Glutamate Dehydrogenase: An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.Glutamate Dehydrogenase (NADP+)Glutamates: Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure.Glutamate Synthase: An enzyme that catalyzes the formation of 2 molecules of glutamate from glutamine plus alpha-ketoglutarate in the presence of NADPH. EC 1.4.1.13.Ketoglutaric Acids: A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442)Glutamic Acid: A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.NAD: A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)NADP: Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)L-Lactate Dehydrogenase: A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.Ammonia: A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.Receptors, Glutamate: Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases.Malate Dehydrogenase: An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37.Alcohol Dehydrogenase: A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen.Glutamate-Ammonia Ligase: An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2.Isocitrate Dehydrogenase: An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41.Glutamine: A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.Glucosephosphate DehydrogenaseKinetics: The rate dynamics in chemical or physical systems.Glyceraldehyde-3-Phosphate Dehydrogenases: Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.GlutaratesNeurospora: A genus of ascomycetous fungi, family Sordariaceae, order SORDARIALES, comprising bread molds. They are capable of converting tryptophan to nicotinic acid and are used extensively in genetic and enzyme research. (Dorland, 27th ed)Receptors, Metabotropic Glutamate: Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action.Aldehyde Dehydrogenase: An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70.Transaminases: A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.Alcohol Oxidoreductases: A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).Ketoglutarate Dehydrogenase ComplexHyperammonemia: Elevated level of AMMONIA in the blood. It is a sign of defective CATABOLISM of AMINO ACIDS or ammonia to UREA.Alanine Dehydrogenase: An NAD-dependent enzyme that catalyzes the reversible DEAMINATION of L-ALANINE to PYRUVATE and AMMONIA. The enzyme is needed for growth when ALANINE is the sole CARBON or NITROGEN source. It may also play a role in CELL WALL synthesis because L-ALANINE is an important constituent of the PEPTIDOGLYCAN layer.Neurospora crassa: A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies.Dihydrolipoamide Dehydrogenase: A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES.Nitrogen: An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.Succinate Dehydrogenase: A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Carbohydrate Dehydrogenases: Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99.L-Iditol 2-Dehydrogenase: An alcohol oxidoreductase which catalyzes the oxidation of L-iditol to L-sorbose in the presence of NAD. It also acts on D-glucitol to form D-fructose. It also acts on other closely related sugar alcohols to form the corresponding sugar. EC 1.1.1.14Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Hydroxybutyrate DehydrogenaseLiver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Clostridium: A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.Cattle: Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.GlutaminaseGlycerolphosphate DehydrogenaseDeamination: The removal of an amino group (NH2) from a chemical compound.Aspartic Acid: One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.Sodium Glutamate: One of the FLAVORING AGENTS used to impart a meat-like flavor.Hydrogen-Ion Concentration: The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)Glucose 1-Dehydrogenase: A glucose dehydrogenase that catalyzes the oxidation of beta-D-glucose to form D-glucono-1,5-lactone, using NAD as well as NADP as a coenzyme.Hydroxysteroid Dehydrogenases: Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-.Aspartate Aminotransferases: Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1.Amino Acid Transport System X-AG: A family of POTASSIUM and SODIUM-dependent acidic amino acid transporters that demonstrate a high affinity for GLUTAMIC ACID and ASPARTIC ACID. Several variants of this system are found in neuronal tissue.Amino Acids: Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.Aldehyde Oxidoreductases: Oxidoreductases that are specific for ALDEHYDES.Mitochondria, Liver: Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4)Citric Acid Cycle: A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Phosphogluconate Dehydrogenase: An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43.Isoenzymes: Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.Oxidoreductases: The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)Glucose Dehydrogenases: D-Glucose:1-oxidoreductases. Catalyzes the oxidation of D-glucose to D-glucono-gamma-lactone and reduced acceptor. