Genetic Complementation Test: A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Genes, Bacterial: The functional hereditary units of BACTERIA.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Chromosome Mapping: Any method used for determining the location of and relative distances between genes on a chromosome.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Genes: A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.Alleles: Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Bacterial Proteins: Proteins found in any species of bacterium.Mutagenesis, Insertional: Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.Crosses, Genetic: Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.Operon: In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.Restriction Mapping: Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.DNA Transposable Elements: Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.DNA, Bacterial: Deoxyribonucleic acid that makes up the genetic material of bacteria.Genes, Regulator: Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions.Genes, Lethal: Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability.Recombination, Genetic: Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.Temperature: The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.Arabidopsis: A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.Coliphages: Viruses whose host is Escherichia coli.Suppression, Genetic: Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE).Genes, Plant: The functional hereditary units of PLANTS.Transduction, Genetic: The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE.Drosophila melanogaster: A species of fruit fly much used in genetics because of the large size of its chromosomes.Zellweger Syndrome: An autosomal recessive disorder due to defects in PEROXISOME biogenesis which involves more than 13 genes encoding peroxin proteins of the peroxisomal membrane and matrix. Zellweger syndrome is typically seen in the neonatal period with features such as dysmorphic skull; MUSCLE HYPOTONIA; SENSORINEURAL HEARING LOSS; visual compromise; SEIZURES; progressive degeneration of the KIDNEYS and the LIVER. Zellweger-like syndrome refers to phenotypes resembling the neonatal Zellweger syndrome but seen in children or adults with apparently intact peroxisome biogenesis.Peroxisomes: Microbodies which occur in animal and plant cells and in certain fungi and protozoa. They contain peroxidase, catalase, and allied enzymes. (From Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2nd ed)Adrenoleukodystrophy: An X-linked recessive disorder characterized by the accumulation of saturated very long chain fatty acids in the LYSOSOMES of ADRENAL CORTEX and the white matter of CENTRAL NERVOUS SYSTEM. This disease occurs almost exclusively in the males. Clinical features include the childhood onset of ATAXIA; NEUROBEHAVIORAL MANIFESTATIONS; HYPERPIGMENTATION; ADRENAL INSUFFICIENCY; SEIZURES; MUSCLE SPASTICITY; and DEMENTIA. The slowly progressive adult form is called adrenomyeloneuropathy. The defective gene ABCD1 is located at Xq28, and encodes the adrenoleukodystrophy protein (ATP-BINDING CASSETTE TRANSPORTERS).Microbodies: Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes.Peroxisomal Disorders: A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders.Fatty Acids: Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)Syndrome: A characteristic symptom complex.Eye Color: Color of the iris.Encyclopedias as Topic: Works containing information articles on subjects in every field of knowledge, usually arranged in alphabetical order, or a similar work limited to a special field or subject. (From The ALA Glossary of Library and Information Science, 1983)Lonicera: A plant genus of the family CAPRIFOLIACEAE. Members contain iridoid glucosides.Drosophila: A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.Eye: The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light.Genetic Engineering: Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc.Bony Callus: The bony deposit formed between and around the broken ends of BONE FRACTURES during normal healing.Terminology as Topic: The terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area.Biotechnology: Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction.Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Serine Endopeptidases: Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis.Proteinase Inhibitory Proteins, Secretory: Peptides and proteins found in BODILY SECRETIONS and BODY FLUIDS that are PROTEASE INHIBITORS. They play a role in INFLAMMATION, tissue repair and innate immunity (IMMUNITY, INNATE) by inhibiting endogenous proteinases such as those produced by LEUKOCYTES and exogenous proteases such as those produced by invading microorganisms.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.rhoA GTP-Binding Protein: A RHO GTP-BINDING PROTEIN involved in regulating signal transduction pathways that control assembly of focal adhesions and actin stress fibers. This enzyme was formerly listed as EC

The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis. (1/10927)

