Coccus-shaped bacteria that retain the crystal violet stain when treated by Gram's method.
A genus of gram-positive, anaerobic, coccoid bacteria that is part of the normal flora of humans. Its organisms are opportunistic pathogens causing bacteremias and soft tissue infections.
A genus of gram-positive, anaerobic, coccoid bacteria that is part of the normal flora of the mouth, upper respiratory tract, and large intestine in humans. Its organisms cause infections of soft tissues and bacteremias.
'Anaerobic Bacteria' are types of bacteria that do not require oxygen for growth and can often cause diseases in humans, including dental caries, gas gangrene, and tetanus, among others.
A group of anaerobic coccoid bacteria that show up as pink (negative) when treated by the gram-staining method.
Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method.
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A family of bacteria found in the mouth and intestinal and respiratory tracts of man and other animals as well as in the human female urogenital tract. Its organisms are also found in soil and on cereal grains.
Infections caused by bacteria that retain the crystal violet stain (positive) when treated by the gram-staining method.
Bacteria which retain the crystal violet stain when treated by Gram's method.
A family of gram-negative bacteria, in the phylum FIRMICUTES.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
Infections caused by bacteria that show up as pink (negative) when treated by the gram-staining method.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Accumulation of purulent material in tissues, organs, or circumscribed spaces, usually associated with signs of infection.
Substances that reduce the growth or reproduction of BACTERIA.
A genus of gram-negative, anaerobic, rod-shaped bacteria. Its organisms are normal inhabitants of the oral, respiratory, intestinal, and urogenital cavities of humans, animals, and insects. Some species may be pathogenic.
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Infections by bacteria, general or unspecified.
The relationships of groups of organisms as reflected by their genetic makeup.
A large group of aerobic bacteria which show up as pink (negative) when treated by the gram-staining method. This is because the cell walls of gram-negative bacteria are low in peptidoglycan and thus have low affinity for violet stain and high affinity for the pink dye safranine.
A large group of anaerobic bacteria which show up as pink (negative) when treated by the Gram-staining method.
The presence of viable bacteria circulating in the blood. Fever, chills, tachycardia, and tachypnea are common acute manifestations of bacteremia. The majority of cases are seen in already hospitalized patients, most of whom have underlying diseases or procedures which render their bloodstreams susceptible to invasion.
Techniques used in studying bacteria.
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A broad range of biologically active compounds which occur naturally in plants having important medicinal and nutritional properties.
Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection.
A family of gram-negative, facultatively anaerobic, rod-shaped bacteria that do not form endospores. Its organisms are distributed worldwide with some being saprophytes and others being plant and animal parasites. Many species are of considerable economic importance due to their pathogenic effects on agriculture and livestock.
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK.
Death and putrefaction of tissue usually due to a loss of blood supply.
A dye that is a mixture of violet rosanilinis with antibacterial, antifungal, and anthelmintic properties.
A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies.
Infections with bacteria of the genus KLEBSIELLA.
Infections in the inner or external eye caused by microorganisms belonging to several families of bacteria. Some of the more common genera found are Haemophilus, Neisseria, Staphylococcus, Streptococcus, and Chlamydia.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
Phenazines are nitrogen-containing heterocyclic compounds that have been widely studied for their antibacterial, antifungal, and antiparasitic properties, and can be found in various natural sources such as bacteria and fungi, or synthesized chemically.
Sensitive method for detection of bacterial endotoxins and endotoxin-like substances that depends on the in vitro gelation of Limulus amebocyte lysate (LAL), prepared from the circulating blood (amebocytes) of the horseshoe crab, by the endotoxin or related compound. Used for detection of endotoxin in body fluids and parenteral pharmaceuticals.
A family of gram-positive non-sporing bacteria including many parasitic, pathogenic, and saprophytic forms.
A genus of gram-positive, facultatively anaerobic, coccoid bacteria. Its organisms occur singly, in pairs, and in tetrads and characteristically divide in more than one plane to form irregular clusters. Natural populations of Staphylococcus are found on the skin and mucous membranes of warm-blooded animals. Some species are opportunistic pathogens of humans and animals.
Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
Gram-negative, non-motile, capsulated, gas-producing rods found widely in nature and associated with urinary and respiratory infections in humans.
Proteins found in any species of bacterium.
Any infection which a patient contracts in a health-care institution.
A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection.
A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.
The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms.
INFLAMMATION of the PERITONEUM lining the ABDOMINAL CAVITY as the result of infectious, autoimmune, or chemical processes. Primary peritonitis is due to infection of the PERITONEAL CAVITY via hematogenous or lymphatic spread and without intra-abdominal source. Secondary peritonitis arises from the ABDOMINAL CAVITY itself through RUPTURE or ABSCESS of intra-abdominal organs.
The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
I'm sorry for any confusion, but "India" is not a medical term that can be defined in a medical context. It is a geographical location, referring to the Republic of India, a country in South Asia. If you have any questions related to medical topics or definitions, I would be happy to help with those!
Muscles forming the ABDOMINAL WALL including RECTUS ABDOMINIS, external and internal oblique muscles, transversus abdominis, and quadratus abdominis. (from Stedman, 25th ed)
Invasion of the site of trauma by pathogenic microorganisms.
Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Inflammation of the lung parenchyma that is caused by bacterial infections.
An infant during the first month after birth.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Family of gram-positive, facultatively anaerobic bacteria, in the order Bacillales. Genera include Gemella, Macrococcus, Salinicoccus, and STAPHYLOCOCCUS.
Infections with bacteria of the genus STAPHYLOCOCCUS.
An abnormal elevation of body temperature, usually as a result of a pathologic process.
Infections with bacteria of the genus PSEUDOMONAS.
A genus of gram-positive, spherical bacteria found in soils and fresh water, and frequently on the skin of man and other animals.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A family of bacteria ranging from free living and saprophytic to parasitic and pathogenic forms.
Infection of the lung often accompanied by inflammation.
Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins.
A genus of gram-positive, coccoid bacteria consisting of organisms causing variable hemolysis that are normal flora of the intestinal tract. Previously thought to be a member of the genus STREPTOCOCCUS, it is now recognized as a separate genus.
Elements of limited time intervals, contributing to particular results or situations.
A pattern recognition receptor that interacts with LYMPHOCYTE ANTIGEN 96 and LIPOPOLYSACCHARIDES. It mediates cellular responses to GRAM-NEGATIVE BACTERIA.
The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
Infections with bacteria of the species ESCHERICHIA COLI.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
The functional hereditary units of BACTERIA.
The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE.
Genes, found in both prokaryotes and eukaryotes, which are transcribed to produce the RNA which is incorporated into RIBOSOMES. Prokaryotic rRNA genes are usually found in OPERONS dispersed throughout the GENOME, whereas eukaryotic rRNA genes are clustered, multicistronic transcriptional units.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Enzymes that cause coagulation in plasma by forming a complex with human PROTHROMBIN. Coagulases are produced by certain STAPHYLOCOCCUS and YERSINIA PESTIS. Staphylococci produce two types of coagulase: Staphylocoagulase, a free coagulase that produces true clotting of plasma, and Staphylococcal clumping factor, a bound coagulase in the cell wall that induces clumping of cells in the presence of fibrinogen.
Aerobic bacteria are types of microbes that require oxygen to grow and reproduce, and use it in the process of respiration to break down organic matter and produce energy, often found in environments where oxygen is readily available such as the human body's skin, mouth, and intestines.
A genus of gram-negative, anaerobic cocci parasitic in the mouth and in the intestinal and respiratory tracts of man and other animals.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
An amidinopenicillanic acid derivative with broad spectrum antibacterial action.
A genus of gram-negative bacteria in the family ACIDAMINOCOCCACEAE, isolated from spoiled BEER and pitching yeast.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
A genus of gram-negative, anaerobic, rod-shaped bacteria found in cavities of humans and other animals. No endospores are formed. Some species are pathogenic and occur in various purulent or gangrenous infections.
The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.
A species of gram-positive, coccoid bacteria commonly isolated from clinical specimens and the human intestinal tract. Most strains are nonhemolytic.

Predatory prokaryotes: predation and primary consumption evolved in bacteria. (1/9)

Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 micrometer wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 x 1.5 micrometers) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptation for the origin of intracellular organelles.  (+info)

Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. (2/9)

A novel strictly anaerobic, cellobiose-degrading bacterium, strain CelloT, was isolated from a human faecal sample by combining enrichments in liquid and soft-agar basal media. A noteworthy characteristic was its inability to grow on normal agar plates and in roll tubes. The cells were coccus shaped and non-motile, with an extracellular slime layer. Growth of strain CelloT occurred between 20 and 40degrees C, with optimal growth at 37 degrees C. The pH range for growth was 5-7.5 with an optimum at 6.5. In pure culture, strain CelloT could only grow on a variety of sugars. Glucose was converted to acetate, ethanol and H2. The doubling time on glucose was 0.5 h. In a syntrophic co-culture with Methanospirillum hungatei strain JF-1T, strain CelloT converted glucose to acetate and H2. The G+C content was 59.2 mol%. 16S rDNA analysis revealed that the closest relatives of strain CelloT were two uncultured bacteria from anaerobic digesters, both with 94% 16S rDNA sequence similarity. The closest cultured representatives belong to genera of the bacterial division 'Verrucomicrobia'. The name Victivallis vadensis gen. nov., sp. nov. is proposed for strain CelloT (=DSM 14823T =ATCC BAA-548T).  (+info)

Digestive tract microbiota in healthy volunteers. (3/9)

PURPOSE: The aim of this study was to standardize the methods of sample collection of mucus from the digestive tract and to determine the microbiota in healthy volunteers from Brazil, collecting samples from the mouth, esophagus, stomach, duodenum, jejunum, ileum, colon, and rectum. METHODS: Microbiota of selected healthy volunteers from the oral cavity (n=10), the esophagus (n=10), the upper digestive tract (n=20), and the lower digestive tract (n=24) were evaluated through distinct collection methods. Collection methods took into account the different sites, using basic scraping and swabbing techniques, stimulated saliva from the oral cavity, irrigation-aspiration with sterile catheters especially designed for the esophagus, a probe especially designed for upper digestive tract, and a special catheter for the lower digestive tract. RESULTS: (i) Mixed microbiota were identified in the oral cavity, predominantly Gram-positive aerobic and anaerobic cocci; (ii) transitional flora mainly in the esophagus; (iii) Veillonella sp, Lactobacillus sp, and Clostridium sp in the stomach and duodenum; (iv) in the jejunum and upper ileum, we observed Bacteroides sp, Proteus sp, and Staphylococcus sp, in addition to Veillonella sp; (v) in the colon, the presence of "nonpathogenic" anaerobic bacteria Veillonella sp (average 10(5) UFC) indicates the existence of a low oxidation-reduction potential environment, which suggests the possibility of adoption of these bacteria as biological markers of total digestive tract health. CONCLUSIONS: The collection methods were efficient in obtaining adequate samples from each segment of the total digestive tract to reveal the normal microbiota. These procedures are safe and easily reproducible for microbiological studies.  (+info)

Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. (4/9)

