The concave interior of the eye, consisting of the retina, the choroid, the sclera, the optic disk, and blood vessels, seen by means of the ophthalmoscope. (Cline et al., Dictionary of Visual Science, 4th ed)
The superior portion of the body of the stomach above the level of the cardiac notch.
A genus of gram-negative organisms including saprophytic and parasitic or pathogenic species.
Excessive winking; tonic or clonic spasm of the orbicularis oculi muscle.
The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris.
Visualization of a vascular system after intravenous injection of a fluorescein solution. The images may be photographed or televised. It is used especially in studying the retinal and uveal vasculature.
Method of making images on a sensitized surface by exposure to light or other radiant energy.
The intentional interruption of transmission at the NEUROMUSCULAR JUNCTION by external agents, usually neuromuscular blocking agents. It is distinguished from NERVE BLOCK in which nerve conduction (NEURAL CONDUCTION) is interrupted rather than neuromuscular transmission. Neuromuscular blockade is commonly used to produce MUSCLE RELAXATION as an adjunct to anesthesia during surgery and other medical procedures. It is also often used as an experimental manipulation in basic research. It is not strictly speaking anesthesia but is grouped here with anesthetic techniques. The failure of neuromuscular transmission as a result of pathological processes is not included here.
Catalyzes the reduction of tetrazolium compounds in the presence of NADH.
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
Examination of the interior of the eye with an ophthalmoscope.
The 5th and largest cranial nerve. The trigeminal nerve is a mixed motor and sensory nerve. The larger sensory part forms the ophthalmic, mandibular, and maxillary nerves which carry afferents sensitive to external or internal stimuli from the skin, muscles, and joints of the face and mouth and from the teeth. Most of these fibers originate from cells of the TRIGEMINAL GANGLION and project to the TRIGEMINAL NUCLEUS of the brain stem. The smaller motor part arises from the brain stem trigeminal motor nucleus and innervates the muscles of mastication.
Drugs that interrupt transmission at the skeletal neuromuscular junction without causing depolarization of the motor end plate. They prevent acetylcholine from triggering muscle contraction and are used as muscle relaxants during electroshock treatments, in convulsive states, and as anesthesia adjuvants.
The first digit on the radial side of the hand which in humans lies opposite the other four.
The blood vessels which supply and drain the RETINA.
The 6th cranial nerve which originates in the ABDUCENS NUCLEUS of the PONS and sends motor fibers to the lateral rectus muscles of the EYE. Damage to the nerve or its nucleus disrupts horizontal eye movement control.
Devices for examining the interior of the eye, permitting the clear visualization of the structures of the eye at any depth. (UMDNS, 1999)
Severe or complete loss of facial muscle motor function. This condition may result from central or peripheral lesions. Damage to CNS motor pathways from the cerebral cortex to the facial nuclei in the pons leads to facial weakness that generally spares the forehead muscles. FACIAL NERVE DISEASES generally results in generalized hemifacial weakness. NEUROMUSCULAR JUNCTION DISEASES and MUSCULAR DISEASES may also cause facial paralysis or paresis.
A genus, commonly called budgerigars, in the family PSITTACIDAE. In the United States they are considered one of the five species of PARAKEETS.
The motion of air currents.
Reflex closure of the eyelid occurring as a result of classical conditioning.
An abnormal response to a stimulus applied to the sensory components of the nervous system. This may take the form of increased, decreased, or absent reflexes.
Retinal diseases refer to a diverse group of vision-threatening disorders that affect the retina's structure and function, including age-related macular degeneration, diabetic retinopathy, retinal detachment, retinitis pigmentosa, and macular edema, among others.
Drooping of the upper lid due to deficient development or paralysis of the levator palpebrae muscle.
Degenerative changes in the RETINA usually of older adults which results in a loss of vision in the center of the visual field (the MACULA LUTEA) because of damage to the retina. It occurs in dry and wet forms.
Bony cavity that holds the eyeball and its associated tissues and appendages.
An involuntary contraction of a muscle or group of muscles. Spasms may involve SKELETAL MUSCLE or SMOOTH MUSCLE.
A disorder whose predominant feature is a loss or alteration in physical functioning that suggests a physical disorder but that is actually a direct expression of a psychological conflict or need.
Methods and procedures for the diagnosis of diseases of the eye or of vision disorders.
A major nerve of the upper extremity. In humans, the fibers of the ulnar nerve originate in the lower cervical and upper thoracic spinal cord (usually C7 to T1), travel via the medial cord of the brachial plexus, and supply sensory and motor innervation to parts of the hand and forearm.
Colloid or hyaline bodies lying beneath the retinal pigment epithelium. They may occur either secondary to changes in the choroid that affect the pigment epithelium or as an autosomal dominant disorder of the retinal pigment epithelium.
An imaging method using LASERS that is used for mapping subsurface structure. When a reflective site in the sample is at the same optical path length (coherence) as the reference mirror, the detector observes interference fringes.
A naturally occurring lipid pigment with histochemical characteristics similar to ceroid. It accumulates in various normal tissues and apparently increases in quantity with age.
Recording of electric potentials in the retina after stimulation by light.
Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast.
The striated muscle groups which move the LARYNX as a whole or its parts, such as altering tension of the VOCAL CORDS, or size of the slit (RIMA GLOTTIDIS).
Eyelid diseases refer to various medical conditions that affect the function, structure, or appearance of the eyelids, including inflammatory, infectious, neoplastic, congenital, and traumatic disorders, which can impact vision, comfort, and overall ocular health.
The synapse between a neuron and a muscle.
Use of electric potential or currents to elicit biological responses.
An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent.
Disease of the RETINA as a complication of DIABETES MELLITUS. It is characterized by the progressive microvascular complications, such as ANEURYSM, interretinal EDEMA, and intraocular PATHOLOGIC NEOVASCULARIZATION.
Monoquaternary homolog of PANCURONIUM. A non-depolarizing neuromuscular blocking agent with shorter duration of action than pancuronium. Its lack of significant cardiovascular effects and lack of dependence on good kidney function for elimination as well as its short duration of action and easy reversibility provide advantages over, or alternatives to, other established neuromuscular blocking agents.
Androstanes and androstane derivatives which are substituted in any position with one or more hydroxyl groups.
A disorder of neuromuscular transmission characterized by weakness of cranial and skeletal muscles. Autoantibodies directed against acetylcholine receptors damage the motor endplate portion of the NEUROMUSCULAR JUNCTION, impairing the transmission of impulses to skeletal muscles. Clinical manifestations may include diplopia, ptosis, and weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles. THYMOMA is commonly associated with this condition. (Adams et al., Principles of Neurology, 6th ed, p1459)
The thin, highly vascular membrane covering most of the posterior of the eye between the RETINA and SCLERA.
A quaternary skeletal muscle relaxant usually used in the form of its bromide, chloride, or iodide. It is a depolarizing relaxant, acting in about 30 seconds and with a duration of effect averaging three to five minutes. Succinylcholine is used in surgical, anesthetic, and other procedures in which a brief period of muscle relaxation is called for.
An oval area in the retina, 3 to 5 mm in diameter, usually located temporal to the posterior pole of the eye and slightly below the level of the optic disk. It is characterized by the presence of a yellow pigment diffusely permeating the inner layers, contains the fovea centralis in its center, and provides the best phototropic visual acuity. It is devoid of retinal blood vessels, except in its periphery, and receives nourishment from the choriocapillaris of the choroid. (From Cline et al., Dictionary of Visual Science, 4th ed)
A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
An enzyme that catalyzes the random hydrolysis of 1,4-linkages between N-acetyl-beta-D-glucosamine and D-glucuronate residues in hyaluronate. (From Enzyme Nomenclature, 1992) There has been use as ANTINEOPLASTIC AGENTS to limit NEOPLASM METASTASIS.
An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM.
The constant checking on the state or condition of a patient during the course of a surgical operation (e.g., checking of vital signs).
Bleeding from the vessels of the retina.
Central retinal artery and its branches. It arises from the ophthalmic artery, pierces the optic nerve and runs through its center, enters the eye through the porus opticus and branches to supply the retina.
Neurons which activate MUSCLE CELLS.
Central retinal vein and its tributaries. It runs a short course within the optic nerve and then leaves and empties into the superior ophthalmic vein or cavernous sinus.
Agents that dilate the pupil. They may be either sympathomimetics or parasympatholytics.
A form of MACULAR DEGENERATION also known as dry macular degeneration marked by occurrence of a well-defined progressive lesion or atrophy in the central part of the RETINA called the MACULA LUTEA. It is distinguishable from WET MACULAR DEGENERATION in that the latter involves neovascular exudates.
The single layer of pigment-containing epithelial cells in the RETINA, situated closely to the tips (outer segments) of the RETINAL PHOTORECEPTOR CELLS. These epithelial cells are macroglia that perform essential functions for the photoreceptor cells, such as in nutrient transport, phagocytosis of the shed photoreceptor membranes, and ensuring retinal attachment.
The portion of the optic nerve seen in the fundus with the ophthalmoscope. It is formed by the meeting of all the retinal ganglion cell axons as they enter the optic nerve.
Failure or imperfection of vision at night or in dim light, with good vision only on bright days. (Dorland, 27th ed)
An area approximately 1.5 millimeters in diameter within the macula lutea where the retina thins out greatly because of the oblique shifting of all layers except the pigment epithelium layer. It includes the sloping walls of the fovea (clivus) and contains a few rods in its periphery. In its center (foveola) are the cones most adapted to yield high visual acuity, each cone being connected to only one ganglion cell. (Cline et al., Dictionary of Visual Science, 4th ed)
Disorders of the choroid including hereditary choroidal diseases, neoplasms, and other abnormalities of the vascular layer of the uvea.
Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery.
The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
Transmission of gene defects or chromosomal aberrations/abnormalities which are expressed in extreme variation in the structure or function of the eye. These may be evident at birth, but may be manifested later with progression of the disorder.
A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304)
Diseases affecting the eye.
Swelling of the OPTIC DISK, usually in association with increased intracranial pressure, characterized by hyperemia, blurring of the disk margins, microhemorrhages, blind spot enlargement, and engorgement of retinal veins. Chronic papilledema may cause OPTIC ATROPHY and visual loss. (Miller et al., Clinical Neuro-Ophthalmology, 4th ed, p175)
A group of disorders involving predominantly the posterior portion of the ocular fundus, due to degeneration in the sensory layer of the RETINA; RETINAL PIGMENT EPITHELIUM; BRUCH MEMBRANE; CHOROID; or a combination of these tissues.
Contractile tissue that produces movement in animals.
The region between the sharp indentation at the lower third of the STOMACH (incisura angularis) and the junction of the PYLORUS with the DUODENUM. Pyloric antral glands contain mucus-secreting cells and gastrin-secreting endocrine cells (G CELLS).
Method of measuring and mapping the scope of vision, from central to peripheral of each eye.
The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye.
A tricarbocyanine dye that is used diagnostically in liver function tests and to determine blood volume and cardiac output.
That phase of a muscle twitch during which a muscle returns to a resting position.
Optic disk bodies composed primarily of acid mucopolysaccharides that may produce pseudopapilledema (elevation of the optic disk without associated INTRACRANIAL HYPERTENSION) and visual field deficits. Drusen may also occur in the retina (see RETINAL DRUSEN). (Miller et al., Clinical Neuro-Ophthalmology, 4th ed, p355)
Hereditary, progressive degeneration of the neuroepithelium of the retina characterized by night blindness and progressive contraction of the visual field.
Measurement of distances or movements by means of the phenomena caused by the interference of two rays of light (optical interferometry) or of sound (acoustic interferometry).
The use of light interaction (scattering, absorption, and fluorescence) with biological tissue to obtain morphologically based information. It includes measuring inherent tissue optical properties such as scattering, absorption, and autofluorescence; or optical properties of exogenous targeted fluorescent molecular probes such as those used in optical MOLECULAR IMAGING, or nontargeted optical CONTRAST AGENTS.
The use of green light-producing LASERS to stop bleeding. The green light is selectively absorbed by HEMOGLOBIN, thus triggering BLOOD COAGULATION.
A pathological process consisting of the formation of new blood vessels in the CHOROID.
A member of the family of tissue inhibitor of metalloproteinases. Mutations of the gene for TIMP3 PROTEIN causes Sorsby fundus dystrophy.
The time from the onset of a stimulus until a response is observed.
Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation.
An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum.
Fluid accumulation in the outer layer of the MACULA LUTEA that results from intraocular or systemic insults. It may develop in a diffuse pattern where the macula appears thickened or it may acquire the characteristic petaloid appearance referred to as cystoid macular edema. Although macular edema may be associated with various underlying conditions, it is most commonly seen following intraocular surgery, venous occlusive disease, DIABETIC RETINOPATHY, and posterior segment inflammatory disease. (From Survey of Ophthalmology 2004; 49(5) 470-90)
Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed)
The total area or space visible in a person's peripheral vision with the eye looking straightforward.
The light sensitive outer portion of a retinal rod or a cone photoreceptor cell. The outer segment contains a stack of disk membranes laden with photoreceptive pigments (RETINAL PIGMENTS). The outer segment is connected to the inner segment by a PHOTORECEPTOR CONNECTING CILIUM.
Autosomal dominant hereditary maculopathy with childhood-onset accumulation of LIPOFUSION in RETINAL PIGMENT EPITHELIUM. Affected individuals develop progressive central acuity loss, and distorted vision (METAMORPHOPSIA). It is associated with mutations in bestrophin, a chloride channel.
A surgical specialty concerned with the structure and function of the eye and the medical and surgical treatment of its defects and diseases.
Inflammation of the choroid.
Specialized PHOTOTRANSDUCTION neurons in the vertebrates, such as the RETINAL ROD CELLS and the RETINAL CONE CELLS. Non-visual photoreceptor neurons have been reported in the deep brain, the PINEAL GLAND and organs of the circadian system.
Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells.
Separation of the inner layers of the retina (neural retina) from the pigment epithelium. Retinal detachment occurs more commonly in men than in women, in eyes with degenerative myopia, in aging and in aphakia. It may occur after an uncomplicated cataract extraction, but it is seen more often if vitreous humor has been lost during surgery. (Dorland, 27th ed; Newell, Ophthalmology: Principles and Concepts, 7th ed, p310-12).
Visual impairments limiting one or more of the basic functions of the eye: visual acuity, dark adaptation, color vision, or peripheral vision. These may result from EYE DISEASES; OPTIC NERVE DISEASES; VISUAL PATHWAY diseases; OCCIPITAL LOBE diseases; OCULAR MOTILITY DISORDERS; and other conditions (From Newell, Ophthalmology: Principles and Concepts, 7th ed, p132).
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Atrophy of the optic disk which may be congenital or acquired. This condition indicates a deficiency in the number of nerve fibers which arise in the RETINA and converge to form the OPTIC DISK; OPTIC NERVE; OPTIC CHIASM; and optic tracts. GLAUCOMA; ISCHEMIA; inflammation, a chronic elevation of intracranial pressure, toxins, optic nerve compression, and inherited conditions (see OPTIC ATROPHIES, HEREDITARY) are relatively common causes of this condition.
A localized defect in the visual field bordered by an area of normal vision. This occurs with a variety of EYE DISEASES (e.g., RETINAL DISEASES and GLAUCOMA); OPTIC NERVE DISEASES, and other conditions.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
Tumors of the choroid; most common intraocular tumors are malignant melanomas of the choroid. These usually occur after puberty and increase in incidence with advancing age. Most malignant melanomas of the uveal tract develop from benign melanomas (nevi).
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
A form of RETINAL DEGENERATION in which abnormal CHOROIDAL NEOVASCULARIZATION occurs under the RETINA and MACULA LUTEA, causing bleeding and leaking of fluid. This leads to bulging and or lifting of the macula and the distortion or destruction of central vision.
Defects of color vision are mainly hereditary traits but can be secondary to acquired or developmental abnormalities in the CONES (RETINA). Severity of hereditary defects of color vision depends on the degree of mutation of the ROD OPSINS genes (on X CHROMOSOME and CHROMOSOME 3) that code the photopigments for red, green and blue.

