Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
An enzyme catalyzing the oxidation of 2 moles of glutathione in the presence of hydrogen peroxide to yield oxidized glutathione and water. EC 1.11.1.9.
A GLUTATHIONE dimer formed by a disulfide bond between the cysteine sulfhydryl side chains during the course of being oxidized.
A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite.
A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5
A dietary deficiency of riboflavin causing a syndrome chiefly marked by cheilitis, angular stomatitis, glossitis associated with a purplish red or magenta-colored tongue that may show fissures, corneal vascularization, dyssebacia, and anemia. (Dorland, 27th ed)
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as FLAVIN MONONUCLEOTIDE and FLAVIN-ADENINE DINUCLEOTIDE.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA.
Naturally occurring or synthetic substances that inhibit or retard the oxidation of a substance to which it is added. They counteract the harmful and damaging effects of oxidation in animal tissues.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Oxidoreductases that are specific for the reduction of NITRATES.
A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES.
A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6.
A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)
An oxidoreductase that catalyzes the reaction between superoxide anions and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. EC 1.15.1.1.
Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID.
Ribonucleotide Reductases are enzymes that catalyze the conversion of ribonucleotides to deoxyribonucleotides, which is a crucial step in DNA synthesis and repair, utilizing a radical mechanism for this conversion.
A subtype of thioredoxin reductase found primarily in the CYTOSOL.
A synthetic amino acid that depletes glutathione by irreversibly inhibiting gamma-glutamylcysteine synthetase. Inhibition of this enzyme is a critical step in glutathione biosynthesis. It has been shown to inhibit the proliferative response in human T-lymphocytes and inhibit macrophage activation. (J Biol Chem 1995;270(33):1945-7)
Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor.
A family of thioltransferases that contain two active site CYSTEINE residues, which either form a disulfide (oxidized form) or a dithiol (reduced form). They function as an electron carrier in the GLUTHIONE-dependent synthesis of deoxyribonucleotides by RIBONUCLEOTIDE REDUCTASES and may play a role in the deglutathionylation of protein thiols. The oxidized forms of glutaredoxins are directly reduced by the GLUTATHIONE.
Hydrogen-donating proteins that participates in a variety of biochemical reactions including ribonucleotide reduction and reduction of PEROXIREDOXINS. Thioredoxin is oxidized from a dithiol to a disulfide when acting as a reducing cofactor. The disulfide form is then reduced by NADPH in a reaction catalyzed by THIOREDOXIN REDUCTASE.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
A FLAVOPROTEIN oxidoreductase that occurs both as a soluble enzyme and a membrane-bound enzyme due to ALTERNATIVE SPLICING of a single mRNA. The soluble form is present mainly in ERYTHROCYTES and is involved in the reduction of METHEMOGLOBIN. The membrane-bound form of the enzyme is found primarily in the ENDOPLASMIC RETICULUM and outer mitochondrial membrane, where it participates in the desaturation of FATTY ACIDS; CHOLESTEROL biosynthesis and drug metabolism. A deficiency in the enzyme can result in METHEMOGLOBINEMIA.
Glucose-6-Phosphate Dehydrogenase (G6PD) is an enzyme that plays a critical role in the pentose phosphate pathway, catalyzing the oxidation of glucose-6-phosphate to 6-phosphoglucono-δ-lactone while reducing nicotinamide adenine dinucleotide phosphate (NADP+) to nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), thereby protecting cells from oxidative damage and maintaining redox balance.
A group of enzymes that oxidize diverse nitrogenous substances to yield nitrite. (Enzyme Nomenclature, 1992) EC 1.
A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials.
Compounds containing the -SH radical.
One of the enzymes active in the gamma-glutamyl cycle. It catalyzes the synthesis of gamma-glutamylcysteine from glutamate and cysteine in the presence of ATP with the formation of ADP and orthophosphate. EC 6.3.2.2.
A dithiocarbamate chemical, used commercially in the rubber processing industry and as a fungicide. In vivo studies indicate that it inactivates the enzyme GLUTATHIONE REDUCTASE. It has mutagenic activity and may induce chromosomal aberrations.
One of the enzymes active in the gamma-glutamyl cycle. It catalyzes the synthesis of glutathione from gamma-glutamylcysteine and glycine in the presence of ATP with the formation of ADP and orthophosphate. EC 6.3.2.3.
An enzyme that utilizes NADH or NADPH to reduce FLAVINS. It is involved in a number of biological processes that require reduced flavin for their functions such as bacterial bioluminescence. Formerly listed as EC 1.6.8.1 and EC 1.5.1.29.
A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4.
The rate dynamics in chemical or physical systems.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
An enzyme that catalyzes the oxidation and reduction of FERREDOXIN or ADRENODOXIN in the presence of NADP. EC 1.18.1.2 was formerly listed as EC 1.6.7.1 and EC 1.6.99.4.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An element with the atomic symbol Se, atomic number 34, and atomic weight 78.96. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE.
Cytochrome reductases are enzymes that catalyze the transfer of electrons from donor molecules to cytochromes in electron transport chains, playing a crucial role in cellular respiration and energy production within cells.
Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide to water, while oxidizing various organic and inorganic compounds, playing crucial roles in diverse biological processes including stress response, immune defense, and biosynthetic reactions.
An oral chrysotherapeutic agent for the treatment of rheumatoid arthritis. Its exact mechanism of action is unknown, but it is believed to act via immunological mechanisms and alteration of lysosomal enzyme activity. Its efficacy is slightly less than that of injected gold salts, but it is better tolerated, and side effects which occur are potentially less serious.
Peroxidases that utilize ASCORBIC ACID as an electron donor to reduce HYDROGEN PEROXIDE to WATER. The reaction results in the production of monodehydroascorbic acid and DEHYDROASCORBIC ACID.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A subtype of thioredoxin reductase found primarily in MITOCHONDRIA.
A sulfhydryl reagent which oxidizes sulfhydryl groups to the disulfide form. It is a radiation-sensitizing agent of anoxic bacterial and mammalian cells.
A skin irritant that may cause dermatitis of both primary and allergic types. Contact sensitization with DNCB has been used as a measure of cellular immunity. DNCB is also used as a reagent for the detection and determination of pyridine compounds.
A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant.
The dialdehyde of malonic acid.
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
A cell-cycle phase nonspecific alkylating antineoplastic agent. It is used in the treatment of brain tumors and various other malignant neoplasms. (From Martindale, The Extra Pharmacopoeia, 30th ed, p462) This substance may reasonably be anticipated to be a carcinogen according to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (From Merck Index, 11th ed)
A naturally occurring amino acid in both eukaryotic and prokaryotic organisms. It is found in tRNAs and in the catalytic site of some enzymes. The genes for glutathione peroxidase and formate dehydrogenase contain the TGA codon, which codes for this amino acid.
Methionine Sulfoximine is a toxic compound that functions as an inhibitor of methionine metabolism, being formed through the oxidation of methionine by the enzyme methionine sulfoxide reductase.
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of signal transduction and gene expression, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS.
Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties.
Low-molecular-weight end products, probably malondialdehyde, that are formed during the decomposition of lipid peroxidation products. These compounds react with thiobarbituric acid to form a fluorescent red adduct.
A glutathione transferase that catalyzes the conjugation of electrophilic substrates to GLUTATHIONE. This enzyme has been shown to provide cellular protection against redox-mediated damage by FREE RADICALS.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
An enzyme of the oxidoreductase class that catalyzes the reaction 7,8-dihyrofolate and NADPH to yield 5,6,7,8-tetrahydrofolate and NADPH+, producing reduced folate for amino acid metabolism, purine ring synthesis, and the formation of deoxythymidine monophosphate. Methotrexate and other folic acid antagonists used as chemotherapeutic drugs act by inhibiting this enzyme. (Dorland, 27th ed) EC 1.5.1.3.
Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A direct-acting oxidative stress-inducing agent used to examine the effects of oxidant stress on Ca(2+)-dependent signal transduction in vascular endothelial cells. It is also used as a catalyst in polymerization reactions and to introduce peroxy groups into organic molecules.
A flavoprotein amine oxidoreductase that catalyzes the reversible conversion of 5-methyltetrahydrofolate to 5,10-methylenetetrahydrofolate. This enzyme was formerly classified as EC 1.1.1.171.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed)
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Chemical agents that react with SH groups. This is a chemically diverse group that is used for a variety of purposes. Among these are enzyme inhibition, enzyme reactivation or protection, and labelling.
A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Reductases that catalyze the reaction of peptide-L-methionine -S-oxide + thioredoxin to produce peptide-L-methionine + thioredoxin disulfide + H(2)O.
An NAD-dependent enzyme that catalyzes the oxidation of nitrite to nitrate. It is a FLAVOPROTEIN that contains IRON and MOLYBDENUM and is involved in the first step of nitrate assimilation in PLANTS; FUNGI; and BACTERIA. It was formerly classified as EC 1.6.6.1.
NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol.
An enzyme of the oxidoreductase class that catalyzes the formation of 2'-deoxyribonucleotides from the corresponding ribonucleotides using NADPH as the ultimate electron donor. The deoxyribonucleoside diphosphates are used in DNA synthesis. (From Dorland, 27th ed) EC 1.17.4.1.
The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates.
A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine.
An enzyme of the transferase class that catalyzes the conversion of sedoheptulose 7-phosphate and D-glyceraldehyde 3-phosphate to D-ribose 5-phosphate and D-xylulose 5-phosphate in the PENTOSE PHOSPHATE PATHWAY. (Dorland, 27th ed) EC 2.2.1.1.
Compounds that inhibit HMG-CoA reductases. They have been shown to directly lower cholesterol synthesis.
The reversibly oxidized form of ascorbic acid. It is the lactone of 2,3-DIKETOGULONIC ACID and has antiscorbutic activity in man on oral ingestion.
Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion.
Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid.
A subclass of enzymes which includes all dehydrogenases acting on carbon-carbon bonds. This enzyme group includes all the enzymes that introduce double bonds into substrates by direct dehydrogenation of carbon-carbon single bonds.
A contact herbicide used also to produce desiccation and defoliation. (From Merck Index, 11th ed)
The appearance of carbonyl groups (such as aldehyde or ketone groups) in PROTEINS as the result of several oxidative modification reactions. It is a standard marker for OXIDATIVE STRESS. Carbonylated proteins tend to be more hydrophobic and resistant to proteolysis.
Flavoproteins are a type of protein molecule that contain noncovalently bound flavin mononucleotide or flavin adenine dinucleotide as cofactors, involved in various redox reactions and metabolic pathways, such as electron transfer, energy production, and DNA repair.
Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION).
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
'Benzene derivatives' are organic compounds that contain a benzene ring as the core structure, with various functional groups attached to it, and can have diverse chemical properties and uses, including as solvents, intermediates in chemical synthesis, and pharmaceuticals.
An enzyme that catalyzes the reduction of 6,7-dihydropteridine to 5,6,7,8-tetrahydropteridine in the presence of NADP+. Defects in the enzyme are a cause of PHENYLKETONURIA II. Formerly listed as EC 1.6.99.7.
Agents that act systemically to kill adult schistosomes.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Proteins prepared by recombinant DNA technology.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
Salts of chromic acid containing the CrO(2-)4 radical.
Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.
The disodium salt of selenious acid. It is used therapeutically to supply the trace element selenium and is prepared by the reaction of SELENIUM DIOXIDE with SODIUM HYDROXIDE.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
An oxidative decarboxylation process that converts GLUCOSE-6-PHOSPHATE to D-ribose-5-phosphate via 6-phosphogluconate. The pentose product is used in the biosynthesis of NUCLEIC ACIDS. The generated energy is stored in the form of NADPH. This pathway is prominent in tissues which are active in the synthesis of FATTY ACIDS and STEROIDS.
A plant genus of the family LAMIACEAE that contains isoscutellarein-7-O-(allosyl(1-2)glucoside).
Organic compounds which contain selenium as an integral part of the molecule.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
An enzyme that catalyzes the interconversion of methylglyoxal and lactate, with glutathione serving as a coenzyme. EC 4.4.1.5.
A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
Inorganic compounds that contain sodium as an integral part of the molecule.
The sum of the weight of all the atoms in a molecule.
An NAD-dependent enzyme that catalyzes the oxidation of acyl-[acyl-carrier protein] to trans-2,3-dehydroacyl-[acyl-carrier protein]. It has a preference for acyl groups with a carbon chain length between 4 to 16.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A poisonous dipyridilium compound used as contact herbicide. Contact with concentrated solutions causes irritation of the skin, cracking and shedding of the nails, and delayed healing of cuts and wounds.
A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility.
The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The relationship between the dose of an administered drug and the response of the organism to the drug.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Synthetic or natural substances which are given to prevent a disease or disorder or are used in the process of treating a disease or injury due to a poisonous agent.
A non-selective post-emergence, translocated herbicide. According to the Seventh Annual Report on Carcinogens (PB95-109781, 1994) this substance may reasonably be anticipated to be a carcinogen. (From Merck Index, 12th ed) It is an irreversible inhibitor of CATALASE, and thus impairs activity of peroxisomes.
A trace element that plays a role in glucose metabolism. It has the atomic symbol Cr, atomic number 24, and atomic weight 52. According to the Fourth Annual Report on Carcinogens (NTP85-002,1985), chromium and some of its compounds have been listed as known carcinogens.
An anti-inflammatory agent used in the treatment of rheumatoid arthritis. It also has uricosuric properties and has been used to treat gout.
Organic compounds containing a carbonyl group in the form -CHO.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols.
**Maleates** are organic compounds that contain a carboxylic acid group and a hydroxyl group attached to adjacent carbon atoms, often used as intermediates in the synthesis of pharmaceuticals and other chemicals, or as drugs themselves, such as maleic acid or its salts.
Oxidoreductases with specificity for oxidation or reduction of SULFUR COMPOUNDS.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
Nucleic acid which complements a specific mRNA or DNA molecule, or fragment thereof; used for hybridization studies in order to identify microorganisms and for genetic studies.
Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated.

Increased oxidative stress in the RAW 264.7 macrophage cell line is partially mediated via the S-nitrosothiol-induced inhibition of glutathione reductase. (1/890)

We investigated whether endogenously or exogenously produced nitric oxide (NO) can inhibit cellular glutathione reductase (GR) via the formation of S-nitrosothiols to decrease cellular glutathione (GSH) and increase oxidative stress in RAW 264.7 cells. The specificity of this inhibition was demonstrated by addition of a NO-synthase inhibitor, and met- or oxyhemoglobin. Using isolated GR we found that only certain NO donors inhibit this enzyme via S-nitrosothiol. Furthermore, we found that cellular GSH decrease is paralleled by an increase of superoxide anion production. Our results show that the GR enzyme is a potential target of S-nitrosothiols to decrease cellular GSH levels and to induce oxidative stress in macrophages.  (+info)

Purification of a glutathione S-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in Rhodococcus sp. strain AD45. (2/890)

A glutathione S-transferase (GST) with activity toward 1, 2-epoxy-2-methyl-3-butene (isoprene monoxide) and cis-1, 2-dichloroepoxyethane was purified from the isoprene-utilizing bacterium Rhodococcus sp. strain AD45. The homodimeric enzyme (two subunits of 27 kDa each) catalyzed the glutathione (GSH)-dependent ring opening of various epoxides. At 5 mM GSH, the enzyme followed Michaelis-Menten kinetics for isoprene monoxide and cis-1, 2-dichloroepoxyethane, with Vmax values of 66 and 2.4 micromol min-1 mg of protein-1 and Km values of 0.3 and 0.1 mM for isoprene monoxide and cis-1,2-dichloroepoxyethane, respectively. Activities increased linearly with the GSH concentration up to 25 mM. 1H nuclear magnetic resonance spectroscopy showed that the product of GSH conjugation to isoprene monoxide was 1-hydroxy-2-glutathionyl-2-methyl-3-butene (HGMB). Thus, nucleophilic attack of GSH occurred on the tertiary carbon atom of the epoxide ring. HGMB was further converted by an NAD+-dependent dehydrogenase, and this enzyme was also purified from isoprene-grown cells. The homodimeric enzyme (two subunits of 25 kDa each) showed a high activity for HGMB, whereas simple primary and secondary alcohols were not oxidized. The enzyme catalyzed the sequential oxidation of the alcohol function to the corresponding aldehyde and carboxylic acid and followed Michaelis-Menten kinetics with respect to NAD+ and HGMB. The results suggest that the initial steps in isoprene metabolism are a monooxygenase-catalyzed conversion to isoprene monoxide, a GST-catalyzed conjugation to HGMB, and a dehydrogenase-catalyzed two-step oxidation to 2-glutathionyl-2-methyl-3-butenoic acid.  (+info)

Antioxidant mechanisms in apolipoprotein E deficient mice prior to and following closed head injury. (3/890)

