Lipid infiltration of the hepatic parenchymal cells resulting in a yellow-colored liver. The abnormal lipid accumulation is usually in the form of TRIGLYCERIDES, either as a single large droplet or multiple small droplets. Fatty liver is caused by an imbalance in the metabolism of FATTY ACIDS.
Lipid infiltration of the hepatic parenchymal cells that is due to ALCOHOL ABUSE. The fatty changes in the alcoholic fatty liver may be reversible, depending on the amounts of TRIGLYCERIDES accumulated.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
Pathological processes of the LIVER.
Liver disease in which the normal microcirculation, the gross vascular anatomy, and the hepatic architecture have been variably destroyed and altered with fibrous septa surrounding regenerated or regenerating parenchymal nodules.
The transference of a part of or an entire liver from one human or animal to another.
Tumors or cancer of the LIVER.
An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2.
Blood tests that are used to evaluate how well a patient's liver is working and also to help diagnose liver conditions.
FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form.
Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough.
Repair or renewal of hepatic tissue.
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives.
Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4)
Intracellular proteins that reversibly bind hydrophobic ligands including: saturated and unsaturated FATTY ACIDS; EICOSANOIDS; and RETINOIDS. They are considered a highly conserved and ubiquitously expressed family of proteins that may play a role in the metabolism of LIPIDS.
The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules.
A spectrum of clinical liver diseases ranging from mild biochemical abnormalities to ACUTE LIVER FAILURE, caused by drugs, drug metabolites, and chemicals from the environment.
Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS.
Liver diseases associated with ALCOHOLISM. It usually refers to the coexistence of two or more subentities, i.e., ALCOHOLIC FATTY LIVER; ALCOHOLIC HEPATITIS; and ALCOHOLIC CIRRHOSIS.
Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados.
A condition produced by a deficiency of CHOLINE in animals. Choline is known as a lipotropic agent because it has been shown to promote the transport of excess fat from the liver under certain conditions in laboratory animals. Combined deficiency of choline (included in the B vitamin complex) and all other methyl group donors causes liver cirrhosis in some animals. Unlike compounds normally considered as vitamins, choline does not serve as a cofactor in enzymatic reactions. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
Long chain organic acid molecules that must be obtained from the diet. Examples are LINOLEIC ACIDS and LINOLENIC ACIDS.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
A status with BODY WEIGHT that is grossly above the acceptable or desirable weight, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1.
A family of enzymes that catalyze the stereoselective, regioselective, or chemoselective syn-dehydrogenation reactions. They function by a mechanism that is linked directly to reduction of molecular OXYGEN.
De novo fat synthesis in the body. This includes the synthetic processes of FATTY ACIDS and subsequent TRIGLYCERIDES in the LIVER and the ADIPOSE TISSUE. Lipogenesis is regulated by numerous factors, including nutritional, hormonal, and genetic elements.
The circulation of BLOOD through the LIVER.
INFLAMMATION of the LIVER.
An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid.
Extracts of liver tissue containing uncharacterized specific factors with specific activities; a soluble thermostable fraction of mammalian liver is used in the treatment of pernicious anemia.
Consumption of excessive DIETARY FATS.
A cluster of metabolic risk factors for CARDIOVASCULAR DISEASES and TYPE 2 DIABETES MELLITUS. The major components of metabolic syndrome X include excess ABDOMINAL FAT; atherogenic DYSLIPIDEMIA; HYPERTENSION; HYPERGLYCEMIA; INSULIN RESISTANCE; a proinflammatory state; and a prothrombotic (THROMBOSIS) state. (from AHA/NHLBI/ADA Conference Proceedings, Circulation 2004; 109:551-556)
Fatty acids which are unsaturated in only one position.
Experimentally induced tumors of the LIVER.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
A sterol regulatory element binding protein that regulates expression of GENES involved in FATTY ACIDS metabolism and LIPOGENESIS. Two major isoforms of the protein exist due to ALTERNATIVE SPLICING.
Regular course of eating and drinking adopted by a person or animal.
Orotic acid, also known as pyrophosphoric acid dihydrate, is a organic compound that plays a role in the biosynthesis of pyrimidines, and elevated levels of orotic acid in urine can indicate certain genetic disorders or liver dysfunction.
A form of rapid-onset LIVER FAILURE, also known as fulminant hepatic failure, caused by severe liver injury or massive loss of HEPATOCYTES. It is characterized by sudden development of liver dysfunction and JAUNDICE. Acute liver failure may progress to exhibit cerebral dysfunction even HEPATIC COMA depending on the etiology that includes hepatic ISCHEMIA, drug toxicity, malignant infiltration, and viral hepatitis such as post-transfusion HEPATITIS B and HEPATITIS C.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Experimentally induced chronic injuries to the parenchymal cells in the liver to achieve a model for LIVER CIRRHOSIS.
A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES.
Solitary or multiple collections of PUS within the liver as a result of infection by bacteria, protozoa, or other agents.
A type I keratin found associated with KERATIN-8 in simple, or predominately single layered, internal epithelia.
Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
FIBROSIS of the hepatic parenchyma due to chronic excess ALCOHOL DRINKING.
A broad category of membrane transport proteins that specifically transport FREE FATTY ACIDS across cellular membranes. They play an important role in LIPID METABOLISM in CELLS that utilize free fatty acids as an energy source.
A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids.
A group of 16-carbon fatty acids that contain no double bonds.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Excision of all or part of the liver. (Dorland, 28th ed)
An ethanol-inducible cytochrome P450 enzyme that metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Substrates include ETHANOL; INHALATION ANESTHETICS; BENZENE; ACETAMINOPHEN and other low molecular weight compounds. CYP2E1 has been used as an enzyme marker in the study of alcohol abuse.
Glucose in blood.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
The measurement of an organ in volume, mass, or heaviness.
Usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4 carbons, derived from natural fats and oils, including lauryl, stearyl, oleyl, and linoleyl alcohols. They are used in pharmaceuticals, cosmetics, detergents, plastics, and lube oils and in textile manufacture. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed)
An enzyme that catalyzes the formation of oleoyl-CoA, A, and water from stearoyl-CoA, AH2, and oxygen where AH2 is an unspecified hydrogen donor.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.
UNSATURATED FATTY ACIDS that contain at least one double bond in the trans configuration, which results in a greater bond angle than the cis configuration. This results in a more extended fatty acid chain similar to SATURATED FATTY ACIDS, with closer packing and reduced fluidity. HYDROGENATION of unsaturated fatty acids increases the trans content.
A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding.
Fatty tissue inside the ABDOMINAL CAVITY, including visceral fat and retroperitoneal fat. It is the most metabolically active fat in the body and easily accessible for LIPOLYSIS. Increased visceral fat is associated with metabolic complications of OBESITY.
Conditions with excess LIPIDS in the blood.
A human liver tumor cell line used to study a variety of liver-specific metabolic functions.
An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Elements of limited time intervals, contributing to particular results or situations.
Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Mutant mice exhibiting a marked obesity coupled with overeating, hyperglycemia, hyperinsulinemia, marked insulin resistance, and infertility when in a homozygous state. They may be inbred or hybrid.
A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
The glyceryl esters of a fatty acid, or of a mixture of fatty acids. They are generally odorless, colorless, and tasteless if pure, but they may be flavored according to origin. Fats are insoluble in water, soluble in most organic solvents. They occur in animal and vegetable tissue and are generally obtained by boiling or by extraction under pressure. They are important in the diet (DIETARY FATS) as a source of energy. (Grant & Hackh's Chemical Dictionary, 5th ed)
Glycogen stored in the liver. (Dorland, 28th ed)
The rate dynamics in chemical or physical systems.
Specialized phagocytic cells of the MONONUCLEAR PHAGOCYTE SYSTEM found on the luminal surface of the hepatic sinusoids. They filter bacteria and small foreign proteins out of the blood, and dispose of worn out red blood cells.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
Two populations of Zucker rats have been cited in research--the "fatty" or obese and the lean. The "fatty" rat (Rattus norvegicus) appeared as a spontaneous mutant. The obese condition appears to be due to a single recessive gene.
Enlargement of the liver.
Endogenous factors or drugs that increase the transport and metabolism of LIPIDS including the synthesis of LIPOPROTEINS by the LIVER and their uptake by extrahepatic tissues.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A carboxylating enzyme that catalyzes the conversion of ATP, acetyl-CoA, and HCO3- to ADP, orthophosphate, and malonyl-CoA. It is a biotinyl-protein that also catalyzes transcarboxylation. The plant enzyme also carboxylates propanoyl-CoA and butanoyl-CoA (From Enzyme Nomenclature, 1992) EC 6.4.1.2.
Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor.
A condition characterized by an abnormally elevated concentration of KETONE BODIES in the blood (acetonemia) or urine (acetonuria). It is a sign of DIABETES COMPLICATION, starvation, alcoholism or a mitochondrial metabolic disturbance (e.g., MAPLE SYRUP URINE DISEASE).
A group of compounds that are derivatives of octadecanoic acid which is one of the most abundant fatty acids found in animal lipids. (Stedman, 25th ed)
Devices for simulating the activities of the liver. They often consist of a hybrid between both biological and artificial materials.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
A 30-kDa COMPLEMENT C1Q-related protein, the most abundant gene product secreted by FAT CELLS of the white ADIPOSE TISSUE. Adiponectin modulates several physiological processes, such as metabolism of GLUCOSE and FATTY ACIDS, and immune responses. Decreased plasma adiponectin levels are associated with INSULIN RESISTANCE; TYPE 2 DIABETES MELLITUS; OBESITY; and ATHEROSCLEROSIS.
A solvent for oils, fats, lacquers, varnishes, rubber waxes, and resins, and a starting material in the manufacturing of organic compounds. Poisoning by inhalation, ingestion or skin absorption is possible and may be fatal. (Merck Index, 11th ed)
2-Amino-4-(ethylthio)butyric acid. An antimetabolite and methionine antagonist that interferes with amino acid incorporation into proteins and with cellular ATP utilization. It also produces liver neoplasms.
An indicator of body density as determined by the relationship of BODY WEIGHT to BODY HEIGHT. BMI=weight (kg)/height squared (m2). BMI correlates with body fat (ADIPOSE TISSUE). Their relationship varies with age and gender. For adults, BMI falls into these categories: below 18.5 (underweight); 18.5-24.9 (normal); 25.0-29.9 (overweight); 30.0 and above (obese). (National Center for Health Statistics, Centers for Disease Control and Prevention)
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
Final stage of a liver disease when the liver failure is irreversible and LIVER TRANSPLANTATION is needed.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY.
Important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families.
A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR GAMMA is important to metabolism of LIPIDS. It is the target of FIBRATES to control HYPERLIPIDEMIAS.
Perisinusoidal cells of the liver, located in the space of Disse between HEPATOCYTES and sinusoidal endothelial cells.
A syndrome of HEMOLYSIS, elevated liver ENZYMES, and low blood platelets count (THROMBOCYTOPENIA). HELLP syndrome is observed in pregnant women with PRE-ECLAMPSIA or ECLAMPSIA who also exhibit LIVER damage and abnormalities in BLOOD COAGULATION.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Abstaining from all food.
A condition of elevated levels of TRIGLYCERIDES in the blood.
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.
Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure.
Oils high in unsaturated fats extracted from the bodies of fish or fish parts, especially the LIVER. Those from the liver are usually high in VITAMIN A. The oils are used as DIETARY SUPPLEMENTS. They are also used in soaps and detergents and as protective coatings.
Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)
A bile pigment that is a degradation product of HEME.
A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues.
The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain.
A sulfur-containing essential L-amino acid that is important in many body functions.
A disease of pregnant and lactating cows and ewes leading to generalized paresis and death. The disease, which is characterized by hypocalcemia, occurs at or shortly after parturition in cows and within weeks before or after parturition in ewes.
A class of enzymes that catalyzes the phosphorylation of fructose in the presence of ATP. EC 2.7.1.-.
Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277)
The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Abnormalities in the serum levels of LIPIDS, including overproduction or deficiency. Abnormal serum lipid profiles may include high total CHOLESTEROL, high TRIGLYCERIDES, low HIGH DENSITY LIPOPROTEIN CHOLESTEROL, and elevated LOW DENSITY LIPOPROTEIN CHOLESTEROL.
An enzyme that catalyses the last step of the TRIACYLGLYCEROL synthesis reaction in which diacylglycerol is covalently joined to LONG-CHAIN ACYL COA to form triglyceride. It was formerly categorized as EC 2.3.1.124.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.
A condition due to deficiency in any member of the VITAMIN B COMPLEX. These B vitamins are water-soluble and must be obtained from the diet because they are easily lost in the urine. Unlike the lipid-soluble vitamins, they cannot be stored in the body fat.
Conditions with abnormally low levels of BETA-LIPOPROTEINS (low density lipoproteins or LDL) in the blood. It is defined as LDL values equal to or less than the 5th percentile for the population. They include the autosomal dominant form involving mutation of the APOLIPOPROTEINS B gene, and the autosomal recessive form involving mutation of the microsomal triglyceride transfer protein. All are characterized by low LDL and dietary fat malabsorption.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR ALPHA is important in regulation of GLUCOSE metabolism and CELL GROWTH PROCESSES. It is a target of THIAZOLIDINEDIONES for control of DIABETES MELLITUS.
A short thick vein formed by union of the superior mesenteric vein and the splenic vein.
Treatment process involving the injection of fluid into an organ or tissue.
A 16-kDa peptide hormone secreted from WHITE ADIPOCYTES. Leptin serves as a feedback signal from fat cells to the CENTRAL NERVOUS SYSTEM in regulation of food intake, energy balance, and fat storage.
Transport proteins that carry specific substances in the blood or across cell membranes.
An enzyme that catalyzes the first and rate-determining steps of peroxisomal beta-oxidation of fatty acids. It acts on COENZYME A derivatives of fatty acids with chain lengths from 8 to 18, using FLAVIN-ADENINE DINUCLEOTIDE as a cofactor.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
"Esters are organic compounds that result from the reaction between an alcohol and a carboxylic acid, playing significant roles in various biological processes and often used in pharmaceutical synthesis."
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.
A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg).
INFLAMMATION of the LIVER due to ALCOHOL ABUSE. It is characterized by NECROSIS of HEPATOCYTES, infiltration by NEUTROPHILS, and deposit of MALLORY BODIES. Depending on its severity, the inflammatory lesion may be reversible or progress to LIVER CIRRHOSIS.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
An enzyme that transfers acyl groups from acyl-CoA to glycerol-3-phosphate to form monoglyceride phosphates. It acts only with CoA derivatives of fatty acids of chain length above C-10. Also forms diglyceride phosphates. EC 2.3.1.15.
The chemical reactions involved in the production and utilization of various forms of energy in cells.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Naturally occurring or synthetic substances that inhibit or retard the oxidation of a substance to which it is added. They counteract the harmful and damaging effects of oxidation in animal tissues.
Polypeptides produced by the ADIPOCYTES. They include LEPTIN; ADIPONECTIN; RESISTIN; and many cytokines of the immune system, such as TUMOR NECROSIS FACTOR-ALPHA; INTERLEUKIN-6; and COMPLEMENT FACTOR D (also known as ADIPSIN). They have potent autocrine, paracrine, and endocrine functions.
Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS.
An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Sucrose present in the diet. It is added to food and drinks as a sweetener.
The processes whereby the internal environment of an organism tends to remain balanced and stable.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
THIAZOLES with two keto oxygens. Members are insulin-sensitizing agents which overcome INSULIN RESISTANCE by activation of the peroxisome proliferator activated receptor gamma (PPAR-gamma).
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
Cell surface receptors for ADIPONECTIN, an antidiabetic hormone secreted by ADIPOCYTES. Adiponectin receptors are membrane proteins with multiple cytoplasmic and extracellular regions. They are about 43 kDa and encoded by at least two genes with different affinities for globular and full-length adiponectin.
Lengthy and continuous deprivation of food. (Stedman, 25th ed)
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
F344 rats are an inbred strain of albino laboratory rats (Rattus norvegicus) that have been widely used in biomedical research due to their consistent and reliable genetic background, which facilitates the study of disease mechanisms and therapeutic interventions.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen.
The amount of fat or lipid deposit at a site or an organ in the body, an indicator of body fat status.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Carbon tetrachloride poisoning is a condition characterized by the systemic toxicity induced by exposure to carbon tetrachloride, a volatile chlorinated hydrocarbon solvent, causing central nervous system depression, cardiovascular collapse, and potentially fatal liver and kidney damage.
The dialdehyde of malonic acid.
INFLAMMATION of the LIVER in humans that is caused by HEPATITIS C VIRUS lasting six months or more. Chronic hepatitis C can lead to LIVER CIRRHOSIS.
The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
LIPOLYSIS of stored LIPIDS in the ADIPOSE TISSUE to release FREE FATTY ACIDS. Mobilization of stored lipids is under the regulation of lipolytic signals (CATECHOLAMINES) or anti-lipolytic signals (INSULIN) via their actions on the hormone-sensitive LIPASE. This concept does not include lipid transport.
Substances which lower blood glucose levels.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Surgical procedures aimed at affecting metabolism and producing major WEIGHT REDUCTION in patients with MORBID OBESITY.
Generic term for diseases caused by an abnormal metabolic process. It can be congenital due to inherited enzyme abnormality (METABOLISM, INBORN ERRORS) or acquired due to disease of an endocrine organ or failure of a metabolically important organ such as the liver. (Stedman, 26th ed)
A country spanning from central Asia to the Pacific Ocean.
An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21.
Foodstuff used especially for domestic and laboratory animals, or livestock.
Decrease in existing BODY WEIGHT.
Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
The consumption of edible substances.
A plant genus of the family AQUIFOLIACEAE. The common name of 'holly' usually refers to this genus but may sometimes refer to similar looking plants of the MAHONIA or QUERCUS genus.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
A positively charged protein found in peripheral nervous system MYELIN. Sensitive immunological techniques have demonstrated that P2 is expressed in small amounts of central nervous system myelin sheaths of some species. It is an antigen for experimental allergic neuritis (NEURITIS, EXPERIMENTAL ALLERGIC), the peripheral nervous system counterpart of experimental allergic encephalomyelitis. (From Siegel et al., Basic Neurochemistry, 5th ed, p133)
Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones.
Derivatives of caprylic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated eight carbon aliphatic structure.

Lymphocyte proliferation inhibitory factor (PIF) in alcoholic liver disease. (1/3223)

Lymphocyte proliferation inhibitory factor (PIF) was determined in the supernatants of PHA-stimulated lymphocytes from patients with alcoholic liver disease. PIF was assayed by determining inhibition of DNA synthesis in WI-38 human lung fibroblasts. A two-fold greater inhibition in thymidine incorporation into DNA by lung fibroblasts was observed in supernatants of PHA stimulated lymphocytes from patients with alcoholic hepatitis or active Laennec's cirrhosis as compared with that found in control subjects or patients with fatty liver. It is suggested that decreased liver cell regeneration seen in some patients with alcoholic hepatitis may be due to increased elaboration of PIF.  (+info)

Preventive effects of dehydroepiandrosterone acetate on the fatty liver induced by orotic acid in male rats. (2/3223)

Preventive effects of dehydroepiandrosteone acetate (DHEA-A) and clofibrate (positive control substance) on the fatty liver induced by orotic acid (OA) were examined on the male Sprague-Dawley rats fed a high sucrose based diet containing 1% OA and this diet further mixed with 0.5% DHEA-A or 0.5% clofibrate for 2 weeks. Numerous lipid droplets were observed in the hepatocytes of the rats treated with OA alone, but not in those treated with DHEA-A or clofibrate. In comparison to the group with OA alone, the DHEA-A or clofibrate treated rats showed a larger relative liver weight (to body weight) which was accompanied by increased peroxisomes in the hepatocytes. These results indicate that DHEA-A, as well as clofibrate, may prevent OA-induced fatty liver.  (+info)

Liver disease in pregnancy. (3/3223)

Acute viral hepatitis is the most common cause of jaundice in pregnancy. The course of acute hepatitis is unaffected by pregnancy, except in patients with hepatitis E and disseminated herpes simplex infections, in which maternal and fetal mortality rates are significantly increased. Chronic hepatitis B or C infections may be transmitted to neonates; however, hepatitis B virus transmission is effectively prevented with perinatal hepatitis B vaccination and prophylaxis with hepatitis B immune globulin. Cholelithiasis occurs in 6 percent of pregnancies; complications can safely be treated with surgery. Women with chronic liver disease or cirrhosis exhibit a higher risk of fetal loss during pregnancy. Preeclampsia is associated with HELLP (hemolysis, elevated liver enzymes and low platelet count) syndrome, acute fatty liver of pregnancy, and hepatic infarction and rupture. These rare diseases result in increased maternal and fetal mortality. Treatment involves prompt delivery, whereupon the liver disease quickly reverses. Therapy with penicillamine, trientine, prednisone or azathioprine can be safely continued during pregnancy.  (+info)

Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. (4/3223)

BACKGROUND: Genetic defects are being increasingly recognized in the etiology of primary cardiomyopathy (CM). Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the first step in the beta-oxidation spiral of fatty acid metabolism, the crucial pathway for cardiac energy production. METHODS AND RESULTS: We studied 37 patients with CM, nonketotic hypoglycemia and hepatic dysfunction, skeletal myopathy, or sudden death in infancy with hepatic steatosis, features suggestive of fatty acid oxidation disorders. Single-stranded conformational variance was used to screen genomic DNA. DNA sequencing and mutational analysis revealed 21 different mutations on the VLCAD gene in 18 patients. Of the mutations, 80% were associated with CM. Severe CM in infancy was recognized in most patients (67%) at presentation. Hepatic dysfunction was common (33%). RNA blot analysis and VLCAD enzyme assays showed a severe reduction in VLCAD mRNA in patients with frame-shift or splice-site mutations and absent or severe reduction in enzyme activity in all. CONCLUSIONS: Infantile CM is the most common clinical phenotype of VLCAD deficiency. Mutations in the human VLCAD gene are heterogeneous. Although mortality at presentation is high, both the metabolic disorder and cardiomyopathy are reversible.  (+info)

Detection of haptoglobin in the high-density lipoprotein and the very high-density lipoprotein fractions from sera of calves with experimental pneumonia and cows with naturally occurring fatty liver. (5/3223)

In addition to the lipoprotein-deficient d > 1.25 fraction, haptoglobin was detected in the high-density lipoprotein (HDL) and the very high-density lipoprotein (VHDL) fractions from sera of calves with experimental pneumonia and cows with naturally occurring fatty liver. It was not found in the chylomicrons, very low-density lipoprotein and low-density lipoprotein fractions. Washing of the HDL fraction did not decrease the haptoglobin concentration. Transferrin and immunoglobulin G were immunoblotted to examine the possibility of contamination of the lipoprotein fractions by the d > 1.25 fraction. The two serum proteins were detected only in the d > 1.25 fraction, not in any lipoprotein fractions. The distribution pattern of haptoglobin in the lipoprotein fractions was distinct from that of serum albumin. Concentrations of haptoglobin in the HDL fractions from pneumonic sera were largely proportional to those in whole sera. Cholesteryl ester concentrations were decreased in sera from calves with pneumonia, as in cows with fatty liver. A protein immunologically related to hemoglobin was also detected in particular in the VHDL fractions from sera of both groups. These results suggest that haptoglobin or a complex with the hemoglobin-like protein may have a role or roles related to the lipid metabolism.  (+info)

Protection by short-chain fatty acids against 1-beta-D-arabinofuranosylcytosine-induced intestinal lesions in germfree mice. (6/3223)

In germfree mice, the administration of short-chain fatty acids (SCFA) protected the intestinal mucosa from damage produced by 1-beta-D-arabinofuranosylcytosine (Ara-C). Animals receiving SCFA and Ara-C had intestinal morphologies closer to normal than the control animals, which had severe intestinal lesions. We concluded that orally administrated SCFA reduce intestinal lesions, improving the mucosa pattern of the small intestine and colon.  (+info)

Fatty liver--an additional and treatable feature of the insulin resistance syndrome. (7/3223)

To test the hypothesis that fatty liver coexists with other metabolic abnormalities of the insulin resistance syndrome, and responds to their amelioration, we prospectively studied 48 consecutive patients with chronically elevated liver enzymes and clinical, ultrasound and histological findings consistent with fatty infiltration of the liver. Most of the patients were overweight or obese (64%) with increased waist circumference which closely relates to visceral fat. Only 10% of the patients had normal glucose tolerance: 44% had diabetes mellitus, 29% impaired glucose tolerance, and 17% were hyperinsulinaemic. The most common dyslipidaemia found was hypertriglyceridaemia and/or low HDL-C (86%). Dietary intervention and follow-up (median 24 months), supplemented by oral hypoglycaemic or lipid-lowering drugs as needed, resulted not only in weight loss (mean 3.7 kg), decreased fasting blood glucose (p < 0.005) and improvement in serum lipid profile (p < 0.02 for both triglycerides or HDL-C) but also in an improvement of serum liver enzymes in 96%, which became normal in more than half of the patients. Thus, fatty liver was strongly associated with many features of the insulin resistance syndrome, and follow-up revealed a high potential for reversibility and a benign course.  (+info)

A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. (8/3223)

BACKGROUND: Acute fatty liver of pregnancy and the HELLP syndrome (hemolysis, elevated liver-enzyme levels, and a low platelet count) are serious hepatic disorders that may occur during pregnancy in women whose fetuses are later found to have a deficiency of long-chain 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase. This enzyme resides in the mitochondrial trifunctional protein, which also contains the active site of long-chain 2,3-enoyl-CoA hydratase and long-chain 3-ketoacyl-CoA thiolase. We undertook this study to determine the relation between mutations in the trifunctional protein in infants with defects in fatty-acid oxidation and acute liver disease during pregnancy in their mothers. METHODS: In 24 children with 3-hydroxyacyl-CoA dehydrogenase deficiency, we used DNA amplification and nucleotide-sequence analyses to identify mutations in the alpha subunit of the trifunctional protein. We then correlated the results with the presence of liver disease during pregnancy in the mothers. RESULTS: Nineteen children had a deficiency only of long-chain 3-hydroxyacyl-CoA dehydrogenase and presented with hypoketotic hypoglycemia and fatty liver. In eight children, we identified a homozygous mutation in which glutamic acid at residue 474 was changed to glutamine. Eleven other children were compound heterozygotes, with this mutation in one allele of the alpha-subunit gene and a different mutation in the other allele. While carrying fetuses with the Glu474Gln mutation, 79 percent of the heterozygous mothers had fatty liver of pregnancy or the HELLP syndrome. Five other children, who presented with neonatal dilated cardiomyopathy or progressive neuromyopathy, had complete deficiency of the trifunctional protein (loss of activity of all three enzymes). None had the Glu474Gln mutation, and none of their mothers had liver disease during pregnancy. CONCLUSIONS: Women with acute liver disease during pregnancy may have a Glu474Gln mutation in long-chain hydroxyacyl-CoA dehydrogenase. Their infants are at risk for hypoketotic hypoglycemia and fatty liver.  (+info)

Fatty liver, also known as hepatic steatosis, is a medical condition characterized by the abnormal accumulation of fat in the liver. The liver's primary function is to process nutrients, filter blood, and fight infections, among other tasks. When excess fat builds up in the liver cells, it can impair liver function and lead to inflammation, scarring, and even liver failure if left untreated.

Fatty liver can be caused by various factors, including alcohol consumption, obesity, nonalcoholic fatty liver disease (NAFLD), viral hepatitis, and certain medications or medical conditions. NAFLD is the most common cause of fatty liver in the United States and other developed countries, affecting up to 25% of the population.

Symptoms of fatty liver may include fatigue, weakness, weight loss, loss of appetite, nausea, abdominal pain or discomfort, and jaundice (yellowing of the skin and eyes). However, many people with fatty liver do not experience any symptoms, making it essential to diagnose and manage the condition through regular check-ups and blood tests.