A prospective study of cerebrovascular disease in Japanese rural communities, Akabane and Asahi. Part 1: evaluation of risk factors in the occurrence of cerebral hemorrhage and thrombosis. (1/1081)

An epidemiological study of cerebrovascular disease in Akabane and Asahi, Japan, was made. (These cities are located near Nagoy, Japan.) The study population included 4,737 men and women aged 40 to 79 at the time of entry into the study. There were 4,186 persons who were examined and, of these, 264 cases of cerebrovascular attacks were observed between 1964 and 1970. The incidence rate of stroke in those persons not responding to the survey was 15.9 times higher than in those persons examined according to person-year observation in Akabane. The risk factors for cerebral hemorrhage and thrombosis were evaluated by age-adjusted and sex-adjusted relative risks. The predisposing factors to cerebral hemorrhage appeared to be high blood pressure, high left R wave, ST depression, T abnormality, capillary fragility counts, previous medical history of stroke and albuminuria. For cerebral thrombosis, the predisposing factors appeared to be high blood pressure, ST depression and funduscopic sclerotic findings, and those factors assumed to be significant were glycosuria and smoking habits. Ocular funduscopic abnormality was the most prominent risk factor for cerebral thrombosis, while high blood pressure and ECG abnormalities were highly related to cerebral hemorrhage. It was suggested that those subjects with a relatively higher blood pressure may have a higher relative risk of cerebral hemorrhage than those with a lower (normal range) blood pressure. A previous or family history of stroke also appeared significantly related to cerebral hemorrhage.  (+info)

Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. (2/1081)

OBJECTIVE: To analyze glaucomatous eyes with known focal defects of the nerve fiber layer (NFL), relating optical coherence tomography (OCT) findings to clinical examination, NFL and stereoscopic optic nerve head (ONH) photography, and Humphrey 24-2 visual fields. DESIGN: Cross-sectional prevalence study. PARTICIPANTS: The authors followed 19 patients in the study group and 14 patients in the control group. INTERVENTION: Imaging with OCT was performed circumferentially around the ONH with a circle diameter of 3.4 mm using an internal fixation technique. One hundred OCT scan points taken within 2.5 seconds were analyzed. MAIN OUTCOME MEASURES: Measurements of NFL thickness using OCT were performed. RESULTS: In most eyes with focal NFL defects, OCTs showed significant thinning of the NFL in areas closely corresponding to focal defects visible on clinical examination, to red-free photographs, and to defects on the Humphrey visual fields. Optical coherence tomography enabled the detection of focal defects in the NFL with a sensitivity of 65% and a specificity of 81%. CONCLUSION: Analysis of NFL thickness in eyes with focal defects showed good structural and functional correlation with clinical parameters. Optical coherence tomography contributes to the identification of focal defects in the NFL that occur in early stages of glaucoma.  (+info)

Idiopathic central serous chorioretinopathy. (3/1081)

Idiopathic central serous chorioretinopathy (ICSC) is usually seen in young males with Type A personality. Clinical evaluation of the macula with fundoscopy and biomicroscopy, coupled with fluorescein angiography establishes the diagnosis. Indocyanine green angiographic studies have reinformed that the basic pathology lies in choriocapillaries and retinal pigment epithelium. Most of the ICSC resolve completely in four months, and some of them could resolve early with direct photocoagulation of the leaking site. Oral steroids have no role, and could even cause an adverse reaction.  (+info)

The optic disc in glaucoma. I: Classification. (4/1081)

Five different descriptive types of glaucomatous optic discs are described, based on the examination of X2 magnification stereophotographs of 252 patients from the files of the Glaucoma Service at Wills Eye Hospital. The method of analysis is described in detail. These types include: overpass cupping, cupping without pallor of the neuroretinal rim, cupping with pallor of the neuroretinal rim, focal notching of the neuroretinal rim, and bean-pot cupping. These morphological types may be caused by variations in factors contributing to the pathogenesis of glaucomatous eyes. Recognition of these differing types may help in determining the factors in each case.  (+info)

Recessive mutations in the RLBP1 gene encoding cellular retinaldehyde-binding protein in a form of retinitis punctata albescens. (5/1081)

PURPOSE: To determine the frequency and spectrum of mutations in the RLBP1 gene encoding cellular retinaldehyde-binding protein (CRALBP) in patients with hereditary retinal degeneration. METHODS: The single-strand conformation polymorphism (SSCP) technique and a direct genomic sequencing technique were used to screen the coding exons of this gene (exons 2-8) for mutations in 324 unrelated patients with recessive or isolate retinitis pigmentosa, retinitis punctata albescens, Leber congenital amaurosis, or a related disease. Variant DNA fragments revealed by SSCP analysis were subsequently sequenced. Selected alleles that altered the coding region or intron splice sites were evaluated further through segregation analysis in the families of the index cases. RESULTS: Four novel mutations were identified in this gene among three unrelated patients with recessively inherited retinitis punctata albescens. Two of the mutations were missense: one was a frameshift, and one affected a canonical splice donor site. CONCLUSIONS: Recessive mutations in the RLBP1 gene are an uncommon cause of retinal degeneration in humans. The phenotype produced by RLBP1 mutations seems to be a form of retinitis punctata albescens.  (+info)

The use of internal limiting membrane maculorrhexis in treatment of idiopathic macular holes. (6/1081)

The purpose of this study was to assess surgical results of internal limiting membrane (ILM) maculorrhexis in macular hole surgery. This study is a part of continuing prospective clinical trial of our team of researchers. Thirteen eyes of 13 patients with idiopathic macular hole underwent vitrectomy with the removal of posterior cortical vitreous, peeling of the macular ILM, and intraocular gas tamponade, followed by postoperative face-down positioning. The excised specimens were evaluated with transmission electron microscopy. Complete closure of the hole was observed in all 13 eyes (100% anatomic success rate). Visual improvement of 2 or more lines on ETDRS visual acuity chart was achieved in 11 (85%) of the 13 eyes. Six (54.5%) eyes attained visual acuity of 20/50 or better. Electron microscopy showed ILM in the removed specimens. ILM maculorrhexis is a promising new surgical approach to close idiopathic macular holes but requires further investigation and long-term evaluation.  (+info)

Diagnosis and management of idiopathic macular holes. (7/1081)

Modern vitreoretinal surgery is now one of the most effective tools for treating posterior segment diseases. Recent advances in the pathogenesis and classification and better indicators of visual outcome for idiopathic macular holes have led to a renewed interest in this clinical entity. Refinements in the techniques and instrumentation have led to improvement in surgical results. This article reviews the diagnosis and management of idiopathic macular holes.  (+info)

Posterior scleritis: clinical profile and imaging characteristics. (8/1081)

Posterior scleritis is relatively uncommon and is often misdiagnosed due to its protean manifestations. We report eight cases of posterior scleritis to analyse the clinical profile, ultrasonographic and computed tomography (CT) scan features of this rare disorder. Fundus findings included serous retinal detachment, choroidal folds, retinal folds, subretinal mass, choroidal detachment, disc edema, and macular edema. There was associated anterior scleritis and anterior uveitis in the majority of the cases. In all cases ultrasound with or without CT scan confirmed the clinical diagnosis. All patients responded to systemic steroids except one who required immunosuppressive therapy. This paper describes the clinical profile of a series of posterior scleritis cases highlighting varied clinical presentation, and the role of ultrasound and CT scan findings in the diagnosis.  (+info)

"Fundus Oculi" is a medical term that refers to the back part of the interior of the eye, including the optic disc, macula, fovea, retinal vasculature, and peripheral retina. It is the area where light is focused and then transmitted to the brain via the optic nerve, forming visual images. Examinations of the fundus oculi are crucial for detecting various eye conditions such as diabetic retinopathy, macular degeneration, glaucoma, and other retinal diseases. The examination is typically performed using an ophthalmoscope or a specialized camera called a retinal camera.

The gastric fundus is the upper, rounded portion of the stomach that lies above the level of the cardiac orifice and extends up to the left dome-shaped part of the diaphragm. It is the part of the stomach where food and liquids are first stored after entering through the esophagus. The gastric fundus contains parietal cells, which secrete hydrochloric acid, and chief cells, which produce pepsinogen, a precursor to the digestive enzyme pepsin. It is also the site where the hormone ghrelin is produced, which stimulates appetite.

Acholeplasma is a genus of bacteria that are characterized by their lack of a cell wall and their ability to grow in the absence of cholesterol, which is required for the growth of related genera such as Mycoplasma. These organisms are commonly found in various environments, including water, soil, and animals, and can cause opportunistic infections in humans and other animals.

Acholeplasma species are small, pleomorphic bacteria that lack a cell wall and therefore do not stain with Gram's stain. They are typically spherical or coccoid in shape, but can also appear as rods or filaments. These organisms are resistant to many antibiotics due to their lack of a cell wall and the absence of a peptidoglycan layer.

In humans, Acholeplasma species have been associated with respiratory tract infections, urinary tract infections, and bloodstream infections, particularly in immunocompromised individuals. However, these organisms are often considered to be commensals or colonizers rather than true pathogens, as they can also be found in healthy individuals without causing any symptoms.

Overall, Acholeplasma species are important bacteria that can cause opportunistic infections in humans and other animals, but their role in health and disease is still not fully understood.

Blepharospasm is a medical condition characterized by involuntary spasms and contractions of the muscles around the eyelids. These spasms can cause frequent blinkings, eye closure, and even difficulty in keeping the eyes open. In some cases, the spasms may be severe enough to interfere with vision, daily activities, and quality of life.

The exact cause of blepharospasm is not fully understood, but it is believed to involve abnormal functioning of the basal ganglia, a part of the brain that controls movement. It can occur as an isolated condition (known as essential blepharospasm) or as a symptom of other neurological disorders such as Parkinson's disease or dystonia.

Treatment options for blepharospasm may include medication, botulinum toxin injections, surgery, or a combination of these approaches. The goal of treatment is to reduce the frequency and severity of the spasms, improve symptoms, and enhance the patient's quality of life.

The oculomotor muscles are a group of extraocular muscles that control the movements of the eye. They include:

1. Superior rectus: This muscle is responsible for elevating the eye and helping with inward rotation (intorsion) when looking downwards.
2. Inferior rectus: It depresses the eye and helps with outward rotation (extorsion) when looking upwards.
3. Medial rectus: This muscle adducts, or moves, the eye towards the midline of the face.
4. Inferior oblique: The inferior oblique muscle intorts and elevates the eye.
5. Superior oblique: It extorts and depresses the eye.

These muscles work together to allow for smooth and precise movements of the eyes, enabling tasks such as tracking moving objects, reading, and maintaining visual fixation on a single point in space.

Fluorescein angiography is a medical diagnostic procedure used in ophthalmology to examine the blood flow in the retina and choroid, which are the inner layers of the eye. This test involves injecting a fluorescent dye, Fluorescein, into a patient's arm vein. As the dye reaches the blood vessels in the eye, a specialized camera takes rapid sequences of photographs to capture the dye's circulation through the retina and choroid.

The images produced by fluorescein angiography can help doctors identify any damage to the blood vessels, leakage, or abnormal growth of new blood vessels. This information is crucial in diagnosing and managing various eye conditions such as age-related macular degeneration, diabetic retinopathy, retinal vein occlusions, and inflammatory eye diseases.

It's important to note that while fluorescein angiography is a valuable diagnostic tool, it does carry some risks, including temporary side effects like nausea, vomiting, or allergic reactions to the dye. In rare cases, severe adverse reactions can occur, so patients should discuss these potential risks with their healthcare provider before undergoing the procedure.

I'm sorry for any confusion, but "photography" is not a term typically used in medical definitions. Photography refers to the art, application, or process of creating images by recording light or other electromagnetic radiation, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as photographic film.

If you're looking for a medical term related to imaging, there are several terms that might be relevant, such as:

1. Radiography: This is a technique using X-rays to visualize the internal structures of the body.
2. Ultrasonography: Also known as ultrasound, this is a diagnostic imaging technique using high-frequency sound waves to create images of the inside of the body.
3. Computed Tomography (CT): A type of imaging that uses X-rays to create detailed cross-sectional images of the body.
4. Magnetic Resonance Imaging (MRI): A type of imaging that uses magnetic fields and radio waves to create detailed images of the organs and tissues within the body.
5. Nuclear Medicine: This is a branch of medical imaging that uses small amounts of radioactive material to diagnose and treat diseases.

If you have any questions related to medical definitions or topics, feel free to ask!

Neuromuscular blockade (NMB) is a pharmacological state in which the communication between nerves and muscles is interrupted by blocking the neuromuscular junction, thereby preventing muscle contraction. This condition can be achieved through the use of certain medications called neuromuscular blocking agents (NMBAs). These drugs are commonly used during surgical procedures to facilitate endotracheal intubation, mechanical ventilation, and to prevent patient movement and minimize potential injury during surgery. NMBs are classified into two main categories based on their mechanism of action: depolarizing and non-depolarizing agents.

Depolarizing neuromuscular blocking agents, such as succinylcholine, work by activating the nicotinic acetylcholine receptors at the neuromuscular junction, causing a sustained depolarization and muscle contraction followed by flaccid paralysis. Non-depolarizing neuromuscular blocking agents, such as rocuronium, vecuronium, pancuronium, and atracurium, bind to the receptors without activating them, thereby preventing acetylcholine from binding and transmitting the signal for muscle contraction.

Clinical monitoring of neuromuscular blockade is essential to ensure proper dosing and avoid complications such as residual curarization, which can lead to respiratory compromise in the postoperative period. Monitoring techniques include peripheral nerve stimulation and train-of-four (TOF) assessment to evaluate the depth of neuromuscular blockade and guide the administration of reversal agents when appropriate.

NADH-Tetrazolium Reductase, also known as NADH Dehydrogenase or Complex I, is an enzyme complex in the electron transport chain located within the inner mitochondrial membrane. It catalyzes the oxidation of nicotinamide adenine dinucleotide hydride (NADH) to nicotinamide adenine dinucleotide (NAD+), and the reduction of ubiquinone (CoQ) to ubiquinol. This reaction contributes to the production of ATP, which is the primary source of energy for cellular metabolism.

The enzyme complex consists of several subunits, including flavoproteins and iron-sulfur (Fe-S) clusters, which facilitate the transfer of electrons from NADH to CoQ. The reduction of CoQ leads to the formation of a proton gradient across the inner mitochondrial membrane, which drives the synthesis of ATP by ATP synthase.

NADH-Tetrazolium Reductase is also an important site for reactive oxygen species (ROS) production, particularly superoxide radicals, which can contribute to oxidative stress and cellular damage in certain pathological conditions.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

Ophthalmoscopy is a medical examination technique used by healthcare professionals to observe the interior structures of the eye, including the retina, optic disc, and vitreous humor. This procedure typically involves using an ophthalmoscope, a handheld device that consists of a light and magnifying lenses. The healthcare provider looks through the ophthalmoscope and directly observes the internal structures of the eye by illuminating them.