Apolipoprotein E deficient mice have distinct memory deficits and neurochemical derangements and their recovery from closed head injury is impaired. In the present study, we examined the possibility that the neuronal derangements of apolipoprotein E deficient mice are associated with oxidative stress, which in turn affects their ability to recover from close head injury. It was found that brain phospholipid levels in apolipoprotein E deficient mice are lower than those of the controls (55+/-15% of control, P<0. 01), that the cholesterol levels of the two mice groups are similar and that the levels of conjugated dienes of the apolipoprotein E deficient mice are higher than those of control mice (132+/-15% of P<0.01). Brains of apolipoprotein E deficient mice had higher Mn-superoxide dismutase (134+/-7%), catalase (122+/-8%) and glutathione reductase (167+/-7%) activities than control (P<0.01), whereas glutathione peroxidase activity and the levels of reduced glutathione and ascorbic acid were similar in the two mouse groups. Closed head injury increased catalase and glutathione peroxidase activities in both mouse groups, whereas glutathione reductase increased only in control mice. The superoxide dismutase activity was unaffected in both groups. These findings suggest that the antioxidative metabolism of apolipoprotein E deficient mice is altered both prior to and following head injury and that antioxidative mechanisms may play a role in mediating the neuronal maintenance and repair derangements of the apolipoprotein E deficient mice.  (+info)

Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. (4/890)

The purpose of this study was to investigate the hypothesis that paraquat pulmonary toxicity results from cyclic reduction-oxidation of paraquat with sequential generation of superoxide radicals and singlet oxygen and initiation of lipid peroxidation. In vitro mouse lung microsomes catalyzed an NADPH-dependent, single-electron reduction of paraquat. Incubation of paraquat with NADPH, NADPH-cytochrome c reductase, and purified microsomal lipid increased malondialdehyde production is a concentration dependent manner. Addition of either superoxide dismutase or a single oxygen trapping agent 1,3-dipheylisobenzo furan inhibited paraquat stimulated lipid peroxidation. In vivo, pretreatment of mice with phenobarbital decreased paraquat toxicity, possibly by competing for electrons which might otherwise reduce paraquat. In contrast, paraquat toxicity in mice was increased by exposure to 100% oxygen and by deficiencies of the antioxidants selenium, vitamin E, or reduced glutahione (GSH). Paraquat, given IP to mice, at 30 mg/kg, decreased concentrations of the water-soluble antioxidant GSH in liver and lipid soluble antioxidants in lung. Oxygen-tolerant rats, which hae increased activities of pulmonary enzymes which combat lipid peroxidation, were also tolerant to lethal doses of paraquat as indicated by an increased paraquat LT50. Furthermore, rats chronically exposed to 100 ppm paraquat in the water had elevated pulmonary activities of glucose-6-phosphate dehydrogenase and GSH reductase. These results were consistent with the hypothesis that lipid peroxidation is involved in the toxicity of paraquat.  (+info)

Proatherogenic and antiatherogenic effects of probucol and phytosterols in apolipoprotein E-deficient mice: possible mechanisms of action. (5/890)

BACKGROUND: The effects of probucol and a phytosterol mixture (FCP-3PI) on atherosclerotic lesion formation, plasma lipoproteins, hepatic and lipoprotein lipase activities, antioxidant enzyme activities, and plasma fibrinogen were investigated in apolipoprotein E-knockout (apoE-KO) mice. METHODS AND RESULTS: Three groups of 8 mice were fed a diet containing 9% (wt/wt) fat (controls) or the foregoing diet supplemented with either 1% (wt/wt) probucol (the probucol group) or 2% (wt/wt) FCP-3PI (the FCP-3PI group) for 20 weeks. Compared with controls, atherosclerotic lesion size was 3 times greater in the probucol group, whereas it was decreased by half in the FCP-3PI group. Probucol treatment resulted in high plasma probucol concentrations, which correlated (r=0.69) with the lesion area. HDL cholesterol was reduced (>75%) in the probucol group and slightly increased (14%) in the FCP-3PI-treated group. Postheparin lipoprotein lipase (LPL) activity was significantly reduced in both treatment groups, but only FCP-3PI significantly decreased hepatic lipase activity. Plasma fibrinogen was increased 42% by probucol and decreased 19% by FCP-3PI relative to controls. Probucol significantly increased plasma glutathione reductase, glutathione peroxidase, and superoxide dismutase activities (P<0.05). In contrast to findings in apoE-KO mice, there was no probucol-induced atherosclerosis in their wild-type counterparts fed the same dose for the same period of time. CONCLUSIONS: Antiatherogenic activity of FCP-3PI in apoE-KO mice is associated with an increase in HDL cholesterol concentration along with decreases in hepatic lipase activity and plasma fibrinogen concentrations. Proatherogenic effects of probucol may be related to increased plasma fibrinogen, decreased HDL cholesterol concentrations along with decreased LPL activity, or its direct "toxicity" due to very high plasma concentration. Our studies demonstrate that the antioxidant and cholesterol-lowering properties of probucol do not prevent atherogenesis in this particular animal model.  (+info)

Alpha-lipoic acid supplementation: tissue glutathione homeostasis at rest and after exercise. (6/890)

Antioxidant nutrients have demonstrated potential in protecting against exercise-induced oxidative stress. alpha-Lipoic acid (LA) is a proglutathione dietary supplement that is known to strengthen the antioxidant network. We studied the effect of intragastric LA supplementation (150 mg/kg, 8 wk) on tissue LA levels, glutathione metabolism, and lipid peroxidation in rats at rest and after exhaustive treadmill exercise. LA supplementation increased the level of free LA in the red gastrocnemius muscle and increased total glutathione levels in the liver and blood. The exercise-induced decrease in heart glutathione S-transferase activity was prevented by LA supplementation. Exhaustive exercise significantly increased thiobarbituric acid-reactive substance levels in the liver and red gastrocnemius muscle. LA supplementation protected against oxidative lipid damage in the heart, liver, and red gastrocnemius muscle. This study reports that orally supplemented LA is able to favorably influence tissue antioxidant defenses and counteract lipid peroxidation at rest and in response to exercise.  (+info)

Microinjected glutathione reductase crystals as indicators of the redox status in living cells. (7/890)

The flavoenzyme glutathione reductase catalyses electron transfer reactions between two major intracellular redox buffers, namely the NADPH/NADP+ couple and the 2 glutathione/glutathione disulfide couple. On this account, microcrystals of the enzyme were tested as redox probes of intracellular compartments. For introducing protein crystals into human fibroblasts, different methods (microinjection, particle bombardment and optical tweezers) were explored and compared. When glutathione reductase crystals are present in a cytosolic environment, the transition of the yellow Eox form to the orange-red 2-electron reduced charge transfer form, EH2, is observed. Taking into account the midpoint potential of the Eox/EH2 couple, the redox potential of the cytosol was found to be < -270 mV at pH 7.4 and 37 degrees C. As a general conclusion, competent proteins in crystalline--that is signal-amplifying--form are promising probes for studying intracellular events.  (+info)

Nordihydroguairetic acid is a potent inhibitor of ferric-nitrilotriacetate-mediated hepatic and renal toxicity, and renal tumour promotion, in mice. (8/890)

Ferric-nitrilotriacetate (Fe-NTA) is a known renal carcinogen. In the present study, we report the effect of a potent lignin-derived herbal antioxidant, nordihydroguairetic acid (NDGA), against Fe-NTA-mediated tissue toxicity. Fe-NTA (alone) treatment of mice enhances ornithine decarboxylase activity to 259% in liver and 341% in kidney and increases [3H]thymidine incorporation in DNA to 250% in liver and 324% in kidney compared with the corresponding saline-treated controls. The enhanced ornithine decarboxylase activity and DNA synthesis showed a reduction to 138 and 123%, respectively, in liver at a higher dose of 2 mg NDGA/day/animal whereas in kidney the reduction was to 118 and 102%, respectively, compared with the corresponding saline-treated controls. In the Fe-NTA (alone)-treated group, a 12% renal tumour incidence was recorded whereas, in N-diethylnitrosamine (DEN)-initiated and Fe-NTA-promoted animals, the percentage tumour incidence was increased to 68% as compared with untreated controls. No tumour incidence was recorded in the DEN-initiated, non-promoted group. The administration of NDGA, afforded >80% protection against DEN- and Fe-NTA-mediated renal tissue injury in vivo. Fe-NTA treatment also enhanced hepatic and renal microsomal lipid peroxidation to 170 and 205% of saline-treated controls, respectively, and hydrogen peroxide generation by >2.5-fold in both tissues accompanied by a 51 and 21% decrease in the level of glutathione and 35-48 and 35-50% decrease in the activities of glutathione-metabolizing and antioxidant enzymes in liver and kidney, respectively. These changes were reversed significantly in animals receiving a pre-treatment of NDGA. Our data show that NDGA can abrogate the toxic and tumour-promoting effects of Fe-NTA in liver and kidney of mice and can serve as a potent chemopreventive agent to suppress oxidant-induced tissue injury and tumorigenesis.  (+info)

Glutathione reductase (GR) is an enzyme that plays a crucial role in maintaining the cellular redox state. The primary function of GR is to reduce oxidized glutathione (GSSG) to its reduced form (GSH), which is an essential intracellular antioxidant. This enzyme utilizes nicotinamide adenine dinucleotide phosphate (NADPH) as a reducing agent in the reaction, converting it to NADP+. The medical definition of Glutathione Reductase is:

Glutathione reductase (GSR; EC 1.8.1.7) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) in the presence of NADPH as a cofactor. This enzyme is essential for maintaining the cellular redox balance and protecting cells from oxidative stress by regenerating the active form of glutathione, a vital antioxidant and detoxifying agent.

Glutathione is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It is a vital antioxidant that plays an essential role in maintaining cellular health and function. Glutathione helps protect cells from oxidative stress by neutralizing free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer, heart disease, and dementia. It also supports the immune system, detoxifies harmful substances, and regulates various cellular processes, including DNA synthesis and repair.

Glutathione is found in every cell of the body, with particularly high concentrations in the liver, lungs, and eyes. The body can produce its own glutathione, but levels may decline with age, illness, or exposure to toxins. As such, maintaining optimal glutathione levels through diet, supplementation, or other means is essential for overall health and well-being.

Glutathione peroxidase (GPx) is a family of enzymes with peroxidase activity whose main function is to protect the organism from oxidative damage. They catalyze the reduction of hydrogen peroxide, lipid peroxides, and organic hydroperoxides to water or corresponding alcohols, using glutathione (GSH) as a reducing agent, which is converted to its oxidized form (GSSG). There are several isoforms of GPx found in different tissues, including GPx1 (also known as cellular GPx), GPx2 (gastrointestinal GPx), GPx3 (plasma GPx), GPx4 (also known as phospholipid hydroperoxide GPx), and GPx5-GPx8. These enzymes play crucial roles in various biological processes, such as antioxidant defense, cell signaling, and apoptosis regulation.

Glutathione disulfide (GSSG) is the oxidized form of glutathione (GSH), which is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It plays a crucial role in maintaining cellular redox homeostasis by scavenging free radicals and reactive oxygen species (ROS) in the body.

Glutathione exists in two forms - reduced (GSH) and oxidized (GSSG). In the reduced form, glutathione has a sulfhydryl group (-SH), which can donate an electron to neutralize free radicals and ROS. When glutathione donates an electron, it becomes oxidized and forms glutathione disulfide (GSSG).

Glutathione disulfide is a dimer of two glutathione molecules linked by a disulfide bond (-S-S-) between the sulfur atoms of their cysteine residues. The body can recycle GSSG back to its reduced form (GSH) through the action of an enzyme called glutathione reductase, which requires NADPH as a reducing agent.

Maintaining a proper balance between GSH and GSSG is essential for cellular health, as it helps regulate various physiological processes such as DNA synthesis, gene expression, immune function, and apoptosis (programmed cell death). An imbalance in glutathione homeostasis can lead to oxidative stress, inflammation, and the development of various diseases.

Glutathione transferases (GSTs) are a group of enzymes involved in the detoxification of xenobiotics and endogenous compounds. They facilitate the conjugation of these compounds with glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, which results in more water-soluble products that can be easily excreted from the body.

GSTs play a crucial role in protecting cells against oxidative stress and chemical injury by neutralizing reactive electrophilic species and peroxides. They are found in various tissues, including the liver, kidneys, lungs, and intestines, and are classified into several families based on their structure and function.

Abnormalities in GST activity have been associated with increased susceptibility to certain diseases, such as cancer, neurological disorders, and respiratory diseases. Therefore, GSTs have become a subject of interest in toxicology, pharmacology, and clinical research.

Thioredoxin-disulfide reductase (Txnrd, TrxR) is an enzyme that belongs to the pyridine nucleotide-disulfide oxidoreductase family. It plays a crucial role in maintaining the intracellular redox balance by reducing disulfide bonds in proteins and keeping them in their reduced state. This enzyme utilizes NADPH as an electron donor to reduce thioredoxin (Trx), which then transfers its electrons to various target proteins, thereby regulating their activity, protein folding, and antioxidant defense mechanisms.

Txnrd is essential for several cellular processes, including DNA synthesis, gene expression, signal transduction, and protection against oxidative stress. Dysregulation of Txnrd has been implicated in various pathological conditions, such as cancer, neurodegenerative diseases, and inflammatory disorders. Therefore, understanding the function and regulation of this enzyme is of great interest for developing novel therapeutic strategies.

Riboflavin deficiency, also known as ariboflavinosis, is a condition that results from inadequate intake or absorption of riboflavin (vitamin B2). This vitamin plays a crucial role in energy production, cellular function, growth, and development.

The medical definition of riboflavin deficiency includes the following symptoms:

1. Fatigue and weakness due to impaired energy production
2. Swelling and inflammation of the mouth and tongue, which can lead to painful lesions, soreness, and a smooth red tongue (glossitis)
3. Angular cheilosis - cracks at the corners of the mouth
4. Skin disorders such as seborrheic dermatitis, characterized by scaly, itchy, or greasy skin around the nose, eyebrows, ears, and genital area
5. Anemia due to impaired synthesis of heme (the iron-containing component of hemoglobin)
6. Impaired vision, particularly in low light conditions, due to damage to the light-sensitive cells in the eyes (photosensitivity)
7. Nerve damage and degeneration leading to neurological symptoms such as numbness, tingling, or burning sensations in the hands and feet
8. Slowed growth and development in children
9. Increased susceptibility to infections due to impaired immune function

Riboflavin deficiency is usually seen in individuals with poor nutrition, alcoholism, or those who have conditions affecting nutrient absorption, such as celiac disease or inflammatory bowel disease. Additionally, certain medications and pregnancy may increase the risk of riboflavin deficiency.

NADP (Nicotinamide Adenine Dinucleotide Phosphate) is a coenzyme that plays a crucial role as an electron carrier in various redox reactions in the human body. It exists in two forms: NADP+, which functions as an oxidizing agent and accepts electrons, and NADPH, which serves as a reducing agent and donates electrons.

NADPH is particularly important in anabolic processes, such as lipid and nucleotide synthesis, where it provides the necessary reducing equivalents to drive these reactions forward. It also plays a critical role in maintaining the cellular redox balance by participating in antioxidant defense mechanisms that neutralize harmful reactive oxygen species (ROS).

In addition, NADP is involved in various metabolic pathways, including the pentose phosphate pathway and the Calvin cycle in photosynthesis. Overall, NADP and its reduced form, NADPH, are essential molecules for maintaining proper cellular function and energy homeostasis.

Riboflavin, also known as vitamin B2, is a water-soluble vitamin that plays a crucial role in energy production and cellular function, growth, and development. It is essential for the metabolism of carbohydrates, fats, and proteins, and it helps to maintain healthy skin, hair, and nails. Riboflavin is involved in the production of energy by acting as a coenzyme in various redox reactions. It also contributes to the maintenance of the mucous membranes of the digestive tract and promotes iron absorption.

Riboflavin can be found in a variety of foods, including milk, cheese, leafy green vegetables, liver, kidneys, legumes, yeast, mushrooms, and almonds. It is sensitive to light and heat, so exposure to these elements can lead to its degradation and loss of vitamin activity.

Deficiency in riboflavin is rare but can occur in individuals with poor dietary intake or malabsorption disorders. Symptoms of riboflavin deficiency include inflammation of the mouth and tongue, anemia, skin disorders, and neurological symptoms such as confusion and mood changes. Riboflavin supplements are available for those who have difficulty meeting their daily requirements through diet alone.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Catalase is a type of enzyme that is found in many living organisms, including humans. Its primary function is to catalyze the decomposition of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect cells from the harmful effects of hydrogen peroxide, which can be toxic at high concentrations.

The chemical reaction catalyzed by catalase can be represented as follows:

H2O2 + Catalase → H2O + O2 + Catalase

Catalase is a powerful antioxidant enzyme that plays an important role in protecting cells from oxidative damage. It is found in high concentrations in tissues that produce or are exposed to hydrogen peroxide, such as the liver, kidneys, and erythrocytes (red blood cells).

Deficiency in catalase activity has been linked to several diseases, including cancer, neurodegenerative disorders, and aging. On the other hand, overexpression of catalase has been shown to have potential therapeutic benefits in various disease models, such as reducing inflammation and oxidative stress.

Antioxidants are substances that can prevent or slow damage to cells caused by free radicals, which are unstable molecules that the body produces as a reaction to environmental and other pressures. Antioxidants are able to neutralize free radicals by donating an electron to them, thus stabilizing them and preventing them from causing further damage to the cells.