Treatment for fatty liver depends on the underlying cause. Lifestyle changes such as weight loss, exercise, and dietary modifications are often recommended for people with NAFLD or alcohol-related fatty liver disease. Medications may also be prescribed to manage related conditions such as diabetes, high cholesterol, or metabolic syndrome. In severe cases of liver damage, a liver transplant may be necessary.

Alcoholic fatty liver disease (AFLD) is a condition in which there is accumulation of fat in the liver due to heavy and prolonged alcohol consumption. The medical definition of "alcoholic fatty liver" is:

"A buildup of fat in the liver (steatosis) caused by excessive alcohol consumption, leading to inflammation, damage, and possible progression to more severe liver diseases such as alcoholic hepatitis, fibrosis, and cirrhosis."

Excessive alcohol intake causes the liver to prioritize metabolizing alcohol over its other functions, which leads to an accumulation of fatty acids in the liver cells (hepatocytes). Over time, this can result in inflammation, scarring, and ultimately liver failure if not treated or if alcohol consumption continues.

AFLD is often reversible if the individual stops consuming alcohol, allowing the liver to recover and repair itself. However, continued alcohol use will exacerbate the condition and may lead to more severe liver diseases.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Liver diseases refer to a wide range of conditions that affect the normal functioning of the liver. The liver is a vital organ responsible for various critical functions such as detoxification, protein synthesis, and production of biochemicals necessary for digestion.

Liver diseases can be categorized into acute and chronic forms. Acute liver disease comes on rapidly and can be caused by factors like viral infections (hepatitis A, B, C, D, E), drug-induced liver injury, or exposure to toxic substances. Chronic liver disease develops slowly over time, often due to long-term exposure to harmful agents or inherent disorders of the liver.

Common examples of liver diseases include hepatitis, cirrhosis (scarring of the liver tissue), fatty liver disease, alcoholic liver disease, autoimmune liver diseases, genetic/hereditary liver disorders (like Wilson's disease and hemochromatosis), and liver cancers. Symptoms may vary widely depending on the type and stage of the disease but could include jaundice, abdominal pain, fatigue, loss of appetite, nausea, and weight loss.

Early diagnosis and treatment are essential to prevent progression and potential complications associated with liver diseases.

Liver cirrhosis is a chronic, progressive disease characterized by the replacement of normal liver tissue with scarred (fibrotic) tissue, leading to loss of function. The scarring is caused by long-term damage from various sources such as hepatitis, alcohol abuse, nonalcoholic fatty liver disease, and other causes. As the disease advances, it can lead to complications like portal hypertension, fluid accumulation in the abdomen (ascites), impaired brain function (hepatic encephalopathy), and increased risk of liver cancer. It is generally irreversible, but early detection and treatment of underlying causes may help slow down its progression.

Liver transplantation is a surgical procedure in which a diseased or failing liver is replaced with a healthy one from a deceased donor or, less commonly, a portion of a liver from a living donor. The goal of the procedure is to restore normal liver function and improve the patient's overall health and quality of life.

Liver transplantation may be recommended for individuals with end-stage liver disease, acute liver failure, certain genetic liver disorders, or liver cancers that cannot be treated effectively with other therapies. The procedure involves complex surgery to remove the diseased liver and implant the new one, followed by a period of recovery and close medical monitoring to ensure proper function and minimize the risk of complications.

The success of liver transplantation has improved significantly in recent years due to advances in surgical techniques, immunosuppressive medications, and post-transplant care. However, it remains a major operation with significant risks and challenges, including the need for lifelong immunosuppression to prevent rejection of the new liver, as well as potential complications such as infection, bleeding, and organ failure.

Liver neoplasms refer to abnormal growths in the liver that can be benign or malignant. Benign liver neoplasms are non-cancerous tumors that do not spread to other parts of the body, while malignant liver neoplasms are cancerous tumors that can invade and destroy surrounding tissue and spread to other organs.

Liver neoplasms can be primary, meaning they originate in the liver, or secondary, meaning they have metastasized (spread) to the liver from another part of the body. Primary liver neoplasms can be further classified into different types based on their cell of origin and behavior, including hepatocellular carcinoma, cholangiocarcinoma, and hepatic hemangioma.

The diagnosis of liver neoplasms typically involves a combination of imaging studies, such as ultrasound, CT scan, or MRI, and biopsy to confirm the type and stage of the tumor. Treatment options depend on the type and extent of the neoplasm and may include surgery, radiation therapy, chemotherapy, or liver transplantation.

Alanine transaminase (ALT) is a type of enzyme found primarily in the cells of the liver and, to a lesser extent, in the cells of other tissues such as the heart, muscles, and kidneys. Its primary function is to catalyze the reversible transfer of an amino group from alanine to another alpha-keto acid, usually pyruvate, to form pyruvate and another amino acid, usually glutamate. This process is known as the transamination reaction.

When liver cells are damaged or destroyed due to various reasons such as hepatitis, alcohol abuse, nonalcoholic fatty liver disease, or drug-induced liver injury, ALT is released into the bloodstream. Therefore, measuring the level of ALT in the blood is a useful diagnostic tool for evaluating liver function and detecting liver damage. Normal ALT levels vary depending on the laboratory, but typically range from 7 to 56 units per liter (U/L) for men and 6 to 45 U/L for women. Elevated ALT levels may indicate liver injury or disease, although other factors such as muscle damage or heart disease can also cause elevations in ALT.

Liver function tests (LFTs) are a group of blood tests that are used to assess the functioning and health of the liver. These tests measure the levels of various enzymes, proteins, and waste products that are produced or metabolized by the liver. Some common LFTs include:

1. Alanine aminotransferase (ALT): An enzyme found primarily in the liver, ALT is released into the bloodstream in response to liver cell damage. Elevated levels of ALT may indicate liver injury or disease.
2. Aspartate aminotransferase (AST): Another enzyme found in various tissues, including the liver, heart, and muscles. Like ALT, AST is released into the bloodstream following tissue damage. High AST levels can be a sign of liver damage or other medical conditions.
3. Alkaline phosphatase (ALP): An enzyme found in several organs, including the liver, bile ducts, and bones. Elevated ALP levels may indicate a blockage in the bile ducts, liver disease, or bone disorders.
4. Gamma-glutamyl transferase (GGT): An enzyme found mainly in the liver, pancreas, and biliary system. Increased GGT levels can suggest liver disease, alcohol consumption, or the use of certain medications.
5. Bilirubin: A yellowish pigment produced when hemoglobin from red blood cells is broken down. Bilirubin is processed by the liver and excreted through bile. High bilirubin levels can indicate liver dysfunction, bile duct obstruction, or certain types of anemia.
6. Albumin: A protein produced by the liver that helps maintain fluid balance in the body and transports various substances in the blood. Low albumin levels may suggest liver damage, malnutrition, or kidney disease.
7. Total protein: A measure of all proteins present in the blood, including albumin and other types of proteins produced by the liver. Decreased total protein levels can indicate liver dysfunction or other medical conditions.

These tests are often ordered together as part of a routine health checkup or when evaluating symptoms related to liver function or disease. The results should be interpreted in conjunction with clinical findings, medical history, and other diagnostic tests.

Nonesterified fatty acids (NEFA), also known as free fatty acids (FFA), refer to fatty acid molecules that are not bound to glycerol in the form of triglycerides or other esters. In the bloodstream, NEFAs are transported while bound to albumin and can serve as a source of energy for peripheral tissues. Under normal physiological conditions, NEFA levels are tightly regulated by the body; however, elevated NEFA levels have been associated with various metabolic disorders such as insulin resistance, obesity, and type 2 diabetes.

Microsomes, liver refers to a subcellular fraction of liver cells (hepatocytes) that are obtained during tissue homogenization and subsequent centrifugation. These microsomal fractions are rich in membranous structures known as the endoplasmic reticulum (ER), particularly the rough ER. They are involved in various important cellular processes, most notably the metabolism of xenobiotics (foreign substances) including drugs, toxins, and carcinogens.

The liver microsomes contain a variety of enzymes, such as cytochrome P450 monooxygenases, that are crucial for phase I drug metabolism. These enzymes help in the oxidation, reduction, or hydrolysis of xenobiotics, making them more water-soluble and facilitating their excretion from the body. Additionally, liver microsomes also host other enzymes involved in phase II conjugation reactions, where the metabolites from phase I are further modified by adding polar molecules like glucuronic acid, sulfate, or acetyl groups.

In summary, liver microsomes are a subcellular fraction of liver cells that play a significant role in the metabolism and detoxification of xenobiotics, contributing to the overall protection and maintenance of cellular homeostasis within the body.

Liver regeneration is the ability of the liver to restore its original mass and function after injury or surgical resection. This complex process involves the proliferation and differentiation of mature hepatocytes, as well as the activation and transdifferentiation of various types of stem and progenitor cells located in the liver. The mechanisms that regulate liver regeneration include a variety of growth factors, hormones, and cytokines, which act in a coordinated manner to ensure the restoration of normal liver architecture and function. Liver regeneration is essential for the survival of individuals who have undergone partial hepatectomy or who have suffered liver damage due to various causes, such as viral hepatitis, alcohol abuse, or drug-induced liver injury.

Lipid metabolism is the process by which the body breaks down and utilizes lipids (fats) for various functions, such as energy production, cell membrane formation, and hormone synthesis. This complex process involves several enzymes and pathways that regulate the digestion, absorption, transport, storage, and consumption of fats in the body.

The main types of lipids involved in metabolism include triglycerides, cholesterol, phospholipids, and fatty acids. The breakdown of these lipids begins in the digestive system, where enzymes called lipases break down dietary fats into smaller molecules called fatty acids and glycerol. These molecules are then absorbed into the bloodstream and transported to the liver, which is the main site of lipid metabolism.

In the liver, fatty acids may be further broken down for energy production or used to synthesize new lipids. Excess fatty acids may be stored as triglycerides in specialized cells called adipocytes (fat cells) for later use. Cholesterol is also metabolized in the liver, where it may be used to synthesize bile acids, steroid hormones, and other important molecules.

Disorders of lipid metabolism can lead to a range of health problems, including obesity, diabetes, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). These conditions may be caused by genetic factors, lifestyle habits, or a combination of both. Proper diagnosis and management of lipid metabolism disorders typically involves a combination of dietary changes, exercise, and medication.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

Fatty acid synthases (FAS) are a group of enzymes that are responsible for the synthesis of fatty acids in the body. They catalyze a series of reactions that convert acetyl-CoA and malonyl-CoA into longer chain fatty acids, which are then used for various purposes such as energy storage or membrane formation.

The human genome encodes two types of FAS: type I and type II. Type I FAS is a large multifunctional enzyme complex found in the cytoplasm of cells, while type II FAS consists of individual enzymes located in the mitochondria. Both types of FAS play important roles in lipid metabolism, but their regulation and expression differ depending on the tissue and physiological conditions.

Inhibition of FAS has been explored as a potential therapeutic strategy for various diseases, including cancer, obesity, and metabolic disorders. However, more research is needed to fully understand the complex mechanisms regulating FAS activity and its role in human health and disease.

I'd be happy to help! However, I believe there might be a slight misunderstanding in your question. Mitochondria are organelles found in the cells of all complex living organisms, including humans, while the liver is a large, solid organ located in the upper right portion of the abdomen. They don't have a medical definition together. I can certainly provide you with separate definitions for each:

1. Mitochondria: These are double-membrane-bound cellular organelles that generate most of the chemical energy needed to power the cell's biochemical reactions. Commonly known as the "powerhouse of the cell," mitochondria convert organic substrates, such as glucose, fatty acids, and amino acids, into adenosine triphosphate (ATP) through a process called oxidative phosphorylation. Mitochondria are dynamic structures that can change their shape, size, and number through fission (division) and fusion (merging) processes. They play essential roles in various cellular functions, including calcium signaling, apoptosis (programmed cell death), and the regulation of cellular metabolism.

2. Liver: The liver is a large, lobulated organ that lies mainly in the upper right portion of the abdominal cavity, just below the diaphragm. It plays a crucial role in various physiological functions, such as detoxification, protein synthesis, metabolism, and nutrient storage. The liver is responsible for removing toxins from the bloodstream, producing bile to aid in digestion, regulating glucose levels, synthesizing plasma proteins, and storing glycogen, vitamins, and minerals. It also contributes to the metabolism of carbohydrates, lipids, and amino acids, helping maintain energy homeostasis in the body.

I hope this clarifies any confusion! If you have any further questions or need more information, please don't hesitate to ask.

Fatty acid-binding proteins (FABPs) are a group of small intracellular proteins that play a crucial role in the transport and metabolism of fatty acids within cells. They are responsible for binding long-chain fatty acids, which are hydrophobic molecules, and facilitating their movement across the cell while protecting the cells from lipotoxicity.

FABPs are expressed in various tissues, including the heart, liver, muscle, and brain, with different isoforms found in specific organs. These proteins have a high affinity for long-chain fatty acids and can regulate their intracellular concentration by controlling the uptake, storage, and metabolism of these molecules.

FABPs also play a role in modulating cell signaling pathways that are involved in various physiological processes such as inflammation, differentiation, and apoptosis. Dysregulation of FABP expression and function has been implicated in several diseases, including diabetes, obesity, cancer, and neurodegenerative disorders.

In summary, fatty acid-binding proteins are essential intracellular proteins that facilitate the transport and metabolism of long-chain fatty acids while regulating cell signaling pathways.

Hepatocytes are the predominant type of cells in the liver, accounting for about 80% of its cytoplasmic mass. They play a key role in protein synthesis, protein storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids, detoxification, modification, and excretion of exogenous and endogenous substances, initiation of formation and secretion of bile, and enzyme production. Hepatocytes are essential for the maintenance of homeostasis in the body.

Drug-Induced Liver Injury (DILI) is a medical term that refers to liver damage or injury caused by the use of medications or drugs. This condition can vary in severity, from mild abnormalities in liver function tests to severe liver failure, which may require a liver transplant.

The exact mechanism of DILI can differ depending on the drug involved, but it generally occurs when the liver metabolizes the drug into toxic compounds that damage liver cells. This can happen through various pathways, including direct toxicity to liver cells, immune-mediated reactions, or metabolic idiosyncrasies.

Symptoms of DILI may include jaundice (yellowing of the skin and eyes), fatigue, abdominal pain, nausea, vomiting, loss of appetite, and dark urine. In severe cases, it can lead to complications such as ascites, encephalopathy, and bleeding disorders.

The diagnosis of DILI is often challenging because it requires the exclusion of other potential causes of liver injury. Liver function tests, imaging studies, and sometimes liver biopsies may be necessary to confirm the diagnosis. Treatment typically involves discontinuing the offending drug and providing supportive care until the liver recovers. In some cases, medications that protect the liver or promote its healing may be used.

Insulin resistance is a condition in which the body's cells become less responsive to insulin, a hormone produced by the pancreas that regulates blood sugar levels. In response to this decreased sensitivity, the pancreas produces more insulin to help glucose enter the cells. However, over time, the pancreas may not be able to keep up with the increased demand for insulin, leading to high levels of glucose in the blood and potentially resulting in type 2 diabetes, prediabetes, or other health issues such as metabolic syndrome, cardiovascular disease, and non-alcoholic fatty liver disease. Insulin resistance is often associated with obesity, physical inactivity, and genetic factors.

Alcoholic liver disease (ALD) is a term that encompasses a spectrum of liver disorders caused by excessive alcohol consumption. The three main stages of ALD are:

1. Fatty Liver: This is the earliest stage of ALD, characterized by the accumulation of fat droplets within liver cells (hepatocytes). It's often reversible with abstinence from alcohol.

2. Alcoholic Hepatitis: This is a more severe form of ALD, characterized by inflammation and damage to the liver cells. It can range from mild to severe, and severe cases can lead to liver failure. Symptoms may include jaundice, abdominal pain, and fever.

3. Cirrhosis: This is the most advanced stage of ALD, characterized by widespread scarring (fibrosis) and nodular transformation of the liver. It's irreversible and can lead to complications such as liver failure, portal hypertension, and increased risk of liver cancer.

The development and progression of ALD are influenced by various factors, including the amount and duration of alcohol consumption, genetic predisposition, nutritional status, and co-existing viral hepatitis or other liver diseases. Abstaining from alcohol is the most effective way to prevent and manage ALD.

Dietary fats, also known as fatty acids, are a major nutrient that the body needs for energy and various functions. They are an essential component of cell membranes and hormones, and they help the body absorb certain vitamins. There are several types of dietary fats:

1. Saturated fats: These are typically solid at room temperature and are found in animal products such as meat, butter, and cheese, as well as tropical oils like coconut and palm oil. Consuming a high amount of saturated fats can raise levels of unhealthy LDL cholesterol and increase the risk of heart disease.
2. Unsaturated fats: These are typically liquid at room temperature and can be further divided into monounsaturated and polyunsaturated fats. Monounsaturated fats, found in foods such as olive oil, avocados, and nuts, can help lower levels of unhealthy LDL cholesterol while maintaining levels of healthy HDL cholesterol. Polyunsaturated fats, found in foods such as fatty fish, flaxseeds, and walnuts, have similar effects on cholesterol levels and also provide essential omega-3 and omega-6 fatty acids that the body cannot produce on its own.
3. Trans fats: These are unsaturated fats that have been chemically modified to be solid at room temperature. They are often found in processed foods such as baked goods, fried foods, and snack foods. Consuming trans fats can raise levels of unhealthy LDL cholesterol and lower levels of healthy HDL cholesterol, increasing the risk of heart disease.

It is recommended to limit intake of saturated and trans fats and to consume more unsaturated fats as part of a healthy diet.

Choline deficiency is a condition that occurs when an individual's diet does not provide adequate amounts of choline, which is an essential nutrient required for various bodily functions. Choline plays a crucial role in the synthesis of phospholipids, which are critical components of cell membranes, and it also serves as a precursor to the neurotransmitter acetylcholine, which is involved in memory, muscle control, and other nervous system functions.

Choline deficiency can lead to several health problems, including fatty liver disease, muscle damage, and cognitive impairment. Symptoms of choline deficiency may include fatigue, memory loss, cognitive decline, and peripheral neuropathy. In severe cases, it can also cause liver dysfunction and even liver failure.

It is important to note that choline deficiency is relatively rare in the general population, as many foods contain choline, including eggs, meat, fish, dairy products, and certain vegetables such as broccoli and Brussels sprouts. However, some individuals may be at higher risk of choline deficiency, including pregnant women, postmenopausal women, and those with certain genetic mutations that affect choline metabolism. In these cases, supplementation with choline may be necessary to prevent deficiency.

Essential fatty acids (EFAs) are a type of fatty acid that cannot be synthesized by the human body and must be obtained through diet. There are two main types of essential fatty acids: linoleic acid (omega-6) and alpha-linolenic acid (omega-3).

Linoleic acid is found in foods such as vegetable oils, nuts, and seeds, while alpha-linolenic acid is found in foods such as flaxseeds, walnuts, and fatty fish. These essential fatty acids play important roles in the body, including maintaining the fluidity and function of cell membranes, producing eicosanoids (hormone-like substances that regulate various bodily functions), and supporting the development and function of the brain and nervous system.

Deficiency in essential fatty acids can lead to a variety of health problems, including skin disorders, poor growth and development, and increased risk of heart disease. It is important to maintain a balanced intake of both omega-6 and omega-3 fatty acids, as excessive consumption of omega-6 relative to omega-3 has been linked to inflammation and chronic diseases.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Obesity is a complex disease characterized by an excess accumulation of body fat to the extent that it negatively impacts health. It's typically defined using Body Mass Index (BMI), a measure calculated from a person's weight and height. A BMI of 30 or higher is indicative of obesity. However, it's important to note that while BMI can be a useful tool for identifying obesity in populations, it does not directly measure body fat and may not accurately reflect health status in individuals. Other factors such as waist circumference, blood pressure, cholesterol levels, and blood sugar levels should also be considered when assessing health risks associated with weight.

Aspartate aminotransferases (ASTs) are a group of enzymes found in various tissues throughout the body, including the heart, liver, and muscles. They play a crucial role in the metabolic process of transferring amino groups between different molecules.

In medical terms, AST is often used as a blood test to measure the level of this enzyme in the serum. Elevated levels of AST can indicate damage or injury to tissues that contain this enzyme, such as the liver or heart. For example, liver disease, including hepatitis and cirrhosis, can cause elevated AST levels due to damage to liver cells. Similarly, heart attacks can also result in increased AST levels due to damage to heart muscle tissue.

It is important to note that an AST test alone cannot diagnose a specific medical condition, but it can provide valuable information when used in conjunction with other diagnostic tests and clinical evaluation.

Fatty acid desaturases are enzymes that introduce double bonds into fatty acid molecules, thereby reducing their saturation level. These enzymes play a crucial role in the synthesis of unsaturated fatty acids, which are essential components of cell membranes and precursors for various signaling molecules.

The position of the introduced double bond is specified by the type of desaturase enzyme. For example, Δ-9 desaturases introduce a double bond at the ninth carbon atom from the methyl end of the fatty acid chain. This enzyme is responsible for converting saturated fatty acids like stearic acid (18:0) to monounsaturated fatty acids like oleic acid (18:1n-9).

In humans, there are several fatty acid desaturases, including Δ-5 and Δ-6 desaturases, which introduce double bonds at the fifth and sixth carbon atoms from the methyl end, respectively. These enzymes are essential for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3).

Disorders in fatty acid desaturase activity or expression have been linked to various diseases, including cardiovascular disease, cancer, and metabolic disorders. Therefore, understanding the regulation and function of these enzymes is crucial for developing strategies to modulate fatty acid composition in cells and tissues, which may have therapeutic potential.

Lipogenesis is the biological process by which fatty acids are synthesized and stored as lipids or fat in living organisms. This process occurs primarily in the liver and adipose tissue, with excess glucose being converted into fatty acids and then esterified to form triglycerides. These triglycerides are then packaged with proteins and cholesterol to form lipoproteins, which are transported throughout the body for energy storage or use. Lipogenesis is a complex process involving multiple enzymes and metabolic pathways, and it is tightly regulated by hormones such as insulin, glucagon, and adrenaline. Disorders of lipogenesis can lead to conditions such as obesity, fatty liver disease, and metabolic disorders.

Liver circulation, also known as hepatic circulation, refers to the blood flow through the liver. The liver receives blood from two sources: the hepatic artery and the portal vein.

The hepatic artery delivers oxygenated blood from the heart to the liver, accounting for about 25% of the liver's blood supply. The remaining 75% comes from the portal vein, which carries nutrient-rich, deoxygenated blood from the gastrointestinal tract, spleen, pancreas, and gallbladder to the liver.

In the liver, these two sources of blood mix in the sinusoids, small vessels with large spaces between the endothelial cells that line them. This allows for efficient exchange of substances between the blood and the hepatocytes (liver cells). The blood then leaves the liver through the hepatic veins, which merge into the inferior vena cava and return the blood to the heart.

The unique dual blood supply and extensive sinusoidal network in the liver enable it to perform various critical functions, such as detoxification, metabolism, synthesis, storage, and secretion of numerous substances, maintaining body homeostasis.

Hepatitis is a medical condition characterized by inflammation of the liver, often resulting in damage to liver cells. It can be caused by various factors, including viral infections (such as Hepatitis A, B, C, D, and E), alcohol abuse, toxins, medications, and autoimmune disorders. Symptoms may include jaundice, fatigue, abdominal pain, loss of appetite, nausea, vomiting, and dark urine. The severity of the disease can range from mild illness to severe, life-threatening conditions, such as liver failure or cirrhosis.

Gamma-glutamyltransferase (GGT), also known as gamma-glutamyl transpeptidase, is an enzyme found in many tissues, including the liver, bile ducts, and pancreas. GGT is involved in the metabolism of certain amino acids and plays a role in the detoxification of various substances in the body.

GGT is often measured as a part of a panel of tests used to evaluate liver function. Elevated levels of GGT in the blood may indicate liver disease or injury, bile duct obstruction, or alcohol consumption. However, it's important to note that several other factors can also affect GGT levels, so abnormal results should be interpreted in conjunction with other clinical findings and diagnostic tests.

Liver extracts are preparations made from animal livers, often from cows or pigs, that contain various nutrients, vitamins, and minerals found in liver tissue. They have been used historically in medicine as a source of nutrition and to treat certain medical conditions.

Liver extracts contain high levels of vitamin B12, iron, and other essential nutrients. They were once commonly prescribed to treat anemia, pernicious anemia (a type of anemia caused by vitamin B12 deficiency), and other conditions related to malnutrition. However, with the advent of more modern treatments and better methods for addressing nutritional deficiencies, liver extracts are less commonly used in modern medicine.

It's important to note that while liver extracts can be a good source of nutrition, they should not be used as a substitute for a balanced diet. Moreover, individuals with certain medical conditions, such as liver disease or hemochromatosis (a condition characterized by excessive iron absorption), should avoid liver extracts or use them only under the supervision of a healthcare provider.

A high-fat diet is a type of eating plan that derives a significant proportion of its daily caloric intake from fat sources. While there is no universally agreed-upon definition for what constitutes a high-fat diet, it generally refers to diets in which total fat intake provides more than 30-35% of the total daily calories.

High-fat diets can vary widely in their specific composition and may include different types of fats, such as saturated, monounsaturated, polyunsaturated, and trans fats. Some high-fat diets emphasize the consumption of whole, unprocessed foods that are naturally high in fat, like nuts, seeds, avocados, fish, and olive oil. Others may allow for or even encourage the inclusion of processed and high-fat animal products, such as red meat, butter, and full-fat dairy.

It's important to note that not all high-fat diets are created equal, and some may be more healthful than others depending on their specific composition and the individual's overall dietary patterns. Some research suggests that high-fat diets that are low in carbohydrates and moderate in protein may offer health benefits for weight loss, blood sugar control, and cardiovascular risk factors, while other studies have raised concerns about the potential negative effects of high-fat diets on heart health and metabolic function.

As with any dietary approach, it's important to consult with a healthcare provider or registered dietitian before making significant changes to your eating habits, especially if you have any underlying medical conditions or are taking medications that may be affected by dietary changes.

Metabolic syndrome, also known as Syndrome X, is a cluster of conditions that increase the risk of heart disease, stroke, and diabetes. It is not a single disease but a group of risk factors that often co-occur. According to the American Heart Association and the National Heart, Lung, and Blood Institute, a person has metabolic syndrome if they have any three of the following five conditions:

1. Abdominal obesity (waist circumference of 40 inches or more in men, and 35 inches or more in women)
2. Triglyceride level of 150 milligrams per deciliter of blood (mg/dL) or greater
3. HDL cholesterol level of less than 40 mg/dL in men or less than 50 mg/dL in women
4. Systolic blood pressure of 130 millimeters of mercury (mmHg) or greater, or diastolic blood pressure of 85 mmHg or greater
5. Fasting glucose level of 100 mg/dL or greater

Metabolic syndrome is thought to be caused by a combination of genetic and lifestyle factors, such as physical inactivity and a diet high in refined carbohydrates and unhealthy fats. Treatment typically involves making lifestyle changes, such as eating a healthy diet, getting regular exercise, and losing weight if necessary. In some cases, medication may also be needed to manage individual components of the syndrome, such as high blood pressure or high cholesterol.

Monounsaturated fatty acids (MUFAs) are a type of fatty acid that contains one double bond in its chemical structure. The presence of the double bond means that there is one less hydrogen atom, hence the term "unsaturated." In monounsaturated fats, the double bond occurs between the second and third carbon atoms in the chain, which makes them "mono"unsaturated.

MUFAs are considered to be a healthy type of fat because they can help reduce levels of harmful cholesterol (low-density lipoprotein or LDL) while maintaining levels of beneficial cholesterol (high-density lipoprotein or HDL). They have also been associated with a reduced risk of heart disease and improved insulin sensitivity.

Common sources of monounsaturated fats include olive oil, canola oil, avocados, nuts, and seeds. It is recommended to consume MUFAs as part of a balanced diet that includes a variety of nutrient-dense foods.