There are several types of ophthalmoscopy, including direct ophthalmoscopy, indirect ophthalmoscopy, and slit-lamp biomicroscopy. Each type has its own advantages and disadvantages, and they may be used in different situations depending on the specific clinical situation and the information needed.

Ophthalmoscopy is an important diagnostic tool for detecting and monitoring a wide range of eye conditions, including diabetic retinopathy, glaucoma, age-related macular degeneration, and other retinal disorders. It can also provide valuable information about the overall health of the individual, as changes in the appearance of the retina or optic nerve may indicate the presence of systemic diseases such as hypertension or diabetes.

The trigeminal nerve, also known as the fifth cranial nerve or CNV, is a paired nerve that carries both sensory and motor information. It has three major branches: ophthalmic (V1), maxillary (V2), and mandibular (V3). The ophthalmic branch provides sensation to the forehead, eyes, and upper portion of the nose; the maxillary branch supplies sensation to the lower eyelid, cheek, nasal cavity, and upper lip; and the mandibular branch is responsible for sensation in the lower lip, chin, and parts of the oral cavity, as well as motor function to the muscles involved in chewing. The trigeminal nerve plays a crucial role in sensations of touch, pain, temperature, and pressure in the face and mouth, and it also contributes to biting, chewing, and swallowing functions.

Neuromuscular non-depolarizing agents are a type of muscle relaxant medication used in anesthesia and critical care settings to facilitate endotracheal intubation, mechanical ventilation, and to prevent muscle contractions during surgery. These agents work by competitively binding to the acetylcholine receptors at the neuromuscular junction, without activating them, thereby preventing the initiation of muscle contraction.

Examples of non-depolarizing neuromuscular blocking agents include:

* Vecuronium
* Rocuronium
* Pancuronium
* Atracurium
* Cisatracurium
* Mivacurium

These medications have a reversible effect and their duration of action can be prolonged in patients with impaired renal or hepatic function, acid-base imbalances, electrolyte abnormalities, or in those who are taking other medications that interact with these agents. Therefore, it is important to monitor the patient's neuromuscular function during and after the administration of non-depolarizing neuromuscular blocking agents.

In medical terms, the thumb is referred to as "pollex" and it's the first digit of the hand, located laterally to the index finger. It's opposable, meaning it can move opposite to the other fingers, allowing for powerful gripping and precise manipulation. The thumb contains two phalanges bones - the distal and proximal - and is connected to the hand by the carpometacarpal joint, which provides a wide range of motion.

Retinal vessels refer to the blood vessels that are located in the retina, which is the light-sensitive tissue that lines the inner surface of the eye. The retina contains two types of blood vessels: arteries and veins.

The central retinal artery supplies oxygenated blood to the inner layers of the retina, while the central retinal vein drains deoxygenated blood from the retina. These vessels can be visualized during a routine eye examination using an ophthalmoscope, which allows healthcare professionals to assess their health and any potential abnormalities.

Retinal vessels are essential for maintaining the health and function of the retina, and any damage or changes to these vessels can affect vision and lead to various eye conditions such as diabetic retinopathy, retinal vein occlusion, and hypertensive retinopathy.

The abducens nerve, also known as the sixth cranial nerve (CN VI), is a motor nerve that controls the lateral rectus muscle of the eye. This muscle is responsible for moving the eye away from the midline (towards the temple) and enables the eyes to look towards the side while keeping them aligned. Any damage or dysfunction of the abducens nerve can result in strabismus, where the eyes are misaligned and point in different directions, specifically an adduction deficit, also known as abducens palsy or sixth nerve palsy.

An ophthalmoscope is a medical device used by healthcare professionals to examine the interior structures of the eye, including the retina, optic disc, and vitreous humor. It consists of a handle with a battery-powered light source and a head that contains lenses for focusing. When placed in contact with the patient's dilated pupil, the ophthalmoscope allows the examiner to visualize the internal structures of the eye and assess their health. Ophthalmoscopes are commonly used in routine eye examinations, as well as in the diagnosis and management of various eye conditions and diseases.

Facial paralysis is a loss of facial movement due to damage or dysfunction of the facial nerve (cranial nerve VII). This nerve controls the muscles involved in facial expressions, such as smiling, frowning, and closing the eyes. Damage to one side of the facial nerve can cause weakness or paralysis on that side of the face.

Facial paralysis can result from various conditions, including:

1. Bell's palsy - an idiopathic (unknown cause) inflammation of the facial nerve
2. Trauma - skull fractures, facial injuries, or surgical trauma to the facial nerve
3. Infections - Lyme disease, herpes zoster (shingles), HIV/AIDS, or bacterial infections like meningitis
4. Tumors - benign or malignant growths that compress or invade the facial nerve
5. Stroke - damage to the brainstem where the facial nerve originates
6. Congenital conditions - some people are born with facial paralysis due to genetic factors or birth trauma

Symptoms of facial paralysis may include:

* Inability to move one or more parts of the face, such as the eyebrows, eyelids, mouth, or cheeks
* Drooping of the affected side of the face
* Difficulty closing the eye on the affected side
* Changes in saliva and tear production
* Altered sense of taste
* Pain around the ear or jaw
* Speech difficulties due to weakened facial muscles

Treatment for facial paralysis depends on the underlying cause. In some cases, such as Bell's palsy, spontaneous recovery may occur within a few weeks to months. However, physical therapy, medications, and surgical interventions might be necessary in other situations to improve function and minimize complications.

"Melopsittacus" is the genus name for the species of bird commonly known as the Budgerigar or Parakeet. It is the only species in its genus and belongs to the Psittacidae family, which includes parrots. The Melopsittacus undulatus is a small, long-tailed parrot native to Australia, known for its bright green, yellow, or blue feathers and sociable behavior. They are popular pets due to their ease of care, playful personalities, and ability to mimic human speech.

"Air movements" is not a medical term or concept. It generally refers to the movement or circulation of air, which can occur naturally (such as through wind) or mechanically (such as through fans or ventilation systems). In some contexts, it may refer specifically to the movement of air in operating rooms or other controlled environments for medical purposes. However, without more specific context, it is difficult to provide a precise definition or medical interpretation of "air movements."

Eyelid conditioning, also known as eyelid classical conditioning or Ursinus' phenomenon, is a type of reflex conditioning that involves associating a neutral stimulus with the natural act of blinking. This concept was first described by Russian physiologist Ivan Pavlov and later studied in detail by German ophthalmologist Hermann Ludwig Ferdinand von Helmholtz and Austrian physician Sigmund Exner.

In this procedure, a conditioned stimulus (like a sound or light) is repeatedly presented just before the unconditioned stimulus (such as a puff of air directed at the eye), which naturally triggers the blink reflex. Over time, the subject begins to associate the conditioned stimulus with the blinking response and will start to blink even when only the conditioned stimulus is presented, without the presence of the unconditioned stimulus. This learning process is an example of classical conditioning and can be used in various research and clinical applications.

An abnormal reflex in a medical context refers to an involuntary and exaggerated response or lack of response to a stimulus that is not expected in the normal physiological range. These responses can be indicative of underlying neurological disorders or damage to the nervous system. Examples include hyperreflexia (overactive reflexes) and hyporeflexia (underactive reflexes). The assessment of reflexes is an important part of a physical examination, as it can provide valuable information about the functioning of the nervous system.

Retinal diseases refer to a group of conditions that affect the retina, which is the light-sensitive tissue located at the back of the eye. The retina is responsible for converting light into electrical signals that are sent to the brain and interpreted as visual images. Retinal diseases can cause vision loss or even blindness, depending on their severity and location in the retina.

Some common retinal diseases include:

1. Age-related macular degeneration (AMD): A progressive disease that affects the central part of the retina called the macula, causing blurred or distorted vision.
2. Diabetic retinopathy: A complication of diabetes that can damage the blood vessels in the retina, leading to vision loss.
3. Retinal detachment: A serious condition where the retina becomes separated from its underlying tissue, requiring immediate medical attention.
4. Macular edema: Swelling or thickening of the macula due to fluid accumulation, which can cause blurred vision.
5. Retinitis pigmentosa: A group of inherited eye disorders that affect the retina's ability to respond to light, causing progressive vision loss.
6. Macular hole: A small break in the macula that can cause distorted or blurry vision.
7. Retinal vein occlusion: Blockage of the retinal veins that can lead to bleeding, swelling, and potential vision loss.

Treatment for retinal diseases varies depending on the specific condition and its severity. Some treatments include medication, laser therapy, surgery, or a combination of these options. Regular eye exams are essential for early detection and treatment of retinal diseases.

Blepharoptosis is a medical term that refers to the drooping or falling of the upper eyelid. It is usually caused by weakness or paralysis of the muscle that raises the eyelid, known as the levator palpebrae superioris. This condition can be present at birth or acquired later in life due to various factors such as aging, nerve damage, eye surgery complications, or certain medical conditions like myasthenia gravis or brain tumors. Blepharoptosis may obstruct vision and cause difficulty with daily activities, and treatment options include eyedrops, eye patches, or surgical correction.

Macular degeneration, also known as age-related macular degeneration (AMD), is a medical condition that affects the central part of the retina, called the macula. The macula is responsible for sharp, detailed vision, which is necessary for activities such as reading, driving, and recognizing faces.

In AMD, there is a breakdown or deterioration of the macula, leading to gradual loss of central vision. There are two main types of AMD: dry (atrophic) and wet (exudative). Dry AMD is more common and progresses more slowly, while wet AMD is less common but can cause rapid and severe vision loss if left untreated.

The exact causes of AMD are not fully understood, but risk factors include age, smoking, family history, high blood pressure, obesity, and exposure to sunlight. While there is no cure for AMD, treatments such as vitamin supplements, laser therapy, and medication injections can help slow its progression and reduce the risk of vision loss.

In medical terms, the orbit refers to the bony cavity or socket in the skull that contains and protects the eye (eyeball) and its associated structures, including muscles, nerves, blood vessels, fat, and the lacrimal gland. The orbit is made up of several bones: the frontal bone, sphenoid bone, zygomatic bone, maxilla bone, and palatine bone. These bones form a pyramid-like shape that provides protection for the eye while also allowing for a range of movements.

A spasm is a sudden, involuntary contraction or tightening of a muscle, group of muscles, or a hollow organ such as the ureter or bronchi. Spasms can occur as a result of various factors including muscle fatigue, injury, irritation, or abnormal nerve activity. They can cause pain and discomfort, and in some cases, interfere with normal bodily functions. For example, a spasm in the bronchi can cause difficulty breathing, while a spasm in the ureter can cause severe pain and may lead to a kidney stone blockage. The treatment for spasms depends on the underlying cause and may include medication, physical therapy, or lifestyle changes.

Conversion disorder is a mental health condition that is characterized by the presence of neurological symptoms, such as blindness, paralysis, or difficulty swallowing, that cannot be explained by a medical condition. These symptoms are thought to be caused by psychological factors, such as stress or trauma, and may be a way for the individual to express emotional distress or avoid certain situations.

The symptoms of conversion disorder are typically dramatic and can interfere significantly with a person's daily life. They may include:

* Loss of or alteration in physical senses (such as blindness, deafness, or loss of touch)
* Weakness or paralysis in a part or all of the body
* Difficulty swallowing or speaking
* Seizures or convulsions
* Inability to move certain parts of the body
* Tremors or shaking
* Loss of consciousness

It is important to note that conversion disorder is not a fake or intentional condition. Rather, it is a genuine medical condition that requires treatment. Treatment typically involves addressing any underlying psychological issues and helping the individual develop more effective ways of coping with stress and emotional distress.

Diagnostic techniques in ophthalmology refer to the various methods and tests used by eye specialists (ophthalmologists) to examine, evaluate, and diagnose conditions related to the eyes and visual system. Here are some commonly used diagnostic techniques:

1. Visual Acuity Testing: This is a basic test to measure the sharpness of a person's vision. It typically involves reading letters or numbers from an eye chart at a specific distance.
2. Refraction Test: This test helps determine the correct lens prescription for glasses or contact lenses by measuring how light is bent as it passes through the cornea and lens.
3. Slit Lamp Examination: A slit lamp is a microscope that allows an ophthalmologist to examine the structures of the eye, including the cornea, iris, lens, and retina, in great detail.
4. Tonometry: This test measures the pressure inside the eye (intraocular pressure) to detect conditions like glaucoma. Common methods include applanation tonometry and non-contact tonometry.
5. Retinal Imaging: Several techniques are used to capture images of the retina, including fundus photography, fluorescein angiography, and optical coherence tomography (OCT). These tests help diagnose conditions like macular degeneration, diabetic retinopathy, and retinal detachments.
6. Color Vision Testing: This test evaluates a person's ability to distinguish between different colors, which can help detect color vision deficiencies or neurological disorders affecting the visual pathway.
7. Visual Field Testing: This test measures a person's peripheral (or side) vision and can help diagnose conditions like glaucoma, optic nerve damage, or brain injuries.
8. Pupillary Reactions Tests: These tests evaluate how the pupils respond to light and near objects, which can provide information about the condition of the eye's internal structures and the nervous system.
9. Ocular Motility Testing: This test assesses eye movements and alignment, helping diagnose conditions like strabismus (crossed eyes) or nystagmus (involuntary eye movement).
10. Corneal Topography: This non-invasive imaging technique maps the curvature of the cornea, which can help detect irregularities, assess the fit of contact lenses, and plan refractive surgery procedures.

The Ulnar nerve is one of the major nerves in the forearm and hand, which provides motor function to the majority of the intrinsic muscles of the hand (except for those innervated by the median nerve) and sensory innervation to the little finger and half of the ring finger. It originates from the brachial plexus, passes through the cubital tunnel at the elbow, and continues down the forearm, where it runs close to the ulna bone. The ulnar nerve then passes through the Guyon's canal in the wrist before branching out to innervate the hand muscles and provide sensation to the skin on the little finger and half of the ring finger.

Retinal drusen are yellow-white, deposits of extracellular material that accumulate beneath the retina, most commonly in the macula. They are a common age-related finding and can also be seen in various other conditions such as inherited retinal diseases. Drusen can vary in size and number, and their presence is often associated with an increased risk of developing age-related macular degeneration (AMD), a leading cause of vision loss in older adults. However, not all individuals with drusen will develop AMD, and the significance of drusen depends on factors such as size, number, and location. It's important to monitor drusen and have regular eye examinations to assess any changes or progression that may indicate a higher risk for developing AMD.

Optical coherence tomography (OCT) is a non-invasive imaging technique that uses low-coherence light to capture high-resolution cross-sectional images of biological tissues, particularly the retina and other ocular structures. OCT works by measuring the echo time delay of light scattered back from different depths within the tissue, creating a detailed map of the tissue's structure. This technique is widely used in ophthalmology to diagnose and monitor various eye conditions such as macular degeneration, diabetic retinopathy, and glaucoma.

Lipofuscin is a type of pigment that accumulates in the lysosomes (membrane-bound organelles found inside cells) of various tissues, particularly in nerve cells and heart muscle cells. It consists of cross-linked proteins and lipids that are resistant to degradation by enzymes. The accumulation of lipofuscin is a normal part of aging but can also be associated with certain diseases such as neurodegenerative disorders.