Antioxidants can be found in a variety of foods, including fruits, vegetables, nuts, and grains. Some common antioxidants include vitamins C and E, beta-carotene, and selenium. Antioxidants are also available as dietary supplements.

In addition to their role in protecting cells from damage, antioxidants have been studied for their potential to prevent or treat a number of health conditions, including cancer, heart disease, and age-related macular degeneration. However, more research is needed to fully understand the potential benefits and risks of using antioxidant supplements.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Nitrate reductases are a group of enzymes that catalyze the reduction of nitrate (NO3-) to nitrite (NO2-). This process is an essential part of the nitrogen cycle, where nitrate serves as a terminal electron acceptor in anaerobic respiration for many bacteria and archaea. In plants, this enzyme plays a crucial role in nitrogen assimilation by reducing nitrate to ammonium (NH4+), which can then be incorporated into organic compounds. Nitrate reductases require various cofactors, such as molybdenum, heme, and/or FAD, for their activity. There are three main types of nitrate reductases: membrane-bound (which use menaquinol as an electron donor), cytoplasmic (which use NADH or NADPH as an electron donor), and assimilatory (which also use NADH or NADPH as an electron donor).

Dihydrolipoamide dehydrogenase (DHLD) is an enzyme that plays a crucial role in several important metabolic pathways in the human body, including the citric acid cycle and the catabolism of certain amino acids. DHLD is a component of multi-enzyme complexes, such as the pyruvate dehydrogenase complex (PDC) and the alpha-ketoglutarate dehydrogenase complex (KGDC).

The primary function of DHLD is to catalyze the oxidation of dihydrolipoamide, a reduced form of lipoamide, back to its oxidized state (lipoamide) while simultaneously reducing NAD+ to NADH. This reaction is essential for the continued functioning of the PDC and KGDC, as dihydrolipoamide is a cofactor for these enzyme complexes.

Deficiencies in DHLD can lead to serious metabolic disorders, such as maple syrup urine disease (MSUD) and riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD). These conditions can result in neurological symptoms, developmental delays, and metabolic acidosis, among other complications. Treatment typically involves dietary modifications, supplementation with specific nutrients, and, in some cases, enzyme replacement therapy.

NADH, NADPH oxidoreductases are a class of enzymes that catalyze the redox reaction between NADH or NADPH and various electron acceptors. These enzymes play a crucial role in cellular metabolism by transferring electrons from NADH or NADPH to other molecules, which is essential for many biochemical reactions.

NADH (nicotinamide adenine dinucleotide hydrogen) and NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) are coenzymes that act as electron carriers in redox reactions. They consist of a nicotinamide ring, which undergoes reduction or oxidation by accepting or donating electrons and a proton (H+).

NADH, NADPH oxidoreductases are classified based on their structure and mechanism of action. Some examples include:

1. Dehydrogenases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing an organic substrate. Examples include lactate dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase.
2. Oxidases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing molecular oxygen (O2) to water (H2O). Examples include NADH oxidase and NADPH oxidase.
3. Reductases: These enzymes catalyze the reduction of various electron acceptors using NADH or NADPH as a source of electrons. Examples include glutathione reductase, thioredoxin reductase, and nitrate reductase.

Overall, NADH, NADPH oxidoreductases are essential for maintaining the redox balance in cells and play a critical role in various metabolic pathways, including energy production, detoxification, and biosynthesis.

Flavin-Adenine Dinucleotide (FAD) is a coenzyme that plays a crucial role in various metabolic processes, particularly in the electron transport chain where it functions as an electron carrier in oxidation-reduction reactions. FAD is composed of a flavin moiety, riboflavin or vitamin B2, and adenine dinucleotide. It can exist in two forms: an oxidized form (FAD) and a reduced form (FADH2). The reduction of FAD to FADH2 involves the gain of two electrons and two protons, which is accompanied by a significant conformational change that allows FADH2 to donate its electrons to subsequent components in the electron transport chain, ultimately leading to the production of ATP, the main energy currency of the cell.

Medical Definition:

Superoxide dismutase (SOD) is an enzyme that catalyzes the dismutation of superoxide radicals (O2-) into oxygen (O2) and hydrogen peroxide (H2O2). This essential antioxidant defense mechanism helps protect the body's cells from damage caused by reactive oxygen species (ROS), which are produced during normal metabolic processes and can lead to oxidative stress when their levels become too high.

There are three main types of superoxide dismutase found in different cellular locations:
1. Copper-zinc superoxide dismutase (CuZnSOD or SOD1) - Present mainly in the cytoplasm of cells.
2. Manganese superoxide dismutase (MnSOD or SOD2) - Located within the mitochondrial matrix.
3. Extracellular superoxide dismutase (EcSOD or SOD3) - Found in the extracellular spaces, such as blood vessels and connective tissues.

Imbalances in SOD levels or activity have been linked to various pathological conditions, including neurodegenerative diseases, cancer, and aging-related disorders.

Hydroxymethylglutaryl CoA (HMG-CoA) reductase is an enzyme that plays a crucial role in the synthesis of cholesterol in the body. It is found in the endoplasmic reticulum of cells and catalyzes the conversion of HMG-CoA to mevalonic acid, which is a key rate-limiting step in the cholesterol biosynthetic pathway.

The reaction catalyzed by HMG-CoA reductase is as follows:

HMG-CoA + 2 NADPH + 2 H+ → mevalonic acid + CoA + 2 NADP+

This enzyme is the target of statin drugs, which are commonly prescribed to lower cholesterol levels in the treatment of cardiovascular diseases. Statins work by inhibiting HMG-CoA reductase, thereby reducing the production of cholesterol in the body.

Ribonucleotide Reductases (RNRs) are enzymes that play a crucial role in DNA synthesis and repair. They catalyze the conversion of ribonucleotides to deoxyribonucleotides, which are the building blocks of DNA. This process involves the reduction of the 2'-hydroxyl group of the ribose sugar to a hydrogen, resulting in the formation of deoxyribose.

RNRs are highly regulated and exist in various forms across different species. They are divided into three classes (I, II, and III) based on their structure, mechanism, and cofactor requirements. Class I RNRs are further divided into two subclasses (Ia and Ib), which differ in their active site architecture and regulation.

Class Ia RNRs, found in eukaryotes and some bacteria, contain a stable tyrosyl radical that acts as the catalytic center for hydrogen abstraction. Class Ib RNRs, found in many bacteria, use a pair of iron centers to perform the same function. Class II RNRs are present in some bacteria and archaea and utilize adenosine triphosphate (ATP) as a cofactor for reduction. Class III RNRs, found in anaerobic bacteria and archaea, use a unique mechanism involving a radical S-adenosylmethionine (SAM) cofactor to facilitate the reduction reaction.

RNRs are essential for DNA replication and repair, and their dysregulation has been linked to various diseases, including cancer and neurodegenerative disorders. Therefore, understanding the structure, function, and regulation of RNRs is of great interest in biochemistry, molecular biology, and medicine.

Thioredoxin Reductase 1 (TXNRD1) is an enzyme that belongs to the thioredoxin reductase family. It is a homodimeric flavoprotein that contains a selenocysteine residue at its active site, which is essential for its catalytic activity.

The primary function of TXNRD1 is to reduce and regenerate the oxidized form of thioredoxin (TXN) by using NADPH as an electron donor. Thioredoxin is a small protein that plays a crucial role in maintaining the redox balance within the cell by regulating various cellular processes, such as DNA synthesis, gene expression, and apoptosis.

TXNRD1 is widely expressed in various tissues and is localized in the cytosol of the cell. It has been implicated in several physiological and pathological processes, including inflammation, oxidative stress, cancer, and neurodegenerative diseases. Inhibition of TXNRD1 has been shown to have potential therapeutic benefits in various disease models, making it an attractive target for drug development.

Buthionine Sulfoximine (BSO) is a chemical compound that is known to inhibit the enzyme gamma-glutamylcysteine synthetase, which plays a crucial role in the production of glutathione, a powerful antioxidant in the body. By inhibiting this enzyme, BSO can deplete glutathione levels in cells, making it a useful tool in research to study the effects of glutathione depletion on various biological processes. It is often used in laboratory experiments and clinical trials for its potential therapeutic benefits in cancer treatment and other diseases associated with oxidative stress. However, its use as a therapeutic agent is still being investigated and has not yet been approved by regulatory agencies for widespread clinical use.

Lipid peroxidation is a process in which free radicals, such as reactive oxygen species (ROS), steal electrons from lipids containing carbon-carbon double bonds, particularly polyunsaturated fatty acids (PUFAs). This results in the formation of lipid hydroperoxides, which can decompose to form a variety of compounds including reactive carbonyl compounds, aldehydes, and ketones.

Malondialdehyde (MDA) is one such compound that is commonly used as a marker for lipid peroxidation. Lipid peroxidation can cause damage to cell membranes, leading to changes in their fluidity and permeability, and can also result in the modification of proteins and DNA, contributing to cellular dysfunction and ultimately cell death. It is associated with various pathological conditions such as atherosclerosis, neurodegenerative diseases, and cancer.

Glutaredoxins (Grxs) are small, ubiquitous proteins that belong to the thioredoxin superfamily. They play a crucial role in maintaining the redox balance within cells by catalyzing the reversible reduction of disulfide bonds and mixed disulfides between protein thiols and low molecular weight compounds, using glutathione (GSH) as a reducing cofactor.

Glutaredoxins are involved in various cellular processes, such as:

1. DNA synthesis and repair
2. Protein folding and degradation
3. Antioxidant defense
4. Regulation of enzyme activities
5. Iron-sulfur cluster biogenesis

There are two main classes of glutaredoxins, Grx1 and Grx2, which differ in their active site sequences and functions. In humans, Grx1 is primarily located in the cytosol, while Grx2 is found in both the cytosol and mitochondria.

The medical relevance of glutaredoxins lies in their role as antioxidant proteins that protect cells from oxidative stress and maintain cellular redox homeostasis. Dysregulation of glutaredoxin function has been implicated in several pathological conditions, including neurodegenerative diseases, cancer, and aging-related disorders.

Thioredoxins are a group of small proteins that contain a redox-active disulfide bond and play a crucial role in the redox regulation of cellular processes. They function as electron donors and help to maintain the intracellular reducing environment by reducing disulfide bonds in other proteins, thereby regulating their activity. Thioredoxins also have antioxidant properties and protect cells from oxidative stress by scavenging reactive oxygen species (ROS) and repairing oxidatively damaged proteins. They are widely distributed in various organisms, including bacteria, plants, and animals, and are involved in many physiological processes such as DNA synthesis, protein folding, and apoptosis.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), also known as Glucosephosphate Dehydrogenase, is an enzyme that plays a crucial role in cellular metabolism, particularly in the glycolytic pathway. It catalyzes the conversion of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG), while also converting nicotinamide adenine dinucleotide (NAD+) to its reduced form NADH. This reaction is essential for the production of energy in the form of adenosine triphosphate (ATP) during cellular respiration. GAPDH has been widely used as a housekeeping gene in molecular biology research due to its consistent expression across various tissues and cells, although recent studies have shown that its expression can vary under certain conditions.

Nitrite reductases are a group of enzymes that catalyze the reduction of nitrite (NO2-) to nitric oxide (NO). This reaction is an important part of the nitrogen cycle, particularly in denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes. Nitrite reductases can be classified into two main types based on their metal co-factors: copper-containing nitrite reductases (CuNiRs) and cytochrome cd1 nitrite reductases. CuNiRs are typically found in bacteria and fungi, while cytochrome cd1 nitrite reductases are primarily found in bacteria. These enzymes play a crucial role in the global nitrogen cycle and have potential implications for environmental and medical research.

Hydrogen peroxide (H2O2) is a colorless, odorless, clear liquid with a slightly sweet taste, although drinking it is harmful and can cause poisoning. It is a weak oxidizing agent and is used as an antiseptic and a bleaching agent. In diluted form, it is used to disinfect wounds and kill bacteria and viruses on the skin; in higher concentrations, it can be used to bleach hair or remove stains from clothing. It is also used as a propellant in rocketry and in certain industrial processes. Chemically, hydrogen peroxide is composed of two hydrogen atoms and two oxygen atoms, and it is structurally similar to water (H2O), with an extra oxygen atom. This gives it its oxidizing properties, as the additional oxygen can be released and used to react with other substances.

Sulfhydryl compounds, also known as thiol compounds, are organic compounds that contain a functional group consisting of a sulfur atom bonded to a hydrogen atom (-SH). This functional group is also called a sulfhydryl group. Sulfhydryl compounds can be found in various biological systems and play important roles in maintaining the structure and function of proteins, enzymes, and other biomolecules. They can also act as antioxidants and help protect cells from damage caused by reactive oxygen species. Examples of sulfhydryl compounds include cysteine, glutathione, and coenzyme A.

Glutamate-cysteine ligase (GCL) is an essential enzyme in the biosynthesis of glutathione, a major antioxidant in cells. It catalyzes the reaction between glutamate and cysteine to form γ-glutamylcysteine, which is then combined with glycine by glutathione synthetase to produce glutathione.

GCL has two subunits: a catalytic subunit (GCLC) and a modulatory subunit (GCLM). The former contains the active site for the formation of the peptide bond between glutamate and cysteine, while the latter regulates the activity of GCLC by affecting its sensitivity to feedback inhibition by glutathione.

The proper functioning of GCL is critical for maintaining cellular redox homeostasis and protecting against oxidative stress, making it a potential target for therapeutic intervention in various diseases associated with oxidative damage, such as neurodegenerative disorders, cancer, and aging-related conditions.

Thiram is not typically considered a medical term, but it is a chemical compound that has been used in some medical and healthcare settings. Thiram is an organic compound that belongs to the class of chemicals known as dithiocarbamates. It is primarily used as a fungicide to prevent fungal growth on crops such as potatoes, beans, and nuts.

In medical contexts, thiram has been used in some topical creams and ointments as an antifungal agent to treat skin conditions like athlete's foot and ringworm. However, its use in medicine is relatively limited due to concerns about its potential toxicity and environmental impact.

It is important to note that the use of thiram in topical medications has declined over time, and it is not commonly used in modern medical practice. Always consult with a healthcare professional for accurate information regarding medical treatments and therapies.

Glutathione synthase is a type of enzyme involved in the synthesis of glutathione, a vital antioxidant that helps protect cells from damage caused by free radicals and peroxides. Glutathione synthase specifically catalyzes the final step in glutathione biosynthesis, which is the reaction between gamma-glutamylcysteine and glycine to form glutathione. This enzyme plays a crucial role in maintaining cellular health and function by helping to regulate oxidative stress and other important physiological processes.

Flavin Mononucleotide (FMN) Reductase is an enzyme that catalyzes the reduction of FMN to FMNH2 using NADH or NADPH as an electron donor. This enzyme plays a crucial role in the electron transport chain and is involved in various redox reactions within the cell. It is found in many organisms, including bacteria, fungi, plants, and animals. In humans, FMN Reductase is encoded by the RIBFLR gene and is primarily located in the mitochondria. Defects in this enzyme can lead to various metabolic disorders.

NADPH-ferrihemoprotein reductase, also known as diaphorase or NO synthase reductase, is an enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing cofactor. This reaction plays a crucial role in various biological processes such as the detoxification of certain compounds and the regulation of cellular signaling pathways.

The systematic name for this enzyme is NADPH:ferrihemoprotein oxidoreductase, and it belongs to the family of oxidoreductases that use NADH or NADPH as electron donors. The reaction catalyzed by this enzyme can be represented as follows:

NADPH + H+ + ferrihemoprotein ↔ NADP+ + ferrohemoprotein

In this reaction, the ferric (FeIII) form of hemoproteins is reduced to its ferrous (FeII) form by accepting electrons from NADPH. This enzyme is widely distributed in various tissues and organisms, including bacteria, fungi, plants, and animals. It has been identified as a component of several multi-enzyme complexes involved in different metabolic pathways, such as nitric oxide synthase (NOS) and cytochrome P450 reductase.

In summary, NADPH-ferrihemoprotein reductase is an essential enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing agent, playing a critical role in various biological processes and metabolic pathways.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Ferredoxin-NADP Reductase (FDNR) is an enzyme that catalyzes the electron transfer from ferredoxin to NADP+, reducing it to NADPH. This reaction plays a crucial role in several metabolic pathways, including photosynthesis and nitrogen fixation.

In photosynthesis, FDNR is located in the stroma of chloroplasts and receives electrons from ferredoxin, which is reduced by photosystem I. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the Calvin cycle for carbon fixation.

In nitrogen fixation, FDNR is found in the nitrogen-fixing bacteria and receives electrons from ferredoxin, which is reduced by nitrogenase. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the reduction of nitrogen gas (N2) to ammonia (NH3).

FDNR is a flavoprotein that contains a FAD cofactor and an iron-sulfur cluster. The enzyme catalyzes the electron transfer through a series of conformational changes that bring ferredoxin and NADP+ in close proximity, allowing for efficient electron transfer.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Selenium is a trace element that is essential for the proper functioning of the human body. According to the medical definitions provided by the National Institutes of Health (NIH), selenium is a component of several major metabolic pathways, including thyroid hormone metabolism, antioxidant defense systems, and immune function.

