A glycoprotein of MW 25 kDa containing internal disulfide bonds. It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines.
Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS.
Receptors that bind and internalize GRANULOCYTE COLONY-STIMULATING FACTOR. Their MW is believed to be 150 kD. These receptors are found mainly on a subset of myelomonocytic cells.
A decrease in the number of NEUTROPHILS found in the blood.
Visual sensation derived from sensory stimulation by objects or shadows inside the eye itself, such as floating vitreous fibers, tissues, or blood.
Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF).
The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells.
Progenitor cells from which all blood cells derive.
Proteins prepared by recombinant DNA technology.
The release of stem cells from the bone marrow into the peripheral blood circulation for the purpose of leukapheresis, prior to stem cell transplantation. Hematopoietic growth factors or chemotherapeutic agents often are used to stimulate the mobilization.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages.
The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY).
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
A cytologic technique for measuring the functional capacity of stem cells by assaying their activity.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS.
A decrease in the number of GRANULOCYTES; (BASOPHILS; EOSINOPHILS; and NEUTROPHILS).
The sudden collapse and disappearance or diminution of a colony of organisms.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.
The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES).
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
Insects of the family Formicidae, very common and widespread, probably the most successful of all the insect groups. All ants are social insects, and most colonies contain three castes, queens, males, and workers. Their habits are often very elaborate and a great many studies have been made of ant behavior. Ants produce a number of secretions that function in offense, defense, and communication. (From Borror, et al., An Introduction to the Study of Insects, 4th ed, p676)
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed)
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites.
A complex sulfated polymer of galactose units, extracted from Gelidium cartilagineum, Gracilaria confervoides, and related red algae. It is used as a gel in the preparation of solid culture media for microorganisms, as a bulk laxative, in making emulsions, and as a supporting medium for immunodiffusion and immunoelectrophoresis.
A hematopoietic growth factor and the ligand of the cell surface c-kit protein (PROTO-ONCOGENE PROTEINS C-KIT). It is expressed during embryogenesis and is a growth factor for a number of cell types including the MAST CELLS and the MELANOCYTES in addition to the HEMATOPOIETIC STEM CELLS.
Signal molecules that are involved in the control of cell growth and differentiation.
A large increase in oxygen uptake by neutrophils and most types of tissue macrophages through activation of an NADPH-cytochrome b-dependent oxidase that reduces oxygen to a superoxide. Individuals with an inherited defect in which the oxidase that reduces oxygen to superoxide is decreased or absent (GRANULOMATOUS DISEASE, CHRONIC) often die as a result of recurrent bacterial infections.
Elements of limited time intervals, contributing to particular results or situations.
These growth factors comprise a family of hematopoietic regulators with biological specificities defined by their ability to support proliferation and differentiation of blood cells of different lineages. ERYTHROPOIETIN and the COLONY-STIMULATING FACTORS belong to this family. Some of these factors have been studied and used in the treatment of chemotherapy-induced neutropenia, myelodysplastic syndromes, and bone marrow failure syndromes.
Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin.
Cell separation is the process of isolating and distinguishing specific cell types or individual cells from a heterogeneous mixture, often through the use of physical or biological techniques.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Established cell cultures that have the potential to propagate indefinitely.
The transfer of leukocytes from a donor to a recipient or reinfusion to the donor.
A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
A mononuclear phagocyte colony-stimulating factor (M-CSF) synthesized by mesenchymal cells. The compound stimulates the survival, proliferation, and differentiation of hematopoietic cells of the monocyte-macrophage series. M-CSF is a disulfide-bonded glycoprotein dimer with a MW of 70 kDa. It binds to a specific high affinity receptor (RECEPTOR, MACROPHAGE COLONY-STIMULATING FACTOR).
Insect members of the superfamily Apoidea, found almost everywhere, particularly on flowers. About 3500 species occur in North America. They differ from most WASPS in that their young are fed honey and pollen rather than animal food.
The cells found in the body fluid circulating throughout the CARDIOVASCULAR SYSTEM.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A transient increase in the number of leukocytes in a body fluid.
The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction.
Stem cells derived from HEMATOPOIETIC STEM CELLS. Derived from these myeloid progenitor cells are the MEGAKARYOCYTES; ERYTHROID CELLS; MYELOID CELLS; and some DENDRITIC CELLS.
Formation of MYELOID CELLS from the pluripotent HEMATOPOIETIC STEM CELLS in the BONE MARROW via MYELOID STEM CELLS. Myelopoiesis generally refers to the production of leukocytes in blood, such as MONOCYTES and GRANULOCYTES. This process also produces precursor cells for MACROPHAGE and DENDRITIC CELLS found in the lymphoid tissue.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
Very large BONE MARROW CELLS which release mature BLOOD PLATELETS.
The process of generating white blood cells (LEUKOCYTES) from the pluripotent HEMATOPOIETIC STEM CELLS of the BONE MARROW. There are two significant pathways to generate various types of leukocytes: MYELOPOIESIS, in which leukocytes in the blood are derived from MYELOID STEM CELLS, and LYMPHOPOIESIS, in which leukocytes of the lymphatic system (LYMPHOCYTES) are generated from lymphoid stem cells.
An encapsulated lymphatic organ through which venous blood filters.
The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST.
Receptors that bind and internalize the granulocyte-macrophage stimulating factor. Their MW is believed to be 84 kD. The most mature myelomonocytic cells, specifically human neutrophils, macrophages, and eosinophils, express the highest number of affinity receptors for this growth factor.
Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES.
A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7.
Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Antibodies produced by a single clone of cells.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The cells in the granulocytic series that give rise to mature granulocytes (NEUTROPHILS; EOSINOPHILS; and BASOPHILS). These precursor cells include myeloblasts, promyelocytes, myelocytes and metamyelocytes.
Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer.
A cytologic technique for measuring the functional capacity of tumor stem cells by assaying their activity. It is used primarily for the in vitro testing of antineoplastic agents.
Colorless to yellow dye that is reducible to blue or black formazan crystals by certain cells; formerly used to distinguish between nonbacterial and bacterial diseases, the latter causing neutrophils to reduce the dye; used to confirm diagnosis of chronic granulomatous disease.
A metallic element, atomic number 49, atomic weight 114.82, symbol In. It is named from its blue line in the spectrum. (From Dorland, 28th ed)
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Adherence of cells to surfaces or to other cells.
Leukopenia is a condition characterized by an abnormally low white blood cell count (less than 4,000 cells per microliter of blood) in peripheral blood, increasing the risk of infection due to decreased immune defense.
The action of a drug in promoting or enhancing the effectiveness of another drug.
A promyelocytic cell line derived from a patient with ACUTE PROMYELOCYTIC LEUKEMIA. HL-60 cells lack specific markers for LYMPHOID CELLS but express surface receptors for FC FRAGMENTS and COMPLEMENT SYSTEM PROTEINS. They also exhibit phagocytic activity and responsiveness to chemotactic stimuli. (From Hay et al., American Type Culture Collection, 7th ed, pp127-8)
Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms.
The process in which the neutrophil is stimulated by diverse substances, resulting in degranulation and/or generation of reactive oxygen products, and culminating in the destruction of invading pathogens. The stimulatory substances, including opsonized particles, immune complexes, and chemotactic factors, bind to specific cell-surface receptors on the neutrophil.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
The cells in the erythroid series derived from MYELOID PROGENITOR CELLS or from the bi-potential MEGAKARYOCYTE-ERYTHROID PROGENITOR CELLS which eventually give rise to mature RED BLOOD CELLS. The erythroid progenitor cells develop in two phases: erythroid burst-forming units (BFU-E) followed by erythroid colony-forming units (CFU-E); BFU-E differentiate into CFU-E on stimulation by ERYTHROPOIETIN, and then further differentiate into ERYTHROBLASTS when stimulated by other factors.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements.
The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION.
A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006)
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
The classes of BONE MARROW-derived blood cells in the monocytic series (MONOCYTES and their precursors) and granulocytic series (GRANULOCYTES and their precursors).
Zymosan is a polysaccharide derived from the cell walls of Saccharomyces cerevisiae, commonly used in research as an immunostimulant to induce inflammation and study phagocytosis, complement activation, and oxidative burst in neutrophils and macrophages.
An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The rate dynamics in chemical or physical systems.

Establishment of an inducible expression system of chimeric MLL-LTG9 protein and inhibition of Hox a7, Hox b7 and Hox c9 expression by MLL-LTG9 in 32Dcl3 cells. (1/3327)

The MLL (HRX/ALL-1 gene is frequently disrupted in infantile leukemias and therapy-related leukemias and fused to various translocation partner genes. We previously showed that chimeric MLL proteins localize in the nuclei in a fashion similar to that of MLL protein even if the partner gene encodes a cytoplasmic protein and indicated the importance of the N-terminal portion of MLL common to various MLL translocations. This time we established an inducible expression system for chimeric MLL-LTG9 and truncated N-terminal MLL proteins (MLL-Zf(-)) in 32Dcl3 cells. By utilizing this system, we were able to show inhibition of Hox a7, Hox b7 and Hox c9 genes' expression by induced MLL-LTG9 and MLL-Zf(-). Up-regulation of Hox a7, Hox b7 and Hox c9 was observed when 32Dcl3 cells were cultured with granulocyte colony stimulating factor (G-CSF) in place of interleukin 3 and induction of MLL-LTG9 and MLL-Zf(-) was shown to suppress this upregulation. At the same time, expression of two mammalian Polycomb group genes, M33 and mel-18, which both reportedly affect Hox genes' expression, was not inhibited by MLL-LTG9 and MLL-Zf(-) induction. These results indicate that MLL has an important effect on the expression of at least some Hox genes in hematopoietic cells and suggest that inhibition of the proper expression of Hox genes by chimeric MLL proteins may dysregulate hematopoietic cell differentiation and proliferation, which then can lead to leukemogenesis.  (+info)

Intensive weekly chemotherapy is not effective in advanced pancreatic cancer patients: a report from the Italian Group for the Study of Digestive Tract Cancer (GISCAD). (2/3327)

Twenty-two patients, with locally advanced unresectable and/or metastatic pancreatic carcinoma, received weekly administration of cisplatin 40 mg m(-2), 5-fluorouracil 500 mg m(-2), epidoxorubicin 35 mg m(-2), 6S stereoisomer of leucovorin 250 mg m(-2) and glutathione 1.5 mg m(-2), supported by a daily administration of lenograstim at a dose of 5 microg kg(-1). Nineteen patients were men and three were women. Median age was 63 years (range 47-70). At study entry, pain was present in 15 out of 22 patients (68%) with a mean value of Scott-Huskisson scale of 27.6+/-23.8, whereas a weight loss >10% was present in 15 patients. After eight weekly treatments, three partial responses were achieved for a response rate of 13% (95% CI 0-26%), five patients had stable disease and 14 progressed on therapy. Pain was present in 9 out of 22 patients (40%) with a mean value of Scott-Huskisson scale of 12.3+/-18.4. Eight patients (36%) (three partial response and five stable disease) had a positive weight change. Toxicity was mild: WHO grade III or IV toxicity was recorded in terms of anaemia in 7 out of 188 cycles (3.7%), of neutropenia in 9 out of 188 cycles (4.7%) and of thrombocytopenia in 3 out of 188 cycles (1.5%). Median survival of all patients was 6 months. The outcome of this intensive chemotherapy regimen does not support its use in pancreatic cancer.  (+info)

Modulation of VLA-4 and L-selectin expression on normal CD34+ cells during mobilization with G-CSF. (3/3327)

We have evaluated the immunophenotype, functional activity and clonogenic potential of CD34+ cells from peripheral blood (PB) of normal donors before and after 4 and 6 days of G-CSF administration. The percentage and absolute number of CD34+ cells significantly increased at days 4 and 6 of G-CSF administration, compared to the steady-state level (P < 0.0001). Two-colour fluorescence analysis showed, at days 4 and 6, a lower proportion of CD34+/c-kit+ compared to the steady-state level (P < 0.0001), but a similar expression of CD13, CD33, CD38, HLA-DR and Thy-1 antigens on CD34+ cells. The expression of adhesion molecules on CD34+ cells revealed a significant reduction of CD11a (P = 0.009), CD18, CD49d and CD62L (P < 0.0001) at days 4 and 6, compared to the baseline level. Three-colour staining showed a reduction of the more immature compartment (34+/DR-/13-) and an increase of the more differentiated compartment (34+/DR+/13+). Downregulation of VLA-4 during mobilisation was seen almost exclusively on more committed cells (34+/13+); downregulation of CD62L, on the contrary, was observed on both early progenitors (34+/13-) and more committed cells (34+/13+). The expression of 34+/VLA-4+ decreased on both c-kit+ and c-kit- cells, while the expression of 34+/62L+ decreased on the c-kit+ cells only. In vivo administration of G-CSF reduced the adherence capacity of CD34+ cells to normal BM stroma; in vitro incubation with SCF or IL-3 enhanced the expression of CD49d on CD34+ cells, while GM-CSF reduced the expression of CD62L. SCF was the only cytokine able to induce a significant increase of CD34+ cell adherence to preformed stroma. Pre-incubation with the blocking beta2 integrin monoclonal antibody caused a reduction of CD34+ cell adherence. In conclusion, the decrease of CD49d expression on mobilized CD34+ cells correlates with a poor adhesion to BM stroma; CD34+ cells incubated in vitro with SCF showed, conversely, a higher expression of CD49d and a greater adherence capacity on normal preformed stroma.  (+info)

Effects of short-term administration of G-CSF (filgrastim) on bone marrow progenitor cells: analysis of serial marrow samples from normal donors. (4/3327)