Three strains, FYK2301M01(T), FYK2301M18 and FYK2301M52, all being Gram-negative, spherical, motile and facultatively anaerobic, were isolated from a marine alga (Porphyra sp.) collected on Mikura Island, Japan. Colonies of the strains were circular and pink-pigmented on Marine Agar 2216 (Difco) at 25 degrees C. Cells of the strains reproduced by binary fission. The G+C content of the DNA was 73 mol%. The major isoprenoid quinone was MK-6. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strains are the members of the WPS-1 group (Nogales et al., 2001) comprising no validly described taxa within the phylum Planctomycetes. The highest similarity value of the 16S rRNA gene sequences of the strains to those in the established bacterial taxa was only 78.7% to Planctomyces brasiliensis DSM 5305(T). From the taxonomic data obtained in this study, it is proposed that the new marine isolates be placed in a novel genus and species named Phycisphaera mikurensis gen. nov., sp. nov. within a new family, order and class Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. The type strain of Phycisphaera mikurensis is FYK2301M01(T) (= NBRC 102666(T) = KCTC 22515(T)).  (+info)

Proposal of Quinella ovalis gen. nov., sp. nov., based on phylogenetic analysis. (5/9)

Quin's oval is a relatively large bacterium often seen in the rumens of sheep fed diets containing some readily fermented carbohydrates. It has not been obtained in axenic cultures, but a number of its features have been determined by various methods, such as studying cell suspensions purified from rumen fluid by differential centrifugation. We obtained similarly purified suspensions from a sheep fed a diet containing a large amount of molasses. Nearly complete 16S rRNA sequence analysis of these cells as well as cells as Selenomonas ruminantium subsp. ruminantium GA192 (ATCC 12561; type strain) and S. ruminantium subsp. lactilytica HD4 (ATCC 27209) was done. These sequences were compared with those of other bacteria. Evolutionary distance estimates indicated that Quin's oval was most closely related to the Selenomonas-Megasphaera-Sporomusa group in the gram-positive phylum but that it belongs in a new genus. We propose the name Quinella ovalis gen. nov., sp. nov., with its description based on previously known features.  (+info)

Lautropia mirabilis gen. nov., sp. nov., a gram-negative motile coccus with unusual morphology isolated from the human mouth. (6/9)

An organism that seems to be identical to Orskov's 'Sarcina mirabilis' [Orskov, J. (1930) Acta Pathol Microbiol Scand Suppl III, 519-541] has been rediscovered in specimens from the upper respiratory tract of humans. Six strains were studied, and the results, which conformed to Orskov's description of S. mirabilis, were as follows. Rough to smooth colonies grow on many plated media and show extremely polymorphic cell morphology with round cells with diameters from 1 to > 10 microns. The smallest cells were often motile with circular movements. Strains were Gram-negative, facultatively anaerobic, oxidase and urease positive, and weakly catalase positive. Nitrate and nitrite were reduced, and glucose, fructose, sucrose and mannitol were fermented. Polysaccharide was produced on sucrose agar. Electron microscopy showed coccoid cells with a bundle of three to nine flagella, a Gram-negative cell-wall morphology, and aggregates of irregular cells held together by a common surface layer. The mean mol% (G+C) of the organisms was 65.0. 16S-ribosomal RNA sequencing revealed that the organism belongs to the beta subgroup of Proteobacteria, separate from all other described genera, but most closely related to Burkholderia. The name Lautropia mirabilis is proposed for this organism.  (+info)

Conversion of glutaconate CoA-transferase from Acidaminococcus fermentans into an acyl-CoA hydrolase by site-directed mutagenesis. (7/9)

The heterooctameric (alphabeta)4 glutaconate CoA-transferase (EC 2.8.3.12) from the anaerobic bacterium Acidaminococcus fermentans catalyses the transfer of CoASH from acetyl-CoA to the 1-carboxylate of glutaconate. During this reaction the glutamate residue 54 of the beta-subunit (betaE54) forms a CoA-ester. The single amino acid replacement betaE54D resulted in a drastic change of enzymatic function. The CoA-transferase activity decreased from 140 to less than 0.01 s(-1), whereas the acyl-CoA hydrolase activity increased from less than 0.01 to 16 s(-1). The new enzyme was able to catalyse the hydrolysis of glutaryl-CoA, acetyl-CoA and 3-butenoyl-CoA. Since the mutants betaE54A and betaE54N showed neither acyl-CoA hydrolase nor CoA-transferase activity, it was concluded that the aspartate carboxylate of the mutant betaE54D acted as a general base which facilitated the attack of water at the thiolester carbonyl. Surprisingly, Km for glutaryl-CoA hydrolysis by the mutant (0.7 microM) as compared to CoA-transfer by the wild-type (28 microM) was 40 times lower. A 65 kDa protein, obtained by fusing the genes, gctA-gctB, coding for glutaconate CoA-transferase, retained 30% of the wild-type activity. Comparison of the amino acid sequences of 13 related enzymes demonstrated that Nature already has applied gene fusion in the case of pig heart CoA-transferase and has been using the E --> D mutation for catalysis by a yeast acetyl-CoA hydrolase.  (+info)

Isolation of Lautropia mirabilis from sputa of a cystic fibrosis patient. (8/9)

An aggregate-forming coccus, isolated twice as the predominant microorganism in sputa from a cystic fibrosis patient on consecutive days, was shown to belong to the species Lautropia mirabilis on the bases of similarities of 16S rRNA gene sequences and phenotype. These isolates of L. mirabilis appear to be the first reported from a patient with cystic fibrosis and outside of Denmark.  (+info)

"Gram-Positive Cocci" is a term used in microbiology, which refers to a specific type of bacteria that appear round (cocci) in shape and stain purple when subjected to the Gram staining method. The Gram staining technique is a fundamental laboratory method used to differentiate bacterial species based on their cell wall composition.

Gram-positive bacteria have a thick peptidoglycan layer in their cell walls, which retains the crystal violet stain used in the Gram staining process, resulting in a purple color. Some common examples of Gram-Positive Cocci include Staphylococcus aureus and Streptococcus pyogenes. These bacteria can cause various infections, ranging from skin and soft tissue infections to severe systemic illnesses. It is essential to identify the type and nature of bacterial pathogens accurately for appropriate antimicrobial therapy and effective patient management.

Peptostreptococcus is a genus of Gram-positive, anaerobic, coccus-shaped bacteria that are commonly found as normal flora in the human mouth, gastrointestinal tract, and female genital tract. These organisms can become pathogenic and cause a variety of infections, particularly in individuals with compromised immune systems or following surgical procedures. Infections caused by Peptostreptococcus species can include abscesses, endocarditis, bacteremia, and joint infections. Proper identification and antibiotic susceptibility testing are essential for the effective treatment of these infections.

I'm sorry for any confusion, but "Peptococcus" is not a currently recognized or valid genus of bacteria in modern medical or scientific classification. It seems there might be some confusion here, as the correct name for the bacterial group you may be referring to is "Peptostreptococcus."

Peptostreptococcus is a genus of Gram-positive, anaerobic, coccus-shaped bacteria. These bacteria are commonly found in the human mouth, gastrointestinal tract, and female genital tract. They can sometimes cause opportunistic infections in humans, particularly in individuals with weakened immune systems or when they enter areas where they shouldn't be, such as deep tissue or the bloodstream.

I hope this clarification helps! If you have any further questions, please let me know.

Anaerobic bacteria are a type of bacteria that do not require oxygen to grow and survive. Instead, they can grow in environments that have little or no oxygen. Some anaerobic bacteria can even be harmed or killed by exposure to oxygen. These bacteria play important roles in many natural processes, such as decomposition and the breakdown of organic matter in the digestive system. However, some anaerobic bacteria can also cause disease in humans and animals, particularly when they infect areas of the body that are normally oxygen-rich. Examples of anaerobic bacterial infections include tetanus, gas gangrene, and dental abscesses.

"Gram-Negative Anaerobic Cocci" refer to a specific group of anaerobic bacteria that are spherical in shape (cocci) and do not stain gram-negative due to the absence of a thick peptidoglycan layer in their cell walls. These bacteria are strict anaerobes, meaning they cannot grow in the presence of oxygen. They can be pathogenic and are often found in various human body sites, such as the oral cavity, gastrointestinal tract, and female genital tract. Some examples of Gram-negative anaerobic cocci include species of the genera Veillonella, Megasphaera, and Selenomonas.

Gram-negative bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, a standard technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This method was developed by Hans Christian Gram in 1884.

The primary characteristic distinguishing Gram-negative bacteria from Gram-positive bacteria is the composition and structure of their cell walls:

1. Cell wall: Gram-negative bacteria have a thin peptidoglycan layer, making it more susceptible to damage and less rigid compared to Gram-positive bacteria.
2. Outer membrane: They possess an additional outer membrane that contains lipopolysaccharides (LPS), which are endotoxins that can trigger strong immune responses in humans and animals. The outer membrane also contains proteins, known as porins, which form channels for the passage of molecules into and out of the cell.
3. Periplasm: Between the inner and outer membranes lies a compartment called the periplasm, where various enzymes and other molecules are located.

Some examples of Gram-negative bacteria include Escherichia coli (E. coli), Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella enterica, Shigella spp., and Neisseria meningitidis. These bacteria are often associated with various infections, such as urinary tract infections, pneumonia, sepsis, and meningitis. Due to their complex cell wall structure, Gram-negative bacteria can be more resistant to certain antibiotics, making them a significant concern in healthcare settings.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

Peptococcaceae is a family of obligately anaerobic, non-spore forming, gram-positive cocci that are found as normal flora in the human gastrointestinal tract. These bacteria are commonly isolated from feces and are known to be associated with various human infections, particularly intra-abdominal abscesses, bacteremia, and brain abscesses. The genus Peptococcus includes several species, such as Peptococcus niger and Peptococcus saccharolyticus, which are known to be associated with human infections. However, it is important to note that the taxonomy of this group of bacteria has undergone significant revisions in recent years, and some species previously classified as Peptococcaceae have been reassigned to other families.

Gram-positive bacterial infections refer to illnesses or diseases caused by Gram-positive bacteria, which are a group of bacteria that turn purple when stained using the Gram stain method. This staining technique is used in microbiology to differentiate between two main types of bacteria based on their cell wall composition.

Gram-positive bacteria have a thick layer of peptidoglycan in their cell walls, which retains the crystal violet stain used in the Gram staining process. Some common examples of Gram-positive bacteria include Staphylococcus aureus, Streptococcus pyogenes, and Enterococcus faecalis.

Gram-positive bacterial infections can range from mild skin infections to severe and life-threatening conditions such as pneumonia, meningitis, and sepsis. The symptoms of these infections depend on the type of bacteria involved and the location of the infection in the body. Treatment typically involves the use of antibiotics that are effective against Gram-positive bacteria, such as penicillin, vancomycin, or clindamycin. However, the emergence of antibiotic resistance among Gram-positive bacteria is a growing concern and can complicate treatment in some cases.

Gram-positive bacteria are a type of bacteria that stain dark purple or blue when subjected to the Gram staining method, which is a common technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This staining method was developed by Hans Christian Gram in 1884.

The key characteristic that distinguishes Gram-positive bacteria from other types, such as Gram-negative bacteria, is the presence of a thick layer of peptidoglycan in their cell walls, which retains the crystal violet stain used in the Gram staining process. Additionally, Gram-positive bacteria lack an outer membrane found in Gram-negative bacteria.

Examples of Gram-positive bacteria include Staphylococcus aureus, Streptococcus pyogenes, and Bacillus subtilis. Some Gram-positive bacteria can cause various human diseases, while others are beneficial or harmless.

Veillonellaceae is a family of Gram-negative, anaerobic bacteria found in various environments, including the human mouth and gut. The bacteria are known for their ability to produce acetic and lactic acid as end products of their metabolism. They are often part of the normal microbiota of the body, but they can also be associated with certain infections, particularly in individuals with weakened immune systems.

