A severe condition resulting from bacteria invading healthy muscle from adjacent traumatized muscle or soft tissue. The infection originates in a wound contaminated with bacteria of the genus CLOSTRIDIUM. C. perfringens accounts for the majority of cases (over eighty percent), while C. noyvi, C. septicum, and C. histolyticum cause most of the other cases.
Death and putrefaction of tissue usually due to a loss of blood supply.
The most common etiologic agent of GAS GANGRENE. It is differentiable into several distinct types based on the distribution of twelve different toxins.
A species of gram-positive bacteria in the family Clostridiaceae. Infections have a strong association with malignancies and also with GAS GANGRENE.
A variant of acute cholecystitis with inflammation of the GALLBLADDER that is characterized by the pockets of gas in the gallbladder wall. It is due to secondary infection caused by gas-forming organisms, and has a high risk of perforation.
A species of MORGANELLA formerly classified as a Proteus species. It is found in the feces of humans, dogs, other mammals, and reptiles. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
Any type of abortion, induced or spontaneous, that is associated with infection of the UTERUS and its appendages. It is characterized by FEVER, uterine tenderness, and foul discharge.
Infections with bacteria of the genus CLOSTRIDIUM.
The vapor state of matter; nonelastic fluids in which the molecules are in free movement and their mean positions far apart. Gases tend to expand indefinitely, to diffuse and mix readily with other gases, to have definite relations of volume, temperature, and pressure, and to condense or liquefy at low temperatures or under sufficient pressure. (Grant & Hackh's Chemical Dictionary, 5th ed)
The therapeutic intermittent administration of oxygen in a chamber at greater than sea-level atmospheric pressures (three atmospheres). It is considered effective treatment for air and gas embolisms, smoke inhalation, acute carbon monoxide poisoning, caisson disease, clostridial gangrene, etc. (From Segen, Dictionary of Modern Medicine, 1992). The list of treatment modalities includes stroke.
Death resulting from the presence of a disease in an individual, as shown by a single case report or a limited number of patients. This should be differentiated from DEATH, the physiological cessation of life and from MORTALITY, an epidemiological or statistical concept.
A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS.
Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases.
Infections of non-skeletal tissue, i.e., exclusive of bone, ligaments, cartilage, and fibrous tissue. The concept is usually referred to as skin and soft tissue infections and usually subcutaneous and muscle tissue are involved. The predisposing factors in anaerobic infections are trauma, ischemia, and surgery. The organisms often derive from the fecal or oral flora, particularly in wounds associated with intestinal surgery, decubitus ulcer, and human bites. (From Cecil Textbook of Medicine, 19th ed, p1688)
A fulminating bacterial infection of the deep layers of the skin and FASCIA. It can be caused by many different organisms, with STREPTOCOCCUS PYOGENES being the most common.
An acute necrotic infection of the SCROTUM; PENIS; or PERINEUM. It is characterized by scrotum pain and redness with rapid progression to gangrene and sloughing of tissue. Fournier gangrene is usually secondary to perirectal or periurethral infections associated with local trauma, operative procedures, or urinary tract disease.

Production of phospholipase C (alpha-toxin), haemolysins and lethal toxins by Clostridium perfringens types A to D. (1/78)

To obtain high yields of extracellular enzymes and toxins for immunological analysis, type culture collection strains of Clostridium perfringens types A to D and 28 fresh isolates of C. perfringens type A from humans were grown in fermenters under controlled conditions in a pre-reduced proteose peptone medium. The type culture collection strains all showed different characteristics with respect to growth rates and pH optima for growth. Production of phospholipase C (alpha-toxin), haemolysin and lethal activity varied considerably between the different types. Growth and extracellular protein production in fermenters with pH control and static or stirred cultures were compared. Production of all extracellular proteins measured was markedly improved by cultivation in fermenters with pH control. Strain ATCC13124 produced five times more phospholipase C than any of 28 freshly isolated strains of C. perfringens type A, grown under identical conditions. Haemolytic and lethal activities of the ATCC strain were equal or superior to the activities of any of the freshly isolated strains. There were no differences in the bacterial yields and in the production of extracellular toxins between type A strains isolated from clinical cases of gas gangrene and abdominal wounds, and those isolated from faecal samples from healthy persons.  (+info)