Experimental liver neoplasms refer to abnormal growths or tumors in the liver that are intentionally created or manipulated in a laboratory setting for the purpose of studying their development, progression, and potential treatment options. These experimental models can be established using various methods such as chemical induction, genetic modification, or transplantation of cancerous cells or tissues. The goal of this research is to advance our understanding of liver cancer biology and develop novel therapies for liver neoplasms in humans. It's important to note that these experiments are conducted under strict ethical guidelines and regulations to minimize harm and ensure the humane treatment of animals involved in such studies.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

Sterol Regulatory Element Binding Protein 1 (SREBP-1) is a transcription factor that plays a crucial role in the regulation of lipid metabolism, primarily cholesterol and fatty acid biosynthesis. It binds to specific DNA sequences called sterol regulatory elements (SREs), which are present in the promoter regions of genes involved in lipid synthesis.

SREBP-1 exists in two isoforms, SREBP-1a and SREBP-1c, encoded by a single gene through alternative splicing. SREBP-1a is a stronger transcriptional activator than SREBP-1c and can activate both cholesterol and fatty acid synthesis genes. In contrast, SREBP-1c primarily regulates fatty acid synthesis genes.

Under normal conditions, SREBP-1 is found in the endoplasmic reticulum (ER) membrane as an inactive precursor bound to another protein called SREBP cleavage-activating protein (SCAP). When cells detect low levels of cholesterol or fatty acids, SCAP escorts SREBP-1 to the Golgi apparatus, where it undergoes proteolytic processing to release the active transcription factor. The active SREBP-1 then translocates to the nucleus and binds to SREs, promoting the expression of genes involved in lipid synthesis.

Overall, SREBP-1 is a critical regulator of lipid homeostasis, and its dysregulation has been implicated in various diseases, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), and atherosclerosis.

A diet, in medical terms, refers to the planned and regular consumption of food and drinks. It is a balanced selection of nutrient-rich foods that an individual eats on a daily or periodic basis to meet their energy needs and maintain good health. A well-balanced diet typically includes a variety of fruits, vegetables, whole grains, lean proteins, and low-fat dairy products.

A diet may also be prescribed for therapeutic purposes, such as in the management of certain medical conditions like diabetes, hypertension, or obesity. In these cases, a healthcare professional may recommend specific restrictions or modifications to an individual's regular diet to help manage their condition and improve their overall health.

It is important to note that a healthy and balanced diet should be tailored to an individual's age, gender, body size, activity level, and any underlying medical conditions. Consulting with a healthcare professional, such as a registered dietitian or nutritionist, can help ensure that an individual's dietary needs are being met in a safe and effective way.

Orotic acid, also known as pyrmidine carboxylic acid, is a organic compound that plays a role in the metabolic pathway for the biosynthesis of pyrimidines, which are nitrogenous bases found in nucleotides and nucleic acids such as DNA and RNA. Orotic acid is not considered to be a vitamin, but it is sometimes referred to as vitamin B13 or B15, although these designations are not widely recognized by the scientific community.

In the body, orotic acid is converted into orotidine monophosphate (OMP) by the enzyme orotate phosphoribosyltransferase. OMP is then further metabolized to form uridine monophosphate (UMP), a pyrimidine nucleotide that is an important precursor for the synthesis of RNA and other molecules.

Elevated levels of orotic acid in the urine, known as orotic aciduria, can be a sign of certain genetic disorders that affect the metabolism of pyrimidines. These conditions can lead to an accumulation of orotic acid and other pyrimidine precursors in the body, which can cause a range of symptoms including developmental delays, neurological problems, and kidney stones. Treatment for these disorders typically involves dietary restrictions and supplementation with nucleotides or nucleosides to help support normal pyrimidine metabolism.

Acute liver failure is a sudden and severe loss of liver function that occurs within a few days or weeks. It can be caused by various factors such as drug-induced liver injury, viral hepatitis, or metabolic disorders. In acute liver failure, the liver cannot perform its vital functions, including protein synthesis, detoxification, and metabolism of carbohydrates, fats, and proteins.

The symptoms of acute liver failure include jaundice (yellowing of the skin and eyes), coagulopathy (bleeding disorders), hepatic encephalopathy (neurological symptoms such as confusion, disorientation, and coma), and elevated levels of liver enzymes in the blood. Acute liver failure is a medical emergency that requires immediate hospitalization and treatment, which may include medications, supportive care, and liver transplantation.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Experimental liver cirrhosis refers to a controlled research setting where various factors and substances are intentionally introduced to induce liver cirrhosis in animals or cell cultures. The purpose is to study the mechanisms, progression, potential treatments, and prevention strategies for liver cirrhosis. This could involve administering chemicals, drugs, alcohol, viruses, or manipulating genes associated with liver damage and fibrosis. It's important to note that results from experimental models may not directly translate to human conditions, but they can provide valuable insights into disease pathophysiology and therapeutic development.

Ethanol is the medical term for pure alcohol, which is a colorless, clear, volatile, flammable liquid with a characteristic odor and burning taste. It is the type of alcohol that is found in alcoholic beverages and is produced by the fermentation of sugars by yeasts.

In the medical field, ethanol is used as an antiseptic and disinfectant, and it is also used as a solvent for various medicinal preparations. It has central nervous system depressant properties and is sometimes used as a sedative or to induce sleep. However, excessive consumption of ethanol can lead to alcohol intoxication, which can cause a range of negative health effects, including impaired judgment, coordination, and memory, as well as an increased risk of accidents, injuries, and chronic diseases such as liver disease and addiction.

A liver abscess is a localized collection of pus within the liver tissue caused by an infection. It can result from various sources such as bacterial or amebic infections that spread through the bloodstream, bile ducts, or directly from nearby organs. The abscess may cause symptoms like fever, pain in the upper right abdomen, nausea, vomiting, and weight loss. If left untreated, a liver abscess can lead to serious complications, including sepsis and organ failure. Diagnosis typically involves imaging tests like ultrasound or CT scan, followed by drainage of the pus and antibiotic treatment.

Keratin-18 is a type I cytoskeletal keratin protein that is primarily expressed in simple epithelial cells, such as those found in the gastrointestinal tract, liver, and skin. It forms intermediate filaments, which are structural proteins that provide support and stability to the cell. Keratin-18 has been identified as a sensitive and specific marker for apoptosis (programmed cell death), making it useful in research and diagnosis of various diseases, including liver disease and cancer.

Adipose tissue, also known as fatty tissue, is a type of connective tissue that is composed mainly of adipocytes (fat cells). It is found throughout the body, but is particularly abundant in the abdominal cavity, beneath the skin, and around organs such as the heart and kidneys.

Adipose tissue serves several important functions in the body. One of its primary roles is to store energy in the form of fat, which can be mobilized and used as an energy source during periods of fasting or exercise. Adipose tissue also provides insulation and cushioning for the body, and produces hormones that help regulate metabolism, appetite, and reproductive function.

There are two main types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is the more common form and is responsible for storing energy as fat. BAT, on the other hand, contains a higher number of mitochondria and is involved in heat production and energy expenditure.

Excessive accumulation of adipose tissue can lead to obesity, which is associated with an increased risk of various health problems such as diabetes, heart disease, and certain types of cancer.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Alcoholic Liver Cirrhosis is a medical condition characterized by irreversible scarring (fibrosis) and damage to the liver caused by excessive consumption of alcohol over an extended period. The liver's normal structure and function are progressively impaired as healthy liver tissue is replaced by scarred tissue, leading to the formation of nodules (regenerative noduli).

The condition typically develops after years of heavy drinking, with a higher risk for those who consume more than 60 grams of pure alcohol daily. The damage caused by alcoholic liver cirrhosis can be life-threatening and may result in complications such as:

1. Ascites (accumulation of fluid in the abdomen)
2. Encephalopathy (neurological dysfunction due to liver failure)
3. Esophageal varices (dilated veins in the esophagus that can rupture and bleed)
4. Hepatorenal syndrome (kidney failure caused by liver disease)
5. Increased susceptibility to infections
6. Liver cancer (hepatocellular carcinoma)
7. Portal hypertension (increased blood pressure in the portal vein that supplies blood to the liver)

Abstaining from alcohol and managing underlying medical conditions are crucial for slowing down or halting disease progression. Treatment may involve medications, dietary changes, and supportive care to address complications. In severe cases, a liver transplant might be necessary.

Fatty acid transport proteins (FATPs) are a group of membrane-bound proteins that play a crucial role in the uptake and transport of long-chain fatty acids across the plasma membrane of cells. They are widely expressed in various tissues, including the heart, muscle, adipose tissue, and liver.

FATPs have several domains that enable them to perform their functions, including a cytoplasmic domain that binds to fatty acids, a transmembrane domain that spans the plasma membrane, and an ATP-binding cassette (ABC) domain that hydrolyzes ATP to provide energy for fatty acid transport.

FATPs also play a role in the regulation of intracellular lipid metabolism by modulating the activity of enzymes involved in fatty acid activation, desaturation, and elongation. Mutations in FATP genes have been associated with various metabolic disorders, including congenital deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), a rare autosomal recessive disorder that affects fatty acid oxidation.

In summary, fatty acid transport proteins are essential for the uptake and metabolism of long-chain fatty acids in cells and have implications in various metabolic disorders.

Palmitic acid is a type of saturated fatty acid, which is a common component in many foods and also produced naturally by the human body. Its chemical formula is C16H32O2. It's named after palm trees because it was first isolated from palm oil, although it can also be found in other vegetable oils, animal fats, and dairy products.

In the human body, palmitic acid plays a role in energy production and storage. However, consuming large amounts of this fatty acid has been linked to an increased risk of heart disease due to its association with elevated levels of bad cholesterol (LDL). The World Health Organization recommends limiting the consumption of saturated fats, including palmitic acid, to less than 10% of total energy intake.

Palmitic acid is a type of saturated fatty acid, which is a common component in many foods and also produced by the body. Its chemical formula is C16:0, indicating that it contains 16 carbon atoms and no double bonds. Palmitic acid is found in high concentrations in animal fats, such as butter, lard, and beef tallow, as well as in some vegetable oils, like palm kernel oil and coconut oil.

In the human body, palmitic acid can be synthesized from other substances or absorbed through the diet. It plays a crucial role in various biological processes, including energy storage, membrane structure formation, and signaling pathways regulation. However, high intake of palmitic acid has been linked to an increased risk of developing cardiovascular diseases due to its potential to raise low-density lipoprotein (LDL) cholesterol levels in the blood.

It is essential to maintain a balanced diet and consume palmitic acid-rich foods in moderation, along with regular exercise and a healthy lifestyle, to reduce the risk of chronic diseases.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Hepatectomy is a surgical procedure that involves the removal of part or all of the liver. This procedure can be performed for various reasons, such as removing cancerous or non-cancerous tumors, treating liver trauma, or donating a portion of the liver to another person in need of a transplant (live donor hepatectomy). The extent of the hepatectomy depends on the medical condition and overall health of the patient. It is a complex procedure that requires significant expertise and experience from the surgical team due to the liver's unique anatomy, blood supply, and regenerative capabilities.

Cytochrome P-450 CYP2E1 is a specific isoform of the cytochrome P-450 enzyme system, which is involved in the metabolism of various xenobiotics and endogenous compounds. This enzyme is primarily located in the liver and to some extent in other organs such as the lungs, brain, and kidneys.

CYP2E1 plays a significant role in the metabolic activation of several procarcinogens, including nitrosamines, polycyclic aromatic hydrocarbons, and certain solvents. It also contributes to the oxidation of various therapeutic drugs, such as acetaminophen, anesthetics, and anticonvulsants. Overexpression or induction of CYP2E1 has been linked to increased susceptibility to chemical-induced toxicity, carcinogenesis, and alcohol-related liver damage.

The activity of CYP2E1 can be influenced by various factors, including genetic polymorphisms, age, sex, smoking status, and exposure to certain chemicals or drugs. Understanding the regulation and function of this enzyme is crucial for predicting individual susceptibility to chemical-induced toxicities and diseases, as well as for optimizing drug therapy and minimizing adverse effects.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Fatty alcohols, also known as long-chain alcohols or long-chain fatty alcohols, are a type of fatty compound that contains a hydroxyl group (-OH) and a long alkyl chain. They are typically derived from natural sources such as plant and animal fats and oils, and can also be synthetically produced.

Fatty alcohols can vary in chain length, typically containing between 8 and 30 carbon atoms. They are commonly used in a variety of industrial and consumer products, including detergents, emulsifiers, lubricants, and personal care products. In the medical field, fatty alcohols may be used as ingredients in certain medications or topical treatments.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and peanut oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature with a slight odor. Oleic acid is an important component of human diet and has been shown to have various health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other industrial products.

Stearoyl-CoA desaturase (SCD) is an enzyme that plays a crucial role in the synthesis of monounsaturated fatty acids (MUFAs) in the body. Specifically, SCD catalyzes the conversion of saturated fatty acids, such as stearic acid and palmitic acid, into MUFAs by introducing a double bond into their carbon chain.

The two main isoforms of SCD in humans are SCD1 and SCD5, with SCD1 being the most well-studied. SCD1 is primarily located in the endoplasmic reticulum of cells in various tissues, including the liver, adipose tissue, and skin.

The regulation of SCD activity has important implications for human health, as MUFAs are essential components of cell membranes and play a role in maintaining their fluidity and functionality. Additionally, abnormal levels of SCD activity have been linked to several diseases, including obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. Therefore, understanding the function and regulation of SCD is an active area of research in the field of lipid metabolism and related diseases.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and grapeseed oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature. Oleic acid is an important component of human diet and has been shown to have potential health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other personal care products.

Trans fatty acids, also known as trans fats, are a type of unsaturated fat that occur in small amounts in nature, primarily in some animal-derived foods. However, most trans fats in the diet come from artificially produced trans fats, created through an industrial process called hydrogenation. This process converts liquid vegetable oils into solid or semi-solid fats, which are then used in a variety of food products for their functional properties and extended shelf life.

Artificial trans fats are formed when hydrogen is added to vegetable oil to make it more solid, a process called hydrogenation. Trans fats can raise levels of harmful LDL cholesterol and lower the level of beneficial HDL cholesterol. This can increase the risk of heart disease, stroke, and type 2 diabetes. Therefore, it is recommended to limit the intake of trans fats as much as possible. Many countries have implemented regulations to limit or ban the use of artificial trans fats in food products.

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults. It originates from the hepatocytes, which are the main functional cells of the liver. This type of cancer is often associated with chronic liver diseases such as cirrhosis caused by hepatitis B or C virus infection, alcohol abuse, non-alcoholic fatty liver disease (NAFLD), and aflatoxin exposure.

The symptoms of HCC can vary but may include unexplained weight loss, lack of appetite, abdominal pain or swelling, jaundice, and fatigue. The diagnosis of HCC typically involves imaging tests such as ultrasound, CT scan, or MRI, as well as blood tests to measure alpha-fetoprotein (AFP) levels. Treatment options for Hepatocellular carcinoma depend on the stage and extent of the cancer, as well as the patient's overall health and liver function. Treatment options may include surgery, radiation therapy, chemotherapy, targeted therapy, or liver transplantation.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Volatile fatty acids (VFA) are a type of fatty acid that have a low molecular weight and are known for their ability to evaporate at room temperature. They are produced in the body during the breakdown of carbohydrates and proteins in the absence of oxygen, such as in the digestive tract by certain bacteria.

The most common volatile fatty acids include acetic acid, propionic acid, and butyric acid. These compounds have various roles in the body, including providing energy to cells in the intestines, modulating immune function, and regulating the growth of certain bacteria. They are also used as precursors for the synthesis of other molecules, such as cholesterol and bile acids.

In addition to their role in the body, volatile fatty acids are also important in the food industry, where they are used as flavorings and preservatives. They are produced naturally during fermentation and aging processes, and are responsible for the distinctive flavors of foods such as yogurt, cheese, and wine.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Fructose is a simple monosaccharide, also known as "fruit sugar." It is a naturally occurring carbohydrate that is found in fruits, vegetables, and honey. Fructose has the chemical formula C6H12O6 and is a hexose, or six-carbon sugar.

Fructose is absorbed directly into the bloodstream during digestion and is metabolized primarily in the liver. It is sweeter than other sugars such as glucose and sucrose (table sugar), which makes it a popular sweetener in many processed foods and beverages. However, consuming large amounts of fructose can have negative health effects, including increasing the risk of obesity, diabetes, and heart disease.

Intra-abdominal fat, also known as visceral fat, is the fat that is stored within the abdominal cavity and surrounds the internal organs such as the liver, pancreas, and intestines. It's different from subcutaneous fat, which is the fat found just under the skin. Intra-abdominal fat is metabolically active and has been linked to an increased risk of various health conditions, including type 2 diabetes, heart disease, high blood pressure, and stroke. The accumulation of intra-abdominal fat can be influenced by factors such as diet, physical activity, genetics, and age. Waist circumference and imaging tests, such as CT scans and MRIs, are commonly used to measure intra-abdominal fat.

Hyperlipidemias are a group of disorders characterized by an excess of lipids (fats) or lipoproteins in the blood. These include elevated levels of cholesterol, triglycerides, or both. Hyperlipidemias can be inherited (primary) or caused by other medical conditions (secondary). They are a significant risk factor for developing cardiovascular diseases, such as atherosclerosis and coronary artery disease.

There are two main types of lipids that are commonly measured in the blood: low-density lipoprotein (LDL) cholesterol, often referred to as "bad" cholesterol, and high-density lipoprotein (HDL) cholesterol, known as "good" cholesterol. High levels of LDL cholesterol can lead to the formation of plaques in the arteries, which can narrow or block them and increase the risk of heart attack or stroke. On the other hand, high levels of HDL cholesterol are protective because they help remove LDL cholesterol from the bloodstream.

Triglycerides are another type of lipid that can be measured in the blood. Elevated triglyceride levels can also contribute to the development of cardiovascular disease, particularly when combined with high LDL cholesterol and low HDL cholesterol levels.

Hyperlipidemias are typically diagnosed through a blood test that measures the levels of various lipids and lipoproteins in the blood. Treatment may include lifestyle changes, such as following a healthy diet, getting regular exercise, losing weight, and quitting smoking, as well as medication to lower lipid levels if necessary.

Hep G2 cells are a type of human liver cancer cell line that were isolated from a well-differentiated hepatocellular carcinoma (HCC) in a patient with hepatitis C virus (HCV) infection. These cells have the ability to grow and divide indefinitely in culture, making them useful for research purposes. Hep G2 cells express many of the same markers and functions as normal human hepatocytes, including the ability to take up and process lipids and produce bile. They are often used in studies related to hepatitis viruses, liver metabolism, drug toxicity, and cancer biology. It is important to note that Hep G2 cells are tumorigenic and should be handled with care in a laboratory setting.

Lipase is an enzyme that is produced by the pancreas and found in the digestive system of most organisms. Its primary function is to catalyze the hydrolysis of fats (triglycerides) into smaller molecules, such as fatty acids and glycerol, which can then be absorbed by the intestines and utilized for energy or stored for later use.

In medical terms, lipase levels in the blood are often measured to diagnose or monitor conditions that affect the pancreas, such as pancreatitis (inflammation of the pancreas), pancreatic cancer, or cystic fibrosis. Elevated lipase levels may indicate damage to the pancreas and its ability to produce digestive enzymes.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

"Palmitates" are salts or esters of palmitic acid, a saturated fatty acid that is commonly found in animals and plants. Palmitates can be found in various substances, including cosmetics, food additives, and medications. For example, sodium palmitate is a common ingredient in soaps and detergents, while retinyl palmitate is a form of vitamin A used in skin care products and dietary supplements.

In a medical context, "palmitates" may be mentioned in the results of laboratory tests that measure lipid metabolism or in discussions of nutrition and dietary fats. However, it is important to note that "palmitates" themselves are not typically a focus of medical diagnosis or treatment, but rather serve as components of various substances that may have medical relevance.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

I cannot precisely define "obese mice" from a medical perspective because "obesity" is typically defined for humans and companion animals based on body weight relative to body size. However, I can provide you with relevant information regarding obese mice in a research or laboratory context.

Obesity in mice is often induced by providing them with a high-fat diet (HFD) to promote excessive weight gain and metabolic dysfunction. This allows researchers to study the effects of obesity on various health parameters, such as insulin resistance, inflammation, and cardiovascular function.

In laboratory settings, mice are often considered obese if their body weight is 10-20% higher than the average for their strain, age, and sex. Researchers also use body mass index (BMI) or body fat percentage to determine obesity in mice. For example:

* Body Mass Index (BMI): Mice with a BMI greater than 0.69 g/cm² are considered obese. To calculate BMI, divide the body weight in grams by the square of the nose-to-anus length in centimeters.
* Body Fat Percentage: Obesity can also be determined based on body fat percentage using non-invasive methods like magnetic resonance imaging (MRI) or computed tomography (CT) scans. Mice with more than 45% body fat are generally considered obese.

It is important to note that these thresholds may vary depending on the mouse strain, age, and sex. Researchers should consult relevant literature for their specific experimental setup when defining obesity in mice.

Transaminases, also known as aminotransferases, are a group of enzymes found in various tissues of the body, particularly in the liver, heart, muscle, and kidneys. They play a crucial role in the metabolism of amino acids, the building blocks of proteins.

There are two major types of transaminases: aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Both enzymes are normally present in low concentrations in the bloodstream. However, when tissues that contain these enzymes are damaged or injured, such as during liver disease or muscle damage, the levels of AST and ALT in the blood may significantly increase.

Measurement of serum transaminase levels is a common laboratory test used to assess liver function and detect liver injury or damage. Increased levels of these enzymes in the blood can indicate conditions such as hepatitis, liver cirrhosis, drug-induced liver injury, heart attack, and muscle disorders. It's important to note that while elevated transaminase levels may suggest liver disease, they do not specify the type or cause of the condition, and further diagnostic tests are often required for accurate diagnosis and treatment.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Fats, also known as lipids, are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. In the body, fats serve as a major fuel source, providing twice the amount of energy per gram compared to carbohydrates and proteins. They also play crucial roles in maintaining cell membrane structure and function, serving as precursors for various signaling molecules, and assisting in the absorption and transport of fat-soluble vitamins.

There are several types of fats:

1. Saturated fats: These fats contain no double bonds between their carbon atoms and are typically solid at room temperature. They are mainly found in animal products, such as meat, dairy, and eggs, as well as in some plant-based sources like coconut oil and palm kernel oil. Consuming high amounts of saturated fats can raise levels of harmful low-density lipoprotein (LDL) cholesterol in the blood, increasing the risk of heart disease.
2. Unsaturated fats: These fats contain one or more double bonds between their carbon atoms and are usually liquid at room temperature. They can be further divided into monounsaturated fats (one double bond) and polyunsaturated fats (two or more double bonds). Unsaturated fats, especially those from plant sources, tend to have beneficial effects on heart health by lowering LDL cholesterol levels and increasing high-density lipoprotein (HDL) cholesterol levels.
3. Trans fats: These are unsaturated fats that have undergone a process called hydrogenation, which adds hydrogen atoms to the double bonds, making them more saturated and solid at room temperature. Partially hydrogenated trans fats are commonly found in processed foods, such as baked goods, fried foods, and snack foods. Consumption of trans fats has been linked to increased risks of heart disease, stroke, and type 2 diabetes.
4. Omega-3 fatty acids: These are a specific type of polyunsaturated fat that is essential for human health. They cannot be synthesized by the body and must be obtained through diet. Omega-3 fatty acids have been shown to have numerous health benefits, including reducing inflammation, improving heart health, and supporting brain function.
5. Omega-6 fatty acids: These are another type of polyunsaturated fat that is essential for human health. They can be synthesized by the body but must also be obtained through diet. While omega-6 fatty acids are necessary for various bodily functions, excessive consumption can contribute to inflammation and other health issues. It is recommended to maintain a balanced ratio of omega-3 to omega-6 fatty acids in the diet.

Liver glycogen is the reserve form of glucose stored in hepatocytes (liver cells) for the maintenance of normal blood sugar levels. It is a polysaccharide, a complex carbohydrate, that is broken down into glucose molecules when blood glucose levels are low. This process helps to maintain the body's energy needs between meals and during periods of fasting or exercise. The amount of glycogen stored in the liver can vary depending on factors such as meal consumption, activity level, and insulin regulation.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Kupffer cells are specialized macrophages that reside in the liver, particularly in the sinusoids of the liver's blood circulation system. They play a crucial role in the immune system by engulfing and destroying bacteria, microorganisms, and other particles that enter the liver via the portal vein. Kupffer cells also contribute to the clearance of damaged red blood cells, iron metabolism, and the regulation of inflammation in the liver. They are named after the German pathologist Karl Wilhelm von Kupffer who first described them in 1876.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

I'm sorry for any confusion, but "Rats, Zucker" is not a standard medical term or abbreviation in human medicine. It seems to be an incorrect combination of two terms from the field of laboratory animal science.

1. "Rats" are commonly used laboratory animals.
2. "Zucker" is a surname and also refers to a strain of laboratory rats, specifically the Zucker Diabetic Fatty (ZDF) rat, which is a model for studying type 2 diabetes mellitus.

If you have any questions related to human medicine or healthcare, I would be happy to help clarify those for you.

Hepatomegaly is a medical term that refers to an enlargement of the liver beyond its normal size. The liver is usually located in the upper right quadrant of the abdomen and can be felt during a physical examination. A healthcare provider may detect hepatomegaly by palpating (examining through touch) the abdomen, noticing that the edge of the liver extends past the lower ribcage.

There are several possible causes for hepatomegaly, including:
- Fatty liver disease (both alcoholic and nonalcoholic)
- Hepatitis (viral or autoimmune)
- Liver cirrhosis
- Cancer (such as primary liver cancer, metastatic cancer, or lymphoma)
- Infections (e.g., bacterial, fungal, or parasitic)
- Heart failure and other cardiovascular conditions
- Genetic disorders (e.g., Gaucher's disease, Niemann-Pick disease, or Hunter syndrome)
- Metabolic disorders (e.g., glycogen storage diseases, hemochromatosis, or Wilson's disease)

Diagnosing the underlying cause of hepatomegaly typically involves a combination of medical history, physical examination, laboratory tests, and imaging studies like ultrasound, CT scan, or MRI. Treatment depends on the specific cause identified and may include medications, lifestyle changes, or, in some cases, surgical intervention.

Lipotropic agents are substances that help to promote the breakdown and removal of fats from the liver. They are often used in weight loss supplements because they can help to speed up the metabolism of fat and prevent the accumulation of excess fat in the liver. Some common lipotropic agents include methionine, choline, inositol, and betaine. These compounds work by increasing the production of lecithin, which helps to emulsify fats in the liver and facilitate their transport out of the body. Additionally, lipotropic agents can also help to protect the liver from damage caused by toxins such as alcohol and drugs.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Acetyl-CoA carboxylase (ACCA) is a biotin-dependent enzyme that plays a crucial role in fatty acid synthesis. It catalyzes the conversion of acetyl-CoA to malonyl-CoA, which is the first and rate-limiting step in the synthesis of long-chain fatty acids. The reaction catalyzed by ACCA is as follows:

acetyl-CoA + HCO3- + ATP + 2H+ --> malonyl-CoA + CoA + ADP + Pi + 2H2O

ACCA exists in two isoforms, a cytosolic form (ACC1) and a mitochondrial form (ACC2). ACC1 is primarily involved in fatty acid synthesis, while ACC2 is responsible for the regulation of fatty acid oxidation. The activity of ACCA is regulated by several factors, including phosphorylation/dephosphorylation, allosteric regulation, and transcriptional regulation. Dysregulation of ACCA has been implicated in various metabolic disorders, such as obesity, insulin resistance, and non-alcoholic fatty liver disease.

Lipid peroxidation is a process in which free radicals, such as reactive oxygen species (ROS), steal electrons from lipids containing carbon-carbon double bonds, particularly polyunsaturated fatty acids (PUFAs). This results in the formation of lipid hydroperoxides, which can decompose to form a variety of compounds including reactive carbonyl compounds, aldehydes, and ketones.

