Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight.
Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form.
The characteristic 3-dimensional shape of a carbohydrate.
A hexose or fermentable monosaccharide and isomer of glucose from manna, the ash Fraxinus ornus and related plants. (From Grant & Hackh's Chemical Dictionary, 5th ed & Random House Unabridged Dictionary, 2d ed)
A proteolytic enzyme obtained from Streptomyces griseus.
The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS.
Fucose is a deoxyhexose sugar, specifically a L-configuration 6-deoxygalactose, often found as a component of complex carbohydrates called glycans in various glycoproteins and glycolipids within the human body.
Glycopeptide antibiotic complex from Actinoplanes teichomyceticus active against gram-positive bacteria. It consists of five major components each with a different fatty acid moiety.
The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrates are composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
The chemical or biochemical addition of carbohydrate or glycosyl groups to other chemicals, especially peptides or proteins. Glycosyl transferases are used in this biochemical reaction.
Polysaccharides are complex carbohydrates consisting of long, often branched chains of repeating monosaccharide units joined together by glycosidic bonds, which serve as energy storage molecules (e.g., glycogen), structural components (e.g., cellulose), and molecular recognition sites in various biological systems.
A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed)
A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues.
Glucosamine is a naturally occurring amino sugar that plays a crucial role in the formation and maintenance of various tissues, particularly in the synthesis of proteoglycans and glycosaminoglycans, which are essential components of cartilage and synovial fluid in joints.
Antibacterial obtained from Streptomyces orientalis. It is a glycopeptide related to RISTOCETIN that inhibits bacterial cell wall assembly and is toxic to kidneys and the inner ear.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
Neuraminic acids are a family of nine-carbon sugars (sialic acids) that are commonly found as terminal residues on glycoproteins and gangliosides in animal tissues, playing crucial roles in various biological processes including cell recognition, inflammation, and bacterial/viral infectivity.
SUGARS containing an amino group. GLYCOSYLATION of other compounds with these amino sugars results in AMINOGLYCOSIDES.
Glycoside Hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds, resulting in the breakdown of complex carbohydrates and oligosaccharides into simpler sugars.
An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood.
The N-acetyl derivative of galactosamine.
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition.
High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface.
A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Substances that reduce the growth or reproduction of BACTERIA.
Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms.
The N-acetyl derivative of glucosamine.
A beta-N-Acetylhexosaminidase that catalyzes the hydrolysis of terminal, non-reducing 2-acetamido-2-deoxy-beta-glucose residues in chitobiose and higher analogs as well as in glycoproteins. Has been used widely in structural studies on bacterial cell walls and in the study of diseases such as MUCOLIPIDOSIS and various inflammatory disorders of muscle and connective tissue.
A heterogeneous mixture of glycoproteins responsible for the gel structure of egg white. It has trypsin-inhibiting activity.
An amidohydrolase that removes intact asparagine-linked oligosaccharide chains from glycoproteins. It requires the presence of more than two amino-acid residues in the substrate for activity. This enzyme was previously listed as EC 3.2.2.18.
A group of related enzymes responsible for the endohydrolysis of the di-N-acetylchitobiosyl unit in high-mannose-content glycopeptides and GLYCOPROTEINS.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A family of calcium-binding alpha-globulins that are synthesized in the LIVER and play an essential role in maintaining the solubility of CALCIUM in the BLOOD. In addition the fetuins contain aminoterminal cystatin domains and are classified as type 3 cystatins.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
Enzymes that catalyze the joining of two molecules by the formation of a carbon-oxygen bond. EC 6.1.
Hexosamines are amino sugars that are formed by the substitution of an amino group for a hydroxyl group in a hexose sugar, playing crucial roles in various biological processes such as glycoprotein synthesis and protein folding.
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.
Hexoses are simple monosaccharides, specifically six-carbon sugars, which include glucose, fructose, and galactose, and play crucial roles in biological processes such as energy production and storage, and structural components of cells.
A genus of gram-positive, coccoid bacteria consisting of organisms causing variable hemolysis that are normal flora of the intestinal tract. Previously thought to be a member of the genus STREPTOCOCCUS, it is now recognized as a separate genus.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
A species of STAPHYLOCOCCUS found on the skin of humans (and non-human primates), often causing hospital-acquired infections (CROSS INFECTION).
A strong oxidizing agent.
The sum of the weight of all the atoms in a molecule.
Glycosides formed by the reaction of the hydroxyl group on the anomeric carbon atom of mannose with an alcohol to form an acetal. They include both alpha- and beta-mannosides.
Simple sugars, carbohydrates which cannot be decomposed by hydrolysis. They are colorless crystalline substances with a sweet taste and have the same general formula CnH2nOn. (From Dorland, 28th ed)
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Enzymes that catalyze the hydrolysis of N-acylhexosamine residues in N-acylhexosamides. Hexosaminidases also act on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES.
Infections caused by bacteria that retain the crystal violet stain (positive) when treated by the gram-staining method.
An enzyme that catalyzes the HYDROLYSIS of terminal, non-reducing alpha-D-mannose residues in alpha-D-mannosides. The enzyme plays a role in the processing of newly formed N-glycans and in degradation of mature GLYCOPROTEINS. There are multiple isoforms of alpha-mannosidase, each having its own specific cellular location and pH optimum. Defects in the lysosomal form of the enzyme results in a buildup of mannoside intermediate metabolites and the disease ALPHA-MANNOSIDOSIS.
The systematic study of the structure and function of the complete set of glycans (the glycome) produced in a single organism and identification of all the genes that encode glycoproteins.
Nonsusceptibility of bacteria to the action of VANCOMYCIN, an inhibitor of cell wall synthesis.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
An N-acyl derivative of neuraminic acid. N-acetylneuraminic acid occurs in many polysaccharides, glycoproteins, and glycolipids in animals and bacteria. (From Dorland, 28th ed, p1518)
Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed)
An analytical technique for resolution of a chemical mixture into its component compounds. Compounds are separated on an adsorbent paper (stationary phase) by their varied degree of solubility/mobility in the eluting solvent (mobile phase).
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
Carbohydrate antigens expressed by malignant tissue. They are useful as tumor markers and are measured in the serum by means of a radioimmunoassay employing monoclonal antibodies.
Infections with bacteria of the genus STAPHYLOCOCCUS.
Carbohydrate antigen elevated in patients with tumors of the breast, ovary, lung, and prostate as well as other disorders. The mucin is expressed normally by most glandular epithelia but shows particularly increased expression in the breast at lactation and in malignancy. It is thus an established serum marker for breast cancer.
An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992)
Endogenous glycoproteins from which SIALIC ACID has been removed by the action of sialidases. They bind tightly to the ASIALOGLYCOPROTEIN RECEPTOR which is located on hepatocyte plasma membranes. After internalization by adsorptive ENDOCYTOSIS they are delivered to LYSOSOMES for degradation. Therefore receptor-mediated clearance of asialoglycoproteins is an important aspect of the turnover of plasma glycoproteins. They are elevated in serum of patients with HEPATIC CIRRHOSIS or HEPATITIS.
A hydroxylated derivative of the amino acid LYSINE that is present in certain collagens.
A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis.
Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins.
Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection.
An enzyme that oxidizes galactose in the presence of molecular oxygen to D-galacto-hexodialdose. It is a copper protein. EC 1.1.3.9.
Derivatives of acetamide that are used as solvents, as mild irritants, and in organic synthesis.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
A system of universal human blood group isoantigens with many associated subgroups. The M and N traits are codominant and the S and s traits are probably very closely linked alleles, including the U antigen. This system is most frequently used in paternity studies.
A species of gram-positive, coccoid bacteria whose organisms are normal flora of the intestinal tract. Unlike ENTEROCOCCUS FAECALIS, this species may produce an alpha-hemolytic reaction on blood agar and is unable to utilize pyruvic acid as an energy source.
A subclass of anhydrides with the general structure of dihydrofurandione. They can be substituted on any carbon atom. They modify and inhibit proteins and enzymes and are used in the acylation of amino- and hydroxyl groups.
Derivatives of oxazolidin-2-one. They represent an important class of synthetic antibiotic agents.
Non-susceptibility of a microbe to the action of METHICILLIN, a semi-synthetic penicillin derivative.
An enzyme that catalyzes the hydrolysis of an alpha L-fucoside to yield an alcohol and L-fucose. Deficiency of this enzyme can cause FUCOSIDOSIS. EC 3.2.1.51.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Inorganic and organic derivatives of sulfuric acid (H2SO4). The salts and esters of sulfuric acid are known as SULFATES and SULFURIC ACID ESTERS respectively.
Galactosamine is a type of amino monosaccharide that is a key component of many glycosaminoglycans, and is commonly found in animal tissues, often used in research and pharmaceutical applications for its role in cellular metabolism and synthesis of various biological molecules.
Proteins that bind to ice and modify the growth of ice crystals. They perform a cryoprotective role in a variety of organisms.
Sets of cell surface antigens located on BLOOD CELLS. They are usually membrane GLYCOPROTEINS or GLYCOLIPIDS that are antigenically distinguished by their carbohydrate moieties.
Bacteria which retain the crystal violet stain when treated by Gram's method.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
The first alpha-globulins to appear in mammalian sera during FETAL DEVELOPMENT and the dominant serum proteins in early embryonic life.

Glycopeptides from the surgace of human neuroblastoma cells. (1/2148)

Glycopeptides suggesting a complex oligosaccharide composition are present on the surface of cells from human neuroblastoma tumors and several cell lines derived from the tumors. The glycopeptides, labeled with radioactive L-fucose, were removed from the cell surface with trypsin, digested with Pronase, and examined by chromatography on Sephadex G-50. Human skin fibroblasts, brain cells, and a fibroblast line derived from neuroblastoma tumor tissue show less complex glycopeptides. Although some differences exist between the cell lines and the primary tumor cells, the similarities between these human tumors and animal tumors examined previously are striking.  (+info)

Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. (2/2148)

T cell receptor (TCR) recognition of nonpeptidic and modified peptide antigens has been recently uncovered but is still poorly understood. Immunization with an H-2Kb-restricted glycopeptide RGY8-6H-Gal2 generates a population of cytotoxic T cells that express both alpha/beta TCR, specific for glycopeptide, and gamma/delta TCR, specific for the disaccharide, even on glycolipids. The crystal structure of Kb/RGY8-6H-Gal2 now demonstrates that the peptide and H-2Kb structures are unaffected by the peptide glycosylation, but the central region of the putative TCR binding site is dominated by the extensive exposure of the tethered carbohydrate. These features of the Kb/RGY8-6H-Gal2 structure are consistent with the individual ligand binding preferences identified for the alpha/beta and gamma/delta TCRs and thus explain the generation of a carbohydrate-specific T cell response.  (+info)

Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. (3/2148)

Two synthetic O-GlcNAc-bearing peptides that elicit H-2Db-restricted glycopeptide-specific cytotoxic T cells (CTL) have been shown to display nonreciprocal patterns of cross-reactivity. Here, we present the crystal structures of the H-2Db glycopeptide complexes to 2.85 A resolution or better. In both cases, the glycan is solvent exposed and available for direct recognition by the T cell receptor (TCR). We have modeled the complex formed between the MHC-glycopeptide complexes and their respective TCRs, showing that a single saccharide residue can be accommodated in the standard TCR-MHC geometry. The models also reveal a possible molecular basis for the observed cross-reactivity patterns of the CTL clones, which appear to be influenced by the length of the CDR3 loop and the nature of the immunizing ligand.  (+info)

The structure of a glycopeptide (GP-II) isolated from Rhizopus saccharogenic amylase. (4/2148)

Mild alkaline treatment of glycopeptide (GP-II) resulted in the loss of 1 mole of serine and 5 moles of threonine per mole of GP-II, suggesting the presence of O-glycosyl bonds between 1 serine and 5 threonine residues and carbohydrate chains. Treatment of GP-II with alkaline borohydride released only disaccharide. Methylation studies of the carbohydrate moiety gave 2,3,4,6-tetra-O-methyl and 2,4,6-tri-O-methyl derivatives of mannose in a ratio of approximately 1:1. In addition, one step of Smith degradation resulted in the loss of about 6 residues of mannose per mole of GP-II. Moreover, alpha-mannosidase [EC 3.2.1.24] liberated about 6 residles of mannose per mole of GP-II. On the basis of these data, the structure of the carbohydrate moiety of GP-II was confirmed to be 3-O-alpha-mannosylmannose. The amino- and carboxyl-terminal amino acids of GP-II were determined to be threonine and serine, respectively. On reductive cleavage of N-proline bonds with metallic sodium in liquid ammonia, 2 moles of alanine per mole of GP-II were lost. From the compositions of three fragments isolated from the reductive cleavage products, the amino acid sequence of the peptide portion of GP-II was determined. Based on these data, a probable structure was proposed for GP-II.  (+info)

Participation of a trisaccharide-lipid in glycosylation of oviduct membrane glycoproteins. (5/2148)

Preincubation of a hen oviduct membrane preparation with UDP-Nactyl[14C]glucosamine and bacitracin, followed by incubation with GDP-mannose, leads to formation of a chloroform/methanol (2/1)-extractable glycolipid. Treatment of the lipid with mild acid results in the release of a trisaccharide shown to have the structure beta-mannosyl-N-acetylglucosamineyl-N-acetylglucosamine. Incubation of purified trisaccharide-lipid with oviduct membranes in the presence of sodium deoxycholate, Mn2+, and GDP-mannose leads to formation of a labeled glycoprotein with an apparent molecular weight of 25,000...  (+info)

Synergy of an investigational glycopeptide, LY333328, with once-daily gentamicin against vancomycin-resistant Enterococcus faecium in a multiple-dose, in vitro pharmacodynamic model. (6/2148)