Use of genetically manipulated strains of Clostridium perfringens reveals that both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene. (2/78)

A hallmark of gas gangrene (clostridial myonecrosis) pathology is a paucity of leukocytes infiltrating the necrotic tissue. The cause of this paucity most likely relates to the observation of leukocyte aggregates at the border of the area of tissue necrosis, often within the microvasculature itself. Infecting mice with genetically manipulated strains of Clostridium perfringens type A (deficient in either alpha-toxin or theta-toxin production) resulted in significantly reduced leukocyte aggregation when alpha-toxin was absent and complete abrogation of leukocyte aggregation when theta-toxin was absent. Thus, both alpha-toxin and theta-toxin are necessary for the characteristic vascular leukostasis observed in clostridial myonecrosis.  (+info)

Use of hyperbaric oxygen therapy in Hong Kong. (3/78)

The Recompression Treatment Centre on Stonecutters Island has been operating in Hong Kong for more than 5 years and has been used to treat a variety of diving-related and other conditions by means of hyperbaric oxygen therapy. Up to the end of December 1997, 295 treatment sessions had been conducted for 39 patients. This article reviews the usefulness of and indications for hyperbaric oxygen therapy.  (+info)

Identification of residues critical for toxicity in Clostridium perfringens phospholipase C, the key toxin in gas gangrene. (4/78)

Clostridium perfringens phospholipase C (PLC), also called alpha-toxin, is the major virulence factor in the pathogenesis of gas gangrene. The toxic activities of genetically engineered alpha-toxin variants harboring single amino-acid substitutions in three loops of its C-terminal domain were studied. The substitutions were made in aspartic acid residues which bind calcium, and tyrosine residues of the putative membrane-interacting region. The variants D269N and D336N had less than 20% of the hemolytic activity and displayed a cytotoxic potency 103-fold lower than that of the wild-type toxin. The variants in which Tyr275, Tyr307, and Tyr331 were substituted by Asn, Phe, or Leu had 11-73% of the hemolytic activity and exhibited a cytotoxic potency 102- to 105-fold lower than that of the wild-type toxin. The results demonstrated that the sphingomyelinase activity and the C-terminal domain are required for myotoxicity in vivo and that the variants D269N, D336N, Y275N, Y307F, and Y331L had less than 12% of the myotoxic activity displayed by the wild-type toxin. This work therefore identifies residues critical for the toxic activities of C. perfringens PLC and provides new insights toward understanding the mechanism of action of this toxin at a molecular level.  (+info)

Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens. (5/78)

Mechanisms responsible for the rapid tissue destruction in gas gangrene are not well understood. To examine the early effects of Clostridium perfringens exotoxins on tissue perfusion, a rat model of muscle blood flow was developed. Intramuscular injection of a clostridial toxin preparation containing both phospholipase C (PLC) and theta-toxin caused a rapid (1-2 min) and irreversible decrease in blood flow that paralleled formation of activated platelet aggregates in venules and arterioles. Later (20-40 min), aggregates contained fibrin and leukocytes, and neutrophils accumulated along vascular walls. Flow cytometry confirmed that these clostridial toxins or recombinant PLC induced formation of P-selectin-positive platelet aggregates. Neutralization of PLC activity in the clostridial toxin preparation completely abrogated human platelet responses and reduced perfusion deficits. It is concluded that tissue destruction in gas gangrene is related to profound attenuation of blood flow initiated by activation of platelet responses by PLC.  (+info)

Clostridial gas gangrene. II. Phospholipase C-induced activation of platelet gpIIbIIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene. (6/78)