Malondialdehyde (MDA) is one such compound that is commonly used as a marker for lipid peroxidation. Lipid peroxidation can cause damage to cell membranes, leading to changes in their fluidity and permeability, and can also result in the modification of proteins and DNA, contributing to cellular dysfunction and ultimately cell death. It is associated with various pathological conditions such as atherosclerosis, neurodegenerative diseases, and cancer.

Ketosis is a metabolic state characterized by an elevated level of ketone bodies in the blood or tissues. Ketone bodies are alternative energy sources that are produced when the body breaks down fat for fuel, particularly when glucose levels are low or when carbohydrate intake is restricted. This condition often occurs during fasting, starvation, or high-fat, low-carbohydrate diets like the ketogenic diet. In a clinical setting, ketosis may be associated with diabetes management and monitoring. However, it's important to note that extreme or uncontrolled ketosis can lead to a dangerous condition called diabetic ketoacidosis (DKA), which requires immediate medical attention.

Stearic acid is not typically considered a medical term, but rather a chemical compound. It is a saturated fatty acid with the chemical formula C18H36O2. Stearic acid is commonly found in various foods such as animal fats and vegetable oils, including cocoa butter and palm oil.

In a medical context, stearic acid might be mentioned in relation to nutrition or cosmetics. For example, it may be listed as an ingredient in some skincare products or medications where it is used as an emollient or thickening agent. It's also worth noting that while stearic acid is a saturated fat, some studies suggest that it may have a more neutral effect on blood cholesterol levels compared to other saturated fats. However, this is still a topic of ongoing research and debate in the medical community.

An artificial liver is not a actual organ replacement but a device designed to perform some of the functions of a liver in patients with liver failure. These devices can be divided into two types: bioartificial and non-bioartificial. Non-bioartificial devices, such as hemodialysis machines and molecular adsorbent recirculating system (MARS), use physical and chemical processes to remove toxins from the blood. Bioartificial livers, on the other hand, contain living cells, usually hepatocytes, which can perform more advanced liver functions such as synthesizing proteins and drugs metabolism.

It's important to note that currently there is no FDA approved artificial liver device available for use in clinical practice. However, research and development of these devices are ongoing with the hope that they may provide a bridge to transplantation or recovery for patients with acute liver failure.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Adiponectin is a hormone that is produced and secreted by adipose tissue, which is another name for body fat. This hormone plays an important role in regulating metabolism and energy homeostasis. It helps to regulate glucose levels, break down fatty acids, and has anti-inflammatory effects.

Adiponectin is unique because it is exclusively produced by adipose tissue, and its levels are inversely related to body fat mass. This means that lean individuals tend to have higher levels of adiponectin than obese individuals. Low levels of adiponectin have been associated with an increased risk of developing various metabolic disorders, such as insulin resistance, type 2 diabetes, and cardiovascular disease.

Overall, adiponectin is an important hormone that plays a crucial role in maintaining metabolic health, and its levels may serve as a useful biomarker for assessing metabolic risk.

Carbon tetrachloride is a colorless, heavy, and nonflammable liquid with a mild ether-like odor. Its chemical formula is CCl4. It was previously used as a solvent and refrigerant, but its use has been largely phased out due to its toxicity and ozone-depleting properties.

Inhalation, ingestion, or skin contact with carbon tetrachloride can cause harmful health effects. Short-term exposure can lead to symptoms such as dizziness, headache, nausea, and vomiting. Long-term exposure has been linked to liver and kidney damage, as well as an increased risk of cancer.

Carbon tetrachloride is also a potent greenhouse gas and contributes to climate change. Its production and use are regulated by international agreements aimed at protecting human health and the environment.

Ethionine is a toxic, synthetic analog of the amino acid methionine. It is an antimetabolite that inhibits the enzyme methionine adenosyltransferase, which plays a crucial role in methionine metabolism. Ethionine is often used in research to study the effects of methionine deficiency and to create animal models of various human diseases. It is not a natural component of human nutrition and has no known medical uses. Prolonged exposure or high levels of ethionine can lead to liver damage, growth impairment, and other harmful health effects.

Body Mass Index (BMI) is a measure used to assess whether a person has a healthy weight for their height. It's calculated by dividing a person's weight in kilograms by the square of their height in meters. Here is the medical definition:

Body Mass Index (BMI) = weight(kg) / [height(m)]^2

According to the World Health Organization, BMI categories are defined as follows:

* Less than 18.5: Underweight
* 18.5-24.9: Normal or healthy weight
* 25.0-29.9: Overweight
* 30.0 and above: Obese

It is important to note that while BMI can be a useful tool for identifying weight issues in populations, it does have limitations when applied to individuals. For example, it may not accurately reflect body fat distribution or muscle mass, which can affect health risks associated with excess weight. Therefore, BMI should be used as one of several factors when evaluating an individual's health status and risk for chronic diseases.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

End-stage liver disease (ESLD) is a term used to describe advanced and irreversible liver damage, usually caused by chronic liver conditions such as cirrhosis, hepatitis, or alcoholic liver disease. At this stage, the liver can no longer function properly, leading to a range of serious complications.

The symptoms of ESLD may include:

* Jaundice (yellowing of the skin and eyes)
* Ascites (accumulation of fluid in the abdomen)
* Encephalopathy (confusion, drowsiness, or coma caused by the buildup of toxins in the brain)
* Bleeding from the gastrointestinal tract
* Infections
* Kidney failure

Treatment for ESLD typically focuses on managing symptoms and preventing complications. In some cases, a liver transplant may be necessary to improve survival. However, due to the shortage of available donor livers, many people with ESLD are not eligible for transplantation. The prognosis for individuals with ESLD is generally poor, with a median survival time of less than one year.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Diabetes Mellitus, Type 2 is a metabolic disorder characterized by high blood glucose (or sugar) levels resulting from the body's inability to produce sufficient amounts of insulin or effectively use the insulin it produces. This form of diabetes usually develops gradually over several years and is often associated with older age, obesity, physical inactivity, family history of diabetes, and certain ethnicities.

In Type 2 diabetes, the body's cells become resistant to insulin, meaning they don't respond properly to the hormone. As a result, the pancreas produces more insulin to help glucose enter the cells. Over time, the pancreas can't keep up with the increased demand, leading to high blood glucose levels and diabetes.

Type 2 diabetes is managed through lifestyle modifications such as weight loss, regular exercise, and a healthy diet. Medications, including insulin therapy, may also be necessary to control blood glucose levels and prevent long-term complications associated with the disease, such as heart disease, nerve damage, kidney damage, and vision loss.

Eicosapentaenoic acid (EPA) is a type of omega-3 fatty acid that is found in fish and some algae. It is a 20-carbon long polyunsaturated fatty acid with five double bonds, and has the chemical formula C20:5 n-3. EPA is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet.

EPA is a precursor to a group of hormone-like substances called eicosanoids, which include prostaglandins, thromboxanes, and leukotrienes. These compounds play important roles in regulating various physiological processes, such as inflammation, blood clotting, and immune function.

EPA has been studied for its potential health benefits, including reducing inflammation, lowering the risk of heart disease, and improving symptoms of depression. It is often taken as a dietary supplement in the form of fish oil or algal oil. However, it is important to note that while some studies have suggested potential health benefits of EPA, more research is needed to confirm these effects and establish recommended dosages.

PPAR-alpha (Peroxisome Proliferator-Activated Receptor alpha) is a type of nuclear receptor protein that functions as a transcription factor, regulating the expression of specific genes involved in lipid metabolism. It plays a crucial role in the breakdown of fatty acids and the synthesis of high-density lipoproteins (HDL or "good" cholesterol) in the liver. PPAR-alpha activation also has anti-inflammatory effects, making it a potential therapeutic target for metabolic disorders such as diabetes, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD).

Hepatic stellate cells, also known as Ito cells or lipocytes, are specialized perisinusoidal cells located in the space of Disse in the liver. They play a crucial role in maintaining the normal architecture and function of the liver. In response to liver injury or disease, these cells can become activated and transform into myofibroblasts, which produce extracellular matrix components and contribute to fibrosis and scarring in the liver. This activation process is regulated by various signaling pathways and mediators, including cytokines, growth factors, and oxidative stress. Hepatic stellate cells also have the ability to store vitamin A and lipids, which they can release during activation to support hepatocyte function and regeneration.

HELLP syndrome is a serious complication in pregnancy, characterized by Hemolysis (the breakdown of red blood cells), Elevated Liver enzymes, and Low Platelet count. It is often considered a variant of severe preeclampsia or eclampsia, although it can also occur without these conditions.

The symptoms of HELLP syndrome include headache, nausea and vomiting, upper right abdominal pain, and visual disturbances. It can lead to serious complications for both the mother and the baby, such as liver failure, placental abruption, disseminated intravascular coagulation (DIC), and even death if not promptly diagnosed and treated.

The exact cause of HELLP syndrome is not known, but it is thought to be related to problems with the blood vessels that supply the placenta. Treatment typically involves delivering the baby as soon as possible, even if the baby is premature. Women who have had HELLP syndrome are at increased risk for complications in future pregnancies.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Fasting is defined in medical terms as the abstinence from food or drink for a period of time. This practice is often recommended before certain medical tests or procedures, as it helps to ensure that the results are not affected by recent eating or drinking.

In some cases, fasting may also be used as a therapeutic intervention, such as in the management of seizures or other neurological conditions. Fasting can help to lower blood sugar and insulin levels, which can have a variety of health benefits. However, it is important to note that prolonged fasting can also have negative effects on the body, including malnutrition, dehydration, and electrolyte imbalances.

Fasting is also a spiritual practice in many religions, including Christianity, Islam, Buddhism, and Hinduism. In these contexts, fasting is often seen as a way to purify the mind and body, to focus on spiritual practices, or to express devotion or mourning.

Hypertriglyceridemia is a medical condition characterized by an elevated level of triglycerides in the blood. Triglycerides are a type of fat (lipid) found in your blood that can increase the risk of developing heart disease, especially when levels are very high.

In general, hypertriglyceridemia is defined as having triglyceride levels greater than 150 milligrams per deciliter (mg/dL) of blood. However, the specific definition of hypertriglyceridemia may vary depending on individual risk factors and medical history.

Hypertriglyceridemia can be caused by a variety of factors, including genetics, obesity, physical inactivity, excessive alcohol consumption, and certain medications. In some cases, it may also be a secondary consequence of other medical conditions such as diabetes or hypothyroidism. Treatment for hypertriglyceridemia typically involves lifestyle modifications such as dietary changes, increased exercise, and weight loss, as well as medication if necessary.

Acyl Coenzyme A (often abbreviated as Acetyl-CoA or Acyl-CoA) is a crucial molecule in metabolism, particularly in the breakdown and oxidation of fats and carbohydrates to produce energy. It is a thioester compound that consists of a fatty acid or an acetate group linked to coenzyme A through a sulfur atom.

Acyl CoA plays a central role in several metabolic pathways, including:

1. The citric acid cycle (Krebs cycle): In the mitochondria, Acyl-CoA is formed from the oxidation of fatty acids or the breakdown of certain amino acids. This Acyl-CoA then enters the citric acid cycle to produce high-energy electrons, which are used in the electron transport chain to generate ATP (adenosine triphosphate), the main energy currency of the cell.
2. Beta-oxidation: The breakdown of fatty acids occurs in the mitochondria through a process called beta-oxidation, where Acyl-CoA is sequentially broken down into smaller units, releasing acetyl-CoA, which then enters the citric acid cycle.
3. Ketogenesis: In times of low carbohydrate availability or during prolonged fasting, the liver can produce ketone bodies from acetyl-CoA to supply energy to other organs, such as the brain and heart.
4. Protein synthesis: Acyl-CoA is also involved in the modification of proteins by attaching fatty acid chains to them (a process called acetylation), which can influence protein function and stability.

In summary, Acyl Coenzyme A is a vital molecule in metabolism that connects various pathways related to energy production, fatty acid breakdown, and protein modification.

Acetates, in a medical context, most commonly refer to compounds that contain the acetate group, which is an functional group consisting of a carbon atom bonded to two hydrogen atoms and an oxygen atom (-COO-). An example of an acetate is sodium acetate (CH3COONa), which is a salt formed from acetic acid (CH3COOH) and is often used as a buffering agent in medical solutions.

Acetates can also refer to a group of medications that contain acetate as an active ingredient, such as magnesium acetate, which is used as a laxative, or calcium acetate, which is used to treat high levels of phosphate in the blood.

In addition, acetates can also refer to a process called acetylation, which is the addition of an acetyl group (-COCH3) to a molecule. This process can be important in the metabolism and regulation of various substances within the body.

Fish oils are a type of fat or lipid derived from the tissues of oily fish. They are a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These fatty acids have been associated with various health benefits such as reducing inflammation, decreasing the risk of heart disease, improving brain function, and promoting eye health. Fish oils can be consumed through diet or taken as a dietary supplement in the form of capsules or liquid. It is important to note that while fish oils have potential health benefits, they should not replace a balanced diet and medical advice should be sought before starting any supplementation.

In chemistry, an alcohol is a broad term that refers to any organic compound characterized by the presence of a hydroxyl (-OH) functional group attached to a carbon atom. This means that alcohols are essentially hydrocarbons with a hydroxyl group. The simplest alcohol is methanol (CH3OH), and ethanol (C2H5OH), also known as ethyl alcohol, is the type of alcohol found in alcoholic beverages.

In the context of medical definitions, alcohol primarily refers to ethanol, which has significant effects on the human body when consumed. Ethanol can act as a central nervous system depressant, leading to various physiological and psychological changes depending on the dose and frequency of consumption. Excessive or prolonged use of ethanol can result in various health issues, including addiction, liver disease, neurological damage, and increased risk of injuries due to impaired judgment and motor skills.

It is important to note that there are other types of alcohols (e.g., methanol, isopropyl alcohol) with different chemical structures and properties, but they are not typically consumed by humans and can be toxic or even lethal in high concentrations.

Bilirubin is a yellowish pigment that is produced by the liver when it breaks down old red blood cells. It is a normal byproduct of hemoglobin metabolism and is usually conjugated (made water-soluble) in the liver before being excreted through the bile into the digestive system. Elevated levels of bilirubin can cause jaundice, a yellowing of the skin and eyes. Increased bilirubin levels may indicate liver disease or other medical conditions such as gallstones or hemolysis. It is also measured to assess liver function and to help diagnose various liver disorders.

VLDL (Very Low-Density Lipoproteins) are a type of lipoprotein that play a crucial role in the transport and metabolism of fat molecules, known as triglycerides, in the body. They are produced by the liver and consist of a core of triglycerides surrounded by a shell of proteins called apolipoproteins, phospholipids, and cholesterol.

VLDL particles are responsible for delivering fat molecules from the liver to peripheral tissues throughout the body, where they can be used as an energy source or stored for later use. During this process, VLDL particles lose triglycerides and acquire more cholesterol, transforming into intermediate-density lipoproteins (IDL) and eventually low-density lipoproteins (LDL), which are also known as "bad" cholesterol.

Elevated levels of VLDL in the blood can contribute to the development of cardiovascular disease due to their association with increased levels of triglycerides and LDL cholesterol, as well as decreased levels of high-density lipoproteins (HDL), which are considered "good" cholesterol.

Ketone bodies, also known as ketones or ketoacids, are organic compounds that are produced by the liver during the metabolism of fats when carbohydrate intake is low. They include acetoacetate (AcAc), beta-hydroxybutyrate (BHB), and acetone. These molecules serve as an alternative energy source for the body, particularly for the brain and heart, when glucose levels are insufficient to meet energy demands.

In a healthy individual, ketone bodies are present in low concentrations; however, during periods of fasting, starvation, or intense physical exertion, ketone production increases significantly. In some pathological conditions like uncontrolled diabetes mellitus, the body may produce excessive amounts of ketones, leading to a dangerous metabolic state called diabetic ketoacidosis (DKA).

Elevated levels of ketone bodies can be detected in blood or urine and are often used as an indicator of metabolic status. Monitoring ketone levels is essential for managing certain medical conditions, such as diabetes, where maintaining optimal ketone concentrations is crucial to prevent complications.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It plays a crucial role in various biological processes, including:

1. Protein synthesis: Methionine is one of the building blocks of proteins, helping to create new proteins and maintain the structure and function of cells.
2. Methylation: Methionine serves as a methyl group donor in various biochemical reactions, which are essential for DNA synthesis, gene regulation, and neurotransmitter production.
3. Antioxidant defense: Methionine can be converted to cysteine, which is involved in the formation of glutathione, a potent antioxidant that helps protect cells from oxidative damage.
4. Homocysteine metabolism: Methionine is involved in the conversion of homocysteine back to methionine through a process called remethylation, which is essential for maintaining normal homocysteine levels and preventing cardiovascular disease.
5. Fat metabolism: Methionine helps facilitate the breakdown and metabolism of fats in the body.

Foods rich in methionine include meat, fish, dairy products, eggs, and some nuts and seeds.

Parturient paresis, also known as Eclampsia or Puerperal eclampsia, is a serious condition that can occur during pregnancy or after childbirth. It is characterized by the onset of seizures (convulsions) and coma in a woman who has previously developed high blood pressure and proteinuria (protein in the urine) – a condition known as preeclampsia.

Eclampsia is considered a medical emergency, and it can lead to severe complications for both the mother and the baby if not promptly treated. The exact cause of eclampsia is not fully understood, but it is thought to be related to problems with the blood vessels that supply the placenta.

Symptoms of eclampsia include high blood pressure, severe headaches, visual disturbances, nausea and vomiting, and sudden weight gain. If left untreated, eclampsia can lead to serious complications such as brain damage, stroke, kidney failure, and even death for the mother and the baby.

Treatment typically involves close monitoring of the mother and the baby, medication to control seizures and lower blood pressure, and delivery of the baby if necessary. In some cases, eclampsia may occur after the baby has been delivered, in which case it is known as postpartum eclampsia.

Fructokinase is an enzyme that phosphorylates fructose into fructose-1-phosphate in the metabolism of dietary sugars. It plays a crucial role in fructose metabolism, particularly in the liver, kidneys, and intestines. In humans, there are several isoforms of fructokinase, including ketohexokinase (KHK-A and KHK-C) and liver fructokinase (KHK-B). Disorders in fructose metabolism, such as hereditary fructose intolerance, can result from mutations in the gene encoding for fructokinase.

Dietary carbohydrates refer to the organic compounds in food that are primarily composed of carbon, hydrogen, and oxygen atoms, with a general formula of Cm(H2O)n. They are one of the three main macronutrients, along with proteins and fats, that provide energy to the body.

Carbohydrates can be classified into two main categories: simple carbohydrates (also known as simple sugars) and complex carbohydrates (also known as polysaccharides).

Simple carbohydrates are made up of one or two sugar molecules, such as glucose, fructose, and lactose. They are quickly absorbed by the body and provide a rapid source of energy. Simple carbohydrates are found in foods such as fruits, vegetables, dairy products, and sweeteners like table sugar, honey, and maple syrup.

Complex carbohydrates, on the other hand, are made up of long chains of sugar molecules that take longer to break down and absorb. They provide a more sustained source of energy and are found in foods such as whole grains, legumes, starchy vegetables, and nuts.

It is recommended that adults consume between 45-65% of their daily caloric intake from carbohydrates, with a focus on complex carbohydrates and limiting added sugars.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Dyslipidemia is a condition characterized by an abnormal amount of cholesterol and/or triglycerides in the blood. It can be caused by genetic factors, lifestyle habits such as poor diet and lack of exercise, or other medical conditions such as diabetes or hypothyroidism.

There are several types of dyslipidemias, including:

1. Hypercholesterolemia: This is an excess of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, in the blood. High levels of LDL cholesterol can lead to the formation of plaque in the arteries, increasing the risk of heart disease and stroke.
2. Hypertriglyceridemia: This is an excess of triglycerides, a type of fat found in the blood, which can also contribute to the development of plaque in the arteries.
3. Mixed dyslipidemia: This is a combination of high LDL cholesterol and high triglycerides.
4. Low high-density lipoprotein (HDL) cholesterol: HDL cholesterol, also known as "good" cholesterol, helps remove LDL cholesterol from the blood. Low levels of HDL cholesterol can increase the risk of heart disease and stroke.

Dyslipidemias often do not cause any symptoms but can be detected through a blood test that measures cholesterol and triglyceride levels. Treatment typically involves lifestyle changes such as eating a healthy diet, getting regular exercise, and quitting smoking. In some cases, medication may also be necessary to lower cholesterol or triglyceride levels.

Diacylglycerol O-Acyltransferase (DGAT) is an enzyme that catalyzes the final step in triacylglycerol synthesis, which is the formation of diacylglycerol and fatty acyl-CoA into triacylglycerol. This enzyme plays a crucial role in lipid metabolism and energy storage in cells. There are two main types of DGAT enzymes, DGAT1 and DGAT2, which share limited sequence similarity but have similar functions. Inhibition of DGAT has been explored as a potential therapeutic strategy for the treatment of obesity and related metabolic disorders.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Coenzyme A (CoA) ligases, also known as CoA synthetases, are a class of enzymes that activate acyl groups, such as fatty acids and amino acids, by forming a thioester bond with coenzyme A. This activation is an essential step in various metabolic pathways, including fatty acid oxidation, amino acid catabolism, and the synthesis of several important compounds like steroids and acetylcholine.

CoA ligases catalyze the following reaction:

acyl group + ATP + CoA ↔ acyl-CoA + AMP + PP~i~

In this reaction, an acyl group (R-) from a carboxylic acid is linked to the thiol (-SH) group of coenzyme A through a high-energy thioester bond. The energy required for this activation is provided by the hydrolysis of ATP to AMP and inorganic pyrophosphate (PP~i~).

CoA ligases are classified into three main types based on the nature of the acyl group they activate:

1. Acyl-CoA synthetases (or long-chain fatty acid CoA ligases) activate long-chain fatty acids, typically containing 12 or more carbon atoms.
2. Aminoacyl-CoA synthetases activate amino acids to form aminoacyl-CoAs, which are essential intermediates in the catabolism of certain amino acids.
3. Short-chain specific CoA ligases activate short-chain fatty acids (up to 6 carbon atoms) and other acyl groups like acetate or propionate.

These enzymes play a crucial role in maintaining cellular energy homeostasis, metabolism, and the synthesis of various essential biomolecules.

Vitamin B deficiency refers to a condition where an individual's body lacks adequate amounts of one or more essential Vitamin B compounds, including Vitamin B1 (thiamin), Vitamin B2 (riboflavin), Vitamin B3 (niacin), Vitamin B5 (pantothenic acid), Vitamin B6 (pyridoxine), Vitamin B7 (biotin), Vitamin B9 (folate), and Vitamin B12 (cobalamin). These water-soluble vitamins play crucial roles in various bodily functions, such as energy production, nerve function, DNA repair, and the formation of red blood cells.

Deficiency in any of these Vitamin B compounds can lead to specific health issues. For instance:

1. Vitamin B1 (thiamin) deficiency can cause beriberi, a condition characterized by muscle weakness, peripheral neuropathy, and heart failure.
2. Vitamin B2 (riboflavin) deficiency may result in ariboflavinosis, which presents with inflammation of the mouth and tongue, anemia, and skin disorders.
3. Vitamin B3 (niacin) deficiency can lead to pellagra, marked by diarrhea, dermatitis, dementia, and, if left untreated, death.
4. Vitamin B5 (pantothenic acid) deficiency is rare but can cause acne-like skin lesions and neurological symptoms.
5. Vitamin B6 (pyridoxine) deficiency may result in anemia, peripheral neuropathy, seizures, and skin disorders.
6. Vitamin B7 (biotin) deficiency can cause hair loss, skin rashes, and neurological symptoms.
7. Vitamin B9 (folate) deficiency can lead to megaloblastic anemia, neural tube defects in fetuses during pregnancy, and increased homocysteine levels, which may contribute to cardiovascular disease.
8. Vitamin B12 (cobalamin) deficiency can cause pernicious anemia, characterized by fatigue, weakness, neurological symptoms, and, if left untreated, irreversible nerve damage.

Deficiencies in these vitamins can arise from inadequate dietary intake, malabsorption syndromes, or certain medications that interfere with absorption or metabolism. It is essential to maintain a balanced diet and consider supplementation if necessary under the guidance of a healthcare professional.

Hypobetalipoproteinemias are a group of genetic disorders characterized by low levels of betalipoproteins, including low-density lipoprotein (LDL) and/or apolipoprotein B (apoB), in the blood. These conditions can lead to decreased absorption and transportation of dietary fats and fat-soluble vitamins, such as vitamin E and A.

There are two main types of hypobetalipoproteinemias:

1. Type I (also known as Abetalipoproteinemia): This is a rare autosomal recessive disorder caused by mutations in the microsomal triglyceride transfer protein (MTTP) gene. It results in almost undetectable levels of LDL, apoB, and chylomicrons in the blood. Symptoms typically appear in infancy or early childhood and include fat malabsorption, steatorrhea (fatty stools), and failure to thrive. Additionally, individuals with type I hypobetalipoproteinemia may develop neurological symptoms such as ataxia, neuropathy, and retinitis pigmentosa due to vitamin E deficiency.
2. Type II (also known as Homozygous or Compound Heterozygous Hypobetalipoproteinemia): This is a less severe form of the disorder caused by mutations in the APOB gene, which encodes apolipoprotein B. It leads to reduced levels of LDL and apoB but not as dramatically low as in type I. Symptoms may include mild fat malabsorption, decreased blood cholesterol levels, and an increased risk of developing fatty liver disease (hepatic steatosis). Neurological symptoms are less common than in type I hypobetalipoproteinemia.

Early diagnosis and treatment of hypobetalipoproteinemias, particularly type I, are crucial to prevent severe complications associated with fat-soluble vitamin deficiencies and neurological damage. Treatment typically involves dietary modifications, including supplementation with high doses of fat-soluble vitamins (A, D, E, and K).

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

PPAR gamma, or Peroxisome Proliferator-Activated Receptor gamma, is a nuclear receptor protein that functions as a transcription factor. It plays a crucial role in the regulation of genes involved in adipogenesis (the process of forming mature fat cells), lipid metabolism, insulin sensitivity, and glucose homeostasis. PPAR gamma is primarily expressed in adipose tissue but can also be found in other tissues such as the immune system, large intestine, and brain.

PPAR gamma forms a heterodimer with another nuclear receptor protein, RXR (Retinoid X Receptor), and binds to specific DNA sequences called PPREs (Peroxisome Proliferator Response Elements) in the promoter regions of target genes. Upon binding, PPAR gamma modulates the transcription of these genes, either activating or repressing their expression.

Agonists of PPAR gamma, such as thiazolidinediones (TZDs), are used clinically to treat type 2 diabetes due to their insulin-sensitizing effects. These drugs work by binding to and activating PPAR gamma, which in turn leads to the upregulation of genes involved in glucose uptake and metabolism in adipose tissue and skeletal muscle.

In summary, PPAR gamma is a nuclear receptor protein that regulates gene expression related to adipogenesis, lipid metabolism, insulin sensitivity, and glucose homeostasis. Its activation has therapeutic implications for the treatment of type 2 diabetes and other metabolic disorders.

The portal vein is the large venous trunk that carries blood from the gastrointestinal tract, spleen, pancreas, and gallbladder to the liver. It is formed by the union of the superior mesenteric vein (draining the small intestine and a portion of the large intestine) and the splenic vein (draining the spleen and pancreas). The portal vein then divides into right and left branches within the liver, where the blood flows through the sinusoids and gets enriched with oxygen and nutrients before being drained by the hepatic veins into the inferior vena cava. This unique arrangement allows the liver to process and detoxify the absorbed nutrients, remove waste products, and regulate metabolic homeostasis.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

Leptin is a hormone primarily produced and released by adipocytes, which are the fat cells in our body. It plays a crucial role in regulating energy balance and appetite by sending signals to the brain when the body has had enough food. This helps control body weight by suppressing hunger and increasing energy expenditure. Leptin also influences various metabolic processes, including glucose homeostasis, neuroendocrine function, and immune response. Defects in leptin signaling can lead to obesity and other metabolic disorders.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Acyl-CoA oxidase is an enzyme that plays a crucial role in the breakdown of fatty acids within the body. It is located in the peroxisomes, which are small organelles found in the cells of living organisms. The primary function of acyl-CoA oxidase is to catalyze the initial step in the beta-oxidation of fatty acids, a process that involves the sequential removal of two-carbon units from fatty acid molecules in the form of acetyl-CoA.