To determine the effect of G-CSF administration on both the total number of CD34+ cells and the primitive CD34+ subsets in bone marrow (BM), we have analyzed BM samples serially obtained from 10 normal donors in steady-state and during G-CSF treatment. Filgrastim was administered subcutaneously at a dosage of 10 microg/kg/day (n = 7) or 10 microg/kg/12 h (n = 3) for 4 consecutive days. Peripheral blood sampling and BM aspirates were performed on day 1 (just before G-CSF administration), day 3 (after 2 days of G-CSF), and day 5 (after 4 days of G-CSF). During G-CSF administration, a significant increase in the total number of BM nucleated cells was observed. The percentage (range) of CD34+ cells decreased in BM from a median of 0.88 (0.47-1.44) on day 1 to 0.57 (0.32-1.87), and to 0.42 (0.16-0.87) on days 3 and 5, respectively. We observed a slight increase in the total number of BM CD34+ cells on day 3 (0.66 x 10(9)/l (0.13-0.77)), and a decrease on day 5 (0.23 x 10(9)/l (0.06-1.23)) as compared with steady-state (0.40 x 10(9)/l (0.06-1.68)). The proportion of primitive BM hematopoietic progenitor cells (CD34+CD38-, CD34+HLA-DR-, CD34+CD117-) decreased during G-CSF administration. In parallel, a significant increase in the total number of CD34+ cells in peripheral blood was observed, achieving the maximum value on day 5. These results suggest that in normal subjects the administration of G-CSF for 5 days may reduce the number of progenitor cells in BM, particularly the most primitive ones.  (+info)

Comparison of monocyte-dependent T cell inhibitory activity in GM-CSF vs G-CSF mobilized PSC products. (5/3327)

This study compares the immune properties of peripheral blood stem cell (PSC) products mobilized with different hematopoietic growth factors (HGFs) as well as apheresis products and peripheral blood leukocytes (PBL) from normal individuals. We found that monocytes in mobilized PSC products appear to inhibit T cell function independent of whether granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) was used for mobilization. In addition, the GF used to mobilize the stem cell product may be less important to the CD4:CD8 ratio than the extent of prior chemotherapy, as we found an inverse correlation between chemotherapy and the CD4:CD8 ratio. In other observations, all apheresis products, whether mobilized or unmobilized, contained significantly more monocytes compared to normal PBL. The mononuclear cells (MNC) from G-CSF or GM-CSF mobilized PSC products had a similar T cell phytohemagglutinin (PHA) mitogenic response that was significantly lower (P = 0.001 and P = 0.005, respectively) than non-mobilized apheresis products. We also examined the T cell inhibitor (TI) activity of the MNC from the PSC products for allogeneic lymphocyte proliferation and found that PSC products significantly reduced the proliferation of allogeneic PBL to PHA. A significant correlation (P = 0.001, r = 0.517) between the frequency of monocytes and TI activity also was observed.  (+info)

Advances in the biological therapy and gene therapy of malignant disease. (6/3327)

Biological and gene therapy of cancer have become important components of clinical cancer research. Advances in this area are based on evidence for the presence of tumor antigens, antitumor immune responses, evasion of host control by tumors, and the recognition of host defense failure in cancer patients. These mechanisms are being corrected or exploited in the development of biological and gene therapy. Over the last decade, 9 biological therapies have received Food and Drug Administration approval, and another 12 appear promising and will likely be approved in the next few years. Our approach to gene therapy has been to allogenize tumors by the direct intratumoral injection of HLA-B7/beta2-microglobulin genes as plasmid DNA in a cationic lipid into patients with malignant melanoma. In four Phase I studies, we found a 36% response by the local injected tumor and a 19% systemic antitumor response. In other cancers, gene transfer, expression, and an intratumoral T-cell response were seen, but no clinical response was seen. A variety of follow-up studies with HLA-B7 and other genes are planned. Evasion of host control is now a major target of gene therapy. Strategies to overcome this include up-regulation of MHC and introduction of cell adhesion molecules into tumor cells, suppression of transforming growth factor and interleukin 10 production by tumor cells, and blockade of the fas ligand-fas interaction between tumor cells and attacking lymphocytes. With these approaches, it seems likely that gene therapy may become the fifth major modality of cancer treatment in the next decade.  (+info)

Comparison of interferon-gamma, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor for priming leukocyte-mediated hyphal damage of opportunistic fungal pathogens. (7/3327)

Proinflammatory cytokines have been proposed as adjunctive therapeutic agents to enhance the host immune response during infections caused by opportunistic fungi. The study compared the differential in vitro priming effects of interferon-gamma (IFN-gamma), granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) on hyphal damage of opportunistic fungi mediated by isolated neutrophils (polymorphonuclear leukocytes, PMNL) and buffy coat cells (polymorphonuclear leukocytes/peripheral blood mononuclear cells, PMNL/PBMC) from healthy donors. IFN-gamma (1000 U/mL) effectively primed both PMNL and PMNL/PBMC for enhanced hyphal damage of Aspergillus fumigatus, Fusarium solani, and Candida albicans. G-CSF (100 ng/mL) increased hyphal damage mediated by both PMNL and PMNL/PBMC against F. solani, and GM-CSF (100 ng/mL) augmented the antifungal activity of PMNL/PBMC against hyphal forms of both F. solani and C. albicans. IFN-gamma may be superior to G-CSF or GM-CSF for enhancing the microbicidal activity of PMNL and PMNL/PBMC against opportunistic fungi.  (+info)

Phase I and pharmacologic study of the combination of paclitaxel, cisplatin, and topotecan administered intravenously every 21 days as first-line therapy in patients with advanced ovarian cancer. (8/3327)

PURPOSE: To evaluate the feasibility of administering topotecan in combination with paclitaxel and cisplatin without and with granulocyte colony-stimulating factor (G-CSF) support as first-line chemotherapy in women with incompletely resected stage III and stage IV ovarian carcinoma. PATIENTS AND METHODS: Starting doses were paclitaxel 110 mg/m2 administered over 24 hours (day 1), followed by cisplatin 50 mg/m2 over 3 hours (day 2) and topotecan 0.3 mg/m2/d over 30 minutes for 5 consecutive days (days 2 to 6). Treatment was repeated every 3 weeks. After encountering dose-limiting toxicities (DLTs) without G-CSF support, the maximum-tolerated dose was defined as 5 microg/kg of G-CSF subcutaneously starting on day 6. RESULTS: Twenty-one patients received a total of 116 courses at four different dose levels. The DLT was neutropenia. At the first dose level, all six patients experienced grade 4 myelosuppression. G-CSF support permitted further dose escalation of cisplatin and topotecan. Nonhematologic toxicities, primarily fatigue, nausea/vomiting, and neurosensory neuropathy, were observed but were generally mild. Of 15 patients assessable for response, nine had a complete response, four achieved a partial response, and two had stable disease. CONCLUSION: Neutropenia was the DLT of this combination of paclitaxel, cisplatin, and topotecan. The recommended phase II dose is paclitaxel 110 mg/m2 (day 1), followed by cisplatin 75 mg/m2 (day 2) and topotecan 0.3 mg/m2/d (days 2 to 6) with G-CSF support repeated every 3 weeks.  (+info)

Granulocyte Colony-Stimulating Factor (G-CSF) is a type of growth factor that specifically stimulates the production and survival of granulocytes, a type of white blood cell crucial for fighting off infections. G-CSF works by promoting the proliferation and differentiation of hematopoietic stem cells into mature granulocytes, primarily neutrophils, in the bone marrow.

Recombinant forms of G-CSF are used clinically as a medication to boost white blood cell production in patients undergoing chemotherapy or radiation therapy for cancer, those with congenital neutropenia, and those who have had a bone marrow transplant. By increasing the number of circulating neutrophils, G-CSF helps reduce the risk of severe infections during periods of intense immune suppression.

Examples of recombinant G-CSF medications include filgrastim (Neupogen), pegfilgrastim (Neulasta), and lipegfilgrastim (Lonquex).

Granulocytes are a type of white blood cell that plays a crucial role in the body's immune system. They are called granulocytes because they contain small granules in their cytoplasm, which are filled with various enzymes and proteins that help them fight off infections and destroy foreign substances.

There are three types of granulocytes: neutrophils, eosinophils, and basophils. Neutrophils are the most abundant type and are primarily responsible for fighting bacterial infections. Eosinophils play a role in defending against parasitic infections and regulating immune responses. Basophils are involved in inflammatory reactions and allergic responses.

Granulocytes are produced in the bone marrow and released into the bloodstream, where they circulate and patrol for any signs of infection or foreign substances. When they encounter a threat, they quickly move to the site of infection or injury and release their granules to destroy the invading organisms or substances.

Abnormal levels of granulocytes in the blood can indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder.

Granulocyte colony-stimulating factor (G-CSF) receptors are specialized protein structures found on the surface of certain types of white blood cells, specifically neutrophils, as well as their precursor cells in the bone marrow. These receptors play a crucial role in regulating the production, differentiation, and function of these important immune cells.

G-CSF is a hormone-like growth factor that is produced by various cells in the body, including monocytes, fibroblasts, and endothelial cells. When G-CSF binds to its receptor on the surface of a neutrophil or precursor cell, it activates a series of intracellular signaling pathways that promote the proliferation and differentiation of these cells. This leads to an increase in the number of mature neutrophils available to fight infection and help maintain immune surveillance.

G-CSF receptors are members of the cytokine receptor superfamily, which includes a variety of receptors that bind to different types of growth factors and hormones. The G-CSF receptor is composed of two subunits, an alpha subunit that binds to G-CSF and a beta subunit that is shared with other cytokine receptors. When G-CSF binds to the alpha subunit, it induces a conformational change that allows the beta subunit to activate intracellular signaling pathways, including the JAK/STAT and MAPK pathways.

In addition to their role in regulating neutrophil production and function, G-CSF receptors have also been implicated in a variety of other physiological processes, including hematopoiesis, inflammation, and tissue repair. Dysregulation of the G-CSF signaling pathway has been associated with various diseases, including cancer, autoimmune disorders, and bone marrow failure syndromes.

Neutropenia is a condition characterized by an abnormally low concentration (less than 1500 cells/mm3) of neutrophils, a type of white blood cell that plays a crucial role in fighting off bacterial and fungal infections. Neutrophils are essential components of the innate immune system, and their main function is to engulf and destroy microorganisms that can cause harm to the body.

Neutropenia can be classified as mild, moderate, or severe based on the severity of the neutrophil count reduction:

* Mild neutropenia: Neutrophil count between 1000-1500 cells/mm3
* Moderate neutropenia: Neutrophil count between 500-1000 cells/mm3
* Severe neutropenia: Neutrophil count below 500 cells/mm3

Severe neutropenia significantly increases the risk of developing infections, as the body's ability to fight off microorganisms is severely compromised. Common causes of neutropenia include viral infections, certain medications (such as chemotherapy or antibiotics), autoimmune disorders, and congenital conditions affecting bone marrow function. Treatment for neutropenia typically involves addressing the underlying cause, administering granulocyte-colony stimulating factors to boost neutrophil production, and providing appropriate antimicrobial therapy to prevent or treat infections.

Entoptic vision refers to the visual perception of internal structures or processes within the eye. These perceptions are not derived from external stimuli, but rather from the physiological responses of the eye itself. Examples of entoptic phenomena include floaters (small spots or strands that move across the visual field), blue field illusion (the appearance of white or dark dots in a blue field of view), and Purkinje trees (the pattern of light reflections from the cornea and lens). Entoptic phenomena are often used in scientific research to study the structure and function of the eye.

Colony-stimulating factors (CSFs) are a group of growth factors that stimulate the production of blood cells in the bone marrow. They include granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and macrophage colony-stimulating factor (M-CSF). These factors play an important role in the regulation of hematopoiesis, which is the process of producing different types of blood cells.

G-CSF stimulates the production of neutrophils, a type of white blood cell that helps fight against bacterial and fungal infections. GM-CSF stimulates the production of both neutrophils and monocytes/macrophages, which are important in the immune response to infection and tissue injury. M-CSF stimulates the production and activation of macrophages, which play a role in the immune response, wound healing, and the regulation of hematopoiesis.

Colony-stimulating factors are used clinically to stimulate the production of white blood cells in patients undergoing chemotherapy or radiation therapy, which can suppress bone marrow function and lead to low white blood cell counts. They are also used to mobilize stem cells from the bone marrow into the peripheral blood for collection and transplantation.

A leukocyte count, also known as a white blood cell (WBC) count, is a laboratory test that measures the number of leukocytes in a sample of blood. Leukocytes are a vital part of the body's immune system and help fight infection and inflammation. A high or low leukocyte count may indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder. The normal range for a leukocyte count in adults is typically between 4,500 and 11,000 cells per microliter (mcL) of blood. However, the normal range can vary slightly depending on the laboratory and the individual's age and sex.

Hematopoietic stem cells (HSCs) are immature, self-renewing cells that give rise to all the mature blood and immune cells in the body. They are capable of both producing more hematopoietic stem cells (self-renewal) and differentiating into early progenitor cells that eventually develop into red blood cells, white blood cells, and platelets. HSCs are found in the bone marrow, umbilical cord blood, and peripheral blood. They have the ability to repair damaged tissues and offer significant therapeutic potential for treating various diseases, including hematological disorders, genetic diseases, and cancer.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Hematopoietic Stem Cell Mobilization is the process of mobilizing hematopoietic stem cells (HSCs) from the bone marrow into the peripheral blood. HSCs are immature cells that have the ability to differentiate into all types of blood cells, including red and white blood cells and platelets.

Mobilization is often achieved through the use of medications such as granulocyte-colony stimulating factor (G-CSF) or plerixafor, which stimulate the release of HSCs from the bone marrow into the peripheral blood. This allows for the collection of HSCs from the peripheral blood through a procedure called apheresis.

Mobilized HSCs can be used in stem cell transplantation procedures to reconstitute a patient's hematopoietic system after high-dose chemotherapy or radiation therapy. It is an important process in the field of regenerative medicine and has been used to treat various diseases such as leukemia, lymphoma, and sickle cell disease.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a type of cytokine, which is a small signaling protein involved in immune response and hematopoiesis (the formation of blood cells). GM-CSF's specific role is to stimulate the production, proliferation, and activation of granulocytes (a type of white blood cell that fights against infection) and macrophages (large white blood cells that eat foreign substances, bacteria, and dead or dying cells).

In medical terms, GM-CSF is often used in therapeutic settings to boost the production of white blood cells in patients undergoing chemotherapy or radiation treatment for cancer. This can help to reduce the risk of infection during these treatments. It can also be used to promote the growth and differentiation of stem cells in bone marrow transplant procedures.