Clostridium perfringens gas gangrene is a fulminant infection, and radical amputation remains the single best treatment. It has been hypothesized that rapid tissue destruction is related to tissue hypoxia secondary to toxin-induced vascular obstruction, and previous studies demonstrated that phospholipase C (PLC) caused a rapid and irreversible decrease in skeletal muscle blood flow that paralleled the formation of intravascular aggregates of activated platelets, fibrin, and leukocytes. In this study, flow cytometry demonstrated that PLC stimulated platelet/neutrophil aggregation in a gpIIbIIIa-dependent fashion. Pretreatment of animals with heparin or depletion of leukocytes reduced blood-flow deficits, and aggregate formation caused by PLC. It is concluded that fulminant tissue destruction in gas gangrene results from profound attenuation of blood flow caused by PLC-induced, gpIIbIIIa-mediated formation of heterotypic platelet/polymorphonuclear leukocyte aggregates. Therapeutic strategies that target gpIIbIIIa may prevent vascular occlusion, maintain tissue viability, and provide an alternative to radical amputation for patients with this infection.  (+info)

Gas gangrene after colonoscopy. (7/78)

A case of spontaneous clostridial myonecrosis developing shortly after diagnostic colonoscopy is described. The prime underlying factor proved to be an unsuspected colonic cancer, developing in a patient with pre-existing ulcerative colitis and sclerosing cholangitis.  (+info)

Spontaneous bifocal Clostridium septicum gas gangrene. (8/78)

Clostridium septicum gas gangrene (myonecrosis) is an acutely painful and rapidly fatal infection occurring in the absence of trauma. Urgent surgery is essential both to control pain and to ensure survival. Most patients who develop this infection have an underlying malignancy and clinicians should be aware of this association. We present a case of bifocal myonecrosis which to our knowledge has not been reported previously.  (+info)

Gas gangrene, also known as clostridial myonecrosis, is a severe and potentially life-threatening infection that can rapidly spread in the muscles and tissues. It is caused by certain types of bacteria, particularly Clostridium perfringens and other Clostridium species, which produce toxins and gases as they multiply within the body's tissues.

The infection often occurs in traumatized or compromised soft tissues, such as those that have been crushed, severely injured, or poorly perfused due to vascular insufficiency. Gas gangrene can also develop following surgical procedures, especially in cases where there is a lack of adequate blood supply or devitalized tissue.

The hallmark symptoms of gas gangrene include severe pain, swelling, discoloration, and a foul-smelling discharge at the infection site. Additionally, crepitus (a crackling or popping sensation) may be present due to the accumulation of gas within the tissues. If left untreated, gas gangrene can lead to sepsis, organ failure, and even death. Immediate medical attention, including surgical debridement, antibiotic therapy, and sometimes hyperbaric oxygen treatment, is crucial for managing this potentially fatal condition.

Gangrene is a serious and potentially life-threatening condition that occurs when there is a loss of blood flow to a specific area of the body, resulting in tissue death. It can be caused by various factors such as bacterial infections, trauma, diabetes, vascular diseases, and smoking. The affected tissues may become discolored, swollen, and emit a foul odor due to the accumulation of bacteria and toxins.

Gangrene can be classified into two main types: dry gangrene and wet (or moist) gangrene. Dry gangrene develops slowly and is often associated with peripheral arterial disease, which reduces blood flow to the extremities. The affected area turns black and shriveled as it dries out. Wet gangrene, on the other hand, progresses rapidly due to bacterial infections that cause tissue breakdown and pus formation. This type of gangrene can spread quickly throughout the body, leading to severe complications such as sepsis and organ failure if left untreated.

Treatment for gangrene typically involves surgical removal of the dead tissue (debridement), antibiotics to control infections, and sometimes revascularization procedures to restore blood flow to the affected area. In severe cases where the infection has spread or the damage is irreversible, amputation of the affected limb may be necessary to prevent further complications and save the patient's life.

'Clostridium perfringens' is a type of Gram-positive, rod-shaped, spore-forming bacterium that is commonly found in the environment, including in soil, decaying vegetation, and the intestines of humans and animals. It is a major cause of foodborne illness worldwide, producing several toxins that can lead to symptoms such as diarrhea, abdominal cramps, nausea, and vomiting.