The reaction catalyzed by acyl-CoA oxidase is as follows:

acyl-CoA + FAD → trans-2,3-dehydroacyl-CoA + FADH2 + H+

In this reaction, the enzyme removes a hydrogen atom from the fatty acyl-CoA molecule and transfers it to its cofactor, flavin adenine dinucleotide (FAD). This results in the formation of trans-2,3-dehydroacyl-CoA, FADH2, and a proton. The FADH2 produced during this reaction can then be used to generate ATP through the electron transport chain, while the trans-2,3-dehydroacyl-CoA undergoes further reactions in the beta-oxidation pathway.

There are two main isoforms of acyl-CoA oxidase found in humans: ACOX1 and ACOX2. ACOX1 is primarily responsible for oxidizing straight-chain fatty acids, while ACOX2 specializes in the breakdown of branched-chain fatty acids. Mutations in the genes encoding these enzymes can lead to various metabolic disorders, such as peroxisomal biogenesis disorders and Refsum disease.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Esters are organic compounds that are formed by the reaction between an alcohol and a carboxylic acid. They are widely found in nature and are used in various industries, including the production of perfumes, flavors, and pharmaceuticals. In the context of medical definitions, esters may be mentioned in relation to their use as excipients in medications or in discussions of organic chemistry and biochemistry. Esters can also be found in various natural substances such as fats and oils, which are triesters of glycerol and fatty acids.

The Cytochrome P-450 (CYP450) enzyme system is a group of enzymes found primarily in the liver, but also in other organs such as the intestines, lungs, and skin. These enzymes play a crucial role in the metabolism and biotransformation of various substances, including drugs, environmental toxins, and endogenous compounds like hormones and fatty acids.

The name "Cytochrome P-450" refers to the unique property of these enzymes to bind to carbon monoxide (CO) and form a complex that absorbs light at a wavelength of 450 nm, which can be detected spectrophotometrically.

The CYP450 enzyme system is involved in Phase I metabolism of xenobiotics, where it catalyzes oxidation reactions such as hydroxylation, dealkylation, and epoxidation. These reactions introduce functional groups into the substrate molecule, which can then undergo further modifications by other enzymes during Phase II metabolism.

There are several families and subfamilies of CYP450 enzymes, each with distinct substrate specificities and functions. Some of the most important CYP450 enzymes include:

1. CYP3A4: This is the most abundant CYP450 enzyme in the human liver and is involved in the metabolism of approximately 50% of all drugs. It also metabolizes various endogenous compounds like steroids, bile acids, and vitamin D.
2. CYP2D6: This enzyme is responsible for the metabolism of many psychotropic drugs, including antidepressants, antipsychotics, and beta-blockers. It also metabolizes some endogenous compounds like dopamine and serotonin.
3. CYP2C9: This enzyme plays a significant role in the metabolism of warfarin, phenytoin, and nonsteroidal anti-inflammatory drugs (NSAIDs).
4. CYP2C19: This enzyme is involved in the metabolism of proton pump inhibitors, antidepressants, and clopidogrel.
5. CYP2E1: This enzyme metabolizes various xenobiotics like alcohol, acetaminophen, and carbon tetrachloride, as well as some endogenous compounds like fatty acids and prostaglandins.

Genetic polymorphisms in CYP450 enzymes can significantly affect drug metabolism and response, leading to interindividual variability in drug efficacy and toxicity. Understanding the role of CYP450 enzymes in drug metabolism is crucial for optimizing pharmacotherapy and minimizing adverse effects.

A Glucose Tolerance Test (GTT) is a medical test used to diagnose prediabetes, type 2 diabetes, and gestational diabetes. It measures how well your body is able to process glucose, which is a type of sugar.

During the test, you will be asked to fast (not eat or drink anything except water) for at least eight hours before the test. Then, a healthcare professional will take a blood sample to measure your fasting blood sugar level. After that, you will be given a sugary drink containing a specific amount of glucose. Your blood sugar levels will be measured again after two hours and sometimes also after one hour.

The results of the test will indicate how well your body is able to process the glucose and whether you have normal, impaired, or diabetic glucose tolerance. If your blood sugar levels are higher than normal but not high enough to be diagnosed with diabetes, you may have prediabetes, which means that you are at increased risk of developing type 2 diabetes in the future.

It is important to note that a Glucose Tolerance Test should be performed under the supervision of a healthcare professional, as high blood sugar levels can be dangerous if not properly managed.

Alcoholic hepatitis is a medical condition characterized by inflammation and damage to the liver caused by excessive alcohol consumption. It is a type of hepatitis that specifically results from alcohol abuse, rather than from viral infections or other causes. The condition can vary in severity, and long-term heavy drinking increases the risk of developing alcoholic hepatitis.

The inflammation in alcoholic hepatitis can lead to symptoms such as jaundice (yellowing of the skin and eyes), abdominal pain, nausea, vomiting, loss of appetite, and fever. In severe cases, it can cause liver failure, which may be life-threatening. Treatment typically involves alcohol abstinence, supportive care, and medications to manage symptoms and prevent further liver damage. In some cases, hospitalization and more intensive treatments may be necessary.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Glycerol-3-Phosphate O-Acyltransferase (GPAT) is an enzyme that plays a crucial role in the biosynthesis of triacylglycerols and phospholipids, which are major components of cellular membranes and energy storage molecules. The GPAT enzyme catalyzes the initial and rate-limiting step in the glycerolipid synthesis pathway, specifically the transfer of an acyl group from an acyl-CoA donor to the sn-1 position of glycerol-3-phosphate, forming lysophosphatidic acid (LPA). This reaction is essential for the production of various glycerolipids, including phosphatidic acid, diacylglycerol, and triacylglycerol. There are four isoforms of GPAT (GPAT1-4) in humans, each with distinct subcellular localizations and functions. Dysregulation of GPAT activity has been implicated in several pathological conditions, such as metabolic disorders, cardiovascular diseases, and cancers.

Energy metabolism is the process by which living organisms produce and consume energy to maintain life. It involves a series of chemical reactions that convert nutrients from food, such as carbohydrates, fats, and proteins, into energy in the form of adenosine triphosphate (ATP).

The process of energy metabolism can be divided into two main categories: catabolism and anabolism. Catabolism is the breakdown of nutrients to release energy, while anabolism is the synthesis of complex molecules from simpler ones using energy.

There are three main stages of energy metabolism: glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative phosphorylation. Glycolysis occurs in the cytoplasm of the cell and involves the breakdown of glucose into pyruvate, producing a small amount of ATP and nicotinamide adenine dinucleotide (NADH). The citric acid cycle takes place in the mitochondria and involves the further breakdown of pyruvate to produce more ATP, NADH, and carbon dioxide. Oxidative phosphorylation is the final stage of energy metabolism and occurs in the inner mitochondrial membrane. It involves the transfer of electrons from NADH and other electron carriers to oxygen, which generates a proton gradient across the membrane. This gradient drives the synthesis of ATP, producing the majority of the cell's energy.

Overall, energy metabolism is a complex and essential process that allows organisms to grow, reproduce, and maintain their bodily functions. Disruptions in energy metabolism can lead to various diseases, including diabetes, obesity, and neurodegenerative disorders.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Choline is an essential nutrient that is vital for the normal functioning of all cells, particularly those in the brain and liver. It is a water-soluble compound that is neither a vitamin nor a mineral, but is often grouped with vitamins because it has many similar functions. Choline is a precursor to the neurotransmitter acetylcholine, which plays an important role in memory, mood, and other cognitive processes. It also helps to maintain the structural integrity of cell membranes and is involved in the transport and metabolism of fats.

Choline can be synthesized by the body in small amounts, but it is also found in a variety of foods such as eggs, meat, fish, nuts, and cruciferous vegetables. Some people may require additional choline through supplementation, particularly if they follow a vegetarian or vegan diet, are pregnant or breastfeeding, or have certain medical conditions that affect choline metabolism.

Deficiency in choline can lead to a variety of health problems, including liver disease, muscle damage, and neurological disorders. On the other hand, excessive intake of choline can cause fishy body odor, sweating, and gastrointestinal symptoms such as diarrhea and vomiting. It is important to maintain adequate levels of choline through a balanced diet and, if necessary, supplementation under the guidance of a healthcare professional.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Carnitine is a naturally occurring substance in the body that plays a crucial role in energy production. It transports long-chain fatty acids into the mitochondria, where they can be broken down to produce energy. Carnitine is also available as a dietary supplement and is often used to treat or prevent carnitine deficiency.

The medical definition of Carnitine is:

"A quaternary ammonium compound that occurs naturally in animal tissues, especially in muscle, heart, brain, and liver. It is essential for the transport of long-chain fatty acids into the mitochondria, where they can be oxidized to produce energy. Carnitine also functions as an antioxidant and has been studied as a potential treatment for various conditions, including heart disease, diabetes, and kidney disease."

Carnitine is also known as L-carnitine or levocarnitine. It can be found in foods such as red meat, dairy products, fish, poultry, and tempeh. In the body, carnitine is synthesized from the amino acids lysine and methionine with the help of vitamin C and iron. Some people may have a deficiency in carnitine due to genetic factors, malnutrition, or certain medical conditions, such as kidney disease or liver disease. In these cases, supplementation may be necessary to prevent or treat symptoms of carnitine deficiency.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Antioxidants are substances that can prevent or slow damage to cells caused by free radicals, which are unstable molecules that the body produces as a reaction to environmental and other pressures. Antioxidants are able to neutralize free radicals by donating an electron to them, thus stabilizing them and preventing them from causing further damage to the cells.

Antioxidants can be found in a variety of foods, including fruits, vegetables, nuts, and grains. Some common antioxidants include vitamins C and E, beta-carotene, and selenium. Antioxidants are also available as dietary supplements.

In addition to their role in protecting cells from damage, antioxidants have been studied for their potential to prevent or treat a number of health conditions, including cancer, heart disease, and age-related macular degeneration. However, more research is needed to fully understand the potential benefits and risks of using antioxidant supplements.

Adipokines are hormones and signaling molecules produced by adipose tissue, which is composed of adipocytes (fat cells) and stromal vascular fraction (SVF) that includes preadipocytes, fibroblasts, immune cells, and endothelial cells. Adipokines play crucial roles in various biological processes such as energy metabolism, insulin sensitivity, inflammation, immunity, angiogenesis, and neuroendocrine regulation.

Some well-known adipokines include:

1. Leptin - regulates appetite, energy expenditure, and glucose homeostasis
2. Adiponectin - improves insulin sensitivity, reduces inflammation, and has anti-atherogenic properties
3. Resistin - impairs insulin sensitivity and is associated with obesity and type 2 diabetes
4. Tumor necrosis factor-alpha (TNF-α) - contributes to chronic low-grade inflammation in obesity, insulin resistance, and metabolic dysfunction
5. Interleukin-6 (IL-6) - involved in the regulation of energy metabolism, immune response, and inflammation
6. Plasminogen activator inhibitor-1 (PAI-1) - associated with cardiovascular risk by impairing fibrinolysis and promoting thrombosis
7. Visfatin - has insulin-mimetic properties and contributes to inflammation and insulin resistance
8. Chemerin - regulates adipogenesis, energy metabolism, and immune response
9. Apelin - involved in the regulation of energy homeostasis, cardiovascular function, and fluid balance
10. Omentin - improves insulin sensitivity and has anti-inflammatory properties

The dysregulation of adipokine production and secretion is associated with various pathological conditions such as obesity, type 2 diabetes, metabolic syndrome, cardiovascular disease, nonalcoholic fatty liver disease (NAFLD), cancer, and neurodegenerative disorders.

Cytoplasmic receptors and nuclear receptors are two types of intracellular receptors that play crucial roles in signal transduction pathways and regulation of gene expression. They are classified based on their location within the cell. Here are the medical definitions for each:

1. Cytoplasmic Receptors: These are a group of intracellular receptors primarily found in the cytoplasm of cells, which bind to specific hormones, growth factors, or other signaling molecules. Upon binding, these receptors undergo conformational changes that allow them to interact with various partners, such as adapter proteins and enzymes, leading to activation of downstream signaling cascades. These pathways ultimately result in modulation of cellular processes like proliferation, differentiation, and apoptosis. Examples of cytoplasmic receptors include receptor tyrosine kinases (RTKs), serine/threonine kinase receptors, and cytokine receptors.
2. Nuclear Receptors: These are a distinct class of intracellular receptors that reside primarily in the nucleus of cells. They bind to specific ligands, such as steroid hormones, thyroid hormones, vitamin D, retinoic acid, and various other lipophilic molecules. Upon binding, nuclear receptors undergo conformational changes that facilitate their interaction with co-regulatory proteins and the DNA. This interaction results in the modulation of gene transcription, ultimately leading to alterations in protein expression and cellular responses. Examples of nuclear receptors include estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor (TR), vitamin D receptor (VDR), and peroxisome proliferator-activated receptors (PPARs).

Both cytoplasmic and nuclear receptors are essential components of cellular communication networks, allowing cells to respond appropriately to extracellular signals and maintain homeostasis. Dysregulation of these receptors has been implicated in various diseases, including cancer, diabetes, and autoimmune disorders.

Bile is a digestive fluid that is produced by the liver and stored in the gallbladder. It plays an essential role in the digestion and absorption of fats and fat-soluble vitamins in the small intestine. Bile consists of bile salts, bilirubin, cholesterol, phospholipids, electrolytes, and water.

Bile salts are amphipathic molecules that help to emulsify fats into smaller droplets, increasing their surface area and allowing for more efficient digestion by enzymes such as lipase. Bilirubin is a breakdown product of hemoglobin from red blood cells and gives bile its characteristic greenish-brown color.

Bile is released into the small intestine in response to food, particularly fats, entering the digestive tract. It helps to break down large fat molecules into smaller ones that can be absorbed through the walls of the intestines and transported to other parts of the body for energy or storage.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Dietary sucrose is a type of sugar that is commonly found in the human diet. It is a disaccharide, meaning it is composed of two monosaccharides: glucose and fructose. Sucrose is naturally occurring in many fruits and vegetables, but it is also added to a wide variety of processed foods and beverages as a sweetener.

In the body, sucrose is broken down into its component monosaccharides during digestion, which are then absorbed into the bloodstream and used for energy. While small amounts of sucrose can be part of a healthy diet, consuming large amounts of added sugars, including sucrose, has been linked to a variety of negative health outcomes, such as obesity, type 2 diabetes, and heart disease. Therefore, it is recommended that people limit their intake of added sugars and focus on getting their sugars from whole foods, such as fruits and vegetables.

Homeostasis is a fundamental concept in the field of medicine and physiology, referring to the body's ability to maintain a stable internal environment, despite changes in external conditions. It is the process by which biological systems regulate their internal environment to remain in a state of dynamic equilibrium. This is achieved through various feedback mechanisms that involve sensors, control centers, and effectors, working together to detect, interpret, and respond to disturbances in the system.

For example, the body maintains homeostasis through mechanisms such as temperature regulation (through sweating or shivering), fluid balance (through kidney function and thirst), and blood glucose levels (through insulin and glucagon secretion). When homeostasis is disrupted, it can lead to disease or dysfunction in the body.

In summary, homeostasis is the maintenance of a stable internal environment within biological systems, through various regulatory mechanisms that respond to changes in external conditions.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Thiazolidinediones are a class of medications used to treat type 2 diabetes. They work by increasing the body's sensitivity to insulin, which helps to control blood sugar levels. These drugs bind to peroxisome proliferator-activated receptors (PPARs), specifically PPAR-gamma, and modulate gene expression related to glucose metabolism and lipid metabolism.

Examples of thiazolidinediones include pioglitazone and rosiglitazone. Common side effects of these medications include weight gain, fluid retention, and an increased risk of bone fractures. They have also been associated with an increased risk of heart failure and bladder cancer, which has led to restrictions or withdrawal of some thiazolidinediones in various countries.

It is important to note that thiazolidinediones should be used under the close supervision of a healthcare provider and in conjunction with lifestyle modifications such as diet and exercise.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Adiponectin receptors are cell-surface proteins that bind to adiponectin, an adipokine (a hormone produced by fat cells) that plays a crucial role in insulin sensitivity and glucose regulation. There are two main types of adiponectin receptors, AdipoR1 and AdipoR2, which belong to the seven-transmembrane G protein-coupled receptor family.

AdipoR1 is widely expressed in various tissues, including skeletal muscle, liver, and cardiovascular system, while AdipoR2 has a more restricted expression pattern, primarily found in the liver. Both receptors activate downstream signaling pathways upon adiponectin binding, leading to increased insulin sensitivity, reduced inflammation, and improved metabolic homeostasis. Dysregulation of adiponectin receptor function has been implicated in several metabolic disorders, such as type 2 diabetes, obesity, and non-alcoholic fatty liver disease (NAFLD).

Starvation is a severe form of malnutrition, characterized by insufficient intake of calories and nutrients to meet the body's energy requirements. This leads to a catabolic state where the body begins to break down its own tissues for energy, resulting in significant weight loss, muscle wasting, and weakness. Prolonged starvation can also lead to serious medical complications such as organ failure, electrolyte imbalances, and even death. It is typically caused by a lack of access to food due to poverty, famine, or other social or economic factors, but can also be a result of severe eating disorders such as anorexia nervosa.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

F344 is a strain code used to designate an outbred stock of rats that has been inbreeded for over 100 generations. The F344 rats, also known as Fischer 344 rats, were originally developed at the National Institutes of Health (NIH) and are now widely used in biomedical research due to their consistent and reliable genetic background.

Inbred strains, like the F344, are created by mating genetically identical individuals (siblings or parents and offspring) for many generations until a state of complete homozygosity is reached, meaning that all members of the strain have identical genomes. This genetic uniformity makes inbred strains ideal for use in studies where consistent and reproducible results are important.

F344 rats are known for their longevity, with a median lifespan of around 27-31 months, making them useful for aging research. They also have a relatively low incidence of spontaneous tumors compared to other rat strains. However, they may be more susceptible to certain types of cancer and other diseases due to their inbred status.

It's important to note that while F344 rats are often used as a standard laboratory rat strain, there can still be some genetic variation between individual animals within the same strain, particularly if they come from different suppliers or breeding colonies. Therefore, it's always important to consider the source and history of any animal model when designing experiments and interpreting results.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

"Adiposity" is a medical term that refers to the condition of having an excessive amount of fat in the body. It is often used to describe obesity or being significantly overweight. Adipose tissue, which is the technical name for body fat, is important for many bodily functions, such as storing energy and insulating the body. However, an excess of adipose tissue can lead to a range of health problems, including heart disease, diabetes, and certain types of cancer.

There are different ways to measure adiposity, including body mass index (BMI), waist circumference, and skinfold thickness. BMI is the most commonly used method and is calculated by dividing a person's weight in kilograms by their height in meters squared. A BMI of 30 or higher is considered obese, while a BMI between 25 and 29.9 is considered overweight. However, it's important to note that BMI may not accurately reflect adiposity in some individuals, such as those with a lot of muscle mass.

In summary, adiposity refers to the condition of having too much body fat, which can increase the risk of various health problems.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Carbon tetrachloride poisoning refers to the harmful effects on the body caused by exposure to carbon tetrachloride, a volatile and toxic chemical compound. This substance has been widely used in various industrial applications, such as a solvent for fats, oils, and rubber, a fire extinguishing agent, and a refrigerant. However, due to its high toxicity, the use of carbon tetrachloride has been significantly reduced or phased out in many countries.

Ingestion, inhalation, or skin absorption of carbon tetrachloride can lead to poisoning, which may cause various symptoms depending on the severity and duration of exposure. Acute exposure to high concentrations of carbon tetrachloride can result in:

1. Central nervous system depression: Dizziness, headache, confusion, drowsiness, and, in severe cases, loss of consciousness or even death.
2. Respiratory irritation: Coughing, wheezing, shortness of breath, and pulmonary edema (fluid accumulation in the lungs).
3. Cardiovascular effects: Increased heart rate, low blood pressure, and irregular heart rhythms.
4. Gastrointestinal symptoms: Nausea, vomiting, abdominal pain, and diarrhea.
5. Liver damage: Hepatitis, jaundice, and liver failure in severe cases.
6. Kidney damage: Acute kidney injury or failure.

Chronic exposure to carbon tetrachloride can lead to long-term health effects, including:

1. Liver cirrhosis (scarring of the liver) and liver cancer.
2. Kidney damage and kidney disease.
3. Peripheral neuropathy (damage to the nerves in the limbs), causing numbness, tingling, or weakness.
4. Increased risk of miscarriage and birth defects in pregnant women exposed to carbon tetrachloride.

Treatment for carbon tetrachloride poisoning typically involves supportive care, such as oxygen therapy, fluid replacement, and monitoring of vital signs. In some cases, specific treatments like activated charcoal or gastric lavage may be used to remove the substance from the body. Prevention is crucial in minimizing exposure to this harmful chemical by following safety guidelines when handling it and using appropriate personal protective equipment (PPE).

Malondialdehyde (MDA) is a naturally occurring organic compound that is formed as a byproduct of lipid peroxidation, a process in which free radicals or reactive oxygen species react with polyunsaturated fatty acids. MDA is a highly reactive aldehyde that can modify proteins, DNA, and other biomolecules, leading to cellular damage and dysfunction. It is often used as a marker of oxidative stress in biological systems and has been implicated in the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders.

Chronic Hepatitis C is a liver infection caused by the hepatitis C virus (HCV) that lasts for more than six months. This long-term infection can lead to scarring of the liver (cirrhosis), which can cause serious health problems, such as liver failure or liver cancer, in some individuals. The infection is usually asymptomatic until complications arise, but it can be detected through blood tests that identify antibodies to the virus or viral RNA. Chronic hepatitis C is typically managed with antiviral therapy, which can help clear the virus from the body and reduce the risk of liver damage.

Lipolysis is the process by which fat cells (adipocytes) break down stored triglycerides into glycerol and free fatty acids. This process occurs when the body needs to use stored fat as a source of energy, such as during fasting, exercise, or in response to certain hormonal signals. The breakdown products of lipolysis can be used directly by cells for energy production or can be released into the bloodstream and transported to other tissues for use. Lipolysis is regulated by several hormones, including adrenaline (epinephrine), noradrenaline (norepinephrine), cortisol, glucagon, and growth hormone, which act on lipases, enzymes that mediate the breakdown of triglycerides.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Lipoproteins are complex particles composed of multiple proteins and lipids (fats) that play a crucial role in the transport and metabolism of fat molecules in the body. They consist of an outer shell of phospholipids, free cholesterols, and apolipoproteins, enclosing a core of triglycerides and cholesteryl esters.

There are several types of lipoproteins, including:

1. Chylomicrons: These are the largest lipoproteins and are responsible for transporting dietary lipids from the intestines to other parts of the body.
2. Very-low-density lipoproteins (VLDL): Produced by the liver, VLDL particles carry triglycerides to peripheral tissues for energy storage or use.
3. Low-density lipoproteins (LDL): Often referred to as "bad cholesterol," LDL particles transport cholesterol from the liver to cells throughout the body. High levels of LDL in the blood can lead to plaque buildup in artery walls and increase the risk of heart disease.
4. High-density lipoproteins (HDL): Known as "good cholesterol," HDL particles help remove excess cholesterol from cells and transport it back to the liver for excretion or recycling. Higher levels of HDL are associated with a lower risk of heart disease.

Understanding lipoproteins and their roles in the body is essential for assessing cardiovascular health and managing risks related to heart disease and stroke.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Lipid mobilization, also known as lipolysis, is the process by which fat cells (adipocytes) break down stored triglycerides into free fatty acids and glycerol, which can then be released into the bloodstream and used for energy by the body's cells. This process is regulated by hormones such as adrenaline, noradrenaline, glucagon, and cortisol, which activate enzymes in the fat cell that catalyze the breakdown of triglycerides. Lipid mobilization is an important physiological response to fasting, exercise, and stress, and plays a key role in maintaining energy homeostasis in the body.

Hypoglycemic agents are a class of medications that are used to lower blood glucose levels in the treatment of diabetes mellitus. These medications work by increasing insulin sensitivity, stimulating insulin release from the pancreas, or inhibiting glucose production in the liver. Examples of hypoglycemic agents include sulfonylureas, meglitinides, biguanides, thiazolidinediones, DPP-4 inhibitors, SGLT2 inhibitors, and GLP-1 receptor agonists. It's important to note that the term "hypoglycemic" refers to a condition of abnormally low blood glucose levels, but in this context, the term is used to describe agents that are used to treat high blood glucose levels (hyperglycemia) associated with diabetes.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Bariatric surgery is a branch of medicine that involves the surgical alteration of the stomach, intestines, or both to induce weight loss in individuals with severe obesity. The primary goal of bariatric surgery is to reduce the size of the stomach, leading to decreased food intake and absorption, which ultimately results in significant weight loss.

There are several types of bariatric surgeries, including:

1. Roux-en-Y gastric bypass (RYGB): This procedure involves creating a small pouch at the top of the stomach and connecting it directly to the middle portion of the small intestine, bypassing the rest of the stomach and the upper part of the small intestine.
2. Sleeve gastrectomy: In this procedure, a large portion of the stomach is removed, leaving behind a narrow sleeve-shaped pouch that restricts food intake.
3. Adjustable gastric banding (AGB): This surgery involves placing an adjustable band around the upper part of the stomach to create a small pouch and limit food intake.
4. Biliopancreatic diversion with duodenal switch (BPD/DS): This is a more complex procedure that involves both restricting the size of the stomach and rerouting the small intestine to reduce nutrient absorption.

Bariatric surgery can lead to significant weight loss, improvement in obesity-related health conditions such as diabetes, high blood pressure, sleep apnea, and reduced risk of mortality. However, it is not without risks and complications, including infection, bleeding, nutrient deficiencies, and dumping syndrome. Therefore, careful consideration and evaluation by a multidisciplinary team are necessary before undergoing bariatric surgery.

Metabolic diseases are a group of disorders caused by abnormal chemical reactions in your body's cells. These reactions are part of a complex process called metabolism, where your body converts the food you eat into energy.

There are several types of metabolic diseases, but they most commonly result from:

1. Your body not producing enough of certain enzymes that are needed to convert food into energy.
2. Your body producing too much of certain substances or toxins, often due to a genetic disorder.

Examples of metabolic diseases include phenylketonuria (PKU), diabetes, and gout. PKU is a rare condition where the body cannot break down an amino acid called phenylalanine, which can lead to serious health problems if left untreated. Diabetes is a common disorder that occurs when your body doesn't produce enough insulin or can't properly use the insulin it produces, leading to high blood sugar levels. Gout is a type of arthritis that results from too much uric acid in the body, which can form crystals in the joints and cause pain and inflammation.

Metabolic diseases can be inherited or acquired through environmental factors such as diet or lifestyle choices. Many metabolic diseases can be managed with proper medical care, including medication, dietary changes, and lifestyle modifications.

I am not aware of a specific medical definition for the term "China." Generally, it is used to refer to:

1. The People's Republic of China (PRC), which is a country in East Asia. It is the most populous country in the world and the fourth largest by geographical area. Its capital city is Beijing.
2. In a historical context, "China" was used to refer to various dynasties and empires that existed in East Asia over thousands of years. The term "Middle Kingdom" or "Zhongguo" (中国) has been used by the Chinese people to refer to their country for centuries.
3. In a more general sense, "China" can also be used to describe products or goods that originate from or are associated with the People's Republic of China.

If you have a specific context in which you encountered the term "China" related to medicine, please provide it so I can give a more accurate response.

Carnitine O-palmitoyltransferase (CPT) is an enzyme that plays a crucial role in the transport of long-chain fatty acids into the mitochondrial matrix, where they undergo beta-oxidation to produce energy. There are two main forms of this enzyme: CPT1 and CPT2.