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.47; EC 1.1.1.118; EC 1.1.1.119 and EC 1.1.99.10.3-Hydroxysteroid Dehydrogenases: Catalyze the oxidation of 3-hydroxysteroids to 3-ketosteroids.3-Hydroxyacyl CoA Dehydrogenases: Enzymes that reversibly catalyze the oxidation of a 3-hydroxyacyl CoA to 3-ketoacyl CoA in the presence of NAD. They are key enzymes in the oxidation of fatty acids and in mitochondrial fatty acid synthesis.Adenosine Diphosphate: Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.Amination: The creation of an amine. It can be produced by the addition of an amino group to an organic compound or reduction of a nitro group.Sugar Alcohol Dehydrogenases: Reversibly catalyzes the oxidation of a hydroxyl group of sugar alcohols to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2. and EC 1.1.99.Glutamate Plasma Membrane Transport Proteins: A family of plasma membrane neurotransmitter transporter proteins that couple the uptake of GLUTAMATE with the import of SODIUM ions and PROTONS and the export of POTASSIUM ions. In the CENTRAL NERVOUS SYSTEM they regulate neurotransmission through synaptic reuptake of the excitatory neurotransmitter glutamate. Outside the central nervous system they function as signal mediators and regulators of glutamate metabolism.Acyl-CoA Dehydrogenases: Enzymes that catalyze the first step in the beta-oxidation of FATTY ACIDS.NADH Dehydrogenase: A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1.Quaternary Ammonium Compounds: Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN=CR2.Peptostreptococcus: A genus of gram-positive, anaerobic, coccoid bacteria that is part of the normal flora of humans. Its organisms are opportunistic pathogens causing bacteremias and soft tissue infections.Coenzymes: Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes.Receptor, Metabotropic Glutamate 5: A type I G protein-coupled receptor mostly expressed post-synaptic pyramidal cells of the cortex and CENTRAL NERVOUS SYSTEM.IMP Dehydrogenase: An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC 1.1.1.205.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Ammonium Chloride: An acidifying agent that has expectorant and diuretic effects. Also used in etching and batteries and as a flux in electroplating.Lactate Dehydrogenases: Alcohol oxidoreductases with substrate specificity for LACTIC ACID.Malatesp-Chloromercuribenzoic Acid: An organic mercurial used as a sulfhydryl reagent.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Formate Dehydrogenases: Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Acyl-CoA Dehydrogenase: A flavoprotein oxidoreductase that has specificity for medium-chain fatty acids. It forms a complex with ELECTRON TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.17-Hydroxysteroid Dehydrogenases: A class of enzymes that catalyzes the oxidation of 17-hydroxysteroids to 17-ketosteroids. EC 1.1.-.Xanthine Dehydrogenase: An enzyme that catalyzes the oxidation of XANTHINE in the presence of NAD+ to form URIC ACID and NADH. It acts also on a variety of other purines and aldehydes.Mitochondria: Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)Olivopontocerebellar Atrophies: A group of inherited and sporadic disorders which share progressive ataxia in combination with atrophy of the CEREBELLUM; PONS; and inferior olivary nuclei. Additional clinical features may include MUSCLE RIGIDITY; NYSTAGMUS, PATHOLOGIC; RETINAL DEGENERATION; MUSCLE SPASTICITY; DEMENTIA; URINARY INCONTINENCE; and OPHTHALMOPLEGIA. The familial form has an earlier onset (second decade) and may feature spinal cord atrophy. The sporadic form tends to present in the fifth or sixth decade, and is considered a clinical subtype of MULTIPLE SYSTEM ATROPHY. (From Adams et al., Principles of Neurology, 6th ed, p1085)Amino Acids, Cyclic: A class of amino acids characterized by a closed ring structure.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Ammonium Sulfate: Sulfuric acid diammonium salt. It is used in CHEMICAL FRACTIONATION of proteins.Thermoproteaceae: A family of THERMOPROTEALES consisting of variable length rigid rods without septa. They grow either chemolithoautotrophically or by sulfur respiration. The four genera are: PYROBACULUM; THERMOPROTEUS; Caldivirga; and Thermocladium. (From Bergey's Manual of Systematic Bacteriology, 2d ed)Aminooxyacetic Acid: A compound that inhibits aminobutyrate aminotransferase activity in vivo, thereby raising the level of gamma-aminobutyric acid in tissues.Enzyme Stability: The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat.3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide): A ketone oxidoreductase that catalyzes the overall conversion of alpha-keto acids to ACYL-CoA and CO2. The enzyme requires THIAMINE DIPHOSPHATE as a cofactor. Defects in genes that code for subunits of the enzyme are a cause of MAPLE SYRUP URINE DISEASE. The enzyme was formerly classified as EC 1.2.4.3.Pyruvate Dehydrogenase (Lipoamide): The E1 component of the multienzyme PYRUVATE DEHYDROGENASE COMPLEX. It is composed of 2 alpha subunits (pyruvate dehydrogenase E1 alpha subunit) and 2 beta subunits (pyruvate dehydrogenase E1 beta subunit).Vesicular Glutamate Transport Proteins: A family of vesicular neurotransmitter transporter proteins that were originally characterized as sodium dependent inorganic phosphate cotransporters. Vesicular glutamate transport proteins sequester the excitatory neurotransmitter GLUTAMATE from the CYTOPLASM into SECRETORY VESICLES in exchange for lumenal PROTONS.