The pharmacodynamics of an investigational glycopeptide, LY333328 (LY), alone and in combination with gentamicin, against one vancomycin-susceptible and two vancomycin-resistant Enterococcus faecium strains were studied with a multiple-dose, in vitro pharmacodynamic model (PDM). Dose-range data for the PDM studies were obtained from static time-kill curve studies. In PDM experiments conducted over 48 h, peak LY concentrations of 0.1x and 1x the MIC every 24 h and peak gentamicin concentrations of 18 micrograms/ml every 24 h (Gq24 h) and 6 micrograms/ml every 8 h (Gq8 h) were studied alone and in the four possible LY-gentamicin combinations. Compared to either antibiotic alone, LY-gentamicin combination regimens produced significantly higher apparent killing rates (KRs) calculated during the initial 2 h postdosing. The mean KRs for LY or gentamicin alone versus those for the LY-gentamicin combination regimens were 0.35 +/- 0.55 log10 CFU/ml/h (95% confidence interval [CI95%], 0 to 0.70) and 1.46 +/- 0.71 log10 CFU/ml/h (CI95%, 1.01 to 1.91), respectively (P < 0.0001). Bacterial killing at 48 h (BK48), which was calculated by subtracting the bacterial counts at 48 h from the initial inoculum, with a negative value indicating net growth, was also significantly greater. The mean BK48S were -0.69 +/- 0.44 log10 CFU/ml (CI95%, -0.41 to -0.97) and 3.72 +/- 2.28 log10 CFU/ml (CI95%, 2.28 to 5.17) for LY or gentamicin alone versus LY-gentamicin combination regimens, respectively (P < 0.0001). None of the 12 regimens with LY or gentamicin alone but 75% (9 of 12) of the LY-gentamicin combination regimens were bactericidal. Eighty-three percent (10 of 12) of the LY-gentamicin combination regimens also demonstrated synergy. No significant differences between the pharmacodynamics of LY-gentamicin combination regimens containing Gq24 h versus those containing Gq8h were detected.  (+info)

Evaluation of bactericidal activities of LY333328, vancomycin, teicoplanin, ampicillin-sulbactam, trovafloxacin, and RP59500 alone or in combination with rifampin or gentamicin against different strains of vancomycin-intermediate Staphylococcus aureus by time-kill curve methods. (7/2148)

This in vitro study evaluated the activities of vancomycin, LY333328, and teicoplanin alone and in combination with gentamicin, rifampin, and RP59500 against Staphylococcus aureus isolates with intermediate susceptibilities to vancomycin. Ampicillin-sulbactam and trovafloxacin were also evaluated. LY333328 and ampicillin-sulbactam resulted in bactericidal activity against all isolates. The combination of gentamicin with glycopeptides showed synergistic activity, while rifampin had no added benefit.  (+info)

Evidence for an adenovirus type 2-coded early glycoprotein. (8/2148)

We have identified an adenovirus type 2 (Ad2)-induced early glycopolypeptide with an apparent molecular weight of 20,000 to 21,000 (20/21K), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 20/21K polypeptide could be labeled in vivo with [(3)H]glucosamine. [(35)S]methionine- and [(3)H]-glucosamine-labeled 20/21K polypeptides bound to concanavalin A-Sepharose columns and were eluted with 0.2 M methyl-alpha-d-mannoside. The pulse-labeled polypeptide appeared as a sharp band with an apparent molecular weight of 21K, but after a chase it converted to multiple bands with an average molecular weight of 20K. This variability in electrophoretic mobility is consistent with glycosylation or deglycosylation of the 20/21K polypeptide. Analysis of the pulse and pulse-chase-labeled forms by using partial proteolysis indicated that the polypeptides were highly related chemically, but not identical. Most of the 20/21K polypeptide is localized in the cytoplasm fraction of infected cells lysed by Nonidet P-40. The 20/21K polypeptide and a 44K polypeptide, labeled with [(35)S]methionine or [(3)H]glucosamine in Ad2-infected human cells, were precipitated by a rat antiserum against an Ad2-transformed rat cell line (T2C4), but not by antisera against three other Ad2-transformed rat cell lines, or by serum from nonimmune rats. The partial proteolysis patterns of the 20/21K and the 44K polypeptides were indistinguishable, indicating that the two polypeptides are highly related, and suggesting that the 44K polypeptide might be a dimer of the 20/21K polypeptide. The 20/21K polypeptide was also induced in Ad2-early infected monkey and hamster cells. These results imply that the 20/21K polypeptide is synthesized in Ad2-infected human, monkey, and hamster cells, and in one but not all Ad2-transformed rat cells. Thus, the 20/21K polypeptide is probably viral coded rather than cell coded and viral induced.  (+info)

Glycopeptides are a class of antibiotics that are characterized by their complex chemical structure, which includes both peptide and carbohydrate components. These antibiotics are produced naturally by certain types of bacteria and are effective against a range of Gram-positive bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE).

The glycopeptide antibiotics work by binding to the bacterial cell wall precursor, preventing the cross-linking of peptidoglycan chains that is necessary for the formation of a strong and rigid cell wall. This leads to the death of the bacteria.

Examples of glycopeptides include vancomycin, teicoplanin, and dalbavancin. While these antibiotics have been used successfully for many years, their use is often limited due to concerns about the emergence of resistance and potential toxicity.

Oligosaccharides are complex carbohydrates composed of relatively small numbers (3-10) of monosaccharide units joined together by glycosidic linkages. They occur naturally in foods such as milk, fruits, vegetables, and legumes. In the body, oligosaccharides play important roles in various biological processes, including cell recognition, signaling, and protection against pathogens.

There are several types of oligosaccharides, classified based on their structures and functions. Some common examples include:

1. Disaccharides: These consist of two monosaccharide units, such as sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).
2. Trisaccharides: These contain three monosaccharide units, like maltotriose (glucose + glucose + glucose) and raffinose (galactose + glucose + fructose).
3. Oligosaccharides found in human milk: Human milk contains unique oligosaccharides that serve as prebiotics, promoting the growth of beneficial bacteria in the gut. These oligosaccharides also help protect infants from pathogens by acting as decoy receptors and inhibiting bacterial adhesion to intestinal cells.
4. N-linked and O-linked glycans: These are oligosaccharides attached to proteins in the body, playing crucial roles in protein folding, stability, and function.
5. Plant-derived oligosaccharides: Fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are examples of plant-derived oligosaccharides that serve as prebiotics, promoting the growth of beneficial gut bacteria.

Overall, oligosaccharides have significant impacts on human health and disease, particularly in relation to gastrointestinal function, immunity, and inflammation.

Carbohydrate conformation refers to the three-dimensional shape and structure of a carbohydrate molecule. Carbohydrates, also known as sugars, can exist in various conformational states, which are determined by the rotation of their component bonds and the spatial arrangement of their functional groups.

The conformation of a carbohydrate molecule can have significant implications for its biological activity and recognition by other molecules, such as enzymes or antibodies. Factors that can influence carbohydrate conformation include the presence of intramolecular hydrogen bonds, steric effects, and intermolecular interactions with solvent molecules or other solutes.

In some cases, the conformation of a carbohydrate may be stabilized by the formation of cyclic structures, in which the hydroxyl group at one end of the molecule forms a covalent bond with the carbonyl carbon at the other end, creating a ring structure. The most common cyclic carbohydrates are monosaccharides, such as glucose and fructose, which can exist in various conformational isomers known as anomers.

Understanding the conformation of carbohydrate molecules is important for elucidating their biological functions and developing strategies for targeting them with drugs or other therapeutic agents.

Mannose is a simple sugar (monosaccharide) that is similar in structure to glucose. It is a hexose, meaning it contains six carbon atoms. Mannose is a stereoisomer of glucose, meaning it has the same chemical formula but a different structural arrangement of its atoms.

Mannose is not as commonly found in foods as other simple sugars, but it can be found in some fruits, such as cranberries, blueberries, and peaches, as well as in certain vegetables, like sweet potatoes and turnips. It is also found in some dietary fibers, such as those found in beans and whole grains.

In the body, mannose can be metabolized and used for energy, but it is also an important component of various glycoproteins and glycolipids, which are molecules that play critical roles in many biological processes, including cell recognition, signaling, and adhesion.

Mannose has been studied as a potential therapeutic agent for various medical conditions, including urinary tract infections (UTIs), because it can inhibit the attachment of certain bacteria to the cells lining the urinary tract. Additionally, mannose-binding lectins have been investigated for their potential role in the immune response to viral and bacterial infections.

Pronase is not a medical term itself, but it is a proteolytic enzyme mixture derived from the bacterium Streptomyces griseus. The term "pronase" refers to a group of enzymes that can break down proteins into smaller peptides and individual amino acids by hydrolyzing their peptide bonds.

Pronase is used in various laboratory applications, including protein degradation, DNA and RNA isolation, and the removal of contaminating proteins from nucleic acid samples. It has also been used in some medical research contexts to study protein function and structure, as well as in certain therapeutic settings for its ability to break down proteins.

It is important to note that pronase is not a drug or a medical treatment itself but rather a laboratory reagent with potential applications in medical research and diagnostics.

A "carbohydrate sequence" refers to the specific arrangement or order of monosaccharides (simple sugars) that make up a carbohydrate molecule, such as a polysaccharide or an oligosaccharide. Carbohydrates are often composed of repeating units of monosaccharides, and the sequence in which these units are arranged can have important implications for the function and properties of the carbohydrate.

For example, in glycoproteins (proteins that contain carbohydrate chains), the specific carbohydrate sequence can affect how the protein is processed and targeted within the cell, as well as its stability and activity. Similarly, in complex carbohydrates like starch or cellulose, the sequence of glucose units can determine whether the molecule is branched or unbranched, which can have implications for its digestibility and other properties.

Therefore, understanding the carbohydrate sequence is an important aspect of studying carbohydrate structure and function in biology and medicine.

Fucose is a type of sugar molecule that is often found in complex carbohydrates known as glycans, which are attached to many proteins and lipids in the body. It is a hexose sugar, meaning it contains six carbon atoms, and is a type of L-sugar, which means that it rotates plane-polarized light in a counterclockwise direction.

Fucose is often found at the ends of glycan chains and plays important roles in various biological processes, including cell recognition, signaling, and interaction. It is also a component of some blood group antigens and is involved in the development and function of the immune system. Abnormalities in fucosylation (the addition of fucose to glycans) have been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Teicoplanin is a glycopeptide antibiotic that is primarily used in the treatment of serious Gram-positive bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). It works by inhibiting the biosynthesis of bacterial cell walls.

Teicoplanin has a long half-life, which allows for once- or twice-daily dosing, and it is available in both intravenous and intramuscular formulations. Common side effects include gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as local reactions at the injection site. Nephrotoxicity and ototoxicity are potential rare but serious adverse effects associated with teicoplanin use.

It is important to note that teicoplanin, like other glycopeptide antibiotics, should be used judiciously due to the risk of promoting antibiotic resistance and the potential for serious side effects.

Carbohydrates are a major nutrient class consisting of organic compounds that primarily contain carbon, hydrogen, and oxygen atoms. They are classified as saccharides, which include monosaccharides (simple sugars), disaccharides (double sugars), oligosaccharides (short-chain sugars), and polysaccharides (complex carbohydrates).

Monosaccharides, such as glucose, fructose, and galactose, are the simplest form of carbohydrates. They consist of a single sugar molecule that cannot be broken down further by hydrolysis. Disaccharides, like sucrose (table sugar), lactose (milk sugar), and maltose (malt sugar), are formed from two monosaccharide units joined together.

Oligosaccharides contain a small number of monosaccharide units, typically less than 20, while polysaccharides consist of long chains of hundreds to thousands of monosaccharide units. Polysaccharides can be further classified into starch (found in plants), glycogen (found in animals), and non-starchy polysaccharides like cellulose, chitin, and pectin.

Carbohydrates play a crucial role in providing energy to the body, with glucose being the primary source of energy for most cells. They also serve as structural components in plants (cellulose) and animals (chitin), participate in various metabolic processes, and contribute to the taste, texture, and preservation of foods.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Glycosylation is the enzymatic process of adding a sugar group, or glycan, to a protein, lipid, or other organic molecule. This post-translational modification plays a crucial role in modulating various biological functions, such as protein stability, trafficking, and ligand binding. The structure and composition of the attached glycans can significantly influence the functional properties of the modified molecule, contributing to cell-cell recognition, signal transduction, and immune response regulation. Abnormal glycosylation patterns have been implicated in several disease states, including cancer, diabetes, and neurodegenerative disorders.

Polysaccharides are complex carbohydrates consisting of long chains of monosaccharide units (simple sugars) bonded together by glycosidic linkages. They can be classified based on the type of monosaccharides and the nature of the bonds that connect them.

Polysaccharides have various functions in living organisms. For example, starch and glycogen serve as energy storage molecules in plants and animals, respectively. Cellulose provides structural support in plants, while chitin is a key component of fungal cell walls and arthropod exoskeletons.

Some polysaccharides also have important roles in the human body, such as being part of the extracellular matrix (e.g., hyaluronic acid) or acting as blood group antigens (e.g., ABO blood group substances).

Asparagine is an organic compound that is classified as a naturally occurring amino acid. It contains an amino group, a carboxylic acid group, and a side chain consisting of a single carbon atom bonded to a nitrogen atom, making it a neutral amino acid. Asparagine is encoded by the genetic codon AAU or AAC in the DNA sequence.

In the human body, asparagine plays important roles in various biological processes, including serving as a building block for proteins and participating in the synthesis of other amino acids. It can also act as a neurotransmitter and is involved in the regulation of cellular metabolism. Asparagine can be found in many foods, particularly in high-protein sources such as meat, fish, eggs, and dairy products.

Sialic acids are a family of nine-carbon sugars that are commonly found on the outermost surface of many cell types, particularly on the glycoconjugates of mucins in various secretions and on the glycoproteins and glycolipids of cell membranes. They play important roles in a variety of biological processes, including cell recognition, immune response, and viral and bacterial infectivity. Sialic acids can exist in different forms, with N-acetylneuraminic acid being the most common one in humans.