It's important to note that while Veillonellaceae bacteria are generally considered to be commensal organisms, meaning they exist harmoniously with their human hosts, they have been implicated in some disease states, such as periodontitis (gum disease) and bacterial pneumonia. However, more research is needed to fully understand the role of these bacteria in health and disease.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Gram-negative bacterial infections refer to illnesses or diseases caused by Gram-negative bacteria, which are a group of bacteria that do not retain crystal violet dye during the Gram staining procedure used in microbiology. This characteristic is due to the structure of their cell walls, which contain a thin layer of peptidoglycan and an outer membrane composed of lipopolysaccharides (LPS), proteins, and phospholipids.

The LPS component of the outer membrane is responsible for the endotoxic properties of Gram-negative bacteria, which can lead to severe inflammatory responses in the host. Common Gram-negative bacterial pathogens include Escherichia coli (E. coli), Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Proteus mirabilis, among others.

Gram-negative bacterial infections can cause a wide range of clinical syndromes, such as pneumonia, urinary tract infections, bloodstream infections, meningitis, and soft tissue infections. The severity of these infections can vary from mild to life-threatening, depending on the patient's immune status, the site of infection, and the virulence of the bacterial strain.

Effective antibiotic therapy is crucial for treating Gram-negative bacterial infections, but the increasing prevalence of multidrug-resistant strains has become a significant global health concern. Therefore, accurate diagnosis and appropriate antimicrobial stewardship are essential to ensure optimal patient outcomes and prevent further spread of resistance.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

An abscess is a localized collection of pus caused by an infection. It is typically characterized by inflammation, redness, warmth, pain, and swelling in the affected area. Abscesses can form in various parts of the body, including the skin, teeth, lungs, brain, and abdominal organs. They are usually treated with antibiotics to eliminate the infection and may require drainage if they are large or located in a critical area. If left untreated, an abscess can lead to serious complications such as sepsis or organ failure.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Bacteroides are a genus of gram-negative, anaerobic, rod-shaped bacteria that are normally present in the human gastrointestinal tract. They are part of the normal gut microbiota and play an important role in breaking down complex carbohydrates and other substances in the gut. However, some species of Bacteroides can cause opportunistic infections, particularly in individuals with weakened immune systems or when they spread to other parts of the body. They are resistant to many commonly used antibiotics, making infections caused by these bacteria difficult to treat.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Bacterial infections are caused by the invasion and multiplication of bacteria in or on tissues of the body. These infections can range from mild, like a common cold, to severe, such as pneumonia, meningitis, or sepsis. The symptoms of a bacterial infection depend on the type of bacteria invading the body and the area of the body that is affected.

Bacteria are single-celled microorganisms that can live in many different environments, including in the human body. While some bacteria are beneficial to humans and help with digestion or protect against harmful pathogens, others can cause illness and disease. When bacteria invade the body, they can release toxins and other harmful substances that damage tissues and trigger an immune response.

Bacterial infections can be treated with antibiotics, which work by killing or inhibiting the growth of bacteria. However, it is important to note that misuse or overuse of antibiotics can lead to antibiotic resistance, making treatment more difficult. It is also essential to complete the full course of antibiotics as prescribed, even if symptoms improve, to ensure that all bacteria are eliminated and reduce the risk of recurrence or development of antibiotic resistance.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Gram-negative aerobic bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, which is a technique used to differentiate bacterial species based on their cell wall composition. These bacteria have a thin peptidoglycan layer and an outer membrane containing lipopolysaccharides (LPS), making them resistant to many antibiotics and disinfectants. They are called aerobic because they require oxygen for their growth and metabolism. Examples of Gram-negative aerobic bacteria include Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. These bacteria can cause various infections in humans, such as pneumonia, urinary tract infections, and sepsis.

Gram-negative anaerobic bacteria are a type of bacteria that do not require oxygen to grow and are characterized by their cell wall structure, which does not retain crystal violet dye in the Gram staining procedure. This is because they lack a thick peptidoglycan layer in their cell walls, which is typically stained dark purple in Gram-positive bacteria. Instead, gram-negative bacteria have an outer membrane that contains lipopolysaccharides (LPS), which can be toxic to human cells and contribute to the pathogenicity of these organisms.

Examples of gram-negative anaerobic bacteria include Bacteroides fragilis, Prevotella species, and Porphyromonas species. These bacteria are commonly found in the human mouth, gastrointestinal tract, and genitourinary tract, and can cause a variety of infections, including abscesses, wound infections, and bacteremia.

It's important to note that while gram-negative anaerobic bacteria do not require oxygen to grow, some may still tolerate or even prefer oxygen-rich environments. Therefore, the term "anaerobe" can be somewhat misleading when used to describe these organisms.

Bacteremia is the presence of bacteria in the bloodstream. It is a medical condition that occurs when bacteria from another source, such as an infection in another part of the body, enter the bloodstream. Bacteremia can cause symptoms such as fever, chills, and rapid heart rate, and it can lead to serious complications such as sepsis if not treated promptly with antibiotics.

Bacteremia is often a result of an infection elsewhere in the body that allows bacteria to enter the bloodstream. This can happen through various routes, such as during medical procedures, intravenous (IV) drug use, or from infected wounds or devices that come into contact with the bloodstream. In some cases, bacteremia may also occur without any obvious source of infection.

It is important to note that not all bacteria in the bloodstream cause harm, and some people may have bacteria in their blood without showing any symptoms. However, if bacteria in the bloodstream multiply and cause an immune response, it can lead to bacteremia and potentially serious complications.

Bacteriological techniques refer to the various methods and procedures used in the laboratory for the cultivation, identification, and study of bacteria. These techniques are essential in fields such as medicine, biotechnology, and research. Here are some common bacteriological techniques:

1. **Sterilization**: This is a process that eliminates or kills all forms of life, including bacteria, viruses, fungi, and spores. Common sterilization methods include autoclaving (using steam under pressure), dry heat (in an oven), chemical sterilants, and radiation.

2. **Aseptic Technique**: This refers to practices used to prevent contamination of sterile materials or environments with microorganisms. It includes the use of sterile equipment, gloves, and lab coats, as well as techniques such as flaming, alcohol swabbing, and using aseptic transfer devices.

3. **Media Preparation**: This involves the preparation of nutrient-rich substances that support bacterial growth. There are various types of media, including solid (agar), liquid (broth), and semi-solid (e.g., stab agar). The choice of medium depends on the type of bacteria being cultured and the purpose of the investigation.

4. **Inoculation**: This is the process of introducing a bacterial culture into a medium. It can be done using a loop, swab, or needle. The inoculum should be taken from a pure culture to avoid contamination.

5. **Incubation**: After inoculation, the bacteria are allowed to grow under controlled conditions of temperature, humidity, and atmospheric composition. This process is called incubation.

6. **Staining and Microscopy**: Bacteria are too small to be seen with the naked eye. Therefore, they need to be stained and observed under a microscope. Gram staining is a common method used to differentiate between two major groups of bacteria based on their cell wall composition.

7. **Biochemical Tests**: These are tests used to identify specific bacterial species based on their biochemical characteristics, such as their ability to ferment certain sugars, produce particular enzymes, or resist certain antibiotics.

8. **Molecular Techniques**: Advanced techniques like PCR and DNA sequencing can provide more precise identification of bacteria. They can also be used for genetic analysis and epidemiological studies.

Remember, handling microorganisms requires careful attention to biosafety procedures to prevent accidental infection or environmental contamination.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Phytochemicals are compounds that are produced by plants (hence the "phyto-") for their own defense against predators and diseases. They are found in various plant parts such as fruits, vegetables, grains, legumes, nuts, and teas. Phytochemicals can have beneficial effects on human health as they exhibit protective or disease preventive properties.

These compounds belong to a diverse group with varying structures and chemical properties. Some common classes of phytochemicals include carotenoids, flavonoids, phenolic acids, organosulfides, and alkaloids. They have been shown to possess antioxidant, anti-inflammatory, anti-cancer, and immune system-enhancing properties, among others.

It is important to note that while phytochemicals can contribute to overall health and wellness, they should not be considered a cure or treatment for medical conditions. A balanced diet rich in various fruits, vegetables, and whole foods is recommended for optimal health benefits.

Anti-infective agents are a class of medications that are used to treat infections caused by various microorganisms such as bacteria, viruses, fungi, and parasites. These agents work by either killing the microorganism or inhibiting its growth, thereby helping to control the infection and alleviate symptoms.

There are several types of anti-infective agents, including:

1. Antibiotics: These are medications that are used to treat bacterial infections. They work by either killing bacteria (bactericidal) or inhibiting their growth (bacteriostatic).
2. Antivirals: These are medications that are used to treat viral infections. They work by interfering with the replication of the virus, preventing it from spreading and causing further damage.
3. Antifungals: These are medications that are used to treat fungal infections. They work by disrupting the cell membrane of the fungus, killing it or inhibiting its growth.
4. Antiparasitics: These are medications that are used to treat parasitic infections. They work by either killing the parasite or inhibiting its growth and reproduction.

It is important to note that anti-infective agents are not effective against all types of infections, and it is essential to use them appropriately to avoid the development of drug-resistant strains of microorganisms.

Enterobacteriaceae is a family of gram-negative, rod-shaped bacteria that are commonly found in the intestines of humans and animals. Many species within this family are capable of causing various types of infections, particularly in individuals with weakened immune systems. Some common examples of Enterobacteriaceae include Escherichia coli (E. coli), Klebsiella pneumoniae, Proteus mirabilis, and Salmonella enterica.

These bacteria are typically characterized by their ability to ferment various sugars and produce acid and gas as byproducts. They can also be distinguished by their biochemical reactions, such as their ability to produce certain enzymes or resist specific antibiotics. Infections caused by Enterobacteriaceae can range from mild to severe, depending on the species involved and the overall health of the infected individual.

Some infections caused by Enterobacteriaceae include urinary tract infections, pneumonia, bloodstream infections, and foodborne illnesses. Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of these bacteria and reduce the risk of infection.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. It is characterized by a whole-body inflammatory state (systemic inflammation) that can lead to blood clotting issues, tissue damage, and multiple organ failure.

Sepsis happens when an infection you already have triggers a chain reaction throughout your body. Infections that lead to sepsis most often start in the lungs, urinary tract, skin, or gastrointestinal tract.

Sepsis is a medical emergency. If you suspect sepsis, seek immediate medical attention. Early recognition and treatment of sepsis are crucial to improve outcomes. Treatment usually involves antibiotics, intravenous fluids, and may require oxygen, medication to raise blood pressure, and corticosteroids. In severe cases, surgery may be required to clear the infection.

Gangrene is a serious and potentially life-threatening condition that occurs when there is a loss of blood flow to a specific area of the body, resulting in tissue death. It can be caused by various factors such as bacterial infections, trauma, diabetes, vascular diseases, and smoking. The affected tissues may become discolored, swollen, and emit a foul odor due to the accumulation of bacteria and toxins.

Gangrene can be classified into two main types: dry gangrene and wet (or moist) gangrene. Dry gangrene develops slowly and is often associated with peripheral arterial disease, which reduces blood flow to the extremities. The affected area turns black and shriveled as it dries out. Wet gangrene, on the other hand, progresses rapidly due to bacterial infections that cause tissue breakdown and pus formation. This type of gangrene can spread quickly throughout the body, leading to severe complications such as sepsis and organ failure if left untreated.

Treatment for gangrene typically involves surgical removal of the dead tissue (debridement), antibiotics to control infections, and sometimes revascularization procedures to restore blood flow to the affected area. In severe cases where the infection has spread or the damage is irreversible, amputation of the affected limb may be necessary to prevent further complications and save the patient's life.