CPT1 is located on the outer mitochondrial membrane and catalyzes the transfer of a long-chain fatty acyl group from coenzyme A (CoA) to carnitine, forming acylcarnitine. This reaction is reversible and allows for the regulation of fatty acid oxidation in response to changes in energy demand.

CPT2 is located on the inner mitochondrial membrane and catalyzes the reverse reaction, transferring the long-chain fatty acyl group from carnitine back to CoA, allowing for the entry of the fatty acid into the beta-oxidation pathway.

Deficiencies in CPT1 or CPT2 can lead to serious metabolic disorders, such as carnitine deficiency and mitochondrial myopathies, which can cause muscle weakness, cardiomyopathy, and other symptoms. Treatment may involve dietary modifications, supplementation with carnitine or medium-chain fatty acids, and in some cases, enzyme replacement therapy.

Animal feed refers to any substance or mixture of substances, whether processed, unprocessed, or partially processed, which is intended to be used as food for animals, including fish, without further processing. It includes ingredients such as grains, hay, straw, oilseed meals, and by-products from the milling, processing, and manufacturing industries. Animal feed can be in the form of pellets, crumbles, mash, or other forms, and is used to provide nutrients such as energy, protein, fiber, vitamins, and minerals to support the growth, reproduction, and maintenance of animals. It's important to note that animal feed must be safe, nutritious, and properly labeled to ensure the health and well-being of the animals that consume it.

Weight loss is a reduction in body weight attributed to loss of fluid, fat, muscle, or bone mass. It can be intentional through dieting and exercise or unintentional due to illness or disease. Unintentional weight loss is often a cause for concern and should be evaluated by a healthcare professional to determine the underlying cause and develop an appropriate treatment plan. Rapid or significant weight loss can also have serious health consequences, so it's important to approach any weight loss plan in a healthy and sustainable way.

Adipocytes are specialized cells that comprise adipose tissue, also known as fat tissue. They are responsible for storing energy in the form of lipids, particularly triglycerides, and releasing energy when needed through a process called lipolysis. There are two main types of adipocytes: white adipocytes and brown adipocytes. White adipocytes primarily store energy, while brown adipocytes dissipate energy as heat through the action of uncoupling protein 1 (UCP1).

In addition to their role in energy metabolism, adipocytes also secrete various hormones and signaling molecules that contribute to whole-body homeostasis. These include leptin, adiponectin, resistin, and inflammatory cytokines. Dysregulation of adipocyte function has been implicated in the development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Glutathione is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It is a vital antioxidant that plays an essential role in maintaining cellular health and function. Glutathione helps protect cells from oxidative stress by neutralizing free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer, heart disease, and dementia. It also supports the immune system, detoxifies harmful substances, and regulates various cellular processes, including DNA synthesis and repair.

Glutathione is found in every cell of the body, with particularly high concentrations in the liver, lungs, and eyes. The body can produce its own glutathione, but levels may decline with age, illness, or exposure to toxins. As such, maintaining optimal glutathione levels through diet, supplementation, or other means is essential for overall health and well-being.

The medical definition of "eating" refers to the process of consuming and ingesting food or nutrients into the body. This process typically involves several steps, including:

1. Food preparation: This may involve cleaning, chopping, cooking, or combining ingredients to make them ready for consumption.
2. Ingestion: The act of taking food or nutrients into the mouth and swallowing it.
3. Digestion: Once food is ingested, it travels down the esophagus and enters the stomach, where it is broken down by enzymes and acids to facilitate absorption of nutrients.
4. Absorption: Nutrients are absorbed through the walls of the small intestine and transported to cells throughout the body for use as energy or building blocks for growth and repair.
5. Elimination: Undigested food and waste products are eliminated from the body through the large intestine (colon) and rectum.

Eating is an essential function that provides the body with the nutrients it needs to maintain health, grow, and repair itself. Disorders of eating, such as anorexia nervosa or bulimia nervosa, can have serious consequences for physical and mental health.

"Ilex" is a genus name, which refers to a group of plants in the family Aquifoliaceae. It's commonly known as "holly." This group includes over 400 species of evergreen or deciduous shrubs and trees, many of which have glossy, spiny leaves and bright red berries. Some species of Ilex are used in traditional medicine for various purposes, such as treating diarrhea, stimulating digestion, and reducing inflammation. However, it's important to note that the use of herbal remedies should always be discussed with a healthcare provider beforehand, as they can interact with other medications or have unintended side effects.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Myelin P2 protein, also known as proteolipid protein 1 (PLP1), is a major structural component of the myelin sheath in the central nervous system. The myelin sheath is a protective and insulating layer that surrounds nerve cell fibers (axons), allowing for efficient and rapid transmission of electrical signals.

The P2 protein is a transmembrane protein, with four transmembrane domains, and it plays a crucial role in maintaining the stability and integrity of the myelin sheath. Mutations in the gene that encodes for this protein (PLP1) have been associated with several demyelinating diseases, including Pelizaeus-Merzbacher disease (PMD), a rare X-linked recessive disorder characterized by abnormalities in the development and maintenance of the myelin sheath.

The P2 protein is also involved in various cellular processes, such as signal transduction, ion transport, and immune response regulation. However, the precise mechanisms through which these functions are carried out remain to be fully elucidated.

Bile acids and salts are naturally occurring steroidal compounds that play a crucial role in the digestion and absorption of lipids (fats) in the body. They are produced in the liver from cholesterol and then conjugated with glycine or taurine to form bile acids, which are subsequently converted into bile salts by the addition of a sodium or potassium ion.

Bile acids and salts are stored in the gallbladder and released into the small intestine during digestion, where they help emulsify fats, allowing them to be broken down into smaller molecules that can be absorbed by the body. They also aid in the elimination of waste products from the liver and help regulate cholesterol metabolism.

Abnormalities in bile acid synthesis or transport can lead to various medical conditions, such as cholestatic liver diseases, gallstones, and diarrhea. Therefore, understanding the role of bile acids and salts in the body is essential for diagnosing and treating these disorders.

Caprylates are the salts or esters of capric acid, a saturated fatty acid with a chain length of 8 carbon atoms. In medical and biological contexts, caprylate refers to the anion (negatively charged ion) form of capric acid, which has the chemical formula C8H17O2-. Caprylates are used in various applications, including as food additives, pharmaceuticals, and personal care products.

Some examples of caprylate compounds include:

* Sodium caprylate (sodium octanoate): a sodium salt commonly used as a preservative and flavor enhancer in foods.
* Calcium caprylate (calcium octanoate): a calcium salt used as an emulsifier in food products and as a stabilizer in cosmetics.
* Caprylic acid/caprylate triglycerides: esters of glycerin with caprylic acid, used as emollients and solvents in skin care products and pharmaceuticals.

Caprylates have antimicrobial properties against certain bacteria, fungi, and viruses, making them useful in various medical applications. For instance, sodium caprylate is sometimes used as an antifungal agent to treat conditions like candidiasis (yeast infections). However, more research is needed to fully understand the potential benefits and risks of using caprylates for medicinal purposes.

Phosphatidylcholines (PtdCho) are a type of phospholipids that are essential components of cell membranes in living organisms. They are composed of a hydrophilic head group, which contains a choline moiety, and two hydrophobic fatty acid chains. Phosphatidylcholines are crucial for maintaining the structural integrity and function of cell membranes, and they also serve as important precursors for the synthesis of signaling molecules such as acetylcholine. They can be found in various tissues and biological fluids, including blood, and are abundant in foods such as soybeans, eggs, and meat. Phosphatidylcholines have been studied for their potential health benefits, including their role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Lipodystrophy is a medical condition characterized by abnormal distribution or absence of fat (adipose tissue) in the body. It can lead to metabolic complications such as insulin resistance, diabetes mellitus, high levels of fats in the blood (dyslipidemia), and liver disease. There are different types of lipodystrophy, including congenital generalized lipodystrophy, acquired generalized lipodystrophy, and partial lipodystrophy, which can affect different parts of the body and have varying symptoms and causes.

Orphan nuclear receptors are a subfamily of nuclear receptor proteins that are classified as "orphans" because their specific endogenous ligands (natural activating molecules) have not yet been identified. These receptors are still functional transcription factors, which means they can bind to specific DNA sequences and regulate the expression of target genes when activated by a ligand. However, in the case of orphan nuclear receptors, the identity of these ligands remains unknown or unconfirmed.

These receptors play crucial roles in various biological processes, including development, metabolism, and homeostasis. Some orphan nuclear receptors have been found to bind to synthetic ligands (man-made molecules), which has led to the development of potential therapeutic agents for various diseases. Over time, as research progresses, some orphan nuclear receptors may eventually have their endogenous ligands identified and be reclassified as non-orphan nuclear receptors.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