It's often referred to as "age pigment" because it tends to increase in amount with age, and its presence in tissues has been linked to oxidative stress and cellular damage caused by free radicals. Lipofuscin is autofluorescent, meaning that it emits light when excited by certain wavelengths of light, which can be useful for its detection and quantification in research and diagnostic settings.

Electroretinography (ERG) is a medical test used to evaluate the functioning of the retina, which is the light-sensitive tissue located at the back of the eye. The test measures the electrical responses of the retina to light stimulation.

During the procedure, a special contact lens or electrode is placed on the surface of the eye to record the electrical activity generated by the retina's light-sensitive cells (rods and cones) and other cells in the retina. The test typically involves presenting different levels of flashes of light to the eye while the electrical responses are recorded.

The resulting ERG waveform provides information about the overall health and function of the retina, including the condition of the photoreceptors, the integrity of the inner retinal layers, and the health of the retinal ganglion cells. This test is often used to diagnose and monitor various retinal disorders, such as retinitis pigmentosa, macular degeneration, and diabetic retinopathy.

Visual acuity is a measure of the sharpness or clarity of vision. It is usually tested by reading an eye chart from a specific distance, such as 20 feet (6 meters). The standard eye chart used for this purpose is called the Snellen chart, which contains rows of letters that decrease in size as you read down the chart.

Visual acuity is typically expressed as a fraction, with the numerator representing the testing distance and the denominator indicating the smallest line of type that can be read clearly. For example, if a person can read the line on the eye chart that corresponds to a visual acuity of 20/20, it means they have normal vision at 20 feet. If their visual acuity is 20/40, it means they must be as close as 20 feet to see what someone with normal vision can see at 40 feet.

It's important to note that visual acuity is just one aspect of overall vision and does not necessarily reflect other important factors such as peripheral vision, depth perception, color vision, or contrast sensitivity.

The laryngeal muscles are a group of skeletal muscles located in the larynx, also known as the voice box. These muscles play a crucial role in breathing, swallowing, and producing sounds for speech. They include:

1. Cricothyroid muscle: This muscle helps to tense the vocal cords and adjust their pitch during phonation (voice production). It is the only laryngeal muscle that is not innervated by the recurrent laryngeal nerve. Instead, it is supplied by the external branch of the superior laryngeal nerve.
2. Posterior cricoarytenoid muscle: This muscle is primarily responsible for abducting (opening) the vocal cords during breathing and speaking. It is the only muscle that can abduct the vocal cords.
3. Lateral cricoarytenoid muscle: This muscle adducts (closes) the vocal cords during phonation, swallowing, and coughing.
4. Transverse arytenoid muscle: This muscle also contributes to adduction of the vocal cords, working together with the lateral cricoarytenoid muscle. It also helps to relax and lengthen the vocal cords during quiet breathing.
5. Oblique arytenoid muscle: This muscle is involved in adducting, rotating, and shortening the vocal cords. It works together with the transverse arytenoid muscle to provide fine adjustments for voice production.
6. Thyroarytenoid muscle (Vocalis): This muscle forms the main body of the vocal cord and is responsible for its vibration during phonation. The vocalis portion of the muscle helps control pitch and tension in the vocal cords.

These muscles work together to enable various functions of the larynx, such as breathing, swallowing, and speaking.

Eyelid diseases refer to a variety of medical conditions that affect the function and/or appearance of the eyelids. These can include structural abnormalities, such as entropion (inward turning of the eyelid) or ectropion (outward turning of the eyelid), as well as functional issues like ptosis (drooping of the upper eyelid). Other common eyelid diseases include blepharitis (inflammation of the eyelid margin), chalazion (a blocked oil gland in the eyelid), and cancerous or benign growths on the eyelid. Symptoms of eyelid diseases can vary widely, but often include redness, swelling, pain, itching, tearing, and sensitivity to light. Treatment for these conditions depends on the specific diagnosis and may range from self-care measures and medications to surgical intervention.

The neuromuscular junction (NMJ) is the specialized synapse or chemical communication point, where the motor neuron's nerve terminal (presynaptic element) meets the muscle fiber's motor end plate (postsynaptic element). This junction plays a crucial role in controlling muscle contraction and relaxation.

At the NMJ, the neurotransmitter acetylcholine is released from the presynaptic nerve terminal into the synaptic cleft, following an action potential. Acetylcholine then binds to nicotinic acetylcholine receptors on the postsynaptic membrane of the muscle fiber, leading to the generation of an end-plate potential. If sufficient end-plate potentials are generated and summate, they will trigger an action potential in the muscle fiber, ultimately causing muscle contraction.

Dysfunction at the neuromuscular junction can result in various neuromuscular disorders, such as myasthenia gravis, where autoantibodies attack acetylcholine receptors, leading to muscle weakness and fatigue.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

A reflex is an automatic, involuntary and rapid response to a stimulus that occurs without conscious intention. In the context of physiology and neurology, it's a basic mechanism that involves the transmission of nerve impulses between neurons, resulting in a muscle contraction or glandular secretion.

Reflexes are important for maintaining homeostasis, protecting the body from harm, and coordinating movements. They can be tested clinically to assess the integrity of the nervous system, such as the knee-j jerk reflex, which tests the function of the L3-L4 spinal nerve roots and the sensitivity of the stretch reflex arc.

The retina is the innermost, light-sensitive layer of tissue in the eye of many vertebrates and some cephalopods. It receives light that has been focused by the cornea and lens, converts it into neural signals, and sends these to the brain via the optic nerve. The retina contains several types of photoreceptor cells including rods (which handle vision in low light) and cones (which are active in bright light and are capable of color vision).

In medical terms, any pathological changes or diseases affecting the retinal structure and function can lead to visual impairment or blindness. Examples include age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinitis pigmentosa among others.

Diabetic retinopathy is a diabetes complication that affects the eyes. It's caused by damage to the blood vessels of the light-sensitive tissue at the back of the eye (retina).

At first, diabetic retinopathy may cause no symptoms or only mild vision problems. Eventually, it can cause blindness. The condition usually affects both eyes.

There are two main stages of diabetic retinopathy:

1. Early diabetic retinopathy. This is when the blood vessels in the eye start to leak fluid or bleed. You might not notice any changes in your vision at this stage, but it's still important to get treatment because it can prevent the condition from getting worse.
2. Advanced diabetic retinopathy. This is when new, abnormal blood vessels grow on the surface of the retina. These vessels can leak fluid and cause severe vision problems, including blindness.

Diabetic retinopathy can be treated with laser surgery, injections of medication into the eye, or a vitrectomy (a surgical procedure to remove the gel-like substance that fills the center of the eye). It's important to get regular eye exams to detect diabetic retinopathy early and get treatment before it causes serious vision problems.

Vecuronium Bromide is a neuromuscular blocking agent, which is a type of medication that acts on the muscles to cause paralysis. It is used in anesthesia during surgery to provide skeletal muscle relaxation and to facilitate endotracheal intubation and mechanical ventilation. Vecuronium Bromide works by blocking the transmission of nerve impulses at the neuromuscular junction, the site where nerves meet muscles. This results in temporary paralysis of the muscles, allowing for controlled muscle relaxation during surgical procedures. It is a non-depolarizing muscle relaxant and is considered to have a intermediate duration of action.

Androstanols are a class of steroid compounds that contain a skeleton of 17 carbon atoms arranged in a particular structure. They are derived from androstane, which is a reduced form of testosterone, a male sex hormone. Androstanols have a variety of biological activities and can be found in various tissues and bodily fluids, including sweat, urine, and blood.

In the context of medical research and diagnostics, androstanols are sometimes used as biomarkers to study various physiological processes and diseases. For example, some studies have investigated the use of androstanol metabolites in urine as markers for prostate cancer. However, more research is needed to establish their clinical utility.

It's worth noting that while androstanols are related to steroid hormones, they do not have the same hormonal activity as testosterone or other sex hormones. Instead, they may play a role in cell signaling and other regulatory functions within the body.

Myasthenia Gravis is a long-term autoimmune neuromuscular disorder that leads to muscle weakness. It occurs when communication between nerves and muscles is disrupted at the nerve endings, resulting in fewer impulses being transmitted to activate the muscles. This results in muscle weakness and rapid fatigue. The condition can affect any voluntary muscle, but it most commonly affects muscles of the eyes, face, throat, and limbs. Symptoms may include drooping eyelids (ptosis), double vision (diplopia), difficulty swallowing, slurred speech, and weakness in the arms and legs. The severity of symptoms can vary greatly from person to person, ranging from mild to life-threatening.

The disorder is caused by an abnormal immune system response that produces antibodies against the acetylcholine receptors in the postsynaptic membrane of the neuromuscular junction. These antibodies block or destroy the receptors, which leads to a decrease in the number of available receptors for nerve impulses to activate the muscle fibers.

Myasthenia Gravis can be treated with medications that improve communication between nerves and muscles, such as cholinesterase inhibitors, immunosuppressants, and plasmapheresis or intravenous immunoglobulin (IVIG) to remove the harmful antibodies from the blood. With proper treatment, many people with Myasthenia Gravis can lead normal or nearly normal lives.

The choroid is a layer of the eye that contains blood vessels that supply oxygen and nutrients to the outer layers of the retina. It lies between the sclera (the white, protective coat of the eye) and the retina (the light-sensitive tissue at the back of the eye). The choroid is essential for maintaining the health and function of the retina, particularly the photoreceptor cells that detect light and transmit visual signals to the brain. Damage to the choroid can lead to vision loss or impairment.

Succinylcholine is a neuromuscular blocking agent, a type of muscle relaxant used in anesthesia during surgical procedures. It works by inhibiting the transmission of nerve impulses at the neuromuscular junction, leading to temporary paralysis of skeletal muscles. This facilitates endotracheal intubation and mechanical ventilation during surgery. Succinylcholine has a rapid onset of action and is metabolized quickly, making it useful for short surgical procedures. However, its use may be associated with certain adverse effects, such as increased heart rate, muscle fasciculations, and potentially life-threatening hyperkalemia in susceptible individuals.

The macula lutea, often simply referred to as the macula or fovea centralis, is a part of the eye that is responsible for central vision and color perception. It's located in the center of the retina, the light-sensitive tissue at the back of the eye. The macula contains a high concentration of pigments called xanthophylls, which give it a yellowish color and protect the photoreceptor cells in this area from damage by blue light.

The central part of the macula is called the fovea, which is a small depression that contains only cones, the photoreceptor cells responsible for color vision and high visual acuity. The fovea is surrounded by the parafovea and the perifovea, which contain both cones and rods, the photoreceptor cells responsible for low-light vision and peripheral vision.

Damage to the macula can result in a loss of central vision and color perception, a condition known as age-related macular degeneration (AMD), which is a leading cause of blindness in older adults. Other conditions that can affect the macula include macular edema, macular holes, and macular pucker.

Isoquinolines are not a medical term per se, but a chemical classification. They refer to a class of organic compounds that consist of a benzene ring fused to a piperidine ring. This structure is similar to that of quinoline, but with the nitrogen atom located at a different position in the ring.

Isoquinolines have various biological activities and can be found in some natural products, including certain alkaloids. Some isoquinoline derivatives have been developed as drugs for the treatment of various conditions, such as cardiovascular diseases, neurological disorders, and cancer. However, specific medical definitions related to isoquinolines typically refer to the use or effects of these specific drugs rather than the broader class of compounds.

I'm sorry for any confusion, but "Hyaluronoglucosaminidase" appears to be a made-up term or a typographical error. The correct term related to hyaluronic acid metabolism is "hyaluronidase," which is an enzyme that degrades hyaluronic acid, a component of the extracellular matrix in various tissues. If you meant to ask about this enzyme or its functions, I'd be happy to provide more information on that. However, if "Hyaluronoglucosaminidase" is intended to represent another medical term, could you please clarify so I can provide an accurate and helpful response?

In anatomical terms, the stomach is a muscular, J-shaped organ located in the upper left portion of the abdomen. It is part of the gastrointestinal tract and plays a crucial role in digestion. The stomach's primary functions include storing food, mixing it with digestive enzymes and hydrochloric acid to break down proteins, and slowly emptying the partially digested food into the small intestine for further absorption of nutrients.

The stomach is divided into several regions, including the cardia (the area nearest the esophagus), the fundus (the upper portion on the left side), the body (the main central part), and the pylorus (the narrowed region leading to the small intestine). The inner lining of the stomach, called the mucosa, is protected by a layer of mucus that prevents the digestive juices from damaging the stomach tissue itself.

In medical contexts, various conditions can affect the stomach, such as gastritis (inflammation of the stomach lining), peptic ulcers (sores in the stomach or duodenum), gastroesophageal reflux disease (GERD), and stomach cancer. Symptoms related to the stomach may include abdominal pain, bloating, nausea, vomiting, heartburn, and difficulty swallowing.

Intraoperative monitoring (IOM) is the practice of using specialized techniques to monitor physiological functions or neural structures in real-time during surgical procedures. The primary goal of IOM is to provide continuous information about the patient's status and the effects of surgery on neurological function, allowing surgeons to make informed decisions and minimize potential risks.

IOM can involve various methods such as:

1. Electrophysiological monitoring: This includes techniques like somatosensory evoked potentials (SSEP), motor evoked potentials (MEP), and electroencephalography (EEG) to assess the integrity of neural pathways and brain function during surgery.
2. Neuromonitoring: Direct electrical stimulation of nerves or spinal cord structures can help identify critical neuroanatomical structures, evaluate their functional status, and guide surgical interventions.
3. Hemodynamic monitoring: Measuring blood pressure, heart rate, cardiac output, and oxygen saturation helps assess the patient's overall physiological status during surgery.
4. Imaging modalities: Intraoperative imaging techniques like ultrasound, computed tomography (CT), or magnetic resonance imaging (MRI) can provide real-time visualization of anatomical structures and surgical progress.

The specific IOM methods employed depend on the type of surgery, patient characteristics, and potential risks involved. Intraoperative monitoring is particularly crucial in procedures where there is a risk of neurological injury, such as spinal cord or brain surgeries, vascular interventions, or tumor resections near critical neural structures.

A retinal hemorrhage is a type of bleeding that occurs in the blood vessels of the retina, which is the light-sensitive tissue located at the back of the eye. This condition can result from various underlying causes, including diabetes, high blood pressure, age-related macular degeneration, or trauma to the eye. Retinal hemorrhages can be categorized into different types based on their location and appearance, such as dot and blot hemorrhages, flame-shaped hemorrhages, or subhyaloid hemorrhages. Depending on the severity and cause of the hemorrhage, treatment options may vary from monitoring to laser therapy, medication, or even surgery. It is essential to consult an ophthalmologist for a proper evaluation and management plan if you suspect a retinal hemorrhage.

A retinal artery is a small branch of the ophthalmic artery that supplies oxygenated blood to the inner layers of the retina, which is the light-sensitive tissue located at the back of the eye. There are two main retinal arteries - the central retinal artery and the cilioretinal artery. The central retinal artery enters the eye through the optic nerve and divides into smaller branches to supply blood to the entire retina, while the cilioretinal artery is a smaller artery that supplies blood to a small portion of the retina near the optic nerve. Any damage or blockage to these arteries can lead to serious vision problems, such as retinal artery occlusion or retinal artery embolism.

Motor neurons are specialized nerve cells in the brain and spinal cord that play a crucial role in controlling voluntary muscle movements. They transmit electrical signals from the brain to the muscles, enabling us to perform actions such as walking, talking, and swallowing. There are two types of motor neurons: upper motor neurons, which originate in the brain's motor cortex and travel down to the brainstem and spinal cord; and lower motor neurons, which extend from the brainstem and spinal cord to the muscles. Damage or degeneration of these motor neurons can lead to various neurological disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).