Hematopoiesis is the process of forming and developing blood cells. It occurs in the bone marrow and includes the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis). This process is regulated by various growth factors, hormones, and cytokines. Hematopoiesis begins early in fetal development and continues throughout a person's life. Disorders of hematopoiesis can result in conditions such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

A Colony-Forming Units (CFU) assay is a type of laboratory test used to measure the number of viable, or living, cells in a sample. It is commonly used to enumerate bacteria, yeast, and other microorganisms. The test involves placing a known volume of the sample onto a nutrient-agar plate, which provides a solid growth surface for the cells. The plate is then incubated under conditions that allow the cells to grow and form colonies. Each colony that forms on the plate represents a single viable cell from the original sample. By counting the number of colonies and multiplying by the known volume of the sample, the total number of viable cells in the sample can be calculated. This information is useful in a variety of applications, including monitoring microbial populations, assessing the effectiveness of disinfection procedures, and studying microbial growth and survival.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

Subcutaneous injection is a route of administration where a medication or vaccine is delivered into the subcutaneous tissue, which lies between the skin and the muscle. This layer contains small blood vessels, nerves, and connective tissues that help to absorb the medication slowly and steadily over a period of time. Subcutaneous injections are typically administered using a short needle, at an angle of 45-90 degrees, and the dose is injected slowly to minimize discomfort and ensure proper absorption. Common sites for subcutaneous injections include the abdomen, thigh, or upper arm. Examples of medications that may be given via subcutaneous injection include insulin, heparin, and some vaccines.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

Interleukin-3 (IL-3) is a type of cytokine, which is a small signaling protein that modulates the immune response, cell growth, and differentiation. IL-3 is primarily produced by activated T cells and mast cells. It plays an essential role in the survival, proliferation, and differentiation of hematopoietic stem cells, which give rise to all blood cell types. Specifically, IL-3 supports the development of myeloid lineage cells, including basophils, eosinophils, mast cells, megakaryocytes, and erythroid progenitors.

IL-3 binds to its receptor, the interleukin-3 receptor (IL-3R), which consists of two subunits: CD123 (the alpha chain) and CD131 (the beta chain). The binding of IL-3 to its receptor triggers a signaling cascade within the cell that ultimately leads to changes in gene expression, promoting cell growth and differentiation. Dysregulation of IL-3 production or signaling has been implicated in several hematological disorders, such as leukemia and myelodysplastic syndromes.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Interleukin-6 (IL-6) is a cytokine, a type of protein that plays a crucial role in communication between cells, especially in the immune system. It is produced by various cells including T-cells, B-cells, fibroblasts, and endothelial cells in response to infection, injury, or inflammation.

IL-6 has diverse effects on different cell types. In the immune system, it stimulates the growth and differentiation of B-cells into plasma cells that produce antibodies. It also promotes the activation and survival of T-cells. Moreover, IL-6 plays a role in fever induction by acting on the hypothalamus to raise body temperature during an immune response.

In addition to its functions in the immune system, IL-6 has been implicated in various physiological processes such as hematopoiesis (the formation of blood cells), bone metabolism, and neural development. However, abnormal levels of IL-6 have also been associated with several diseases, including autoimmune disorders, chronic inflammation, and cancer.

Agranulocytosis is a medical condition characterized by an abnormally low concentration of granulocytes (a type of white blood cells) in the peripheral blood. Granulocytes, which include neutrophils, eosinophils, and basophils, play a crucial role in the body's defense against infections. A significant reduction in their numbers can make an individual highly susceptible to various bacterial and fungal infections.

The condition is typically defined as having fewer than 150 granulocytes per microliter of blood or less than 1% of the total white blood cell count. Symptoms of agranulocytosis may include fever, fatigue, sore throat, mouth ulcers, and susceptibility to infections. The condition can be caused by various factors, including certain medications, medical treatments (such as chemotherapy or radiation therapy), autoimmune disorders, and congenital conditions. Immediate medical attention is required for individuals diagnosed with agranulocytosis to prevent and treat potential infections and restore the normal granulocyte count.

Colony Collapse Disorder (CCD) is a phenomenon in which the majority of worker bees in a honeybee colony disappear, leaving behind the queen, immature bees, and enough food to survive. The exact cause of CCD is unknown, but it's believed to be due to a combination of factors such as pests, pathogens, poor nutrition, and exposure to environmental stressors like pesticides. This disorder has been a major concern for the honeybee population and agriculture industry because honeybees play a crucial role in pollinating crops.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

Monocytes are a type of white blood cell that are part of the immune system. They are large cells with a round or oval shape and a nucleus that is typically indented or horseshoe-shaped. Monocytes are produced in the bone marrow and then circulate in the bloodstream, where they can differentiate into other types of immune cells such as macrophages and dendritic cells.

Monocytes play an important role in the body's defense against infection and tissue damage. They are able to engulf and digest foreign particles, microorganisms, and dead or damaged cells, which helps to clear them from the body. Monocytes also produce cytokines, which are signaling molecules that help to coordinate the immune response.

Elevated levels of monocytes in the bloodstream can be a sign of an ongoing infection, inflammation, or other medical conditions such as cancer or autoimmune disorders.

Phagocytosis is the process by which certain cells in the body, known as phagocytes, engulf and destroy foreign particles, bacteria, or dead cells. This mechanism plays a crucial role in the immune system's response to infection and inflammation. Phagocytes, such as neutrophils, monocytes, and macrophages, have receptors on their surface that recognize and bind to specific molecules (known as antigens) on the target particles or microorganisms.

Once attached, the phagocyte extends pseudopodia (cell extensions) around the particle, forming a vesicle called a phagosome that completely encloses it. The phagosome then fuses with a lysosome, an intracellular organelle containing digestive enzymes and other chemicals. This fusion results in the formation of a phagolysosome, where the engulfed particle is broken down by the action of these enzymes, neutralizing its harmful effects and allowing for the removal of cellular debris or pathogens.

Phagocytosis not only serves as a crucial defense mechanism against infections but also contributes to tissue homeostasis by removing dead cells and debris.

CD34 is a type of antigen that is found on the surface of certain cells in the human body. Specifically, CD34 antigens are present on hematopoietic stem cells, which are immature cells that can develop into different types of blood cells. These stem cells are found in the bone marrow and are responsible for producing red blood cells, white blood cells, and platelets.

CD34 antigens are a type of cell surface marker that is used in medical research and clinical settings to identify and isolate hematopoietic stem cells. They are also used in the development of stem cell therapies and transplantation procedures. CD34 antigens can be detected using various laboratory techniques, such as flow cytometry or immunohistochemistry.

It's important to note that while CD34 is a useful marker for identifying hematopoietic stem cells, it is not exclusive to these cells and can also be found on other cell types, such as endothelial cells that line blood vessels. Therefore, additional markers are often used in combination with CD34 to more specifically identify and isolate hematopoietic stem cells.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

I believe you may have accidentally omitted the word "in" from your search. Based on that, I'm assuming you are looking for a medical definition related to the term "ants." However, ants are not typically associated with medical terminology. If you meant to ask about a specific condition or concept, please provide more context so I can give a more accurate response.

If you are indeed asking about ants in the insect sense, they belong to the family Formicidae and order Hymenoptera. Some species of ants may pose public health concerns due to their ability to contaminate food sources or cause structural damage. However, ants do not have a direct medical definition associated with human health.

A clone is a group of cells that are genetically identical to each other because they are derived from a common ancestor cell through processes such as mitosis or asexual reproduction. Therefore, the term "clone cells" refers to a population of cells that are genetic copies of a single parent cell.

In the context of laboratory research, cells can be cloned by isolating a single cell and allowing it to divide in culture, creating a population of genetically identical cells. This is useful for studying the behavior and characteristics of individual cell types, as well as for generating large quantities of cells for use in experiments.

It's important to note that while clone cells are genetically identical, they may still exhibit differences in their phenotype (physical traits) due to epigenetic factors or environmental influences.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Leukemia, myeloid is a type of cancer that originates in the bone marrow, where blood cells are produced. Myeloid leukemia affects the myeloid cells, which include red blood cells, platelets, and most types of white blood cells. In this condition, the bone marrow produces abnormal myeloid cells that do not mature properly and accumulate in the bone marrow and blood. These abnormal cells hinder the production of normal blood cells, leading to various symptoms such as anemia, fatigue, increased risk of infections, and easy bruising or bleeding.

There are several types of myeloid leukemias, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). AML progresses rapidly and requires immediate treatment, while CML tends to progress more slowly. The exact causes of myeloid leukemia are not fully understood, but risk factors include exposure to radiation or certain chemicals, smoking, genetic disorders, and a history of chemotherapy or other cancer treatments.

Agar is a substance derived from red algae, specifically from the genera Gelidium and Gracilaria. It is commonly used in microbiology as a solidifying agent for culture media. Agar forms a gel at relatively low temperatures (around 40-45°C) and remains stable at higher temperatures (up to 100°C), making it ideal for preparing various types of culture media.

In addition to its use in microbiology, agar is also used in other scientific research, food industry, and even in some artistic applications due to its unique gelling properties. It is important to note that although agar is often used in the preparation of food, it is not typically consumed as a standalone ingredient by humans or animals.

Stem Cell Factor (SCF), also known as Kit Ligand or Steel Factor, is a growth factor that plays a crucial role in the regulation of hematopoiesis, which is the process of producing various blood cells. It is a glycoprotein that binds to the c-Kit receptor found on hematopoietic stem cells and progenitor cells, promoting their survival, proliferation, and differentiation into mature blood cells.

SCF is involved in the development and function of several types of blood cells, including red blood cells, white blood cells, and platelets. It also plays a role in the maintenance and self-renewal of hematopoietic stem cells, which are essential for the continuous production of new blood cells throughout an individual's lifetime.

In addition to its role in hematopoiesis, SCF has been implicated in various other biological processes, such as melanogenesis, gametogenesis, and tissue repair and regeneration. Dysregulation of SCF signaling has been associated with several diseases, including certain types of cancer, bone marrow failure disorders, and autoimmune diseases.

Growth substances, in the context of medical terminology, typically refer to natural hormones or chemically synthesized agents that play crucial roles in controlling and regulating cell growth, differentiation, and division. They are also known as "growth factors" or "mitogens." These substances include:

1. Proteins: Examples include insulin-like growth factors (IGFs), transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF), and fibroblast growth factors (FGFs). They bind to specific receptors on the cell surface, activating intracellular signaling pathways that promote cell proliferation, differentiation, and survival.

2. Steroids: Certain steroid hormones, such as androgens and estrogens, can also act as growth substances by binding to nuclear receptors and influencing gene expression related to cell growth and division.

3. Cytokines: Some cytokines, like interleukins (ILs) and hematopoietic growth factors (HGFs), contribute to the regulation of hematopoiesis, immune responses, and inflammation, thus indirectly affecting cell growth and differentiation.

These growth substances have essential roles in various physiological processes, such as embryonic development, tissue repair, and wound healing. However, abnormal or excessive production or response to these growth substances can lead to pathological conditions, including cancer, benign tumors, and other proliferative disorders.

Respiratory burst is a term used in the field of biology, particularly in the context of immunology and cellular processes. It does not have a direct application to clinical medicine, but it is important for understanding certain physiological and pathophysiological mechanisms. Here's a definition of respiratory burst:

Respiratory burst is a rapid increase in oxygen consumption by phagocytic cells (like neutrophils, monocytes, and macrophages) following their activation in response to various stimuli, such as pathogens or inflammatory molecules. This process is part of the innate immune response and serves to eliminate invading microorganisms.

The respiratory burst involves the activation of NADPH oxidase, an enzyme complex present in the membrane of phagosomes (the compartment where pathogens are engulfed). Upon activation, NADPH oxidase catalyzes the reduction of oxygen to superoxide radicals, which then dismutate to form hydrogen peroxide. These reactive oxygen species (ROS) can directly kill or damage microorganisms and also serve as signaling molecules for other immune cells.

While respiratory burst is a crucial part of the immune response, excessive or dysregulated ROS production can contribute to tissue damage and chronic inflammation, which have implications in various pathological conditions, such as atherosclerosis, neurodegenerative diseases, and cancer.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Hematopoietic cell growth factors are a group of glycoproteins that stimulate the proliferation, differentiation, and survival of hematopoietic cells, which are the precursor cells that give rise to all blood cells. These growth factors include colony-stimulating factors (CSFs) such as granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and macrophage colony-stimulating factor (M-CSF), as well as erythropoietin (EPO) and thrombopoietin (TPO).

G-CSF primarily stimulates the production of neutrophils, a type of white blood cell that plays a crucial role in the immune response to bacterial infections. GM-CSF stimulates the production of both granulocytes and monocytes/macrophages, while M-CSF specifically stimulates the production of monocytes/macrophages. EPO stimulates the production of red blood cells, while TPO stimulates the production of platelets.

Hematopoietic cell growth factors are used clinically to treat a variety of conditions associated with impaired hematopoiesis, such as chemotherapy-induced neutropenia, aplastic anemia, and congenital disorders of hematopoiesis. They can also be used to mobilize hematopoietic stem cells from the bone marrow into the peripheral blood for collection and transplantation.

Eosinophils are a type of white blood cell that play an important role in the body's immune response. They are produced in the bone marrow and released into the bloodstream, where they can travel to different tissues and organs throughout the body. Eosinophils are characterized by their granules, which contain various proteins and enzymes that are toxic to parasites and can contribute to inflammation.

Eosinophils are typically associated with allergic reactions, asthma, and other inflammatory conditions. They can also be involved in the body's response to certain infections, particularly those caused by parasites such as worms. In some cases, elevated levels of eosinophils in the blood or tissues (a condition called eosinophilia) can indicate an underlying medical condition, such as a parasitic infection, autoimmune disorder, or cancer.

Eosinophils are named for their staining properties - they readily take up eosin dye, which is why they appear pink or red under the microscope. They make up only about 1-6% of circulating white blood cells in healthy individuals, but their numbers can increase significantly in response to certain triggers.

Cell separation is a process used to separate and isolate specific cell types from a heterogeneous mixture of cells. This can be accomplished through various physical or biological methods, depending on the characteristics of the cells of interest. Some common techniques for cell separation include:

1. Density gradient centrifugation: In this method, a sample containing a mixture of cells is layered onto a density gradient medium and then centrifuged. The cells are separated based on their size, density, and sedimentation rate, with denser cells settling closer to the bottom of the tube and less dense cells remaining near the top.

2. Magnetic-activated cell sorting (MACS): This technique uses magnetic beads coated with antibodies that bind to specific cell surface markers. The labeled cells are then passed through a column placed in a magnetic field, which retains the magnetically labeled cells while allowing unlabeled cells to flow through.

