N.; Kuraishi, Y. Characterization of GFR, a novel guanine nucleotide exchange factor ... The major genetic risk factor for severe COVID-19 does not show any association among South Asian populations. Sci. Rep. 2021, ...
Name: Rho guanine nucleotide exchange factor 10. Synonyms: 6430549H08Rik. Type: Gene. Species: Mus musculus (mouse) ...
  • Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the release of guanosine diphosphate (GDP) to allow binding of guanosine triphosphate (GTP). (wikipedia.org)
  • Guanine nucleotide exchange factors (GEFs) are proteins or protein domains involved in the activation of small GTPases. (wikipedia.org)
  • Protein factors that promote the exchange of GTP for GDP bound to GTP-BINDING PROTEINS. (ouhsc.edu)
  • From these studies, the emerging picture is that the RLD is a versatile domain which may perform many different functions, including guanine nucleotide exchange on small GTP-binding proteins, enzyme inhibition or interaction with proteins and lipids. (nih.gov)
  • The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. (helmholtz-hzi.de)
  • The normal rate of Ras catalytic GTPase (GTP hydrolysis) activity can be increased by proteins of the RasGAP family, which bind to Ras and increase its catalytic rate by a factor of one thousand - in effect, increasing the rate at which Ras is inactivated. (bionity.com)
  • The rationale of this organization may be related to important roles of these proteins as "exchange hubs" for the signaling proteins for their migration from the subcortical cytosol to the membrane. (frontiersin.org)
  • The encoded protein belongs to a family of cytoplasmic proteins that activate the Ras-like family of Rho proteins by exchanging bound GDP for GTP. (antibodies-online.com)
  • We have revealed the design principles and functions of "pH sensors" described as endogenous proteins regulated within the cellular pH range, including guanine nucleotide exchange factors regulating cell polarity (Frantz et al. (ucsf.edu)
  • However, there are some similarities in how different GEFs alter the conformation of the G protein nucleotide-binding site. (wikipedia.org)
  • The C9orf72 protein is predicted to be a differentially expressed in normal and neoplastic cells domain protein implying that C9orf72 functions as a guanine nucleotide exchange factor (GEF) to regulate specific Rab GTPases. (bath.ac.uk)
  • Iyer, S , Subramanian, V & Acharya, KR 2018, ' C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor ', PeerJ , pp. 1-29. (bath.ac.uk)
  • A rat gene, mss4, that encodes a guanine nucleotide exchange factor (GEF) for Sec4 was recently cloned by its ability to rescue defects in protein transport of a yeast temperature-sensitive (ts) mutant, sec4-8. (elsevierpure.com)
  • This gene encodes a large protein that functions as a GDP to GTP exchange factor. (cancerindex.org)
  • Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors. (novusbio.com)
  • The guanine nucleotide exchange factor Sos (Son-of-sevenless) is a complex multidomain protein that activates the small GTPase Ras (H-Ras, K-Ras, N-Ras, but not functionally distinct R-Ras) in response to receptor tyrosine kinase stimulation. (novusbio.com)
  • The inhibitory effect of cAMP could not be reversed by inhibition of cAMP-dependent protein kinase (PKA) but was blocked by depletion of the alternative intracellular cAMP sensor exchange protein activated by cAMP 1 (Epac1), which is also required to observe SOCS-3 accumulation in response to cAMP. (gla.ac.uk)
  • GTPases contain two loops called switch 1 and switch 2 that are situated on either side of the bound nucleotide. (wikipedia.org)
  • A novel group of bacterial virulence factors termed the WXXXE family has emerged as guanine nucleotide exchange factors (GEFs) for these GTPases. (helmholtz-hzi.de)
  • In cell signalling , Son of Sevenless , or SOS , is a gene encoding a guanine nucleotide exchange factor that acts on Ras - GTPases . (bionity.com)
  • SOS (and other guanine nucleotide exchange factors) act by binding Ras-GTPases and forcing them to release of their bound nucleotide (usually GDP). (bionity.com)
  • By another (separable) guanine exchange factor domain domain Sos modulates activity of Rac/Rho GTPases. (novusbio.com)
  • Thus, GEFs both destabilize the GTPase interaction with GDP and stabilize the nucleotide-free GTPase until a GTP molecule binds to it. (wikipedia.org)
  • TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. (elsevierpure.com)
  • These regions and the phosphate-binding loop of the GTPase interact with the phosphates of the nucleotide and a coordinating magnesium ion to maintain high affinity binding of the nucleotide. (wikipedia.org)
  • The distinctive presence of both Rab- and Rho-GTPase GEF activities suggests that C9orf72 may function as a dual exchange factor coupling physiological functions such as cytoskeleton modulation and autophagy with endocytosis. (bath.ac.uk)