The bacterium can contaminate food during preparation or storage, particularly meat and poultry products. When ingested, the spores of C. perfringens can germinate and produce large numbers of toxin-producing cells in the intestines, leading to food poisoning. The most common form of C. perfringens food poisoning is characterized by symptoms that appear within 6 to 24 hours after ingestion and last for less than 24 hours.

In addition to foodborne illness, C. perfringens can also cause other types of infections, such as gas gangrene, a serious condition that can occur when the bacterium infects a wound and produces toxins that damage surrounding tissues. Gas gangrene is a medical emergency that requires prompt treatment with antibiotics and surgical debridement or amputation of affected tissue.

Prevention measures for C. perfringens food poisoning include proper cooking, handling, and storage of food, as well as rapid cooling of cooked foods to prevent the growth of the bacterium.

'Clostridium septicum' is a gram-positive, spore-forming, rod-shaped bacterium that is commonly found in soil and the gastrointestinal tracts of animals and humans. It is an obligate anaerobe, meaning it grows best in environments with little or no oxygen.

The bacterium can cause a serious infection known as clostridial myonecrosis or gas gangrene, which is characterized by rapidly spreading tissue death and gas formation in muscles. This condition is often associated with traumatic injuries, surgical wounds, or underlying conditions that compromise the immune system, such as cancer or diabetes.

'Clostridium septicum' infection can also lead to sepsis, a life-threatening condition characterized by overwhelming inflammation throughout the body. Symptoms of 'Clostridium septicum' infection may include fever, severe pain, swelling, and discoloration at the site of infection, as well as systemic symptoms such as low blood pressure, rapid heart rate, and confusion.

Treatment typically involves surgical debridement of infected tissue, along with antibiotic therapy targeting 'Clostridium septicum' and other anaerobic bacteria. Prompt diagnosis and treatment are essential to prevent the spread of infection and reduce the risk of serious complications or death.

Emphysematous cholecystitis is a type of acute inflammation of the gallbladder, characterized by the presence of gas within the wall and/or lumen of the gallbladder. It is a severe and potentially life-threatening condition, which typically occurs in patients with diabetes or other underlying medical conditions that compromise their immune system.

The gas that accumulates in the gallbladder in emphysematous cholecystitis can come from several sources, including gas-forming bacteria such as Clostridium perfringens and Escherichia coli. These bacteria produce gas as a byproduct of their metabolism, which can lead to the formation of gas bubbles within the gallbladder.

The symptoms of emphysematous cholecystitis are similar to those of other forms of acute cholecystitis and may include abdominal pain, fever, nausea, vomiting, and decreased appetite. However, the presence of gas within the gallbladder can be detected on imaging studies such as X-rays or computed tomography (CT) scans, which can help to confirm the diagnosis.

Treatment of emphysematous cholecystitis typically involves surgical removal of the gallbladder (cholecystectomy), often through a laparoscopic approach. Antibiotic therapy is also administered to treat any underlying bacterial infection. In severe cases, where the patient's condition is too unstable for surgery, percutaneous drainage of the gallbladder may be performed as a temporary measure to help reduce the risk of complications such as gangrene or perforation.

"Morganella morganii" is a species of gram-negative, facultatively anaerobic, rod-shaped bacteria that is commonly found in the environment, including in soil, water, and associated with various animals. In humans, it can be part of the normal gut flora but can also cause infections, particularly in immunocompromised individuals or following surgical procedures. It is known to cause a variety of infections, such as urinary tract infections, wound infections, pneumonia, and bacteremia (bloodstream infection). The bacteria can produce a number of virulence factors, including enzymes that help it evade the host's immune system and cause tissue damage. It is resistant to many antibiotics, which can make treatment challenging.

Septic abortion is a medical term used to describe a spontaneous abortion or miscarriage that is associated with infection. This occurs when the products of conception, such as the fetal tissue and placenta, are not completely expelled from the uterus, leading to an infection of the uterine lining and potentially the pelvic cavity.