Glucosamine is a natural compound found in the body, primarily in the fluid around joints. It is a building block of cartilage, which is the tissue that cushions bones and allows for smooth joint movement. Glucosamine can also be produced in a laboratory and is commonly sold as a dietary supplement.

Medical definitions of glucosamine describe it as a type of amino sugar that plays a crucial role in the formation and maintenance of cartilage, ligaments, tendons, and other connective tissues. It is often used as a supplement to help manage osteoarthritis symptoms, such as pain, stiffness, and swelling in the joints, by potentially reducing inflammation and promoting cartilage repair.

There are different forms of glucosamine available, including glucosamine sulfate, glucosamine hydrochloride, and N-acetyl glucosamine. Glucosamine sulfate is the most commonly used form in supplements and has been studied more extensively than other forms. While some research suggests that glucosamine may provide modest benefits for osteoarthritis symptoms, its effectiveness remains a topic of ongoing debate among medical professionals.

Vancomycin is an antibiotic that belongs to the glycopeptide class. It is primarily used to treat severe infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Vancomycin works by inhibiting the synthesis of bacterial cell walls. It is usually administered intravenously in a hospital setting due to its potential nephrotoxicity and ototoxicity. The medical definition of 'Vancomycin' can be summarized as:

"A glycopeptide antibiotic used to treat severe infections caused by Gram-positive bacteria, particularly those that are resistant to other antibiotics. It inhibits bacterial cell wall synthesis and is administered intravenously due to its potential nephrotoxicity and ototoxicity."

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

Neuraminic acids, also known as sialic acids, are a family of nine-carbon sugars that are commonly found on the outermost layer of many cell surfaces in animals. They play important roles in various biological processes, such as cell recognition, immune response, and viral and bacterial infection. Neuraminic acids can exist in several forms, with N-acetylneuraminic acid (NANA) being the most common one in mammals. They are often found attached to other sugars to form complex carbohydrates called glycoconjugates, which are involved in many cellular functions and interactions.

Amino sugars, also known as glycosamine or hexosamines, are sugar molecules that contain a nitrogen atom as part of their structure. The most common amino sugars found in nature are glucosamine and galactosamine, which are derived from the hexose sugars glucose and galactose, respectively.

Glucosamine is an essential component of the structural polysaccharide chitin, which is found in the exoskeletons of arthropods such as crustaceans and insects, as well as in the cell walls of fungi. It is also a precursor to the glycosaminoglycans (GAGs), which are long, unbranched polysaccharides that are important components of the extracellular matrix in animals.

Galactosamine, on the other hand, is a component of some GAGs and is also found in bacterial cell walls. It is used in the synthesis of heparin and heparan sulfate, which are important anticoagulant molecules.

Amino sugars play a critical role in many biological processes, including cell signaling, inflammation, and immune response. They have also been studied for their potential therapeutic uses in the treatment of various diseases, such as osteoarthritis and cancer.

Glycoside hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds found in various substrates such as polysaccharides, oligosaccharides, and glycoproteins. These enzymes break down complex carbohydrates into simpler sugars by cleaving the glycosidic linkages that connect monosaccharide units.

Glycoside hydrolases are classified based on their mechanism of action and the type of glycosidic bond they hydrolyze. The classification system is maintained by the International Union of Biochemistry and Molecular Biology (IUBMB). Each enzyme in this class is assigned a unique Enzyme Commission (EC) number, which reflects its specificity towards the substrate and the type of reaction it catalyzes.

These enzymes have various applications in different industries, including food processing, biofuel production, pulp and paper manufacturing, and biomedical research. In medicine, glycoside hydrolases are used to diagnose and monitor certain medical conditions, such as carbohydrate-deficient glycoprotein syndrome, a rare inherited disorder affecting the structure of glycoproteins.

Galactose is a simple sugar or monosaccharide that is a constituent of lactose, the disaccharide found in milk and dairy products. It's structurally similar to glucose but with a different chemical structure, and it plays a crucial role in various biological processes.

Galactose can be metabolized in the body through the action of enzymes such as galactokinase, galactose-1-phosphate uridylyltransferase, and UDP-galactose 4'-epimerase. Inherited deficiencies in these enzymes can lead to metabolic disorders like galactosemia, which can cause serious health issues if not diagnosed and treated promptly.

In summary, Galactose is a simple sugar that plays an essential role in lactose metabolism and other biological processes.

Acetylgalactosamine (also known as N-acetyl-D-galactosamine or GalNAc) is a type of sugar molecule called a hexosamine that is commonly found in glycoproteins and proteoglycans, which are complex carbohydrates that are attached to proteins and lipids. It plays an important role in various biological processes, including cell-cell recognition, signal transduction, and protein folding.

In the context of medical research and biochemistry, Acetylgalactosamine is often used as a building block for synthesizing glycoconjugates, which are molecules that consist of a carbohydrate attached to a protein or lipid. These molecules play important roles in many biological processes, including cell-cell recognition, signaling, and immune response.

Acetylgalactosamine is also used as a target for enzymes called glycosyltransferases, which add sugar molecules to proteins and lipids. In particular, Acetylgalactosamine is the acceptor substrate for a class of glycosyltransferases known as galactosyltransferases, which add galactose molecules to Acetylgalactosamine-containing structures.

Defects in the metabolism of Acetylgalactosamine have been linked to various genetic disorders, including Schindler disease and Kanzaki disease, which are characterized by neurological symptoms and abnormal accumulation of glycoproteins in various tissues.

Lectins are a type of proteins that bind specifically to carbohydrates and have been found in various plant and animal sources. They play important roles in biological recognition events, such as cell-cell adhesion, and can also be involved in the immune response. Some lectins can agglutinate certain types of cells or precipitate glycoproteins, while others may have a more direct effect on cellular processes. In some cases, lectins from plants can cause adverse effects in humans if ingested, such as digestive discomfort or allergic reactions.

Mucins are high molecular weight, heavily glycosylated proteins that are the major components of mucus. They are produced and secreted by specialized epithelial cells in various organs, including the respiratory, gastrointestinal, and urogenital tracts, as well as the eyes and ears.

Mucins have a characteristic structure consisting of a protein backbone with numerous attached oligosaccharide side chains, which give them their gel-forming properties and provide a protective barrier against pathogens, environmental insults, and digestive enzymes. They also play important roles in lubrication, hydration, and cell signaling.

Mucins can be classified into two main groups based on their structure and function: secreted mucins and membrane-bound mucins. Secreted mucins are released from cells and form a physical barrier on the surface of mucosal tissues, while membrane-bound mucins are integrated into the cell membrane and participate in cell adhesion and signaling processes.

Abnormalities in mucin production or function have been implicated in various diseases, including chronic inflammation, cancer, and cystic fibrosis.

Affinity chromatography is a type of chromatography technique used in biochemistry and molecular biology to separate and purify proteins based on their biological characteristics, such as their ability to bind specifically to certain ligands or molecules. This method utilizes a stationary phase that is coated with a specific ligand (e.g., an antibody, antigen, receptor, or enzyme) that selectively interacts with the target protein in a sample.

The process typically involves the following steps:

1. Preparation of the affinity chromatography column: The stationary phase, usually a solid matrix such as agarose beads or magnetic beads, is modified by covalently attaching the ligand to its surface.
2. Application of the sample: The protein mixture is applied to the top of the affinity chromatography column, allowing it to flow through the stationary phase under gravity or pressure.
3. Binding and washing: As the sample flows through the column, the target protein selectively binds to the ligand on the stationary phase, while other proteins and impurities pass through. The column is then washed with a suitable buffer to remove any unbound proteins and contaminants.
4. Elution of the bound protein: The target protein can be eluted from the column using various methods, such as changing the pH, ionic strength, or polarity of the buffer, or by introducing a competitive ligand that displaces the bound protein.
5. Collection and analysis: The eluted protein fraction is collected and analyzed for purity and identity, often through techniques like SDS-PAGE or mass spectrometry.

Affinity chromatography is a powerful tool in biochemistry and molecular biology due to its high selectivity and specificity, enabling the efficient isolation of target proteins from complex mixtures. However, it requires careful consideration of the binding affinity between the ligand and the protein, as well as optimization of the elution conditions to minimize potential damage or denaturation of the purified protein.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Mannosidases are a group of enzymes that catalyze the hydrolysis of mannose residues from glycoproteins, oligosaccharides, and glycolipids. These enzymes play a crucial role in the processing and degradation of N-linked glycans, which are carbohydrate structures attached to proteins in eukaryotic cells.

There are several types of mannosidases, including alpha-mannosidase and beta-mannosidase, which differ in their specificity for the type of linkage they cleave. Alpha-mannosidases hydrolyze alpha-1,2-, alpha-1,3-, alpha-1,6-mannosidic bonds, while beta-mannosidases hydrolyze beta-1,4-mannosidic bonds.

Deficiencies in mannosidase activity can lead to various genetic disorders, such as alpha-mannosidosis and beta-mannosidosis, which are characterized by the accumulation of unprocessed glycoproteins and subsequent cellular dysfunction.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Plant lectins are proteins or glycoproteins that are abundantly found in various plant parts such as seeds, leaves, stems, and roots. They have the ability to bind specifically to carbohydrate structures present on cell membranes, known as glycoconjugates. This binding property of lectins is reversible and non-catalytic, meaning it does not involve any enzymatic activity.

Lectins play several roles in plants, including defense against predators, pathogens, and herbivores. They can agglutinate red blood cells, stimulate the immune system, and have been implicated in various biological processes such as cell growth, differentiation, and apoptosis (programmed cell death). Some lectins also exhibit mitogenic activity, which means they can stimulate the proliferation of certain types of cells.

In the medical field, plant lectins have gained attention due to their potential therapeutic applications. For instance, some lectins have been shown to possess anti-cancer properties and are being investigated as potential cancer treatments. However, it is important to note that some lectins can be toxic or allergenic to humans and animals, so they must be used with caution.

Acetylglucosamine is a type of sugar that is commonly found in the body and plays a crucial role in various biological processes. It is a key component of glycoproteins and proteoglycans, which are complex molecules made up of protein and carbohydrate components.

More specifically, acetylglucosamine is an amino sugar that is formed by the addition of an acetyl group to glucosamine. It can be further modified in the body through a process called acetylation, which involves the addition of additional acetyl groups.

Acetylglucosamine is important for maintaining the structure and function of various tissues in the body, including cartilage, tendons, and ligaments. It also plays a role in the immune system and has been studied as a potential therapeutic target for various diseases, including cancer and inflammatory conditions.

In summary, acetylglucosamine is a type of sugar that is involved in many important biological processes in the body, and has potential therapeutic applications in various diseases.

Acetylglucosaminidase (ACG) is an enzyme that catalyzes the hydrolysis of N-acetyl-beta-D-glucosaminides, which are found in glycoproteins and glycolipids. This enzyme plays a crucial role in the degradation and recycling of these complex carbohydrates within the body.

Deficiency or malfunction of Acetylglucosaminidase can lead to various genetic disorders, such as mucolipidosis II (I-cell disease) and mucolipidosis III (pseudo-Hurler polydystrophy), which are characterized by the accumulation of glycoproteins and glycolipids in lysosomes, resulting in cellular dysfunction and progressive damage to multiple organs.

Ovomucin is a glycoprotein found in the egg white (albumen) of birds. It is one of the major proteins in egg white, making up about 10-15% of its total protein content. Ovomucin is known for its ability to form a gel-like structure when egg whites are beaten, which helps to protect the developing embryo inside the egg.

Ovomucin has several unique properties that make it medically interesting. For example, it has been shown to have antibacterial and antiviral activities, and may help to prevent microbial growth in the egg. Additionally, ovomucin is a complex mixture of proteins with varying molecular weights and structures, which makes it a subject of interest for researchers studying protein structure and function.

In recent years, there has been some research into the potential medical uses of ovomucin, including its possible role in wound healing and as a potential treatment for respiratory infections. However, more research is needed to fully understand the potential therapeutic applications of this interesting protein.

Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase (MGNAG) is an enzyme that is involved in the breakdown and recycling of glycoproteins, which are proteins that contain oligosaccharide chains attached to them. The enzyme's primary function is to cleave the beta-N-acetylglucosaminyl linkages in the chitobiose core of N-linked glycans, which are complex carbohydrates that are attached to many proteins in eukaryotic cells.

MGNAG is a lysosomal enzyme, meaning it is located within the lysosomes, which are membrane-bound organelles found in the cytoplasm of eukaryotic cells. Lysosomes contain hydrolytic enzymes that break down various biomolecules, including glycoproteins, lipids, and nucleic acids, into their constituent parts for recycling or disposal.

Deficiency in MGNAG activity can lead to a rare genetic disorder known as alpha-mannosidosis, which is characterized by the accumulation of mannose-rich oligosaccharides in various tissues and organs throughout the body. This condition can result in a range of symptoms, including developmental delays, intellectual disability, coarse facial features, skeletal abnormalities, hearing loss, and immune dysfunction.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Fetuins are a group of proteins that are produced by the liver and found in circulation in the blood. The most well-known fetuin, fetuin-A, is a 64 kDa glycoprotein that is synthesized in the liver and secreted into the bloodstream. Fetuin-A plays a role in several physiological processes, including inhibition of tissue calcification, regulation of insulin sensitivity, and modulation of immune responses.

Fetuin-B is another member of the fetuin family that shares some structural similarities with fetuin-A but has distinct functions. Fetuin-B is also produced by the liver and secreted into the bloodstream, where it plays a role in regulating lipid metabolism and insulin sensitivity.