  • We also show that dissociation of the GDP.Mg(2+) complex is preceded by the displacement of the metal ion to the alpha-phosphate of the nucleotide, diminishing its affinity to the GTPase. (helmholtz-hzi.de)
  • Once released from SOS, the Ras-GTPase quickly binds fresh guanine nucleotide from the cytosol. (bionity.com)
  • We did not detect association between the remaining risk factors and neonatal FeNO levels.Increased FeNO in healthy newborns seems strongly influenced by genetics including father's atopy and child's variants in the DENND1B locus at chromosome 1q31.3. (nih.gov)
  • HER2/neu (also called ERB B2 ) is the gene that encodes the human epidermal growth factor receptor type 2. (cancerquest.org)
  • Northwestern Events Calendar: 10/5/2023 CAN SEMINAR SERIES: 'Altered Cortical Expression of a RhoA-specific Guanine Nucleotide Exchange Factor in Bipolar Disorder Causes Altered Synaptic Stability and Cognitive Dysfunction ' with Michael Cahill Ph.D. (northwestern.edu)
  • Structure of Shigella IpgB2 in complex with human RhoA: implications for the mechanism of bacterial guanine nucleotide exchange factor mimicry. (helmholtz-hzi.de)
  • Guanine Nucleotide Exchange Factors" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (ouhsc.edu)
  • Binding to cAMP, the nucleotide cyclic AMP (adenosine 3',5'-cyclophosphate). (mcw.edu)
  • The guanine-nucleotide exchange factor Vav is a crucial regulator of B cell receptor activation and B cell responses to nonrepetitive antigens. (ox.ac.uk)
  • These results provide the first genetic evidence on the role of the guanine exchange factor Vav in immune responses to viral infections and antigenic challenge in vivo, and suggest that Vav adjusts the threshold for Ag receptor-mediated B cell activation depending on the nature of the Ag. (ox.ac.uk)
  • This receptor is found in moderate levels on some normal cells and as the gene's name implies, it is involved in cellular responses to growth factors. (cancerquest.org)
  • Two of the mutations that cause this disorder delete nucleotides, and one mutation replaces one nucleotide with an incorrect nucleotide. (medlineplus.gov)
  • Consistent with this observation, cAMP elevation in HUVECs produced a transient yet robust activation of ERK, and subsequent phosphorylation of transcription factor C/EBPβ, both of which were resistant to PKA inhibition. (gla.ac.uk)
  • Network analysis of disrupted genes with high brain expression identified significant enrichment in pathways of the cholinergic synapse, guanine-exchange factor activation and the mammalian target of rapamycin. (bmj.com)
  • ABSTRACT: The structural stability of guanine quadruplexes depends critically on an unusual configuration of dehydrated Na+ or K+ ions, closely spaced along the central axis of the quadruplex. (lu.se)
  • The mammalian homologue similarly functions downstream of many growth factor and adhesion receptors. (bionity.com)
  • A variety of unrelated structural domains have been shown to exhibit guanine nucleotide exchange activity. (wikipedia.org)
  • Nucleotide exchange activity of Sos is stimulated by allosteric Ras binding. (novusbio.com)
  • Dynein light chain LC8-nNOS from acto-myosin Va is possibly exchanged with shank, which thereafter facilitates transposition of nNOS for binding with palmitoyl-PSD95 at the nerve terminal membrane. (frontiersin.org)
  • As shown below, binding of the growth factor can lead to cell division. (cancerquest.org)
  • The Sec7 domain is a guanine-nucleotide-exchange-factor (GEF) for the pfam00025 family. (nih.gov)
  • Its secondary structure was also deduced from slowly exchanging amide protons, characteristic NOEs, and 3 J NH-cαH coupling constants. (elsevierpure.com)
  • The structure of alsin predicts that it functions as a guanine nucleotide exchange factor (GEF). (medscape.com)
  • SOS-1 is a guanine nucleotide-exchange factor that functions in the transduction of signals that control cell growth and differentiation 9,10 . (bvsalud.org)
  • RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. (rcsb.org)
  • This graph shows the total number of publications written about "Guanine Nucleotide Exchange Factors" by people in this website by year, and whether "Guanine Nucleotide Exchange Factors" was a major or minor topic of these publications. (ouhsc.edu)
  • P-Rex1, a Rac guanine nucleotide exchange factor (GEF), was previously identified in this lab in a transcriptional screen for mediators of cell invasion. (gla.ac.uk)
  • In meiosis, the genetic information inherited from a person's mother and father is recombined through crossing over (exchange between homologous chromosomes). (msdmanuals.com)
  • Is the Subject Area "Guanine nucleotide exchange factors" applicable to this article? (plos.org)
  • More detailed information of completely dehydrated alkali ions (usually K+ or Na+) about the internal ions can be obtained by measuring the coordinated to the buried carbonyl oxygens of the nucleotide spin relaxation rate(s) over a wide range of resonance bases. (lu.se)