The recently sequenced Saccharomyces cerevisiae genome was searched for a gene with homology to the gene encoding the major human AP endonuclease, a component of the highly conserved DNA base excision repair pathway. An open reading frame was found to encode a putative protein (34% identical to the Schizosaccharomyces pombe eth1(+) [open reading frame SPBC3D6.10] gene product) with a 347-residue segment homologous to the exonuclease III family of AP endonucleases. Synthesis of mRNA from ETH1 in wild-type cells was induced sixfold relative to that in untreated cells after exposure to the alkylating agent methyl methanesulfonate (MMS). To investigate the function of ETH1, deletions of the open reading frame were made in a wild-type strain and a strain deficient in the known yeast AP endonuclease encoded by APN1. eth1 strains were not more sensitive to killing by MMS, hydrogen peroxide, or phleomycin D1, whereas apn1 strains were approximately 3-fold more sensitive to MMS and approximately 10-fold more sensitive to hydrogen peroxide than was the wild type. Double-mutant strains (apn1 eth1) were approximately 15-fold more sensitive to MMS and approximately 2- to 3-fold more sensitive to hydrogen peroxide and phleomycin D1 than were apn1 strains. Elimination of ETH1 in apn1 strains also increased spontaneous mutation rates 9- or 31-fold compared to the wild type as determined by reversion to adenine or lysine prototrophy, respectively. Transformation of apn1 eth1 cells with an expression vector containing ETH1 reversed the hypersensitivity to MMS and limited the rate of spontaneous mutagenesis. Expression of ETH1 in a dut-1 xthA3 Escherichia coli strain demonstrated that the gene product functionally complements the missing AP endonuclease activity. Thus, in apn1 cells where the major AP endonuclease activity is missing, ETH1 offers an alternate capacity for repair of spontaneous or induced damage to DNA that is normally repaired by Apn1 protein.  (+info)

Impaired translesion synthesis in xeroderma pigmentosum variant extracts. (2/10927)

Xeroderma pigmentosum variant (XPV) cells are characterized by a cellular defect in the ability to synthesize intact daughter DNA strands on damaged templates. Molecular mechanisms that facilitate replication fork progression on damaged DNA in normal cells are not well defined. In this study, we used single-stranded plasmid molecules containing a single N-2-acetylaminofluorene (AAF) adduct to analyze translesion synthesis (TLS) catalyzed by extracts of either normal or XPV primary skin fibroblasts. In one of the substrates, the single AAF adduct was located at the 3' end of a run of three guanines that was previously shown to induce deletion of one G by a slippage mechanism. Primer extension reactions performed by normal cellular extracts from four different individuals produced the same distinct pattern of TLS, with over 80% of the products resulting from the elongation of a slipped intermediate and the remaining 20% resulting from a nonslipped intermediate. In contrast, with cellular extracts from five different XPV patients, the TLS reaction was strongly reduced, yielding only low amounts of TLS via the nonslipped intermediate. With our second substrate, in which the AAF adduct was located at the first G in the run, thus preventing slippage from occurring, we confirmed that normal extracts were able to perform TLS 10-fold more efficiently than XPV extracts. These data demonstrate unequivocally that the defect in XPV cells resides in translesion synthesis independently of the slippage process.  (+info)

Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. (3/10927)

The human XPG endonuclease cuts on the 3' side of a DNA lesion during nucleotide excision repair. Mutations in XPG can lead to the disorders xeroderma pigmentosum (XP) and Cockayne syndrome. XPG shares sequence similarities in two regions with a family of structure-specific nucleases and exonucleases. To begin defining its catalytic mechanism, we changed highly conserved residues and determined the effects on the endonuclease activity of isolated XPG, its function in open complex formation and dual incision reconstituted with purified proteins, and its ability to restore cellular resistance to UV light. The substitution A792V present in two XP complementation group G (XP-G) individuals reduced but did not abolish endonuclease activity, explaining their mild clinical phenotype. Isolated XPG proteins with Asp-77 or Glu-791 substitutions did not cleave DNA. In the reconstituted repair system, alanine substitutions at these positions permitted open complex formation but were inactive for 3' cleavage, whereas D77E and E791D proteins retained considerable activity. The function of each mutant protein in the reconstituted system was mirrored by its ability to restore UV resistance to XP-G cell lines. Hydrodynamic measurements indicated that XPG exists as a monomer in high salt conditions, but immunoprecipitation of intact and truncated XPG proteins showed that XPG polypeptides can interact with each other, suggesting dimerization as an element of XPG function. The mutation results define critical residues in the catalytic center of XPG and strongly suggest that key features of the strand cleavage mechanism and active site structure are shared by members of the nuclease family.  (+info)