Non-alcoholic fatty liver disease (NAFLD) made up of: Non-alcoholic fatty liver (NAFL) or simple fatty liver Non-alcoholic ... Fatty livers can be induced via gavage in geese or ducks to produce foie gras. Fatty liver can also be induced in ruminants ... Acute fatty liver of pregnancy and Reye's syndrome are examples of severe liver disease caused by microvesicular fatty change. ... "Fatty Liver Disease in Birds". Animal House of Chicago. Retrieved 29 December 2020. "Fatty Liver Disease in Lizards". Wag!. ...
... (FFL) is localised or patchy process of lipid accumulation in the liver. It is likely to have different ... "CT appearance of focal fatty infiltration of the liver". AJR. American Journal of Roentgenology. 139 (2): 277-281. doi:10.2214/ ... FFL may result from altered venous flow to liver, tissue hypoxia and malabsorption of lipoproteins. The condition has been ... v t e (Articles with short description, Short description is different from Wikidata, Diseases of liver, All stub articles, ...
... (also referred to as fatty liver syndrome or FLHS), a disease in chickens and other birds. ... Cherian, G, "Fatty Liver Hemorrhagic Syndrome in Laying Hens: An Investigation into the Role of Dietary Fatty Acids," USDA ... Fatty liver hemorrhagic syndrome is "the major cause of mortality in laying hens." Excessive dietary energy intake is believed ... "Fatty Liver Syndrome: Introduction," Merck Veterinary Manual Online, 8th Edition, 2003. Retrieved from Merckvetmanual.com on ...
Fatty liver Ko H, Yoshida EM (2006). "Acute fatty liver of pregnancy". Canadian Journal of Gastroenterology. 20 (1): 25-30. doi ... Many laboratory abnormalities are seen in acute fatty liver of pregnancy. Liver enzymes are elevated, with the AST and ALT ... The diagnosis of acute fatty liver of pregnancy is suggested by jaundice with a lesser elevation of liver enzymes, elevated ... Riely CA (1987). "Acute fatty liver of pregnancy". Seminars in Liver Disease. 7 (1): 47-54. doi:10.1055/s-2008-1040563. PMID ...
NAFLD and alcoholic liver disease are types of fatty liver disease. Obtaining a sample of the liver after excluding other ... "DB92 Non-alcoholic fatty liver disease". WHO. 18 June 2018. Retrieved 2 October 2019. "Nonalcoholic Fatty Liver Disease & NASH ... For people with NASH and end-stage liver disease, liver failure, or liver cancer, liver transplantation is an accepted ... A liver can remain fatty without disturbing liver function (NAFL), but by various mechanisms and possible insults to the liver ...
"Fatty Liver Disease". US National Library of Medicine. Clark, Laura (6 Mar 2015). "Centuries of Poison-Laced Water Gave These ... With alcohol this generally leads to conditions such as alcoholic fatty liver disease. Metabolic tolerance is not effective on ... Another minor exception is cyanide, which can be metabolized by the liver. The enzyme rhodanese converts the cyanide into the ... This involves conditioning the liver to produce more of the particular enzymes that metabolize these poisons. For example, ...
foie gras fatty liver; usually the liver of overfed goose, hence: pâté de foie gras, pâté made from goose liver. folie à deux a ... "Long live ...!"; lit. "Live"; as in "Vive la France !", Vive la République !, Vive la Résistance !, Vive le Canada !, or Vive ... long] live the difference"; originally referring to the difference between the sexes; the phrase may be also used to celebrate ... "living picture"; the term describes a striking group of suitably costumed actors or artist's models, carefully posed and often ...
Stefan, Norbert; Roden, Michael (2019). "Diabetes and Fatty Liver". Experimental and Clinical Endocrinology & Diabetes. 127 (S ... diabetes mellitus and non-alcoholic fatty liver disease. He has made major contributions to our understanding of the cellular ... "EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease". Journal of Hepatology. 64 ... "Adaptation of Hepatic Mitochondrial Function in Humans with Non-Alcoholic Fatty Liver Is Lost in Steatohepatitis". Cell ...
Liver congested and fatty. Stomach showed numerous submucous haemorrhages. The brain substance was unduly wet and very ... Not only did war gasses like mustard and chlorine endanger the lives of soldiers, but also threatened the safety of workers who ... The chemicals that were detected can cause cancer and can affect the brain, blood, liver, kidneys and skin. The development and ... "My officers and I were aware that such weapon would cause harm to women and children living in nearby towns, as strong winds ...
Tommolino E, Piper MH, Sears D (2021-04-03). Anand BS (ed.). "Fatty Liver: Overview, Etiology, Epidemiology". Medscape. Cabezas ... Non-invasive measures of liver fibrosis, such as the biomarker based FibroTest or non-invasive liver imaging such as transient ... In those with whom liver fibrosis or cirrhosis is suspected, a liver biopsy is usually needed. Current established treatments ... of those with chronic hepatitis D developing liver cirrhosis within 15 years and a much higher risk of developing liver cancer ...
Non-alcoholic fatty liver disease (NAFLD); Diabetes Neuropathy Study Group (NEURODIAB); EASD Eye Complication Study Group ( ...
ASAH1 Fatty liver, acute, of pregnancy; 609016; HADHA Febrile convulsions, familial, 3A; 604403; SCN1A Febrile convulsions, ... PKD1 Polycystic liver disease; 174050; PRKCSH Polycystic liver disease; 174050; SEC63 Polycystic ovary syndrome; 184700; FST ... PAFAH1B1 Liver failure, acute infantile; 613070; TRMU Loeys-Dietz syndrome, type 1A; 609192; TGFBR1 Loeys-Dietz syndrome, type ... PRPS1 Phosphorylase kinase deficiency of liver and muscle, autosomal recessive; 261750; PHKB Phosphoserine aminotransferase ...
... causes acute liver damage. Metabolic Non-alcoholic fatty liver disease Haemochromatosis Wilson's disease Autoimmune response ... Testing for chronic liver disease involves blood tests, imaging including ultrasound, and a biopsy of the liver. The liver ... including effects on the liver. See Kava-Effects on the liver for an extensive review. Liver problems Alternative medicine - 27 ... "Chronic liver disease" refers to disease of the liver which lasts over a period of six months. It consists of a wide range of ...
Councilman body Ground glass hepatocyte Mallory body Non-alcoholic fatty liver disease Ballooning degeneration. H&E stain. Yip ... Liangpunsakul, S; Chalasani, N (Dec 2003). "Treatment of Nonalcoholic Fatty Liver Disease". Curr Treat Options Gastroenterol. 6 ... and is a descriptor used in the context of inflamed fatty liver (steatohepatitis) (which may be due to obesity or alcohol), as ... In histopathology, ballooning degeneration, formally ballooning degeneration of hepatocytes, is a form of liver parenchymal ...
"Herbal medicines for fatty liver diseases". Cochrane Database Syst Rev (8): CD009059. doi:10.1002/14651858.CD009059.pub2. PMID ... is potentially beneficial in treating fatty liver disease through a variety of different observed pathways. The safety of this ... It has a large number of uses in Chinese medicine, including the application for liver issues. There is evidence that Chinese ... on CCl4-induced liver injury in the rat". Naunyn Schmiedebergs Arch. Pharmacol. 320 (3): 266-71. doi:10.1007/BF00510139. PMID ...
Mantzoros has proposed that a new and more accurate name for this disease i.e. DAFLD/DASH (Dysmetabolism Associated Fatty Liver ... Polyzos, Stergios A; Perakakis, Nikolaos; Mantzoros, Christos S (2019). "Fatty liver in lipodystrophy: A review with a focus on ... Polyzos, Stergios A; Kountouras, Jannis; Mantzoros, Christos S (2016). "Adipokines in nonalcoholic fatty liver disease". ... umbrella classification of fatty liver disease (FLD)". Metabolism. 134: 155246. doi:10.1016/j.metabol.2022.155246. PMID ...
Non-alcoholic fatty liver disease (NAFLD) is one of the most common risk factors associated with obesity being characterised as ... "Nonalcoholic fatty liver disease - Mayo Clinic". www.mayoclinic.org. Retrieved 2015-09-01. "Go for 2 and 5" (PDF). 2 fruit 5 ... a reduced tolerance to exercise and orthopaedic and gastrointestinal problems including non-alcoholic fatty liver disease. ... Since then, the environment in which we live in, has evolved rapidly with food supplies readily and effortlessly available. ...
GSD I patients typically present with enlarged livers from non-alcoholic fatty liver disease. Other functions of the liver and ... Hepatomegaly from the accumulation of stored glycogen in the liver is considered a form of non-alcoholic fatty liver disease. ... In GSD-related non-alcoholic fatty liver disease, hepatic function is usually spared, with liver enzymes and bilirubin ... Liver complications have been serious in some patients. Adenomas of the liver can develop in the second decade or later, with a ...
... is characterized by a fatty liver. This fatty liver of undernutrition phenotype is often accompanied by evidence of ... Whereas a fatty liver of undernutrition is a consistent feature of kwashiorkor, it is only encountered sometimes in children ... Aflatoxins were not found in liver samples of individuals with marasmus. It has been known that the liver organ is the main ... is a form of severe protein malnutrition characterized by edema and an enlarged liver with fatty infiltrates. It is thought to ...
Fatty change, or steatosis, is the accumulation of fatty acids in liver cells. This can be seen as fatty globules under the ... It is the major cause of liver disease in Western countries. Although steatosis (fatty liver disease) will develop in any ... Alcoholic liver disease (ALD), also called alcohol-related liver disease (ARLD), is a term that encompasses the liver ... of all heavy drinkers develop fatty liver whilst about 25% develop the more severe alcoholic hepatitis, and 15% liver cirrhosis ...
"Treatment options for nonalcoholic Fatty liver disease". Therapeutic Advances in Gastroenterology. 1 (3): 173-189. doi:10.1177/ ... The main effect of expression and repression of specific genes is an increase in the storage of fatty acids in adipocytes, ... Because of this, the FDA recommends two to three month checks of liver enzymes for the first year of thiazolidinedione therapy ... The endogenous ligands for these receptors are free fatty acids (FFAs) and eicosanoids. When activated, the receptor binds to ...
Arslanian, Michael J.; Wakil, Salih J. (1975-01-01). "[7a] Fatty acid synthase from chicken liver". Lipids Part B. Methods in ...
... alcoholic fatty liver disease, cirrhosis, and liver cancer. In the earlier stages of alcoholic liver disease, fat builds up in ... Fatty liver disease (hepatic steatosis) is a reversible condition where large vacuoles of triglyceride fat accumulate in liver ... Alcoholic liver disease is a hepatic manifestation of alcohol overconsumption, including fatty liver disease, alcoholic ... MedlinePlus Encyclopedia: Alcoholic liver disease "Hepatic steatosis". Retrieved 2015-06-20. "Non-alcoholic fatty liver disease ...
3) In a model of non-alcoholic fatty liver disease. Ffar1 gene knockout mice developed less liver inflammation and fibrosis ... FFARs are activated by specific types of fatty acids. FFAR2 and FFAR3 are activated by short-chain fatty acids (i.e., fatty ... Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M (2021). "Free Fatty Acid Receptors as Mediators and Therapeutic Targets in Liver ... FFAR1 and FFAR4 are activated by 1) medium-chain fatty acids (i.e., fatty acids consisting of 6-12 carbon atoms) such as capric ...
"Obesity-Induced Fatty Liver Disease Reversed In Mice". www.hopkinsmedicine.org. January 29, 2014. Retrieved 2019-04-14. Bennett ... they showed that this could reverse the obesity-related problems of fatty liver disease and high blood sugar in mouse models. ... She studied what cellular pathways regulated fatty acid metabolism and how stress pathways influence the CYPs that metabolize ... Living people, American pharmacologists, Women pharmacologists, Occidental College alumni, 1981 births, 21st-century American ...
Hirata Y, Kawachi T, Sugimura T (October 1967). "Fatty liver induced by injection of L-tryptophan". Biochimica et Biophysica ... The activity of kynureninase in the liver was markedly reduced. The activity was appreciably restored by the addition of ... and of the liver. The mechanism behind this observation is typically a blockade or bottleneck situation at one or more enzymes ... Multiple sclerosis Huntington's disease Encephalopathies Lipid metabolism Liver fat metabolism Systemic lupus erythematosus ...
TN Health Desk (2023-01-18). "Fatty Liver Disease: Gastroenterologist stresses on taking action". Times Now. Retrieved 2023-10- ... Articles with hCards, Official website not in Wikidata, Living people, Year of birth missing (living people), 21st-century ... Manickam says that his comedic videos and live performances are his form of giving back, and all funds collected from his media ... Manickam and his wife Priya (a data scientist with a software company) live with their two children in Sacramento, California. ...
... and nonalcoholic fatty liver disease or indexes of liver health: A systematic review and meta-analysis". American Journal of ... Allocca, M; Selmi C (2010). "Emerging nutritional treatments for nonalcoholic fatty liver disease". In Preedy VR; Lakshman R; ... A Major Mediator of Nonalcoholic Fatty Liver Disease". Journal of Hepatology. 68 (5): 1063-1075. doi:10.1016/j.jhep.2018.01.019 ... which is associated with non-alcoholic fatty liver disease. In 2018, the American Heart Association recommended that people ...
It reduced weight gain, adiposity, and fatty liver; decreased blood levels of cholesterol, sugar, HbA1c, insulin, and leptin; ... By blocking Kv1.3, ShK-186 doubled glucose uptake and increased β-oxidation of fatty acids, glycolysis, fatty acid synthesis ... The obesity diet also induced Kv1.3 expression in the liver, and ShK-186 caused profound alterations in energy and lipid ... and Long-Lived Antagonists of Kv1.3". Journal of Medicinal Chemistry. 58 (17): 6784-802. doi:10.1021/acs.jmedchem.5b00495. PMID ...
"A common denominator of inflammations and fatty liver". News. Science Centric. 2008-05-31. Retrieved 2008-08-31.[dead link] ... and liver. A major role for RIP140 in adipose tissue is to block the expression of genes involved in energy dissipation and ... is required for the regulation of hepatic lipid and glucose metabolism by liver X receptor". Mol Endocrinol. 21 (11): 2687-97. ... peroxisome proliferator-activated receptor alpha and liver-X-receptor alpha". Mol. Cell. Endocrinol. 146 (1-2): 69-76. doi: ...
... fatty liver disease, and atherosclerosis. His work has led to the emergence of novel concepts that have altered the ... Their two children Leyla and Derin live in the United States and Canada. His late father Hulki Hotamisligil was a physician and ... "Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase ... Living people, Fellows of the American Association for the Advancement of Science, People from Pazar, Rize). ...
... fat builds up in your liver. Learn about the two types: one is caused by heavy drinking and the other has an unknown cause. ... Simple fatty liver, in which you have fat in your liver but little or no inflammation or liver cell damage. Simple fatty liver ... Fatty liver disease is a condition in which fat builds up in your liver. There are two main types:. *Nonalcoholic fatty liver ... What is alcoholic fatty liver disease?. Alcoholic fatty liver disease is due to heavy alcohol use. Your liver breaks down most ...
Non-alcoholic fatty liver disease (NAFLD) made up of: Non-alcoholic fatty liver (NAFL) or simple fatty liver Non-alcoholic ... Fatty livers can be induced via gavage in geese or ducks to produce foie gras. Fatty liver can also be induced in ruminants ... Acute fatty liver of pregnancy and Reyes syndrome are examples of severe liver disease caused by microvesicular fatty change. ... "Fatty Liver Disease in Birds". Animal House of Chicago. Retrieved 29 December 2020. "Fatty Liver Disease in Lizards". Wag!. ...
Weight loss and multiple improvements in lipid parameters linked to nonalcoholic fatty liver disease were seen in a phase 1 ... News Akeros Lead Drug to Treat Severe Fatty Liver Misses Main Trial Goal ... LONDON - Weight loss, lipid reductions, and "robust improvements" in lipid species associated with nonalcoholic fatty liver ... Cite this: Pemvidutide Promising for Fatty Liver Disease - Medscape - Jun 30, 2022. ...
The amount of fatty acid in the liver depends on the balance between the processes of delivery and removal. ... Fatty liver is the accumulation of triglycerides and other fats in the liver cells. ... Fatty liver is the accumulation of triglycerides and other fats in the liver cells. The amount of fatty acid in the liver ... What is the role of drug treatment for fatty liver disease?. What is the role of pioglitazone in the treatment of fatty liver ...
MAFLD, previously known as non-alcoholic fatty liver disease (NAFLD), is fast becoming the most common indication for liver ... CHICAGO-The percent of metabolic associated fatty liver disease (MAFLD), the leading global cause of liver disease, is ... Health and medicine/Diseases and disorders/Metabolic disorders/Fatty liver disease * /Health and medicine/Diseases and ... Prevalence of metabolic associated fatty liver disease is increasing Reports and Proceedings The Endocrine Society ...
It is characterized by microvesicular steatosis in the liver. ... Acute fatty liver of pregnancy (AFLP) is a serious complication ... encoded search term (Acute Fatty Liver of Pregnancy) and Acute Fatty Liver of Pregnancy What to Read Next on Medscape ... Reversible peripartum liver failure: a new perspective on the diagnosis, treatment, and cause of acute fatty liver of pregnancy ... Fulminant hepatic failure caused by acute fatty liver of pregnancy treated by orthotopic liver transplantation. Hepatology. ...
In the last decade, it has been shown that metformin, thiazolidinediones, vitamin E, ezetimibe, n-3 polyunsaturated fatty acids ... are multidisciplinary liver diseases that often accompany type 2 diabetes or metabolic syndrome, which are characterized by ... Nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) ... and fatty liver. According to the American Association for the Study of Liver Diseases (AASLD), fatty liver in the absence of a ...
Change your diet to invoke ketosis and possibly reverse fatty liver disease. ... a sedentary lifestyle and low levels of exercise are something that fatty liver patients have in common. ... There are several causes of fatty liver, but the exact reason some people tend to accumulate fat around their liver and others ... People with fatty liver also commonly have high triglycerides, insulin resistance, high blood sugar and are living with ...
... increases your risk of fatty liver disease, but lifestyle strategies and prescription medication can decrease your risk. ... Is fatty liver disease reversible?. Fatty liver is thought to be reversible in most cases, and it responds well to lifestyle ... Nonalcoholic fatty liver disease affects some people with hypothyroidism. Fatty liver disease can be serious. Treatment is ... Understanding What It Means to Have Acute Fatty Liver of Pregnancy. Acute fatty liver of pregnancy is a very rare but ...
... who have evidence of toxicant-associated fatty liver disease (TAFLD) and liver cancer. The findings will provide unprecedented ... A WTC Liver Disease registry will be established to collect data about the impact of liver disease on quality of life and other ... detail about these occupational liver diseases, helping to inform public policy. ...
... which include nonalcoholic fatty liver diseases, through the gut-liver axis. To date, clinical guidelines recommend a weight ... to improve features of nonalcoholic fatty liver diseases. Because this target is … ... which include nonalcoholic fatty liver diseases, through the gut-liver axis. To date, clinical guidelines recommend a weight ... Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity? Gastroenterology. 2020 May;158(7):1881-1898. ...
NAFLD: Non-alcoholic fatty liver disease; NAFL: Nonalcoholic fatty liver; NASH: Nonalcoholic steatohepatitis; DAG: ... NAFLD: Non-alcoholic fatty liver disease; NAFL: nonalcoholic fatty liver; NASH: Nonalcoholic steatohepatitis; DAG: ... Liver, adipose tissue (fatty acid composition). Increased: n-6:n-3 ratio, n-6 LCPUFA in liver phospholipids, total MUFA. ... Free fatty acids; LCPUFA: Long chain polyunsaturated fatty acid; MUFA: Monounsaturated fatty acid; RBC-FA: Red blood cell-fatty ...
... Forum. No replies yet to 2007-08-18. ... fatty liver n impotance problem. Any relation between fatty liver and sexual impotance problem and low blood circulation in ...
... alcoholic fatty liver disease (AFLD), and hepatocellular carcinoma (HCC). Autophagy prevents NAFLD and AFLD progression through ... In this review, we summarize how impaired autophagy affects liver function and contributes to NAFLD, AFLD, and HCC progression ... dysfunctional/impaired autophagic functions are associated with the development and progression of nonalcoholic fatty liver ... The role of selective autophagy in the modulation of liver physiology, liver injury, fatty liver diseases including NAFLD, AFLD ...
... of patients who have fatty liver develop inflammation and fibrosis (nonalcoholic steatohepatitis [NASH]). Inflammation may ... Whereas in most cases a fatty liver remains free of inflammation, 10%-20% ... Whereas in most cases a fatty liver remains free of inflammation, 10%-20% of patients who have fatty liver develop inflammation ... Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis Hepatology. 2010 Nov;52(5 ...
... this is known as acute fatty liver of pregnancy (AFLP). ... Some women develop a type of fatty liver in the final trimester ... Acute Fatty Liver Disease of Pregnancy. Some women develop a type of fatty liver in the final trimester (last three months) of ... Acute fatty liver of pregnancy is a very serious condition that can cause rapid liver and kidney failure and can be life- ... This can result in hepatic stress for the mother, causing fat infiltrations to build up in the liver (fatty liver disease). ...
... benefits for glucose control in the liver and in fatty cells known as adipose. The study shows that exenatide, a treatment that ... targets the pancreas to improve glucose absorption, enhances glucose uptake and reduces insulin resistance in the liver and in ... Non-alcoholic fatty liver disease (NAFLD) is a condition in which fat builds up in the liver. In some cases this accumulation ... Scientists have uncovered a way to improve liver metabolism for those with non-alcoholic fatty liver disease by using an acute ...
Information on Fatty Liver with there causes, symptoms and treatment ... Home :: Fatty Liver Fatty Liver Disease Fatty liver is also known as NASH, which stands for Non- Alcoholic Steatorrhoeic ... In severe fatty liver, fat constitutes as much as 40% of the livers weight (as opposed to 5% in a normal liver); the livers ... suggest fatty liver. A liver biopsy confirms excessive fat in the liver. The following findings on liver function tests support ...
Table 1 Cohort Characteristics Overall and by Nonalcoholic Fatty Liver Disease (NAFLD) Diagnosis. Full size table. ... Nonalcoholic Fatty Liver Disease Underdiagnosis in Primary Care: What Are We Missing?. *Ellen M. Nielsen MD1, ... Nielsen, E.M., Anderson, K.P., Marsden, J. et al. Nonalcoholic Fatty Liver Disease Underdiagnosis in Primary Care: What Are We ... Nonalcoholic fatty liver disease (NAFLD) is underdiagnosed in primary care despite a high prevalence (, 25%) and strong ties to ...
Find tickets for Prince Fatty concerts near you. Browse 2023 tour dates, venue details, concert reviews, photos, and more at ... Never miss another Prince Fatty concert. Get alerts about tour announcements, concert tickets, and shows near you with a free ...
... may cut down levels of fat in the liver by up to 40 percent in people with type 2 diabetes, a study by physical fitness experts ... People With Type 2 Diabetes Can Put Fatty Livers On A Diet With Moderate Exercise. Date:. September 24, 2008. Source:. Johns ... "People With Type 2 Diabetes Can Put Fatty Livers On A Diet With Moderate Exercise." ScienceDaily. www.sciencedaily.com. /. ... 2008, September 24). People With Type 2 Diabetes Can Put Fatty Livers On A Diet With Moderate Exercise. ScienceDaily. Retrieved ...
Non-alcoholic fatty liver disease is typically thought of as a symptom of something else-the result of another condition, an ... The liver is considered "fatty" when the fat content exceeds 5 percent of the livers volume. It involves a specturm of changes ... Nutritional supplements can also treat a fatty liver, such as curcumin, vitamin E, omega-3 fatty acids, green tea, and ... Non-alcoholic fatty liver disease (NAFLD) is typically thought of as a symptom of something else-the result of another ...
In animal models, it has been noted that it may play a role in the progression of non-alcoholic fatty liver disease (NAFLD), ... the leading cause of chronic liver disease in children. In the current study, we explored the association of circulating plasma ... Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in pediatrics and affects ~30% of children and ... Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease. Liver Int. 2018 ...
Nonalcoholic fatty liver disease (NAFLD) is a globally observed metabolic disease with high prevalence both in adults and ... Kanwal, F.; Kramer, J.R.; Duan, Z.G.; Yu, X.Y.; White, D.; El-Serag, H.B. Trends in the burden of nonalcoholic fatty liver ... Baidal, J.A.W.; Lavine, J.E. The intersection of nonalcoholic fatty liver disease and obesity. Sci. Transl. Med. 2016, 8. [ ... Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human fatty liver disease: Old questions and new insights. Science 2011, 332, 1519-1523 ...
Findings on an ultrasound suggestive of non-alcoholic fatty liver disease include: *Moderate to high amount of fatty ... Lee DH (2017). "Imaging evaluation of non-alcoholic fatty liver disease: focused on quantification". Clin Mol Hepatol. doi: ... Ultrasound may be helpful in the diagnosis of non-alcoholic fatty liver disease. Increased echogenicity and coarsened ... of the liver is the most prominent and diagnostic finding on an ultrasound in patients diagnosed non-alcoholic fatty liver ...
If the disease is caused by excess alcohol consumption, it is referred to as alcoholic fatty liver disease. On the other hand, ... is a condition marked by an accumulation of fat in the liver. ... Foods that harm the liver. If you have fatty liver disease, ... it is referred to as non-alcoholic fatty liver disease (NAFLD). Fatty liver disease does not have symptoms, so it often occurs ... Fatty liver disease, as the name implies, is a condition marked by an accumulation of fat in the liver. If the disease is ...
Key Words: Non-alcoholic fatty liver disease, Metabolic-associated fatty liver disease, Heterogeneity, Phenotypes, nomenclature ... MAFLD: Metabolic-associated fatty liver disease; NAFLD: Non-alcoholic fatty liver disease. ... Liver stiffness measurement predicts long-term survival and complications in non-alcoholic fatty liver disease. Liver Int. 2020 ... Heterogeneity of non-alcoholic fatty liver disease. Liver Int. 2015;35:2498-2500. [PubMed] [DOI] [Cited in This Article: ] [ ...
The findings also reveal anchovies contain the highest levels of the fatty acids. ... Fish livers are a good source of long-chain polyunsaturated fatty acids (LCPUFA) that contribute to overall health, according ... Fish Livers Loaded With Beneficial Fatty AcidsFish Livers Loaded With Beneficial Fatty Acids. ... The livers of edible fish are a good source of long-chain polyunsaturated fatty acids (LCPUFA), especially those in the omega 3 ...
The Importance of Noninvasive Screening in Non-Alcoholic Fatty Liver Disease 0.5 CME / ABIM MOC Credits Clinical Review ... Approximately 25% of the global population has nonalcoholic fatty liver disease (NAFLD), a broad term that covers a range of ... Rapid Review Quiz: Nonalcoholic Fatty Liver Disease (NAFLD) - Medscape - May 27, 2022. ...
Hepatic steatosis is another name for the fatty liver. It is of two types. Nonalcoholic fatty liver disease (NAFLD) and ... Extra fat deposition in the liver is called fatty liver disease. ... Fatty Liver Disease The Liver is a large organ in the abdomen. ... Lifestyle changes can damage the livers health, causing fatty liver disease.. Here are certain ways to prevent fatty liver ... Prevention of Fatty Liver Disease To prevent yourself from getting affected by fatty liver disease, here are certain steps to ...
  • NAFLD is a type of fatty liver disease that is not related to heavy alcohol use. (medlineplus.gov)
  • The cause of nonalcoholic fatty liver disease (NAFLD) is unknown. (medlineplus.gov)
  • NAFLD is the most common chronic liver disorder in the United States. (medlineplus.gov)
  • Both NAFLD and alcoholic fatty liver disease are usually silent diseases with few or no symptoms. (medlineplus.gov)
  • As part of the medical history, your doctor will ask about your alcohol use, to find out whether fat in your liver is a sign of alcoholic fatty liver disease or nonalcoholic fatty liver (NAFLD). (medlineplus.gov)
  • Previously, classified as: Non-alcoholic fatty liver disease (NAFLD) made up of: Non-alcoholic fatty liver (NAFL) or simple fatty liver Non-alcoholic steatohepatitis (NASH) Alcoholic liver disease (ALD). (wikipedia.org)
  • Other risk factors include certain medications such as glucocorticoids, and hepatitis C. It is unclear why some people with NAFLD develop simple fatty liver and others develop NASH. (wikipedia.org)
  • [ 1 ] Tripodi et al reported that in nonalcoholic fatty liver disease (NAFLD), a procoagulant imbalance progresses from steatosis to metabolic cirrhosis, which may be caused by an increase in factor VIII and a reduction of protein C. (medscape.com)
  • [ 2 ] The investigators speculated that this imbalance could play a role in the risk for cardiovascular disease and liver fibrosis, conditions commonly associated with NAFLD. (medscape.com)
  • MAFLD, previously known as non-alcoholic fatty liver disease (NAFLD), is fast becoming the most common indication for liver transplantation. (eurekalert.org)
  • Roughly 80 to 100 millio n Americans have nonalcoholic, fatty liver disease (NAFLD), making it the most common form of liver disease in the country. (livestrong.com)
  • Nonalcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are multidisciplinary liver diseases that often accompany type 2 diabetes or metabolic syndrome, which are characterized by insulin resistance. (hindawi.com)
  • 20 g ethanol/day) is referred to as nonalcoholic fatty liver disease (NAFLD) [ 4 ]. (hindawi.com)
  • According to the AASLD's practice guidelines for NAFLD [ 5 ], NAFLD is histologically subdivided into nonalcoholic fatty liver (NAFL) and a more severe condition, nonalcoholic steatohepatitis (NASH), which sometimes advances over several decades to life-threatening hepatic cirrhosis and hepatocellular carcinoma. (hindawi.com)
  • The prevalence of NAFLD, as detected by ultrasound, is up to 30-46% in developed countries and nearly 10% in developing nations, making NAFLD the most common liver disorder worldwide [ 5 , 6 ]. (hindawi.com)
  • Taken together, NAFLD and NASH are multidisciplinary liver diseases that require interventions targeting the cardiometabolic and liver disorders for the effective treatment of patients with these diseases. (hindawi.com)
  • Although experts are not certain of the main cause, they have found strong links between PCOS and nonalcoholic fatty liver disease (NAFLD) . (healthline.com)
  • This article examines the connections between PCOS and fatty liver disease, including how PCOS may cause NAFLD, whether PCOS can cause liver damage, and what the best options are for treating NAFLD caused by PCOS. (healthline.com)
  • One of the possible complications of NAFLD is inflammation of the liver, which can lead to liver fibrosis (liver scarring). (healthline.com)
  • NAFLD can also cause permanent scarring of the liver ( cirrhosis ), which can lead to liver cancer. (healthline.com)
  • Researchers are still trying to understand how and why PCOS could lead to worse liver damage among people with NAFLD. (healthline.com)
  • Although the molecular mechanisms that regulate autophagy are not fully understood, recent work indicates that dysfunctional/impaired autophagic functions are associated with the development and progression of nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), and hepatocellular carcinoma (HCC). (hindawi.com)
  • In this review, we summarize how impaired autophagy affects liver function and contributes to NAFLD, AFLD, and HCC progression. (hindawi.com)
  • Non-alcoholic fatty liver disease (NAFLD) is a condition in which fat builds up in the liver. (sciencedaily.com)
  • Fatty liver is also known as NASH, which stands for Non- Alcoholic Steatorrhoeic Hepatosis or Non-Alcoholic-Fatty-Liver-Disease (NAFLD) but don't be put off by these big terms - they just mean that your liver is being invaded with fat! (health-care-clinic.org)
  • Patients with non-NAFLD chronic liver disease diagnoses were excluded. (springer.com)
  • Non-alcoholic fatty liver disease (NAFLD) is typically thought of as a symptom of something else-the result of another condition, an afterthought in the medical industry. (integrativepractitioner.com)
  • However, NAFLD is now considered to be the most common liver disease in the Western world and has no approved pharmacological therapy. (integrativepractitioner.com)
  • In animal models, it has been noted that it may play a role in the progression of non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease in children. (nature.com)
  • Nonalcoholic fatty liver disease (NAFLD) is a globally observed metabolic disease with high prevalence both in adults and children. (mdpi.com)
  • On the other hand, if it is caused by poor nutrition and obesity, it is referred to as non-alcoholic fatty liver disease (NAFLD). (naturalnews.com)
  • However, it is important to address liver complications as soon as possible to avoid non-alcoholic steatohepatitis , an aggressive form of NAFLD that may lead to scarring and liver failure. (naturalnews.com)
  • These can help people with NAFLD lose weight, which, in turn, decreases liver fat. (naturalnews.com)
  • Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous condition with a wide spectrum of clinical presentations and natural history and disease severity. (wjgnet.com)
  • According to American Gastroenterological Association (AGA), a person with Non-Alcoholic Fatty Liver Disease (NAFLD) must eat about 1200-1500 calories daily. (starhealth.in)
  • According to a research article on Nutrition and Obesity in NAFLD Pathogenesis in the World Journal of Gastroenterology, the estimate suggests that 20-30% of adults in developed countries, 50% among people with Diabetes, and 80% in the obese have excess fat accumulation in the liver. (starhealth.in)
  • NAFLD is characterized by belly fat, insulin resistance, and high levels of liver enzymes. (pritikin.com)
  • NAFLD can lead to life-threatening conditions like liver cancer and cirrhosis of the liver. (pritikin.com)
  • Research in the journal Hepatology * showed that people suffering from NAFLD who exercised for at least 150 minutes a week over the course of three months cut their liver enzyme levels, shed some belly fat, improved their LDL cholesterol levels, and were less insulin resistant, even though they had not lost significant amounts of weight overall. (pritikin.com)
  • Approximately 25% of the global population has nonalcoholic fatty liver disease (NAFLD), a broad term that covers a range of conditions. (medscape.com)
  • Apart from a viral infection, liver functions get hampered by diabetes, alcohol abuse, drug abuse and change in the metabolic behaviours like regular consumption of processed foods, high-fat red meat, soft drinks, sedentary lifestyle and over-eating ultimately lead to hepatic steatosis or Non-alcoholic fatty liver diseases (NAFLD) which generally doesn't show symptoms in earlier stages. (risingkashmir.com)
  • Non-alcoholic fatty liver disease (NAFLD) has taken us by storm globally. (risingkashmir.com)
  • Non Alcoholic Fatty Liver Disease (NAFLD) results from fat depositions in the liver which is unrelated to alcohol and viral cause. (risingkashmir.com)
  • NAFLD also cause Hepatic infiltration of neutrophils (one of the immune cells) in liver and finally cause chronic steatosis and activations of stellate cells (type of liver cell) to lay down fibrotic tissue thereby causing fibrosis. (risingkashmir.com)
  • Some important awareness tips in prevention of NAFLD (FATTY LIVER) disease. (risingkashmir.com)
  • Study evidence suggests that intermittent fasting can strongly effects on body weight and metabolic parameters, which may link obesity, non-alcoholic fatty liver disease (NAFLD) and major chronic diseases. (risingkashmir.com)
  • Reducing your daily calorie intake causes weight loss and can be the corner stone therapy of non-alcoholic fatty liver disease (NAFLD). (risingkashmir.com)
  • Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in Europe and the United States. (medicalxpress.com)
  • Studies show that the liver of patients with NAFLD and mice with fatty liver have significantly lower amounts of these proteins. (medicalxpress.com)
  • The prevalence of fatty liver disease (FLD) and that of non-alcoholic fatty liver disease (NAFLD) share some risk factors known to exacerbate the course of acute pancreatitis (AP). (mdpi.com)
  • Non-alcoholic fatty liver disease (NAFLD), one of the most significant forms of chronic liver disease worldwide, is characterized by hepatic steatosis. (frontiersin.org)
  • Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common liver disease worldwide, it causes chronic hepatitis, which leads to cirrhosis and hepatocellular carcinoma. (scirp.org)
  • Ninty subjects were enrolled in this study who attended the Hepatology, Gastroenterology and Internal medicine clinics in Benha University Hospitals between January 2017 and January 2018 and divided into group I included 70 consecutive patients with non-alcoholic fatty liver disease who were diagnosed by ultrasound with or without elevated liver enzymes and group II included 20 healthy control subjects without NAFLD (by ultrasound) with normal liver enzymes. (scirp.org)
  • Non-alcoholic fatty liver disease (NAFLD) has grown in incidence to become the most common chronic liver disease worldwide [1] and is projected to surpass alcoholic liver disease as the leading cause of liver transplantation in the United States by 2030 [2]. (termedia.pl)
  • NAFLD can be classified based on histological progression: non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), NASH cirrhosis, and NASH-related hepatocellular carcinoma (HCC) [2]. (termedia.pl)
  • A better understanding of NAFLD epidemiology and risk factors may facilitate ongoing prevention efforts aimed at reducing the quality of life burden, demand for a liver transplant, and risk of HCC all posed by the global rise in NAFLD. (termedia.pl)
  • NAFLD is a diagnosis of exclusion - it is defined as hepatic fat accumulation of greater than 5% of total liver volume without a known secondary cause [3]. (termedia.pl)
  • While the gold standard remains liver biopsy, new non-invasive modalities are being used to facilitate the diagnosis of NAFLD. (termedia.pl)
  • The importance of non-alcoholic fatty liver disease (NAFLD) is increasing and many NAFLD patients suffer from cardiovascular disease. (eurekamag.com)
  • Seventy-one patients originally referred because of chronically elevated liver enzymes and diagnosed with biopsy-proven NAFLD were re-evaluated. (eurekamag.com)
  • Significant fibrosis progression in NAFLD was defined as progression of more than one fibrosis stage or development of endstage liver disease during follow-up. (eurekamag.com)
  • To the best of our knowledge, there is no report on the protective effects of R. oldhamii leaf extract on non-alcoholic fatty liver disease (NAFLD) in vivo and in vitro . (medsci.org)
  • In this study, the effects of R. oldhamii leaf extract on inhibiting the free fatty acid (FFA)-induced accumulation of fat in HepG2 cells and on improving fatty liver syndrome in mice with high fat diet (HFD)-induced NAFLD were investigated. (medsci.org)
  • In addition, the EtOAc fraction of R. oldhamii leaf significantly improved fatty liver syndrome and reduced total cholesterol (TC) and triglyceride (TG) in HFD-induced NAFLD mice at a dosage of 200 mg/kg BW. (medsci.org)