Selenium is found in a variety of foods, including nuts (particularly Brazil nuts), cereals, fish, and meat. It exists in several forms, with selenomethionine being the most common form found in food. Other forms include selenocysteine, which is incorporated into proteins, and selenite and selenate, which are inorganic forms of selenium.

The recommended dietary allowance (RDA) for selenium is 55 micrograms per day for adults. While selenium deficiency is rare, chronic selenium deficiency can lead to conditions such as Keshan disease, a type of cardiomyopathy, and Kaschin-Beck disease, which affects the bones and joints.

It's important to note that while selenium is essential for health, excessive intake can be harmful. High levels of selenium can cause symptoms such as nausea, vomiting, hair loss, and neurological damage. The tolerable upper intake level (UL) for selenium is 400 micrograms per day for adults.

Cytochrome reductases are a group of enzymes that play a crucial role in the electron transport chain, a process that occurs in the mitochondria of cells and is responsible for generating energy in the form of ATP (adenosine triphosphate). Specifically, cytochrome reductases are responsible for transferring electrons from one component of the electron transport chain to another, specifically to cytochromes.

There are several types of cytochrome reductases, including NADH dehydrogenase (also known as Complex I), succinate dehydrogenase (also known as Complex II), and ubiquinone-cytochrome c reductase (also known as Complex III). These enzymes help to facilitate the flow of electrons through the electron transport chain, which is essential for the production of ATP and the maintenance of cellular homeostasis.

Defects in cytochrome reductases can lead to a variety of mitochondrial diseases, which can affect multiple organ systems and may be associated with symptoms such as muscle weakness, developmental delays, and cardiac dysfunction.

Peroxidases are a group of enzymes that catalyze the oxidation of various substrates using hydrogen peroxide (H2O2) as the electron acceptor. These enzymes contain a heme prosthetic group, which plays a crucial role in their catalytic activity. Peroxidases are widely distributed in nature and can be found in plants, animals, and microorganisms. They play important roles in various biological processes, including defense against oxidative stress, lignin degradation, and host-pathogen interactions. Some common examples of peroxidases include glutathione peroxidase, which helps protect cells from oxidative damage, and horseradish peroxidase, which is often used in laboratory research.

Auranofin is a medication that contains gold and is used in the treatment of rheumatoid arthritis. It belongs to a class of drugs called gold-containing compounds, which are used to reduce inflammation and joint damage caused by rheumatoid arthritis.

Auranofin works by inhibiting certain enzymes that play a role in the inflammatory response, which can help to reduce swelling, pain, and stiffness in the joints. It is taken orally, usually in the form of a tablet, and is typically prescribed for use in combination with other medications used to treat rheumatoid arthritis.

It's important to note that auranofin can have serious side effects, including kidney damage, mouth sores, and skin rashes, and it should only be used under the close supervision of a healthcare provider. Additionally, regular monitoring of blood and urine tests is necessary while taking this medication to ensure that it is not causing any harmful effects on the body.

Ascorbate peroxidases (AHPX) are a group of enzymes that use ascorbic acid (vitamin C) as a reducing cofactor to catalyze the conversion of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect cells from oxidative damage caused by the accumulation of H2O2, a byproduct of various metabolic processes. Ascorbate peroxidases are primarily found in plants, algae, and cyanobacteria, where they play a crucial role in the detoxification of reactive oxygen species generated during photosynthesis.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Thioredoxin Reductase 2 (Txnrd2) is an antioxidant enzyme that plays a crucial role in maintaining the redox balance within cells, particularly in the mitochondria. It is a member of the thioredoxin reductase family, which are selenium-containing proteins that catalyze the reduction of various substrates through the use of NADPH as an electron donor.

Txnrd2 specifically reduces the disulfide bond in mitochondrial thioredoxin 2 (Trx2), regenerating its active form and allowing it to neutralize reactive oxygen species (ROS) and maintain the redox state of proteins within the mitochondria. This enzyme is essential for protecting cells against oxidative stress, which can damage cellular components such as DNA, proteins, and lipids. Dysregulation of Txnrd2 has been implicated in various pathological conditions, including neurodegenerative diseases, cancer, and aging.

I couldn't find a medical definition for "diamide" as it is not a term commonly used in medicine or biomedical sciences. The term "diamide" is a chemical name that refers to a compound containing two amide groups. It may have various uses in different scientific fields, such as chemistry and biochemistry, but it is not a medical term.

Dinitrochlorobenzene (DNCB) is a chemical compound that is classified as an aromatic organic compound. Its medical definition relates to its use as a topical immunotherapy for the treatment of certain skin conditions. DNCB is a potent sensitizer and hapten, which means that it can cause an immune response when it comes into contact with the skin.

When applied to the skin, DNCB can stimulate the production of antibodies and activate immune cells, leading to an inflammatory reaction. This property has been exploited in the treatment of conditions such as alopecia areata, a type of hair loss that is thought to be caused by an autoimmune response. By sensitizing the patient's immune system to DNCB, it may be possible to modulate the immune response and promote hair growth.

However, the use of DNCB as a therapeutic agent is not without risks. It can cause significant local reactions, including redness, swelling, and blistering, and there is a risk of systemic toxicity if it is absorbed into the bloodstream. As such, its use is generally restricted to specialized medical settings where it can be administered under close supervision.

Ascorbic acid is the chemical name for Vitamin C. It is a water-soluble vitamin that is essential for human health. Ascorbic acid is required for the synthesis of collagen, a protein that plays a role in the structure of bones, tendons, ligaments, and blood vessels. It also functions as an antioxidant, helping to protect cells from damage caused by free radicals.

Ascorbic acid cannot be produced by the human body and must be obtained through diet or supplementation. Good food sources of vitamin C include citrus fruits, strawberries, bell peppers, broccoli, and spinach.

In the medical field, ascorbic acid is used to treat or prevent vitamin C deficiency and related conditions, such as scurvy. It may also be used in the treatment of various other health conditions, including common cold, cancer, and cardiovascular disease, although its effectiveness for these uses is still a matter of scientific debate.

Malondialdehyde (MDA) is a naturally occurring organic compound that is formed as a byproduct of lipid peroxidation, a process in which free radicals or reactive oxygen species react with polyunsaturated fatty acids. MDA is a highly reactive aldehyde that can modify proteins, DNA, and other biomolecules, leading to cellular damage and dysfunction. It is often used as a marker of oxidative stress in biological systems and has been implicated in the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

Carmustine is a chemotherapy drug used to treat various types of cancer, including brain tumors, multiple myeloma, and Hodgkin's lymphoma. It belongs to a class of drugs called alkylating agents, which work by damaging the DNA in cancer cells, preventing them from dividing and growing.

Carmustine is available as an injectable solution that is administered intravenously (into a vein) or as implantable wafers that are placed directly into the brain during surgery. The drug can cause side effects such as nausea, vomiting, hair loss, and low blood cell counts, among others. It may also increase the risk of certain infections and bleeding complications.

As with all chemotherapy drugs, carmustine can have serious and potentially life-threatening side effects, and it should only be administered under the close supervision of a qualified healthcare professional. Patients receiving carmustine treatment should be closely monitored for signs of toxicity and other adverse reactions.

Selenocysteine (Sec) is a rare, naturally occurring amino acid that contains selenium. It is encoded by the opal (TGA) codon, which typically signals stop translation in mRNA. However, when followed by a specific hairpin-like structure called the Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA, the TGA codon is interpreted as a signal for selenocysteine incorporation during protein synthesis.

Selenocysteine plays an essential role in several enzymes involved in antioxidant defense and redox homeostasis, such as glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases. These enzymes require selenocysteine for their catalytic activity due to its unique chemical properties, which allow them to neutralize harmful reactive oxygen species (ROS) and maintain proper cellular function.

In summary, selenocysteine is a specialized amino acid containing selenium that is encoded by the TGA codon in mRNA when accompanied by a SECIS element. It is crucial for the activity of several enzymes involved in antioxidant defense and redox homeostasis.

Methionine Sulfoximine (MSO) is not a medical term itself, but it is a compound that has been used in research and scientific studies. It's a stable analogue of the essential amino acid methionine, which can be found in some foods like sesame seeds, Brazil nuts, and fish.

Methionine Sulfoximine has been used in research to study the metabolism and transport of methionine in cells and organisms. It is also known for its ability to inhibit the enzyme cystathionine β-synthase (CBS), which plays a role in the metabolism of homocysteine, an amino acid associated with cardiovascular disease when present at high levels.

However, Methionine Sulfoximine is not used as a therapeutic agent or medication in humans due to its potential toxicity and lack of established clinical benefits.

Reactive Oxygen Species (ROS) are highly reactive molecules containing oxygen, including peroxides, superoxide, hydroxyl radical, and singlet oxygen. They are naturally produced as byproducts of normal cellular metabolism in the mitochondria, and can also be generated by external sources such as ionizing radiation, tobacco smoke, and air pollutants. At low or moderate concentrations, ROS play important roles in cell signaling and homeostasis, but at high concentrations, they can cause significant damage to cell structures, including lipids, proteins, and DNA, leading to oxidative stress and potential cell death.

Disulfides are a type of organic compound that contains a sulfur-sulfur bond. In the context of biochemistry and medicine, disulfide bonds are often found in proteins, where they play a crucial role in maintaining their three-dimensional structure and function. These bonds form when two sulfhydryl groups (-SH) on cysteine residues within a protein molecule react with each other, releasing a molecule of water and creating a disulfide bond (-S-S-) between the two cysteines. Disulfide bonds can be reduced back to sulfhydryl groups by various reducing agents, which is an important process in many biological reactions. The formation and reduction of disulfide bonds are critical for the proper folding, stability, and activity of many proteins, including those involved in various physiological processes and diseases.

Thiobarbituric acid reactive substances (TBARS) is not a medical term per se, but rather a method used to measure lipid peroxidation in biological samples. Lipid peroxidation is a process by which free radicals steal electrons from lipids, leading to cellular damage and potential disease progression.

The TBARS assay measures the amount of malondialdehyde (MDA), a byproduct of lipid peroxidation, that reacts with thiobarbituric acid (TBA) to produce a pink-colored complex. The concentration of this complex is then measured and used as an indicator of lipid peroxidation in the sample.

While TBARS has been widely used as a measure of oxidative stress, it has limitations, including potential interference from other compounds that can react with TBA and produce similar-colored complexes. Therefore, more specific and sensitive methods for measuring lipid peroxidation have since been developed.

Glutathione S-transferase Pi (GSTP1) is a member of the glutathione S-transferase (GST) family, which are enzymes involved in the detoxification of xenobiotics and endogenous compounds. GSTs catalyze the conjugation of reduced glutathione to these electrophilic compounds, facilitating their excretion from the body.

GSTP1 is primarily found in the cytosol of cells and has a high affinity for a variety of substrates, including polycyclic aromatic hydrocarbons, heterocyclic amines, and certain chemotherapeutic drugs. It plays an essential role in protecting cells against oxidative stress and chemical-induced damage.

Polymorphisms in the GSTP1 gene have been associated with altered enzyme activity and susceptibility to various diseases, including cancer, neurological disorders, and respiratory diseases. The most common polymorphism in GSTP1 is a single nucleotide substitution (Ile105Val), which has been shown to reduce the enzyme's catalytic activity and increase the risk of developing certain types of cancer.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Tetrahydrofolate dehydrogenase (EC 1.5.1.20) is an enzyme involved in folate metabolism. The enzyme catalyzes the oxidation of tetrahydrofolate (THF) to dihydrofolate (DHF), while simultaneously reducing NADP+ to NADPH.

The reaction can be summarized as follows:

THF + NADP+ -> DHF + NADPH + H+

This enzyme plays a crucial role in the synthesis of purines and thymidylate, which are essential components of DNA and RNA. Therefore, any defects or deficiencies in tetrahydrofolate dehydrogenase can lead to various medical conditions, including megaloblastic anemia and neural tube defects during fetal development.

Flavins are a group of naturally occurring organic compounds that contain a characteristic isoalloxazine ring, which is a tricyclic aromatic structure. The most common and well-known flavin is flavin adenine dinucleotide (FAD), which plays a crucial role as a coenzyme in various biological oxidation-reduction reactions. FAD accepts electrons and hydrogens to form the reduced form, flavin adenine dinucleotide hydride (FADH2). Another important flavin is flavin mononucleotide (FMN), which is derived from FAD and functions similarly as a coenzyme. Flavins are yellow in color and can be found in various biological systems, including animals, plants, and microorganisms. They are involved in several metabolic pathways, such as the electron transport chain, where they contribute to energy production.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Peroxiredoxins (Prx) are a family of peroxidases that play a crucial role in cellular defense against oxidative stress. They catalyze the reduction of hydrogen peroxide, organic hydroperoxides, and peroxynitrite, thereby protecting cells from potentially harmful effects of these reactive oxygen and nitrogen species.

Peroxiredoxins are ubiquitously expressed in various cellular compartments, including the cytosol, mitochondria, and nucleus. They contain a conserved catalytic cysteine residue that gets oxidized during the reduction of peroxides, which is then reduced back to its active form by thioredoxins or other reducing agents.

Dysregulation of peroxiredoxin function has been implicated in various pathological conditions, including cancer, neurodegenerative diseases, and inflammatory disorders. Therefore, understanding the role of peroxiredoxins in cellular redox homeostasis is essential for developing novel therapeutic strategies to treat oxidative stress-related diseases.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Tert-butylhydroperoxide (t-BuOOH) is not typically considered a medical term, but rather a chemical compound. It is used in some medical and laboratory contexts. Here's a definition:

Tert-butylhydroperoxide (t-BuOOH) is an organic peroxide with the formula (CH3)3COOH. It is a colorless liquid, commercially available in concentrations up to 70%. It is used as an initiator in chemical reactions, a source of hydroxyl radicals in free-radical chemistry, and as a reagent in organic synthesis. Its use in medical contexts is typically limited to laboratory research and not as a therapeutic agent.

Handling tert-butylhydroperoxide requires caution due to its potential to cause fires and explosions when it comes into contact with certain substances, especially reducing agents and strong acids. Always follow safety guidelines and use appropriate personal protective equipment when handling this compound.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Peroxides, in a medical context, most commonly refer to chemical compounds that contain the peroxide ion (O2−2). Peroxides are characterized by the presence of an oxygen-oxygen single bond and can be found in various substances.

In dentistry, hydrogen peroxide (H2O2) is a widely used agent for teeth whitening or bleaching due to its oxidizing properties. It can help remove stains and discoloration on the tooth surface by breaking down into water and oxygen-free radicals, which react with the stain molecules, ultimately leading to their oxidation and elimination.

However, it is essential to note that high concentrations of hydrogen peroxide or prolonged exposure can cause tooth sensitivity, irritation to the oral soft tissues, and potential damage to the dental pulp. Therefore, professional supervision and appropriate concentration control are crucial when using peroxides for dental treatments.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Sulfhydryl reagents are chemical compounds that react with sulfhydryl groups (-SH), which are found in certain amino acids such as cysteine. These reagents can be used to modify or inhibit the function of proteins by forming disulfide bonds or adding functional groups to the sulfur atom. Examples of sulfhydryl reagents include N-ethylmaleimide (NEM), p-chloromercuribenzoate (PCMB), and iodoacetamide. These reagents are widely used in biochemistry and molecular biology research to study protein structure and function, as well as in the development of drugs and therapeutic agents.

Flavin Mononucleotide (FMN) is a coenzyme that plays a crucial role in biological oxidation-reduction reactions. It is derived from the vitamin riboflavin (also known as vitamin B2) and is composed of a flavin molecule bonded to a nucleotide. FMN functions as an electron carrier, accepting and donating electrons in various metabolic pathways, including the citric acid cycle and the electron transport chain, which are essential for energy production in cells. It also participates in the detoxification of harmful substances and contributes to the maintenance of cellular redox homeostasis. FMN can exist in two forms: the oxidized form (FMN) and the reduced form (FMNH2), depending on its involvement in redox reactions.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Methionine sulfoxide reductases (MSRs) are a group of enzymes that catalyze the reduction of methionine sulfoxides back to methionine in proteins. Methionine residues in proteins can be oxidized by reactive oxygen species (ROS) or other oxidizing agents, leading to the formation of methionine sulfoxide. This modification can affect protein function and stability. MSRs play a crucial role in protecting proteins from oxidative damage and maintaining their proper function.

There are two types of MSRs, designated as MSRA and MSRB. MSRA reduces methionine-S-sulfoxides, while MSRB reduces methionine-R-sulfoxides. Both enzymes require the cofactor thioredoxin to reduce the methionine sulfoxide back to methionine. The activity of MSRs is important in various biological processes, including protein folding, stress response, and aging. Defects in MSRs have been implicated in several diseases, such as Alzheimer's disease, Parkinson's disease, and cancer.

Quinone reductases are a group of enzymes that catalyze the reduction of quinones to hydroquinones, using NADH or NADPH as an electron donor. This reaction is important in the detoxification of quinones, which are potentially toxic compounds produced during the metabolism of certain drugs, chemicals, and endogenous substances.

There are two main types of quinone reductases: NQO1 (NAD(P)H:quinone oxidoreductase 1) and NQO2 (NAD(P)H:quinone oxidoreductase 2). NQO1 is a cytosolic enzyme that can reduce a wide range of quinones, while NQO2 is a mitochondrial enzyme with a narrower substrate specificity.