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Enzyme Repression: The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis.Allosteric Regulation: The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES.Ketone Oxidoreductases: Oxidoreductases that are specific for KETONES.Leucine: An essential branched-chain amino acid important for hemoglobin formation.11-beta-Hydroxysteroid Dehydrogenases: Hydroxysteroid dehydrogenases that catalyzes the reversible conversion of CORTISOL to the inactive metabolite CORTISONE. Enzymes in this class can utilize either NAD or NADP as cofactors.Excitatory Amino Acid Antagonists: Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists.Molecular Weight: The sum of the weight of all the atoms in a molecule.Chlorella: Nonmotile unicellular green algae potentially valuable as a source of high-grade protein and B-complex vitamins.Formiminoglutamic Acid: Measurement of this acid in the urine after oral administration of histidine provides the basis for the diagnostic test of folic acid deficiency and of megaloblastic anemia of pregnancy.Excitatory Amino Acid Transporter 2: A glutamate plasma membrane transporter protein found in ASTROCYTES and in the LIVER.Glucose: A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.PyruvatesVesicular Glutamate Transport Protein 2: A vesicular glutamate transporter protein that is predominately expressed in the DIENCEPHALON and lower brainstem regions of the CENTRAL NERVOUS SYSTEM.Succinates: Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure.Dihydrouracil Dehydrogenase (NADP): An oxidoreductase involved in pyrimidine base degradation. It catalyzes the catabolism of THYMINE; URACIL and the chemotherapeutic drug, 5-FLUOROURACIL.Uridine Diphosphate Glucose Dehydrogenase: An enzyme that catalyzes the oxidation of UDPglucose to UDPglucuronate in the presence of NAD+. EC 1.1.1.22.Citrate (si)-Synthase: Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7.Succinic Acid: A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawley's Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851)Chemistry: A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.Glucosephosphate Dehydrogenase Deficiency: A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.Chemical Phenomena: The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.Electrophoresis, Polyacrylamide Gel: Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.Carbon: A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.Protein Conformation: The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).Alanine: A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM.Pyridoxal Phosphate: This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE).Rats, Sprague-Dawley: A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.ButanonesGuanosine Triphosphate: Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety.11-beta-Hydroxysteroid Dehydrogenase Type 1: A low-affinity 11 beta-hydroxysteroid dehydrogenase found in a variety of tissues, most notably in LIVER; LUNG; ADIPOSE TISSUE; vascular tissue; OVARY; and the CENTRAL NERVOUS SYSTEM. The enzyme acts reversibly and can use either NAD or NADP as cofactors.Vesicular Glutamate Transport Protein 1: A vesicular glutamate transporter protein that is predominately expressed in TELENCEPHALON of the BRAIN.Receptors, AMPA: A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid).Excitatory Amino Acid Agonists: Drugs that bind to and activate excitatory amino acid receptors.3-alpha-Hydroxysteroid Dehydrogenase (B-Specific): A 3-hydroxysteroid dehydrogenase which catalyzes the reversible reduction of the active androgen, DIHYDROTESTOSTERONE to 5 ALPHA-ANDROSTANE-3 ALPHA,17 BETA-DIOL. It also has activity towards other 3-alpha-hydroxysteroids and on 9-, 11- and 15- hydroxyprostaglandins. The enzyme is B-specific in reference to the orientation of reduced NAD or NADPH.Spectrophotometry: The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.Mannitol Dehydrogenases: Sugar alcohol dehydrogenases that have specificity for MANNITOL. Enzymes in this category are generally classified according to their preference for a specific reducing cofactor.Alanine Transaminase: An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2.Bacterial Proteins: Proteins found in any species of bacterium.Histidine Ammonia-Lyase: An enzyme that catalyzes the first step of histidine catabolism, forming UROCANIC ACID and AMMONIA from HISTIDINE. Deficiency of this enzyme is associated with elevated levels of serum histidine and is called histidinemia (AMINO ACID METABOLISM, INBORN ERRORS).Catalysis: The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.Enzyme Activation: Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.Hydroxyprostaglandin Dehydrogenases: Catalyzes reversibly the oxidation of hydroxyl groups of prostaglandins.Receptors, N-Methyl-D-Aspartate: A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity.Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)Butyryl-CoA Dehydrogenase: A flavoprotein oxidoreductase that has specificity for short-chain fatty acids. It forms a complex with ELECTRON-TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.Retinal Dehydrogenase: A metalloflavoprotein enzyme involved the metabolism of VITAMIN A, this enzyme catalyzes the oxidation of RETINAL to RETINOIC ACID, using both NAD+ and FAD coenzymes. It also acts on both the 11-trans- and 13-cis-forms of RETINAL.Genes, Bacterial: The functional hereditary units of BACTERIA.Allosteric Site: A site on an enzyme which upon binding of a modulator, causes the enzyme to undergo a conformational change that may alter its catalytic or binding properties.Excitatory Amino Acid Transporter 1: A glial type glutamate plasma membrane transporter protein found predominately in ASTROCYTES. It is also expressed in HEART and SKELETAL MUSCLE and in the PLACENTA.Hot Temperature: Presence of warmth or heat or a temperature notably higher than an accustomed norm.Glutamate Decarboxylase: A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15.Amino Acid Oxidoreductases: A class of enzymes that catalyze oxidation-reduction reactions of amino acids.Archaea: One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA.Urea: A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids.Clostridium difficile: A common inhabitant of the colon flora in human infants and sometimes in adults. It produces a toxin that causes pseudomembranous enterocolitis (ENTEROCOLITIS, PSEUDOMEMBRANOUS) in patients receiving antibiotic therapy.20-Hydroxysteroid Dehydrogenases: A group of enzymes that catalyze the reversible reduction-oxidation reaction of 20-hydroxysteroids, such as from a 20-ketosteroid to a 20-alpha-hydroxysteroid (EC 1.1.1.149) or to a 20-beta-hydroxysteroid (EC 1.1.1.53).Brain: The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.Chromatography, Gel: Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.11-beta-Hydroxysteroid Dehydrogenase Type 2: An high-affinity, NAD-dependent 11-beta-hydroxysteroid dehydrogenase that acts unidirectionally to catalyze the dehydrogenation of CORTISOL to CORTISONE. It is found predominantly in mineralocorticoid target tissues such as the KIDNEY; COLON; SWEAT GLANDS; and the PLACENTA. Absence of the enzyme leads to a fatal form of childhood hypertension termed, APPARENT MINERALOCORTICOID EXCESS SYNDROME.Cell-Free System: A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166)Gene Expression Regulation, Enzymologic: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.Magnetic Resonance Spectroscopy: Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).Giardia lamblia: A species of parasitic EUKARYOTES that attaches itself to the intestinal mucosa and feeds on mucous secretions. The organism is roughly pear-shaped and motility is somewhat erratic, with a slow oscillation about the long axis.ImidesTemperature: The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.Proline: A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons.Acyl-CoA Dehydrogenase, Long-Chain: A flavoprotein oxidoreductase that has specificity for long-chain fatty acids. It forms a complex with ELECTRON-TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Adenosine Triphosphate: An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.Recombinant Proteins: Proteins prepared by recombinant DNA technology.Spinocerebellar Degenerations: A heterogenous group of degenerative syndromes marked by progressive cerebellar dysfunction either in isolation or combined with other neurologic manifestations. Sporadic and inherited subtypes occur. Inheritance patterns include autosomal dominant, autosomal recessive, and X-linked.CitratesCulture Media: Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.Homoserine Dehydrogenase: An enzyme that catalyzes the reduction of aspartic beta-semialdehyde to homoserine, which is the branch point in biosynthesis of methionine, lysine, threonine and leucine from aspartic acid. EC 1.1.1.3.Enzymes: Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified.Rats, Wistar: A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.Isovaleryl-CoA Dehydrogenase: A mitochondrial flavoprotein, this enzyme catalyzes the oxidation of 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA using FAD as a cofactor. Defects in the enzyme, is associated with isovaleric acidemia (IVA).3-Isopropylmalate Dehydrogenase: An NAD+ dependent enzyme that catalyzes the oxidation of 3-carboxy-2-hydroxy-4-methylpentanoate to 3-carboxy-4-methyl-2-oxopentanoate. It is involved in the biosynthesis of VALINE; LEUCINE; and ISOLEUCINE.Kainic Acid: (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose.Receptors, Ionotropic Glutamate: A class of ligand-gated ion channel receptors that have specificity for GLUTAMATE. They are distinct from METABOTROPIC GLUTAMATE RECEPTORS which act through a G-protein-coupled mechanism.Excitatory Amino Acid Transporter 3: A neuronal and epithelial type glutamate plasma membrane transporter protein.Ornithine-Oxo-Acid Transaminase: A pyridoxal phosphate enzyme that catalyzes the formation of glutamate gamma-semialdehyde and an L-amino acid from L-ornithine and a 2-keto-acid. EC 2.6.1.13.Species Specificity: The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.Keto AcidsEnzyme Induction: An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.Neurons: The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.Malate Dehydrogenase (NADP+)