Disruption of the Toxoplasma gondii bradyzoite-specific gene BAG1 decreases in vivo cyst formation. (4/10927)

The bradyzoite stage of the Apicomplexan protozoan parasite Toxoplasma gondii plays a critical role in maintenance of latent infection. We reported previously the cloning of a bradyzoite-specific gene BAG1/hsp30 (previously referred to as BAG5) encoding a cytoplasmic antigen related to small heat shock proteins. We have now disrupted BAG1 in the T. gondii PLK strain by homologous recombination. H7, a cloned null mutant, and Y8, a control positive for both cat and BAG1, were chosen for further characterization. Immunofluorescence and Western blot analysis of bradyzoites with BAG1 antisera demonstrated expression of BAG1 in the Y8 and the PLK strain but no expression in H7. All three strains expressed a 116 kDa bradyzoite cyst wall antigen, a 29 kDa matrix antigen and the 65 kDa matrix reactive antigen MAG1. Mice inoculated with H7 parasites formed significantly fewer cysts than those inoculated with the Y8 and the PLK strains. H7 parasites were complemented with BAG1 using phleomycin selection. Cyst formation in vivo for the BAG1-complemented H7 parasites was similar to wild-type parasites. We therefore conclude that BAG1 is not essential for cyst formation, but facilitates formation of cysts in vivo.  (+info)

Isocitrate lyase of Ashbya gossypii--transcriptional regulation and peroxisomal localization. (5/10927)

The isocitrate lyase-encoding gene AgICL1 from the filamentous hemiascomycete Ashbya gossypii was isolated by heterologous complementation of a Saccharomyces cerevisiae icl1d mutant. The open reading frame of 1680 bp encoded a protein of 560 amino acids with a calculated molecular weight of 62584. Disruption of the AgICL1 gene led to complete loss of AgIcl1p activity and inability to grow on oleic acid as sole carbon source. Compartmentation of AgIcl1p in peroxisomes was demonstrated both by Percoll density gradient centrifugation and by immunogold labeling of ultrathin sections using specific antibodies. This fitted with the peroxisomal targeting signal AKL predicted from the C-terminal DNA sequence. Northern blot analysis with mycelium grown on different carbon sources as well as AgICL1 promoter replacement with the constitutive AgTEF promoter revealed a regulation at the transcriptional level. AgICL1 was subject to glucose repression, derepressed by glycerol, partially induced by the C2 compounds ethanol and acetate, and fully induced by soybean oil.  (+info)

Mitotic recombination in the heterochromatin of the sex chromosomes of Drosophila melanogaster. (6/10927)

The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions.  (+info)

Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. (7/10927)

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to a wide range of antimicrobial agents including beta-lactams, aminoglycosides, macrolides, and polymyxins. We used Tn5-OT182 to mutagenize B. pseudomallei to identify the genes involved in aminoglycoside resistance. We report here on the identification of AmrAB-OprA, a multidrug efflux system in B. pseudomallei which is specific for both aminoglycoside and macrolide antibiotics. We isolated two transposon mutants, RM101 and RM102, which had 8- to 128-fold increases in their susceptibilities to the aminoglycosides streptomycin, gentamicin, neomycin, tobramycin, kanamycin, and spectinomycin. In addition, both mutants, in contrast to the parent, were susceptible to the macrolides erythromycin and clarithromycin but not to the lincosamide clindamycin. Sequencing of the DNA flanking the transposon insertions revealed a putative operon consisting of a resistance, nodulation, division-type transporter, a membrane fusion protein, an outer membrane protein, and a divergently transcribed regulatorprotein. Consistent with the presence of an efflux system, both mutants accumulated [3H] dihydro streptomycin, whereas the parent strain did not. We constructed an amr deletion strain, B. pseudomallei DD503, which was hypersusceptible to aminoglycosides and macrolides and which was used successfully in allelic exchange experiments. These results suggest that an efflux system is a major contributor to the inherent high-level aminoglycoside and macrolide resistance found in B. pseudomallei.  (+info)

Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of beta-alanine auxotrophic Tn5 mutants and cloning of the panD gene region. (8/10927)

The postulated posttranslational modification of the polyhydroxybutyrate (PHA) synthase from Ralstonia eutropha by 4-phosphopantetheine was investigated. Four beta-alanine auxotrophic Tn5-induced mutants of R. eutropha HF39 were isolated, and two insertions were mapped in an open reading frame with strong similarity to the panD gene from Escherichia coli, encoding L-aspartate-1-decarboxylase (EC, whereas two other insertions were mapped in an open reading frame (ORF) with strong similarity to the NAD(P)+ transhydrogenase (EC alpha 1 subunit, encoded by the pntAA gene from Escherichia coli. The panD gene was cloned by complementation of the panD mutant of R. eutropha Q20. DNA sequencing of the panD gene region (3,312 bp) revealed an ORF of 365 bp, encoding a protein with 63 and 67% amino acid sequence similarity to PanD from E. coli and Bacillus subtilis, respectively. Subcloning of only this ORF into vectors pBBR1MCS-3 and pBluescript KS- led to complementation of the panD mutants of R. eutropha and E. coli SJ16, respectively. panD-encoded L-aspartate-1-decarboxylase was further confirmed by an enzymatic assay. Upstream of panD, an ORF with strong similarity to pntAA from E. coli, encoding NAD(P)+ transhydrogenase subunit alpha 1 was found; downstream of panD, two ORFs with strong similarity to pntAB and pntB, encoding subunits alpha 2 and beta of the NAD(P)+ transhydrogenase, respectively, were identified. Thus, a hitherto undetermined organization of pan and pnt genes was found in R. eutropha. Labeling experiments using one of the R. eutropha panD mutants and [2-14C]beta-alanine provided no evidence that R. eutropha PHA synthase is covalently modified by posttranslational attachment of 4-phosphopantetheine, nor did the E. coli panD mutant exhibit detectable labeling of functional PHA synthase from R. eutropha.  (+info)