3. Fluorescence-activated cell sorting (FACS): In this method, cells are stained with fluorochrome-conjugated antibodies that recognize specific cell surface or intracellular markers. The stained cells are then passed through a laser beam, which excites the fluorophores and allows for the detection and sorting of individual cells based on their fluorescence profile.

4. Filtration: This simple method relies on the physical size differences between cells to separate them. Cells can be passed through filters with pore sizes that allow smaller cells to pass through while retaining larger cells.

5. Enzymatic digestion: In some cases, cells can be separated by enzymatically dissociating tissues into single-cell suspensions and then using various separation techniques to isolate specific cell types.

These methods are widely used in research and clinical settings for applications such as isolating immune cells, stem cells, or tumor cells from biological samples.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Leukocyte transfusion, also known as white blood cell (WBC) transfusion, involves the intravenous administration of leukocytes (white blood cells) from a donor to a recipient. This procedure is typically used in patients with severe immunodeficiency or those undergoing bone marrow transplantation, where they are unable to produce sufficient white blood cells to fight off infections.

Leukocyte transfusions can help boost the recipient's immune system and provide them with temporary protection against infections. However, this procedure carries some risks, including febrile non-hemolytic transfusion reactions, allergic reactions, transmission of infectious diseases, and the potential for transfusion-associated graft-versus-host disease (TA-GVHD). Therefore, leukocyte transfusions are usually reserved for specific clinical situations where the benefits outweigh the risks.

N-Formylmethionine Leucyl-Phenylalanine (fMLP) is not a medical condition, but rather a synthetic peptide that is often used in laboratory settings for research purposes. It is a formylated methionine residue linked to a leucine and phenylalanine tripeptide.

fMLP is a potent chemoattractant for certain types of white blood cells, including neutrophils and monocytes. When these cells encounter fMLP, they are stimulated to migrate towards the source of the peptide and release various inflammatory mediators. As such, fMLP is often used in studies of inflammation, immune cell function, and signal transduction pathways.

It's important to note that while fMLP has important research applications, it is not a substance that would be encountered or used in clinical medicine.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Macrophage Colony-Stimulating Factor (M-CSF) is a growth factor that belongs to the family of colony-stimulating factors (CSFs). It is a glycoprotein hormone that plays a crucial role in the survival, proliferation, and differentiation of mononuclear phagocytes, including macrophages. M-CSF binds to its receptor, CSF1R, which is expressed on the surface of monocytes, macrophages, and their precursors.

M-CSF stimulates the production of mature macrophages from monocyte precursors in the bone marrow and enhances the survival and function of mature macrophages in peripheral tissues. It also promotes the activation of macrophages, increasing their ability to phagocytize and destroy foreign particles, microorganisms, and tumor cells.

In addition to its role in the immune system, M-CSF has been implicated in various physiological processes, including hematopoiesis, bone remodeling, angiogenesis, and female reproduction. Dysregulation of M-CSF signaling has been associated with several pathological conditions, such as inflammatory diseases, autoimmune disorders, and cancer.

"Bees" are not a medical term, as they refer to various flying insects belonging to the Apidae family in the Apoidea superfamily. They are known for their role in pollination and honey production. If you're looking for medical definitions or information, please provide relevant terms.

Blood cells are the formed elements in the blood, including red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). These cells are produced in the bone marrow and play crucial roles in the body's functions. Red blood cells are responsible for carrying oxygen to tissues and carbon dioxide away from them, while white blood cells are part of the immune system and help defend against infection and disease. Platelets are cell fragments that are essential for normal blood clotting.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Leukocytosis is a condition characterized by an increased number of leukocytes (white blood cells) in the peripheral blood. A normal white blood cell count ranges from 4,500 to 11,000 cells per microliter of blood in adults. Leukocytosis is typically considered present when the white blood cell count exceeds 11,000 cells/µL. However, the definition might vary slightly depending on the laboratory and clinical context.

Leukocytosis can be a response to various underlying conditions, including bacterial or viral infections, inflammation, tissue damage, leukemia, and other hematological disorders. It is essential to investigate the cause of leukocytosis through further diagnostic tests, such as blood smears, differential counts, and additional laboratory and imaging studies, to guide appropriate treatment.

Chemotaxis, Leukocyte is the movement of leukocytes (white blood cells) towards a higher concentration of a particular chemical substance, known as a chemotactic factor. This process plays a crucial role in the immune system's response to infection and injury.

When there is an infection or tissue damage, certain cells release chemotactic factors, which are small molecules or proteins that can attract leukocytes to the site of inflammation. Leukocytes have receptors on their surface that can detect these chemotactic factors and move towards them through a process called chemotaxis.

Once they reach the site of inflammation, leukocytes can help eliminate pathogens or damaged cells by phagocytosis (engulfing and destroying) or releasing toxic substances that kill the invading microorganisms. Chemotaxis is an essential part of the immune system's defense mechanisms and helps to maintain tissue homeostasis and prevent the spread of infection.

Myeloid progenitor cells are a type of precursor cells that originate from hematopoietic stem cells (HSCs) in the bone marrow. These cells have the ability to differentiate into various types of blood cells, including red blood cells, platelets, and different kinds of white blood cells, specifically granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes. Myeloid progenitor cells are crucial for the maintenance of normal hematopoiesis and immune function. Abnormalities in myeloid progenitor cell differentiation or function can lead to various hematological disorders such as leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms.

Myelopoiesis is the process of formation and development of myeloid cells (a type of blood cell) within the bone marrow. This includes the production of red blood cells (erythropoiesis), platelets (thrombopoiesis), and white blood cells such as granulocytes (neutrophils, eosinophils, basophils), monocytes, and mast cells. Myelopoiesis is a continuous process that is regulated by various growth factors and hormones to maintain the normal levels of these cells in the body. Abnormalities in myelopoiesis can lead to several hematological disorders like anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

Megakaryocytes are large, specialized bone marrow cells that are responsible for the production and release of platelets (also known as thrombocytes) into the bloodstream. Platelets play an essential role in blood clotting and hemostasis, helping to prevent excessive bleeding during injuries or trauma.

Megakaryocytes have a unique structure with multilobed nuclei and abundant cytoplasm rich in organelles called alpha-granules and dense granules, which store various proteins, growth factors, and enzymes necessary for platelet function. As megakaryocytes mature, they extend long cytoplasmic processes called proplatelets into the bone marrow sinuses, where these extensions fragment into individual platelets that are released into circulation.

Abnormalities in megakaryocyte number, size, or function can lead to various hematological disorders, such as thrombocytopenia (low platelet count), thrombocytosis (high platelet count), and certain types of leukemia.

Leukopoiesis is the process of formation and development of leukocytes or white blood cells in the body. It occurs in the bone marrow, where immature cells known as hematopoietic stem cells differentiate and mature into various types of white blood cells, including neutrophils, lymphocytes, monocytes, eosinophils, and basophils. These cells play a crucial role in the body's immune system by helping to fight infections and diseases. Leukopoiesis is regulated by various growth factors and hormones that stimulate the production and differentiation of hematopoietic stem cells into mature white blood cells.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

Blood bactericidal activity refers to the ability of an individual's blood to kill or inhibit the growth of bacteria. This is an important aspect of the body's immune system, as it helps to prevent infection and maintain overall health. The bactericidal activity of blood can be influenced by various factors, including the presence of antibodies, white blood cells (such as neutrophils), and complement proteins.

In medical terms, the term "bactericidal" specifically refers to an agent or substance that is capable of killing bacteria. Therefore, when we talk about blood bactericidal activity, we are referring to the collective ability of various components in the blood to kill or inhibit the growth of bacteria. This is often measured in laboratory tests as a way to assess a person's immune function and their susceptibility to infection.

It's worth noting that not all substances in the blood are bactericidal; some may simply inhibit the growth of bacteria without killing them. These substances are referred to as bacteriostatic. Both bactericidal and bacteriostatic agents play important roles in maintaining the body's defense against infection.

Granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors are a type of cell surface receptor found on hematopoietic cells, which are involved in the production and activation of white blood cells, specifically granulocytes and macrophages.

The GM-CSF receptor is a heterodimer, composed of two distinct subunits: the alpha (GM-CSF RA) and the beta (GM-CSF RB or CD131) chains. The alpha chain is specific to GM-CSF and binds to it with low affinity, while the beta chain is shared with other cytokine receptors, such as IL-3 and IL-5 receptors, and increases the binding affinity and signal transduction of the receptor complex.

Once GM-CSF binds to its receptor, it triggers a series of intracellular signaling events that promote the proliferation, differentiation, and activation of granulocytes and macrophages. These cells play crucial roles in the immune system's response to infection and inflammation, making GM-CSF and its receptors important targets for therapeutic intervention in various immunological disorders.

Acute myeloid leukemia (AML) is a type of cancer that originates in the bone marrow, the soft inner part of certain bones where new blood cells are made. In AML, the immature cells, called blasts, in the bone marrow fail to mature into normal blood cells. Instead, these blasts accumulate and interfere with the production of normal blood cells, leading to a shortage of red blood cells (anemia), platelets (thrombocytopenia), and normal white blood cells (leukopenia).

AML is called "acute" because it can progress quickly and become severe within days or weeks without treatment. It is a type of myeloid leukemia, which means that it affects the myeloid cells in the bone marrow. Myeloid cells are a type of white blood cell that includes monocytes and granulocytes, which help fight infection and defend the body against foreign invaders.

In AML, the blasts can build up in the bone marrow and spread to other parts of the body, including the blood, lymph nodes, liver, spleen, and brain. This can cause a variety of symptoms, such as fatigue, fever, frequent infections, easy bruising or bleeding, and weight loss.

AML is typically treated with a combination of chemotherapy, radiation therapy, and/or stem cell transplantation. The specific treatment plan will depend on several factors, including the patient's age, overall health, and the type and stage of the leukemia.

Peroxidase is a type of enzyme that catalyzes the chemical reaction in which hydrogen peroxide (H2O2) is broken down into water (H2O) and oxygen (O2). This enzymatic reaction also involves the oxidation of various organic and inorganic compounds, which can serve as electron donors.

Peroxidases are widely distributed in nature and can be found in various organisms, including bacteria, fungi, plants, and animals. They play important roles in various biological processes, such as defense against oxidative stress, breakdown of toxic substances, and participation in metabolic pathways.

The peroxidase-catalyzed reaction can be represented by the following chemical equation:

H2O2 + 2e- + 2H+ → 2H2O

In this reaction, hydrogen peroxide is reduced to water, and the electron donor is oxidized. The peroxidase enzyme facilitates the transfer of electrons between the substrate (hydrogen peroxide) and the electron donor, making the reaction more efficient and specific.

Peroxidases have various applications in medicine, industry, and research. For example, they can be used for diagnostic purposes, as biosensors, and in the treatment of wastewater and medical wastes. Additionally, peroxidases are involved in several pathological conditions, such as inflammation, cancer, and neurodegenerative diseases, making them potential targets for therapeutic interventions.

Erythropoietin (EPO) is a hormone that is primarily produced by the kidneys and plays a crucial role in the production of red blood cells in the body. It works by stimulating the bone marrow to produce more red blood cells, which are essential for carrying oxygen to various tissues and organs.

EPO is a glycoprotein that is released into the bloodstream in response to low oxygen levels in the body. When the kidneys detect low oxygen levels, they release EPO, which then travels to the bone marrow and binds to specific receptors on immature red blood cells called erythroblasts. This binding triggers a series of events that promote the maturation and proliferation of erythroblasts, leading to an increase in the production of red blood cells.

In addition to its role in regulating red blood cell production, EPO has also been shown to have neuroprotective effects and may play a role in modulating the immune system. Abnormal levels of EPO have been associated with various medical conditions, including anemia, kidney disease, and certain types of cancer.

EPO is also used as a therapeutic agent for the treatment of anemia caused by chronic kidney disease, chemotherapy, or other conditions that affect red blood cell production. Recombinant human EPO (rhEPO) is a synthetic form of the hormone that is produced using genetic engineering techniques and is commonly used in clinical practice to treat anemia. However, misuse of rhEPO for performance enhancement in sports has been a subject of concern due to its potential to enhance oxygen-carrying capacity and improve endurance.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

Erythropoiesis is the process of forming and developing red blood cells (erythrocytes) in the body. It occurs in the bone marrow and is regulated by the hormone erythropoietin (EPO), which is produced by the kidneys. Erythropoiesis involves the differentiation and maturation of immature red blood cell precursors called erythroblasts into mature red blood cells, which are responsible for carrying oxygen to the body's tissues. Disorders that affect erythropoiesis can lead to anemia or other blood-related conditions.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Granulocyte precursor cells, also known as myeloid precursors or myeloblasts, are early-stage cells found in the bone marrow. These cells are part of the production process for granulocytes, a type of white blood cell that plays a crucial role in fighting off infections.

Granulocyte precursor cells differentiate and mature into three main types of granulocytes: neutrophils, eosinophils, and basophils. These cells have distinct functions in the immune response, such as neutralizing and destroying invading pathogens (neutrophils), regulating inflammation and fighting parasitic infections (eosinophils), and mediating allergic reactions and inflammation (basophils).

Abnormalities in granulocyte precursor cells can lead to various medical conditions, such as leukemia, where these cells become cancerous and multiply uncontrollably. Monitoring granulocyte precursor cells is essential for diagnosing and managing hematological disorders.

Cyclophosphamide is an alkylating agent, which is a type of chemotherapy medication. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. This helps to stop the spread of cancer in the body. Cyclophosphamide is used to treat various types of cancer, including lymphoma, leukemia, multiple myeloma, and breast cancer. It can be given orally as a tablet or intravenously as an injection.

Cyclophosphamide can also have immunosuppressive effects, which means it can suppress the activity of the immune system. This makes it useful in treating certain autoimmune diseases, such as rheumatoid arthritis and lupus. However, this immunosuppression can also increase the risk of infections and other side effects.

Like all chemotherapy medications, cyclophosphamide can cause a range of side effects, including nausea, vomiting, hair loss, fatigue, and increased susceptibility to infections. It is important for patients receiving cyclophosphamide to be closely monitored by their healthcare team to manage these side effects and ensure the medication is working effectively.

A Tumor Stem Cell Assay is not a widely accepted or standardized medical definition. However, in the context of cancer research, a tumor stem cell assay generally refers to an experimental procedure used to identify and isolate cancer stem cells (also known as tumor-initiating cells) from a tumor sample.