Gentian Violet is not a medical term per se, but it is a substance that has been used in medicine. According to the US National Library of Medicine's MedlinePlus, Gentian Violet is a type of crystal violet dye that has antifungal and antibacterial properties. It is often used as a topical treatment for minor cuts, burns, and wounds, as well as for fungal infections such as thrush (oral candidiasis) and athlete's foot. Gentian Violet can also be used to treat ringworm and impetigo. However, it should not be used in the eyes or mouth, and it should be used with caution on broken skin, as it can cause irritation. Additionally, there is some concern that long-term use of Gentian Violet may be carcinogenic (cancer-causing), so its use should be limited to short periods of time and under the guidance of a healthcare professional.

Fungi, in the context of medical definitions, are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as the more familiar mushrooms. The study of fungi is known as mycology.

Fungi can exist as unicellular organisms or as multicellular filamentous structures called hyphae. They are heterotrophs, which means they obtain their nutrients by decomposing organic matter or by living as parasites on other organisms. Some fungi can cause various diseases in humans, animals, and plants, known as mycoses. These infections range from superficial, localized skin infections to systemic, life-threatening invasive diseases.

Examples of fungal infections include athlete's foot (tinea pedis), ringworm (dermatophytosis), candidiasis (yeast infection), histoplasmosis, coccidioidomycosis, and aspergillosis. Fungal infections can be challenging to treat due to the limited number of antifungal drugs available and the potential for drug resistance.

Klebsiella infections are caused by bacteria called Klebsiella spp., with the most common species being Klebsiella pneumoniae. These gram-negative, encapsulated bacilli are normal inhabitants of the human gastrointestinal tract and upper respiratory tract but can cause various types of infections when they spread to other body sites.

Commonly, Klebsiella infections include:

1. Pneumonia: This is a lung infection that can lead to symptoms like cough, chest pain, difficulty breathing, and fever. It often affects people with weakened immune systems, chronic lung diseases, or those who are hospitalized.

2. Urinary tract infections (UTIs): Klebsiella can cause UTIs, particularly in individuals with compromised urinary tracts, such as catheterized patients or those with structural abnormalities. Symptoms may include pain, burning during urination, frequent urges to urinate, and lower abdominal or back pain.

3. Bloodstream infections (bacteremia/septicemia): When Klebsiella enters the bloodstream, it can cause bacteremia or septicemia, which can lead to sepsis, a life-threatening condition characterized by an overwhelming immune response to infection. Symptoms may include fever, chills, rapid heart rate, and rapid breathing.

4. Wound infections: Klebsiella can infect wounds, particularly in patients with open surgical wounds or traumatic injuries. Infected wounds may display redness, swelling, pain, pus discharge, and warmth.

5. Soft tissue infections: These include infections of the skin and underlying soft tissues, such as cellulitis and abscesses. Symptoms can range from localized redness, swelling, and pain to systemic symptoms like fever and malaise.

Klebsiella infections are increasingly becoming difficult to treat due to their resistance to multiple antibiotics, including carbapenems, which has led to the term "carbapenem-resistant Enterobacteriaceae" (CRE) or "carbapenem-resistant Klebsiella pneumoniae" (CRKP). These infections often require the use of last-resort antibiotics like colistin and tigecycline. Infection prevention measures, such as contact precautions, hand hygiene, and environmental cleaning, are crucial to controlling the spread of Klebsiella in healthcare settings.

Bacterial eye infections, also known as bacterial conjunctivitis or bacterial keratitis, are caused by the invasion of bacteria into the eye. The most common types of bacteria that cause these infections include Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae.

Bacterial conjunctivitis is an inflammation of the conjunctiva, the thin membrane that covers the white part of the eye and the inner surface of the eyelids. Symptoms include redness, swelling, pain, discharge, and a gritty feeling in the eye. Bacterial keratitis is an infection of the cornea, the clear front part of the eye. Symptoms include severe pain, sensitivity to light, tearing, and decreased vision.

Bacterial eye infections are typically treated with antibiotic eye drops or ointments. It is important to seek medical attention promptly if you suspect a bacterial eye infection, as untreated infections can lead to serious complications such as corneal ulcers and vision loss. Preventive measures include good hygiene practices, such as washing your hands frequently and avoiding touching or rubbing your eyes.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

Phenazines are a class of heterocyclic aromatic organic compounds that consist of two nitrogen atoms connected by a five-membered ring. They are naturally occurring in various species of bacteria and fungi, where they play a role in chemical defense and communication. Some phenazines have been found to have antibiotic, antifungal, and antiparasitic properties. Synthetic phenazines are also used in various industrial applications, such as dyes and pigments, and as components in some pharmaceuticals and agrochemicals.

The Limulus test, also known as the Limulus amebocyte lysate (LAL) test, is a medical diagnostic assay used to detect the presence of bacterial endotoxins in various biological and medical samples. The test utilizes the blood cells (amebocytes) from the horseshoe crab (Limulus polyphemus) that can coagulate in response to endotoxins, which are found in the outer membrane of gram-negative bacteria.

The LAL test is widely used in the pharmaceutical industry to ensure that medical products, such as injectable drugs and implantable devices, are free from harmful levels of endotoxins. It can also be used in clinical settings to detect bacterial contamination in biological samples like blood, urine, or cerebrospinal fluid.

The test involves mixing the sample with LAL reagent and monitoring for the formation of a gel-like clot or changes in turbidity, which indicate the presence of endotoxins. The amount of endotoxin present can be quantified by comparing the reaction to a standard curve prepared using known concentrations of endotoxin.

The Limulus test is highly sensitive and specific for endotoxins, making it an essential tool in ensuring patient safety and preventing bacterial infections associated with medical procedures and treatments.

Streptococcaceae is a family of coccoid gram-positive bacteria, many of which are part of the normal human microbiota. They are facultatively anaerobic and generally non-spore forming. Some species are pathogenic and can cause various infections in humans, such as strep throat, pneumonia, and meningitis. Members of this family are characterized by their ability to form chains during cell division and may be beta-hemolytic, alpha-hemolytic, or non-hemolytic on blood agar plates. The genera in Streptococcaceae include Streptococcus, Enterococcus, Lactococcus, and Vagococcus, among others.

Staphylococcus is a genus of Gram-positive, facultatively anaerobic bacteria that are commonly found on the skin and mucous membranes of humans and other animals. Many species of Staphylococcus can cause infections in humans, but the most notable is Staphylococcus aureus, which is responsible for a wide range of illnesses, from minor skin infections to life-threatening conditions such as pneumonia, endocarditis, and sepsis.

Staphylococcus species are non-motile, non-spore forming, and typically occur in grape-like clusters when viewed under a microscope. They can be coagulase-positive or coagulase-negative, with S. aureus being the most well-known coagulase-positive species. Coagulase is an enzyme that causes the clotting of plasma, and its presence is often used to differentiate S. aureus from other Staphylococcus species.

These bacteria are resistant to many commonly used antibiotics, including penicillin, due to the production of beta-lactamases. Methicillin-resistant Staphylococcus aureus (MRSA) is a particularly problematic strain that has developed resistance to multiple antibiotics and can cause severe, difficult-to-treat infections.

Proper hand hygiene, use of personal protective equipment, and environmental cleaning are crucial measures for preventing the spread of Staphylococcus in healthcare settings and the community.

Staphylococcus aureus is a type of gram-positive, round (coccal) bacterium that is commonly found on the skin and mucous membranes of warm-blooded animals and humans. It is a facultative anaerobe, which means it can grow in the presence or absence of oxygen.

Staphylococcus aureus is known to cause a wide range of infections, from mild skin infections such as pimples, impetigo, and furuncles (boils) to more severe and potentially life-threatening infections such as pneumonia, endocarditis, osteomyelitis, and sepsis. It can also cause food poisoning and toxic shock syndrome.

The bacterium is often resistant to multiple antibiotics, including methicillin, which has led to the emergence of methicillin-resistant Staphylococcus aureus (MRSA) strains that are difficult to treat. Proper hand hygiene and infection control practices are critical in preventing the spread of Staphylococcus aureus and MRSA.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

"Klebsiella pneumoniae" is a medical term that refers to a type of bacteria belonging to the family Enterobacteriaceae. It's a gram-negative, encapsulated, non-motile, rod-shaped bacterium that can be found in various environments, including soil, water, and the gastrointestinal tracts of humans and animals.

"Klebsiella pneumoniae" is an opportunistic pathogen that can cause a range of infections, particularly in individuals with weakened immune systems or underlying medical conditions. It's a common cause of healthcare-associated infections, such as pneumonia, urinary tract infections, bloodstream infections, and wound infections.

The bacterium is known for its ability to produce a polysaccharide capsule that makes it resistant to phagocytosis by white blood cells, allowing it to evade the host's immune system. Additionally, "Klebsiella pneumoniae" has developed resistance to many antibiotics, making infections caused by this bacterium difficult to treat and a growing public health concern.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Cross infection, also known as cross-contamination, is the transmission of infectious agents or diseases between patients in a healthcare setting. This can occur through various means such as contaminated equipment, surfaces, hands of healthcare workers, or the air. It is an important concern in medical settings and measures are taken to prevent its occurrence, including proper hand hygiene, use of personal protective equipment (PPE), environmental cleaning and disinfection, and safe injection practices.

"Pseudomonas aeruginosa" is a medically important, gram-negative, rod-shaped bacterium that is widely found in the environment, such as in soil, water, and on plants. It's an opportunistic pathogen, meaning it usually doesn't cause infection in healthy individuals but can cause severe and sometimes life-threatening infections in people with weakened immune systems, burns, or chronic lung diseases like cystic fibrosis.

P. aeruginosa is known for its remarkable ability to resist many antibiotics and disinfectants due to its intrinsic resistance mechanisms and the acquisition of additional resistance determinants. It can cause various types of infections, including respiratory tract infections, urinary tract infections, gastrointestinal infections, dermatitis, and severe bloodstream infections known as sepsis.

The bacterium produces a variety of virulence factors that contribute to its pathogenicity, such as exotoxins, proteases, and pigments like pyocyanin and pyoverdine, which aid in iron acquisition and help the organism evade host immune responses. Effective infection control measures, appropriate use of antibiotics, and close monitoring of high-risk patients are crucial for managing P. aeruginosa infections.

Streptococcus is a genus of Gram-positive, spherical bacteria that typically form pairs or chains when clustered together. These bacteria are facultative anaerobes, meaning they can grow in the presence or absence of oxygen. They are non-motile and do not produce spores.

Streptococcus species are commonly found on the skin and mucous membranes of humans and animals. Some strains are part of the normal flora of the body, while others can cause a variety of infections, ranging from mild skin infections to severe and life-threatening diseases such as sepsis, meningitis, and toxic shock syndrome.

The pathogenicity of Streptococcus species depends on various virulence factors, including the production of enzymes and toxins that damage tissues and evade the host's immune response. One of the most well-known Streptococcus species is Streptococcus pyogenes, also known as group A streptococcus (GAS), which is responsible for a wide range of clinical manifestations, including pharyngitis (strep throat), impetigo, cellulitis, necrotizing fasciitis, and rheumatic fever.

It's important to note that the classification of Streptococcus species has evolved over time, with many former members now classified as different genera within the family Streptococcaceae. The current classification system is based on a combination of phenotypic characteristics (such as hemolysis patterns and sugar fermentation) and genotypic methods (such as 16S rRNA sequencing and multilocus sequence typing).

Water microbiology is not a formal medical term, but rather a branch of microbiology that deals with the study of microorganisms found in water. It involves the identification, enumeration, and characterization of bacteria, viruses, parasites, and other microscopic organisms present in water sources such as lakes, rivers, oceans, groundwater, drinking water, and wastewater.