It's worth noting that while both fetuins have been studied for their roles in various physiological processes, there is still much to be learned about their functions and regulation.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Concanavalin A (Con A) is a type of protein known as a lectin, which is found in the seeds of the plant Canavalia ensiformis, also known as jack bean. It is often used in laboratory settings as a tool to study various biological processes, such as cell division and the immune response, due to its ability to bind specifically to certain sugars on the surface of cells. Con A has been extensively studied for its potential applications in medicine, including as a possible treatment for cancer and viral infections. However, more research is needed before these potential uses can be realized.

Carbon-oxygen ligases are a category of enzymes that catalyze the joining of a carbon atom and an oxygen atom, typically through the formation of a carbon-oxygen bond. These enzymes play important roles in various metabolic processes, such as the synthesis of carbohydrates, lignin, and other organic compounds.

In biochemistry, ligases are enzymes that catalyze the formation of covalent bonds between two molecules, often requiring energy in the form of ATP or another high-energy molecule to drive the reaction. Carbon-oxygen ligases specifically facilitate the formation of carbon-oxygen bonds, which can be found in a wide range of organic compounds, including alcohols, aldehydes, ketones, carboxylic acids, and esters.

Examples of carbon-oxygen ligases include:

1. Alcohol dehydrogenase (ADH): This enzyme catalyzes the interconversion between alcohols and aldehydes or ketones by transferring a hydride ion from the alcohol to a cofactor, such as NAD+ or NADP+, resulting in the formation of a carbon-oxygen bond.
2. Aldolase: This enzyme catalyzes the reversible reaction between an aldehyde and a ketone to form a new carbon-carbon bond and a carbon-oxygen bond, creating a new molecule called an aldol.
3. Carboxylases: These enzymes facilitate the addition of a carboxyl group (-COOH) to various substrates, resulting in the formation of a carbon-oxygen bond between the carboxyl group and the substrate. Examples include acetyl-CoA carboxylase, which catalyzes the formation of malonyl-CoA, an essential intermediate in fatty acid synthesis.
4. Transketolases: These enzymes are involved in the pentose phosphate pathway and facilitate the transfer of a two-carbon ketol group between sugars, resulting in the formation of new carbon-oxygen bonds.
5. Esterases: These enzymes catalyze the hydrolysis or synthesis of esters by breaking or forming carbon-oxygen bonds between an alcohol and an acid.
6. Peroxidases: These enzymes use a reactive oxygen species, such as hydrogen peroxide (H2O2), to oxidize various substrates, resulting in the formation of new carbon-oxygen bonds.
7. Dehydrogenases: These enzymes catalyze the transfer of electrons from a donor molecule to an acceptor molecule, often involving the formation or breaking of carbon-oxygen bonds. Examples include lactate dehydrogenase and alcohol dehydrogenase.
8. Oxidoreductases: This broad class of enzymes catalyzes oxidation-reduction reactions, which can involve the formation or breaking of carbon-oxygen bonds.

Hexosamines are amino sugars that are formed by the substitution of an amino group (-NH2) for a hydroxyl group (-OH) in a hexose sugar. The most common hexosamine is N-acetylglucosamine (GlcNAc), which is derived from glucose. Other hexosamines include galactosamine, mannosamine, and fucosamine.

Hexosamines play important roles in various biological processes, including the formation of glycosaminoglycans, proteoglycans, and glycoproteins. These molecules are involved in many cellular functions, such as cell signaling, cell adhesion, and protein folding. Abnormalities in hexosamine metabolism have been implicated in several diseases, including diabetes, cancer, and neurodegenerative disorders.

Trypsin is a proteolytic enzyme, specifically a serine protease, that is secreted by the pancreas as an inactive precursor, trypsinogen. Trypsinogen is converted into its active form, trypsin, in the small intestine by enterokinase, which is produced by the intestinal mucosa.

Trypsin plays a crucial role in digestion by cleaving proteins into smaller peptides at specific arginine and lysine residues. This enzyme helps to break down dietary proteins into amino acids, allowing for their absorption and utilization by the body. Additionally, trypsin can activate other zymogenic pancreatic enzymes, such as chymotrypsinogen and procarboxypeptidases, thereby contributing to overall protein digestion.

Hexoses are simple sugars (monosaccharides) that contain six carbon atoms. The most common hexoses include glucose, fructose, and galactose. These sugars play important roles in various biological processes, such as serving as energy sources or forming complex carbohydrates like starch and cellulose. Hexoses are essential for the structure and function of living organisms, including humans.

Enterococcus is a genus of gram-positive, facultatively anaerobic bacteria that are commonly found in the intestinal tracts of humans and animals. They are part of the normal gut microbiota but can also cause a variety of infections, particularly in hospital settings. Enterococci are known for their ability to survive in harsh environments and can be resistant to many antibiotics, making them difficult to treat. Some species, such as Enterococcus faecalis and Enterococcus faecium, are more commonly associated with human infections.

In medical terms, an "Enterococcus infection" refers to an infection caused by any species of the Enterococcus genus. These infections can occur in various parts of the body, including the urinary tract, bloodstream, and abdominal cavity. They can cause symptoms such as fever, chills, and pain, depending on the location of the infection. Treatment typically involves the use of antibiotics that are effective against Enterococcus species, although resistance to multiple antibiotics is a growing concern.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Staphylococcus haemolyticus is a type of coagulase-negative staphylococci (CoNS) that is commonly found on the skin and mucous membranes of humans and animals. It is a gram-positive, facultatively anaerobic coccus that tends to form clusters resembling grapes when viewed under a microscope.

The term "haemolyticus" in its name refers to its ability to lyse red blood cells and cause hemolysis on blood agar media. However, not all strains of S. haemolyticus are necessarily hemolytic.

While S. haemolyticus is less virulent than Staphylococcus aureus, it can still cause infections, particularly in individuals with compromised immune systems or in healthcare settings. It has been associated with various types of infections, including bacteremia, endocarditis, urinary tract infections, and device-related infections such as catheter-associated infections.

Accurate identification of S. haemolyticus is important for appropriate antimicrobial therapy and infection control measures, as it may exhibit resistance to certain antibiotics commonly used to treat staphylococcal infections.

Periodic acid is not a medical term per se, but it is a chemical reagent that is used in some laboratory tests and staining procedures in the field of pathology, which is a medical specialty.

Periodic acid is an oxidizing agent with the chemical formula HIO4 or H5IO6. It is often used in histology (the study of the microscopic structure of tissues) to perform a special staining technique called the periodic acid-Schiff (PAS) reaction. This reaction is used to identify certain types of carbohydrates, such as glycogen and some types of mucins, in tissues.

The periodic acid first oxidizes the carbohydrate molecules, creating aldehydes. These aldehydes then react with a Schiff reagent, which results in a pink or magenta color. This reaction can help pathologists identify and diagnose various medical conditions, such as cancer, infection, and inflammation.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Mannosides are glycosylated compounds that consist of a mannose sugar molecule (a type of monosaccharide) linked to another compound, often a protein or lipid. They are formed when an enzyme called a glycosyltransferase transfers a mannose molecule from a donor substrate, such as a nucleotide sugar (like GDP-mannose), to an acceptor molecule.

Mannosides can be found on the surface of many types of cells and play important roles in various biological processes, including cell recognition, signaling, and protein folding. They are also involved in the immune response and have been studied as potential therapeutic targets for a variety of diseases, including infectious diseases and cancer.

It's worth noting that mannosides can be further classified based on the specific linkage between the mannose molecule and the acceptor compound. For example, an N-linked mannoside is one in which the mannose is linked to a nitrogen atom on the acceptor protein, while an O-linked mannoside is one in which the mannose is linked to an oxygen atom on the acceptor protein.

Monosaccharides are simple sugars that cannot be broken down into simpler units by hydrolysis. They are the most basic unit of carbohydrates and are often referred to as "simple sugars." Monosaccharides typically contain three to seven atoms of carbon, but the most common monosaccharides contain five or six carbon atoms.

The general formula for a monosaccharide is (CH2O)n, where n is the number of carbon atoms in the molecule. The majority of monosaccharides have a carbonyl group (aldehyde or ketone) and multiple hydroxyl groups. These functional groups give monosaccharides their characteristic sweet taste and chemical properties.

The most common monosaccharides include glucose, fructose, and galactose, all of which contain six carbon atoms and are known as hexoses. Other important monosaccharides include pentoses (five-carbon sugars) such as ribose and deoxyribose, which play crucial roles in the structure and function of nucleic acids (DNA and RNA).

Monosaccharides can exist in various forms, including linear and cyclic structures. In aqueous solutions, monosaccharides often form cyclic structures through a reaction between the carbonyl group and a hydroxyl group, creating a hemiacetal or hemiketal linkage. These cyclic structures can adopt different conformations, known as anomers, depending on the orientation of the hydroxyl group attached to the anomeric carbon atom.

Monosaccharides serve as essential building blocks for complex carbohydrates, such as disaccharides (e.g., sucrose, lactose, and maltose) and polysaccharides (e.g., starch, cellulose, and glycogen). They also participate in various biological processes, including energy metabolism, cell recognition, and protein glycosylation.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Hexosaminidases are a group of enzymes that play a crucial role in the breakdown of complex carbohydrates, specifically glycoproteins and glycolipids, in the human body. These enzymes are responsible for cleaving the terminal N-acetyl-D-glucosamine (GlcNAc) residues from these molecules during the process of glycosidase digestion.

There are several types of hexosaminidases, including Hexosaminidase A and Hexosaminidase B, which are encoded by different genes and have distinct functions. Deficiencies in these enzymes can lead to serious genetic disorders, such as Tay-Sachs disease and Sandhoff disease, respectively. These conditions are characterized by the accumulation of undigested glycolipids and glycoproteins in various tissues, leading to progressive neurological deterioration and other symptoms.

Gram-positive bacterial infections refer to illnesses or diseases caused by Gram-positive bacteria, which are a group of bacteria that turn purple when stained using the Gram stain method. This staining technique is used in microbiology to differentiate between two main types of bacteria based on their cell wall composition.

Gram-positive bacteria have a thick layer of peptidoglycan in their cell walls, which retains the crystal violet stain used in the Gram staining process. Some common examples of Gram-positive bacteria include Staphylococcus aureus, Streptococcus pyogenes, and Enterococcus faecalis.

Gram-positive bacterial infections can range from mild skin infections to severe and life-threatening conditions such as pneumonia, meningitis, and sepsis. The symptoms of these infections depend on the type of bacteria involved and the location of the infection in the body. Treatment typically involves the use of antibiotics that are effective against Gram-positive bacteria, such as penicillin, vancomycin, or clindamycin. However, the emergence of antibiotic resistance among Gram-positive bacteria is a growing concern and can complicate treatment in some cases.

Alpha-Mannosidase is an enzyme that belongs to the glycoside hydrolase family 47. It is responsible for cleaving alpha-1,3-, alpha-1,6-mannosidic linkages in N-linked oligosaccharides during the process of glycoprotein degradation. A deficiency or malfunction of this enzyme can lead to a lysosomal storage disorder known as alpha-Mannosidosis.

Glycomics is the study of the glycome, which refers to the complete set of carbohydrates or sugars (glycans) found on the surface of cells and in various biological fluids. Glycomics encompasses the identification, characterization, and functional analysis of these complex carbohydrate structures and their interactions with other molecules, such as proteins and lipids.

Glycans play crucial roles in many biological processes, including cell-cell recognition, signaling, immune response, development, and disease progression. The study of glycomics has implications for understanding the molecular basis of diseases like cancer, diabetes, and infectious disorders, as well as for developing novel diagnostic tools and therapeutic strategies.

Vancomycin resistance refers to the ability of certain bacteria to resist the antibiotic effects of vancomycin, which is a glycopeptide antibiotic used to treat severe infections caused by gram-positive bacteria. This resistance develops due to genetic changes that result in the alteration of the bacterial cell wall, making it difficult for vancomycin to bind and inhibit bacterial growth.

There are several types of vancomycin resistance mechanisms, with the most common ones being VanA, VanB, VanC, VanD, VanE, and VanG. Among these, VanA and VanB are clinically significant as they confer high-level resistance to vancomycin and teicoplanin, another glycopeptide antibiotic.

Vancomycin-resistant bacteria can cause various difficult-to-treat infections, such as urinary tract infections, bloodstream infections, and wound infections. These infections often occur in healthcare settings, including hospitals and long-term care facilities, where the use of antibiotics is more frequent. The spread of vancomycin resistance is a significant public health concern, as it limits treatment options for severe bacterial infections and can lead to worse patient outcomes.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

N-Acetylneuraminic Acid (Neu5Ac) is an organic compound that belongs to the family of sialic acids. It is a common terminal sugar found on many glycoproteins and glycolipids on the surface of animal cells. Neu5Ac plays crucial roles in various biological processes, including cell recognition, signaling, and intercellular interactions. It is also involved in the protection against pathogens by serving as a barrier to prevent their attachment to host cells. Additionally, Neu5Ac has been implicated in several disease conditions, such as cancer and inflammation, due to its altered expression and metabolism.

Glycosides are organic compounds that consist of a glycone (a sugar component) linked to a non-sugar component, known as an aglycone, via a glycosidic bond. They can be found in various plants, microorganisms, and some animals. Depending on the nature of the aglycone, glycosides can be classified into different types, such as anthraquinone glycosides, cardiac glycosides, and saponin glycosides.

These compounds have diverse biological activities and pharmacological effects. For instance:

* Cardiac glycosides, like digoxin and digitoxin, are used in the treatment of heart failure and certain cardiac arrhythmias due to their positive inotropic (contractility-enhancing) and negative chronotropic (heart rate-slowing) effects on the heart.
* Saponin glycosides have potent detergent properties and can cause hemolysis (rupture of red blood cells). They are used in various industries, including cosmetics and food processing, and have potential applications in drug delivery systems.
* Some glycosides, like amygdalin found in apricot kernels and bitter almonds, can release cyanide upon hydrolysis, making them potentially toxic.