Quinone reductases have been studied for their potential role in cancer prevention and treatment, as they may help to protect cells from oxidative stress and DNA damage caused by quinones and other toxic compounds. Additionally, some quinone reductase inhibitors have been developed as chemotherapeutic agents, as they can enhance the cytotoxicity of certain drugs that require quinone reduction for activation.

Ribonucleoside Diphosphate Reductase (RNR) is an enzyme that plays a crucial role in the regulation of DNA synthesis and repair. It catalyzes the conversion of ribonucleoside diphosphates (NDPs) to deoxyribonucleoside diphosphates (dNDPs), which are the building blocks of DNA. This reaction is essential for the synthesis of new DNA strands during replication and repair processes. The enzyme's activity is tightly regulated, as it must be carefully controlled to prevent errors in DNA synthesis that could lead to mutations and genomic instability. RNR is a target for chemotherapeutic agents due to its essential role in DNA synthesis.

Acetylcysteine is a medication that is used for its antioxidant effects and to help loosen thick mucus in the lungs. It is commonly used to treat conditions such as chronic bronchitis, emphysema, and cystic fibrosis. Acetylcysteine is also known by the brand names Mucomyst and Accolate. It works by thinning and breaking down mucus in the airways, making it easier to cough up and clear the airways. Additionally, acetylcysteine is an antioxidant that helps to protect cells from damage caused by free radicals. It is available as a oral tablet, liquid, or inhaled medication.

Cystine is a naturally occurring amino acid in the body, which is formed from the oxidation of two cysteine molecules. It is a non-essential amino acid, meaning that it can be produced by the body and does not need to be obtained through diet. Cystine plays important roles in various biological processes, including protein structure and antioxidant defense. However, when cystine accumulates in large amounts, it can form crystals or stones, leading to conditions such as cystinuria, a genetic disorder characterized by the formation of cystine kidney stones.

Transketolase is an enzyme found in most organisms, from bacteria to humans. It plays a crucial role in the pentose phosphate pathway (PPP), which is a metabolic pathway that runs alongside glycolysis in the cell cytoplasm. The PPP provides an alternative way of generating energy and also serves to provide building blocks for new cellular components, particularly nucleotides.

Transketolase functions by catalyzing the transfer of a two-carbon ketol group from a ketose (a sugar containing a ketone functional group) to an aldose (a sugar containing an aldehyde functional group). This reaction forms a new ketose and an aldose, effectively converting three-carbon sugars into five-carbon sugars, or vice versa.

In humans, transketolase is essential for the production of NADPH, an important reducing agent in the cell, and for the synthesis of certain amino acids and nucleotides. Deficiencies in this enzyme can lead to metabolic disorders such as pentosuria.

Hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors, also known as statins, are a class of cholesterol-lowering medications. They work by inhibiting the enzyme HMG-CoA reductase, which plays a central role in the production of cholesterol in the liver. By blocking this enzyme, the liver is stimulated to take up more low-density lipoprotein (LDL) cholesterol from the bloodstream, leading to a decrease in LDL cholesterol levels and a reduced risk of cardiovascular disease.

Examples of HMG-CoA reductase inhibitors include atorvastatin, simvastatin, pravastatin, rosuvastatin, and fluvastatin. These medications are commonly prescribed to individuals with high cholesterol levels, particularly those who are at risk for or have established cardiovascular disease.

It's important to note that while HMG-CoA reductase inhibitors can be effective in reducing LDL cholesterol levels and the risk of cardiovascular events, they should be used as part of a comprehensive approach to managing high cholesterol, which may also include lifestyle modifications such as dietary changes, exercise, and weight management.

Dehydroascorbic acid (DHAA) is the oxidized form of ascorbic acid, which is more commonly known as vitamin C. It is the oxidation product of ascorbic acid that is formed when the vitamin C molecule loses two electrons and two protons. This conversion can occur naturally in the body or during the processing and storage of food.

DHAA still retains some vitamin C activity, but it is not as biologically active as ascorbic acid. However, DHAA can be reduced back to ascorbic acid in the body by certain enzymes, which allows it to still contribute to maintaining proper levels of this essential nutrient.

DHAA plays a role in various physiological processes, including collagen synthesis, immune function, and antioxidant defense. It is also involved in the metabolism of amino acids, carbohydrates, and lipids. A deficiency in vitamin C can lead to scurvy, a condition characterized by fatigue, joint pain, anemia, and skin changes.

Metabolic detoxification, in the context of drugs, refers to the series of biochemical processes that the body undergoes to transform drugs or other xenobiotics into water-soluble compounds so they can be excreted. This process typically involves two phases:

1. Phase I Detoxification: In this phase, enzymes such as cytochrome P450 oxidases introduce functional groups into the drug molecule, making it more polar and reactive. This can result in the formation of metabolites that are less active than the parent compound or, in some cases, more toxic.

2. Phase II Detoxification: In this phase, enzymes such as glutathione S-transferases, UDP-glucuronosyltransferases, and sulfotransferases conjugate these polar and reactive metabolites with endogenous molecules like glutathione, glucuronic acid, or sulfate. This further increases the water solubility of the compound, allowing it to be excreted by the kidneys or bile.

It's important to note that while these processes are essential for eliminating drugs and other harmful substances from the body, they can also produce reactive metabolites that may cause damage to cells and tissues if not properly regulated. Therefore, maintaining a balance in the activity of these detoxification enzymes is crucial for overall health and well-being.

Lipid peroxides are chemical compounds that form when lipids (fats or fat-like substances) oxidize. This process, known as lipid peroxidation, involves the reaction of lipids with oxygen in a way that leads to the formation of hydroperoxides and various aldehydes, such as malondialdehyde.

Lipid peroxidation is a naturally occurring process that can also be accelerated by factors such as exposure to radiation, certain chemicals, or enzymatic reactions. It plays a role in many biological processes, including cell signaling and regulation of gene expression, but it can also contribute to the development of various diseases when it becomes excessive.

Examples of lipid peroxides include phospholipid hydroperoxides, cholesteryl ester hydroperoxides, and triglyceride hydroperoxides. These compounds are often used as markers of oxidative stress in biological systems and have been implicated in the pathogenesis of atherosclerosis, cancer, neurodegenerative diseases, and other conditions associated with oxidative damage.

Alcohol oxidoreductases are a class of enzymes that catalyze the oxidation of alcohols to aldehydes or ketones, while reducing nicotinamide adenine dinucleotide (NAD+) to NADH. These enzymes play an important role in the metabolism of alcohols and other organic compounds in living organisms.

The most well-known example of an alcohol oxidoreductase is alcohol dehydrogenase (ADH), which is responsible for the oxidation of ethanol to acetaldehyde in the liver during the metabolism of alcoholic beverages. Other examples include aldehyde dehydrogenases (ALDH) and sorbitol dehydrogenase (SDH).

These enzymes are important targets for the development of drugs used to treat alcohol use disorder, as inhibiting their activity can help to reduce the rate of ethanol metabolism and the severity of its effects on the body.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Gamma-glutamyltransferase (GGT), also known as gamma-glutamyl transpeptidase, is an enzyme found in many tissues, including the liver, bile ducts, and pancreas. GGT is involved in the metabolism of certain amino acids and plays a role in the detoxification of various substances in the body.

GGT is often measured as a part of a panel of tests used to evaluate liver function. Elevated levels of GGT in the blood may indicate liver disease or injury, bile duct obstruction, or alcohol consumption. However, it's important to note that several other factors can also affect GGT levels, so abnormal results should be interpreted in conjunction with other clinical findings and diagnostic tests.

Oxidoreductases acting on CH-CH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts upon donors containing a carbon-carbon (CH-CH) bond, where one atom or group of atoms is oxidized and another is reduced during the reaction process. These enzymes play crucial roles in various metabolic pathways, including the breakdown and synthesis of carbohydrates, lipids, and amino acids.

The reactions catalyzed by these enzymes involve the transfer of electrons and hydrogen atoms between the donor and an acceptor molecule. This process often results in the formation or cleavage of carbon-carbon bonds, making them essential for numerous biological processes. The systematic name for this class of enzymes is typically structured as "donor:acceptor oxidoreductase," where donor and acceptor represent the molecules involved in the electron transfer process.

Examples of enzymes that fall under this category include:

1. Aldehyde dehydrogenases (EC 1.2.1.3): These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using NAD+ as an electron acceptor.
2. Dihydrodiol dehydrogenase (EC 1.3.1.14): This enzyme is responsible for the oxidation of dihydrodiols to catechols in the biodegradation of aromatic compounds.
3. Succinate dehydrogenase (EC 1.3.5.1): A key enzyme in the citric acid cycle, succinate dehydrogenase catalyzes the oxidation of succinate to fumarate and reduces FAD to FADH2.
4. Xylose reductase (EC 1.1.1.307): This enzyme is involved in the metabolism of pentoses, where it reduces xylose to xylitol using NADPH as a cofactor.

Diquat is a herbicide that is used to control the growth of weeds and unwanted vegetation in various settings, such as agricultural land, aquatic environments, and industrial sites. It is a type of chemical known as a contact herbicide, which means that it kills plants on contact rather than being absorbed through the plant's roots and transported throughout its tissues.

Diquat works by disrupting the plant's ability to photosynthesize, or convert light energy into chemical energy. When applied to plant leaves, diquat causes the formation of free radicals, which are highly reactive molecules that can damage cell membranes and other cell structures. This leads to the death of the plant cells and ultimately the death of the entire plant.

Diquat is a fast-acting herbicide that is often used to control weeds in aquatic environments, such as ponds and lakes. It is also used in agriculture to desiccate crops before harvest, which can make them easier to harvest and reduce post-harvest losses. However, diquat can be harmful to non-target organisms, including fish, aquatic invertebrates, and beneficial insects, so it must be used carefully and in accordance with label instructions to minimize off-target impacts.

Like all pesticides, diquat is subject to regulation by government agencies such as the Environmental Protection Agency (EPA) in the United States. The EPA sets limits on the amount of diquat that can be applied to crops and other surfaces, and requires manufacturers to provide information about the potential risks and hazards associated with its use. It is important to follow all safety precautions and guidelines when using diquat or any other pesticide to protect yourself, others, and the environment.

Protein carbonylation is a post-translational modification of proteins, which involves the introduction of carbonyl groups (-CO) into amino acid side chains. This process can occur as a result of various reactive oxygen species (ROS) and oxidative stress, leading to the formation of protein adducts that can alter protein structure and function. Carbonylation can also be induced by advanced glycation end-products (AGEs), which are formed during non-enzymatic glycation reactions between reducing sugars and proteins. Protein carbonylation is often associated with aging, neurodegenerative diseases, and other pathological conditions characterized by oxidative stress and protein misfolding.

Flavoproteins are a type of protein molecule that contain noncovalently bound flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD) as cofactors. These flavin cofactors play a crucial role in redox reactions, acting as electron carriers in various metabolic pathways such as cellular respiration and oxidative phosphorylation. Flavoproteins are involved in several biological processes, including the breakdown of fatty acids, amino acids, and carbohydrates, as well as the synthesis of steroids and other lipids. They can also function as enzymes that catalyze various redox reactions, such as oxidases, dehydrogenases, and reductases. Flavoproteins are widely distributed in nature and found in many organisms, from bacteria to humans.

Medical definitions of "oxidants" refer to them as oxidizing agents or substances that can gain electrons and be reduced. They are capable of accepting electrons from other molecules in chemical reactions, leading to the production of oxidation products. In biological systems, oxidants play a crucial role in various cellular processes such as energy production and immune responses. However, an imbalance between oxidant and antioxidant levels can lead to a state of oxidative stress, which has been linked to several diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Examples of oxidants include reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, and hydroxyl radical, as well as reactive nitrogen species (RNS), such as nitric oxide and peroxynitrite.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

Benzene derivatives are chemical compounds that are derived from benzene, which is a simple aromatic hydrocarbon with the molecular formula C6H6. Benzene has a planar, hexagonal ring structure, and its derivatives are formed by replacing one or more of the hydrogen atoms in the benzene molecule with other functional groups.

Benzene derivatives have a wide range of applications in various industries, including pharmaceuticals, dyes, plastics, and explosives. Some common examples of benzene derivatives include toluene, xylene, phenol, aniline, and nitrobenzene. These compounds can have different physical and chemical properties depending on the nature and position of the substituents attached to the benzene ring.

It is important to note that some benzene derivatives are known to be toxic or carcinogenic, and their production, use, and disposal must be carefully regulated to ensure safety and protect public health.

Dihydropteridine reductase is an enzyme that plays a crucial role in the metabolism of certain amino acids, specifically phenylalanine and tyrosine. This enzyme is responsible for reducing dihydropteridines to tetrahydropteridines, which is a necessary step in the regeneration of tetrahydrobiopterin (BH4), an essential cofactor for the enzymes phenylalanine hydroxylase and tyrosine hydroxylase.

Phenylalanine hydroxylase and tyrosine hydroxylase are involved in the conversion of the amino acids phenylalanine and tyrosine to tyrosine and dopa, respectively. Without sufficient BH4, these enzymes cannot function properly, leading to an accumulation of phenylalanine and a decrease in the levels of important neurotransmitters such as dopamine, norepinephrine, and serotonin.

Deficiency in dihydropteridine reductase can lead to a rare genetic disorder known as dihydropteridine reductase deficiency (DPRD), which is characterized by elevated levels of phenylalanine and neurotransmitter imbalances, resulting in neurological symptoms such as developmental delay, seizures, and hypotonia. Treatment typically involves a low-phenylalanine diet and supplementation with BH4.

Schistosomicides are medications specifically used to treat Schistosomiasis, also known as snail fever or bilharzia. This is a parasitic disease caused by several species of flatworms belonging to the genus Schistosoma. The drugs that act against these parasites are called schistosomicides.

The most common schistosomicides include:

1. Praziquantel: This is the first-line treatment for all forms of Schistosomiasis. It works by causing paralysis of the worms, which then detach from the host's tissues and are swept out of the body.

2. Oxamniquine (Mansil): Primarily used to treat infections caused by Schistosoma mansoni. It works by causing the worms to lose their grip on the blood vessels, leading to their death and elimination from the body.

3. Triclabendazole: Used for the treatment of liver fluke infections, but it has also shown efficacy against some Schistosoma species, particularly Schistosoma haematobium and Schistosoma japonicum.

It is important to note that while these medications are effective at killing the adult worms, they do not prevent reinfection. Therefore, measures should be taken to avoid contact with contaminated water where the parasites are present.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

Chromates are the salts or esters of chromic acid (H2CrO4) that contain the chromate ion (CrO4 2-). They are characterized by their yellow or orange color. Chromates are widely used in industry, for example as corrosion inhibitors, pigments, and wood preservatives. However, they are also toxic and carcinogenic, and exposure to chromates can cause a range of health problems, including respiratory issues, skin irritation, and damage to the eyes and mucous membranes. Therefore, their use is regulated in many countries, and appropriate safety measures must be taken when handling them.

I believe there may be a slight misunderstanding in your question. "Plant leaves" are not a medical term, but rather a general biological term referring to a specific organ found in plants.

Leaves are organs that are typically flat and broad, and they are the primary site of photosynthesis in most plants. They are usually green due to the presence of chlorophyll, which is essential for capturing sunlight and converting it into chemical energy through photosynthesis.

While leaves do not have a direct medical definition, understanding their structure and function can be important in various medical fields, such as pharmacognosy (the study of medicinal plants) or environmental health. For example, certain plant leaves may contain bioactive compounds that have therapeutic potential, while others may produce allergens or toxins that can impact human health.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Sodium Selenite is not a medical term per se, but it is a chemical compound with the formula Na2SeO3. It is used in medicine as a dietary supplement and also in veterinary medicine. Medically, it is used to treat selenium deficiency, which is rare.

Selenium is an essential trace element for human health, playing a crucial role in various physiological processes, such as antioxidant defense systems, thyroid hormone metabolism, and DNA synthesis. Sodium Selenite serves as a source of selenium in these medical applications.

Please note that supplementation with sodium selenite should be under the supervision of a healthcare professional, as excessive selenium intake can lead to selenosis, a condition characterized by symptoms like nausea, vomiting, hair loss, and neurological damage.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

The Pentose Phosphate Pathway (also known as the Hexose Monophosphate Shunt or HMP Shunt) is a metabolic pathway that runs parallel to glycolysis. It serves two major functions:

1. Providing reducing equivalents in the form of NADPH for reductive biosynthesis and detoxification processes.
2. Generating ribose-5-phosphate, a pentose sugar used in the synthesis of nucleotides and nucleic acids (DNA and RNA).

This pathway begins with the oxidation of glucose-6-phosphate to form 6-phosphogluconolactone, catalyzed by the enzyme glucose-6-phosphate dehydrogenase. The resulting NADPH is used in various anabolic reactions and antioxidant defense systems.

The Pentose Phosphate Pathway also includes a series of reactions called the non-oxidative branch, which interconverts various sugars to meet cellular needs for different types of monosaccharides. These conversions are facilitated by several enzymes including transketolase and transaldolase.