The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. The tryptic peptides. (1/966)

The NADP-specific glutamate dehydrogenase of Neurospora crassa was digested with trypsin, and peptides accounting for 441 out of the 452 residues of the polypeptide chain were isolated and substantially sequenced. Additional experimental detail has been deposited as Supplementary Publication SUP 50052 (11 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem J. (1975) 145, 5.  (+info)

The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. Peptides from digestion with a staphylococcal proteinase. (2/966)

The extracellular proteinase of Staphylococcus aureus strain V8 was used to digest the NADP-specific glutamate dehydrogenase of Neurospora crassa. Of 35 non-overlapping peptides expected from the glutamate content of the polypeptide chain, 29 were isolated and substantially sequenced. The sequences obtained were valuable in providing overlaps for the alignment of about two-thirds of the sequences found in tryptic peptides [Wootton, J. C., Taylor, J, G., Jackson, A. A., Chambers, G. K. & Fincham, J. R. S. (1975) Biochem. J. 149, 739-748]. The blocked N-terminal peptide of the protein was isolated. This peptide was sequenced by mass spectrometry, and found to have N-terminal N-acetylserine by Howard R. Morris and Anne Dell, whose results are presented as an Appendix to the main paper. The staphylococcal proteinase showed very high specificity for glutamyl bonds in the NH4HCO3 buffer used. Partial splits of two aspartyl bonds, both Asp-Ile, were probably attributable to the proteinase. No cleavage of glutaminyl or S-carboxymethylcysteinyl bonds was found. Additional experimental detail has been deposited as Supplementary Publication SUP 50053 (5 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K, from whom copies may be obtained under the terms given in Biochem. J. (1975) 1458 5.  (+info)

The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. Peptic and chymotryptic peptides and the complete sequence. (3/966)

Peptic and chymotryptic peptides were isolated form the NADP-specific glutamate dehydrogenase of Neurospora crassa and substantially sequenced. Out of 452 residues in the polypeptide chain, 265 were recovered in the peptic and 427 in the chymotryptic peptides. Together with the tryptic peptides [Wootton, J. C., Taylor, J. G., Jackson, A. A., Chambers, G. K. & Fincham, J. R. S. (1975) Biochem. J. 149, 749-755], these establish the complete sequence of the chain, including the acid and amide assignments, except for seven places where overlaps are inadequate. These remaining alignments are deduced from information on the CNBr fragments obtained in another laboratory [Blumenthal, K. M., Moon, K. & Smith, E. L. (1975), J. Biol. Chem. 250, 3644-3654]. Further information has been deposited as Supplementary Publication SUP 50054 (17 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem. J. (1975) 145, 5.  (+info)

Activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenases, glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in nervous tissues from vertebrates and invertebrates. (4/966)

1. The activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenases were measured in nervous tissue from different animals in an attempt to provide more information about the citric acid cycle in this tissue. In higher animals the activities of citrate synthase are greater than the sum of activities of the isocitrate dehydrogenases, whereas they are similar in nervous tissues from the lower animals. This suggests that in higher animals the isocitrate dehydrogenase reaction is far-removed from equilibrium. If it is assumed that isocitrate dehydrogenase activities provide an indication of the maximum flux through the citric acid cycle, the maximum glycolytic capacity in nervous tissue is considerably greater than that of the cycle. This suggest that glycolysis can provide energy in excess of the aerobic capacity of the tissue. 2. The activities of glutamate dehydrogenase are high in most nervous tissues and the activities of aspartate aminotransferase are high in all nervous tissue investigated. However, the activities of alanine aminotransferase are low in all tissues except the ganglia of the waterbug and cockroach. In these insect tissues, anaerobic glycolysis may result in the formation of alanine rather than lactate.  (+info)

The effect of bile salts and calcium on isolated rat liver mitochondria. (5/966)

Intact mitochondria were incubated with and without calcium in solutions of chenodeoxycholate, ursodeoxycholate, or their conjugates. Glutamate dehydrogenase, protein and phospholipid release were measured. Alterations in membrane and organelle structure were investigated by electron paramagnetic resonance spectroscopy. Chenodeoxycholate enhanced enzyme liberation, solubilized protein and phospholipid, and increased protein spin label mobility and the polarity of the hydrophobic membrane interior, whereas ursodeoxycholate and its conjugates did not damage mitochondria. Preincubation with ursodeoxycholate or its conjugate tauroursodeoxycholate for 20 min partially prevented damage by chenodeoxycholate. Extended preincubation even with 1 mM ursodeoxycholate could no longer prevent structural damage. Calcium (from 0.01 mM upward) augmented the damaging effect of chenodeoxycholate (0.15-0.5 mM). The combined action of 0.01 mM calcium and 0.15 mM chenodeoxycholate was reversed by ursodeoxycholate only, not by its conjugates tauroursodeoxycholate and glycoursodeoxycholate. In conclusion, ursodeoxycholate partially prevents chenodeoxycholate-induced glutamate dehydrogenase release from liver cell mitochondria by membrane stabilization. This holds for shorter times and at concentrations below 0.5 mM only, indicating that the different constitution of protein-rich mitochondrial membranes does not allow optimal stabilization such as has been seen in phospholipid- and cholesterol-rich hepatocyte cell membranes, investigated previously.  (+info)