It is important to note that while some glycosides have therapeutic uses, others can be harmful or even lethal if ingested or otherwise introduced into the body in large quantities.

Paper chromatography is a type of chromatography technique that involves the separation and analysis of mixtures based on their components' ability to migrate differently upon capillary action on a paper medium. This simple and cost-effective method utilizes a paper, typically made of cellulose, as the stationary phase. The sample mixture is applied as a small spot near one end of the paper, and then the other end is dipped into a developing solvent or a mixture of solvents (mobile phase) in a shallow container.

As the mobile phase moves up the paper by capillary action, components within the sample mixture separate based on their partition coefficients between the stationary and mobile phases. The partition coefficient describes how much a component prefers to be in either the stationary or mobile phase. Components with higher partition coefficients in the mobile phase will move faster and further than those with lower partition coefficients.

Once separation is complete, the paper is dried and can be visualized under ultraviolet light or by using chemical reagents specific for the components of interest. The distance each component travels from the origin (point of application) and its corresponding solvent front position are measured, allowing for the calculation of Rf values (retardation factors). Rf is a dimensionless quantity calculated as the ratio of the distance traveled by the component to the distance traveled by the solvent front.

Rf = (distance traveled by component) / (distance traveled by solvent front)

Paper chromatography has been widely used in various applications, such as:

1. Identification and purity analysis of chemical compounds in pharmaceuticals, forensics, and research laboratories.
2. Separation and detection of amino acids, sugars, and other biomolecules in biological samples.
3. Educational purposes to demonstrate the principles of chromatography and separation techniques.

Despite its limitations, such as lower resolution compared to high-performance liquid chromatography (HPLC) and less compatibility with volatile or nonpolar compounds, paper chromatography remains a valuable tool for quick, qualitative analysis in various fields.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Tumor-associated carbohydrate antigens (TACAs) are a type of tumor antigen that are expressed on the surface of cancer cells. These antigens are abnormal forms of carbohydrates, also known as glycans, which are attached to proteins and lipids on the cell surface.

TACAs are often overexpressed or expressed in a different form on cancer cells compared to normal cells. This makes them attractive targets for cancer immunotherapy because they can be recognized by the immune system as foreign and elicit an immune response. Some examples of TACAs include gangliosides, fucosylated glycans, and sialylated glycans.

Tumor-associated carbohydrate antigens have been studied as potential targets for cancer vaccines, antibody therapies, and other immunotherapeutic approaches. However, their use as targets for cancer therapy is still in the early stages of research and development.

Staphylococcal infections are a type of infection caused by Staphylococcus bacteria, which are commonly found on the skin and nose of healthy people. However, if they enter the body through a cut, scratch, or other wound, they can cause an infection.

There are several types of Staphylococcus bacteria, but the most common one that causes infections is Staphylococcus aureus. These infections can range from minor skin infections such as pimples, boils, and impetigo to serious conditions such as pneumonia, bloodstream infections, and toxic shock syndrome.

Symptoms of staphylococcal infections depend on the type and severity of the infection. Treatment typically involves antibiotics, either topical or oral, depending on the severity and location of the infection. In some cases, hospitalization may be necessary for more severe infections. It is important to note that some strains of Staphylococcus aureus have developed resistance to certain antibiotics, making them more difficult to treat.

Mucin-1, also known as MUC1, is a type of protein called a transmembrane mucin. It is heavily glycosylated and found on the surface of many types of epithelial cells, including those that line the respiratory, gastrointestinal, and urogenital tracts.

Mucin-1 has several functions, including:

* Protecting the underlying epithelial cells from damage caused by friction, chemicals, and microorganisms
* Helping to maintain the integrity of the mucosal barrier
* Acting as a receptor for various signaling molecules
* Participating in immune responses

In cancer, MUC1 can be overexpressed or aberrantly glycosylated, which can contribute to tumor growth and metastasis. As a result, MUC1 has been studied as a potential target for cancer immunotherapy.

Neuraminidase is an enzyme that occurs on the surface of influenza viruses. It plays a crucial role in the life cycle of the virus by helping it to infect host cells and to spread from cell to cell within the body. Neuraminidase works by cleaving sialic acid residues from glycoproteins, allowing the virus to detach from infected cells and to move through mucus and other bodily fluids. This enzyme is a major target of antiviral drugs used to treat influenza, such as oseltamivir (Tamiflu) and zanamivir (Relenza). Inhibiting the activity of neuraminidase can help to prevent the spread of the virus within the body and reduce the severity of symptoms.

Asialoglycoproteins are glycoproteins that have lost their terminal sialic acid residues. In the body, these molecules are typically recognized and removed from circulation by hepatic lectins, such as the Ashwell-Morrell receptor, found on liver cells. This process is a part of the normal turnover and clearance of glycoproteins in the body.

Hydroxylysine is a modified form of the amino acid lysine, which is formed by the addition of a hydroxyl group (-OH) to the lysine molecule. This process is known as hydroxylation and is catalyzed by the enzyme lysyl hydroxylase.

In the human body, hydroxylysine is an important component of collagen, which is a protein that provides structure and strength to tissues such as skin, tendons, ligaments, and bones. Hydroxylysine helps to stabilize the triple-helix structure of collagen by forming cross-links between individual collagen molecules.

Abnormalities in hydroxylysine metabolism can lead to various connective tissue disorders, such as Ehlers-Danlos syndrome and osteogenesis imperfecta, which are characterized by joint hypermobility, skin fragility, and bone fractures.

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) is a type of mass spectrometry that is used to analyze large biomolecules such as proteins and peptides. In this technique, the sample is mixed with a matrix compound, which absorbs laser energy and helps to vaporize and ionize the analyte molecules.

The matrix-analyte mixture is then placed on a target plate and hit with a laser beam, causing the matrix and analyte molecules to desorb from the plate and become ionized. The ions are then accelerated through an electric field and into a mass analyzer, which separates them based on their mass-to-charge ratio.

The separated ions are then detected and recorded as a mass spectrum, which can be used to identify and quantify the analyte molecules present in the sample. MALDI-MS is particularly useful for the analysis of complex biological samples, such as tissue extracts or biological fluids, because it allows for the detection and identification of individual components within those mixtures.

Ion exchange chromatography is a type of chromatography technique used to separate and analyze charged molecules (ions) based on their ability to exchange bound ions in a solid resin or gel with ions of similar charge in the mobile phase. The stationary phase, often called an ion exchanger, contains fixed ated functional groups that can attract counter-ions of opposite charge from the sample mixture.

In this technique, the sample is loaded onto an ion exchange column containing the charged resin or gel. As the sample moves through the column, ions in the sample compete for binding sites on the stationary phase with ions already present in the column. The ions that bind most strongly to the stationary phase will elute (come off) slower than those that bind more weakly.

Ion exchange chromatography can be performed using either cation exchangers, which exchange positive ions (cations), or anion exchangers, which exchange negative ions (anions). The pH and ionic strength of the mobile phase can be adjusted to control the binding and elution of specific ions.

Ion exchange chromatography is widely used in various applications such as water treatment, protein purification, and chemical analysis.

Staphylococcus aureus is a type of gram-positive, round (coccal) bacterium that is commonly found on the skin and mucous membranes of warm-blooded animals and humans. It is a facultative anaerobe, which means it can grow in the presence or absence of oxygen.

Staphylococcus aureus is known to cause a wide range of infections, from mild skin infections such as pimples, impetigo, and furuncles (boils) to more severe and potentially life-threatening infections such as pneumonia, endocarditis, osteomyelitis, and sepsis. It can also cause food poisoning and toxic shock syndrome.

The bacterium is often resistant to multiple antibiotics, including methicillin, which has led to the emergence of methicillin-resistant Staphylococcus aureus (MRSA) strains that are difficult to treat. Proper hand hygiene and infection control practices are critical in preventing the spread of Staphylococcus aureus and MRSA.

Tandem mass spectrometry (MS/MS) is a technique used to identify and quantify specific molecules, such as proteins or metabolites, within complex mixtures. This method uses two or more sequential mass analyzers to first separate ions based on their mass-to-charge ratio and then further fragment the selected ions into smaller pieces for additional analysis. The fragmentation patterns generated in MS/MS experiments can be used to determine the structure and identity of the original molecule, making it a powerful tool in various fields such as proteomics, metabolomics, and forensic science.

Galactose oxidase is an enzyme with the systematic name D-galactose:oxygen oxidoreductase. It is found in certain fungi and bacteria, and it catalyzes the following reaction:

D-galactose + O2 -> D-galacto-hexodialdose + H2O2

In this reaction, the enzyme oxidizes the hydroxyl group (-OH) on the sixth carbon atom of D-galactose to an aldehyde group (-CHO), forming D-galacto-hexodialdose. At the same time, it reduces molecular oxygen (O2) to hydrogen peroxide (H2O2).

Galactose oxidase is a copper-containing enzyme and requires the cofactor molybdenum for its activity. It has potential applications in various industrial processes, such as the production of D-galacto-hexodialdose and other sugar derivatives, as well as in biosensors for detecting glucose levels in biological samples.

Acetamides are organic compounds that contain an acetamide functional group, which is a combination of an acetyl group (-COCH3) and an amide functional group (-CONH2). The general structure of an acetamide is R-CO-NH-CH3, where R represents the rest of the molecule.

Acetamides are found in various medications, including some pain relievers, muscle relaxants, and anticonvulsants. They can also be found in certain industrial chemicals and are used as intermediates in the synthesis of other organic compounds.

It is important to note that exposure to high levels of acetamides can be harmful and may cause symptoms such as headache, dizziness, nausea, and vomiting. Chronic exposure has been linked to more serious health effects, including liver and kidney damage. Therefore, handling and use of acetamides should be done with appropriate safety precautions.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

The MNSs blood group system is one of the human blood group systems, which is a classification of blood types based on the presence or absence of specific antigens on the surface of red blood cells (RBCs). This system is named after the first two letters of the surnames of the discoverers, Landsteiner and Levine, and the "s" stands for "slight."

The MNSs system includes three main antigens: M, N, and S. The M and N antigens are found on nearly all individuals, except for those who are genetically predisposed to lack both M and N antigens (M+N- or M-N-). These individuals have the "null" phenotype, also known as the "Ms" phenotype.

The S antigen is present in about 80% of people, while the s antigen is found in approximately 20% of people. The presence or absence of these antigens determines an individual's MNSs blood type. There are eight main MNSs blood types: M, N, MN, MS, NS, M+m, N+s, and M+N+S+s+.

The clinical significance of the MNSs system is relatively low compared to other blood group systems like ABO and Rh. However, it can still play a role in transfusion medicine, as antibodies against MNSs antigens may cause hemolytic transfusion reactions or hemolytic disease of the newborn (HDN) in rare cases. Therefore, it is essential to consider the MNSs blood group when performing pretransfusion testing and during pregnancy to ensure compatible blood products and prevent complications.

Enterococcus faecium is a species of gram-positive, facultatively anaerobic bacteria that are commonly found in the gastrointestinal tract of humans and animals. It is a member of the family Enterococcaceae and is known for its ability to survive in a wide range of environments, including those with high salt concentrations, low pH levels, and the presence of antibiotics.

E. faecium is a leading cause of nosocomial infections, particularly in healthcare settings such as hospitals and long-term care facilities. It can cause a variety of infections, including urinary tract infections, bacteremia, endocarditis, and intra-abdominal infections. E. faecium is resistant to many antibiotics, making it difficult to treat infections caused by this organism.

E. faecium is also a potential threat as a bioterrorism agent due to its ability to survive outside the host and cause disease. However, it is not considered a high-risk agent because it is not easily transmitted from person to person and is not highly virulent. Nonetheless, appropriate infection control measures are important to prevent the spread of E. faecium in healthcare settings.

I'm sorry for any confusion, but "Succinic Anhydrides" is not a recognized medical term. Succinic anhydride is a chemical compound with the formula (CH2)2(CO)2O. It is used in organic synthesis as a dehydrating agent and acylating agent. If you're asking about a medical application or effect of succinic anhydride or its derivatives, I would need more specific information to provide an accurate and helpful response.

Oxazolidinones are a class of synthetic antibiotics that work by inhibiting bacterial protein synthesis. They bind to the 23S ribosomal RNA of the 50S subunit, preventing the formation of the initiation complex and thus inhibiting the start of protein synthesis.

The most well-known drug in this class is linezolid (Zyvox), which is used to treat serious infections caused by Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE).

Oxazolidinones are typically reserved for use in patients with serious infections who have failed other antibiotic treatments, due to concerns about the development of resistance and potential side effects such as myelosuppression and peripheral neuropathy.

"Methicillin resistance" is a term used in medicine to describe the resistance of certain bacteria to the antibiotic methicillin and other related antibiotics, such as oxacillin and nafcillin. This type of resistance is most commonly associated with Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (MRCoNS) bacteria.

Bacteria that are methicillin-resistant have acquired the ability to produce an additional penicillin-binding protein, known as PBP2a or PBP2'', which has a low affinity for beta-lactam antibiotics, including methicillin. This results in the bacteria being able to continue growing and dividing despite the presence of these antibiotics, making infections caused by these bacteria more difficult to treat.

Methicillin resistance is a significant concern in healthcare settings, as it can lead to increased morbidity, mortality, and healthcare costs associated with treating infections caused by these bacteria. In recent years, there has been an increase in the prevalence of methicillin-resistant bacteria, highlighting the need for ongoing surveillance, infection control measures, and the development of new antibiotics to treat these infections.