"Sideritis" is a genus of flowering plants in the mint family, Lamiaceae. It includes around 150 species, many of which are native to the Mediterranean region and central Asia. Several species of Sideritis are used in traditional medicine, particularly in southern Europe. The name "Sideritis" comes from the Greek word for "iron," as some species were believed to have properties that helped heal wounds caused by iron weapons.

In a medical context, however, "Sideritis" is not a widely recognized term and does not have a specific medical definition. If someone is referring to "Sideritis" in a medical context, they are likely talking about the use of these plants in traditional medicine or as dietary supplements. Some proponents of herbal medicine claim that Sideritis has various health benefits, such as reducing anxiety and improving digestion, although there is limited scientific evidence to support these claims.

Organoselenium compounds are organic chemicals that contain selenium, a naturally occurring non-metal element, in their structure. Selenium is chemically related to sulfur and can replace it in many organic molecules. Organoselenium compounds have been studied for their potential therapeutic benefits, including antioxidant, anti-cancer, and anti-inflammatory effects. They are also used as catalysts in chemical reactions. These compounds contain at least one carbon atom bonded to selenium, which can take the form of a variety of functional groups such as selenoethers, selenols, and selenoesters.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Lactoylglutathione lyase is not a commonly used term in medicine, but it is a biochemical term that refers to an enzyme also known as glyoxalase I. This enzyme plays a role in the detoxification of methylglyoxal, a reactive dicarbonyl compound that can cause damage to proteins and DNA. Methylglyoxal is produced during normal metabolic processes, particularly in the breakdown of glucose and other sugars.

Glyoxalase I catalyzes the conversion of hemithioacetal (formed from methylglyoxal and glutathione) to S-D-lactoylglutathione, which is then converted to D-lactic acid and glutathione by glyoxalase II. The overall reaction helps to prevent the accumulation of toxic levels of methylglyoxal in cells.

Defects or mutations in the gene that encodes for glyoxalase I can lead to an increased risk of developing certain diseases, such as diabetes and neurodegenerative disorders.

The crystalline lens is a biconvex transparent structure in the eye that helps to refract (bend) light rays and focus them onto the retina. It is located behind the iris and pupil and is suspended by small fibers called zonules that connect it to the ciliary body. The lens can change its shape to accommodate and focus on objects at different distances, a process known as accommodation. With age, the lens may become cloudy or opaque, leading to cataracts.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Sodium compounds are chemical substances that contain the element sodium (Na) combined with one or more other elements. Sodium is an alkali metal and is highly reactive, so it rarely exists in its pure form in nature. Instead, it is typically found combined with other elements in the form of various sodium compounds.

Some common examples of sodium compounds include:

* Sodium chloride (NaCl), also known as table salt, which is a compound formed from the reaction between sodium and chlorine.
* Sodium bicarbonate (NaHCO3), also known as baking soda, which is used as a leavening agent in baking and as a household cleaner.
* Sodium hydroxide (NaOH), also known as lye, which is a strong alkali used in industrial applications such as the manufacture of soap and paper.
* Sodium carbonate (Na2CO3), also known as washing soda, which is used as a water softener and cleaning agent.

Sodium compounds have a variety of uses in medicine, including as electrolytes to help maintain fluid balance in the body, as antacids to neutralize stomach acid, and as laxatives to relieve constipation. However, it is important to use sodium compounds as directed by a healthcare professional, as excessive intake can lead to high blood pressure and other health problems.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Paraquat is a highly toxic herbicide that is used for controlling weeds and grasses in agricultural settings. It is a non-selective contact weed killer, meaning it kills any green plant it comes into contact with. Paraquat is a fast-acting chemical that causes rapid desiccation of plant tissues upon contact.

In a medical context, paraquat is classified as a toxicological emergency and can cause severe poisoning in humans if ingested, inhaled, or comes into contact with the skin or eyes. Paraquat poisoning can lead to multiple organ failure, including the lungs, kidneys, and liver, and can be fatal in severe cases. There is no specific antidote for paraquat poisoning, and treatment typically focuses on supportive care and managing symptoms.

It's important to note that paraquat is highly regulated and its use is restricted to licensed professionals due to its high toxicity. Proper protective equipment, including gloves, goggles, and respiratory protection, should be used when handling paraquat to minimize the risk of exposure.

Rutin is a flavonoid, a type of plant pigment that is found in various plants and foods including citrus fruits, buckwheat, and asparagus. It has antioxidant properties and is known to help strengthen blood vessels and reduce inflammation. In medical terms, rutin may be mentioned in the context of discussing treatments for conditions related to these effects, such as varicose veins or hemorrhoids. However, it's important to note that while rutin has potential health benefits, more research is needed to fully understand its effects and proper dosages.

The Electron Transport Chain (ETC) is a series of complexes in the inner mitochondrial membrane that are involved in the process of cellular respiration. It is the final pathway for electrons derived from the oxidation of nutrients such as glucose, fatty acids, and amino acids to be transferred to molecular oxygen. This transfer of electrons drives the generation of a proton gradient across the inner mitochondrial membrane, which is then used by ATP synthase to produce ATP, the main energy currency of the cell.

The electron transport chain consists of four complexes (I-IV) and two mobile electron carriers (ubiquinone and cytochrome c). Electrons from NADH and FADH2 are transferred to Complex I and Complex II respectively, which then pass them along to ubiquinone. Ubiquinone then transfers the electrons to Complex III, which passes them on to cytochrome c. Finally, cytochrome c transfers the electrons to Complex IV, where they combine with oxygen and protons to form water.

The transfer of electrons through the ETC is accompanied by the pumping of protons from the mitochondrial matrix to the intermembrane space, creating a proton gradient. The flow of protons back across the inner membrane through ATP synthase drives the synthesis of ATP from ADP and inorganic phosphate.

Overall, the electron transport chain is a crucial process for generating energy in the form of ATP in the cell, and it plays a key role in many metabolic pathways.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

In the context of medicine and toxicology, protective agents are substances that provide protection against harmful or damaging effects of other substances. They can work in several ways, such as:

1. Binding to toxic substances: Protective agents can bind to toxic substances, rendering them inactive or less active, and preventing them from causing harm. For example, activated charcoal is sometimes used in the emergency treatment of certain types of poisoning because it can bind to certain toxins in the stomach and intestines and prevent their absorption into the body.
2. Increasing elimination: Protective agents can increase the elimination of toxic substances from the body, for example by promoting urinary or biliary excretion.
3. Reducing oxidative stress: Antioxidants are a type of protective agent that can reduce oxidative stress caused by free radicals and reactive oxygen species (ROS). These agents can protect cells and tissues from damage caused by oxidation.
4. Supporting organ function: Protective agents can support the function of organs that have been damaged by toxic substances, for example by improving blood flow or reducing inflammation.

Examples of protective agents include chelating agents, antidotes, free radical scavengers, and anti-inflammatory drugs.

Amitrole is a non-selective herbicide that is used to control broadleaf weeds and some annual grasses. Its chemical name is 3-amino-1,2,4-triazole, and it works by inhibiting the enzyme responsible for the production of certain aromatic amino acids in plants, which are essential for their growth and development.

Amitrole is absorbed through the leaves and roots of plants and can be applied either before or after weed emergence. It is commonly used in agricultural settings, as well as in non-crop areas such as industrial sites, railways, and roadsides.

While amitrole is generally considered safe for use around humans and animals when used according to label instructions, it can cause eye and skin irritation, and may be harmful if swallowed or inhaled. It is important to follow all safety precautions when handling and applying this herbicide.

Chromium is an essential trace element that is necessary for human health. It is a key component of the glucose tolerance factor, which helps to enhance the function of insulin in regulating blood sugar levels. Chromium can be found in various foods such as meat, fish, whole grains, and some fruits and vegetables. However, it is also available in dietary supplements for those who may not get adequate amounts through their diet.

The recommended daily intake of chromium varies depending on age and gender. For adults, the adequate intake (AI) is 20-35 micrograms per day for women and 35-50 micrograms per day for men. Chromium deficiency is rare but can lead to impaired glucose tolerance, insulin resistance, and increased risk of developing type 2 diabetes.

It's important to note that while chromium supplements are marketed as a way to improve insulin sensitivity and blood sugar control, there is limited evidence to support these claims. Moreover, excessive intake of chromium can have adverse effects on health, including liver and kidney damage, stomach irritation, and hypoglycemia. Therefore, it's recommended to consult with a healthcare provider before taking any dietary supplements containing chromium.

I'm sorry for any confusion, but "Apazone" is not a term recognized in medical terminology. It may be a proper name of a compound or medication from a specific company or context, but without more information, I cannot provide an accurate definition or meaning. In general, it's important to use precise and unambiguous language when discussing medical topics to ensure clear communication and understanding.

Aldehydes are a class of organic compounds characterized by the presence of a functional group consisting of a carbon atom bonded to a hydrogen atom and a double bonded oxygen atom, also known as a formyl or aldehyde group. The general chemical structure of an aldehyde is R-CHO, where R represents a hydrocarbon chain.

Aldehydes are important in biochemistry and medicine as they are involved in various metabolic processes and are found in many biological molecules. For example, glucose is converted to pyruvate through a series of reactions that involve aldehyde intermediates. Additionally, some aldehydes have been identified as toxicants or environmental pollutants, such as formaldehyde, which is a known carcinogen and respiratory irritant.

Formaldehyde is also commonly used in medical and laboratory settings for its disinfectant properties and as a fixative for tissue samples. However, exposure to high levels of formaldehyde can be harmful to human health, causing symptoms such as coughing, wheezing, and irritation of the eyes, nose, and throat. Therefore, appropriate safety measures must be taken when handling aldehydes in medical and laboratory settings.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Dithiothreitol (DTT) is a reducing agent, which is a type of chemical compound that breaks disulfide bonds between cysteine residues in proteins. DTT is commonly used in biochemistry and molecular biology research to prevent the formation of disulfide bonds during protein purification and manipulation.

Chemically, DTT is a small molecule with two sulfhydryl groups (-SH) that can donate electrons to oxidized cysteine residues in proteins, converting them to their reduced form (-S-H). This reaction reduces disulfide bonds and helps to maintain the solubility and stability of proteins.

DTT is also used as an antioxidant to prevent the oxidation of other molecules, such as DNA and enzymes, during experimental procedures. However, it should be noted that DTT can also reduce other types of bonds, including those in metal ions and certain chemical dyes, so its use must be carefully controlled and monitored.

"Maleate" is not a medical term in and of itself, but it is a chemical compound that can be found in some medications. Maleic acid or its salts (maleates) are used as a keratolytic agent in topical medications, which means they help to break down and remove dead skin cells. They can also be used as a preservative or a buffering agent in various pharmaceutical preparations.

Maleic acid is a type of organic compound known as a dicarboxylic acid, which contains two carboxyl groups. In the case of maleic acid, these carboxyl groups are located on a single carbon atom, which makes it a cis-conjugated diacid. This structural feature gives maleic acid unique chemical properties that can be useful in various pharmaceutical and industrial applications.

It's worth noting that maleic acid and its salts should not be confused with "maleate" as a gender-specific term, which refers to something related to or characteristic of males.

Oxidoreductases acting on sulfur group donors are a class of enzymes that catalyze redox reactions involving sulfur group donors. These enzymes play a crucial role in various biological processes, such as the metabolism of sulfur-containing compounds and the detoxification of xenobiotics.

The term "oxidoreductase" refers to any enzyme that catalyzes an oxidation-reduction reaction, where one molecule is oxidized (loses electrons) and another is reduced (gains electrons). In the case of oxidoreductases acting on sulfur group donors, the sulfur atom in the substrate serves as the electron donor.

The systematic name for this class of enzymes follows a specific format: "donor:acceptor oxidoreductase." The donor is the sulfur-containing compound that donates electrons, and the acceptor is the molecule that accepts the electrons. For example, the enzyme that catalyzes the reaction between glutathione (GSH) and a variety of electrophiles is called glutathione transferase, or GST (donor:acceptor oxidoreductase).

These enzymes are further classified into subclasses based on the type of acceptor involved in the reaction. Examples include:

* EC 1.8.1: Oxidoreductases acting on CH-NH2 group donors
* EC 1.8.3: Oxidoreductases acting on CH or CH2 groups
* EC 1.8.4: Oxidoreductases acting on the CH-CH group of donors
* EC 1.8.5: Oxidoreductases acting on a sulfur group of donors
* EC 1.8.6: Oxidoreductases acting on NADH or NADPH

The subclass EC 1.8.5, oxidoreductases acting on a sulfur group of donors, includes enzymes that catalyze redox reactions involving sulfur-containing compounds such as thiols (compounds containing -SH groups), disulfides (-S-S- bonds), and other sulfur-containing functional groups. These enzymes play crucial roles in various biological processes, including detoxification, antioxidant defense, and redox regulation.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Nucleic acid probes are specialized single-stranded DNA or RNA molecules that are used in molecular biology to identify and detect specific nucleic acid sequences, such as genes or fragments of DNA or RNA. These probes are typically labeled with a marker, such as a radioactive isotope or a fluorescent dye, which allows them to be detected and visualized.

Nucleic acid probes work by binding or "hybridizing" to their complementary target sequence through base-pairing interactions between the nucleotides that make up the probe and the target. This specificity of hybridization allows for the detection and identification of specific sequences within a complex mixture of nucleic acids, such as those found in a sample of DNA or RNA from a biological specimen.

Nucleic acid probes are used in a variety of applications, including gene expression analysis, genetic mapping, diagnosis of genetic disorders, and detection of pathogens, among others. They are an essential tool in modern molecular biology research and have contributed significantly to our understanding of genetics and disease.

Drug resistance, also known as antimicrobial resistance, is the ability of a microorganism (such as bacteria, viruses, fungi, or parasites) to withstand the effects of a drug that was originally designed to inhibit or kill it. This occurs when the microorganism undergoes genetic changes that allow it to survive in the presence of the drug. As a result, the drug becomes less effective or even completely ineffective at treating infections caused by these resistant organisms.

Drug resistance can develop through various mechanisms, including mutations in the genes responsible for producing the target protein of the drug, alteration of the drug's target site, modification or destruction of the drug by enzymes produced by the microorganism, and active efflux of the drug from the cell.

The emergence and spread of drug-resistant microorganisms pose significant challenges in medical treatment, as they can lead to increased morbidity, mortality, and healthcare costs. The overuse and misuse of antimicrobial agents, as well as poor infection control practices, contribute to the development and dissemination of drug-resistant strains. To address this issue, it is crucial to promote prudent use of antimicrobials, enhance surveillance and monitoring of resistance patterns, invest in research and development of new antimicrobial agents, and strengthen infection prevention and control measures.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Free radicals are molecules or atoms that have one or more unpaired electrons in their outermost shell, making them highly reactive. They can be formed naturally in the body through processes such as metabolism and exercise, or they can come from external sources like pollution, radiation, and certain chemicals. Free radicals can cause damage to cells and contribute to the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Antioxidants are substances that can neutralize free radicals and help protect against their harmful effects.