Cancer stem cells are a subpopulation of cells within a tumor that are believed to be responsible for driving tumor growth, metastasis, and resistance to therapy. They have the ability to self-renew and differentiate into various cell types within the tumor, making them a promising target for cancer therapies.

A tumor stem cell assay typically involves isolating cells from a tumor sample and subjecting them to various tests to identify those with stem cell-like properties. These tests may include assessing their ability to form tumors in animal models or their expression of specific surface markers associated with cancer stem cells. The goal of the assay is to provide researchers with a better understanding of the biology of cancer stem cells and to develop new therapies that target them specifically.

Nitroblue Tetrazolium (NBT) is not a medical term per se, but a chemical compound that is widely used in scientific research and diagnostic tests. It's primarily used as an electron acceptor in various biochemical assays to detect the presence of certain enzymes or reactive oxygen species (ROS).

In a medical context, NBT is often used in the NBT reduction test, which is a diagnostic procedure to identify patients with chronic granulomatous disease (CGD), an inherited immunodeficiency disorder. In this test, white blood cells called phagocytes from the patient's blood sample are incubated with NBT and a stimulus that triggers their respiratory burst, such as bacterial particles. If the phagocytes can produce superoxide radicals during the respiratory burst, these radicals reduce NBT to form a blue-black insoluble formazan precipitate. In CGD patients, who have impaired production of ROS, there is no or significantly reduced formazan formation, indicating an abnormal NBT reduction test result.

Indium is not a medical term, but it is a chemical element with the symbol In and atomic number 49. It is a soft, silvery-white, post-transition metal that is rarely found in its pure form in nature. It is primarily used in the production of electronics, such as flat panel displays, and in nuclear medicine as a radiation source for medical imaging.

In nuclear medicine, indium-111 is used in the labeling of white blood cells to diagnose and locate abscesses, inflammation, and infection. The indium-111 labeled white blood cells are injected into the patient's body, and then a gamma camera is used to track their movement and identify areas of infection or inflammation.

Therefore, while indium itself is not a medical term, it does have important medical applications in diagnostic imaging.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

Leukopenia is a medical term used to describe an abnormally low white blood cell (WBC) count in the blood. White blood cells are crucial components of the body's immune system, helping to fight infections and diseases. A normal WBC count ranges from 4,500 to 11,000 cells per microliter (μL) of blood in most laboratories. Leukopenia is typically diagnosed when the WBC count falls below 4,500 cells/μL.

There are several types of white blood cells, including neutrophils, lymphocytes, monocytes, eosinophils, and basophils. Neutropenia, a specific type of leukopenia, refers to an abnormally low neutrophil count (less than 1,500 cells/μL). Neutropenia increases the risk of bacterial and fungal infections since neutrophils play a significant role in combating these types of pathogens.

Leukopenia can result from various factors, such as viral infections, certain medications (like chemotherapy or radiation therapy), bone marrow disorders, autoimmune diseases, or congenital conditions affecting white blood cell production. It is essential to identify the underlying cause of leukopenia to provide appropriate treatment and prevent complications.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

HL-60 cells are a type of human promyelocytic leukemia cell line that is commonly used in scientific research. They are named after the hospital where they were first isolated, the Hospital of the University of Pennsylvania (HUP) and the 60th culture attempt to grow these cells.

HL-60 cells have the ability to differentiate into various types of blood cells, such as granulocytes, monocytes, and macrophages, when exposed to certain chemical compounds or under specific culturing conditions. This makes them a valuable tool for studying the mechanisms of cell differentiation, proliferation, and apoptosis (programmed cell death).

HL-60 cells are also often used in toxicity studies, drug discovery and development, and research on cancer, inflammation, and infectious diseases. They can be easily grown in the lab and have a stable genotype, making them ideal for use in standardized experiments and comparisons between different studies.

Hematopoietic Stem Cell Transplantation (HSCT) is a medical procedure where hematopoietic stem cells (immature cells that give rise to all blood cell types) are transplanted into a patient. This procedure is often used to treat various malignant and non-malignant disorders affecting the hematopoietic system, such as leukemias, lymphomas, multiple myeloma, aplastic anemia, inherited immune deficiency diseases, and certain genetic metabolic disorders.

The transplantation can be autologous (using the patient's own stem cells), allogeneic (using stem cells from a genetically matched donor, usually a sibling or unrelated volunteer), or syngeneic (using stem cells from an identical twin).

The process involves collecting hematopoietic stem cells, most commonly from the peripheral blood or bone marrow. The collected cells are then infused into the patient after the recipient's own hematopoietic system has been ablated (or destroyed) using high-dose chemotherapy and/or radiation therapy. This allows the donor's stem cells to engraft, reconstitute, and restore the patient's hematopoietic system.

HSCT is a complex and potentially risky procedure with various complications, including graft-versus-host disease, infections, and organ damage. However, it offers the potential for cure or long-term remission in many patients with otherwise fatal diseases.

Neutrophil activation refers to the process by which neutrophils, a type of white blood cell, become activated in response to a signal or stimulus, such as an infection or inflammation. This activation triggers a series of responses within the neutrophil that enable it to carry out its immune functions, including:

1. Degranulation: The release of granules containing enzymes and other proteins that can destroy microbes.
2. Phagocytosis: The engulfment and destruction of microbes through the use of reactive oxygen species (ROS) and other toxic substances.
3. Formation of neutrophil extracellular traps (NETs): A process in which neutrophils release DNA and proteins to trap and kill microbes outside the cell.
4. Release of cytokines and chemokines: Signaling molecules that recruit other immune cells to the site of infection or inflammation.

Neutrophil activation is a critical component of the innate immune response, but excessive or uncontrolled activation can contribute to tissue damage and chronic inflammation.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Erythroid precursor cells, also known as erythroblasts or normoblasts, are early stage cells in the process of producing mature red blood cells (erythrocytes) in the bone marrow. These cells are derived from hematopoietic stem cells and undergo a series of maturation stages, including proerythroblast, basophilic erythroblast, polychromatophilic erythroblast, and orthochromatic erythroblast, before becoming reticulocytes and then mature red blood cells. During this maturation process, the cells lose their nuclei and become enucleated, taking on the biconcave shape and flexible membrane that allows them to move through small blood vessels and deliver oxygen to tissues throughout the body.

'Cell lineage' is a term used in biology and medicine to describe the developmental history or relationship of a cell or group of cells to other cells, tracing back to the original progenitor or stem cell. It refers to the series of cell divisions and differentiation events that give rise to specific types of cells in an organism over time.

In simpler terms, cell lineage is like a family tree for cells, showing how they are related to each other through a chain of cell division and specialization events. This concept is important in understanding the development, growth, and maintenance of tissues and organs in living beings.

Aplastic anemia is a medical condition characterized by pancytopenia (a decrease in all three types of blood cells: red blood cells, white blood cells, and platelets) due to the failure of bone marrow to produce new cells. It is called "aplastic" because the bone marrow becomes hypocellular or "aplastic," meaning it contains few or no blood-forming stem cells.

The condition can be acquired or inherited, with acquired aplastic anemia being more common. Acquired aplastic anemia can result from exposure to toxic chemicals, radiation, drugs, viral infections, or autoimmune disorders. Inherited forms of the disease include Fanconi anemia and dyskeratosis congenita.

Symptoms of aplastic anemia may include fatigue, weakness, shortness of breath, pale skin, easy bruising or bleeding, frequent infections, and fever. Treatment options for aplastic anemia depend on the severity of the condition and its underlying cause. They may include blood transfusions, immunosuppressive therapy, and stem cell transplantation.

Bone marrow transplantation (BMT) is a medical procedure in which damaged or destroyed bone marrow is replaced with healthy bone marrow from a donor. Bone marrow is the spongy tissue inside bones that produces blood cells. The main types of BMT are autologous, allogeneic, and umbilical cord blood transplantation.

In autologous BMT, the patient's own bone marrow is used for the transplant. This type of BMT is often used in patients with lymphoma or multiple myeloma who have undergone high-dose chemotherapy or radiation therapy to destroy their cancerous bone marrow.

In allogeneic BMT, bone marrow from a genetically matched donor is used for the transplant. This type of BMT is often used in patients with leukemia, lymphoma, or other blood disorders who have failed other treatments.

Umbilical cord blood transplantation involves using stem cells from umbilical cord blood as a source of healthy bone marrow. This type of BMT is often used in children and adults who do not have a matched donor for allogeneic BMT.

The process of BMT typically involves several steps, including harvesting the bone marrow or stem cells from the donor, conditioning the patient's body to receive the new bone marrow or stem cells, transplanting the new bone marrow or stem cells into the patient's body, and monitoring the patient for signs of engraftment and complications.

BMT is a complex and potentially risky procedure that requires careful planning, preparation, and follow-up care. However, it can be a life-saving treatment for many patients with blood disorders or cancer.

Leukemia is a type of cancer that originates from the bone marrow - the soft, inner part of certain bones where new blood cells are made. It is characterized by an abnormal production of white blood cells, known as leukocytes or blasts. These abnormal cells accumulate in the bone marrow and interfere with the production of normal blood cells, leading to a decrease in red blood cells (anemia), platelets (thrombocytopenia), and healthy white blood cells (leukopenia).

There are several types of leukemia, classified based on the specific type of white blood cell affected and the speed at which the disease progresses:

1. Acute Leukemias - These types of leukemia progress rapidly, with symptoms developing over a few weeks or months. They involve the rapid growth and accumulation of immature, nonfunctional white blood cells (blasts) in the bone marrow and peripheral blood. The two main categories are:
- Acute Lymphoblastic Leukemia (ALL) - Originates from lymphoid progenitor cells, primarily affecting children but can also occur in adults.
- Acute Myeloid Leukemia (AML) - Develops from myeloid progenitor cells and is more common in older adults.

2. Chronic Leukemias - These types of leukemia progress slowly, with symptoms developing over a period of months to years. They involve the production of relatively mature, but still abnormal, white blood cells that can accumulate in large numbers in the bone marrow and peripheral blood. The two main categories are:
- Chronic Lymphocytic Leukemia (CLL) - Affects B-lymphocytes and is more common in older adults.
- Chronic Myeloid Leukemia (CML) - Originates from myeloid progenitor cells, characterized by the presence of a specific genetic abnormality called the Philadelphia chromosome. It can occur at any age but is more common in middle-aged and older adults.

Treatment options for leukemia depend on the type, stage, and individual patient factors. Treatments may include chemotherapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Myeloid cells are a type of immune cell that originate from the bone marrow. They develop from hematopoietic stem cells, which can differentiate into various types of blood cells. Myeloid cells include monocytes, macrophages, granulocytes (such as neutrophils, eosinophils, and basophils), dendritic cells, and mast cells. These cells play important roles in the immune system, such as defending against pathogens, modulating inflammation, and participating in tissue repair and remodeling.

Myeloid cell development is a tightly regulated process that involves several stages of differentiation, including the commitment to the myeloid lineage, proliferation, and maturation into specific subtypes. Dysregulation of myeloid cell development or function can contribute to various diseases, such as infections, cancer, and autoimmune disorders.

Zymosan is a type of substance that is derived from the cell walls of yeast and some types of fungi. It's often used in laboratory research as an agent to stimulate inflammation, because it can activate certain immune cells (such as neutrophils) and cause them to release pro-inflammatory chemicals.

In medical terms, Zymosan is sometimes used as a tool for studying the immune system and inflammation in experimental settings. It's important to note that Zymosan itself is not a medical condition or disease, but rather a research reagent with potential applications in understanding human health and disease.

Lactoferrin is a glycoprotein that belongs to the transferrin family. It is an iron-binding protein found in various exocrine secretions such as milk, tears, and saliva, as well as in neutrophils, which are a type of white blood cell involved in immune response. Lactoferrin plays a role in iron homeostasis, antimicrobial activity, and anti-inflammatory responses. It has the ability to bind free iron, which can help prevent bacterial growth by depriving them of an essential nutrient. Additionally, lactoferrin has been shown to have direct antimicrobial effects against various bacteria, viruses, and fungi. Its role in the immune system also includes modulating the activity of immune cells and regulating inflammation.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

"Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) secretion by ... Granulocyte colony-stimulating factor (G-CSF or GCSF), also known as colony-stimulating factor 3 (CSF 3), is a glycoprotein ... Duarte RF, Franf DA (June 2002). "The synergy between stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF ... "The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors". Proceedings of the ...
The granulocyte colony-stimulating factor receptor (G-CSF-R) also known as CD114 (Cluster of Differentiation 114) is a protein ... The granulocyte colony-stimulating factor receptor is present on precursor cells in the bone marrow, and, in response to ... "Entrez Gene: CSF3R colony stimulating factor 3 receptor (granulocyte)". Mehta, H M; Futami, M; Glaubach, T; Lee, D W; Andolina ... G-CSF-R is a cell-surface receptor for the granulocyte colony-stimulating factor (G-CSF). The G-CSF receptors belong to a ...
Root RK, Dale DC (March 1999). "Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: ... a granulocyte colony-stimulating factor (G-CSF) analog) Granulocyte-macrophage colony-stimulating factor receptor Lenzilumab ... Granulocyte-macrophage colony-stimulating factor (GM-CSF), also known as colony-stimulating factor 2 (CSF2), is a monomeric ... "Granulocyte-macrophage colony-stimulating factor: not just another haematopoietic growth factor". Medical Oncology. 31 (1): 774 ...
... is a receptor for granulocyte-macrophage colony-stimulating factor, which stimulates the production of white blood cells. In ... The granulocyte-macrophage colony-stimulating factor receptor also known as CD116 (Cluster of Differentiation 116), ... Lia F, Rajotte D, Clark SC, Hoang T (Nov 1996). "A dominant negative granulocyte-macrophage colony-stimulating factor receptor ... Nicola NA, Metcalf D (Aug 1985). "Binding of 125I-labeled granulocyte colony-stimulating factor to normal murine hemopoietic ...
"Lung large cell carcinoma producing granulocyte-colony-stimulating factor". The Annals of Thoracic Surgery. 83 (1): 308-310. ... including neuroendocrine tumor-related products and granulocyte-macrophage colony stimulating factor (GM-CSF). Vimentin, an ... Expression of thyroid transcription factor-1 (TTF-1), a commonly used marker for primary lung cancers, appears to be less ... There have also been reports of rhabdoid carcinomas expressing vascular endothelial growth factor (VEGF), suggesting that ...
This type is refractory to granulocyte colony-stimulating factor. There is an absence of lysosomes in fibroblasts and depletion ... Most cases of SCN respond to treatment with granulocyte colony-stimulating factor (filgrastim), which increases the neutrophil ... Over 90% of SCN responds to treatment with granulocyte colony-stimulating factor (filgrastim), which has significantly improved ... Neutrophil survival is normal.[citation needed] Regular administration of exogenous granulocyte colony-stimulating factor ( ...
Granulocyte colony-stimulating factor (G-CSF), available as filgrastim, can reduce the risk of infection. In some cases, G-CSF ... "Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage ... "Different effects of granulocyte colony-stimulating factor and erythropoietin on erythropoiesis". Stem Cell Research & Therapy ... "Thrombocytopenia in association with splenomegaly during granulocyte-colony-stimulating factor treatment in mice is not caused ...
"Circadian variation of granulocyte colony stimulating factor levels in man". British Journal of Haematology. 106 (2): 368-70. ... of circulating white blood cells and changes in the levels of hematopoietic cytokines and granulocyte colony stimulating factor ... GCSF). Antipsychotics may amplify the natural variation in these hematopoietic factors.[citation needed] Neutropenia is a ...
... (tradename Leukine) is a recombinant granulocyte macrophage colony-stimulating factor (GM-CSF) that functions as ... "Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor". Blood. 92 (12): 4491-508. doi: ... it can also activate mature granulocytes and macrophages, and can contribute to the differentiation of megakaryocytic ...
One notable example is the granulocyte macrophage colony-stimulating factor. The goal of this stimulated immune response is ... The goal is to stimulate the person's immune system in order to prevent future infections that may result in an acute episode ... For example, female sex hormones are known to stimulate both adaptive and innate immune responses. Some autoimmune diseases ... Dorshkind, Kenneth; Horseman, Nelson D. (1 June 2000). "The Roles of Prolactin, Growth Hormone, Insulin-Like Growth Factor-I, ...
Research regarding the production of granulocyte colony stimulating factor (G-CSF) is being conducted to investigate AMML ... "Production of granulocyte colony-stimulating factor by acute myelomonocytic leukemia cells". Leukemia Research. 12 (9): 745-750 ... Acquired predisposing factors include: aplastic anemia, chemotherapy, prenatal exposure to tobacco, marihuana, and alcohol. ... "Acute Myeloid Leukemia (AML) Subtypes and Prognostic Factors". www.cancer.org. Retrieved 2019-12-14. Shirafuji, Naoki; Asano, ...
Minnerup J, Sevimli S, Schäbitz WR (October 2009). "Granulocyte-colony stimulating factor for stroke treatment: mechanisms of ... March 2003). "Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia". Stroke. 34 (3): ... "Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an individual patient data meta-analysis". Scientific Reports. 6: ... "Clinical Development Success Rates and Contributing Factors 2011-2020" (PDF). Retrieved 11 May 2022. Munich SA, Vakharia K, ...
Production is stimulated by granulocyte macrophage colony-stimulating factor (GM-CSF). There is some controversy over which ... CFU-GM, also known as granulocyte-macrophage progenitor (GMP), is a colony forming unit. It is derived from CFU-GEMM. The "GM" ... ISBN 0-8385-8285-0. CFU-GM at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e (Colony forming units ... Nomenclature of hematopoietic colonies and lineages "Hem I WBC Morphology and Physiology". Archived from the original on ...
There is limited evidence that granulocyte colony-stimulating factor may not hasten the resolution of diabetic foot ulcer ... Cochrane Wounds Group) (August 2013). "Granulocyte-colony stimulating factors as adjunctive therapy for diabetic foot ... Growth factors - there is some low-quality evidence that growth factors may increase the likelihood that diabetic foot ulcers ... Binding of growth factors is clearly an important role of perlecan in wound healing and angiogenesis. Poor wound healing in ...
El Ouakfaoui S, Heitz D, Paquin R, Beaulieu AD (February 1999). "Granulocyte-macrophage colony-stimulating factor modulates ...
IL-3 shares the β subunit with IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF). This β subunit sharing ... Sometimes also called colony-stimulating factor, multi-CSF, mast cell growth factor, MULTI-CSF, MCGF; MGC79398, MGC79399: the ... Granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-6. IL-3 is secreted by basophils and activated T cells to ... "Granulocyte-Macrophage colony stimulating factor and interleukin 3: Target cells and kinetics of response in vivo". Stem Cells ...
Granulocyte-colony stimulating factor (G-CSF) is one possible treatment for neutropenia. Monitoring weight gain and growth is ...
"Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor". Journal of ... and Osteopontin that can stimulate Wnt signaling in HSCs. Transcription factors such as PITX2 must be expressed in stromal ... or the granulocyte/macrophage progenitor (GMP), which gives rise to the granulocytes of the innate immune response. MEP ... These chimeric transcription factors can result in the improper repression or activation of the target gene, as well as the ...
These include granulocyte colony-stimulating factor (GCSF) and myelomonocytic growth factor (MGF). GCSF acts in hematopoiesis ... Secondary structure analysis has suggested similarity to IL4 and granulocyte-macrophage colony stimulating factor (GMCSF). ... "Disulfide structures of human interleukin-6 are similar to those of human granulocyte colony stimulating factor". Archives of ... "Characterization of a human multilineage-colony-stimulating factor cDNA clone identified by a conserved noncoding sequence in ...
Nagata identified Interferon in 1980 and Granulocyte colony-stimulating factor in 1986. He also identified a death factor (Fas ... "Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor". Nature. 319 (6052): 415-8. Bibcode: ... a novel member of the tumor necrosis factor family". Cell. 75 (6): 1169-78. doi:10.1016/0092-8674(93)90326-L. PMID 7505205. ...
Kaziro further broadened his research profile in 1986, when he began a genetic study on Granulocyte colony-stimulating factor ( ... "Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor". Nature. 319 (6052): 415-418. Bibcode ... Factor T is one of two complementary factors that are required for the elongation of peptide bonds on ribosomes within E. coli ... Factor T divides into Tu and Ts components, where in the presence of GTP, a Tu-Ts complex will dissociated to Tu and Ts, and ...
"CD34 expression by murine hematopoietic stem cells mobilized by granulocyte colony-stimulating factor". Blood. 96 (5): 1989- ... Kees UR, Ford J (February 1999). "Synergistic action of stem-cell factor and interleukin-7 in a human immature T-cell line". ... CD34 is expressed in roughly 20% of murine haematopoietic stem cells, and can be stimulated and reversed. CD34+ is often used ... as a cell surface glycoprotein and functions as a cell-cell adhesion factor. It may also mediate the attachment of ...
Ludwig researchers in Melbourne discovered and cloned the granulocyte-monocyte colony-stimulating factor (GM-CSF) through a ... March 1985). "Structure and expression of the mRNA for murine granulocyte-macrophage colony stimulating factor". The EMBO ... The factor is essential to the maturation of key white blood cells, and has been used extensively over the past few decades to ... October 1985). "Purification and characterization of a human tumor necrosis factor from the LuKII cell line". Proceedings of ...
Administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF) may increase recovery. Other known side ...
In EG cytokines IL-3, IL-5 and granulocyte macrophage colony stimulating factor (GM-CSF) may be behind the recruitment and ... granulocyte-macrophage colony-stimulating factor, and interleukin 5 in eosinophilic gastroenteritis". Gastroenterology. 110 (3 ...
In EG cytokines IL-3, IL-5 and granulocyte macrophage colony stimulating factor (GM-CSF) may be behind the recruitment and ... granulocyte-macrophage colony-stimulating factor, and interleukin 5 in eosinophilic gastroenteritis". Gastroenterology. 110 (3 ...
... is a recombinant granulocyte colony-stimulating factor which functions as an immunostimulator. It is developed by ...
In addition, it expresses granulocyte-macrophage colony-stimulating factor to stimulate immune responses. In nonclinical ... and it has been engineered to express the granulocyte-macrophage colony-stimulating factor gene to stimulate a systemic anti- ... granulocyte-macrophage colony-stimulating factor]) next generation of the VVDD series A phase 3 randomized, open-label, ... JX-929's tumor selectivity has been optimized through deletion of thymidine kinase and vaccinia growth factor. JX-929 has been ...
Granulocyte-macrophage colony stimulating factor (GM-CSF) is sometimes used in neonatal sepsis. However, a 2009 study found ... Carr R, Brocklehurst P, Doré CJ, Modi N (January 2009). "Granulocyte-macrophage colony stimulating factor administered as ... Infants showing no signs of neonatal sepsis will have a sepsis workup done only if concerning factors are shown. Only a small ... The child can contribute to the onset of sepsis through multiple factors. Mothers contribute to the risk through a variety of ...
Granulocyte-macrophage colony-stimulating factor (GM-CSF) hypersensitivity of myeloid progenitors in vitro. These criteria are ... Immature granulocytes and nucleated red cells in the peripheral blood. White blood cell count >10 x 109/L. Clonal chromosomal ...
"Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) secretion by ... Granulocyte colony-stimulating factor (G-CSF or GCSF), also known as colony-stimulating factor 3 (CSF 3), is a glycoprotein ... Duarte RF, Franf DA (June 2002). "The synergy between stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF ... "The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors". Proceedings of the ...
... Proc Assoc Am Physicians. 1998 Jul-Aug; ... work with transgenic mice demonstrated that disruption of the production of granulocyte-macrophage colony-stimulating factor ( ...
... trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor ... 2006) Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinsons disease. J Neurochem 97:675-686. doi: ... 2018) Granulocyte-colony stimulating factor controls neural and behavioral plasticity in response to cocaine. Nat Commun 9:9. ... 1988) Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet 1:667-672. doi: ...
Current Status of Granulocyte Colony-Stimulating Factor, Granulocyte-Macrophage Colony-Stimulating Factor, Macrophage Colony- ... Colony Stimulating Factors (Including Erythropoietin, Granulocyte Colony Stimulating Factor and Analogues) for Stroke. The ... Granulocyte-Colony Stimulating Factor (G-CSF) is a cell hormone that increases the cell number of PMN and that stimulates the ... Stief, T. (2018) Granulocyte Colony-Stimulating Factor Multiplies Normal Blood ROS Generation at Less than 1 µg/l. Optics and ...
Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone ... a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. We found that recombinant G-CSF (rG- ... Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), ... Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone ...
... three were given Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) as a protective agent to reduce the mucosal ... of myeloperoxidase activity in wbcs in oral cancer patients treated with granulocyte macrophage colony stimulating factor (GM- ... of myeloperoxidase activity in wbcs in oral cancer patients treated with granulocyte macrophage colony stimulating factor (GM- ... of myeloperoxidase activity in wbcs in oral cancer patients treated with granulocyte macrophage colony stimulating factor (GM- ...
... » ... Is pegylated feline granulocyte colony stimulating factor a real available treatment for neutropenia in cats? ...
Prophylactic granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor decrease febrile ... Administration of granulocyte macrophage colony stimulating factor (GM-CSF) after birth raises neutrophil counts but does not ... Granulocyte macrophage colony stimulating factor (GM-CSF) has been shown to be effective at reducing neutropenia-related ... Granulocyte macrophage colony stimulating factor (GM-CSF) administered after birth does not alter 5-year neurocognitive ...
Colony-stimulating factor, CD116) GM-CSF (Granulocyte-macrophage colony stimulating factor, Molgramostin, Sargramostim, Colony- ... You are here: Home Products by Molecule of Interest GM-CSF (Granulocyte-macrophage colony stimulating factor, Molgramostin, ... stimulating factor, CD116). GM-CSF is a small glycoprotein growth factor which stimulates the production and function of ...
Mice deficient in granulocyte-macrophage colony stimulating factor (GM-CSF) develop pulmonary alveolar proteinosis (PAP). We ... Mice deficient in granulocyte-macrophage colony stimulating factor (GM-CSF) develop pulmonary alveolar proteinosis (PAP). We ... idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macrophage colony stimulating factor. ... or defective expression of the common β chain of the granulocyte-macrophage colony stimulating factor (GM-CSF) receptor [5]. ...
"Granulocyte Colony-Stimulating Factor" by people in this website by year, and whether "Granulocyte Colony-Stimulating Factor" ... "Granulocyte Colony-Stimulating Factor" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, ... Granulocyte Colony-Stimulating Factor Use after Autologous Peripheral Blood Stem Cell Transplantation: Comparison of Two ... Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes ...