Alpha-L-Fucosidase is an enzyme that catalyzes the hydrolysis of the terminal alpha-L-fucose residues from glycoproteins, glycolipids, and other substrates. This enzyme plays a crucial role in the degradation and recycling of complex carbohydrates found on the surface of cells and in various biological fluids. Deficiencies in alpha-L-fucosidase activity can lead to genetic disorders such as fucosidosis, which is characterized by the accumulation of fucose-containing glycoproteins and glycolipids in various tissues and organs, resulting in progressive neurological deterioration and other systemic manifestations.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

I believe there might be a slight confusion in your question. Sulfuric acid is not a medical term, but instead a chemical compound with the formula H2SO4. It's one of the most important industrial chemicals, being a strong mineral acid with numerous applications.

If you are asking for a definition related to human health or medicine, I can tell you that sulfuric acid has no physiological role in humans. Exposure to sulfuric acid can cause irritation and burns to the skin, eyes, and respiratory tract. Prolonged exposure may lead to more severe health issues. However, it is not a term typically used in medical diagnoses or treatments.

Galactosamine is not a medical condition but a chemical compound. Medically, it might be referred to in the context of certain medical tests or treatments. Here's the scientific definition:

Galactosamine is an amino sugar, a type of monosaccharide (simple sugar) that contains a functional amino group (-NH2) as well as a hydroxyl group (-OH). More specifically, galactosamine is a derivative of galactose, with the chemical formula C6H13NO5. It is an important component of many glycosaminoglycans (GAGs), which are complex carbohydrates found in animal tissues, particularly in connective tissue and cartilage.

In some medical applications, galactosamine has been used as a building block for the synthesis of GAG analogs or as a component of substrates for enzyme assays. It is also used in research to study various biological processes, such as cell growth and differentiation.

Antifreeze proteins (AFPs) are a group of small proteins that bind to ice crystals and inhibit their growth at temperatures above the freezing point of water. They are produced by various cold-tolerant organisms, including fish, insects, and plants, as a survival adaptation to subzero environments. AFPs function by adsorbing to the surface of nascent ice crystals and lowering the freezing point of the solution in a noncolligative manner, meaning that their effect is not simply due to the dilution of solutes. This ability allows these organisms to survive in freezing conditions without the formation of damaging ice inside their cells.

In medical contexts, AFPs have been studied for their potential therapeutic applications, particularly in cryopreservation and tissue engineering. They could help protect organs, tissues, and cells from freeze damage during storage and transportation, expanding the possibilities for transplantation and regenerative medicine. Additionally, AFPs may have a role in treating hypothermia and frostbite by preventing or minimizing ice crystal formation in injured tissues. However, more research is needed to fully understand their mechanisms and optimize their use in clinical settings.

Blood group antigens are molecular markers found on the surface of red blood cells (RBCs) and sometimes other types of cells in the body. These antigens are proteins, carbohydrates, or glycoproteins that can stimulate an immune response when foreign antigens are introduced into the body.

There are several different blood group systems, but the most well-known is the ABO system, which includes A, B, AB, and O blood groups. The antigens in this system are called ABO antigens. Individuals with type A blood have A antigens on their RBCs, those with type B blood have B antigens, those with type AB blood have both A and B antigens, and those with type O blood have neither A nor B antigens.

Another important blood group system is the Rh system, which includes the D antigen. Individuals who have this antigen are considered Rh-positive, while those who do not have it are considered Rh-negative.

Blood group antigens can cause complications during blood transfusions and pregnancy if there is a mismatch between the donor's or fetus's antigens and the recipient's antibodies. For example, if a person with type A blood receives type B blood, their anti-B antibodies will attack the foreign B antigens on the donated RBCs, causing a potentially life-threatening transfusion reaction. Similarly, if an Rh-negative woman becomes pregnant with an Rh-positive fetus, her immune system may produce anti-D antibodies that can cross the placenta and attack the fetal RBCs, leading to hemolytic disease of the newborn.

It is important for medical professionals to determine a patient's blood group before performing a transfusion or pregnancy-related procedures to avoid these complications.

Gram-positive bacteria are a type of bacteria that stain dark purple or blue when subjected to the Gram staining method, which is a common technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This staining method was developed by Hans Christian Gram in 1884.

The key characteristic that distinguishes Gram-positive bacteria from other types, such as Gram-negative bacteria, is the presence of a thick layer of peptidoglycan in their cell walls, which retains the crystal violet stain used in the Gram staining process. Additionally, Gram-positive bacteria lack an outer membrane found in Gram-negative bacteria.

Examples of Gram-positive bacteria include Staphylococcus aureus, Streptococcus pyogenes, and Bacillus subtilis. Some Gram-positive bacteria can cause various human diseases, while others are beneficial or harmless.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Alpha-fetoprotein (AFP) is a protein produced by the yolk sac and the liver during fetal development. In adults, AFP is normally present in very low levels in the blood. However, abnormal production of AFP can occur in certain medical conditions, such as:

* Liver cancer or hepatocellular carcinoma (HCC)
* Germ cell tumors, including non-seminomatous testicular cancer and ovarian cancer
* Hepatitis or liver inflammation
* Certain types of benign liver disease, such as cirrhosis or hepatic adenomas

Elevated levels of AFP in the blood can be detected through a simple blood test. This test is often used as a tumor marker to help diagnose and monitor certain types of cancer, particularly HCC. However, it's important to note that an elevated AFP level alone is not enough to diagnose cancer, and further testing is usually needed to confirm the diagnosis. Additionally, some non-cancerous conditions can also cause elevated AFP levels, so it's important to interpret the test results in the context of the individual's medical history and other diagnostic tests.