... (GR) also known as glutathione-disulfide reductase (GSR) is an enzyme that in humans is encoded by the ... In particular, glutathione reductase appears to be a good target for anti-malarials, as the glutathione reductase of the ... Glutathione reductase (EC 1.8.1.7) catalyzes the reduction of glutathione disulfide (GSSG) to the sulfhydryl form glutathione ( ... The mechanism of Glutathione Reductase in sustaining the oxidative burst is still unknown. Glutathione reductase deficiency is ...
NADPH-dependent coenzyme A-SS-glutathione reductase, coenzyme A disulfide-glutathione reductase, and NADPH:CoA-glutathione ... In enzymology, a CoA-glutathione reductase (EC 1.8.1.10) is an enzyme that catalyzes the chemical reaction CoA + glutathione + ... Ondarza RN, Abney R, Lopez-Colome AM (1969). "Characterization of a NADPH-dependent coenzyme A-SS-glutathione reductase from ... Carlberg I, Mannervik B (1977). "Purification by affinity chromatography of yeast glutathione reductase, the enzyme responsible ...
... (EC 1.8.1.16, GAR) is an enzyme with systematic name glutathione amide:NAD+ oxidoreductase. This ... glutathione amide disulfide + NADH + H+ Glutathione amide reductase is a dimeric flavoprotein (FAD). Vergauwen B, Pauwels F, ... Glutathione+amide+reductase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 1.8.1) ... "Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) ...
... insulin reductase, reductase, protein disulfide (glutathione), protein disulfide transhydrogenase, glutathione-protein ... In enzymology, a protein-disulfide reductase (glutathione) (EC 1.8.4.2) is an enzyme that catalyzes the chemical reaction 2 ... glutathione disulfide + protein-dithiol Thus, the two substrates of this enzyme are glutathione and protein disulfide, whereas ... This enzyme participates in glutathione metabolism. As of late 2007, only one structure has been solved for this class of ...
... (EC 1.8.4.9) is an enzyme that catalyzes the chemical reaction AMP + sulfite + ... adenylylsulfate reductase (also used for, internal_xref(ec_num(1,8,99,2))), AMP,sulfite:oxidized-glutathione oxidoreductase, ( ... and glutathione disulfide, whereas its two products are adenylyl sulfate and glutathione. This enzyme belongs to the family of ... glutathione disulfide ⇌ {\displaystyle \rightleftharpoons } adenylyl sulfate + 2 glutathione The 3 substrates of this enzyme ...
Palmer EJ, MacManus JP, Mutus B (1990). "Inhibition of glutathione reductase by oncomodulin". Arch. Biochem. Biophys. 277 (1): ...
"Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) ... Glutathione amide-dependent peroxidase (EC 1.11.1.17) is an enzyme with systematic name glutathione amide:hydrogen-peroxide ... Glutathione+amide-dependent+peroxidase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology ... This enzyme catalyses the following chemical reaction 2 glutathione amide + H2O2 ⇌ {\displaystyle \rightleftharpoons } ...
This reaction is catalyzed by the enzyme glutathione reductase. Antioxidant enzymes, such as glutathione peroxidases and ... Glutathione disulfide (GSSG) is a disulfide derived from two glutathione molecules. In living cells, glutathione disulfide is ... Glutathione-ascorbate cycle Antioxidant Meister A, Anderson ME (1983). "Glutathione". Annual Review of Biochemistry. 52: 711-60 ... GSSG, along with glutathione and S-nitrosoglutathione (GSNO), have been found to bind to the glutamate recognition site of the ...
RSeH Glutathione reductase then reduces the oxidized glutathione to complete the cycle: GS-SG + NADPH + H+ → 2 GSH + NADP+. ... Catalase Superoxide dismutase Glutathione reductase Selenium deficiency PDB: 1GP1​; Epp O, Ladenstein R, Wendel A (June 1983 ... A direct assay by linking the peroxidase reaction with glutathione reductase with measurement of the conversion of NADPH to ... Glutathione peroxidase was discovered in 1957 by Gordon C. Mills. Activity of glutathione peroxidase is measured ...
December 2005). "Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice". Nature. 438 (7068): 662-6. Bibcode: ... Glyoxalase II hydrolyzes the product to re-form the glutathione and produce D-lactate. Thus, glutathione acts unusually as a ... R)-S-lactoylglutathione = glutathione + 2-oxopropanal Glyoxalase I derives its name from its catalysis of the first step in the ... Although aldose reductase can also detoxify methylglyoxal, the glyoxalase system is more efficient and seems to be the most ...
... a central antioxidant enzyme that uses glutathione to remove ROS, and glutathione reductase, which regenerates glutathione, are ... 3DG inactivates aldehyde reductase. Aldehyde reductase is the cellular enzyme that protects the body from 3DG. Detoxification ... "Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes". Biochemical Pharmacology. 53 (8): ... Takahashi M, Lu YB, Myint T, Fujii J, Wada Y, Taniguchi N (January 1995). "In vivo glycation of aldehyde reductase, a major 3- ...
"Kinetic Characterization of Glutathione Reductase from the Malarial Parasite Plasmodium falciparum". Journal of Biological ...
Halprin KM, Ohkawara A (1967). "The measurement of glutathione in human epidermis using glutathione reductase". The Journal of ... Glutathione exists in reduced (GSH) and oxidized (GSSG) states. The ratio of reduced glutathione to oxidized glutathione within ... Adenylyl-sulfate reductase, an enzyme of the sulfur assimilation pathway, uses glutathione as an electron donor. Other enzymes ... a tool to measure the cellular glutathione redox potential Glutathione-ascorbate cycle Bacterial glutathione transferase ...
... spermidine cofactor for glutathione reductase in trypanosomatids". Science. 227 (4693): 1485-1487. Bibcode:1985Sci...227.1485F ... Trypanothione is an unusual form of glutathione containing two molecules of glutathione joined by a spermidine (polyamine) ... Since the trypanosomatids also lack an equivalent of thioredoxin reductase, trypanothione reductase is the sole path that ... Trypanothione-disulfide reductase (TryR) was the first trypanothione-dependent enzyme to be discovered (EC 1.8.1.12). It is an ...
This protein has dehydroascorbate reductase activity and may function in the glutathione-ascorbate cycle as part of antioxidant ... "Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase". J. Biol. Chem. 273 ... Glutathione S-transferase omega-1 is an enzyme that in humans is encoded by the GSTO1 gene. This gene encodes a member of the ... "Entrez Gene: GSTO1 glutathione S-transferase omega 1". Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG (2005 ...
ISBN 978-0-12-551250-3. Scrutton, Nigel Shaun (1988). Mechanistic and structural studies on glutathione reductase by protein ...
Scrutton, Nigel Shaun (1988). Mechanistic and structural studies on glutathione reductase by protein engineering (PhD thesis). ... Hare, Victoria (2012). PETN reductase as a versatile biocatalyst for the reduction of nitroalkenes (PhD thesis). University of ... Lou, Xiao (2010). Biochemical and structural studies of human methionine synthase reductase (PhD thesis). University of ...
Exposure to dimethoate also decreases glutathione peroxidase, glutathione reductase, and carboxylesterases activity. Because C ... Individuals from heavily polluted sites have increased glutathione concentrations and decreased glutathione S-transferase ... In the lab, individuals exposed to zinc during diapause have lower glutathione concentrations. Dimethoate exposure enhances the ... A study of glutathione-dependent enzymes in grasshopper nymphs". Insect Science. 16 (1): 33-42. doi:10.1111/j.1744-7917.2009. ...
... spermidine cofactor for glutathione reductase in trypanosomatids". Science. 227 (4693): 1485-7. Bibcode:1985Sci...227.1485F. ... This thiol metabolite is quite different from its human equivalent, glutathione. Trypanothione allows the parasites to fend off ... "Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress". Mol. Microbiol ...
Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) to glutathione (GSH). GR requires FAD and ... The structures of the reductase of the microsomal versus reductase of the mitochondrial P450 systems are completely different ... UDP-N-acetylenolpyruvylglucosamine Reductase (MurB) is an enzyme that catalyzes the NADPH-dependent reduction of enolpyruvyl- ... The P450 systems that are located in the endoplasmic reticulum are dependent on a cytochrome P-450 reductase (CPR) that ...
After completion of this reaction, glutathione reductase recycles oxidized glutathione back to the reduced form so that it ... Glutathione reductase is another enzyme that helps maintain cellular redox homeostasis by maintaining the supply of reduced ... Couto, Narciso; Wood, Jennifer; Barber, Jill (June 2016). "The role of glutathione reductase and related enzymes on cellular ... Without glutathione in its reduced form, glutathione transferases are not able to utilize it as a substrate in redox reactions ...
Targeting of this pathway with different inhibitors of the central antioxidant enzyme thioredoxin glutathione reductase (TGR) ... 2012). "Identification of thioredoxin glutathione reductase inhibitors that kill cestode and trematode parasites". PLOS ONE. 7 ...
Arsenite inhibits members of the disulfide oxidoreductase family like glutathione reductase and thioredoxin reductase. The ... March 2005). "Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver". Toxicological ... The efflux requires glutathione, but no arsenic-glutathione complex formation. Although many mechanisms have been proposed, no ... "The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex ...
This TxR is related to glutathione reductase, trypanothione reductase, mercuric reductase and lipoamide dehydrogenase. A low ... Humans express three thioredoxin reductase isozymes: thioredoxin reductase 1 (TrxR1, cytosolic), thioredoxin reductase 2 (TrxR2 ... Each domain individually is very similar to the analogous domains in glutathione reductase, and lipoamide dehydrogenase but ... Thioredoxin reductases (TR, TrxR) (EC 1.8.1.9) are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase ...
... yielding oxidized glutathione (GSSG). Finally GSSG is reduced by glutathione reductase (GR) using NADPH as the electron donor. ... Since glutathione, ascorbate and NADPH are present in high concentrations in plant cells it is assumed that the glutathione- ... such as glutathione S-transferase omega 1 or glutaredoxins. In plants, the glutathione-ascorbate cycle operates in the cytosol ... Thus ascorbate and glutathione are not consumed; the net electron flow is from NADPH to H2O2. The reduction of dehydroascorbate ...
Enzymes with ternary-complex mechanisms include glutathione S-transferase, dihydrofolate reductase and DNA polymerase. The ... Link: dihydrofolate reductase mechanism (Gif) γ. ^ Link: DNA polymerase mechanism (Gif) δ. ^ Link: Chymotrypsin mechanism ( ... When enzymes bind multiple substrates, such as dihydrofolate reductase (shown right), enzyme kinetics can also show the ... Stone SR, Morrison JF (July 1988). "Dihydrofolate reductase from Escherichia coli: the kinetic mechanism with NADPH and reduced ...
Researchers in Denmark have also found that centenarians exhibit a high activity of glutathione reductase in red blood cells. ... "Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians". Age Ageing ... centenarians living in Upper Silesia had significantly higher red blood cell glutathione reductase and catalase activities, ...
Glutathione is maintained in the reduced form by an NADPH-dependent glutathione reductase and the ratio of reduced glutathione ... and the activity of glutathione reductase. Glutathione is the precursor for the synthesis of phytochelatins, which are ... in glutathione homologues, β-alanine or serine) catalyzed by glutathione synthetase. Both steps of the synthesis of glutathione ... Subsequently, APS is reduced to sulfite, catalyzed by APS reductase with likely glutathione as reductant. The latter reaction ...
Researchers in Denmark have also found that centenarians exhibit a high activity of glutathione reductase in red blood cells. ... centenarians living in Upper Silesia had significantly higher red blood cell glutathione reductase and catalase activities and ... "Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians". Age and ...
The erythrocyte glutathione reductase activity coefficient (EGRAC) provides a measure of tissue saturation and long-term ... FAD is also required for the activity of glutathione reductase, an essential enzyme in formation of the endogenous antioxidant ... Indicators used in humans are erythrocyte glutathione reductase (EGR), erythrocyte flavin concentration and urinary excretion. ... An enzyme involved in folate metabolism, 5,10-methylenetetrahydrofolate reductase, requires FAD to form the amino acid, ...
Glutathione reductase (GR) also known as glutathione-disulfide reductase (GSR) is an enzyme that in humans is encoded by the ... In particular, glutathione reductase appears to be a good target for anti-malarials, as the glutathione reductase of the ... Glutathione reductase (EC 1.8.1.7) catalyzes the reduction of glutathione disulfide (GSSG) to the sulfhydryl form glutathione ( ... The mechanism of Glutathione Reductase in sustaining the oxidative burst is still unknown. Glutathione reductase deficiency is ...
... thioredoxin glutathione reductase from Schistosoma japonicumi)complex with FAD ... Crystal structure of SjTGR (thioredoxin glutathione reductase from Schistosoma japonicumi)complex with FAD. *PDB DOI: https:// ...
The role of the glutathione peroxidase/reductase (GSH-Px/GSSG-Rd) enzyme system in protection from paracetamol toxicity was ... The role of the glutathione peroxidase/reductase (GSH-Px/GSSG-Rd) enzyme system in protection from paracetamol toxicity was ... A role for the glutathione peroxidase/reductase enzyme system in the protection from paracetamol toxicity in isolated mouse ...
GR deficiency is an autosomal recessive genetic disorder. Congenital GR deficiency is associated with acute haemolytic crisis after oxidant drugs of fava beans ingestion (favism).
Functional significance of the pentose phosphate pathway and glutathione reductase in the anti-oxidant defences of human sperm. ... Functional significance of the pentose phosphate pathway and glutathione reductase in the anti-oxidant defences of human sperm ... Functional significance of the pentose phosphate pathway and glutathione reductase in the anti-oxidant defences of human sperm ... Williams, AC & Ford, WCL 2004, Functional significance of the pentose phosphate pathway and glutathione reductase in the anti- ...
Browse full-text Glutathione Reductase articles and other academic articles in Inquiries Journal ... Glutathione Reductase (tagged articles). The keyword Glutathione Reductase is tagged in the following 1 articles. ...
Order Glutathione Reductase Fluorescent Kit 01011260746 at Gentaur Glutathione Reductase Kit ...
glutathione-disulfide reductase - 1.-.-.- Oxidoreductases. Detailed annotation on the structure, function, physiology, ... 2008) Catalytic cycle of human glutathione reductase near 1 A resolution. J Mol Biol, 382 (2): 371-84. [PMID:18638483] ... 1.-.-.- Oxidoreductases: glutathione-disulfide reductase. Last modified on 13/08/2015. Accessed on 26/09/2023. IUPHAR/BPS Guide ... Apart from the CHEMBL listing of oxiglutatione as an approved drug acting at glutathione reductase and one PubMed reference ...
Glutathione reductase activity (p=0.05) and glutathione peroxidase activity (p=0 065) were significantly associated with ARMD ... The relation of glutathione reductase and glutathione peroxidase activity to ARMD merits further study. ... Low Glutathione Reductase and Peroxidase Activity in Age-Related Macular Degeneration. *Post author:2by2host ... Blood glutathione reductase activity was lower in patients with ARMD compared with controls (p=0035). The activities of ...
K00383 GSR, gor; glutathione reductase (NADPH). 1.00. 1.22. 1.48. evm.model.LG03.1372. K01919 gshA; glutamate-cysteine ligase. ... and glutathione reductase (Table 3), which are critical for ROS scavenging [25,26]. In a transcriptome analysis of salt- ... K00432 E1.11.1.9; glutathione peroxidase. 1.00. 1.37. 1.32. evm.model.LG03.168. K00026 MDH2; malate dehydrogenase. 1.00. 1.10. ... stressed C. reinhardtii cells, genes involved in removing ROS, such as plastid Fe SOD1, thioredoxins, glutathione transferase, ...
Glutathione reductase, mitochondrial. MALLPRALSAGAGPSWRRAARAFRGFLLLLPEPAALTRALSRAMACRQEP.... unknown. stimulator. Glutathione ... 3-hydroxy-3-methylglutaryl-coenzyme A reductase. MLSRLFRMHGLFVASHPWEVIVGTVTLTICMMSMNMFTGNNKICGWNYEC.... unknown. stimulator. ...
... level and the activities of two enzymes involved in glutathione metabolism, as well as the activity of catalase (CAT), glucose- ... The aim of this study was to determine the effect of acute intoxication with chlorfenvinphos on the liver reduced glutathione ( ... Liver Catalase, Glutathione Peroxidase and Reductase Activity, Reduced Glutathione and Hydrogen Peroxide Levels in Acute ... The liver glutathione peroxidase (GPx) and reductase (GR) activities as well as GSH and hydrogen peroxide levels were ...
The goal of this study was to check the activities of G6PD, 6-phosphogluconate dehydrogenase, glutathione reductase in patients ... The investigation of plasma glucose-6-phosphate dehydrogenase, 6-phoshogluconate dehydrogenase, glutathione reductase in ... The glutathione pathway is paramount to antioxidant defense and glucose-6-phosphate dehydrogenase (G6PD)-deficient cells do not ...
NutriFlair Liposomal Glutathione Setria® 700mg - Pure Reduced, Stable, Active Form L Glutathione reductase (GSH), Enhanced ... NutriFlair Liposomal Glutathione contains Setria L-Glutathione, or Reduced Glutathione, which many consider as the alpha of ... Our liposomal glutathione supplement gives 700 mg of Setria with every daily serving. It is a pure glutathione for the liver. ... Potent Clinically-studied Glutathione Pills - NutriFlair Extra strength L Glutathione supplement features 700mg of Setria - a ...
T1 - TRAIL-based high throughput screening reveals a link between TRAIL-mediated apoptosis and glutathione reductase, a key ... title = "TRAIL-based high throughput screening reveals a link between TRAIL-mediated apoptosis and glutathione reductase, a key ... TRAIL-based high throughput screening reveals a link between TRAIL-mediated apoptosis and glutathione reductase, a key ... TRAIL-based high throughput screening reveals a link between TRAIL-mediated apoptosis and glutathione reductase, a key ...
Dual-targeted glutathione reductase 2 defines a bottleneck for reduction of glutathione disulfide only in plastids. Poster ... Dual-targeted glutathione reductase 2 defines a bottleneck for reduction of glutathione disulfide only in plastids. / Bausewein ... Dual-targeted glutathione reductase 2 defines a bottleneck for reduction of glutathione disulfide only in plastids.. ... title = "Dual-targeted glutathione reductase 2 defines a bottleneck for reduction of glutathione disulfide only in plastids.", ...