A Retinal Vein is a vessel that carries oxygen-depleted blood away from the retina, a light-sensitive layer at the back of the eye. The retinal veins originate from a network of smaller vessels called venules and ultimately merge to form the central retinal vein, which exits the eye through the optic nerve.

Retinal veins are crucial for maintaining the health and function of the retina, as they facilitate the removal of waste products and help regulate the ocular environment. However, they can also be susceptible to various pathological conditions such as retinal vein occlusions, which can lead to vision loss or damage to the eye.

Mydriatics are medications that cause mydriasis, which is the dilation of the pupil. These drugs work by blocking the action of the muscarinic receptors in the iris, leading to relaxation of the circular muscle and constriction of the radial muscle, resulting in pupil dilation. Mydriatics are often used in eye examinations to facilitate examination of the interior structures of the eye. Commonly used mydriatic agents include tropicamide, phenylephrine, and cyclopentolate. It is important to note that mydriatics can have side effects such as blurred vision, photophobia, and accommodation difficulties, so patients should be advised accordingly.

Geographic atrophy is a medical term used to describe a specific pattern of degeneration of the retinal pigment epithelium (RPE) and the underlying choroidal tissue in the eye. This condition is often associated with age-related macular degeneration (AMD), which is a leading cause of vision loss in older adults.

In geographic atrophy, there are well-defined areas of RPE and choroidal atrophy that appear as pale, irregularly shaped patches in the central part of the retina known as the macula. These patches can grow larger over time and may lead to progressive vision loss. The exact cause of geographic atrophy is not fully understood, but it is thought to be related to oxidative stress, inflammation, and other age-related changes in the eye.

Currently, there are no effective treatments for geographic atrophy, although research is ongoing to find new ways to slow or halt its progression. Regular eye exams and monitoring by an ophthalmologist are important for people with AMD or geographic atrophy to help detect any changes in their vision and manage their condition effectively.

The retinal pigment epithelium (RPE) is a single layer of cells located between the photoreceptor cells of the retina and the choroid, which is a part of the eye containing blood vessels. The RPE plays a crucial role in maintaining the health and function of the photoreceptors by providing them with nutrients, removing waste products, and helping to regulate the light-sensitive visual pigments within the photoreceptors.

The RPE cells contain pigment granules that absorb excess light to prevent scattering within the eye and improve visual acuity. They also help to form the blood-retina barrier, which restricts the movement of certain molecules between the retina and the choroid, providing an important protective function for the retina.

Damage to the RPE can lead to a variety of eye conditions, including age-related macular degeneration (AMD), which is a leading cause of vision loss in older adults.

The optic disk, also known as the optic nerve head, is the point where the optic nerve fibers exit the eye and transmit visual information to the brain. It appears as a pale, circular area in the back of the eye, near the center of the retina. The optic disk has no photoreceptor cells (rods and cones), so it is insensitive to light. It is an important structure to observe during eye examinations because changes in its appearance can indicate various ocular diseases or conditions, such as glaucoma, optic neuritis, or papilledema.

Night blindness, also known as nyctalopia, is a visual impairment characterized by the inability to see well in low light or darkness. It's not an eye condition itself but rather a symptom of various underlying eye disorders, most commonly vitamin A deficiency and retinal diseases like retinitis pigmentosa.

In a healthy eye, a molecule called rhodopsin is present in the rods (special light-sensitive cells in our eyes responsible for vision in low light conditions). This rhodopsin requires sufficient amounts of vitamin A to function properly. When there's a deficiency of vitamin A or damage to the rods, the ability to see in dim light gets affected, leading to night blindness.

People with night blindness often have difficulty adjusting to changes in light levels, such as when entering a dark room from bright sunlight. They may also experience trouble seeing stars at night, driving at dusk or dawn, and navigating in poorly lit areas. If you suspect night blindness, it's essential to consult an eye care professional for proper diagnosis and treatment of the underlying cause.

The fovea centralis, also known as the macula lutea, is a small pit or depression located in the center of the retina, an light-sensitive tissue at the back of the eye. It is responsible for sharp, detailed vision (central vision) and color perception. The fovea contains only cones, the photoreceptor cells that are responsible for color vision and high visual acuity. It has a higher concentration of cones than any other area in the retina, allowing it to provide the greatest detail and color discrimination. The center of the fovea is called the foveola, which contains the highest density of cones and is avascular, meaning it lacks blood vessels to avoid interfering with the light passing through to the photoreceptor cells.

The choroid is a part of the eye located between the retina and the sclera, which contains a large number of blood vessels that supply oxygen and nutrients to the outer layers of the retina. Choroid diseases refer to various medical conditions that affect the health and function of the choroid. Here are some examples:

1. Choroidal neovascularization (CNV): This is a condition where new blood vessels grow from the choroid into the retina, leading to fluid accumulation, bleeding, and scarring. CNV can cause vision loss and is often associated with age-related macular degeneration, myopia, and inflammatory eye diseases.
2. Chorioretinitis: This is an infection or inflammation of the choroid and retina, which can be caused by various microorganisms such as bacteria, viruses, fungi, or parasites. Symptoms may include blurred vision, floaters, light sensitivity, and eye pain.
3. Choroidal hemorrhage: This is a rare but serious condition where there is bleeding into the choroid, often caused by trauma, high blood pressure, or blood clotting disorders. It can lead to sudden vision loss and requires urgent medical attention.
4. Choroideremia: This is a genetic disorder that affects the choroid, retina, and optic nerve, leading to progressive vision loss. It is caused by mutations in the CHM gene and primarily affects males.
5. Central serous retinopathy (CSR): This is a condition where fluid accumulates under the retina, often in the macula, causing distortion or blurring of vision. While the exact cause is unknown, CSR is thought to be related to stress, steroid use, and other factors that affect the choroid's ability to regulate fluid.
6. Polypoidal choroidal vasculopathy (PCV): This is a condition where abnormal blood vessels form in the choroid, leading to serous or hemorrhagic detachment of the retina. PCV is often associated with age-related macular degeneration and can cause vision loss if left untreated.

These are just a few examples of choroidal disorders that can affect vision. If you experience any sudden changes in your vision, it's important to seek medical attention promptly.

General anesthesia is a state of controlled unconsciousness, induced by administering various medications, that eliminates awareness, movement, and pain sensation during medical procedures. It involves the use of a combination of intravenous and inhaled drugs to produce a reversible loss of consciousness, allowing patients to undergo surgical or diagnostic interventions safely and comfortably. The depth and duration of anesthesia are carefully monitored and adjusted throughout the procedure by an anesthesiologist or certified registered nurse anesthetist (CRNA) to ensure patient safety and optimize recovery. General anesthesia is typically used for more extensive surgical procedures, such as open-heart surgery, major orthopedic surgeries, and neurosurgery.

Fluorescence is not a medical term per se, but it is widely used in the medical field, particularly in diagnostic tests, medical devices, and research. Fluorescence is a physical phenomenon where a substance absorbs light at a specific wavelength and then emits light at a longer wavelength. This process, often referred to as fluorescing, results in the emission of visible light that can be detected and measured.

In medical terms, fluorescence is used in various applications such as:

1. In-vivo imaging: Fluorescent dyes or probes are introduced into the body to highlight specific structures, cells, or molecules during imaging procedures. This technique can help doctors detect and diagnose diseases such as cancer, inflammation, or infection.
2. Microscopy: Fluorescence microscopy is a powerful tool for visualizing biological samples at the cellular and molecular level. By labeling specific proteins, nucleic acids, or other molecules with fluorescent dyes, researchers can observe their distribution, interactions, and dynamics within cells and tissues.
3. Surgical guidance: Fluorescence-guided surgery is a technique where surgeons use fluorescent markers to identify critical structures such as blood vessels, nerves, or tumors during surgical procedures. This helps ensure precise and safe surgical interventions.
4. Diagnostic tests: Fluorescence-based assays are used in various diagnostic tests to detect and quantify specific biomarkers or analytes. These assays can be performed using techniques such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), or flow cytometry.

In summary, fluorescence is a physical process where a substance absorbs and emits light at different wavelengths. In the medical field, this phenomenon is harnessed for various applications such as in-vivo imaging, microscopy, surgical guidance, and diagnostic tests.

Hereditary eye diseases refer to conditions that affect the eyes and are passed down from parents to their offspring through genetics. These diseases are caused by mutations or changes in an individual's DNA that are inherited from their parents. The mutations can occur in any of the genes associated with eye development, function, or health.

There are many different types of hereditary eye diseases, some of which include:

1. Retinitis Pigmentosa - a group of rare, genetic disorders that involve a breakdown and loss of cells in the retina.
2. Macular Degeneration - a progressive disease that damages the central portion of the retina, impairing vision.
3. Glaucoma - a group of eye conditions that damage the optic nerve, often caused by an increase in pressure inside the eye.
4. Cataracts - clouding of the lens inside the eye, which can lead to blurry vision and blindness.
5. Keratoconus - a progressive eye disease that causes the cornea to thin and bulge outward into a cone shape.
6. Color Blindness - a condition where an individual has difficulty distinguishing between certain colors.
7. Optic Neuropathy - damage to the optic nerve, which can result in vision loss.

The symptoms and severity of hereditary eye diseases can vary widely depending on the specific condition and the individual's genetic makeup. Some conditions may be present at birth or develop in early childhood, while others may not appear until later in life. Treatment options for these conditions may include medication, surgery, or lifestyle changes, and are often most effective when started early.

Retinal degeneration is a broad term that refers to the progressive loss of photoreceptor cells (rods and cones) in the retina, which are responsible for converting light into electrical signals that are sent to the brain. This process can lead to vision loss or blindness. There are many different types of retinal degeneration, including age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease, among others. These conditions can have varying causes, such as genetic mutations, environmental factors, or a combination of both. Treatment options vary depending on the specific type and progression of the condition.

Eye diseases are a range of conditions that affect the eye or visual system, causing damage to vision and, in some cases, leading to blindness. These diseases can be categorized into various types, including:

1. Refractive errors: These include myopia (nearsightedness), hyperopia (farsightedness), astigmatism, and presbyopia, which affect the way light is focused on the retina and can usually be corrected with glasses or contact lenses.
2. Cataracts: A clouding of the lens inside the eye that leads to blurry vision, glare, and decreased contrast sensitivity. Cataract surgery is the most common treatment for this condition.
3. Glaucoma: A group of diseases characterized by increased pressure in the eye, leading to damage to the optic nerve and potential blindness if left untreated. Treatment includes medications, laser therapy, or surgery.
4. Age-related macular degeneration (AMD): A progressive condition that affects the central part of the retina called the macula, causing blurry vision and, in advanced stages, loss of central vision. Treatment may include anti-VEGF injections, laser therapy, or nutritional supplements.
5. Diabetic retinopathy: A complication of diabetes that affects the blood vessels in the retina, leading to bleeding, leakage, and potential blindness if left untreated. Treatment includes laser therapy, anti-VEGF injections, or surgery.
6. Retinal detachment: A separation of the retina from its underlying tissue, which can lead to vision loss if not treated promptly with surgery.
7. Amblyopia (lazy eye): A condition where one eye does not develop normal vision, often due to a misalignment or refractive error in childhood. Treatment includes correcting the underlying problem and encouraging the use of the weaker eye through patching or other methods.
8. Strabismus (crossed eyes): A misalignment of the eyes that can lead to amblyopia if not treated promptly with surgery, glasses, or other methods.
9. Corneal diseases: Conditions that affect the transparent outer layer of the eye, such as keratoconus, Fuchs' dystrophy, and infectious keratitis, which can lead to vision loss if not treated promptly.
10. Uveitis: Inflammation of the middle layer of the eye, which can cause vision loss if not treated promptly with anti-inflammatory medications or surgery.

Papilledema is a medical term that refers to swelling of the optic nerve head, also known as the disc, which is the point where the optic nerve enters the back of the eye (the retina). This swelling can be caused by increased pressure within the skull, such as from brain tumors, meningitis, or idiopathic intracranial hypertension. Papilledema is usually detected through a routine eye examination and may be accompanied by symptoms such as headaches, visual disturbances, and nausea. If left untreated, papilledema can lead to permanent vision loss.

Retinal dystrophies are a group of genetic eye disorders that primarily affect the retina, a light-sensitive layer at the back of the eye. These conditions are characterized by progressive degeneration and death of photoreceptor cells (rods and cones) in the retina, leading to vision loss.

The term "dystrophy" refers to a condition that results from the abnormal or defective development and function of tissues or organs. In the case of retinal dystrophies, the photoreceptor cells do not develop or function properly, resulting in visual impairment.

Retinal dystrophies can present at any age, from infancy to adulthood, and can have varying degrees of severity. Some common symptoms include night blindness, decreased visual acuity, loss of peripheral vision, light sensitivity, and color vision abnormalities.

Examples of retinal dystrophies include retinitis pigmentosa, Stargardt disease, Usher syndrome, and Leber congenital amaurosis, among others. These conditions are typically inherited and can be caused by mutations in various genes that play a role in the development and function of the retina.

There is currently no cure for retinal dystrophies, but research is ongoing to develop treatments that may slow or halt the progression of these conditions, such as gene therapy and stem cell transplantation.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

The pyloric antrum is the distal part of the stomach, which is the last portion that precedes the pylorus and the beginning of the duodenum. It is a thickened, muscular area responsible for grinding and mixing food with gastric juices during digestion. The pyloric antrum also helps regulate the passage of chyme (partially digested food) into the small intestine through the pyloric sphincter, which controls the opening and closing of the pylorus. This region is crucial in the gastrointestinal tract's motor functions and overall digestive process.

A visual field test is a method used to measure an individual's entire scope of vision, which includes what can be seen straight ahead and in peripheral (or side) vision. During the test, the person being tested is asked to focus on a central point while gradually identifying the appearance of objects moving into their peripheral vision. The visual field test helps detect blind spots (scotomas) or gaps in the visual field, which can be caused by various conditions such as glaucoma, brain injury, optic nerve damage, or retinal disorders. It's an essential tool for diagnosing and monitoring eye-related diseases and conditions.

The pigment epithelium of the eye, also known as the retinal pigment epithelium (RPE), is a layer of cells located between the photoreceptor cells of the retina and the choroid, which is the vascular layer of the eye. The RPE plays a crucial role in maintaining the health and function of the photoreceptors by providing them with nutrients, removing waste products, and helping to regulate the light that enters the eye.

The RPE cells contain pigment granules that absorb excess light, preventing it from scattering within the eye and improving visual acuity. They also help to create a barrier between the retina and the choroid, which is important for maintaining the proper functioning of the photoreceptors. Additionally, the RPE plays a role in the regeneration of visual pigments in the photoreceptor cells, allowing us to see in different light conditions.

Damage to the RPE can lead to various eye diseases and conditions, including age-related macular degeneration (AMD), which is a leading cause of vision loss in older adults.

Indocyanine green (ICG) is a sterile, water-soluble, tricarbocyanine dye that is used as a diagnostic agent in medical imaging. It is primarily used in ophthalmology for fluorescein angiography to examine blood flow in the retina and choroid, and in cardiac surgery to assess cardiac output and perfusion. When injected into the body, ICG binds to plasma proteins and fluoresces when exposed to near-infrared light, allowing for visualization of various tissues and structures. It is excreted primarily by the liver and has a half-life of approximately 3-4 minutes in the bloodstream.