Purification and characterization of cold-active L-glutamate dehydrogenase independent of NAD(P) and oxygen. (6/966)

L-Glutamate dehydrogenase (GLDH) independent of NAD(P) and oxygen was first obtained from the psychrotrophic bacterium Aeromonas sp. L101, originally isolated from the organs of salmon (Oncorhynchus keta). GLDH was purified by a series of chromatography steps on DEAE-Sepharose, Superdex 200pg, Q-Sepharose, CM-Sepharose, and Phenyl-Sepharose. The purified protein was determined to have a molecular mass of 110 kDa and a pI of 5.7. Maximum activity was obtained at 55 degrees C and pH 8.5. The activity of GLDH at 4 and 20 degrees C was 38 and 50%, respectively, of that at 50 degrees C. GLDH was coupled to cytochrome c and several redox dyes including 1-methoxy-5-methylphenazinium methylsulfate (1-Methoxy PMS), 2, 6-dichlorophenylindophenol (DCIP), 9-dimethylaminobenzo[alpha]phenoxazin-7-ium chloride (meldola's blue), 3,3'-[3,3'-dimethoxy-(1,1'-biphenyl)-4, 4'-diyl]-bis[2-(4-nitrophenyl)-5-phenyl-2H tetrazolium chloride] (nitroblue tetrazolium; NBT), and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H tetrazolium (INT). The presence of NAD(P) and oxygen gave no oxidation activity to GLDH. Spectroscopic profile and ICP data indicated a b-type cytochrome containing iron.  (+info)

Reactive cysteine residue of bovine brain glutamate dehydrogenase isoproteins. (7/966)

Protein chemical studies of glutamate dehydrogenase isoproteins (GDH I and GDH II) from bovine brain reveal that one cystein residue is accessible for reaction with thiol-modifying reagent. Reaction of the two types of GDH isoproteins with p-chloromercuribenzoic acid resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo first-order kinetics with the second-order rate constant of 83 M(-1) s(-1) and 75 M(-1) s(-1) for GDH I and GDH II, respectively. The inactivation was partially prevented by preincubation of the glutamate dehydrogenase isoproteins with NADH. A combination of 10 mM 2-oxoglutarate with 2 mM NADH gave complete protection against the inactivation. There were no significant differences between the two glutamate dehydrogenase isoproteins in their sensitivities to inactivation by p-chloromercuribenzoic indicating that the microenvironmental structures of the GDH isoproteins are very similar to each other. Allosteric effectors such as ADP and GTP had no effects on the inactivation of glutamate dehydrogenase isoproteins by thiol-modifying reagents. By a combination of peptide mapping analysis and labeling with [14C] p-chloromercuribenzoic acid, a reactive cystein residue was identified as Cys323 in the overall sequence. The cysteine residue was clearly identical to sequences of other GDH species known.  (+info)

Cyclic AMP can decrease expression of genes subject to catabolite repression in Saccharomyces cerevisiae. (8/966)

External cyclic AMP (cAMP) hindered the derepression of gluconeogenic enzymes in a pde2 mutant of Saccharomyces cerevisiae, but it did not prevent invertase derepression. cAMP reduced nearly 20-fold the transcription driven by upstream activation sequence (UAS1FBP1) from FBP1, encoding fructose-1,6-bisphosphatase; it decreased 2-fold the activation of transcription by UAS2FBP1. Nuclear extracts from cells derepressed in the presence of cAMP were impaired in the formation of specific UASFBP1-protein complexes in band shift experiments. cAMP does not appear to act through the repressing protein Mig1. Control of FBP1 transcription through cAMP is redundant with other regulatory mechanisms.  (+info)