Glutathione reductase (GR) catalyzes the conversion of oxidized glutat... ... Glutathione reductase (GR) catalyzes the conversion of oxidized glutathione to reduced glutathione (GSH). EuGR1 (GenBank ... Plastid-localized glutathione reductase 2 regulated glutathione redox status is essential for Arabidopsis root apical meristem ... Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and ...
The reduced state of T[SH]2 is maintained by NADPH-dependent trypanothione reductase (TryR) by recycling trypanothione ... The reduced state of T[SH]2 is maintained by NADPH-dependent trypanothione reductase (TryR) by recycling trypanothione ... Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity ... Glutathione reductase.. References. Baiocco, P., Poce, G., Alfonso, S., Cocozza, M., Porretta, G. C., Colotti, G., et al. (2013 ...
... glutathione peroxidase (p , 0.005), glutathione reductase (p , 0.001), glutathione S-transferase (p , 0.005), superoxide ... glutathione peroxidase (p , 0.005), glutathione reductase (p , 0.001), glutathione S-transferase (p , 0.005), superoxide ... piperita and exposed to 8.0 Gy gamma radiation showed a significant increase in the activities of reduced glutathione content ( ... piperita and exposed to 8.0 Gy gamma radiation showed a significant increase in the activities of reduced glutathione content ( ...
Glutathione is reduced mainly by glutathione reductase (GR). But in my catfish species we are not been able to identify/detect ... Are there any alternative enzyme for reduction of glutathione other than glutathione reductase? ... Although we have been able to sequence other glutathione dependent enzymes (i.e. glutathione S-transferase, glutathione ... Is there any Glutathione reductase specific inhibitor which can inhibit only GR not other disulfide oxidoreductase? Thanks in ...
... and glutathione reductase (GSH-R) activity. DEP exposure produced significant increases in neutrophils, lactate dehydrogenase, ... DEP absorbed 23-31% of CYSH, cystine, and GSH, and only 8% of glutathione disulfide when incubated in cell free media. These ... Alteration of intracellular cysteine and glutathione levels in alveolar macrophages and lymphocytes by diesel exhaust particle ... glutathione; glutathione reductase; inflammation; intratracheal instillation ...
Glutathione reduced, immobilized on Agarose CL-4B suitable for affinity chromatography, powder (lyophilized); find Supelco- ... the reduced glutathione is attached through the sulfur to epoxy-activated 4% cross-linked beaded agarose (C10-spacer) ...
Glutathione Peroxidase (Ransel). Glutathione Reductase. Glycerol. GM-CSF. Growth Hormone (GH). H. Haematocrit (HCT). ...
glutathione-disulfide reductase. multiple interactions. EXP. Chitosan analog inhibits the reaction [Doxorubicin results in ... glutathione peroxidase 1. increases expression. multiple interactions. EXP. Chitosan analog results in increased expression of ... 3-hydroxy-3-methylglutaryl-CoA reductase. multiple interactions. EXP. [Fish Oils co-treated with Chitosan] inhibits the ...
Corneal aldehyde dehydrogenase, glutathione reductase, and glutathione S-transferase in pathologic corneas. Cornea. 1993 Jul. ...
The decrease of malondialdehyde (MDA) and the increase of glutathione reductase (GR) are more pronounced in smokers groups ... Glutathione Reductase); H4N855PNZ1 (alpha-Tocopherol); OID: NLM: PMC4310461; 2014/07/25 [received ... RESULTS: The increase of total antioxidant status (TAS), glutathione peroxidase (GPx), and alpha-tocopherol, is significant ... LR: 20150212; JID: 101131163; 0 (Lipids); 4Y8F71G49Q (Malondialdehyde); EC 1.11.1.9 (Glutathione Peroxidase); EC 1.15.1.1 ( ...
O. W. Griffith, "Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine," ... Reduced Glutathione (GSH), Oxidized Glutathione (GSSG), and H2O2 Content. Total glutathione content was measured in the ... activities represents the selenium-independent glutathione peroxidase (Se-I-GPx) activity [19, 37]. Glutathione reductase (GR) ... Glutathione reductase (GR; EC 1.6.4.2) is the enzyme responsible for maintenance of GSH by reducing GSSG back to GSH. ...
Glutathione reductase. Meth Enzymol 113: 484-490. in a reaction on oxidized glutathione in the presence of NADPH, at 30 °C in ... Glutathione reductase activity was assayed according to the method of Carlberg and Mennervik (1985)Carlberg I, Mannervik B ( ... Disulfide reductase activity. Disulfide reductase activity might serve as a factor supporting proteolytic cleavage of disulfide ... Carlberg I, Mannervik B (1985) Glutathione reductase. Meth Enzymol 113: 484-490. ...
  • The aim of this study was to determine the effect of acute intoxication with chlorfenvinphos on the liver reduced glutathione (GSH) level and the activities of two enzymes involved in glutathione metabolism, as well as the activity of catalase (CAT), glucose-6-phosphate dehydrogenase (G6PDH) and the level of liver hydrogen peroxide. (pjoes.com)
  • Oxidative damage was not detected in the experimental common carp, however there were significant differences from control in superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in tissue after acute exposure to 13.8 μg.l-1 Fury 10 EW. (nel.edu)
  • Activity of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), as well as levels of thiobarbituric acid reactive substances (TBARS) were assessed. (nel.edu)
  • Changes in the activities of glutathione peroxidase (GSH-Px): glutathione reductase (GSH-R), and catalase, and in the content of reduced glutathione (GSH) in blood samples were determined by means of biochemical methods. (nih.gov)
  • Catalase, Glutathione Reductase, Glutathione Peroxidase and Superoxide dismutase, etc at liver and intestine tissues revealed the protective effects of some target herbs against mycotoxin-induced toxicity. (europa.eu)
  • In order to prevent oxidative damage, the antioxidant system presents a group of cellular enzymes (SOD, catalase and glutathione system) responsible for the control of free radicals. (bvsalud.org)
  • While SOD catalyzes the dismutation of superoxide anion (O2') to H2O2, catalase and glutathione (peroxidase, reductase) system reduce cellular toxicity degrading peroxides into oxygen and water 9 . (bvsalud.org)
  • either do not elicit or actively suppress the oxidative step, whereas other organisms produce enzymes (eg, catalase, glutathione reductase, superoxide dismutase) that mitigate the oxidative products. (msdmanuals.com)
  • Glutathione reductase (GR) also known as glutathione-disulfide reductase (GSR) is an enzyme that in humans is encoded by the GSR gene. (wikipedia.org)
  • Glutathione reductase (EC 1.8.1.7) catalyzes the reduction of glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH), which is a critical molecule in resisting oxidative stress and maintaining the reducing environment of the cell. (wikipedia.org)
  • Glutathione reductase functions as dimeric disulfide oxidoreductase and utilizes an FAD prosthetic group and NADPH to reduce one molar equivalent of GSSG to two molar equivalents of GSH: The glutathione reductase is conserved between all kingdoms. (wikipedia.org)
  • The ratio of GSSG/GSH present in the cell is a key factor in properly maintaining the oxidative balance of the cell, that is, it is critical that the cell maintains high levels of the reduced glutathione and a low level of the oxidized glutathione disulfide. (wikipedia.org)
  • 1.-.-.- Oxidoreductases: glutathione-disulfide reductase. (guidetoimmunopharmacology.org)
  • Dual-targeted glutathione reductase 2 defines a bottleneck for reduction of glutathione disulfide only in plastids. (elsevierpure.com)
  • The reduced state of T[SH] 2 is maintained by NADPH-dependent trypanothione reductase (TryR) by recycling trypanothione disulfide (TS 2 ). (frontiersin.org)
  • DEP absorbed 23-31% of CYSH, cystine, and GSH, and only 8% of glutathione disulfide when incubated in cell free media. (cdc.gov)
  • TrxR is a dimeric flavoproteinase, a member of the pyridine nucleotide disulfide reductase family, widely expressed in cells of all levels of organisms from prokaryotes to humans. (pharmiweb.com)
  • It is a central enzyme of cellular antioxidant defense, and reduces oxidized glutathione disulfide (GSSG) to the sulfhydryl form GSH, which is an important cellular antioxidant. (nih.gov)
  • This protective effect would be the result of (1) protein thiol protection, as evidenced by thioredoxin system activation, and of (2) the glutathione disulfide content decrease. (springer.com)
  • The activities of glutathione peroxidase (p=018) and erythrocyte superoxide dismutase (p=029) were similar between the two groups by a Student's two sample t test. (thestemcellfoundation.com)
  • Various tests have been introduced such as Glutathione Peroxidase, Total Antioxidant Status (TAS), Glutathione Reductase and Superoxide Dismutase. (pharmiweb.com)
  • Thioredoxin reductase (TrxR) is similar in activity to glutathione reductase (GR), catalyzing the reduction of GSSG to GSH, and is one of the key enzymes of the glutathione redox cycle. (pharmiweb.com)
  • Mammalian thioredoxin reductase (TrxR) enzymes are a family of selenoproteins with a unique but essential selenocysteine (Sec) residue at their C-terminal redox center. (pharmiweb.com)
  • Photosynthetic oxygen release, marker enzymes of the antioxidative system, glutathione redox dynamics and growth rate were used as testing parameters. (logos-verlag.de)
  • Selenium is a component of the antioxidant enzymes glutathione peroxidase and thioredoxin reductase (which indirectly reduce certain oxidized molecules in animals and some plants). (cdc.gov)
  • In contrast, S. cerevisiae msra Δ ( mxr1 Δ) and msrb Δ ( ycl033c Δ) mutants defective for peptide methionine sulfoxide reductase (MSR) activity exhibited a Cr sensitivity phenotype, and cells overexpressing these enzymes were Cr-resistant. (microbiologyresearch.org)
  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M et al (2012) Modulation of glutathione and its related enzymes in plants' responses to toxic metals and metalloids-a review. (springer.com)
  • Walker M A, McKersie B D , . Role of the ascorbate glutathione antioxidant system in chilling resistance of tomato[J]. Plant Physiology, 1993,141:234-239. (rdzwxb.com)
  • Powerful Antioxidant, Detox, Brain and Immune Support - As we age, our body's Glutathione depletes. (freshlynutrifood.com)
  • The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. (elsevierpure.com)
  • In most eukaryotes, there are mainly two independent antioxidant systems, one is the thioredoxin system and the other is the glutathione system. (pharmiweb.com)
  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. (springer.com)
  • [ 7 ] FAD is also a coenzyme needed for the functioning of the antioxidant enzyme glutathione reductase in its protection of cells against oxidative stresses, allowing for the measurement of the enzyme's activity in red blood cells to be among the methods for the assessment of riboflavin nutritional status. (medscape.com)
  • In vitro, glutathione reductase is inhibited by low concentrations of sodium arsenite and methylated arsenate metabolites, but in vivo, significant Glutathione Reductase inhibition by sodium arsenate has only been at 10 mg/kg/day. (wikipedia.org)
  • 2009) Profiling patterns of glutathione reductase inhibition by the natural product illudin S and its acylfulvene analogues. (guidetoimmunopharmacology.org)
  • Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. (elsevierpure.com)
  • Nucleotide reductase is an enzyme specifically expressed in replicating cells or rapidly growing tumor cells, and treatment of cells with TrxR inhibition and compounds such as adriamycin results in inhibition of nucleotide reductase and inhibition of cell growth. (pharmiweb.com)
  • In particular, glutathione reductase appears to be a good target for anti-malarials, as the glutathione reductase of the malaria parasite Plasmodium falciparum has a significantly different protein fold than that of mammalian glutathione reductase. (wikipedia.org)
  • Glutathione reductase activity (p=0.05) and glutathione peroxidase activity (p=0 065) were significantly associated with ARMD by this analysis. (thestemcellfoundation.com)
  • The relation of glutathione reductase and glutathione peroxidase activity to ARMD merits further study. (thestemcellfoundation.com)
  • This narrow balance is maintained by glutathione reductase, which catalyzes the reduction of GSSG to GSH. (wikipedia.org)
  • However, elevated enzyme activities and overexpressed glutathione reductase gene provided protection against lipid peroxidation. (logos-verlag.de)
  • The absence of corrective effect of effectors on glutathione redox state should be associated with the concomitant decrease in regeneration and consumption processes of reduced forms of glutathione, namely by glutathione reductase and glutathione peroxidase activities, respectively. (springer.com)
  • Corneal aldehyde dehydrogenase, glutathione reductase, and glutathione S-transferase in pathologic corneas. (medscape.com)
  • Rare mutations in this gene result in hereditary glutathione reductase deficiency. (nih.gov)
  • The liver glutathione peroxidase (GPx) and reductase (GR) activities as well as GSH and hydrogen peroxide levels were determined using Bioxytech Assay kits. (pjoes.com)
  • Potent Clinically-studied Glutathione Pills - NutriFlair Extra strength L Glutathione supplement features 700mg of Setria - a patented ingredient that has been clinically studied to Support Liver, Brain, Immune, and overall Health. (freshlynutrifood.com)
  • NutriFlair Setria Glutathione supplementation helps you replenish your Glutathione reserves by fighting infections, while supporting detoxification of the liver, and promoting vital brain functions including mental focus, concentration, clarity, and long-term memory. (freshlynutrifood.com)
  • ABSTRACT Serum levels of glutathione reductase (GR), glutathione S-transferase- (GST-) and malondialdehyde (MDA) were determined to evaluate their use in diagnosing hepatocellular damage in 75 children with liver disease. (who.int)
  • Glutathione plays a key role in maintaining proper function and preventing oxidative stress in human cells. (wikipedia.org)
  • Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. (microbiologyresearch.org)
  • Reduced glutathione reduces the oxidized form of the enzyme glutathione peroxidase, which in turn reduces hydrogen peroxide (H2O2), a dangerously reactive species within the cell. (wikipedia.org)
  • Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage. (microbiologyresearch.org)
  • The C-terminal fragment of human glutathione reductase contains the postulated catalytic histidine. (mpg.de)
  • Related tests: Erythrocyte glutathione reductase activity assay, expressed as a ratio of results with and without added flavin adenine dinucleotide. (medscape.com)
  • Antioxidants Reagent Glutathione Peroxidase is used to measure the selenium levels in the body and low levels of selenium lead to low immunity, fatigue and reproductive problems. (pharmiweb.com)
  • In these organisms, glutathione reduction is performed by either the thioredoxin or the trypanothione system, respectively. (wikipedia.org)
  • Glutathione reductase from human erythrocytes is a homodimer consisting of 52Kd monomers, each containing 3 domains. (wikipedia.org)
  • Glutathione reductase from human erythrocytes amino‐acid sequence of a major fragment that links the FAD, NADP and interface domains. (mpg.de)
  • Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione[J]. Frontiers in Plant Science, 2013,4:472. (rdzwxb.com)
  • D6 promoted chromate reductase secretion. (bvsalud.org)
  • Anti-aging - Clearer, Smoother, Brighter, Beautiful Skin - Glutathione helps neutralize and eliminate free radicals found in the environment that could cause damage, aging, and discoloration to the skin at a cellular level. (freshlynutrifood.com)
  • T[SH] 2 is synthesized by a bifunctional trypanothione synthetase (TryS) that covalently attaches two molecules of glutathione (GSH) onto one molecule of spermidine (Spd) in a two-step process. (frontiersin.org)
  • 2004). Ambient air with glutathione (GSH) and other cellular nucleophiles (Kehrer measurements in the United States have detected acrolein at & Biswal, 2000), depletes rat nasal and lung GSH (Arumugam concentrations ranging from 2 to 7 ppb. (cdc.gov)
  • The role of the glutathione peroxidase/reductase (GSH-Px/GSSG-Rd) enzyme system in protection from paracetamol toxicity was investigated in isolated mouse hepatocytes in primary culture. (nih.gov)
  • Blood glutathione reductase activity was lower in patients with ARMD compared with controls (p=0035). (thestemcellfoundation.com)
  • We obtained AM and lymph node (thymic and tracheal) cells (LNC) (at different time points) from rats exposed intratracheally to DEP (5 mg/kg) or saline, and measured inflammatory markers, thiol levels, and glutathione reductase (GSH-R) activity. (cdc.gov)
  • Glutathione reductase (GR) catalyzes the conversion of oxidized glutathione to reduced glutathione (GSH). (rdzwxb.com)
  • Although glutathione reductase has been an attractive target for many pharmaceuticals, there have been no successful glutathione reductase related therapeutic compounds created to date. (wikipedia.org)
  • Olfactory and respi- ratory glutathione (GSH) concentrations were also evaluated in naive and acrolein-preexposed rats. (cdc.gov)
  • Biliary excretion of glutathione in the rat-significance for the biliary excretion of heavy metals [Abstract]. (cdc.gov)
  • Alteration of intracellular cysteine and glutathione levels in alveolar macrophages and lymphocytes by diesel exhaust particle exposure. (cdc.gov)
  • Maintains high levels of reduced glutathione in the cytosol. (nih.gov)
  • Glutathione reductase in leaves of cowpea: cloning of two cDNAs expression and enzymaticactivity underprogressive drought stress, desiccation and abscisic acid treatmet[J]. Annals of Botany, 2006,98(6):1279-1287. (rdzwxb.com)
  • Williams, AC & Ford, WCL 2004, ' Functional significance of the pentose phosphate pathway and glutathione reductase in the anti-oxidant defences of human sperm ', Biology of Reproduction , vol. 71, pp. 1309 - 1316. (bris.ac.uk)
  • Chi Y, Cheng Y, Vanitha J, Kumar N, Ramamoorthy R, Ramachandran S, Jiang SY (2011) Expansion mechanisms and functional divergence of the glutathione S -transferase family in sorghum and other higher plants. (springer.com)
  • Glutathione S-transferase (GST) is a search Centre (NRC), Cairo, Egypt from detoxification enzyme that catalyses the 2001 to 2004, in accordance with the ethical addition of glutathione to various xeno- principles of the NRC, in collaboration with biotics [ 4 ]. (who.int)
  • Apart from the CHEMBL listing of oxiglutatione as an approved drug acting at glutathione reductase and one PubMed reference describing a its use in a single clinical case study [ 4 ], there is very little information available about this drug and its mechanism of action. (guidetoimmunopharmacology.org)

No images available that match "glutathione reductase"