Muscle relaxation, in a medical context, refers to the process of reducing tension and promoting relaxation in the skeletal muscles. This can be achieved through various techniques, including progressive muscle relaxation (PMR), where individuals consciously tense and then release specific muscle groups in a systematic manner.

PMR has been shown to help reduce anxiety, stress, and muscle tightness, and improve overall well-being. It is often used as a complementary therapy in conjunction with other treatments for conditions such as chronic pain, headaches, and insomnia.

Additionally, muscle relaxation can also be facilitated through pharmacological interventions, such as the use of muscle relaxant medications. These drugs work by inhibiting the transmission of signals between nerves and muscles, leading to a reduction in muscle tone and spasticity. They are commonly used to treat conditions such as multiple sclerosis, cerebral palsy, and spinal cord injuries.

Optic disk drusen are small, calcified deposits that form within the optic nerve head, also known as the optic disc. They are made up of protein and calcium salts and can vary in size and number. These deposits can be seen on ophthalmic examination using an instrument called an ophthalmoscope.

Optic disk drusen are typically asymptomatic and are often discovered during routine eye examinations. However, in some cases, they may cause visual disturbances or even vision loss if they compress the optic nerve fibers. They can also increase the risk of developing other eye conditions such as glaucoma.

Optic disk drusen are more commonly found in individuals with a family history of the condition and tend to occur in younger people, typically before the age of 40. While there is no cure for optic disk drusen, regular eye examinations can help monitor any changes in the condition and manage any associated visual symptoms or complications.

Retinitis pigmentosa (RP) is a group of rare, genetic disorders that involve a breakdown and loss of cells in the retina - a light-sensitive tissue located at the back of the eye. The retina converts light into electrical signals which are then sent to the brain and interpreted as visual images.

In RP, the cells that detect light (rods and cones) degenerate more slowly than other cells in the retina, leading to a progressive loss of vision. Symptoms typically begin in childhood with night blindness (difficulty seeing in low light), followed by a gradual narrowing of the visual field (tunnel vision). Over time, this can lead to significant vision loss and even blindness.

The condition is usually inherited and there are several different genes that have been associated with RP. The diagnosis is typically made based on a combination of genetic testing, family history, and clinical examination. Currently, there is no cure for RP, but researchers are actively working to develop new treatments that may help slow or stop the progression of the disease.

Interferometry is not specifically a medical term, but it is used in certain medical fields such as ophthalmology and optics research. Here is a general definition:

Interferometry is a physical method that uses the interference of waves to measure the differences in phase between two or more waves. In other words, it's a technique that combines two or more light waves to create an interference pattern, which can then be analyzed to extract information about the properties of the light waves, such as their wavelength, amplitude, and phase.

In ophthalmology, interferometry is used in devices like wavefront sensors to measure the aberrations in the eye's optical system. By analyzing the interference pattern created by the light passing through the eye, these devices can provide detailed information about the shape and curvature of the cornea and lens, helping doctors to diagnose and treat various vision disorders.

In optics research, interferometry is used to study the properties of light waves and materials that interact with them. By analyzing the interference patterns created by light passing through different materials or devices, researchers can gain insights into their optical properties, such as their refractive index, thickness, and surface roughness.

Optical imaging is a non-invasive medical imaging technique that uses light to capture images of internal structures and processes within the body. This method often involves the use of endoscopes, microscopes, or specialized cameras to visualize targeted areas, such as organs, tissues, or cells. Optical imaging can be used for various diagnostic and therapeutic purposes, including monitoring disease progression, guiding surgical procedures, and studying biological functions at the cellular level. Different optical imaging techniques include reflectance imaging, fluorescence imaging, bioluminescence imaging, and optical coherence tomography (OCT).

In summary, optical imaging is a versatile and non-ionizing medical imaging technique that utilizes light to visualize internal body structures and processes for diagnostic and therapeutic applications.

Laser coagulation, also known as laser photocoagulation, is a medical procedure that uses a laser to seal or destroy abnormal blood vessels or tissue. The laser produces a concentrated beam of light that can be precisely focused on the target area. When the laser energy is absorbed by the tissue, it causes the temperature to rise, which leads to coagulation (the formation of a clot) or destruction of the tissue.

In ophthalmology, laser coagulation is commonly used to treat conditions such as diabetic retinopathy, age-related macular degeneration, and retinal tears or holes. The procedure can help to seal leaking blood vessels, reduce fluid leakage, and prevent further vision loss. It is usually performed as an outpatient procedure and may be repeated if necessary.

In other medical specialties, laser coagulation may be used to control bleeding, destroy tumors, or remove unwanted tissue. The specific technique and parameters of the laser treatment will depend on the individual patient's needs and the condition being treated.

Choroidal neovascularization (CNV) is a medical term that refers to the growth of new, abnormal blood vessels in the choroid layer of the eye, which is located between the retina and the sclera. This condition typically occurs as a complication of age-related macular degeneration (AMD), although it can also be caused by other eye diseases or injuries.

In CNV, the new blood vessels that grow into the choroid layer are fragile and can leak fluid or blood, which can cause distortion or damage to the retina, leading to vision loss. Symptoms of CNV may include blurred or distorted vision, a blind spot in the center of the visual field, or changes in color perception.

Treatment for CNV typically involves medications that are designed to stop the growth of new blood vessels, such as anti-VEGF drugs, which target a protein called vascular endothelial growth factor (VEGF) that is involved in the development of new blood vessels. Laser surgery or photodynamic therapy may also be used in some cases to destroy the abnormal blood vessels and prevent further vision loss.

Tissue Inhibitor of Metalloproteinase-3 (TIMP-3) is a member of the tissue inhibitors of metalloproteinases (TIMPs) family, which are natural inhibitors of matrix metalloproteinases (MMPs), a group of enzymes involved in the degradation and remodeling of extracellular matrix components.

TIMP-3 is unique among TIMPs because it can inhibit all known MMPs and also has the ability to inhibit some members of the ADAM (a disintegrin and metalloproteinase) family, which are involved in protein ectodomain shedding and cell adhesion.

TIMP-3 is a secreted glycoprotein that binds to the extracellular matrix and regulates MMP activity locally. It has been shown to play important roles in various biological processes, including tissue remodeling, angiogenesis, inflammation, and apoptosis. Dysregulation of TIMP-3 expression or function has been implicated in several diseases, such as cancer, fibrosis, and neurodegenerative disorders.

Reaction time, in the context of medicine and physiology, refers to the time period between the presentation of a stimulus and the subsequent initiation of a response. This complex process involves the central nervous system, particularly the brain, which perceives the stimulus, processes it, and then sends signals to the appropriate muscles or glands to react.

There are different types of reaction times, including simple reaction time (responding to a single, expected stimulus) and choice reaction time (choosing an appropriate response from multiple possibilities). These measures can be used in clinical settings to assess various aspects of neurological function, such as cognitive processing speed, motor control, and alertness.

However, it is important to note that reaction times can be influenced by several factors, including age, fatigue, attention, and the use of certain medications or substances.

Dark adaptation is the process by which the eyes adjust to low levels of light. This process allows the eyes to become more sensitive to light and see better in the dark. It involves the dilation of the pupils, as well as chemical changes in the rods and cones (photoreceptor cells) of the retina. These changes allow the eye to detect even small amounts of light and improve visual acuity in low-light conditions. Dark adaptation typically takes several minutes to occur fully, but can be faster or slower depending on various factors such as age, prior exposure to light, and certain medical conditions. It is an important process for maintaining good vision in a variety of lighting conditions.

A laser is not a medical term per se, but a physical concept that has important applications in medicine. The term "LASER" stands for "Light Amplification by Stimulated Emission of Radiation." It refers to a device that produces and amplifies light with specific characteristics, such as monochromaticity (single wavelength), coherence (all waves moving in the same direction), and high intensity.

In medicine, lasers are used for various therapeutic and diagnostic purposes, including surgery, dermatology, ophthalmology, and dentistry. They can be used to cut, coagulate, or vaporize tissues with great precision, minimizing damage to surrounding structures. Additionally, lasers can be used to detect and measure physiological parameters, such as blood flow and oxygen saturation.

It's important to note that while lasers are powerful tools in medicine, they must be used by trained professionals to ensure safe and effective treatment.

Macular edema is a medical condition characterized by the accumulation of fluid in the macula, a small area in the center of the retina responsible for sharp, detailed vision. This buildup of fluid causes the macula to thicken and swell, which can distort central vision and lead to vision loss if not treated promptly. Macular edema is often a complication of other eye conditions such as diabetic retinopathy, age-related macular degeneration, retinal vein occlusion, or uveitis. It's important to note that while macular edema can affect anyone, it is more common in people with certain medical conditions like diabetes.

Smooth muscle, also known as involuntary muscle, is a type of muscle that is controlled by the autonomic nervous system and functions without conscious effort. These muscles are found in the walls of hollow organs such as the stomach, intestines, bladder, and blood vessels, as well as in the eyes, skin, and other areas of the body.

Smooth muscle fibers are shorter and narrower than skeletal muscle fibers and do not have striations or sarcomeres, which give skeletal muscle its striped appearance. Smooth muscle is controlled by the autonomic nervous system through the release of neurotransmitters such as acetylcholine and norepinephrine, which bind to receptors on the smooth muscle cells and cause them to contract or relax.

Smooth muscle plays an important role in many physiological processes, including digestion, circulation, respiration, and elimination. It can also contribute to various medical conditions, such as hypertension, gastrointestinal disorders, and genitourinary dysfunction, when it becomes overactive or underactive.

Visual fields refer to the total area in which objects can be seen while keeping the eyes focused on a central point. It is the entire area that can be observed using peripheral (side) vision while the eye gazes at a fixed point. A visual field test is used to detect blind spots or gaps (scotomas) in a person's vision, which could indicate various medical conditions such as glaucoma, retinal damage, optic nerve disease, brain tumors, or strokes. The test measures both the central and peripheral vision and maps the entire area that can be seen when focusing on a single point.

The retinal photoreceptor cells, namely rods and cones, are specialized neurons in the retina responsible for converting light into electrical signals that can be processed by the brain. The outer segment of a retinal photoreceptor cell is the portion of the cell where phototransduction primarily occurs. It contains stacks of disc-like structures filled with the visual pigment rhodopsin, which absorbs light and initiates the conversion process.

The outer segment is continuously renewed through a process called shedding and phagocytosis, in which the oldest discs at the base of the outer segment are shed, engulfed by the adjacent retinal pigment epithelium (RPE) cells, and degraded. This turnover helps maintain the sensitivity and functionality of the photoreceptor cells.

In summary, the retinal photoreceptor cell outer segment is a highly specialized compartment where light absorption and initial signal transduction occur in rods and cones, supported by continuous renewal through shedding and phagocytosis.

Vitelliform Macular Dystrophy is a genetic eye condition that affects the macula, which is the central part of the retina responsible for sharp, detailed vision. This disorder is characterized by the formation of yellowish deposits or lesions beneath the retina at the macula, giving it an appearance similar to an egg yolk (hence the name "vitelliform"). These deposits can disturb vision and may lead to progressive vision loss over time.

There are different types of Vitelliform Macular Dystrophy, with the most common being Best's Disease or Vitelliform Macular Dystrophy type 1 (VMD1). This form is caused by mutations in the BEST1 gene and typically manifests in childhood or early adulthood. The condition can progress through various stages, including the appearance of a yellowish lesion, followed by atrophy and scarring of the retina, which can result in significant vision loss.

Another form is Vitelliform Macular Dystrophy type 2 (VMD2), caused by mutations in the PRPH2 gene. This condition tends to progress more slowly than VMD1 and may not lead to severe vision loss.

Early diagnosis, monitoring, and low-vision rehabilitation can help manage the symptoms of Vitelliform Macular Dystrophy and maintain visual function as much as possible.

Ophthalmology is a branch of medicine that deals with the diagnosis, treatment, and prevention of diseases and disorders of the eye and visual system. It is a surgical specialty, and ophthalmologists are medical doctors who complete additional years of training to become experts in eye care. They are qualified to perform eye exams, diagnose and treat eye diseases, prescribe glasses and contact lenses, and perform eye surgery. Some subspecialties within ophthalmology include cornea and external disease, glaucoma, neuro-ophthalmology, pediatric ophthalmology, retina and vitreous, and oculoplastics.

Choroiditis is an inflammatory condition that affects the choroid, a layer of blood vessels in the eye located between the retina (the light-sensitive tissue at the back of the eye) and the sclera (the white outer coat of the eye). The choroid provides oxygen and nutrients to the outer layers of the retina.

Choroiditis is characterized by spots or patches of inflammation in the choroid, which can lead to damage and scarring of the tissue. This can result in vision loss if it affects the macula (the central part of the retina responsible for sharp, detailed vision). Symptoms of choroiditis may include blurred vision, floaters, sensitivity to light, and decreased color perception.

There are several types of choroiditis, including:

1. Multifocal choroiditis: This type is characterized by multiple, small areas of inflammation in the choroid, often accompanied by scarring. It can affect both eyes and may cause vision loss if it involves the macula.
2. Serpiginous choroiditis: This is a chronic, relapsing form of choroiditis that affects the outer layers of the retina and the choroid. It typically causes well-defined, wavy or serpentine-shaped lesions in the posterior pole (the back part) of the eye.
3. Birdshot chorioretinopathy: This is a rare form of choroiditis that primarily affects the peripheral retina and choroid. It is characterized by multiple, cream-colored or yellowish spots throughout the fundus (the interior surface of the eye).
4. Sympathetic ophthalmia: This is a rare condition that occurs when one eye is injured, leading to inflammation in both eyes. The choroid and other structures in the uninjured eye become inflamed due to an autoimmune response.
5. Vogt-Koyanagi-Harada (VKH) disease: This is a multisystemic autoimmune disorder that affects the eyes, skin, hair, and inner ear. In the eye, it causes choroiditis, retinal inflammation, and sometimes optic nerve swelling.

Treatment for choroiditis depends on the underlying cause and may include corticosteroids, immunosuppressive medications, or biologic agents to control inflammation. In some cases, laser therapy or surgery might be necessary to address complications such as retinal detachment or cataracts.

Photoreceptor cells in vertebrates are specialized types of neurons located in the retina of the eye that are responsible for converting light stimuli into electrical signals. These cells are primarily responsible for the initial process of vision and have two main types: rods and cones.

Rods are more numerous and are responsible for low-light vision or scotopic vision, enabling us to see in dimly lit conditions. They do not contribute to color vision but provide information about the shape and movement of objects.

Cones, on the other hand, are less numerous and are responsible for color vision and high-acuity vision or photopic vision. There are three types of cones, each sensitive to different wavelengths of light: short (S), medium (M), and long (L) wavelengths, which correspond to blue, green, and red, respectively. The combination of signals from these three types of cones allows us to perceive a wide range of colors.

Both rods and cones contain photopigments that consist of a protein called opsin and a light-sensitive chromophore called retinal. When light hits the photopigment, it triggers a series of chemical reactions that ultimately lead to the generation of an electrical signal that is transmitted to the brain via the optic nerve. This process enables us to see and perceive our visual world.