The infection can cause fever, chills, severe abdominal pain, foul-smelling vaginal discharge, and heavy bleeding. If left untreated, septic abortion can lead to serious complications such as sepsis, infertility, and even death. It is important to seek medical attention immediately if you suspect a septic abortion. Treatment typically involves antibiotics to clear the infection and possibly surgical intervention to remove any remaining products of conception.

Clostridium infections are caused by bacteria of the genus Clostridium, which are gram-positive, rod-shaped, spore-forming, and often anaerobic organisms. These bacteria can be found in various environments, including soil, water, and the human gastrointestinal tract. Some Clostridium species can cause severe and potentially life-threatening infections in humans. Here are some of the most common Clostridium infections with their medical definitions:

1. Clostridioides difficile infection (CDI): An infection caused by the bacterium Clostridioides difficile, previously known as Clostridium difficile. It typically occurs after antibiotic use disrupts the normal gut microbiota, allowing C. difficile to overgrow and produce toxins that cause diarrhea, colitis, and other gastrointestinal symptoms. Severe cases can lead to sepsis, toxic megacolon, or even death.
2. Clostridium tetani infection: Also known as tetanus, this infection is caused by the bacterium Clostridium tetani. The spores of this bacterium are commonly found in soil and animal feces. They can enter the body through wounds, cuts, or punctures, germinate, and produce a potent exotoxin called tetanospasmin. This toxin causes muscle stiffness and spasms, particularly in the neck and jaw (lockjaw), which can lead to difficulty swallowing, breathing, and potentially fatal complications.
3. Clostridium botulinum infection: This infection is caused by the bacterium Clostridium botulinum and results in botulism, a rare but severe paralytic illness. The bacteria produce neurotoxins (botulinum toxins) that affect the nervous system, causing symptoms such as double vision, drooping eyelids, slurred speech, difficulty swallowing, dry mouth, and muscle weakness. In severe cases, botulism can lead to respiratory failure and death.
4. Gas gangrene (Clostridium perfringens infection): A rapidly progressing soft tissue infection caused by Clostridium perfringens or other clostridial species. The bacteria produce potent exotoxins that cause tissue destruction, gas production, and widespread necrosis. Gas gangrene is characterized by severe pain, swelling, discoloration, and a foul-smelling discharge. If left untreated, it can lead to sepsis, multi-organ failure, and death.
5. Clostridioides difficile infection (C. difficile infection): Although not caused by a typical clostridial species, C. difficile is a gram-positive, spore-forming bacterium that can cause severe diarrhea and colitis, particularly in hospitalized patients or those who have recently taken antibiotics. The bacteria produce toxins A and B, which damage the intestinal lining and contribute to inflammation and diarrhea. C. difficile infection can range from mild to life-threatening, with complications such as sepsis, toxic megacolon, and bowel perforation.

In medical terms, gases refer to the state of matter that has no fixed shape or volume and expands to fill any container it is placed in. Gases in the body can be normal, such as the oxygen, carbon dioxide, and nitrogen that are present in the lungs and blood, or abnormal, such as gas that accumulates in the digestive tract due to conditions like bloating or swallowing air.

Gases can also be used medically for therapeutic purposes, such as in the administration of anesthesia or in the treatment of certain respiratory conditions with oxygen therapy. Additionally, measuring the amount of gas in the body, such as through imaging studies like X-rays or CT scans, can help diagnose various medical conditions.

Hyperbaric oxygenation is a medical treatment in which a patient breathes pure oxygen in a pressurized chamber, typically at greater than one atmosphere absolute (ATA). This process results in increased levels of oxygen being dissolved in the blood and delivered to body tissues, thereby promoting healing, reducing inflammation, and combating infection. Hyperbaric oxygen therapy is used to treat various medical conditions, including carbon monoxide poisoning, decompression sickness, gangrene, and wounds that are slow to heal due to diabetes or radiation injury.

A fatal outcome is a term used in medical context to describe a situation where a disease, injury, or illness results in the death of an individual. It is the most severe and unfortunate possible outcome of any medical condition, and is often used as a measure of the severity and prognosis of various diseases and injuries. In clinical trials and research, fatal outcome may be used as an endpoint to evaluate the effectiveness and safety of different treatments or interventions.