  • These results suggest a possibility that aluminum-induced alterations in enzymes of the glutamate system may be one of the causes of aluminum-induced neurotoxicity. (elsevier.com)
  • In humans the relevant genes are called GLUD1 (glutamate dehydrogenase 1) and GLUD2 (glutamate dehydrogenase 2), and there are also at least 8 GLDH pseudogenes in the human genome as well, probably reflecting microbial influences on eukaryote evolution. (wikipedia.org)
  • The Glud1 Tg mouse model generated in our laboratory demonstrated significantly increased GLUD1 levels, GLUD activity, extracellular glutamate levels, and increased glutamate release after stimulation as compared to wild type (wt). (ku.edu)
  • Therefore, the Glud1 Tg mice may be used to probe the molecular and cellular pathways involved in selective neuronal vulnerability as it may relate to excess extracellular glutamate. (ku.edu)
  • abstract = "Aluminum inactivated glutamate dehydrogenase (GDH) by a pseudo-first-order reaction at micromolar concentrations. (elsevier.com)
  • The studies presented in this dissertation focused on investigating the role of mitochondria in inducing region specific neuronal degeneration under the conditions of the combined effects of aging and excess glutamate activity in the central nervous system. (ku.edu)
  • NAD+(or NADP+) is a cofactor for the glutamate dehydrogenase reaction, producing α-ketoglutarate and ammonium as a byproduct. (wikipedia.org)
  • Glutamate has been shown to lead to neurotoxicity and subsequent neurodegeneration through changes in synaptic function, loss of glutamatergic neurons, synapses, and dendrites. (ku.edu)
  • On the other hand, molecular phylogenetic analysis showed that one tyrosinase gene is an ortholog of vertebrate tyrosinase genes and that the coral homologs, scyA and scyB , are similar to bacterial metabolic genes, phosphonopyruvate ( ppyr ) decarboxylase and glutamate dehydrogenase ( GDH ), respectively. (mdpi.com)
  • When grown on isophthalate, all strains showed activity of NADP-dependent GDH (NADP-GDH), while cells grown on glucose, 2× yeast extract-tryptone broth (2YT) or glutamate showed activities of both NAD-dependent GDH (NAD-GDH) and NADP-GDH. (microbiologyresearch.org)
  • This enzyme catalyses the following chemical reaction L-glutamate + H2O + NADP+ ⇌ {\displaystyle \rightleftharpoons } 2-oxoglutarate + NH3 + NADPH + H+ Coulton, J.W. (wikipedia.org)
  • This ability is unique because NADPH is used as the reductant in biosynthetic reactions, while NAD+ is usually used as the oxidant in most catabolic reaction, and glutamine dehydrogenase is not specific to either. (wikibooks.org)
  • The rocG gene of Bacillus subtilis , encoding a catabolic glutamate dehydrogenase, is transcribed by SigL (σ 54 )-containing RNA polymerase and requires for its expression RocR, a member of the NtrC/NifA family of proteins that bind to enhancer-like elements, called upstream activating sequences (UAS). (pnas.org)
  • In the present work, we show that the B. subtilis rocG gene, encoding a major catabolic glutamate dehydrogenase (GlutDH) ( 17 ), is a member of the RocR regulon. (pnas.org)
  • We cloned GDH2, the gene that encodes the NAD-linked glutamate dehydrogenase in the yeast Saccharomyces cerevisiae, by purifying the enzyme, making polyclonal antibodies to it, and using the antibodies to screen a lambda gt11 yeast genomic library. (asm.org)
  • Guanidine hydrochloride unfolding, heat inactivation, and differential scanning calorimetry demonstrate the effects of alternative substrates, glutamate and norvaline, on conformational stability. (sigmaaldrich.com)
  • Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. (ebi.ac.uk)
  • Phenylalanine dehydrogenase ( EC:1.4.1.20 ) (PheDH) is na NAD-dependent enzyme that catalyses the reversible deamidation of L-phenylalanine into phenyl-pyruvate [ PMID: 1880121 ]. (ebi.ac.uk)
  • Valine dehydrogenase ( EC:1.4.1.8 ) (ValDH) is an NADP-dependent enzyme that catalyses the reversible deamidation of L-valine into 3-methyl-2-oxobutanoate [ PMID: 8320231 ]. (ebi.ac.uk)
  • Glutamate dehydrogenase is unique because, in some organisms, it is capable of using either NAD+ or NADP+ in its catalytic reactions. (wikibooks.org)
  • Moreover, increased intracellular glutamate content was observed in the GDH-deficient cells after a 2-hr incubation in the presence of 100 µM glutamate. (eurekamag.com)