In a medical context, water microbiology is relevant to public health because it helps to assess the safety of water supplies for human consumption and recreational activities. It also plays a critical role in understanding and preventing waterborne diseases caused by pathogenic microorganisms that can lead to illnesses such as diarrhea, skin infections, and respiratory problems.

Water microbiologists use various techniques to study water microorganisms, including culturing, microscopy, genetic analysis, and biochemical tests. They also investigate the ecology of these organisms, their interactions with other species, and their response to environmental factors such as temperature, pH, and nutrient availability.

Overall, water microbiology is a vital field that helps ensure the safety of our water resources and protects public health.

Peritonitis is a medical condition characterized by inflammation of the peritoneum, which is the serous membrane that lines the inner wall of the abdominal cavity and covers the abdominal organs. The peritoneum has an important role in protecting the abdominal organs and providing a smooth surface for them to move against each other.

Peritonitis can occur as a result of bacterial or fungal infection, chemical irritation, or trauma to the abdomen. The most common cause of peritonitis is a rupture or perforation of an organ in the abdominal cavity, such as the appendix, stomach, or intestines, which allows bacteria from the gut to enter the peritoneal cavity.

Symptoms of peritonitis may include abdominal pain and tenderness, fever, nausea and vomiting, loss of appetite, and decreased bowel movements. In severe cases, peritonitis can lead to sepsis, a life-threatening condition characterized by widespread inflammation throughout the body.

Treatment for peritonitis typically involves antibiotics to treat the infection, as well as surgical intervention to repair any damage to the abdominal organs and remove any infected fluid or tissue from the peritoneal cavity. In some cases, a temporary or permanent drain may be placed in the abdomen to help remove excess fluid and promote healing.

Multiple bacterial drug resistance (MDR) is a medical term that refers to the resistance of multiple strains of bacteria to several antibiotics or antimicrobial agents. This means that these bacteria have developed mechanisms that enable them to survive and multiply despite being exposed to drugs that were previously effective in treating infections caused by them.

MDR is a significant public health concern because it limits the treatment options available for bacterial infections, making them more difficult and expensive to treat. In some cases, MDR bacteria may cause severe or life-threatening infections that are resistant to all available antibiotics, leaving doctors with few or no effective therapeutic options.

MDR can arise due to various mechanisms, including the production of enzymes that inactivate antibiotics, changes in bacterial cell membrane permeability that prevent antibiotics from entering the bacteria, and the development of efflux pumps that expel antibiotics out of the bacteria. The misuse or overuse of antibiotics is a significant contributor to the emergence and spread of MDR bacteria.

Preventing and controlling the spread of MDR bacteria requires a multifaceted approach, including the judicious use of antibiotics, infection control measures, surveillance, and research into new antimicrobial agents.

I'm sorry for any confusion, but "India" is not a medical term or concept. It is a country in South Asia, the second-most populous country in the world, known for its rich history, diverse culture, and numerous contributions to various fields including medicine. If you have any questions related to medical topics, I would be happy to help answer them!

The abdominal muscles, also known as the abdominals or abs, are a group of muscles in the anterior (front) wall of the abdominopelvic cavity. They play a crucial role in maintaining posture, supporting the trunk, and facilitating movement of the torso. The main abdominal muscles include:

1. Rectus Abdominis: These are the pair of long, flat muscles that run vertically along the middle of the anterior abdominal wall. They are often referred to as the "six-pack" muscles due to their visible, segmented appearance in well-trained individuals. The primary function of the rectus abdominis is to flex the spine, allowing for actions such as sitting up from a lying down position or performing a crunch exercise.

2. External Obliques: These are the largest and most superficial of the oblique muscles, located on the lateral (side) aspects of the abdominal wall. They run diagonally downward and forward from the lower ribs to the iliac crest (the upper part of the pelvis) and the pubic tubercle (a bony prominence at the front of the pelvis). The external obliques help rotate and flex the trunk, as well as assist in side-bending and exhalation.

3. Internal Obliques: These muscles lie deep to the external obliques and run diagonally downward and backward from the lower ribs to the iliac crest, pubic tubercle, and linea alba (the strong band of connective tissue that runs vertically along the midline of the abdomen). The internal obliques help rotate and flex the trunk, as well as assist in forced exhalation and increasing intra-abdominal pressure during actions such as coughing or lifting heavy objects.

4. Transversus Abdominis: This is the deepest of the abdominal muscles, located inner to both the internal obliques and the rectus sheath (a strong, fibrous covering that surrounds the rectus abdominis). The transversus abdominis runs horizontally around the abdomen, attaching to the lower six ribs, the thoracolumbar fascia (a broad sheet of connective tissue spanning from the lower back to the pelvis), and the pubic crest (the front part of the pelvic bone). The transversus abdominis helps maintain core stability by compressing the abdominal contents and increasing intra-abdominal pressure.

Together, these muscles form the muscular "corset" of the abdomen, providing support, stability, and flexibility to the trunk. They also play a crucial role in respiration, posture, and various movements such as bending, twisting, and lifting.

A wound infection is defined as the invasion and multiplication of microorganisms in a part of the body tissue, which has been damaged by a cut, blow, or other trauma, leading to inflammation, purulent discharge, and sometimes systemic toxicity. The symptoms may include redness, swelling, pain, warmth, and fever. Treatment typically involves the use of antibiotics and proper wound care. It's important to note that not all wounds will become infected, but those that are contaminated with bacteria, dirt, or other foreign substances, or those in which the skin's natural barrier has been significantly compromised, are at a higher risk for infection.

Endotoxins are toxic substances that are associated with the cell walls of certain types of bacteria. They are released when the bacterial cells die or divide, and can cause a variety of harmful effects in humans and animals. Endotoxins are made up of lipopolysaccharides (LPS), which are complex molecules consisting of a lipid and a polysaccharide component.

Endotoxins are particularly associated with gram-negative bacteria, which have a distinctive cell wall structure that includes an outer membrane containing LPS. These toxins can cause fever, inflammation, and other symptoms when they enter the bloodstream or other tissues of the body. They are also known to play a role in the development of sepsis, a potentially life-threatening condition characterized by a severe immune response to infection.

Endotoxins are resistant to heat, acid, and many disinfectants, making them difficult to eliminate from contaminated environments. They can also be found in a variety of settings, including hospitals, industrial facilities, and agricultural operations, where they can pose a risk to human health.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Bacterial pneumonia is a type of lung infection that's caused by bacteria. It can affect people of any age, but it's more common in older adults, young children, and people with certain health conditions or weakened immune systems. The symptoms of bacterial pneumonia can vary, but they often include cough, chest pain, fever, chills, and difficulty breathing.

The most common type of bacteria that causes pneumonia is Streptococcus pneumoniae (pneumococcus). Other types of bacteria that can cause pneumonia include Haemophilus influenzae, Staphylococcus aureus, and Mycoplasma pneumoniae.

Bacterial pneumonia is usually treated with antibiotics, which are medications that kill bacteria. The specific type of antibiotic used will depend on the type of bacteria causing the infection. It's important to take all of the prescribed medication as directed, even if you start feeling better, to ensure that the infection is completely cleared and to prevent the development of antibiotic resistance.

In severe cases of bacterial pneumonia, hospitalization may be necessary for close monitoring and treatment with intravenous antibiotics and other supportive care.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Staphylococcaceae is a family of Gram-positive bacteria that includes several medically important genera such as Staphylococcus and Streptococcus. These bacteria are typically spherical in shape and arrange themselves in grape-like clusters, which is why they are referred to as "cocci."

Staphylococcus species are commonly found on the skin and mucous membranes of humans and animals. Some species, such as Staphylococcus aureus, can cause a range of infections, including skin and soft tissue infections, pneumonia, and bacteremia. Methicillin-resistant Staphylococcus aureus (MRSA) is a particularly concerning subtype that is resistant to many antibiotics and can cause severe and potentially life-threatening infections.

In contrast, Streptococcus species are typically beta-hemolytic and can be arranged in chains or pairs. They are found in the respiratory tract, skin, and mucous membranes of humans and animals. Some Streptococcus species can cause a variety of diseases, such as strep throat, pneumonia, meningitis, and toxic shock syndrome.

Proper identification and antibiotic susceptibility testing are crucial for the appropriate treatment of infections caused by Staphylococcaceae.

Staphylococcal infections are a type of infection caused by Staphylococcus bacteria, which are commonly found on the skin and nose of healthy people. However, if they enter the body through a cut, scratch, or other wound, they can cause an infection.

There are several types of Staphylococcus bacteria, but the most common one that causes infections is Staphylococcus aureus. These infections can range from minor skin infections such as pimples, boils, and impetigo to serious conditions such as pneumonia, bloodstream infections, and toxic shock syndrome.

Symptoms of staphylococcal infections depend on the type and severity of the infection. Treatment typically involves antibiotics, either topical or oral, depending on the severity and location of the infection. In some cases, hospitalization may be necessary for more severe infections. It is important to note that some strains of Staphylococcus aureus have developed resistance to certain antibiotics, making them more difficult to treat.

Fever, also known as pyrexia or febrile response, is a common medical sign characterized by an elevation in core body temperature above the normal range of 36.5-37.5°C (97.7-99.5°F) due to a dysregulation of the body's thermoregulatory system. It is often a response to an infection, inflammation, or other underlying medical conditions, and it serves as a part of the immune system's effort to combat the invading pathogens or to repair damaged tissues.

Fevers can be classified based on their magnitude:

* Low-grade fever: 37.5-38°C (99.5-100.4°F)
* Moderate fever: 38-39°C (100.4-102.2°F)
* High-grade or severe fever: above 39°C (102.2°F)

It is important to note that a single elevated temperature reading does not necessarily indicate the presence of a fever, as body temperature can fluctuate throughout the day and can be influenced by various factors such as physical activity, environmental conditions, and the menstrual cycle in females. The diagnosis of fever typically requires the confirmation of an elevated core body temperature on at least two occasions or a consistently high temperature over a period of time.

While fevers are generally considered beneficial in fighting off infections and promoting recovery, extremely high temperatures or prolonged febrile states may necessitate medical intervention to prevent potential complications such as dehydration, seizures, or damage to vital organs.

Pseudomonas infections are infections caused by the bacterium Pseudomonas aeruginosa or other species of the Pseudomonas genus. These bacteria are gram-negative, opportunistic pathogens that can cause various types of infections, including respiratory, urinary tract, gastrointestinal, dermatological, and bloodstream infections.

Pseudomonas aeruginosa is a common cause of healthcare-associated infections, particularly in patients with weakened immune systems, chronic lung diseases, or those who are hospitalized for extended periods. The bacteria can also infect wounds, burns, and medical devices such as catheters and ventilators.

Pseudomonas infections can be difficult to treat due to the bacteria's resistance to many antibiotics. Treatment typically involves the use of multiple antibiotics that are effective against Pseudomonas aeruginosa. In severe cases, intravenous antibiotics or even hospitalization may be necessary.

Prevention measures include good hand hygiene, contact precautions for patients with known Pseudomonas infections, and proper cleaning and maintenance of medical equipment.

"Micrococcus" is a genus of Gram-positive, catalase-positive, aerobic bacteria that are commonly found in pairs or tetrads. They are typically spherical in shape and range from 0.5 to 3 micrometers in diameter. Micrococci are ubiquitous in nature and can be found on the skin and mucous membranes of humans and animals, as well as in soil, water, and air.