Type C phospholipases, also known as group CIA phospholipases or patatin-like phospholipase domain containing proteins (PNPLAs), are a subclass of phospholipases that specifically hydrolyze the sn-2 ester bond of glycerophospholipids. They belong to the PNPLA family, which includes nine members (PNPLA1-9) with diverse functions in lipid metabolism and cell signaling.

Type C phospholipases contain a patatin domain, which is a conserved region of approximately 240 amino acids that exhibits lipase and acyltransferase activities. These enzymes are primarily involved in the regulation of triglyceride metabolism, membrane remodeling, and cell signaling pathways.

PNPLA1 (adiponutrin) is mainly expressed in the liver and adipose tissue, where it plays a role in lipid droplet homeostasis and triglyceride hydrolysis. PNPLA2 (ATGL or desnutrin) is a key regulator of triglyceride metabolism, responsible for the initial step of triacylglycerol hydrolysis in adipose tissue and other tissues.

PNPLA3 (calcium-independent phospholipase A2 epsilon or iPLA2ε) is involved in membrane remodeling, arachidonic acid release, and cell signaling pathways. Mutations in PNPLA3 have been associated with an increased risk of developing nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease, and hepatic steatosis.

PNPLA4 (lipase maturation factor 1 or LMF1) is involved in the intracellular processing and trafficking of lipases, such as pancreatic lipase and hepatic lipase. PNPLA5 ( Mozart1 or GSPML) has been implicated in membrane trafficking and cell signaling pathways.

PNPLA6 (neuropathy target esterase or NTE) is primarily expressed in the brain, where it plays a role in maintaining neuronal integrity by regulating lipid metabolism. Mutations in PNPLA6 have been associated with neuropathy and cognitive impairment.

PNPLA7 (adiponutrin or ADPN) has been implicated in lipid droplet formation, triacylglycerol hydrolysis, and cell signaling pathways. Mutations in PNPLA7 have been associated with an increased risk of developing NAFLD and hepatic steatosis.

PNPLA8 (diglyceride lipase or DGLα) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA9 (calcium-independent phospholipase A2 gamma or iPLA2γ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA10 (calcium-independent phospholipase A2 delta or iPLA2δ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA11 (calcium-independent phospholipase A2 epsilon or iPLA2ε) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA12 (calcium-independent phospholipase A2 zeta or iPLA2ζ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA13 (calcium-independent phospholipase A2 eta or iPLA2η) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA14 (calcium-independent phospholipase A2 theta or iPLA2θ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA15 (calcium-independent phospholipase A2 iota or iPLA2ι) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA16 (calcium-independent phospholipase A2 kappa or iPLA2κ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA17 (calcium-independent phospholipase A2 lambda or iPLA2λ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA18 (calcium-independent phospholipase A2 mu or iPLA2μ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA19 (calcium-independent phospholipase A2 nu or iPLA2ν) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA20 (calcium-independent phospholipase A2 xi or iPLA2ξ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA21 (calcium-independent phospholipase A2 omicron or iPLA2ο) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA22 (calcium-independent phospholipase A2 pi or iPLA2π) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA23 (calcium-independent phospholipase A2 rho or iPLA2ρ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA24 (calcium-independent phospholipase A2 sigma or iPLA2σ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA25 (calcium-independent phospholipase A2 tau or iPLA2τ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA26 (calcium-independent phospholipase A2 upsilon or iPLA2υ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA27 (calcium-independent phospholipase A2 phi or iPLA2φ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA28 (calcium-independent phospholipase A2 chi or iPLA2χ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA29 (calcium-independent phospholipase A2 psi or iPLA2ψ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA30 (calcium-independent phospholipase A2 omega or iPLA2ω) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA31 (calcium-independent phospholipase A2 pi or iPLA2π) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA32 (calcium-independent phospholipase A2 rho or iPLA2ρ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA33 (calcium-independent phospholipase A2 sigma or iPLA2σ) has been implicated in membrane remodeling, ar

Bacterial toxins are poisonous substances produced and released by bacteria. They can cause damage to the host organism's cells and tissues, leading to illness or disease. Bacterial toxins can be classified into two main types: exotoxins and endotoxins.