Retinal pigments refer to the light-sensitive chemicals found in the retina, specifically within the photoreceptor cells called rods and cones. The main types of retinal pigments are rhodopsin (also known as visual purple) in rods and iodopsins in cones. These pigments play a crucial role in the process of vision by absorbing light and initiating a series of chemical reactions that ultimately trigger nerve impulses, which are then transmitted to the brain and interpreted as visual images. Rhodopsin is more sensitive to lower light levels and is responsible for night vision, while iodopsins are sensitive to specific wavelengths of light and contribute to color vision.

Retinal detachment is a serious eye condition that occurs when the retina, a thin layer of tissue at the back of the eye responsible for processing light and sending visual signals to the brain, pulls away from its normal position. This can lead to significant vision loss or even blindness if not promptly treated. Retinal detachment can be caused by various factors such as aging, trauma, eye disease, or an inflammatory condition. Symptoms of retinal detachment may include sudden flashes of light, floaters, a shadow in the peripheral vision, or a curtain-like covering over part of the visual field. Immediate medical attention is necessary to prevent further damage and preserve vision.

Vision disorders refer to a wide range of conditions that affect the visual system and result in various symptoms, such as blurry vision, double vision, distorted vision, impaired depth perception, and difficulty with visual tracking or focusing. These disorders can be categorized into several types, including:

1. Refractive errors: These occur when the shape of the eye prevents light from focusing directly on the retina, resulting in blurry vision. Examples include myopia (nearsightedness), hyperopia (farsightedness), astigmatism, and presbyopia (age-related loss of near vision).
2. Strabismus: Also known as crossed eyes or walleye, strabismus is a misalignment of the eyes where they point in different directions, which can lead to double vision or loss of depth perception.
3. Amblyopia: Often called lazy eye, amblyopia is a condition where one eye has reduced vision due to lack of proper visual development during childhood. It may be caused by strabismus, refractive errors, or other factors that interfere with normal visual development.
4. Accommodative disorders: These involve problems with the focusing ability of the eyes, such as convergence insufficiency (difficulty focusing on close objects) and accommodative dysfunction (inability to maintain clear vision at different distances).
5. Binocular vision disorders: These affect how the eyes work together as a team, leading to issues like poor depth perception, eye strain, and headaches. Examples include convergence insufficiency, divergence excess, and suppression.
6. Ocular motility disorders: These involve problems with eye movement, such as nystagmus (involuntary eye movements), strabismus, or restricted extraocular muscle function.
7. Visual processing disorders: These affect the brain's ability to interpret and make sense of visual information, even when the eyes themselves are healthy. Symptoms may include difficulty with reading, recognizing shapes and objects, and understanding spatial relationships.
8. Low vision: This term refers to significant visual impairment that cannot be fully corrected with glasses, contact lenses, medication, or surgery. It includes conditions like macular degeneration, diabetic retinopathy, glaucoma, and cataracts.
9. Blindness: Complete loss of sight in both eyes, which can be caused by various factors such as injury, disease, or genetic conditions.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Optic atrophy is a medical term that refers to the degeneration and shrinkage (atrophy) of the optic nerve, which transmits visual information from the eye to the brain. This condition can result in various vision abnormalities, including loss of visual acuity, color vision deficiencies, and peripheral vision loss.

Optic atrophy can occur due to a variety of causes, such as:

* Traumatic injuries to the eye or optic nerve
* Glaucoma
* Optic neuritis (inflammation of the optic nerve)
* Ischemic optic neuropathy (reduced blood flow to the optic nerve)
* Compression or swelling of the optic nerve
* Hereditary or congenital conditions affecting the optic nerve
* Toxins and certain medications that can damage the optic nerve.

The diagnosis of optic atrophy typically involves a comprehensive eye examination, including visual acuity testing, refraction assessment, slit-lamp examination, and dilated funduscopic examination to evaluate the health of the optic nerve. In some cases, additional diagnostic tests such as visual field testing, optical coherence tomography (OCT), or magnetic resonance imaging (MRI) may be necessary to confirm the diagnosis and determine the underlying cause.

There is no specific treatment for optic atrophy, but addressing the underlying cause can help prevent further damage to the optic nerve. In some cases, vision rehabilitation may be recommended to help patients adapt to their visual impairment.

A scotoma is a blind spot or area of reduced vision within the visual field. It's often surrounded by an area of less distinct vision and can be caused by various conditions such as eye diseases, neurological disorders, or brain injuries. A scotoma may be temporary or permanent, depending on its underlying cause.

There are different types of scotomas, including:

1. Central scotoma - a blind spot in the center of the visual field, often associated with conditions like age-related macular degeneration and diabetic retinopathy.
2. Paracentral scotoma - a blind spot located slightly away from the center of the visual field, which can be caused by optic neuritis or other optic nerve disorders.
3. Peripheral scotoma - a blind spot in the peripheral vision, often associated with retinal diseases like retinitis pigmentosa.
4. Absolute scotoma - a complete loss of vision in a specific area of the visual field.
5. Relative scotoma - a partial loss of vision in which some details can still be perceived, but not as clearly or vividly as in normal vision.

It is essential to consult an eye care professional if you experience any changes in your vision or notice a scotoma, as early detection and treatment can help prevent further vision loss.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Choroid neoplasms are abnormal growths that develop in the choroid, a layer of blood vessels that lies between the retina and the sclera (the white of the eye). These growths can be benign or malignant (cancerous). Benign choroid neoplasms include choroidal hemangiomas and choroidal osteomas. Malignant choroid neoplasms are typically choroidal melanomas, which are the most common primary eye tumors in adults. Other types of malignant choroid neoplasms include metastatic tumors that have spread to the eye from other parts of the body. Symptoms of choroid neoplasms can vary depending on the size and location of the growth, but may include blurred vision, floaters, or a dark spot in the visual field. Treatment options depend on the type, size, and location of the tumor, as well as the patient's overall health and personal preferences.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Wet macular degeneration, also known as neovascular or exudative age-related macular degeneration (AMD), is a medical condition that affects the central part of the retina called the macula. It's characterized by the growth of new blood vessels (neovascularization) from the choroid layer behind the retina into the macula, which is not typical in healthy eyes. These abnormal blood vessels are fragile and prone to leakage, leading to the accumulation of fluid or blood in the macula, causing distortion or loss of central vision.

The wet form of AMD can progress rapidly and often leads to more severe visual loss compared to the dry form. It's essential to diagnose and treat wet AMD promptly to preserve as much vision as possible. Common treatments include anti-vascular endothelial growth factor (VEGF) injections, photodynamic therapy, or thermal laser treatment, depending on the specific case and individual patient factors.

Color vision defects, also known as color blindness, are conditions in which a person has difficulty distinguishing between certain colors. The most common types of color vision defects involve the inability to distinguish between red and green or blue and yellow. These deficiencies result from an alteration or absence of one or more of the three types of cone cells in the retina that are responsible for normal color vision.

In red-green color vision defects, there is a problem with either the red or green cones, or both. This results in difficulty distinguishing between these two colors and their shades. Protanopia is a type of red-green color vision defect where there is an absence of red cone cells, making it difficult to distinguish between red and green as well as between red and black or green and black. Deuteranopia is another type of red-green color vision defect where there is an absence of green cone cells, resulting in similar difficulties distinguishing between red and green, as well as between blue and yellow.

Blue-yellow color vision defects are less common than red-green color vision defects. Tritanopia is a type of blue-yellow color vision defect where there is an absence of blue cone cells, making it difficult to distinguish between blue and yellow, as well as between blue and purple or yellow and pink.

Color vision defects are usually inherited and present from birth, but they can also result from eye diseases, chemical exposure, aging, or medication side effects. They affect both men and women, although red-green color vision defects are more common in men than in women. People with color vision defects may have difficulty with tasks that require color discrimination, such as matching clothes, selecting ripe fruit, reading colored maps, or identifying warning signals. However, most people with mild to moderate color vision defects can adapt and function well in daily life.