  • Analysis of purified foot muscle GDH from control and estivating conditions revealed that estivated GDH was approximately 3-fold more active in catalyzing glutamate deamination as compared to control. (carleton.ca)
Inactivation of human glutamate dehydrogenase by aluminum<...
Inactivation of human glutamate dehydrogenase by aluminum<... (yonsei.pure.elsevier.com)
Respiratory complex I - Wikipedia
Respiratory complex I - Wikipedia (en.wikipedia.org)
A thermophilic microorganism from Deception Island, Antarctica with a thermostable glutamate dehydrogenase activity |...
A thermophilic microorganism from Deception Island, Antarctica with a thermostable glutamate dehydrogenase activity |... (link.springer.com)
Springer Handbook of Enzymes | SpringerLink
Springer Handbook of Enzymes | SpringerLink (link.springer.com)
Glutamine Metabolism in Cancer | SpringerLink
Glutamine Metabolism in Cancer | SpringerLink (link.springer.com)
Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia |...
Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia |... (link.springer.com)
Table of Contents - November 17, 2017, 358 (6365) | Science
Table of Contents - November 17, 2017, 358 (6365) | Science (science.sciencemag.org)
Optimization of ʟ-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and...
Optimization of ʟ-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and... (link.springer.com)
Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. | Journal of Bacteriology
Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. | Journal of Bacteriology (jb.asm.org)
Ovine Diagnostic Plans and Panels | Cornell University College of Veterinary Medicine
Ovine Diagnostic Plans and Panels | Cornell University College of Veterinary Medicine (vet.cornell.edu)
Antitargets and Drug Safety | Drug Discovery & Development | Pharmaceutical & Medicinal Chemistry | Chemistry | Subjects | Wiley
Antitargets and Drug Safety | Drug Discovery & Development | Pharmaceutical & Medicinal Chemistry | Chemistry | Subjects | Wiley (wiley.com)
IJMS  | Free Full-Text | Transcriptomic Analysis in Diabetic Nephropathy of Streptozotocin-Induced Diabetic Rats | HTML
IJMS | Free Full-Text | Transcriptomic Analysis in Diabetic Nephropathy of Streptozotocin-Induced Diabetic Rats | HTML (mdpi.com)
Malaria antigen detection tests - Wikipedia
Malaria antigen detection tests - Wikipedia (en.wikipedia.org)
Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog | Journal of...
Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog | Journal of... (jeb.biologists.org)
Effects of crowding on ornithine-urea cycle enzyme mRNA expression and activity in gulf toadfish (Opsanus beta) | Journal of...
Effects of crowding on ornithine-urea cycle enzyme mRNA expression and activity in gulf toadfish (Opsanus beta) | Journal of... (jeb.biologists.org)
Code System: CDCNHSN  | NHSN | CDC
Code System: CDCNHSN | NHSN | CDC (cdc.gov)
Frontiers | Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast...
Frontiers | Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast... (frontiersin.org)
Plus it
Plus it (diabetes.diabetesjournals.org)
HPLC Analysis of Protein Standards (1) on BIOshell™ A400 Protein C4 | Sigma-Aldrich
HPLC Analysis of Protein Standards (1) on BIOshell™ A400 Protein C4 | Sigma-Aldrich (sigmaaldrich.com)
What are the signs and symptoms of olivopontocerebellar atrophy (OPCA)?
What are the signs and symptoms of olivopontocerebellar atrophy (OPCA)? (medscape.com)
How is olivopontocerebellar atrophy (OPCA) treated?
How is olivopontocerebellar atrophy (OPCA) treated? (medscape.com)
Which medications in the drug class Dopaminergic agents are used in the treatment of Olivopontocerebellar Atrophy?
Which medications in the drug class Dopaminergic agents are used in the treatment of Olivopontocerebellar Atrophy? (medscape.com)
Olivopontocerebellar Atrophy Differential Diagnoses
Olivopontocerebellar Atrophy Differential Diagnoses (emedicine.medscape.com)
Index | In the Light of Evolution: Volume IV: The Human Condition | The National Academies Press
Index | In the Light of Evolution: Volume IV: The Human Condition | The National Academies Press (nap.edu)
Metabolism S4 - Energy Storage Flashcards by Callum Mackay | Brainscape
Metabolism S4 - Energy Storage Flashcards by Callum Mackay | Brainscape (brainscape.com)
Coenzyme Q10 - Wikipedia
Coenzyme Q10 - Wikipedia (en.wikipedia.org)
Kynureninase - Wikipedia
Kynureninase - Wikipedia (en.wikipedia.org)
Glycine cleavage system - Wikipedia
Glycine cleavage system - Wikipedia (en.wikipedia.org)
Creatine kinase - Wikipedia
Creatine kinase - Wikipedia (en.wikipedia.org)