The glycopeptides are produced by spotting FMOC protected amino acids allowing the synthesis to be performed at microgram ( ... Glycopeptides are peptides that contain carbohydrate moieties (glycans) covalently attached to the side chains of the amino ... The synthesis of glycopeptides provides biological probes for researchers to elucidate glycan function in nature and products ... In this method, libraries of glycopeptides are produced on a cellulose surface (e.g. filter paper) which acts as the solid ...
... is a lead antibiotic peptide. Sum, Phaik-Eng; How, David; Torres, Nancy; Petersen, Peter J.; Lenoy ... "Novel ether derivatives of mannopeptimycin glycopeptide antibiotic". Bioorganic & Medicinal Chemistry Letters. 13 (6): 1151- ...
Ramoplanin, although a "glycopeptide" in the literal sense, has a quite different structural core. It not only binds to Lipid ... Glycopeptide antibiotics are a class of drugs of microbial origin that are composed of glycosylated cyclic or polycyclic ... The second-generation glycopeptides, or "lipoglycopeptides", have better binding to Lipid II due to the lipophilic moieties, ... Due to their toxicity, use of first-generation glycopeptide antibiotics is restricted to patients who are critically ill, who ...
Glycopeptide α-N-acetylgalactosaminidases belong to family GH101 of glycoside hydrolases. Ashida H, Maki R, Ozawa H, Tani Y, ... is an enzyme with systematic name glycopeptide-D-galactosyl-N-acetyl-α-D-galactosamine D-galactosyl-N-acetyl- ...
... is a galactosyltransferase. It is classified under EC 2.4.1.38 ...
1994). Glycopeptide antibiotics. New York u.a.: Dekker. ISBN 0-8247-9193-2. Cooper, Gerald H.; Wagman, Raymond, eds. (1989). ...
Nagarajan, Ramakris (1994). Glycopeptide Antibiotics. CRC Press. ISBN 9780824791933. Mukherjee, Joydeep (2014). ...
Glycopeptides are another class of antibiotics. Vancomycin is the class originator for the glycopeptides. Lipoglycopeptides are ... Glycopeptides, on the other hand, are rarely associated with ototoxicity. Aminoglycosides are a class of antibiotics. The most ... The most common classes of ototoxic medications include antibiotics (including aminoglycosides and glycopeptides) and ... a subclass of glycopeptides and they are derived from the structure of vancomycin. Examples are telavancin and dalbavancin. ...
... is a glycopeptide antibiotic medication used to treat a number of bacterial infections. It is used intravenously ( ... It is a type of glycopeptide antibiotic and works by blocking the construction of a cell wall. Vancomycin was approved for ... These P450s are recruited by the X domain present in the 7th NRPS module, which is unique to glycopeptide antibiotic ... Glycopeptide-Intermediate Staphylococcus aureus Working Group". The New England Journal of Medicine. 340 (7): 493-501. doi: ...
O-linked glycopeptides recently have been shown to exhibit excellent CNS permeability and efficacy in multiple animal models ... The peculiar nature of O-linked glycopeptides is that there are numerous examples which are CNS penetrant. The fundamental ... "Biousian glycopeptides penetrate the blood-brain barrier". Tetrahedron: Asymmetry. Carbohydrate Science. Part 1. 16 (1): 65-75 ...
... glycopeptides, bacitracin, and fosfomycin.". In Giguère S, Prescott JF, Dowling PM (eds.). Antimicrobial Therapy in Veterinary ...
Ordinary glycopeptides instead block cell wall formation. It can block infections caused by the drug-resistant strain of ... Corbomycin is a member of the glycopeptide family of antibiotics that are produced by soil bacteria. Corbomycin blocks ... Researchers found the substance while studying the biosynthetic genes of glycopeptides that lacked self-resistance mechanisms. ... Glycopeptide antibiotics, All stub articles, Antibiotic stubs). ...
Bruch RC, White HB (October 1982). "Compositional and structural heterogeneity of avidin glycopeptides". Biochemistry. 21 (21 ...
Thirty-five of these ORFs are similar to those found in other glycopeptide gene clusters. The function of each of these genes ... It is a semisynthetic glycopeptide antibiotic with a spectrum of activity similar to vancomycin. Its mechanism of action is to ... Heydorn A, Petersen BO, Duus JO, Bergmann S, Suhr-Jessen T, Nielsen J (March 2000). "Biosynthetic studies of the glycopeptide ... Peschke M, Brieke C, Cryle MJ (October 2016). "F-O-G Ring Formation in Glycopeptide Antibiotic Biosynthesis is Catalysed by ...
... s are a class of antibiotic that have lipophilic side-chains linked to glycopeptides. The class includes ... Van Bambeke F. (August 2006). "Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their ... Telavancin#Mechanism of action Kahne, Dan; Leimkuhler, Catherine; Lu, Wei; Walsh, Christopher (2005). "Glycopeptide and ...
The systematic name of this enzyme class is N-linked-glycopeptide-(N-acetyl-beta-D-glucosaminyl)-L-asparagine amidohydrolase. ... Plummer TH, Tarentino AL (Oct 1981). "Facile cleavage of complex oligosaccharides from glycopeptides by almond emulsin peptide ... Takahashi N (Jun 1977). "Demonstration of a new amidase acting on glycopeptides". Biochemical and Biophysical Research ... Other names in common use include: glycopeptide N-glycosidase, glycopeptidase, N-oligosaccharide glycopeptidase, N-glycanase, ...
"Nomenclature of glycoproteins, glycopeptides and peptidoglycans, Recommendations 1985". www.qmul.ac.uk. Retrieved 16 March 2021 ...
"Nomenclature of glycoproteins, glycopeptides and peptidoglycans, Recommendations 1985". www.qmul.ac.uk. Retrieved 16 March 2021 ... Ero1 Female sperm storage Glycocalyx Glycome Glycopeptide Gp120 Gp41 Miraculin P-glycoprotein Proteoglycan Ribophorin Glycan ... February 2011). "Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins". FEBS ...
In year 2006, LaPlante focused her study on a glycopeptide antibiotic "Oritavancin", its development, usage and efficacy in ... Ward, Kristina E; Mersfelder, Tracey L; LaPlante, Kerry L (April 2006). "Oritavancin - an investigational glycopeptide ...
... is uniformly susceptible to glycopeptides and oxazolidones. Diernhofer first used the name ...
... glycopeptides, peptidoglycans, glycolipids, and lipopolysaccharides.[citation needed] Much of the chemistry of glycosides is ...
Walsh I.; Zhao S.; Campbell M.; Taron C.H.; Rudd P.M. (2016). "Quantitative profiling of glycans and glycopeptides: an ...
DHGP is also found in vancomycin and related glycopeptides. Although the (S) stereoisomer is synthesized by the DpgA-D enzymes ... Chen, H., Tseng, C. C., Hubbard, B. K., Walsh, C. T. "Glycopeptide antibiotic biosyntehsis: Enzymatic assembly of the dedicated ... Yim, G., Thaker, M. N., Koteva, K., Wright, G. "Glycopeptide antibiotic biosynthesis." The Journal of Antibiotics, 2017, 67, 31 ... "A Polyketide Synthase in glycopeptide Biosynthesis: the Biosynthesis of the Non-Proteogenic Amino Acid (S)-3,5- ...
... is a macrolide glycopeptide antibiotic. Dirithromycin (Dynabac) is a more lipid-soluble prodrug derivative of 9S- ...
This Antarctic marine fish is one of several in the region that produce antifreeze glycopeptides as an adaptation against the ... A. P. Wohrmann (1995). "Antifreeze glycopeptides in the high-Antarctic Silverfish Pleurogramma antarcticum (Notothenioidei)". ...
June 2020). "Parallel Glyco-SPOT Synthesis of Glycopeptide Libraries". Cell Chemical Biology. 27 (9): 1207-1219.e9. doi:10.1016 ...
Perichon B, Reynolds P, Courvalin P (September 1997). "VanD-type glycopeptide-resistant Enterococcus faecium BM4339". ...
Using a bait glycopeptide based roughly on a consensus sequence for O-GlcNAc, α-enolase, EBP1, and 14-3-3 were identified as ... Teo, CF; Ingale, S; Wolfert, MA; Elsayed, GA; Nöt, LG; Chatham, JC; Wells, L; Boons, GJ (May 2010). "Glycopeptide-specific ... Directed tandem MS and targeted glycopeptide assignment allow for identification of O-GlcNAcylated peptide sequences. One ... recoded glycopeptides from beads using mild acid Obtain a full-scan mass spectrum from isotopically recoded glycopeptides Apply ...
Sublancin may be an S-linked glycopeptide). They are synthesised with a leader polypeptide sequence that is removed only during ... "Sublancin is not a lantibiotic but an S-linked glycopeptide". Nat. Chem. Biol. 7 (2): 78-80. doi:10.1038/nchembio.509. PMC ...
Pigrau C, Almirante B (April 2009). "[Oxazolidinones, glycopeptides and cyclic lipopeptides]" [Oxazolidinones, glycopeptides ... A large meta-analysis of randomized controlled trials found linezolid to be more effective than glycopeptide antibiotics (such ... Falagas ME, Siempos II, Vardakas KZ (January 2008). "Linezolid versus glycopeptide or beta-lactam for treatment of Gram- ... Linezolid's spectrum of activity against Gram-positive bacteria is similar to that of the glycopeptide antibiotic vancomycin, ...
The glycopeptides are produced by spotting FMOC protected amino acids allowing the synthesis to be performed at microgram ( ... Glycopeptides are peptides that contain carbohydrate moieties (glycans) covalently attached to the side chains of the amino ... The synthesis of glycopeptides provides biological probes for researchers to elucidate glycan function in nature and products ... In this method, libraries of glycopeptides are produced on a cellulose surface (e.g. filter paper) which acts as the solid ...
This article describes a new classification workflow for Glycopeptide Characterization. ... Figure 4. ProteinScape: Annotated glycopeptide CID spectrum.. Conclusions. N-glycopeptide analysis can be enhanced through the ... Figure 2 shows a characteristic CID N-glycopeptide CID spectrum, measured with the Glycopeptide Instant Expertise™ acquisition ... Until recently, classification of N-glycopeptide spectra in ProteinScape (detection of glycopeptide spectra and calculation of ...
Study the glycopeptides properties and characteristics. Findings reveal glucose, mannose, and amino acids composition. Explore ... The glycopeptides in M. androsaceus were composed of a series of similar glycopeptides that all had analgesic properties. The ... The glycopeptide fractions were further purified by gel-permeation chromatography and two purified glycopeptides, D2H, D2L, ... The sugar portion of the glycopeptides was composed of 1 - 4 linked Glc as the main chain with side chains composed primarily ...
What CoNS species with decreased susceptibility to glycopeptides have been reported? Isolates of S. haemolyticus and S. ... The term glycopeptide refers to a group of antimicrobial agents that includes vancomycin, teicoplanin, and several other ... Why is the term "glycopeptide" used, instead of vancomycin, to describe the decreased susceptibility of these CoNS isolates? ... Because of its broader scope, the term glycopeptide is used instead of vancomycin to describe these isolates. CoNS isolates ...
... Štefica Horvat ; Department of Organic Chemistry and ... "Ester-linked Glycopeptides as Tools for Studies of Biological Phenomena." Croatica Chemica Acta, vol. 74, br. 4, 2001, str. 787 ... "Ester-linked Glycopeptides as Tools for Studies of Biological Phenomena." Croatica Chemica Acta 74, br. 4 (2001): 787-799. ... 2001). Ester-linked Glycopeptides as Tools for Studies of Biological Phenomena, Croatica Chemica Acta, 74(4), str. 787-799. ...
Glycopeptides. Class Summary. Oral vancomycin does not get absorbed and acts directly at the site of infection. ...
The previously described glycopeptide antigen CSF114(Glc) has been immobilized on a gold sensor chip and the method has been ... Herein we present the evaluation of the feasibility of a glycopeptide-based biosensor to detect MS specific antibodies in sera ... Glycopeptide antigen CSF114(Glc) was prepared by microwave-assisted solid phase peptide synthesis. The glycopeptide was ... The glycopeptide CSF114(Glc) has been immobilized on a gold sensor chip and used for the screening of healthy blood donors and ...
Glycopeptides. Class Summary. Vancomycin inhibits bacterial cell wall synthesis by blocking glycopeptide polymerization. It is ... Vancomycin is a glycopeptide antibiotic that is active against staphylococci, streptococci, and other gram-positive bacteria. ...
First Characterization of a Cluster of VanA-Type Glycopeptide-Resistant Enterococcus faecium, Colombia Diana Panesso*, ... Pulsed-field gel electrophoresis restriction fragment patterns of SmaI-digested genomic DNA obtained from glycopeptide- ... First Characterization of a Cluster of VanA-Type Glycopeptide-Resistant Enterococcus faecium, Colombia. ...
... IRG/WP 02-10424. H Tanaka, S Itakura, A Enoki. ... Keywords: Wood decay, Hydroxyl Radical, Glycopeptide Conference: 02-05-12/17 Cardiff, Wales, UK Download document (299 kb). ... The glycopeptides are involved in all three types of decay. ...
Interaction of toluidine blue and sialo glyco peptides part 2 reactivity of an erythrocyte sialo glyco peptide and chondroitin ... Interaction of toluidine blue and sialo glyco peptides part 1 interaction of toluidine blue with a sialo glyco peptide released ... Ohkuma, S.; Furuhata, T. 1971: Dimerization of toluidine blue induced by mn active sialo glyco peptides Proceedings of the ... Picard, J.; Gardais, A. 1970: Sulfo sialo glyco peptides from egg shell membranes and hen oviduct Zeitschrift fuer Klinische ...
C-linked glycosyl azido acid in novel solid-phase C-glycopeptide synthesis. Publikation: Bidrag til tidsskrift › ...
Synthesis of cross‐linked glycopeptides and ureas by a mechanochemical, solvent‐free reaction and determination of their ... Synthesis of cross‐linked glycopeptides and ureas by a mechanochemical, solvent‐free reaction and determination of their ...
Distinguishing N-Acetylneuraminic Acid Linkage Isomers on Glycopeptides by Ion Mobility-Mass Spectrometry. Hinneburg, H.; ... Differentiating the structure of isobaric glycopeptides represents a major challenge for mass spectrometry-based ... Distinguishing N-Acetylneuraminic Acid Linkage Isomers on Glycopeptides by Ion Mobility-Mass Spectrometry ... Distinguishing N-Acetylneuraminic Acid Linkage Isomers on Glycopeptides by Ion Mobility-Mass Spectrometry ...
It is a glycopeptide related to RISTOCETIN that inhibits bacterial cell wall assembly and is toxic to kidneys and the inner ear ... GlycopeptidesOligosaccharidesMannosePronaseFucoseTeicoplaninCarbohydratesGlycoproteinsPolysaccharidesAsparagineSialic Acids ... Glycopeptides. Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is ... Glycopeptide antibiotic complex from Actinoplanes teichomyceticus active against gram-positive bacteria. It consists of five ...
Glycopeptides. Glycopeptide antibiotics. treat drug-resistant bacteria and gram-positive infections, including multidrug- ... 2018). Developments in glycopeptide antibiotics. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952257/. ...
Glycopeptides and Lipoglycopeptides - Learn about the causes, symptoms, diagnosis & treatment from the MSD Manuals - Medical ... Use of Glycopeptides and Lipoglycopeptides During Pregnancy and Breastfeeding Use of glycopeptides and lipoglycopeptides during ... Glycopeptides and lipoglycopeptides are antibiotics Overview of Antibiotics Antibiotics are drugs used to treat bacterial ... Use of glycopeptides and lipoglycopeptides during breastfeeding is discouraged. (See also Drug Use During Breastfeeding Drug ...
BioQuant Glycopeptide. BioQuant Chitotriose. BioQuant Man8. BioQuant NANA. BioQuant NGNA. 2-AB Chitotriose. 2-AA Chitotriose ... This quantitative glycopeptide standard was developed for use during the sialic acid or monosaccharide release and labeling ...
Learn about the veterinary topic of Glycopeptides Use in Animals. Find specific details on this topic and related topics from ... Because there are no glycopeptides approved for veterinary use in the US, glycopeptides are prohibited from use in production ... In the US, glycopeptides are prohibited from extralabel drug use (ELDU) in all food-producing animal species. ... Vancomycin is a complex glycopeptide that binds to precursors of the peptidoglycan layer in bacterial cell walls. This effect ...
We have identified a novel class of peptides bound to MHC class II: mannose 6- phosphate (Man-6-P) containing glycopeptides ... A mannose 6-phosphate-containing N-linked glycopeptide derived from lysosomal acid lipase is bound to MHC class II in B ... A mannose 6-phosphate-containing N-linked glycopeptide derived from lysosomal acid lipase is bound to MHC class II in B ... We have identified a novel class of peptides bound to MHC class II: mannose 6- phosphate (Man-6-P) containing glycopeptides ...
Chemotranscriptomic profiling defines drug-specific signatures of the glycopeptide antibiotics dalbavancin, vancomycin and ...
Falconer, R.A. and Malkinson, J.P. (2002). Solid-phase synthesis of C-terminal thio-linked glycopeptides. Tetrahedron Letters. ... Facile cleavage and deprotection in one step afforded the target glycopeptide in good yield and purity. ... between a resin-bound 1-thiosugar and an N-Fmoc protected amino alcohol was successfully employed for thio-linked glycopeptide ...
Synthesis of Carbon-Linked Glycopeptides through Catalytic Asymmetric Hydrogenation ... Synthesis of Carbon-Linked Glycopeptides through Catalytic Asymmetric Hydrogenation. Cite. Download (. 325.3 kB. ). Share. ...
glucoprotein or glycopeptide (ˌɡlaɪkəʊˈpɛptaɪd). / (ˌɡlaɪkəʊˈprəʊtiːn). /. noun. *. any of a group of conjugated proteins ...
It is a glycopeptide antibiotic discovered in 1956 as a penicillin substitute which has assumed special significance due to ... Glycopeptide Antibiotics. , Home , , Pharmacology , Chapter: Essential pharmacology : Macrolide, Lincosamide, Glycopeptide And ... It is a newer glycopeptide antibiotic which in fact is a mixture of 6 similar compounds. It is active against gram-positive ... It is a glycopeptide antibiotic discovered in 1956 as a penicillin substitute which has assumed special significance due to ...
2-aminobenzamide labeld truncated core glycan Specifications Alternative name(s) M2-2AB, Man2GlcNAc2-2AB Molecular weight 852.8 Purity ≥95% Reference number CGA-345 Availability In stock, usually ships within a week Related products Truncated core glycan, Truncated core glycan-biotin