Micrococci are generally considered to be harmless commensals, but they have been associated with a variety of infections in immunocompromised individuals, including bacteremia, endocarditis, and pneumonia. They can also cause contamination of medical equipment and supplies, leading to nosocomial infections.

It's worth noting that the taxonomy of this genus has undergone significant revisions in recent years, and many species previously classified as Micrococcus have been reassigned to other genera. As a result, the medical significance of this genus is somewhat limited.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Micrococcaceae is a family of Gram-positive, catalase-positive, aerobic bacteria that are typically found in pairs or tetrads. They are non-motile, non-spore forming, and facultatively anaerobic. These bacteria are commonly found in soil, water, and air, as well as on the skin and mucous membranes of humans and animals. Some species can cause opportunistic infections in humans, particularly in individuals with compromised immune systems. The genus Micrococcus is the type genus of this family.

Pneumonia is an infection or inflammation of the alveoli (tiny air sacs) in one or both lungs. It's often caused by bacteria, viruses, or fungi. Accumulated pus and fluid in these air sacs make it difficult to breathe, which can lead to coughing, chest pain, fever, and difficulty breathing. The severity of symptoms can vary from mild to life-threatening, depending on the underlying cause, the patient's overall health, and age. Pneumonia is typically diagnosed through a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or blood tests. Treatment usually involves antibiotics for bacterial pneumonia, antivirals for viral pneumonia, and supportive care like oxygen therapy, hydration, and rest.

Beta-lactamases are enzymes produced by certain bacteria that can break down and inactivate beta-lactam antibiotics, such as penicillins, cephalosporins, and carbapenems. This enzymatic activity makes the bacteria resistant to these antibiotics, limiting their effectiveness in treating infections caused by these organisms.

Beta-lactamases work by hydrolyzing the beta-lactam ring, a structural component of these antibiotics that is essential for their antimicrobial activity. By breaking down this ring, the enzyme renders the antibiotic ineffective against the bacterium, allowing it to continue growing and potentially causing harm.

There are different classes of beta-lactamases (e.g., Ambler Class A, B, C, and D), each with distinct characteristics and mechanisms for breaking down various beta-lactam antibiotics. The emergence and spread of bacteria producing these enzymes have contributed to the growing problem of antibiotic resistance, making it increasingly challenging to treat infections caused by these organisms.

To overcome this issue, researchers have developed beta-lactamase inhibitors, which are drugs that can bind to and inhibit the activity of these enzymes, thus restoring the effectiveness of certain beta-lactam antibiotics. Examples of such combinations include amoxicillin/clavulanate (Augmentin) and piperacillin/tazobactam (Zosyn).

Enterococcus is a genus of gram-positive, facultatively anaerobic bacteria that are commonly found in the intestinal tracts of humans and animals. They are part of the normal gut microbiota but can also cause a variety of infections, particularly in hospital settings. Enterococci are known for their ability to survive in harsh environments and can be resistant to many antibiotics, making them difficult to treat. Some species, such as Enterococcus faecalis and Enterococcus faecium, are more commonly associated with human infections.

In medical terms, an "Enterococcus infection" refers to an infection caused by any species of the Enterococcus genus. These infections can occur in various parts of the body, including the urinary tract, bloodstream, and abdominal cavity. They can cause symptoms such as fever, chills, and pain, depending on the location of the infection. Treatment typically involves the use of antibiotics that are effective against Enterococcus species, although resistance to multiple antibiotics is a growing concern.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Toll-Like Receptor 4 (TLR4) is a type of protein found on the surface of some cells in the human body, including immune cells like macrophages and dendritic cells. It belongs to a class of proteins called pattern recognition receptors (PRRs), which play a crucial role in the innate immune system's response to infection.

TLR4 recognizes and responds to specific molecules found on gram-negative bacteria, such as lipopolysaccharide (LPS), also known as endotoxin. When TLR4 binds to LPS, it triggers a signaling cascade that leads to the activation of immune cells, production of pro-inflammatory cytokines and chemokines, and initiation of the adaptive immune response.

TLR4 is an essential component of the body's defense against gram-negative bacterial infections, but its overactivation can also contribute to the development of various inflammatory diseases, such as sepsis, atherosclerosis, and certain types of cancer.

Blood is the fluid that circulates in the body of living organisms, carrying oxygen and nutrients to the cells and removing carbon dioxide and other waste products. It is composed of red and white blood cells suspended in a liquid called plasma. The main function of blood is to transport oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs. It also transports nutrients, hormones, and other substances to the cells and removes waste products from them. Additionally, blood plays a crucial role in the body's immune system by helping to fight infection and disease.

Escherichia coli (E. coli) infections refer to illnesses caused by the bacterium E. coli, which can cause a range of symptoms depending on the specific strain and site of infection. The majority of E. coli strains are harmless and live in the intestines of healthy humans and animals. However, some strains, particularly those that produce Shiga toxins, can cause severe illness.

E. coli infections can occur through various routes, including contaminated food or water, person-to-person contact, or direct contact with animals or their environments. Common symptoms of E. coli infections include diarrhea (often bloody), abdominal cramps, nausea, and vomiting. In severe cases, complications such as hemolytic uremic syndrome (HUS) can occur, which may lead to kidney failure and other long-term health problems.

Preventing E. coli infections involves practicing good hygiene, cooking meats thoroughly, avoiding cross-contamination of food during preparation, washing fruits and vegetables before eating, and avoiding unpasteurized dairy products and juices. Prompt medical attention is necessary if symptoms of an E. coli infection are suspected to prevent potential complications.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

The intestines, also known as the bowel, are a part of the digestive system that extends from the stomach to the anus. They are responsible for the further breakdown and absorption of nutrients from food, as well as the elimination of waste products. The intestines can be divided into two main sections: the small intestine and the large intestine.

The small intestine is a long, coiled tube that measures about 20 feet in length and is lined with tiny finger-like projections called villi, which increase its surface area and enhance nutrient absorption. The small intestine is where most of the digestion and absorption of nutrients takes place.

The large intestine, also known as the colon, is a wider tube that measures about 5 feet in length and is responsible for absorbing water and electrolytes from digested food, forming stool, and eliminating waste products from the body. The large intestine includes several regions, including the cecum, colon, rectum, and anus.

Together, the intestines play a critical role in maintaining overall health and well-being by ensuring that the body receives the nutrients it needs to function properly.

rRNA (ribosomal RNA) is not a type of gene itself, but rather a crucial component that is transcribed from genes known as ribosomal DNA (rDNA). In cells, rRNA plays an essential role in protein synthesis by assembling with ribosomal proteins to form ribosomes. Ribosomes are complex structures where the translation of mRNA into proteins occurs. There are multiple types of rRNA molecules, including 5S, 5.8S, 18S, and 28S rRNAs in eukaryotic cells, each with specific functions during protein synthesis.

In summary, 'Genes, rRNA' would refer to the genetic regions (genes) that code for ribosomal RNA molecules, which are vital components of the protein synthesis machinery within cells.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Coagulase is a type of enzyme produced by some bacteria, including Staphylococcus aureus. This enzyme helps the bacteria to clot blood plasma by converting an inactive precursor (prothrombin) into thrombin, which then converts fibrinogen into fibrin to form a clot. The ability of S. aureus to produce coagulase is often used as a diagnostic criterion for this bacterium, and it also plays a role in the virulence of the organism by helping it to evade the host's immune system.

Aerobic bacteria are a type of bacteria that require oxygen to live and grow. These bacteria use oxygen as the final electron acceptor in their respiratory chain to generate energy in the form of ATP (adenosine triphosphate). Aerobic bacteria can be found in various environments, including soil, water, and the air, as well as on the surfaces of living things. Some examples of aerobic bacteria include species of Pseudomonas, Bacillus, and Staphylococcus.

It's worth noting that some bacteria can switch between aerobic and anaerobic metabolism depending on the availability of oxygen. These bacteria are called facultative anaerobes. In contrast, obligate anaerobes are bacteria that cannot tolerate oxygen and will die in its presence.

Veillonella is a genus of Gram-negative, anaerobic, non-spore-forming, coccoid or rod-shaped bacteria. These bacteria are commonly found as normal flora in the human mouth, intestines, and female genital tract. They are known to be obligate parasites, meaning they rely on other organisms for nutrients and energy. Veillonella species are often associated with dental caries and have been implicated in various infections such as bacteremia, endocarditis, pneumonia, and wound infections, particularly in immunocompromised individuals or those with underlying medical conditions. Proper identification of Veillonella species is important for the diagnosis and treatment of these infections.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

I am not aware of a medical definition for "Amdinocillin." It is possible that there might be a misunderstanding or a spelling mistake in the term. There is no antibiotic or pharmaceutical drug known as Amdinocillin in medical literature, according to my knowledge up to 2021. If you have any more information or context regarding this term, I would be happy to help further.

"Pectinatus" is not a term that has a widely accepted medical definition. However, in the field of microbiology, "Pectinatus" is the name of a genus of Gram-negative, anaerobic, rod-shaped bacteria that can be found in beer and rarely in human clinical specimens. These bacteria can cause foodborne illnesses and have been implicated in rare cases of human infections, such as bacteremia and liver abscesses. However, the clinical significance of Pectinatus in human infections is not well-established.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Fusobacterium is a genus of obligate anaerobic, gram-negative, non-spore forming bacilli that are commonly found as normal flora in the human oral cavity, gastrointestinal tract, and female genital tract. Some species of Fusobacterium have been associated with various clinical infections and diseases, such as periodontal disease, abscesses, bacteremia, endocarditis, and inflammatory bowel disease.

Fusobacterium nucleatum is the most well-known species in this genus and has been extensively studied for its role in various diseases. It is a opportunistic pathogen that can cause severe infections in immunocompromised individuals or when it invades damaged tissues. Fusobacterium necrophorum, another important species, is a leading cause of Lemierre's syndrome, a rare but serious condition characterized by septic thrombophlebitis of the internal jugular vein and metastatic infections.

Fusobacteria are known to have a complex relationship with other microorganisms and host cells, and they can form biofilms that contribute to their virulence and persistence in the host. Further research is needed to fully understand the pathogenic mechanisms of Fusobacterium species and to develop effective strategies for prevention and treatment of Fusobacterium-associated diseases.

Base composition in genetics refers to the relative proportion of the four nucleotide bases (adenine, thymine, guanine, and cytosine) in a DNA or RNA molecule. In DNA, adenine pairs with thymine, and guanine pairs with cytosine, so the base composition is often expressed in terms of the ratio of adenine + thymine (A-T) to guanine + cytosine (G-C). This ratio can vary between species and even between different regions of the same genome. The base composition can provide important clues about the function, evolution, and structure of genetic material.

Enterococcus faecalis is a species of gram-positive, facultatively anaerobic bacteria that are part of the normal gut microbiota in humans and animals. It is a type of enterococci that can cause a variety of infections, including urinary tract infections, bacteremia, endocarditis, and meningitis, particularly in hospitalized patients or those with compromised immune systems.

E. faecalis is known for its ability to survive in a wide range of environments and resist various antibiotics, making it difficult to treat infections caused by this organism. It can also form biofilms, which further increase its resistance to antimicrobial agents and host immune responses. Accurate identification and appropriate treatment of E. faecalis infections are essential to prevent complications and ensure positive patient outcomes.