Salus, Robert; Waldstein, Ernst (1939). "The fundus oculi in generalized hypertension and arteriosclerosis". Arch Ophthalmol. ...
ISBN 978-1-58890-338-9. Google books Salus, Robert; Aldstein, Ernst (1939). "The fundus oculi in generalized hypertension and ...
He published a work on The Fundus Oculi of Birds (1917). Based on ophthalmoscopic studies of living birds, he was able to ... The eyelids and lachrymal apparatus of birds (1915) The fundus oculi of birds, especially as viewed by the ophthalmoscope; a ... Montgomerie, Robert (2022). "Casey Albert Wood and The fundus oculi of birds (1917)". Archives of Natural History. 49 (2): 347- ...
Wood, Casey Albert (1917). The Fundus Oculi of Birds, Especially as Viewed by the Ophthalmoscope. Chicago, IL, USA: Lakeside ...
"Atlas of ophthalmoscopy, representing the normal and pathological conditions of the fundus oculi as seen with the ...
Wood (1917), The Fundus Oculi of Birds, Especially as Viewed by the Ophthalmoscope: A Study in Comparative Anatomy and ... This article incorporates text from this source, which is in the public domain: Wood's "The Fundus Oculi of Birds, Especially ... Wood, Casey Albert (1917). The Fundus Oculi of Birds, Especially as Viewed by the Ophthalmoscope: A Study in Comparative ... The upper half of the fundus is covered by a mass of dull gray dots. There is a well defined reflex near both maculae, each ...
Weakness of extraocular muscle groups including, the orbicularis oculi muscle as well as facial and limb muscles may be present ... This includes mild, focal pigmentary abnormalities on funduscopy and widespread granular pigmented fundus alterations. Mild, ... As a result of the orbicularis oculi weakness, patients may suffer from exposure keratopathy (damage to cornea) from the ... however due to weakness of the orbicularis oculi muscles, care must be taken not to raise the lids in excess causing an ...
... fundus oculi MeSH A09.371.729.522 - macula lutea MeSH A09.371.729.522.436 - fovea centralis MeSH A09.371.729.690 - optic disk ...
The fibrous tunic, also known as the tunica fibrosa oculi, is the outer layer of the eyeball consisting of the cornea and ... If an ophthalmoscope is used, one can see the fundus, as well as vessels (which supply additional blood flow to the retina) ... The vascular tunic, also known as the tunica vasculosa oculi or the "uvea", is the middle vascularized layer which includes the ... also known as the tunica nervosa oculi, is the inner sensory layer which includes the retina. Contributing to vision, the ...
Oculus cited the limited processing power of Xbox One and PlayStation 4 as the reason why they targeted the PC gaming market ... Singh, Deependra (2 September 2022). "Virtual-reality headset mounted smartphone-based Indentation fundus videography". Taiwan ... In 2019, Oculus and PlayStation VR dominated the VR headset market. In June 2019, Valve released their own headset, the Valve ... Over four million Oculus head sets have been recalled. Facebook's VR headsets also was banned from Germany in September 2020 ...
Ophthalmoscopy and fundus photography have long been used to examine the retina. Recently, adaptive optics has been used to ... or pecten oculi, located on the blind spot or optic disk. This organ is extremely rich in blood vessels and is thought to ... "Retinal fundus images - Ground truth of vascular bifurcations and crossovers". University of Groningen. Retrieved 20 April 2018 ... fundus auto-fluorescence (FAF), dark-adapted visual thresholds, vascular diameters, pupillometry, electroretinography (ERG), ...
Patients with KSS show widespread granular pigmented alterations in the posterior fundus which correspond to granular patterns ... orbicularis oculi) and eye (extra-ocular muscles). This results in ptosis and ophthalmoplegia respectively. KSS involves a ... on fundus autofluorescence imaging. Associated changes on optical coherence tomography (OCT) include reflectivity changes ...
However, fundus imaging is performed at the same time. This allows for fundus tracking to ensure accurate stimulus placement. ... Oculus Easyfield perimeter, etc.[citation needed] Techniques used to perform this test include the confrontation visual field ... Pfau M, Jolly JK, Wu Z, Denniss J, Lad EM, Guymer RH, Fleckenstein M, Holz FG, Schmitz-Valckenberg S (May 2021). "Fundus- ... "Test-Retest Reliability of Scotopic and Mesopic Fundus-Controlled Perimetry Using a Modified MAIA (Macular Integrity Assessment ...
This is due to the facial nerves' innervation of the muscles of facial expression, namely orbicularis oculi, responsible for ... the taste fibers continue as the intermediate nerve which goes to the upper anterior quadrant of the fundus of the internal ... frontalis and orbicularis oculi). Lower motor neuron lesions can result in a CN VII palsy (Bell's palsy is the idiopathic form ...
... dilated fundus examination, and intraocular pressure measurement. OCT, fundus fluorescein angiography (FFA), and fundus ... Intraocular hemorrhage (sometimes called hemophthalmos or hemophthalmia) is bleeding inside the eye (oculus in Latin). Bleeding ... On a dilated fundus examination, submacular hemorrhage can be observed as an elevation of the retina, which can also be ...
Latin oculus dexter) for the right eye. OS (Latin oculus sinister) for the left eye. OU (Latin oculi uterque) for both eyes. ... ISBN 978-3-7266-0068-6. Rohrschneider, K. (2004). "Determination of the location of the fovea on the fundus". Investigative ...
... disc optic foramen optic nerve optic papilla optic radiation optic recess optic tract ora serrata oral cavity orbicularis oculi ... ventricle frontal lobe frontal nerve frontal plane frontal pole frontal sinus frontonasal duct fundiform ligament fundus ... muscle occiput occlusion oculocephalic reflex oculomotor oculomotor complex oculomotor nerve oculomotor nucleus oculus odontoid ...
In the human, the lower end of the uterus, the cervix, opens into the vagina, while the upper end, the fundus, is connected to ... Orbicularis oculi muscle - Orbicularis oris muscle - Orthopedic surgery - Ossicles - Otitis - Otorhinolaryngology - Ovary - ...
Il fundus oculi è un esame diagnostico usato per studiare la parte posteriore del bulbo oculare. In particolare lesame ...
Salus, Robert; Waldstein, Ernst (1939). "The fundus oculi in generalized hypertension and arteriosclerosis". Arch Ophthalmol. ...
... oculus dexter (right eye); OS, oculus sinister (left eye); OU, oculus uterque (both eyes); PR, punctate retinochoroiditis; RC, ... fundus examination; FNR, focal necrotizing retinochoroiditis, large FNR is ,3 disk diameters; IOP, intraocular pressure; KP, ...
Observations of the fundus oculi in transient monocular blindness. Neurology. 1959 May. 9(5):333-47. [QxMD MEDLINE Link]. ... Central retinal vein occlusion - Diffuse retinal hemorrhages extending to periphery of fundus, "blood and thunder" appearance. ...
Categories: Fundus Oculi Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, CopyrightRestricted 5 ...
Fundus Oculi. *Gene Deletion. *Gene Expression Profiling. *Gene Expression Regulation. *Gene Frequency ...
The degree of maculopathy was classified according to fundus oculi findings following IMIs classification. Subfoveal choroid ... METHODS: Fundus photography, OCT (macular thickness and number of drusen), Pattern VEP (P100 wave), Pattern ERG (P50 wave) and ... CNNs for automatic glaucoma assessment using fundus images: an extensive validation. Diaz-Pinto, Andres; Morales, Sandra; ... A masked retina specialist analyzed the UWF fundus images for RRD area, status of the macula, and presence and location of ...
A) Fundus photograph taken at initial examination of the right eye shows a chalky, white disc swelling. (B,C) Histopathology ... A 70-year-old man presented with sudden vision loss in his right eye (oculus dexter, OD), which had occurred the previous day. ... A) Fundus photograph taken at initial examination of the right eye shows a chalky, white disc swelling. (B,C) Histopathology ... His best-corrected visual acuity (VA) was 10 / 20 in OD and 20 / 20 in the left eye (oculus sinister, OS). A relative afferent ...
It can be divided into a fundus superiorly and a body inferiorly. The fundus extends 3-5 mm above the superior portion of the ... The lacrimal fascia is surrounded by fibers of the orbicularis oculi muscle; the superficial head of the muscle travels around ... medial canthal tendon, and the body extends approximately 10 mm below the fundus to the osseous opening of the nasolacrimal ...
OCULUS UB 4 UNIVERSAL TRIAL FRAME. *OCULUS UB 5 UNIVERSAL TRIAL FRAME ... SUPER 66 STEREO FUNDUS LENS. *SUPER PUPIL XL. *SUPER PUPIL XL BIOMICROSCOPY LENS ...
Fundus photographs are excellent at documenting changes on the surface of the retina, but some retinal problems occur in the ... Keratography with the Oculus K5 instrument is an invaluable tool for the assessment, diagnosis and classification of dry eye ... The OCT compliments 2-D fundus photography because it shows what is happening in the underlying layers of the retina in 3-D. To ... Many patients are familiar with retinal fundus photography, which provides a two-dimensional colour image of the retina and ...
Oculus Pentacam. *Iridex CYCLO G6 Glaucoma Laser System. *Iridex OcuLight GL Laser ... Fundus Photography. *Haag-Streit IM 900 Slit Lamp Photography. *Humphrey Field Analyzer ...
10% Phenylephrine OU) 1 - Not dilated 522 2 - Mydriasis inadequate for fundus copy 115 3 - Dilatation adequate 8681 4 - 1 + 2 6 ... oculi) 68 62 00 Melanotic lesion, sclera 68 62 00 Pigmentation, slcera 68 63 00 Cogans plagues, sclera 68 99 00 Disease, ... 76 94 00 Salt and pepper fundus 76 94 08 Other checked, not described, pigment changes, retina 76 94 40 Atrophy, pigment ... 65 69 00 Melanosis oculi, conjunctiva 65 70 00 Degeneration, conjunctiva NOS 65 71 00 Pingueculum 65 72 00 Pterygium ( ...
Headquartered in Tampa, Florida, we recently invested more than $1.3 million into our new state-of-the-art 12,000 square foot facility. Our entire team is based at this location.. Tel: 1-877-924-2020 ...
Upper lid orbicularis oculi muscle strip and sequential brow suspension with autologous fascia lata is beneficial for selected ... Anterior Segment and Fundus Photography * Peters Anomaly * Primary Congenital Glaucoma * Corneal Abrasion ... The motor pathway is composed of the facial nucleus, facial nerve, and orbicularis oculi, corrugator, and procerus muscles. ...
The OCULUS SDI®/BIOM® hardware mimic is operated just like a real BIOM in the operating room, and the complex interactions of ...
Oculus 1/2 Eye Adult Trial Frame Adjustable. *Oculus Adult 1/2 Eye - Fixed Bridge ... Nexy - Next Sight Fundus Camera. *Nidek AFC-210 Fundus camera (complete package int ...
Oculus Childrens Half-Eye Trial Frame (38mm, Fixed Bridge) Oculus. CA$370.50 ... Fundus Cameras *Fundus Cameras *Bulbs *Supplies & Accessories *Microperimeters *Optical Biometers *Optical Coherence Tomography ...
OCULUS OxiMap®. The OxiMap® presents a color map of the oxygen transmissibility of soft contact lenses based on the lens power ... Tear film analysis with the OCULUS Keratograph 5M is non-invasive and is conducted without any additional tools. ...
What is the Orbicularis Oculi? * What is the External Capsule? * What is a Talonavicular Joint? ... What is the Fundus? * What is the Plasmalemma? * What is Exocytosis? * What is Neoplasm? ...
INSENSATENESS CORRESPONDS CALIGINOUS COMPLEXITY BREAKFASTERS BUTTON DOCENT BURNISH MOLDS OCCIDENTS FEARED PAGER DODGE OCULI ... SHAREOWNER ADDICTS STRETCHIER ODORFUL SELFDOMS GRASSY MISDEMEANORS OBLIVIOUS PUMPERS POTENTIALS MOLECULES LUDWIGS FUNDUS ...
Fundus Oculi. Ophthalmoscopes 2. Photographing the retinal image impressed on the living fundus oculi ... Start Over You searched for: Subjects Fundus Oculi ✖Remove constraint Subjects: Fundus Oculi ... 1. Astigmatism: the fundus of astigmatic eyes : an attachment to the ophthalmoscope ... Astigmatism: the fundus of astigmatic eyes : an attachment to the ophthalmoscope1 ...
... oculus dexter (right eye); OS, oculus sinister (left eye); OU, oculus uterque (both eyes); PR, punctate retinochoroiditis; RC, ... FAF, fundus autofluorescence; FFA, fundus fluorescein angiography; SD-OCT, spectral-domain optical coherence tomography.. ... Type of lesion, fundus imaging modality. Patterns of retinochoroiditis. Active phase, before treatment. Cicatricial phase, ... Fundus photo or examination. Dense focal retinal whitening with indistinct borders, associated with overlying vitreous haze. ...
Observations of the fundus oculi in transient monocular blindness. Neurology. 1959 May. 9(5):333-47. [QxMD MEDLINE Link]. ... To reach the fundus, the CRA penetrates the lamina cribrosa. At this point, it narrows; the tissue around the vessel acts as a ... 28] Fundus findings include blurring or elevation of the disc margin and retinal or choroidal folds. [29] Treatment is directed ... When the fundus cannot be visualized, ocular ultrasonography should be performed to exclude retinal detachment, posterior ...
She had had tuberculous meningitis for about 1 month before an ophthalmologic examination for blurred vision OU (oculus uterque ... Fundus photography is usually medically necessary no more than two times per year. Fundus photography of a normal retina will ... Fundus photography is usually medically necessary no more than two times per year. Fundus photography of a normal retina will ... In general, fundus photography is performed to evaluate abnormalities in the fundus, follow the progress of a disease, plan the ...
Fundus Oculi Actions. * Search in PubMed * Search in MeSH * Add to Search ...
Fundus Oculi Actions. * Search in PubMed * Search in MeSH * Add to Search ...
9. Performance evaluation of two fundus oculi angiographic imaging system: Optos 200Tx and Heidelberg Spectralis.. Li S; Wang ... Wide-angle fundus imaging through the Boston keratoprosthesis.. Sayegh RR; Dohlman CH. Retina; 2013 Jun; 33(6):1188-92. PubMed ... 3. Fundus imaging in newborn children with wide-field scanning laser ophthalmoscope.. Magnusdottir V; Vehmeijer WB; Eliasdottir ... Efficacy of Ultra-wide Angle Fundus Imaging without Dilated Pupils in Annual Health Check-up Examination].. Kusumi Y; Sano M; ...
A statistically significant post-operative improvement was recorded in visual acuity, proptosis, color vision and fundus oculi ...
Observations of the fundus oculi in transient monocular blindness. Neurology. 1959 May. 9(5):333-47. [QxMD MEDLINE Link]. ... Central retinal vein occlusion - Diffuse retinal hemorrhages extending to periphery of fundus, "blood and thunder" appearance. ...
Fundus Oculi - Preferred Concept UI. M0008886. Scope note. The concave interior of the eye, consisting of the retina, the ... fundus oculi Scope note:. Región cóncava interior del ojo, que está formada por la retina, la coroides, la esclera, el disco ... not FUNDUS OCULI; early coord for fundus fluorescent angiography: see hist notes under FLUORESCEIN ANGIOGRAPHY. ...
... not FUNDUS OCULI; early coord for fundus fluorescent angiography: see hist notes under FLUORESCEIN ANGIOGRAPHY. Scope Note. The ... Fundus Oculi Preferred Term Term UI T017095. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1966). ... Fundus Oculi Preferred Concept UI. M0008886. Scope Note. The concave interior of the eye, consisting of the retina, the choroid ... Fundus of the Eye Ocular Fundus NLM Classification #. WW 270. See Also. Ophthalmoscopy. Date Established. 1966/01/01. Date of ...
... not FUNDUS OCULI; early coord for fundus fluorescent angiography: see hist notes under FLUORESCEIN ANGIOGRAPHY. Scope Note. The ... Fundus Oculi Preferred Term Term UI T017095. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1966). ... Fundus Oculi Preferred Concept UI. M0008886. Scope Note. The concave interior of the eye, consisting of the retina, the choroid ... Fundus of the Eye Ocular Fundus NLM Classification #. WW 270. See Also. Ophthalmoscopy. Date Established. 1966/01/01. Date of ...
... oculus dexter (right eye); OS, oculus sinister (left eye); OU, oculus uterque (both eyes); PR, punctate retinochoroiditis; RC, ... fundus examination; FNR, focal necrotizing retinochoroiditis, large FNR is ,3 disk diameters; IOP, intraocular pressure; KP, ...
... and 0.9 oculus sinister. Fundus revealed a yellowish-white choroidal elevated lesion measuring 8 papillary diameters with ... The Fundus autofluorescence (FAF), fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA) and Spectral ... Features of TARP on widefield fundus color imaging, fundus autofluorescence (FAF), and OCT were described. Tumor chromosome 3 ... Fundus photograph showed that the branches of blood vessels at the supratemporal retina were occluded in white lines, an orange ...
They are characterized by multiple lesions of hypoautofluorescent dots in the FUNDUS OCULI and reduced VISUAL ACUITY. Several ... Other associated clinical features may include LIPOFUSCIN fundus autofluorescence, atrophy of the RETINAL PIGMENT EPITHELIUM, ...
They are characterized by multiple lesions of hypoautofluorescent dots in the FUNDUS OCULI and reduced VISUAL ACUITY. Several ... Other associated clinical features may include LIPOFUSCIN fundus autofluorescence, atrophy of the RETINAL PIGMENT EPITHELIUM, ...
Fundus Oculi, Biomarkers ... Fundus photographs from 1997 and 1998 were used to identify ... RESULTS: Among the 2755 CHS participants with gradable fundus photographs, 390 were identified as having AMD. Overall, median ...
Fundus of eye Current Synonym true false 109287017 Fundus oculi Current Synonym true false ... Structure of fundus of eye (body structure) {65784005 , SNOMED-CT } Parent/Child (Relationship Type) Entire fundus of eye (body ... Structure of fundus of right eye (body structure) {723298005 , SNOMED-CT } Structure of posterior pole of eye (body structure ... structure) {362519003 , SNOMED-CT } Optic disc structure (body structure) {81016008 , SNOMED-CT } Structure of fundus of left ...
It can be divided into a fundus superiorly and a body inferiorly. The fundus extends 3-5 mm above the superior portion of the ... The lacrimal fascia is surrounded by fibers of the orbicularis oculi muscle; the superficial head of the muscle travels around ... medial canthal tendon, and the body extends approximately 10 mm below the fundus to the osseous opening of the nasolacrimal ...
Fundus Oculi. Ophthalmoscopes. Copyright:. The National Library of Medicine believes this item to be in the public domain. ( ... Astigmatism: the fundus of astigmatic eyes : an attachment to the ophthalmoscope. Collection:. Medicine in the Americas, 1610- ...
FUNDUS UTERI 2018-09-28 CDISC-3248 Add C12316 Term LOC Anatomical Location Add new term to existing codelist - - - CORPUS UTERI ... ORBICULARIS OCULI MUSCLE 2018-09-28 CDISC-3248 Add C53037 Term LOC Anatomical Location Add new term to existing codelist - - - ...
Oculus Pentacam. *Iridex CYCLO G6 Glaucoma Laser System. *Iridex OcuLight GL Laser ... Fundus Photography. *Haag-Streit IM 900 Slit Lamp Photography. *Humphrey Field Analyzer ...
  • Many patients are familiar with retinal fundus photography, which provides a two-dimensional colour image of the retina and have been a normal part of our examinations for some years now. (collinsoptometrists.com.au)
  • Fundus photographs are excellent at documenting changes on the surface of the retina, but some retinal problems occur in the underlying layers. (collinsoptometrists.com.au)
  • The OCT compliments 2-D fundus photography because it shows what is happening in the underlying layers of the retina in 3-D. To assess the health of the retina by just looking at its surface is akin to judging how clean a rug is without looking at what is hidden underneath it. (collinsoptometrists.com.au)
  • these changes are often not visible on the surface of the retina with fundus photography. (collinsoptometrists.com.au)
  • The portion of the optic nerve seen in the fundus with the ophthalmoscope. (musc.edu)
  • A 70-year-old man presented with sudden vision loss in his right eye (oculus dexter, OD), which had occurred the previous day. (ekjo.org)
  • His best-corrected visual acuity (VA) was 10 / 20 in OD and 20 / 20 in the left eye (oculus sinister, OS). (ekjo.org)
  • A) Fundus photograph taken at initial examination of the right eye shows a chalky, white disc swelling. (ekjo.org)
  • Fleeting glances suggest a grossly normal fundus and chorioretinal scar in the periphery of the right eye. (crstoday.com)
  • Measurements of the left (A) and right (B) eyes with the Pentacam (Oculus Optikgeräte). (crstoday.com)
  • When the fundus cannot be visualized, ocular ultrasonography should be performed to exclude retinal detachment, posterior vitreous detachment, vitreous hemorrhage, ocular tumors, intraocular foreign bodies, retrobulbar hematoma, and increased intracranial pressure. (medscape.com)
  • 8. Ultra-wide-field fluorescein angiography of the ocular fundus. (nih.gov)
  • For examination of the entire ocular fundus and the iridocorneal angle. (optego.com.sg)
  • The advantage of a longer mirror is that it often permits binocular observation of the lateral sections of the ocular fundus. (optego.com.sg)
  • Zone 1 : Lens examination of the ocular fundus in the 30° zone, mostly with a magnification of 10 x. (optego.com.sg)
  • Observation of the peripheral sections of the ocular fundus, and under favorable conditions, also of the ora serrata. (optego.com.sg)
  • Observation of the vitreous body and ocular fundus sections neighboring the ora serrata as well as a gonioscopic examination. (optego.com.sg)
  • Other retinal disorders (e.g., macular dystrophy or inherited retinal disorders such as incontinentia pigmenti) where the results of fundus photography may change the treatment of the member. (aetna.com)
  • 15. Quantitative image analysis of macular drusen from fundus photographs and scanning laser ophthalmoscope images. (nih.gov)
  • A fundus examination and macular OCT imaging of both eyes are normal. (crstodayeurope.com)
  • 7. Outpatient Ultra wide-field intravenous fundus fluorescein angiography in infants using the Optos P200MA scanning laser ophthalmoscope. (nih.gov)
  • 17. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography. (nih.gov)
  • Fundus photography of a normal retina is considered not medically necessary. (aetna.com)
  • Its ideal .76x magnification and wide field of view make it perfect as the primary high resolution slit lamp fundus diagnosis lens. (opticalmarketplace.co.uk)
  • A statistically significant post-operative improvement was recorded in visual acuity, proptosis, color vision and fundus oculi evaluation for all groups. (unipi.it)
  • This Clinical Policy Bulletin addresses fundus photography. (aetna.com)
  • Aetna considers fundus photography medically necessary no more than two times per year. (aetna.com)
  • RESULTS: Among the 2755 CHS participants with gradable fundus photographs, 390 were identified as having AMD. (nih.gov)