... FaceMaster Organic Glyco-Peptide Moisturizer FaceMaster Organic Glyco- ... FaceMaster Organic Glyco-Peptide Eye Firming Serum. Sold Out .spr-icon { color: #f0e218; } a.spr-icon:hover { color: #605a0a ...
It would suck to optimize on your Fusion 1 and then move that to another instrument and waste all those glycopeptide runs! ... but these authors show what appears to be a huge difference in N-glycopeptide identification with an HCD change from 30 to 35 ... are really doing what they say theyre doing if youre thinking about intact glycopeptide work! ...
  • Objective: The indiscriminate use of antibiotics has led to the creation of resistant microorganisms, with the aim of this study was to compare in vitro the degree of effectiveness of beta-lactam antibiotics and glycopeptide in the inhibition of Staphylococcus aureus by comparing its effectiveness in surgical wound infection. (bvsalud.org)
  • Glycopeptide antibiotics (GPAs) are effective against serious Gram-positive bacterial pathogens including methicillin-resistant Staphylococcus aureus. (mcmaster.ca)
  • Vancomycin is in a class of medications called glycopeptide antibiotics. (medlineplus.gov)
  • For glycopeptide characterization, mass spectrometry has arisen as the go-to methodology. (news-medical.net)
  • Yang's group developed a fine-tuned MS/MS acquisition method and pGlyco 2.0 search engine to perform confident intact glycopeptide characterization ( 13 ). (frontiersin.org)
  • The synthesis of glycopeptides provides biological probes for researchers to elucidate glycan function in nature and products that have useful therapeutic and biotechnological applications. (wikipedia.org)
  • Several methods have been reported in the literature for the synthesis of glycopeptides. (wikipedia.org)
  • Within solid phase peptide synthesis (SPPS) there exist two strategies for the synthesis of glycopeptides, linear and convergent assembly. (wikipedia.org)
  • Linear assembly remains a popular strategy for the synthesis of glycopeptides with many examples in the literature. (wikipedia.org)
  • Another strategy to produce glycopeptide libraries is using Glyco-SPOT synthesis technique. (wikipedia.org)
  • The glycopeptides are produced by spotting FMOC protected amino acids allowing the synthesis to be performed at microgram (nanomole) scale using very small amounts of glycoamino acids. (wikipedia.org)
  • Carbohydrate chemistry Glycopeptide antibiotic Glycosylation Peptide synthesis Talbot P. (wikipedia.org)
  • A solid-phase Mitsunobu reaction between a resin-bound 1-thiosugar and an N-Fmoc protected amino alcohol was successfully employed for thio-linked glycopeptide synthesis. (brad.ac.uk)
  • Koksch B, Sewald N, Jakubke H-D, Burger K. Synthesis and Incorporation of alpha-Trifluoromethyl Substituted Amino Acids into Peptides and Glycopeptides. (uni-bielefeld.de)
  • Synthesis and Incorporation of alpha-Trifluoromethyl Substituted Amino Acids into Peptides and Glycopeptides" in Biomedical frontiers of fluorine chemistry , Ojima, I., McCarthy, J. R., and Welch, J. T. eds. (uni-bielefeld.de)
  • In this context, this work describes the synthesis of the hypoglycosylated alpha-DG mimetic glycopeptide NHAc-Gly-Pro-Thr-Val-Thr[alphaMan]-Ile-Arg-Gly-BSA (1) as a potential tool for the development of novel antibodies applicable to dystroglycanopathies diagnosis. (cnr.it)
  • Glycopeptides are peptides that contain carbohydrate moieties (glycans) covalently attached to the side chains of the amino acid residues that constitute the peptide. (wikipedia.org)
  • We have identified a novel class of peptides bound to MHC class II: mannose 6- phosphate (Man-6-P) containing glycopeptides from lysosomal enzymes. (ox.ac.uk)
  • Lectin purified human class I MHC-derived peptides: evidence for presentation of glycopeptides in vivo. (ox.ac.uk)
  • The term glycopeptide refers to a group of antimicrobial agents that includes vancomycin, teicoplanin, and several other antimicrobial agents currently in U. S. clinical trials. (cdc.gov)
  • Why is the term "glycopeptide" used, instead of vancomycin, to describe the decreased susceptibility of these CoNS isolates? (cdc.gov)
  • Because of its broader scope, the term glycopeptide is used instead of vancomycin to describe these isolates. (cdc.gov)
  • Vancomycin is a complex glycopeptide that binds to precursors of the peptidoglycan layer in bacterial cell walls. (msdvetmanual.com)
  • Vancomycin : It is a glycopeptide antibiotic discovered in 1956 as a penicillin substitute which has assumed special significance due to efficacy against MRSA, Strep. (pharmacy180.com)
  • For example, administration of vancomycin, a glycopeptide antibiotic, to neonatal mice exacerbated antigen-induced lung inflammation that was assessed by enumerating the number of bronchoalveolar lavage (BAL) eosinophils. (cdc.gov)
  • Glycopeptide antibiotic complex from Actinoplanes teichomyceticus active against gram-positive bacteria . (lookformedical.com)
  • It is a newer glycopeptide antibiotic which in fact is a mixture of 6 similar compounds. (pharmacy180.com)
  • You might want to verify that your instrument(s) are really doing what they say they're doing if you're thinking about intact glycopeptide work! (blogspot.com)
  • 1,2 discussed a new glycopeptide instant expertise method which makes use of multiple collision energies to produce glycan fragments and peptide fragments inside the same MS/MS spectrum. (news-medical.net)
  • Until recently, classification of N-glycopeptide spectra in ProteinScape (detection of glycopeptide spectra and calculation of glycan and peptide moiety mass) has centered on glycan fragment distances and oxonium ion detection when using typical CID conditions on ion trap or qTof instruments (see application note LCMS-66)4. (news-medical.net)
  • 1,2 employed synthetic, and therefore well-defined, N-glycopeptides for the optimization of CID energy parameters, so as to attain the greatest possible quantities of data on both the glycan and peptide moiety within just one tandem MS experiment. (news-medical.net)
  • Consequently, glycopeptides consisting of the same peptide bearing different glycan structures will all possess very similar retention times and co-elute. (covid19-msc.org)
  • Glycopeptide-resistant Staphylococcus aureus. (cdc.gov)
  • Native chemical ligation (NCL) is a convergent synthetic strategy based on the linear coupling of glycopeptide fragments. (wikipedia.org)
  • Synthetic glycopeptide 7 AA fragment (Tyr1-Thr7) with Glcβ at Thr7. (sussex-research.com)
  • Previously, using synthetic glycopeptides carrying a natural cytosolic type of monosaccharide O-beta-linked N-acetylglucosamine (GlcNAc) glycosylation of serine residues, we have shown that glycopeptides act as suitable substrates for TAP-mediated transport into the endoplasmic reticulum (ER), and that they bind efficiently to class I major histocompatibility complex (MHC) molecules and can elicit glycopeptide-specific cytotoxic T-lymphocyte (CTL) responses in mice. (ox.ac.uk)
  • Tolerance has been described for anti-staphylococcal beta-lactams but involves also glycopeptide antimicrobial agents. (biomedcentral.com)
  • Despite the fact that the classification workflow in ProteinScape has an explicit parameter to address this issue, the peptide mass of low abundant N-glycopeptides can be miscalculated at times, which can result in no or incorrect identifications. (news-medical.net)
  • In the case of N-glycopeptide fragmentation, the higher collision energies, which are required for peptide moiety fragmentation, also bring about a characteristic fragmentation pattern, which has earlier been described for MALDI fragmentation 3 . (news-medical.net)
  • The obtained results demonstrate that the Chemical properties of the glycopeptides studied are determined by the structure and length of the peptide chain, suggesting that similar products may be also generated in the early stages of the Maillard reaction in vivo . (srce.hr)
  • They handily fragment well right at the peptide bond, but these authors show what appears to be a huge difference in N-glycopeptide identification with an HCD change from 30 to 35 (!yikes! (blogspot.com)
  • Molecular modelling of glycopeptide 1 and GpalphaDG1 scFv suggested that their interaction occurs through hydrogen bonds and hydrophobic contacts involving amino acids from scFv (I51, Y33, S229, Y235, and P233) and R8 and alpha-mannose from Glycopeptide 1. (cnr.it)
  • LAUSANNE, Switzerland, June 15, 2022 - Gnubiotics Sciences, a biotech company pioneering immunomodulatory glycopeptides, today announced an agreement with the University of Pennsylvania to explore combining CAR-T therapy with Gnubiotics' GLAAD technology to enhance efficacy in solid tumors through company-sponsored pre-clinical research studies in the laboratory of Avery Posey, PhD, an assistant professor of Systems Pharmacology and Translational Therapeutics at the Perelman School of Medicine at Penn. (gnubiotics.com)
  • Here we show that the regiochemistry of the most common N-acetylneuraminic acid linkages of N-glycans can be identified in a site-specific manner from individual glycopeptides using ion mobility-mass spectrometry analysis of diagnostic fragment ions. (fu-berlin.de)
  • TACA-containing glycopeptides are appealing cytotoxic T cell (CTL)-based vaccines to prevent or treat cancer because the same sugar moieties are expressed in a variety of tumors, rendering a vaccination strategy applicable in a large population. (silverchair.com)
  • Gnubiotics presented compelling data recently at the 2022 American Society of Clinical Oncology (ASCO) annual meeting showing the effect of its glycopeptides platform in driving directed and robust T-cell immune responses against PD-1 resistant solid tumors in a colorectal cancer mouse model. (gnubiotics.com)
  • Sensitivity of S. aureus to beta-lactam and glycopeptide. (bvsalud.org)
  • Pulsed-field gel electrophoresis restriction fragment patterns of Sma I-digested genomic DNA obtained from glycopeptide-resistant Enterococcus faecium isolated at San Vicente de Paul Hospital, Bogotá, Colombia. (cdc.gov)
  • Lycium barbarum polysaccharide (LBP) is an active ingredient extracted from Lycium barbarum that inhibits neuroinflammation , and Lycium barbarum glycopeptide (LbGp) is a glycoprotein with immunological activity that was purified and isolated from LBP. (bvsalud.org)
  • It is possible to achieve glycopeptide fragmentation under standard collision induced dissociation (CID) conditions, in which the glycosidic bonds between carbohydrate bonds are favourably cleaved. (news-medical.net)
  • To find a way around this issue, deeper investigation of the fragmentation of N-glycopeptides was carried out using Bruker oTOF instruments. (news-medical.net)
  • News in Proteomics Research: Optimal Fragmentation of N- and O- Glycopeptides! (blogspot.com)
  • Specific mass spectral detection of glycopeptides from protein digests may be achieved by on-line HPLC-MS, with selected ion monitoring (SIM) for diagnostic product ions generated by cone voltage fragmentation, or by precursor ion scanning for terminal saccharide product ions, which can yield the same information more rapidly. (lincoln.ac.uk)
  • The best-characterized VH and VL domains were cloned, expressed in E. coli Shuffle T7 cells, and used to construct a single chain fragment variable that recognized the Glycopeptide 1 (GpalphaDG1 scFv). (cnr.it)
  • This quantitative glycopeptide standard was developed for use during the sialic acid or monosaccharide release and labeling process. (qa-bio.com)
  • We identified a total of 587 glycoproteins, including 1239 glycopeptides, 526 monosaccharide components, and 8326 intact glycopeptides in glycoproteomics, as well as a total of 4496 proteins identified in proteomic analysis. (frontiersin.org)
  • Product ion spectra have been obtained on many glycopeptides confirming structure assignments. (lincoln.ac.uk)
  • The glycopeptide fractions were further purified by gel-permeation chromatography and two purified glycopeptides, D2H, D2L, were obtained. (scirp.org)
  • Currently, analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) of intact glycopeptides is often the method of choice in site-specific glycoproteomic studies ( 12 ). (frontiersin.org)
  • Compound classification and ensuing glycopeptide identification is executed with ProteinScape 4.0 and the embedded search algorithm GlycoQuest. (news-medical.net)
  • It is a glycopeptide related to RISTOCETIN that inhibits bacterial cell wall assembly and is toxic to kidneys and the inner ear. (lookformedical.com)
  • All clinical isolates with decreased susceptibility to glycopeptides have been oxacillin resistant and resistant to many other commonly used therapeutic agents. (cdc.gov)
  • Like oxacillin-resistant CoNS, isolates with decreased susceptibility to glycopeptides can show heteroresistance. (cdc.gov)
  • Isolates of S. haemolyticus and S. epidermidis with decreased susceptibility to glycopeptides have been reported. (cdc.gov)
  • Not all routine susceptibility test methods can detect CoNS isolates with decreased susceptibility to glycopeptides. (cdc.gov)
  • Glycopeptides and lipoglycopeptides work by preventing gram-positive bacteria from forming this cell wall, resulting in the death of the bacteria. (msdmanuals.com)
  • Here we demonstrate that by using glycopeptides with high affinity for the major histocompatibility complex and glycosylated in a position corresponding to a critical T cell receptor (TcR) contact, it is possible to induce anti-TACA CTL in vivo. (silverchair.com)
  • GLAAD relies on glycopeptides as providers of antigenicity and adjuvanticity to the immune system. (gnubiotics.com)
  • Glycopeptides are the foundation of Gnubiotics' GLAAD molecules. (gnubiotics.com)
  • Accordingly, polyclonal antibodies were reactive to glycopeptide 1, which enables the application of anti-glycopeptide 1 antibodies in immune reactive assays targeting hypoglycosylated alpha-DG. (cnr.it)
  • In the current study we show that designer glycopeptides containing the Thomsen-Freidenreich (TF) antigen (β-Gal-[1→3]-α-GalNAc- O -serine) are immunogenic in vivo and generate TF-specific CTL capable of recognizing a variety of tumor cells in vitro including a MUC1-expressing tumor. (silverchair.com)
  • The sugar portion of the glycopeptides was composed primarily of glucose (Glc) and mannose (Man) with the molar ratio of 9:1. (scirp.org)
  • A mannose 6-phosphate-containing N-linked glycopeptide derived from lysosomal acid lipase is bound to MHC class II in B lymphoblastoid cell lines. (ox.ac.uk)
  • As well as the instrumental arrangement, a suitable software solution is essential to enable glycopeptide identification and cut laborious processing and de novo analysis time. (news-medical.net)
  • Together, these data provide further evidence for the natural presentation by human class I MHC of glycopeptides carrying terminal O-GlcNAc residues in vivo. (ox.ac.uk)
  • Unlike standard SPPS (which is limited to 50 amino acid residue) NCL allows the construction of large glycopeptides. (wikipedia.org)
  • Lycium barbarum glycopeptide alleviates neuroinflammation in spinal cord injury via modulating docosahexaenoic acid to inhibiting MAPKs/NF-kB and pyroptosis pathways. (bvsalud.org)
  • What CoNS species with decreased susceptibility to glycopeptides have been reported? (cdc.gov)
  • GlycoQuest (search algorithm in ProteinScape) is Bruker's proven solution and delivers dependable results with regards to glycopeptide identification. (news-medical.net)
  • We are excited about the promise of combining CAR-T with glycopeptide strategies like our GLAAD platform which will hopefully lead to the application of new modalities for patients left with few alternative treatments," stated Yemi Adesokan, Ph.D., Gnubiotics's Chief Executive Officer. (gnubiotics.com)
  • Any variety of glycopeptide sample can be employed in this workflow - low complex and high complex, with and without glycopeptide enrichment. (news-medical.net)
  • In this method, libraries of glycopeptides are produced on a cellulose surface (e.g. filter paper) which acts as the solid phase. (wikipedia.org)
  • Collision energy stepping implemented in the Glycopeptide Instant Expertise™ method. (news-medical.net)
  • Typical glycopeptide CID spectrum achieved by using the Glycopeptide Instant Expertise™ method. (news-medical.net)
  • Differentiating the structure of isobaric glycopeptides represents a major challenge for mass spectrometry-based characterisation techniques. (fu-berlin.de)
  • The crystal structure of MtfA complexed with (S)-adenosyl-L-methionine, (S)-adenosylhomocysteine, or sinefungin inhibitor, coupled with mutagenesis, identified His228 as a likely general base required for methyl transfer to the N terminus of the glycopeptide. (mcmaster.ca)
  • 2001). 'Ester-linked Glycopeptides as Tools for Studies of Biological Phenomena', Croatica Chemica Acta , 74(4), str. (srce.hr)
  • Horvat Š, Jerić I, Varga-Defterdarović L, Roščić M, Horvat J. Ester-linked Glycopeptides as Tools for Studies of Biological Phenomena. (srce.hr)
  • The glycosidic linkages in the purified glycopeptides were analysed via methylation analysis. (scirp.org)
  • However to produce larger quantities of glycopeptides traditional resin-based solid phase techniques would be better. (wikipedia.org)
  • It would suck to optimize on your Fusion 1 and then move that to another instrument and waste all those glycopeptide runs! (blogspot.com)
  • Because of these encouraging results, we applied the same antigenic strategy to TACA-containing glycopeptides because induction of a degenerate T cell response against this class of tumor antigens may be of great advantage in cancer immunotherapy ( 10 - 12 ). (silverchair.com)
  • The glycopeptides are involved in all three types of decay. (irg-wp.com)
  • Ligand amplification in a dynamic combinatorial glycopeptide library. (ox.ac.uk)
  • N-acetyl glucosamine binding protein amplifies the concentration of one member in a dynamic combinatorial glycopeptide library based on exchanging disulfides. (ox.ac.uk)