... is a strictly anaerobic, Gram-negative, coccus-shaped bacterium in the genus Veillonella. It is a normal ... "Surveillance of antimicrobial resistance in recent clinical isolates of Gram-negative anaerobic bacteria in a Greek University ... Diderm Firmicutes challenge the Gram-positive/Gram-negative divide". Molecular Microbiology. 113 (3): 659-671. doi:10.1111/mmi. ... Rolfe RD, Finegold SM (November 1981). "Comparative in vitro activity of new beta-lactam antibiotics against anaerobic bacteria ...
It is anaerobic, sulfur-metabolizing, gram-negative, coccus-shaped and highly motile. Its optimum growth temperature is 96 °C ( ...
After a few days, anaerobic, gram-negative cocci, rods, and filaments begin to colonize the plaque. After several weeks, the ... The first bacteria to attach to these pellicle glycoproteins are gram-positive, aerobic cocci such as Streptococcus sanguinis. ... cocci, rods, and filaments grow together forming colonies known as corncobs. This anaerobic environment causes facultative ...
... are Gram-negative bacteria (Gram stain pink) anaerobic cocci, unlike most Bacillota, which are Gram-positive ... Diderm Firmicutes challenge the Gram-positive/Gram-negative divide". Molecular Microbiology. 113 (3): 659-671. doi:10.1111/mmi. ... "Anaerobic bloodstream infections in Italy (ITANAEROBY): A 5-year retrospective nationwide survey". Anaerobe. 75: 102583. doi: ...
In the urethra, epithelial cells lining the urethra are colonized by facultatively anaerobic Gram-negative rod and cocci ... Gram-negative), while MAR among the cow urinal bacteria was 12.5-75.0% (Gram-positive) and 25.0-100% (Gram-negative). - ...
Anaerobic and microaerophilic cocci and gram-negative and gram-positive anaerobic bacilli are the predominant bacterial ... Pulmonary infections-Aerobic and anaerobic streptococci, anaerobic gram-negative bacilli (e.g. Prevotella, Porphyromonas, ... Sinus and dental infections-Aerobic and anaerobic streptococci, anaerobic gram-negative bacilli (e.g. Prevotella, Porphyromonas ... Secondly, high partial pressures of oxygen act as a bactericide and thus inhibits the anaerobic and functionally anaerobic ...
Because it is an anaerobic coccus that stains Gram negative, S. sucromutans was originally classified into the family ... This species of coccus stains Gram-negative, is non-motile, cannot form spores, and forms short chains. Its size ranges from ... Syntrophococcus sucromutans is a Gram-negative strictly anaerobic chemoorganotrophic Bacillota. These bacteria can be found ...
... gram-negative anaerobic cocci MeSH B03.440.425.400.500 - Megasphaera MeSH B03.440.425.400.750 - Thiocapsa MeSH B03.440.425.400. ... gram-negative aerobic rods and cocci MeSH B03.440.400.425.100 - acetobacteraceae MeSH B03.440.400.425.100.100 - Acetobacter ... gram-negative anaerobic straight, curved, and helical rods MeSH B03.440.425.410.096 - acidaminococcaceae MeSH B03.440.425.410. ... gram-negative chemolithotrophic bacteria MeSH B03.440.400.450.800 - Thiobacillus MeSH B03.440.400.645 - Thiotrichaceae MeSH ...
The most commonly encountered groupings of bacteria include gram-positive cocci, gram-negative bacilli, atypical bacteria, and ... aerobic or anaerobic), patterns of hemolysis, or other chemical properties. ... A broad-spectrum antibiotic is an antibiotic that acts on the two major bacterial groups, Gram-positive and Gram-negative, or ... "gram-positive," those that take up the counterstain only are "gram-negative," and those that remain unstained are referred to ...
... is a Gram-negative, cocci, non-spore-forming, anaerobic and non-motile genus of bacteria from the family of ...
... higher doses of radiation is associated with systemic anaerobic infections due to gram negative bacilli and gram positive cocci ... Ciprofloxacin is effective against Gram-negative organisms (including Pseudomonas species) but has poor coverage for Gram- ... Cefepime exhibits an extended spectrum of activity for Gram-positive bacteria (staphylococci) and Gram-negative organisms, ... The organisms causing endogenous infections are generally gram negative bacilli such as Enterobacteriaceae (i.e. Escherichia ...
Gram-negative cocci (mainly Veillonella spp.) . The frequency of isolation of anaerobic bacterial strains varies in different ... Anaerobic infections are caused by anaerobic bacteria. Obligately anaerobic bacteria do not grow on solid media in room air ( ... The anaerobes often isolated from brain abscesses complicating respiratory and dental infections are anaerobic Gram-negative ... Gram-positive cocci (primarily Peptostreptococcus spp.); 3. Gram-positive spore-forming (Clostridium spp.) and non-spore- ...
It is a gram-positive, catalase- and oxidase-negative, coccus bacterium. The organism is also a facultative anaerobic organism ...
... is a Gram-positive, coagulase-negative, anaerobic member of the bacterial genus Staphylococcus ... consisting of single and clustered cocci. The species was formerly known as Peptococcus saccharolyticus, but was reclassified ... Ali, H, Rood, IG, e Korte, D, Ramírez-Arcos, S, Strict anaerobic Staphylococcus saccharolyticus isolates recovered from ... Westblom, TU; Gorse, GJ; Milligan, TW; Schindzielorz, AH (December 1990). "Anaerobic endocarditis caused by Staphylococcus ...
Escherichia coli is a gram-negative, rod-shaped facultative anaerobic bacterium that does not produce spores. The bacterium is ... Oxygen requirements for mesophiles can be aerobic or anaerobic. There are three basic shapes of mesophiles: coccus, bacillus, ... Mesophiles belonging to the domain Bacteria can either be gram-positive or gram-negative. ... Other characteristics of E. coli are that it is oxidase-negative, citrate-negative, methyl-red positive, and Voges-Proskauer- ...
... is a facultatively anaerobic, coagulase-variable, Gram-positive cocci organism. It is nonmotile and ... von Eiff C, Peters G, Heilmann C (November 2002). "Pathogenesis of infections due to coagulase-negative staphylococci". The ... The initial step of gram staining assists in distinguishing the characteristic gram-positive cocci in clusters for ... Staphylococcus schleiferi is a Gram-positive, cocci-shaped bacterium of the family Staphylococcaceae. It is facultatively ...
Anaerobic, Gram-negative rod-shaped bacteria, including some Bacteroides, Fusobacterium, and Prevotella, although resistance is ... It is most effective against infections involving the following types of organisms: Aerobic Gram-positive cocci, including some ... Most aerobic Gram-negative bacteria (such as Pseudomonas, Legionella, Haemophilus influenzae and Moraxella) are resistant to ... Clindamycin is used primarily to treat anaerobic infections caused by susceptible anaerobic bacteria, including dental ...
... is a Gram-negative, coccus-shaped, bacteria found in the human digestive tract. It measures approximately ... van Passel, Mark (11 March 2011). "Genome Sequence of Victivallis vadensis ATCC BAA-548, an Anaerobic Bacterium from the Phylum ... Victivallis vadensis is strictly anaerobic, as are 90 percent of the bacteria in the human gastrointestinal system. Victivallis ... Gram-negative bacteria, Gut flora bacteria, Lentisphaerota). ...
Its only species, Basfia succiniciproducens, is a gram-negative, facultatively anaerobic, and immobile bacterium. It was first ... The bacterium is cocci to rod-shaped and, like all Pasteurellaceae, has no flagella, i.e., it cannot actively move. The ... and the yield was a maximum of 0.6 grams of succinic acid per gram of substrate. They achieved yields of 8.4 g/L, 0.9 g/L·h, ... Gram-negative bacteria, Bacteria described in 2010, Monotypic bacteria genera). ...
This particular strain of Methanocaldococcus is cocci in shape. FS406-22 is gram negative and is not pathogenic to humans. ... It has an anaerobic metabolism, nitrogen-fixing metabolism, and is methanogenic. The electron acceptors consist of carbon ... It is an anaerobic, piezophilic, diazotrophic, hyperthermophilic marine archaeon. This strain is notable for fixing nitrogen at ... FS406-22 is an anaerobic marine archaean that is able to fix nitrogen at extreme depths. Being a hyperthermophilic extremophile ...
... gram-negative cocci), and microaerophilic streptococci (aerotolerant). Anaerobic gram-positive cocci include various clinically ... is found between anaerobic gram-positive cocci and their aerobic and anaerobic counterparts. The ability of anaerobic gram- ... Of all anaerobic bacteria recovered at hospitals from 1973 to 1985, anaerobic gram-positive cocci accounted for 26% of it. The ... Most often Anaerobic gram-positive cocci are usually recovered mixed in with other anaerobic or aerobic bacteria from various ...
D. shibae cells are Gram-negative cocci, or occasionally ovoid rods that measure 0.3 - 0.7 μm in width and 0.3 - 1.0 μm in ... Dinoroseobacter shibae is a facultative anaerobic anoxygenic photoheterotroph belonging to the family, Rhodobacteraceae. First ...
... cells are Gram-negative, non-motile, irregular cocci that are 0.3-0.6 μm in diameter. ... Dehalogenimonas lykanthroporepellens is an anaerobic, Gram-negative bacteria in the phylum Chloroflexota isolated from a ... D. lykanthroporepellens is strictly anaerobic and uses hydrogen as an electron donor. It has been cultured in an anaerobic ... nov., obligate organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel ...
S. haemolyticus is nonmotile, nonsporulating, facultatively anaerobic, and Gram-positive. Cells are typically coccus-shaped and ... Staphylococcus haemolyticus is a member of the coagulase-negative staphylococci (CoNS). It is part of the skin flora of humans ... Like other Gram-positive microbes, S. haemolyticus has a thick, rather homogenous, cell wall (60-80 nm) composed of ... 2001). "Rapid and Accurate Species-Level Identification of Coagulase-Negative Staphylococci by Using the sodA Gene as a Target ...
S. constellatus are gram positive, non-sporing, non-motile, catalase negative cocci. The cells are small, normally 0.5-1μm in ... and some strains require anaerobic conditions to grow. S. constellatus produces major amounts of lactic acid, fermented glucose ...
... ("a methane-producing bag") is a non-motile, Gram-negative, obligately anaerobic, mesophilic archaeon that ... The G + C content of the DNA is determined to be 60.0%. The cells of Methanofollis are highly irregular cocci, with diameter of ... Most species of the archaeon are isolated from anaerobic high-rate wastewater bioreactors or solfataric fields. For example, M ...
The antibiotic is useful against gram positive cocci and gram negative rods such as Escherichia coli, Proteus mirabilis, and ... Adding penicillin to cover for gas gangrene caused by anaerobic bacteria Clostridium perfringens is a controversial practice. ... or a third generation cephalosporin is recommended to cover against nosocomial gram negative bacilli such as Pseudomonas ... There is conflicting evident to suggest the effectiveness of Negative-pressure wound therapy (vacuum dressing), with several ...
It is composed by all Gram-negative microbes and is the most phylogenetically and physiologically diverse class of ... Metabolisms found in the different genera are very different; there are both aerobic and anaerobic (obligate or facultative) ... They generally have different shapes - rods, curved rods, cocci, spirilla, and filaments and include free living bacteria, ... October 2018). "Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications". Environmental ...
Other bacterial species are frequently found in the vagina, such as the Gram positive cocci: Atopobium vaginae, ... and Gram-negative enteric organisms, such as Escherichia coli. Mycoplasma and Ureaplasma are frequently found in the vagina. ... Some of the obligate and facultative anaerobic bacteria are associated with BV. The effect of tampon use on vaginal flora is ... October 2005). "Comparison between Gram stain and culture for the characterization of vaginal microflora: definition of a ...