Plerixafor Plus Granulocyte Colony-Stimulating Factor for Patients with Non-Hodgkin Lymphoma and Multiple Myeloma: Long-Term ... "Plerixafor Plus Granulocyte Colony-Stimulating Factor for Patients with Non-Hodgkin Lymphoma and Multiple Myeloma: Long-Term ... Plerixafor Plus Granulocyte Colony-Stimulating Factor for Patients with Non-Hodgkin Lymphoma and Multiple Myeloma: Long-Term ... "Plerixafor Plus Granulocyte Colony-Stimulating Factor for Patients with Non-Hodgkin Lymphoma and Multiple Myeloma: Long-Term ...
Purchase Recombinant Human Granulocyte-macrophage colony-stimulating factor receptor subunit alpha (CSF2RA), partial. It is ... Granulocyte macrophage colony stimulating factor receptor alpha chain; Granulocyte-macrophage colony-stimulating factor ... Colony stimulating factor 2 receptor alpha chain; Colony stimulating factor 2 receptor alpha low affinity; Colony stimulating ... Recombinant Human Granulocyte-macrophage colony-stimulating factor receptor subunit alpha (CSF2RA) ( in vitro E.coli expression ...
Granulocyte-macrophage colony-stimulating factor (GM-CSF) targets myeloid leukocytes in the uterus during the post-mating ... Factors in seminal plasma elicit a surge of GM-CSF expression in uterine epithelial cells after mating in mice. This study ... Cells expressing GM-CSF receptor were identified as macrophages, granulocytes and putative dendritic cells by flow cytometric ... into the uterine lumen of ovariectomised mice was found to elicit a dose-dependant accumulation of macrophages and granulocytes ...
Intradermal transgenic expression of granulocyte-macrophage colony-stimulating factor induces neutrophilia, epidermal ...
Granulocyte-macrophage colony-stimulating factor. In addition to its approved indication-accelerating bone marrow recovery in ... Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J Clin Oncol. ... Randomized, Placebo-Controlled, Phase III Trial of Yeast-Derived Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) ... and replacing it with the coding sequence for the immune stimulatory protein granulocyte-macrophage colony-stimulating factor ( ...
Product Name Granulocyte colony-stimulating factor (G-CSF), Mouse, ELISA assay * Product Description google The mouse GM-CSF ... For the quantification of Granulocyte colony-stimulating factor (G-CSF) in Culture Supernatant, Cell Lysates, Serum, Plasma ( ... Target Granulocyte colony-stimulating factor (G-CSF) * Specificity Mouse GM-CSF * Target Cross-Reactivity (ELISA) There is no ... Granulocyte colony-stimulating factor (G-CSF), Mouse, ELISA assay As low as US$547.00 ...
... recombinant human Granulocyte-Macrophage Colony-Stimulating Factor such as the commercially available Leukine) can slow or ...
Human GCSF(Colony Stimulating Factor 3, Granulocyte) ELISA Kit. Human Colony Stimulating Factor 3, Granulocyte (GCSF) ELISA Kit ... Rat Colony Stimulating Factor 3, Granulocyte (GCSF) ELISA Kit. SEA042Ra-10x96wellstestplate Cloud-Clone 10x96-wells test plate ... Mouse Colony Stimulating Factor 3, Granulocyte (GCSF) ELISA Kit. SEA042Mu-1x48wellstestplate Cloud-Clone 1x48-wells test plate ... Mouse Colony Stimulating Factor 3, Granulocyte (GCSF) ELISA Kit. SEA042Mu-1x96wellstestplate Cloud-Clone 1x96-wells test plate ...
Granulocyte-colony stimulating factor therapy for neutropenia. Patients with persistent severe neutropenia who do not respond ... Patients with neutropenia may benefit from treatment with granulocyte colony-stimulating factor (G-CSF). Bone marrow ... Suspected causes of these adverse events include hyperosmolarity, presence of activated factor XI, and high sodium content. ...
Granulocyte-macrophage colony-stimulating factor derived from Recombinant human GM-CSF protein. Clone: BVD2-21C11. Gene ID: ... Granulocyte-macrophage colony-stimulating factor, Colony-stimulating factor, Molgramostin, Sargramostim, Burst Promoting ... Granulocyte/macrophage - Colony-stimulating factor (GM-CSF) is a hematopoietic factor that is produced by activated T-cells, B- ... GM-CSF (Granulocyte/Macrophage - Colony Stimulating Factor) [BVD2-21C11]. Monoclonals Primary Antibodies Rat Monoclonals ...
... day-3 follicle-stimulating hormone (FSH) above 30 IU/L, uterine anomalies, or a partner with azoospermia. All patients ... Granulocyte colony-stimulating factor (G-CSF) administration increased ovarian preantral follicles and anti-Müllerian hormone ( ... Granulocyte-colony stimulating factor decreases the extent of ovarian damage caused by cisplatin in an experimental rat model. ... Therapeutic role of granulocyte colony-stimulating factor (G-CSF) for infertile women under in vitro fertilization and embryo ...
Dive into the research topics of Enhanced Mitogenic Responsiveness to Granulocyte-Macrophage Colony-stimulating Factor in HL- ... Enhanced Mitogenic Responsiveness to Granulocyte-Macrophage Colony-stimulating Factor in HL-60 Promyelocytic Leukemia Cells ...
INCREASED CD4 T CELL GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR PRODUCTION IN SPONDYLOARTHRITIS ... INCREASED CD4 T CELL GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR PRODUCTION IN SPONDYLOARTHRITIS ...
Granulocyte colony stimulating factor (G-CSF) is a 20 kDa glycoprotein cytokine that stimulates growth and development of ... A CHIMERIC PROTEIN OF HUMAN GRANULOCYTE COLONY STIMULATING FACTOR. Abstract. The present invention relates to a chimeric ... A Chimeric Protein Of Human Granulocyte Colony Stimulating Factor ". RELIANCE LIFE SCIENCES PVT.LTD.. an Indian Company having ... The subject invention also provides a chimeric protein of recombinant human granulocyte colony stimulating factor that can be ...
GCSF improved long-term behavioral outcomes while also stimulating a neural progenitor recovery response in a mouse model. ... Granulocyte colony-stimulating factor (GCSF) is currently used to treat neutropenia due to chemotherapy and has been ... Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. Journal of ... Granulocyte colony-stimulating factor (GCSF) is currently used to treat neutropenia due to chemotherapy and has been ...
recombinant human granulocyte colony-stimulating factor,pharmacokinetics,half life,bioavailability,proteolytic rate ... Pharmacokinetic Study of a Novel Recombinant Human Granulocyte Colony-stimulating Factor in Rats Xiao-xiao Liu1 and Yong-ping ... Key words: recombinant human granulocyte colony-stimulating factor, pharmacokinetics, half life, bioavailability, proteolytic ... Pharmacokinetic Study of a Novel Recombinant Human Granulocyte Colony-stimulating Factor in Rats[J].Chinese Medical Sciences ...
granulocyte macrophage colony-stimulating factor production (GO:0032604) granulocyte macrophage colony-stimulating factor ... granulocyte macrophage colony-stimulating factor formation, granulocyte macrophage colony-stimulating factor synthesis. ... granulocyte macrophage colony stimulating factor biosynthetic process, granulocyte macrophage colony-stimulating factor ... granulocyte macrophage colony-stimulating factor biosynthetic process regulation of granulocyte macrophage colony-stimulating ...
... Mostafa F* and ... 2013) Granulocyte-colony stimulating factor as treatment option in patients with recurrent miscarriage. Arch Immunol Ther Exp ( ... 2014) Evaluation of granulocyte colony-stimulating factor effects on treatment-resistant thin endometrium in women undergoing ... Li Y, Pan P, Chen X, Li L, Li Y, (2014) Granulocyte colony-stimulating factor administration for infertile women with thin ...
Granulocyte-macrophage colony-stimulating factor (GM-CSF). Cat.. No.. Name of ready to use. PCR Kit. Storage. DOC. Amount. ... Human Molecular marker for hematopoiesis supportive function (single check): Granulocyte-macrophage colony-stimulating factor ( ... Granulocyte-macrophage colony-stimulating factor (GM-CSF) ...
  • Recombinant GM-CSF injected into the uterine lumen of ovariectomised mice was found to elicit a dose-dependant accumulation of macrophages and granulocytes in the endometrium, in a pattern of distribution comparable to that seen in uteri after natural mating. (edu.au)
  • Dr. Huntington Potter at the University of Colorado Anschutz Medical Center has shown that GM-CSF (recombinant human Granulocyte-Macrophage Colony-Stimulating Factor such as the commercially available Leukine) can slow or reverse Alzheimer's disease (AD) (CU#4306H). (technologypublisher.com)
  • The present invention relates to a chimeric protein of recombinant human granulocyte colony stimulating factor comprising of hG-CSF fused to an affinity fusion tag at its amino terminus. (allindianpatents.com)
  • Objective To study the pharmacokinetics of a novel recombinant human granulocyte colonystimulating factor (rhG-CSFa) in rats and to determine the proteolytic rates of rhG-CSFa in the whole blood and serum of rats in vitro. (cams.cn)
  • Pharmacokinetic Study of a Novel Recombinant Human Granulocyte Colony-stimulating Factor in Rats[J].Chinese Medical Sciences Journal, 2010, 25(1): 13-19. (cams.cn)
  • Chronic Toxicity of a Novel Recombinant Human Granulocyte Colony-stimulating Factor in Rats [J]. Chinese Medical Sciences Journal, 2011, 26(1): 20-27. (cams.cn)
  • The effect of recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) on the expression of HLA-DR, and the production of the cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) by human peripheral blood monocyte-enriched populations was investigated. (ox.ac.uk)
  • Filgrastim is a recombinant, non-pegylated human granulocyte colony stimulating factor (G-CSF) analogue manufactured by recombinant DNA technology. (janusinfo.se)
  • Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines. (uchicago.edu)
  • Cells expressing GM-CSF receptor were identified as macrophages, granulocytes and putative dendritic cells by flow cytometric analysis using lineage and receptor subunit specific antibodies. (edu.au)
  • Granulocyte/macrophage - Colony-stimulating factor (GM-CSF) is a hematopoietic factor that is produced by activated T-cells, B-cells, mast cells, macrophages, fibroblasts, and endothelial cells. (neobiotechnologies.com)
  • Cytokine that stimulates the growth and differentiation of hematopoietic precursor cells from various lineages, including granulocytes, macrophages, eosinophils and erythrocytes. (neobiotechnologies.com)
  • The chemical reactions and pathways resulting in the formation of granulocyte macrophage colony-stimulating factor, cytokines that act in hemopoiesis by controlling the production, differentiation, and function of two related white cell populations, granulocytes and monocytes-macrophages. (planteome.org)
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes the proliferation and differentiation of hematopoietic progenitor cells and the generation of neutrophils, eosinophils, and macrophages. (stemcell.com)
  • Effects of granulocyte/macrophage colony-stimulating factor on the development and differentiation of CD5-positive macrophages and their potential derivation from a CD5-positive B-cell lineage in mice. (jax.org)
  • In co-cultures of either the murine pre-B cell line J13, fetal liver cells, or adult peritoneal or bone marrow cells with ST2 mouse bone marrow stromal cells in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), the development of CD5+ macrophages was demonstrated by immunohistochemical staining and flow cytometry. (jax.org)
  • Takahashi K, Miyakawa K, Wynn AA, Nakayama KI, Myint YY, Naito M, Shultz LD, Tominaga A, Takatsu K. Effects of granulocyte/macrophage colony-stimulating factor on the development and differentiation of CD5-positive macrophages and their potential derivation from a CD5-positive B-cell lineage in mice. (jax.org)
  • In suspension cultures, TGF-beta 1 and GM-CSF stimulated an increase in total viable cells with markedly enhanced neutrophilic differentiation and a concomitant decrease in the number of monocytes/macrophages by day 6 in culture. (ox.ac.uk)
  • G-CSF also stimulates the survival, proliferation, differentiation, and function of neutrophil precursors and mature neutrophils. (wikipedia.org)
  • White blood cells The G-CSF-receptor is present on precursor cells in the bone marrow, and, in response to stimulation by G-CSF, initiates proliferation and differentiation into mature granulocytes. (wikipedia.org)
  • It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. (uchicago.edu)
  • It stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. (allindianpatents.com)
  • describes a novel colony stimulating factor (CSF) that has the ability to promote the differentiation and proliferation of human bone marrow cells to neutrophils, and a method to produce the same from a novel cell line which has been established from tumor cells in patients with oral cancer, The most published studies have used filgrastim as it was the first form of G-CSF to be approved. (allindianpatents.com)
  • It enhances granulocyte proliferation and differentiation [7]. (peertechzpublications.com)
  • To study the relationship between hematopoietic factors and their responsive hematopoietic progenitors in the differentiation process, both purified factors and enriched progenitors are required. (elsevierpure.com)
  • It was concluded that G-CSF supported the neutrophil differentiation of committed colony-forming cells, IL-3 supported that of both committed and multipotent colony-forming cells. (elsevierpure.com)
  • Granulocyte colony-stimulating factor (G-CSF or GCSF), also known as colony-stimulating factor 3 (CSF 3), is a glycoprotein that stimulates the bone marrow to produce granulocytes and stem cells and release them into the bloodstream. (wikipedia.org)
  • Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Human Colony Stimulating Factor 3, Granulocyte (GCSF) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids with no significant corss-reactivity with analogues from other species. (novosides.eu)
  • Description: A sandwich quantitative ELISA assay kit for detection of Rat Colony Stimulating Factor 3, Granulocyte (GCSF) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates or other biological fluids. (novosides.eu)
  • Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Rat Colony Stimulating Factor 3, Granulocyte (GCSF) in serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids. (novosides.eu)
  • Granulocyte colony-stimulating factor (GCSF) is currently used to treat neutropenia due to chemotherapy and has been successfully used for patients who require bone marrow transplants. (sciencedaily.com)
  • GCSF improved long-term behavioral outcomes while also stimulating a neural progenitor recovery response in a mouse model. (sciencedaily.com)
  • A study from Florida Atlantic University's Schmidt College of Medicine holds promise for a new way to treat stroke using an already FDA-approved drug -- granulocyte colony-stimulating factor (GCSF). (sciencedaily.com)
  • GCSF enhances blood cellular development and is currently used to treat neutropenia (low white blood cells) caused by chemotherapy and has successfully been used with very few side effects for patients who require bone marrow transplants to stimulate blood cell formation. (sciencedaily.com)
  • The data support the hypothesis that GCSF is one of the few growth factors that can reduce infarction by decreasing endoplasmic reticulum (ER) and mitochondrial stress while improving behavioral performance. (sciencedaily.com)
  • Results showed that GCSF improved neurological deficits that occur in the first few days following cerebral ischemia and improved long-term behavioral outcomes while also stimulating a neural progenitor recovery response. (sciencedaily.com)
  • In recent years, many studies including ours have shown that as an endogenous growth factor and immune system modulator factor, GCSF is beneficial in models of neurological disorders such as stroke and traumatic brain injury," said Jang-Yen (John) Wu, Ph.D., corresponding author, distinguished professor of biomedical science in FAU's Schmidt College of Medicine, and a member of the FAU Brain Institute (I-BRAIN). (sciencedaily.com)