  • The genomes of virtually all organisms well studied at the molecular level harbor transposable elements (TEs), which are genetic entities capable of replicating faster than host DNA and inserting replicas into new genomic locations. (
  • Fluctuation test analysis programs (compiled for Windows) and source code from: Shaver, A.C. and P.D. Sniegowski . (
  • To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. (
  • A genetic understanding of the oleaginous metabolism of chemoheterotrophic species like Rhodococcus provides critical insight for biofuels development. (
  • In this study, we tested the hypothesis that bacterial stress-responses are activated within biofilms. (
  • To test this possibility, transgenic mice were generated with 145- and 207-kb bacterial artificial chromosomes (BACs) that contained the human apoB gene and more extensive 5'- and 3'-flanking sequences. (
  • After identification of the underlying genetic defect in several disorders of cholesterol biosynthesis, we have shifted our research focus primarily to pathogenetic aspects of the inflammatory metabolic disorder mevalonate kinase deficiency (MKD), which is characterized by recurring episodes of inflammation and high fever. (
  • Together, we propose that Lrp6 is one of the key genetic components for the pathogenesis of vertebral segmentation defects and of osteoporosis in humans. (
  • The big (and still somewhat controversial) conclusion from this study is that for species evolving in relatively small Ne (for example, trees and humans), genetic drift is too strong and natural selection is too weak to keep deleterious genomic features (such as transposons and other forms of 'extra genome space') out of the genome. (
  • To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. (
  • I have used this collection of plasmids to generate a physical-genetic map of the PR4 genome. (
  • While the pace of discovery of human genetic variants in tumors, patients, and diverse populations has rapidly accelerated, deciphering their functional consequence has become rate-limiting. (
  • Budding yeast can be exploited to screen these human genetic variants for prioritizing and directing functional studies in mammalian models (reviewed in Dunham and Fowler 2013 ). (
  • Here, we describe the use of nuclear magnetic resonance (NMR)-based ligand screening as a tool for testing functional assignments of putative enzymes that may be of variable reliability. (
  • Firstly, they would allow efficient testing of functional assignments that may be of variable reliability. (
  • In summary, a novel in vitro functional approach in ovarian cancer cells has identified RBBP8 as a gene for which both germline genetic variation and somatic alterations in tumours are associated with survival in ovarian cancer patients. (
  • We show that rs is a hypomorphic Lrp6 allele by a genetic complementation test with Lrp6 -null mice, and that the mutated protein cannot efficiently transduce signals through the Wnt/β-catenin pathway. (
  • #4. (5 points) In which of the following populations is genetic drift expected to be strongest, in terms of its effects on change in allele frequencies over time? (
  • This is, to our knowledge, the first molecular genetic characterization of NBAD hydrolase and carcinine hydrolase activity in any organism and is central to the understanding of pigmentation and photoreceptor function. (
  • Here, we describe the construction and characterization of the B. suis strain with a nonpolar deletion of virB8 used in that study and show, for the first time, complementation with a chimeric protein containing the N terminus of the B. suis VirB8 protein and the C-terminal periplasmic domain of TraJ, a VirB8 homologue from plasmid pSB102. (
  • 600 different patients with a defect in peroxisome biogenesis to different genetic complementation groups followed by characterization of the gene defects. (
  • We set out to predict and experimentally test the functions of such proteins. (
  • Using microscopic, biochemical, and genetic approaches to study function in A. tumefaciens , it was discovered that VirB8 acts as a nucleation center that is required to recruit VirB9 and VirB10 into clusters in the outer membrane ( 10 ) and to localize VirB proteins at the cell pole ( 8 ). (
  • backcross A genetic crossing of a heterozygous organism and one of its homozygous parents. (
  • Twenty-one predicted functions have been experimentally tested or are currently under investigation by our group in at least one prokaryotic organism (nine of them have been validated, four invalidated, and eight are in progress). (
  • Samples were tested for the presence of various arboviral RNA genomes by using the TaqMan quantitative reverse transcription-PCR (qRT-PCR) technology and specific primers and probes (protocols available upon request to the corresponding author). (
  • The nematode Caenorhabditis elegans has provided a powerful system for dissecting the genetic mechanisms controlling animals' intrinsic biology and interaction with environmental factors. (
  • Crosses, Genetic" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (
  • This article discusses a method that is applicable to the first level of testing current sequence-based annotations of enzymatic function. (
  • Readthrough of these RNAs into the intended transcriptional unit potently stimulated reporter activity when the inserted test sequence contained a 3' splice site (ss). (
  • Since reverse transcription destroys the RNA template, each copy of uDNA and iDNA represents a unique infection event with a potentially divergent genetic sequence. (
  • This is at its core a very simple test that is also very broadly applicable - all you need is two homologous protein-coding sequences to compare to each other. (
  • Methods: Chromatic sensitivity was measured by using the Color Assessment and Diagnosis (CAD) test in asymptomatic individuals with early and intermediate AMD and compared to normative data. (
  • This graph shows the total number of publications written about "Crosses, Genetic" by people in Harvard Catalyst Profiles by year, and whether "Crosses, Genetic" was a major or minor topic of these publication. (
  • Below are the most recent publications written about "Crosses, Genetic" by people in Profiles. (