... have a porous pseudo-outer membrane that causes them to stain gram-negative. Many Bacillota (Firmicutes) produce endospores, ... They have round cells, called cocci (singular coccus), or rod-like forms (bacillus). A few Firmicutes, such as Megasphaera, ... The group is typically divided into the Clostridia, which are anaerobic, and the Bacilli, which are obligate or facultative ... Scientists once classified the Firmicutes to include all gram-positive bacteria, but have recently defined them to be of a core ...
Anaerobic gram negative bacilli, and anaerobic or microaerophilic cocci. Treatment for anaerobic gram negative bacilli, and ... anaerobic and micoaerophilic gram positive cocci and gram-negative bacilli. [2, 3, 4, 5, 6, 7, 12] Combined therapy may be ... Metronidazole 250-500 mg PO q8h (not effective against anaerobic and micaerophilic cocci) ... Coverage for anaerobic bacteria is recommended when appropriate methodes for their identefication are not used.{ref 7} ...
Veillonella parvula is a strictly anaerobic, Gram-negative, coccus-shaped bacterium in the genus Veillonella. It is a normal ... "Surveillance of antimicrobial resistance in recent clinical isolates of Gram-negative anaerobic bacteria in a Greek University ... Diderm Firmicutes challenge the Gram-positive/Gram-negative divide". Molecular Microbiology. 113 (3): 659-671. doi:10.1111/mmi. ... Rolfe RD, Finegold SM (November 1981). "Comparative in vitro activity of new beta-lactam antibiotics against anaerobic bacteria ...
Bacteroides, Porphyromonas, Prevotella, Fusobacterium, and other anaerobic gram-negative rods and cocci. In: Murray PR, editor ... from other gram-negative anaerobic rods (12) the MIC of the isolates to this antibiotic was determined by the Etest method (AB ... gram-negative, non-spore-forming, anaerobic rods. Autosatellitism was observed in several instances. The number of pigmented ... Recently described clinically important anaerobic bacteria: medical aspects. Clin Infect Dis. 1997;25(Suppl 2):S88-93. DOI ...
S pneumoniae are gram-positive, catalase-negative, facultatively anaerobic cocci that account for 20-43% of acute bacterial ... H influenzae are gram-negative, facultatively anaerobic bacilli. H influenza type B was a leading cause of meningitis until the ... Gram-negative organisms, including Pseudomonas aeruginosa (15.9%), Escherichia coli (7.6%), Proteus mirabilis (7.2%), ... P aeruginosa and other gram-negative rods have been recovered in acute sinusitis of nosocomial origin (especially in patients ...
Veillonella bacteria gram negative anaerobic cocci part of intestine and oral microflora and the causative agents of different ... Bacteria cardiobacterium hominis 3d illustration gram negative bacterium normally present in mouth nose and throat and can be ... Pseudomonas bacteria gram negative bacteria commonly associated with healthcare associated infections particularly respiratory ... Bacteria bordetella pertussis 3d illustration gram negative coccobacilli bacteria which cause children infection whooping cough ...
... strictly anaerobic gram-negative rods are more pathogenic than facultative or strictly anaerobic gram-positive cocci. ... The dominant isolates are strictly anaerobic gram-negative rods and gram-positive cocci, in addition to facultative and ... The clinical significance of anaerobic bacteria in acute orofacial odontogenic infections. Oral Surg Oral Med Oral Pathol Oral ...
nov., an anaerobic, Gram-negative coccus isolated from dental plaque.. Int. J. Syst. Evol. Microbiol. 58: 581-584, 2008.. PMID ...
Gemella morbillorum is a facultative anaerobic, catalase-negative and non-spore forming Gram-positive cocci. It can be found as ...
... variety of bacteria may be isolated from a swab including strictly anaerobic gram negative rods and aerobic gram-positive cocci ...
Aerobic and Anaerobic Gram Negative Cocci, Gram Neg Rods, Unusual Bacteria ... DPAP2012 Microbiology Clostridia Bacillus Gram Positive, Aerobic and Anaerobic Gram Negative Cocci, Gram Neg Rods, Unusual ... Gram staining of Mobiluncus and Gardnerella On gram stain appear Gram - or gram variable, but have a gram positive cell wall, ... Gram positive rods that colonize skin and mucosal surfaces *C. diff *virulence factors: two major toxins *toxin A: enterotoxin ...
nov., an anaerobic, Gram-negative coccus isolated from dental plaque, International Journal of Systematic and Evolutionary ... 1D-E). Intact cell growth per gram of utilised carbohydrates was even 2.5-fold higher in short in vivo transit donors (Figure S ... 29]. The samples were diluted 104 times with 0.22μm filtered sterile anaerobic PBS (Table S4), and incubated with a viability ... In silico predicted anaerobic growth rates, derived from the Assembly of Gut Organisms through Reconstruction and Analysis ( ...
Ulrich Vogel, Matthias Frosch: Gram-negative aerobic and facultative anaerobic cocci. In: Birgid Neumeister, Heinrich K. Geiss ... Gram-negative cocci. The bacteria can adjust their sugar metabolism to the anaerobic conditions in the infected tissue through ... Meningococci ( Neisseria meningitidis , formerly Meningococcus meningitis ) are gram-negative intracellular bacteria that occur ... hence the description as a bun-shaped gram-negative diplococcus). In meningitis caused by these bacteria, numerous white blood ...
Staphylococcacea Formerly Peptococcus saccharolyticus other anaerobic Staphylococcus ► Staphylococcus aureus ssp anaerobius ... Gram stain. *. the following information is not yet verified. Gram positive cocci,. 0.6-1.0 µm. lying in clusters ... Obligate anaerobic. BBAØ Colonies are raised, circular, opaque and gray to white or faintly yellow on agar.. They exhibits ... Formerly Peptococcus saccharolyticus other anaerobic Staphylococcus ► Staphylococcus aureus ssp anaerobius. Natural habitats. ...
... including gram positive and negative anaerobic organisms and aerobic/facultative gram positive and negative rods and cocci, ...
Anaerobic, Gram-Positive, Non-Spore-Forming Bacilli. Anaerobic Gram-Positive Cocci. Anaerobic Gram-Negative Cocci. ... Anaerobic Gram-Negative Bacilli. Anaerobic Gram-Positive Spore-Forming Bacilli: Clostridium. ... 9 Staphylococci and Other Catalase-Positive Gram-Positive Cocci. Gram-Positive Cocci. Staphylococcus. Staphylococcus aureus. ... 13 Nonfermentative Gram-Negative Bacilli and Similar Bacteria. Characteristics of Nonfermenters. Isolation and Identification ...
Ultimately, facultative gram-positive and gram-negative cocci and bacilli; and anaerobic gram-positive and gram-negative cocci ...
... strictly anaerobic gram-negative rods are more pathogenic than facultative or strictly anaerobic gram-positive cocci. ... The dominant isolates are strictly anaerobic gram-negative rods and gram-positive cocci, in addition to facultative and ... The clinical significance of anaerobic bacteria in acute orofacial odontogenic infections. Oral Surg Oral Med Oral Pathol Oral ...
A genus of gram-negative, anaerobic cocci parasitic in the mouth and in the intestinal and respiratory tracts of man and other ... A genus of gram-negative, anaerobic, rod-shaped bacteria found in cavities of humans and other animals. No endospores are ... A species of gram-negative, anaerobic, rod-shaped bacteria originally classified within the BACTEROIDES genus. This bacterium ... A species of gram-negative, anaerobic, rod-shaped bacteria originally classified within the BACTEROIDES genus. This bacterium ...
A genus of gram-negative, anaerobic cocci parasitic in the mouth and in the intestinal and respiratory tracts of man and other ...
... anaerobic cocci, and clostridia; WCA with addition of non-sporing anaerobe supplements; WCA with Gram negative anaerobe ... facultatively anaerobic cocci. Isolation media for strictly anaerobic bacteria were Wilkins-Chalgren agar (WCA)-total anaerobes ... 47 Plates for aerobic incubation were removed from the anaerobic chamber and incubated at 37°C for two days. Anaerobic plates ... Tissue samples were immediately placed in preweighed sterile Bijoux bottles containing 4 ml sterile anaerobic transport medium ...
... who received metronidazole were less likely to have recovery of anaerobic gram-negative rods or anaerobic gram-positive cocci ... Anaerobic organisms are also frequently found in infections of the upper genital tract. - The CDC recommends a one-time IM dose ... This regimen is effective against most of the organisms that cause PID, but it does have limited activity against anaerobic ... Importantly for our discussion, anaerobic organisms are also frequently found in infections of the upper genital tract. The CDC ...
... anaerobic/facultative gram negative rods, in 8 (7%); anaerobic Gram-positive cocci, other Viridans group streptococci, and ... Rates of polymicrobial and anaerobic infection were similar across ages. Our results indicate that nonoperative cultures are ... Outcomes included prevalence and types of organisms, polymicrobial infection, mixed aerobic-anaerobic infection, effect of age ... and anaerobic organisms (P = 0.58) did not differ by age (range, 0.1-16.8 years). In all 220 (100%) children, nonoperative ...
Biology of Infectious Disease, Anaerobic Bacteria, Gram-Negative Bacilli, Gram-Negative Cocci and Coccobacilli, Gram-Positive ... Gram-Negative Bacilli, Gram-Negative Cocci and Coccobacilli, Gram-Positive Cocci, Gram-Positive Bacilli, Spirochetes ... Cocci, Gram-Positive Bacilli, Spirochetes Jerrold T. Bushberg, PhD, DABMP, DABSNM The National Council on Radiation Protection ... Laboratory Diagnosis of Infectious Disease, Anaerobic Bacteria, ...
Selective isolation of aerobic gram positive cocci and bacilli and anaerobic gram-positive cocci and gram-negative bacilli. ... Contains azide to inhibit gram-negative bacteria, vancomycin to select for resistant gram-positive bacteria, and bile esculin ... BCYE supplemented with polymyxin B, vancomycin, and ansamycin to inhibit gram negative bacteria, gram-positive bacteria, and ... and amphotericin to inhibit growth of most gram negative bacteria, gram-positive bacteria, and yeast, respectively. Selective ...
... anaerobic Gram-negative cocci, are the most numerous Gram-negative cocci found in the oropharynx. Other Gram-negative cocci ... Gram-positive and Gram-negative cocci predominate in the oropharynx. Overall, anaerobes outnumber aerobes with a ratio of 100:1 ... Gram-negative cocci and coccobacilli also colonize the oropharynx. Veillonella, ... Gram-positive bacteria predominate over Gram-negative bacteria. The bacteria more commonly recovered from skin surfaces are ...
... narrow spectrum of activity that includes anaerobic bacteria as well as gram-positive cocci and bacilli and gram-negative ...
Ultimately, facultative and anaerobic gram-positive and gram-negative cocci and bacilli predominate in all types of odontogenic ... Gram-negative cocci. Neisseria. Veillonella. Gram-negative bacilli. Capnocytophaga. Eikenella. Porphyromonas. Prevotella. ... Based on Grams Method of staining (Box 1), bacteria are further classified as gram-positive or gram-negative. The distinct ... Gram-positive cocci. Streptococcus. Enterococcus. Streptococcus. Peptostreptococcus. Gram-positive bacilli. Actinomyces. ...
The shift from anaerobic gram negative bacteria to aerobic gram positive bacteria is clearly seen from the control to test ... RESULTS: In the test group, a predominance of aerobic/facultative gram positive cocci rod was seen which indicates a healthy ... a predominance of anaerobic gram negative rods was present which indicates an unhealthy periodontal condition. This is evident ... The percentage of gram negative bacteria in the control sample is 61% and in the test sample is 20% after 13 wk, whereas the ...

No FAQ available that match "gram negative anaerobic cocci"