Exotoxins are proteins secreted by bacterial cells that can cause harm to the host. They often target specific cellular components or pathways, leading to tissue damage and inflammation. Some examples of exotoxins include botulinum toxin produced by Clostridium botulinum, which causes botulism; diphtheria toxin produced by Corynebacterium diphtheriae, which causes diphtheria; and tetanus toxin produced by Clostridium tetani, which causes tetanus.

Endotoxins, on the other hand, are components of the bacterial cell wall that are released when the bacteria die or divide. They consist of lipopolysaccharides (LPS) and can cause a generalized inflammatory response in the host. Endotoxins can be found in gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa.

Bacterial toxins can cause a wide range of symptoms depending on the type of toxin, the dose, and the site of infection. They can lead to serious illnesses or even death if left untreated. Vaccines and antibiotics are often used to prevent or treat bacterial infections and reduce the risk of severe complications from bacterial toxins.

Soft tissue infections are medical conditions that involve infection of the soft tissues of the body, which include the skin, muscles, fascia (the connective tissue that surrounds muscles), and tendons. These infections can be caused by various types of bacteria, viruses, fungi, or parasites.

Soft tissue infections can range from mild to severe, depending on the type of organism causing the infection, the extent of tissue involvement, and the patient's overall health status. Some common types of soft tissue infections include:

1. Cellulitis: This is a bacterial infection that affects the skin and underlying tissues. It typically presents as a red, swollen, warm, and painful area on the skin, often accompanied by fever and chills.
2. Abscess: An abscess is a localized collection of pus in the soft tissues, caused by an infection. It can appear as a swollen, tender, and warm lump under the skin, which may be filled with pus.
3. Necrotizing fasciitis: This is a rare but severe soft tissue infection that involves the rapid destruction of fascia and surrounding tissues. It is often caused by a mixture of bacteria and can progress rapidly, leading to shock, organ failure, and even death if not treated promptly.
4. Myositis: This is an inflammation of the muscle tissue, which can be caused by a bacterial or viral infection. Symptoms may include muscle pain, swelling, weakness, and fever.
5. Erysipelas: This is a superficial skin infection that affects the upper layers of the skin and the lymphatic vessels. It typically presents as a raised, red, and painful rash with clear borders.

Treatment for soft tissue infections depends on the type and severity of the infection but may include antibiotics, drainage of pus or abscesses, and surgery in severe cases. Preventive measures such as good hygiene, wound care, and prompt treatment of injuries can help reduce the risk of developing soft tissue infections.

Necrotizing fasciitis is a serious bacterial infection that affects the fascia, which is the tissue that surrounds muscles, nerves, and blood vessels. The infection can also spread to the muscle and skin. It is often caused by a combination of different types of bacteria, including group A Streptococcus and Staphylococcus aureus.

The infection causes extensive tissue damage and necrosis (death) of the fascia and surrounding tissues. It can progress rapidly and can be fatal if not treated promptly with aggressive surgical debridement (removal of dead tissue) and antibiotics.

Symptoms of necrotizing fasciitis include severe pain, swelling, redness, and warmth in the affected area; fever; chills; and general weakness. It is important to seek medical attention immediately if these symptoms occur, as early diagnosis and treatment can significantly improve outcomes.

Fournier gangrene is a type of necrotizing fasciitis, which is a severe soft tissue infection that involves the fascia (the layer of connective tissue covering the muscle). Fournier gangrene specifically affects the genital region and can spread to the abdominal wall or thighs. It's characterized by rapid progression, extensive tissue damage, and a high mortality rate if not treated promptly with surgical debridement (removal of dead tissue) and antibiotics. The infection typically involves multiple types of bacteria, both aerobic and anaerobic, and can arise from various sources such as urinary tract infections, anal abscesses, or trauma to the genital area.

No FAQ available that match "gas gangrene"