  • Recent studies indicate that some hematopoietic growth factors, namely granulocyte macrophage colony stimulating factor (GMCSF) and granulocyte colony stimulating factor (GCSF), are abundantly released in the tumor microenvironment and play a key role in regulating tumor-nerve interactions and tumor-associated pain by activating receptors on dorsal root ganglion (DRG) neurons. (biomedcentral.com)
  • Functionally, it is a cytokine and hormone, a type of colony-stimulating factor, and is produced by a number of different tissues. (wikipedia.org)
  • The cytokine granulocyte-colony stimulating factor (G-CSF) is known to have trophic and neuroprotective properties in the brain, and we recently identified it as a modulator of neuronal and behavioral plasticity. (jneurosci.org)
  • Here, we report that granulocyte-colony stimulating factor (G-CSF), a pleiotropic cytokine with known trophic and neuroprotective properties in the brain, acts directly on dopaminergic circuits to enhance their function. (jneurosci.org)
  • Granulocyte colony stimulating factor (G-CSF) is a 20 kDa glycoprotein cytokine that stimulates growth and development of granulocyte progenitors in the bone marrow (Nagata et al. (allindianpatents.com)
  • Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine appears in materno-fetal interface during embryo implantation and early pregnancy suggesting it may have a role in decidua and placental development [6]. (peertechzpublications.com)
  • Granulocyte macrophage colony-stimulating factor (GM-CSF) is an immunoregulatory cytokine with a pivotal role in initiation and perpetuation of inflammatory diseases. (ucl.ac.uk)
  • Granulocyte-macrophage colony stimulating factor induces both HLA-DR expression and cytokine production by human monocytes. (ox.ac.uk)
  • Several types of non-hematopoietic tumors secrete hematopoietic colony stimulating factors, which act on myeloid cells and tumor cells[ 7 ]. (biomedcentral.com)
  • Intradermal transgenic expression of granulocyte-macrophage colony-stimulating factor induces neutrophilia, epidermal hyperplasia, Langerhans' cell/macrophage accumulation, and dermal fibrosis. (mcmaster.ca)
  • Oral cancer cells secrete granulocyte colony stimulating factor (G-CSF), a growth factor that recruits neutrophils from bone marrow to the cancer microenvironment. (frontiersin.org)
  • GM-CSF is a small glycoprotein growth factor which stimulates the production and function of neutrophils, eosinophils and monocytes. (biovendor.com)
  • Granulocyte colony-stimulating factors (G-CSFs), which were first approved in 1991, are effective at reducing the risk for and duration of chemotherapy-induced febrile neutropenia, by stimulating the production and maturation of neutrophils. (jhoponline.com)
  • Neurons G-CSF can also act on neuronal cells as a neurotrophic factor. (wikipedia.org)
  • The inhibitory effect of PAP-BALF occurred only when TF-1 cells were cultured with GM-CSF but not when cultured with IL-3, suggesting that PAP-BALF contains a factor that specifically interferes with GM-CSF function. (wiley.com)
  • Factors in seminal plasma elicit a surge of GM-CSF expression in uterine epithelial cells after mating in mice. (edu.au)
  • In synergy with other cytokines such as stem cell factor, IL-3, erythropoietin, and thrombopoietin, it also stimulates erythroid and megakaryocyte progenitor cells (Barreda et al. (stemcell.com)
  • These substances include, for instance, granulocyte- colony-stimulating factor (G-CSF), which is added so that the donors own bone marrow will make and produce more stem cells that will end up in the bloodstream. (differencebetween.net)
  • The advantage is that granulocyte- colony-stimulating factor (G-CSF) does not have to be given to the donor since the procedure involves going to the source of the stem cells, which is the bone marrow. (differencebetween.net)
  • Besides mobilizing stem cells into the periphery, granulocyte colony-stimulating factor (G-CSF) has been shown to influence various types of innate and adaptive immune cells. (johnshopkins.edu)
  • In this study, isolated G-CSF-treated CD8 + T cells were stimulated antigen-dependently with peptide-major histocompatibility complex (pMHC)-coupled artificial antigen-presenting cells (aAPCs) or stimulated antigen-independently with anti-CD3/CD28 stimulator beads. (johnshopkins.edu)
  • However, IFN-gamma enhanced the cell surface expression of HLA-DR and the production of IL-1 and TNF alpha on monocyte-enriched cells stimulated by GM-CSF. (ox.ac.uk)
  • Transforming growth factor beta 1 (TGF-beta 1) is known to inhibit the growth of immature hematopoietic progenitor cells, whereas more mature, lineage-restricted progenitors are not inhibited. (ox.ac.uk)
  • We isolated total CD34 + cells, CD34 + ,CD33 + cells, and CD34 + ,CD33 - cells individually from normal human bone marrow cells by fluorescence-activated cell sorter (FACS), and examined the effects of granulocyte colony-stimulating factor (G-CSF), interleukin-3 (IL-3), and IL-5 on in vitro colony formation of these cells. (elsevierpure.com)
  • CD34 + ,CD33 + cells formed granulocyte colonies in the presence of G-CSF. (elsevierpure.com)
  • Both CD34 + ,CD33 + cells and CD34 + ,CD33 - cells formed granulocyte/macrophage colonies in the presence of IL-3. (elsevierpure.com)
  • Eosinophil (Eo) colonies were only formed by CD34 + ,CD33 - cells in response to IL-3, but scarcely formed by CD34 + cells in the presence of IL-5. (elsevierpure.com)
  • CD34 - ,CD33 + cells derived from CD34 + ,CD33 + cells by preincubation with G-CSF or IL-3 formed Eo colonies in the presence of IL-5 but not IL-3. (elsevierpure.com)
  • CD34 - ,CD33 + cells derived from CD34 + ,CD33 - cells by preincubation with IL-3 also formed Eo colonies by support of IL-5 as well as IL-3. (elsevierpure.com)
  • IL-18 has been reported to induce interferon-gamma (IFN-gamma) and granulocyte/macrophage colony-stimulating factor (GM-CSF) production in T cells, and both agents also inhibit OCL formation in vitro. (ox.ac.uk)
  • Trisomy 8+ cells showed a significant positive correlation with apoptotic CD34+ cells and capacity for colony formation. (who.int)
  • The essence of MDS is damage of In the current work we examined All our patients were of the high-risk colony-forming units [4], but the defect haematopoietic stem cells of high-risk group and none of them was eligible of the haematopoietic stem cells is not MDS cases for apoptotic and anti-apop- for stem cell transplantation. (who.int)
  • Patients with a history of serious allergic reaction to human granulocyte colony-stimulating factors such as pegfilgrastim products or filgrastim products. (drugs.com)
  • Clinical practice guidelines recommend the use of all approved granulocyte colony-stimulating factors (G-CSFs), including filgrastim and pegfilgrastim, as primary febrile neutropenia (FN) prophylaxis in patients receiving high- or intermediate- risk regimens (in those with additional patient risk factors ). (bvsalud.org)
  • Recent work with transgenic mice demonstrated that disruption of the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) or the common beta-subunit of the GM-CSF receptor caused alveolar proteinosis that was histologically similar to that seen in human patients. (nih.gov)
  • Low affinity receptor for granulocyte-macrophage colony-stimulating factor. (cusabio.com)
  • G-/GMCSF activates the JAK family of receptor tyrosine kinases, which unfolds its activity by not only regulating enzymes and target proteins within its local milieu, but importantly also by activating the STAT family of transcription factors, which subsequently dimerize and translocate to the cell nucleus to regulate gene expression[ 13 ]. (biomedcentral.com)
  • Moreover, although interleukin 7 (IL-7) supports the generation of such myeloid intermediates, we show that their developmental branching from the main intrathymic T-cell pathway is linked to the up-regulation of the myelomonocytic granulocyte macrophage-colony-stimulating factor (GM-CSF) receptor, to the down-regulation of the IL-7 receptor and to the lack of pre-T-cell receptor α (pTα) gene transcriptional activation. (ashpublications.org)
  • Receptor for granulocyte colony-stimulating factor (G-CSF). (lu.se)
  • In a pilot study with five oral cancer patients undergoing radiotherapy (RT) three were given Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) as a protective agent to reduce the mucosal inflammation during radiotherapy. (amrita.edu)
  • Myelodysplastic syndrome and acute myeloid leukemia after receipt of granulocyte colony-stimulating factors in older patients with non-Hodgkin lymphoma. (uchicago.edu)
  • Increase in short-term risk of rejection in heart transplant patients receiving granulocyte colony-stimulating factor. (uchicago.edu)
  • Scholars@Duke publication: Plerixafor Plus Granulocyte Colony-Stimulating Factor for Patients with Non-Hodgkin Lymphoma and Multiple Myeloma: Long-Term Follow-Up Report. (duke.edu)
  • The purpose of this report is to analyze long-term clinical outcomes of patients exposed to plerixafor plus granulocyte colony-stimulating factor (G-CSF) for stem cell mobilization. (duke.edu)
  • Patients with neutropenia may benefit from treatment with granulocyte colony-stimulating factor (G-CSF). (medscape.com)
  • Objective: Prophylaxis with granulocyte colony-stimulating factors (G-CSFs) is recommended for patients receiving myelosuppressive chemotherapy regimens with a high risk of febrile neutropenia (FN). (psu.edu)
  • The aim of the present study was to measure levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) in nasal lavage of patients affected by chronic eosinophilic sinonasal inflammation to clarify the relationship with eosinophilic tissue infiltration and clinical features. (unicatt.it)
  • Cost-effectiveness of granulocyte colony-stimulating factors (G-CSFs) for the prevention of febrile neutropenia (FN) in patients with cancer. (bvsalud.org)
  • Mice deficient in granulocyte-macrophage colony stimulating factor (GM-CSF) develop pulmonary alveolar proteinosis (PAP). (wiley.com)
  • Bone marrow progenitors obtained from mice 3 days after treatment with 5-fluorouracil responded to a combination of GM-CSF and TGF-beta 1, whereas either factor alone had no effect. (ox.ac.uk)
  • the progenitor cell is tentatively designated granulocyte burst-forming unit. (ox.ac.uk)
  • Administration of granulocyte macrophage colony stimulating factor (GM-CSF) after birth raises neutrophil counts but does not improve neonatal or 2-year developmental outcomes. (bmj.com)
  • Two hematopoietic colony-stimulating factors, granulocyte colony- stimulating factor (G-CSF) and granulocyte-macrophage CSF (GM-CSF), have been shown to accelerate leukocyte and neutrophil recovery after high-dose chemotherapy and autologous bone marrow (BM) support. (johnshopkins.edu)
  • In addition to supporting colony formation of granulocyte/macrophage progenitors, GM-CSF is a growth factor for erythroid, megakaryocyte, and eosinophil progenitors. (neobiotechnologies.com)
  • Objective We performed a randomised trial in very preterm, small for gestational age (SGA) babies to determine if prophylaxis with granulocyte macrophage colony stimulating factor (GM-CSF) improves outcomes (the PROGRAMS trial). (bmj.com)
  • Granulocyte macrophage colony stimulating factor (GM-CSF) administered after birth does not alter 5-year neurocognitive outcomes. (bmj.com)
  • Mostafa F, Farid L (2017) Effect of Intrauterine Infusion of Granulocyte Colony Stimulating Factor on IVF Outcomes in Infertile Women. (peertechzpublications.com)
  • This kind of "unfair" or "unequal" trial design leaves open the question of whether the new drugs are truly superior to the older ones or if the outcomes are due to more aggressive dosing or growth factor support, the investigators say. (medscape.com)
  • Granulocyte Colony-Stimulating Factor Use after Autologous Peripheral Blood Stem Cell Transplantation: Comparison of Two Practices. (uchicago.edu)
  • Planned Granulocyte Colony-Stimulating Factor Adversely Impacts Survival after Allogeneic Hematopoietic Cell Transplantation Performed with Thymoglobulin for Myeloid Malignancy. (uchicago.edu)
  • More than half of studies testing anticancer drugs against each other have rules about dose modification and myeloid growth factors that favor the experimental drug arm, a new analysis suggests. (medscape.com)
  • The authors compared dose modification rules or myeloid growth factor recommendations in the study arms, and assessed potential imbalances in drug modification rules, myeloid growth factor recommendations, or both. (medscape.com)
  • Despite established guidelines for the use of granulocyte colony-stimulating factors (G-CSFs) in the prevention of febrile neutropenia, inappropriate prescribing practices have been reported. (jhoponline.com)
  • Description: A sandwich ELISA kit for detection of Colony Stimulating Factor 3, Granulocyte from Human in samples from blood, serum, plasma, cell culture fluid and other biological fluids. (novosides.eu)
  • Stimulation of granulopoiesis by transforming growth factor beta: synergy with granulocyte/macrophage-colony-stimulating factor. (ox.ac.uk)
  • Mouse granulocyte-colony stimulating factor (G-CSF) was first recognised and purified in Walter and Eliza Hall Institute, Australia in 1983, and the human form was cloned by groups from Japan and Germany/United States in 1986. (wikipedia.org)
  • G-CSF stimulates the production of granulocytes, a type of white blood cell. (wikipedia.org)
  • EP0237545, published on 1987-09-23 by Lawrence M Souza discloses the production of pluripotent granulocyte colony stimulating factor using E.coli as a host organism. (allindianpatents.com)
  • Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. (ox.ac.uk)
  • 8+ avaient une corrélation positive importante avec les cellules CD34+ apoptotiques et la capacité à stimuler la formation de colonies. (who.int)
  • These effects seem to be a result of the ability of G-CSF to alter local inflammatory signaling cascades, particularly tumor necrosis factor α. (jneurosci.org)
  • Amongst these, we validate calpain 2, matrix metalloproteinase 9 (MMP9) and a RhoGTPase Rac1 as well as Tumor necrosis factor alpha (TNFα) as transcriptional targets of G-/GMCSF and demonstrate the importance of MMP9 and Rac1 in GMCSF-induced nociceptor sensitization. (biomedcentral.com)
  • The team discovered that 40 of the 62 trials (65%) had unequal rules for dose medication, granulocyte colony-stimulating factor (G-CSF) use, or both. (medscape.com)
  • These data suggest that IPAP is caused by expression of binding factor(s) which inhibit GM-CSF function in the lung. (wiley.com)
  • Granulocyte Colony-Stimulating Factor" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (uchicago.edu)
  • If the generated blood ROS concentration is too low, then fungi, bacteria or fibrin might threaten the life of the patient, and it could be of great medical interest to stimulate PMN by physiologic drugs. (scirp.org)
  • Stief, T. (2018) Granulocyte Colony-Stimulating Factor Multiplies Normal Blood ROS Generation at Less than 1 µg/l. (scirp.org)
  • The white blood cell and granulocyte count nadirs were 1,660/ μ l and 438/ μ l. (hindawi.com)
  • The BRGA helps to find out the correct stimulating G-CSF dosage for each individual. (scirp.org)
  • When testing new cancer agents, different drug modification rules or growth factor support guidance may affect the results of randomized controlled trials (RCTs). (medscape.com)
  • When investigating the effect of a new drug, "you don't want to have a false sense of a drug's effect because of other factors not directly related to the drug's efficacy. (medscape.com)
  • People who have been administered colony-stimulating factors do not have a higher risk of leukemia than people who have not. (wikipedia.org)
  • GM-CSF is able to stimulate the development of DCs that ingest, process, and present antigens to the immune system (Francisco-Cruz et al. (stemcell.com)