  • Expression levels of target genes were quantified by real-time PCR using liver biopsy samples from NAFLD patients and normal controls. (spandidos-publications.com)
  • Most of the genes tested related to fatty acid and reactive oxygen species (ROS) elimination, were overexpressed in NAFLD and the levels were significantly higher in non-obese patients. (spandidos-publications.com)
  • In NAFLD, increased de novo synthesis and uptake of fatty acids led to further hepatocyte accumulation of fatty acids. (spandidos-publications.com)
  • Background and aims: Several susceptibility gene variants predisposing to nonalcoholic fatty liver disease (NAFLD) have been identified in chronic kidney disease (CKD). (lu.se)
  • Nonalcoholic fatty liver disease (NAFLD) is closely correlated to several metabolic syndrome features. (diabetesjournals.org)
  • Nonalcoholic fatty liver disease (NAFLD) is currently the most common abnormality observed in hepatology practice. (diabetesjournals.org)
  • Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis in over 5% of the parenchyma in the absence of excessive alcohol consumption. (biomedcentral.com)
  • In this context, non-alcoholic fatty liver disease (NAFLD) is an entity characterized by excessive hepatic fat accumulation. (biomedcentral.com)
  • However, the rising prevalence of NAFLD makes its coexistence with other chronic liver diseases quite possible. (biomedcentral.com)
  • NAFLD is the most common type of fatty liver and is not related to excessive alcohol consumption. (diabetescompass.com)
  • Fatty liver (with or without fibrosis) due to any condition except consumption of large amounts of alcohol is called nonalcoholic fatty liver disease (NAFLD). (msdmanuals.com)
  • Nonalcoholic steatohepatitis, the severe form of NAFLD, can cause irreversible liver damage and affects 6.5% of the global population. (thebrighterside.news)
  • Michigan medicine scientists have developed a promising new treatment for nonalcoholic fatty liver disease (NAFLD). (thebrighterside.news)
  • NAFLD is characterized by the accumulation of fat in the liver, which can lead to inflammation and scarring. (thebrighterside.news)
  • NAFLD can progress to NASH, which is a more severe form of the disease that is associated with inflammation and scarring of the liver. (thebrighterside.news)
  • Lifestyle changes, such as diet and exercise, are recommended for people with NAFLD and NASH, but these changes are often difficult to sustain, and they do not always reverse the damage that has already been done to the liver. (thebrighterside.news)
  • The reduced brain volume linked to non-alcoholic fatty liver disease (NAFLD) is equivalent to an extra 4.2 years of aging for people in their 60s and early 70s, or an extra 7.3 years of aging for people under age 60, researchers report in JAMA Neurology November 20. (medscape.com)
  • People with NAFLD had more harmful risk factors than people without fatty liver disease, but even after adjusting for these risks, NAFLD was associated with significantly smaller total brain size. (medscape.com)
  • Introduction:Nonalcoholic fatty liver disease (NAFLD) is a risk factor for increased morbidity, mortality, and cardiovascular disease. (who.int)
  • One hundred and forty‑two (65.1%) had NAFLD and 76 (34.9%) had normal liver. (who.int)
  • However, some studies show higher levels of activation of Hedgehog pathways in patients with the most advanced fatty liver disease. (medscape.com)
  • Fatty liver disease is a condition in which fat builds up in your liver. (medlineplus.gov)
  • What is alcoholic fatty liver disease? (medlineplus.gov)
  • Alcoholic fatty liver disease is due to heavy alcohol use. (medlineplus.gov)
  • Alcoholic fatty liver disease is the earliest stage of alcohol-related liver disease. (medlineplus.gov)
  • Who is at risk for fatty liver disease? (medlineplus.gov)
  • Alcoholic fatty liver disease only happens in people who are heavy drinkers, especially those who have been drinking for a long period of time. (medlineplus.gov)
  • What are the symptoms of fatty liver disease? (medlineplus.gov)
  • How is fatty liver disease diagnosed? (medlineplus.gov)
  • Because there are often no symptoms, it is not easy to find fatty liver disease. (medlineplus.gov)
  • Steatotic liver disease (SLD) a.k.a. fatty liver disease (FLD) or hepatic steatosis, is a condition where excess fat builds up in the liver. (wikipedia.org)
  • Acute fatty liver of pregnancy and Reye's syndrome are examples of severe liver disease caused by microvesicular fatty change. (wikipedia.org)
  • LONDON - Weight loss, lipid reductions, and "robust improvements" in lipid species associated with nonalcoholic fatty liver disease were achieved in patients who were treated with pemvidutide in a first-in-human, phase 1 clinical trial reported at the annual International Liver Congress, sponsored by the European Association for the Study of the Liver. (medscape.com)
  • In patients with alcoholic liver disease, the serum leptin level appears to be independently correlated with the grade of steatosis. (medscape.com)
  • The condition most commonly associated with fatty liver disease is metabolic syndrome. (medscape.com)
  • CHICAGO- The percent of metabolic associated fatty liver disease (MAFLD), the leading global cause of liver disease, is increasing in U.S. adults, according to a study presented Friday at ENDO 2023, the Endocrine Society's annual meeting in Chicago, Ill. (eurekalert.org)
  • It is a risk factor for cardiovascular disease, type 2 diabetes and a common type of liver cancer. (eurekalert.org)
  • If you've been diagnosed with fatty liver disease, eating more fat might seem like the last thing you want to do. (livestrong.com)
  • Another suspected source of fatty liver disease is polyunsaturated fats, such as soybean oil, corn oil, and oils made from seeds such as sunflower oil, canola oil and safflower oil. (livestrong.com)
  • Although it sounds counterintuitive, eating a high-fat, low carb diet has shown promise to reverse fatty liver disease. (livestrong.com)
  • However, when you have fatty liver disease and are thinking about going keto, it's imperative to consult a medical professional. (livestrong.com)
  • Having polycystic ovary syndrome puts you at higher risk of developing fatty liver disease. (healthline.com)
  • What's the connection between PCOS and nonalcoholic fatty liver disease? (healthline.com)
  • Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity? (nih.gov)
  • This project will use our newly-developed and novel diagnostic tools [computer tomography (CT)-based and electronic health record (EHR)-based] to identify members of the World Trade Center (WTC) General Responder Cohort (GRC) who have evidence of toxicant-associated fatty liver disease (TAFLD) and liver cancer. (cdc.gov)
  • A WTC Liver Disease registry will be established to collect data about the impact of liver disease on quality of life and other valuable information. (cdc.gov)
  • This interesting study shows promising findings for the many people around the world who suffer from non-alcoholic fatty liver disease," says Professor Tom Hemming Karlsen, EASL Vice-Secretary. (sciencedaily.com)
  • The Burden of Liver Disease in Europe. (sciencedaily.com)
  • The most common cause of fatty liver in the United States and Europe is chronic alcoholism, with the severity of liver disease directly related to the amount of alcohol consumed. (health-care-clinic.org)
  • Nonalcoholic Fatty Liver Disease Underdiagnosis in Primary Care: What Are We Missing? (springer.com)
  • This retrospective study of patient-centered medical home (PCMH) EHR data from 2012 to 2018 included patients with radiographic reports of liver steatosis and no preceding liver disease diagnoses. (springer.com)
  • According to researchers, who will present their findings on Sept. 18 at the annual meeting of the American Association of Cardiovascular and Pulmonary Rehabilitation, in Indianapolis, high liver fat levels are common among people with type 2 diabetes and contribute to heart disease risk. (sciencedaily.com)
  • The study's lead investigator, exercise physiologist Kerry Stewart, Ed.D., says the rise in the number of people with nonalcoholic fatty liver, mostly due to obesity, signals "a dark trend" because the disease, also called hepatic steatosis, may lead to cirrhosis and subsequent liver failure and transplantation, even cancer, as well as increased risk of diabetes-related heart disease. (sciencedaily.com)
  • Very few practitioners talk about fatty liver as a core issue, according to Robert Rountree, MD, who presented "The Emerging Pandemic of Non-Alcoholic Fatty Liver Disease" during this morning's keynote session at the Integrative Healthcare Symposium. (integrativepractitioner.com)
  • Ultrasound may be helpful in the diagnosis of non-alcoholic fatty liver disease. (wikidoc.org)
  • Increased echogenicity and coarsened echotexture of the liver is the most prominent and diagnostic finding on an ultrasound in patients diagnosed non-alcoholic fatty liver disease. (wikidoc.org)
  • Fatty liver disease, as the name implies, is a condition marked by an accumulation of fat in the liver. (naturalnews.com)
  • If the disease is caused by excess alcohol consumption, it is referred to as alcoholic fatty liver disease. (naturalnews.com)
  • Fatty liver disease does not have symptoms, so it often occurs undetected. (naturalnews.com)
  • Fortunately, fatty liver disease can easily be prevented or treated using natural means. (naturalnews.com)
  • Here are foods that can help prevent or reverse this liver disease . (naturalnews.com)
  • If you have fatty liver disease, eating nutritious foods is not enough to restore your liver's health. (naturalnews.com)
  • Alcohol is a major cause of liver disease. (naturalnews.com)
  • Fatty liver disease is typically caused by a combination of metabolic disorders, such as obesity, hyperlipidemia (high blood lipid levels) and Type 2 diabetes. (naturalnews.com)
  • Luckily, regular consumption of foods that promote weight loss and avoidance of unhealthy foods can reverse liver disease and prevent complications. (naturalnews.com)
  • Lifestyle changes can damage the liver's health, causing fatty liver disease. (starhealth.in)
  • Here are certain ways to prevent fatty liver disease. (starhealth.in)
  • Here are a few dietary tips for preventing fatty liver disease. (starhealth.in)
  • A person with fatty liver disease can add the list into their diet. (starhealth.in)
  • If a person is suffering from BED, they will be prone to fatty liver disease. (starhealth.in)
  • Drinking excessive alcohol, even for a few days, can cause fatty liver disease, which is called alcoholic fatty liver disease (ARLD). (starhealth.in)
  • Children's Liver Disease Foundation is the only UK charity dedicated to fighting all childhood liver diseases. (childliverdisease.org)
  • More and more research is finding that we can substantially reduce our risk of fatty liver disease by eating a healthy Pritikin-style diet and shedding weight, particularly belly fat, via healthy eating (low-calorie-dense foods) and regular exercise. (pritikin.com)
  • Research has found that a wide range of conditions can increase the risk of fatty liver disease, including high cholesterol levels, high triglycerides, gastric bypass surgery, obesity, metabolic syndrome, and type 2 diabetes. (pritikin.com)
  • People who come to the Pritikin Longevity Center with fatty liver disease often see major improvements, and in just two to three weeks, observes Medical Director, Danine Fruge MD, who has been on the Pritikin faculty since 2003. (pritikin.com)
  • Cell death generates information and eventually the process of steatosis and in the absence of alcohol, causes non-alcoholic fatty liver disease. (risingkashmir.com)
  • One method of restoring antioxidants is to consume natural compounds with antioxidant capacity, because this will only play the key role in preventing liver disease and also help decreasing the concentration of free radicals inside the body. (risingkashmir.com)
  • In addition to an unhealthy lifestyle with a high-fat, high-sugar diet and lack of exercise, a genetic predisposition is also responsible for the development of this liver disease. (medicalxpress.com)
  • We aimed to assess the value of liver fatty acid binding protein (L-FABP) in the diagnosis of non-alcoholic fatty liver disease in comparison to ultrasonography. (scirp.org)
  • Cats that are especially weak may also have electrolyte imbalances or vitamin deficiencies from their liver disease. (vin.com)
  • If the bilirubin is not elevated, liver disease may be picked up as an elevation in a blood test enzyme called alkaline phosphatase (ALP). (vin.com)
  • This enzyme should never be elevated in cats under any normal circumstances though there are several forms of this enzyme and an elevation does not necessarily indicate liver disease. (vin.com)
  • An ALP elevation is definitely suggestive of liver disease and requires follow up testing such as a bile acids liver function test. (vin.com)
  • Tissue sampling, such as biopsy or a needle aspirate, is crucial to diagnosing liver disease. (vin.com)
  • Without a tissue sample, all we can tell is whether or not the liver is in failure and specific therapy for a specific type of liver disease is not possible (though general support of the failing liver may still be possible. (vin.com)
  • Cat may show the yellow pigment changes typical of liver disease (70% of cats with lipidosis have jaundice). (vin.com)
  • Ultrasound shows a disease process involve the liver in its entirety. (vin.com)
  • Chaitanya Thandra K, Barsouk A, Saginala K, Sukumar Aluru J, Rawla P, Barsouk A. Epidemiology of non-alcoholic fatty liver disease and risk of hepatocellular carcinoma progression. (termedia.pl)
  • Levels of aminotransferase enzymes (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) have also been used with varying degrees of success as a screening tool for liver disease. (termedia.pl)
  • Ultrasonography has become the standard modality for screening for moderate to severe fatty liver disease. (termedia.pl)
  • Therefore, a positive diagnosis rather than a diagnosis based on exclusion of concomitant diseases has been proposed [ 11 ], and a dual etiology for fatty liver disease is considered possible and even frequent [ 12 ]. (biomedcentral.com)
  • Fatty liver disease goes hand in hand with the obesity epidemic and it exacerbates insulin resistance in people with type 2 diabetes," said Andreas Stahl , professor in the Department of Nutritional Sciences and Toxicology and the senior author on the study. (berkeley.edu)
  • One in three adults and a growing number of children in developed countries are estimated to suffer from fatty liver disease, according to the widely cited Dallas Heart Study, and it is frequently underdiagnosed. (berkeley.edu)
  • Our findings shed new light on how a centuries-old remedy might be effective in treating liver disease. (berkeley.edu)
  • Fat accumulation in the liver, an organ central to the body's metabolism, can have detrimental effects throughout the body, including increased cardiovascular disease risk and the development of insulin resistance, the hallmark of pre-diabetes and type 2 diabetes. (berkeley.edu)
  • Non-alcoholic fatty liver disease can result from the excessive uptake and storage of dietary fat by the liver, or from the liver converting carbohydrates into fat. (berkeley.edu)
  • In fact, UDCA previously had been tested as a treatment for fatty liver disease, with mixed results. (berkeley.edu)
  • I hope that our result will prompt a re-evaluation of UDCA for clinical use in treating fatty liver disease and potentially type 2 diabetes," Stahl said. (berkeley.edu)
  • Gymnema Sylvestre , a herb native to the tropical forests of India, has gained attention for its potential benefits in improving liver health , particularly in cases of fatty liver disease . (diabetescompass.com)
  • By exploring the research and evidence surrounding Gymnema Sylvestre, you can gain a better understanding of its potential role in improving liver health and managing fatty liver disease. (diabetescompass.com)
  • Sometimes fatty liver causes advanced liver disease such as fibrosis and cirrhosis. (msdmanuals.com)
  • Overview of Liver Disease Liver disease can manifest in many different ways. (msdmanuals.com)
  • Nonalcoholic fatty liver disease is a condition that affects up to 32% of people worldwide. (thebrighterside.news)
  • Reuters Health) - Fatty liver disease that is not related to excess drinking is associated with greater brain shrinkage than normally happens with age, researchers say. (medscape.com)
  • About 18 percent of the participants had fatty liver disease. (medscape.com)
  • Even in people 75 and older, it was the equivalent of an extra 1.5 years of brain aging compared to peers without fatty liver disease. (medscape.com)
  • But it still remains to show in other studies that improvement in fatty liver disease is associated with lower risk of such brain diseases," she said. (medscape.com)
  • metabolic syndrome comprises a combination of diabetes, high blood pressure , and obesity , and metabolic associated fatty liver disease (MAFLD) is associated with it. (bvsalud.org)
  • A higher concentration of 3-GP results in enhanced esterification of fatty acids. (medscape.com)
  • An increase in free fatty acids has also been incriminated in the pathogenesis. (medscape.com)
  • In addition, chronic ethanol ingestion inhibits oxidation of fatty acids in the liver and the release of VLDL into the blood. (medscape.com)
  • The foremost cause of AFLP is thought to be due to a mitochondrial dysfunction in the oxidation of fatty acids leading to an accumulation in hepatocytes. (medscape.com)
  • The infiltration of fatty acids causes acute liver insufficiency, which leads to most of the symptoms that present in this condition. (medscape.com)
  • LCHAD is found on the mitochondrial membrane and is involved in the beta oxidation of long-chain fatty acids. (medscape.com)
  • However, if the fetus is homozygous for this mutation, it will be unable to oxidize fatty acids. (medscape.com)
  • [ 3 ] These acids are passed to the mother, who, because of diminished enzyme function, cannot metabolize the additional fatty acids. (medscape.com)
  • When it comes to carbs, your body converts them to palmitic acid, a type of fat that is the first step to making long-chain fatty acids. (livestrong.com)
  • Long-chain fatty acids take longer to metabolize in your system than do short- or medium-chain fatty acids and are often deposited as fat in the body. (livestrong.com)
  • In the last decade, it has been shown that metformin, thiazolidinediones, vitamin E, ezetimibe, n-3 polyunsaturated fatty acids, renin-angiotensin system (RAS) blockers, and antiobesity drugs may improve hepatic pathophysiological disorders as well as clinical parameters. (hindawi.com)
  • In addition, certain nutritional supplements may be helpful, such as omega-3 fatty acids and vitamin E . (healthline.com)
  • After the degradation of damaged proteins and lipids, amino acids and fatty acids are released into the cytoplasm and recycled for new biosynthesis of cellular components or energy production [ 4 ]. (hindawi.com)
  • Walnuts are excellent sources of heart-healthy omega-3 fatty acids. (naturalnews.com)
  • Fatty fish like salmon, mackerel and tuna also contain high levels of omega-3 fatty acids, which can reduce fat accumulation in the liver. (naturalnews.com)
  • Avocados are another excellent source of liver-friendly omega-3 fatty acids. (naturalnews.com)
  • The findings also reveal anchovies contain the highest levels of the fatty acids. (naturalproductsinsider.com)
  • They found the livers of the great weever (Trachinus draco) and the European anchovy (Engraulis encrasicolus) showed up the highest levels of LCPUFA (51.4% and 47.9% out of the total fatty acids, respectively). (naturalproductsinsider.com)
  • All the species had a combination of omega-3 and omega-6 acids that was 'beneficial for human consumption', especially in the case of the liver of the blue whiting (Micromesistius poutassou). (naturalproductsinsider.com)
  • The livers of edible fish are a good source of long-chain polyunsaturated fatty acids (LCPUFA), especially those in the omega 3 family, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)', said lead researcher José Luis Guil-Guerrero. (naturalproductsinsider.com)
  • The researchers have observed that after the uptake of fatty acids in liver cells, the immunity-related GTPases migrate to the lipid droplets. (medicalxpress.com)
  • It is important to distinguish tests of liver damage (like enzymes) versus tests of liver function (like bile acids). (vin.com)
  • Home / Nordic Naturals Pure Fish Oil Omega Supplements / Nordic Naturals Arctic Cod Liver Oil, Naturally Occurring Omega Fatty Acids, Vitamin A, Vitamin D, Flavored with Orange Oil, 16 oz. (drvitaminsolutions.com)
  • These include Vitamin D, Vitamin A, and most importantly, Omega Fatty Acids, particularly Omega-3s and Omega-9s. (drvitaminsolutions.com)
  • Essential Fatty Acids are any variety of dietary fats which the body is incapable of producing on its own. (drvitaminsolutions.com)
  • Omega Fatty Acids are perhaps the most essential of these fats, and are most commonly found in seafood. (drvitaminsolutions.com)
  • The study tested the ability of various bile acids to impede transporter proteins that carry fat, in the form of fatty acid, into the liver. (berkeley.edu)
  • Building on that research, this new study tested more than 30 bile acids in an attempt to discover which ones were most effective in blocking the liver-specific transporters. (berkeley.edu)
  • Inflammation and liver cell damage can cause fibrosis, or scarring, of the liver. (medlineplus.gov)
  • Liver stiffness can mean fibrosis, which is scarring of the liver. (medlineplus.gov)
  • Fatty liver can develop into hepatic fibrosis, cirrhosis or liver cancer. (wikipedia.org)
  • And women with PCOS may have an increased risk of liver fibrosis and steatosis (buildup of fat in the liver). (healthline.com)
  • Ultrasound elastography is another kind of ultrasound that can give qualitative progression of the liver fibrosis. (wikidoc.org)
  • As the fibrosis continues, the scares are formed in the liver tissue and is classified as cirrhosis (Total damage of liver). (risingkashmir.com)
  • Without proper management and lifestyle changes, fatty liver can progress to more severe conditions like non-alcoholic steatohepatitis (NASH) , liver fibrosis, and ultimately cirrhosis , which is irreversible scarring of the liver. (diabetescompass.com)
  • Fibrosis of the Liver Fibrosis is the formation of an abnormally large amount of scar tissue in the liver. (msdmanuals.com)
  • In both non-human primates and mice, investigators found that treatment with DT-109 reverses fat buildup and prevents fibrosis progression by stimulating fatty acid degradation and antioxidant formation. (thebrighterside.news)
  • The diagnosis of steatosis is made when fat in the liver exceeds 5-10% by weight. (wikipedia.org)
  • Advances in the understanding of the pathogenesis of alcoholic steatosis have provided some useful insights, including the role of peroxisome proliferator-activated receptor alpha, which is crucial for the regulation of hepatic fatty acid metabolism. (medscape.com)
  • [ 1 ] It is characterized by microvesicular steatosis in the liver. (medscape.com)
  • The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. (sciencedaily.com)
  • Expression of genes related to fatty acid oxidation and ROS elimination were higher in the non-obese group than in the obese group, which contributes to the trend of more severe liver injury, insulin resistance and steatosis in obese patients. (spandidos-publications.com)
  • Fatty liver, also known as hepatic steatosis , is a condition characterized by the buildup of fat in liver cells. (diabetescompass.com)
  • Dysregulations of lipid metabolism in the liver may trigger steatosis progression, leading to potentially severe clinical consequences such as nonalcoholic fatty liver diseases (NAFLDs). (ntu.edu.sg)
  • Mice with liver-specific Hmgb1 deficiency display exacerbated liver steatosis, while Hmgb1-overexpressing mice exhibited a protection from fatty liver progression when subjected to nutritional stress. (ntu.edu.sg)
  • Together, these findings suggest that hepatocellular HMGB1 protects from liver steatosis development. (ntu.edu.sg)
  • More than 90% of heavy drinkers develop fatty liver while about 25% develop the more severe alcoholic hepatitis. (wikipedia.org)
  • Less than 10% of people with cirrhotic alcoholic FLD will develop hepatocellular carcinoma, the most common type of primary liver cancer in adults, but up to 45% people with NASH without cirrhosis can develop hepatocellular carcinoma. (wikipedia.org)
  • Alcoholic fatty liver is an early and reversible consequence of excessive alcohol consumption. (medscape.com)
  • Its blockade, in animal models, along with ethanol consumption, contributes to the development of alcoholic fatty liver. (medscape.com)
  • In addition, induction of adiponectin, a hormone secreted by adipocytes, has been implicated in the protective effect of saturated fat against the development of alcoholic fatty liver in mice. (medscape.com)
  • Hepatocyte death by apoptosis occurs in alcoholic fatty liver and has been demonstrated in rats and mice after ethanol feeding. (medscape.com)
  • Data from animal studies and clinical studies support the role of proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) in the early stages of fatty liver, as well as in alcoholic steatohepatitis. (medscape.com)
  • In alcoholic fatty liver, abstinence from alcohol and a proper diet can begin to correct liver changes within 4 to 8 weeks. (health-care-clinic.org)
  • Physicians may be more familiar with the similar condition that occurs in patients who regularly consume large qualities of alcohol-though fatty liver is becoming more common in non-alcoholic patients, says Rountree. (integrativepractitioner.com)
  • Patients and families have indicated that terms such as "fatty" and "alcoholic" can have stigma attached to them. (childliverdisease.org)
  • In Germany about 18 million people suffer from non-alcoholic fatty liver. (medicalxpress.com)
  • 1. Percutaneous liver biopsy specimens were obtained from 11 control subjects, 24 alcoholic patients and six diabetic patients with mild to severe fatty liver and incubated in Krebs-Henseleit buffer containing 3 H 2 O. The incorporation of 3 H into fatty acid was measured and the absolute rate of fatty acid synthesis calculated. (portlandpress.com)
  • 2. Fatty acid synthesis rates were significantly lower in alcoholic fatty liver than in controls. (portlandpress.com)
  • It is concluded that enhanced lipogenesis is not the major cause of fatty liver in patients with alcoholic fatty liver. (portlandpress.com)
  • Nonalcoholic steatohepatitis (NASH), in which you have inflammation and liver cell damage, as well as fat in your liver. (medlineplus.gov)
  • In some patients, fatty liver may be accompanied by hepatic inflammation and liver cell death (steatohepatitis). (medscape.com)
  • A simple fatty liver can progress to an inflammation known as nonalcoholic steatohepatitis (NASH). (livestrong.com)
  • Inflammation of the liver due to fatty liver is called steatohepatitis. (msdmanuals.com)
  • Simple fatty liver, in which you have fat in your liver but little or no inflammation or liver cell damage. (medlineplus.gov)
  • These substances can damage liver cells, promote inflammation, and weaken your body's natural defenses. (medlineplus.gov)
  • In both situations, many parallel hits derived from the gut and/or the adipose tissue may promote liver inflammation. (nih.gov)
  • In some cases this accumulation of fat can cause inflammation of the liver and eventually lead to permanent scarring (cirrhosis), which can seriously impair the liver's ability to function. (sciencedaily.com)
  • In addition, regularly consuming nutritious foods that reduce cholesterol and inflammation can restore liver function. (naturalnews.com)
  • As a powerful antioxidant, vitamin E can reduce inflammation in the liver and help restore liver function. (naturalnews.com)
  • Fat buildup is also known to trigger inflammation, which can damage the liver extensively if it persists for a long time. (naturalnews.com)
  • Consuming food that helps fight cell damage will reduce inflammation, and help the liver function in its normal state. (starhealth.in)
  • Eating a balanced diet with limited calories will induce weight loss and reduce inflammation, which results in the recovery of fatty liver conditions. (starhealth.in)
  • 6. The herb works by reducing liver inflammation and enhancing the liver's ability to metabolize fats. (diabetescompass.com)
  • Alcohol is toxic to liver cells, and chronic alcohol abuse can lead to fat accumulation and inflammation in the liver. (diabetescompass.com)
  • And that's because a fatty liver causes INFLAMMATION , which impairs your liver's ability to carry out its 800+ jobs in your body. (harborhealthservices.org)
  • REVERSE inflammation and damage to your liver. (harborhealthservices.org)
  • Diagnosis is based on the medical history supported by blood tests, medical imaging, and occasionally liver biopsy. (wikipedia.org)
  • A liver biopsy confirms excessive fat in the liver. (health-care-clinic.org)
  • In this way, we can see if the liver is actually in need of support and whether or not we have a good chance of getting a diagnosis through a biopsy. (vin.com)
  • A liver biopsy may be needed to confirm the diagnosis and to determine the cause and extent of the damage. (msdmanuals.com)
  • Clinical features of fatty liver vary with the degree of lipid infiltration, and many patients are asymptomatic. (health-care-clinic.org)
  • Moderate to high amount of fatty infiltration of liver which is reflected as increased echogenicity and coarsened echotexture of the liver. (wikidoc.org)
  • An aspirate showing fat infiltration is usually diagnostic, especially when ultrasound shows the entire liver has a fatty texture. (vin.com)
  • Hepatic ultrasonography, magnetic resonance imaging (MRI), and computed tomography (CT) are all utilized in detecting fatty infiltration in the liver. (termedia.pl)
  • Histopathological evidence of fatty infiltration of the liver was observed in the mice at all sacrifice periods of the subchronic study. (cdc.gov)
  • NASH may lead to cirrhosis or liver cancer . (medlineplus.gov)
  • stepwise increase in the mean TAG/DAG ratio, FC/PC ratio and hepatic FC from normal livers to NAFL to NASH. (wjgnet.com)
  • Fatty liver or NASH, is very common in overweight persons, over the age of 30. (health-care-clinic.org)
  • Progression results from multiple genetic and environmental factors, though 5 percent to 8 percent of NASH patients develop liver cirrhosis with five years. (integrativepractitioner.com)
  • NASH is the third most common indication for liver transplantation in the U.S. By 2025, an estimated 25 million Americans will get NASH that may require a transplant, statistics that some practitioners and researchers call the "coming tsunami. (integrativepractitioner.com)
  • NASH-related cirrhosis is now one of the most common reasons for liver transplantation, and there are currently no approved treatments for the condition. (thebrighterside.news)
  • Fatty liver (FL) is commonly associated with metabolic syndrome (diabetes, hypertension, obesity, and dyslipidemia), but can also be due to any one of many causes: Alcohol Alcohol use disorder is one of the causes of fatty liver due to production of toxic metabolites like aldehydes during metabolism of alcohol in the liver. (wikipedia.org)
  • People with fatty liver also commonly have high triglycerides, insulin resistance, high blood sugar and are living with overweight or obesity. (livestrong.com)
  • Typical clinical features - especially in patients with chronic alcoholism, malnutrition, poorly controlled diabetes mellitus, or obesity - suggest fatty liver. (health-care-clinic.org)
  • According to Douglas Dieteruch, MD, a professor at Mount Sinai in New York City, "High fructose corn syrup has a direct proportion to obesity in the U.S. and to fatty liver. (integrativepractitioner.com)
  • 3. The main causes of fatty liver include poor diet, obesity, and diabetes or insulin resistance. (diabetescompass.com)
  • From poor dietary choices to the impact of obesity and the significance of diabetes or insulin resistance, each sub-section sheds light on a specific aspect of fatty liver development. (diabetescompass.com)
  • Fatty liver" has become increasingly common in recent years due to the rising levels of obesity in the world. (harborhealthservices.org)
  • This racial/ethnic disparity is a public health concern," said researcher Theodore C. Friedman, M.D., Ph.D., Chair of the Department of Internal Medicine at Charles R. Drew University of Medicine & Science in Los Angeles, Calif. "Overall, the increase in MAFLD is concerning, as this condition can lead to liver failure and cardiovascular diseases and has an important health disparity. (eurekalert.org)
  • Gut microbiota plays a role in the pathophysiology of metabolic diseases, which include nonalcoholic fatty liver diseases, through the gut-liver axis. (nih.gov)
  • To date, clinical guidelines recommend a weight loss goal of 7%-10% to improve features of nonalcoholic fatty liver diseases. (nih.gov)
  • The findings will provide unprecedented detail about these occupational liver diseases, helping to inform public policy. (cdc.gov)
  • In June 2023, a group of multi-national liver societies announced a change in the terminology used for fatty liver diseases. (childliverdisease.org)
  • Liver diseases are a worldwide medical problem and are rising exponentially. (risingkashmir.com)
  • Most of the chronic liver diseases are almost characterized by increase oxidative stress within Liver Cells (hepatocytes). (risingkashmir.com)
  • It is one of the best proven antioxidant for fatty liver diseases. (risingkashmir.com)
  • And if you don't do anything about it now, you could end up with a much higher chance of contracting fatal diseases like cirrhosis of the liver, heart attacks, stroke, diabetes and cancer. (harborhealthservices.org)
  • The more your liver is impaired, the unhealthier you become, and the more likely you are to contract a wide range of life-threatening diseases, such as liver failure, heart attacks, stroke, diabetes, cancer, and much more. (harborhealthservices.org)
  • In turn, if one retains a healthy liver, his/her risk for other diseases, such as diabetes and heart diseases, is also reduced. (medscape.com)
  • In those who are severely affected, liver transplantation may be an option. (wikipedia.org)
  • While laboratory abnormalities may persist after delivery, in rare cases patients may progress to hepatic failure with the need for liver transplantation. (medscape.com)
  • Depending on the degree of severity, the patient may need to undergo liver transplantation. (health-care-clinic.org)
  • severe or persistent changes may cause liver dysfunction. (health-care-clinic.org)
  • Fatty liver can be asymptomatic, and many people may not realize they have it until it progresses to more severe conditions. (diabetescompass.com)
  • Majority of the people, like I did, ignore minor signs and symptoms until they become too severe and have major effects on their lives. (who.int)
  • HA492 trade name] are at an increased risk for severe and potentially fatal liver adverse reactions, and may require blood tests to monitor liver function. (who.int)
  • Diagnosis can be made with Liver function test, Ultrasound, CT-scan and MRI, to look for fatty infiltrates. (risingkashmir.com)
  • A diagnosis of fatty liver condition can be a true driver for family members to make dietary alterations," suggests Mattimore, who worked with Kira in the Fatty Liver Interdisciplinary Method. (fsa-sky.org)
  • It is important to consult with a healthcare professional for an accurate diagnosis and appropriate treatment plan if you suspect you have fatty liver or are concerned about your liver health. (diabetescompass.com)
  • The authors have succeeded in identifying an existing treatment that can improve liver metabolism, which is an important step forward for the hepatology community. (sciencedaily.com)
  • To explore any differences in lipid metabolism between obese and non-obese patients, we determined the expression of fatty acid metabolism-related genes. (spandidos-publications.com)
  • The physiological role of FABP's within the cell remains unclear but a targeting role for the protein would provide an attractive mechanism for ligand (fatty acid) transfer to membrane sites for further metabolism and requires an interaction between the FABP and the membrane. (soton.ac.uk)
  • Once the fat level reaches about 10 percent of the liver's weight, the liver no longer is able to function normally. (livestrong.com)
  • The liver is considered "fatty" when the fat content exceeds 5 percent of the liver's volume. (integrativepractitioner.com)
  • Cirrhosis of the Liver Cirrhosis is the widespread distortion of the liver's internal structure that occurs when a large amount of normal liver tissue is permanently replaced with nonfunctioning scar tissue. (msdmanuals.com)
  • Due to the autophagy of lipid droplets, the amount of fat is reduced and thus the development of fatty liver is prevented. (medicalxpress.com)
  • Liver fatty acid binding protein (LFABP) belongs to a family of small (14kDa) intracellular lipid-binding proteins, which have a characteristic β-barrel structure. (soton.ac.uk)
  • A type 2 diabetes treatment has been found to also have 'off-label' benefits for glucose control in the liver and in fatty cells known as adipose. (sciencedaily.com)
  • The study shows that exenatide, a treatment that targets the pancreas to improve glucose absorption, enhances glucose uptake and reduces insulin resistance in the liver and in adipose tissue. (sciencedaily.com)
  • A type 2 diabetes treatment has been found to also have 'off-label' benefits for glucose control in the liver and in fatty cells known as adipose.1 Presented at The International Liver CongressTM 2016 in Barcelona, Spain, today, the study shows that exenatide, a treatment that targets the pancreas to improve glucose absorption, enhances glucose uptake and reduces insulin resistance in the liver and in adipose tissue. (sciencedaily.com)
  • The test measured glucose uptake in liver tissue and abdominal adipose tissue glucose uptake. (sciencedaily.com)
  • Furthermore, exenatide decreased insulin resistance in fatty adipose tissue (p=0.009). (sciencedaily.com)
  • After 11 weeks, body weight, serum biochemical indices and the mRNA expressions of the liver tissue, as well as the outward appearance, weight and histopathological analysis of liver and adipose tissues were evaluated. (medsci.org)
  • The results showed that acute exenatide administration (5mcg) decreased glucose production and insulin resistance (p=0.02) in the liver tissue when blood sugars were low. (sciencedaily.com)
  • The treatment also improved liver tissue uptake of glucose when it is eaten (p=0.039). (sciencedaily.com)
  • This not only damages liver tissue, but it eventually leads to scarring (liver cirrhosis) and cellular mutations that can cause liver cancer. (naturalnews.com)
  • Boston Children's Clinic diagnoses fatty liver sickness by a mixture of imaging assessments that may well contain ultrasound and FibroScan® - a specialized ultrasound machine made to evaluate scarring and fatty transform in the liver. (fsa-sky.org)
  • Eventually, the condition can evolve into cirrhosis of the liver, which is scarring that takes up an increasing amount of the liver, rendering it unable to function. (livestrong.com)
  • 3. Fatty acid synthesis rates were similar in controls and patients with diabetic fatty livers. (portlandpress.com)
  • However, research has continuously shown that fructose increases levels of enzymes involved in DNL, leads to ATP depletion and suppression of mitochondrial fatty acid oxidization, and promotes uric acid formation. (integrativepractitioner.com)
  • Other liver enzymes commonly monitored on routine blood panels are alanine aminotransferase (ALT) and aspartate animotransferase (AST). (vin.com)
  • These enzymes elevate relatively easily and are not as important in liver evaluation as ALP elevations but a substantial increase may also warrant follow up liver testing. (vin.com)
  • Results indicated a decrease in the level of enzymes classically found in serum following acute liver injury. (cdc.gov)
  • The treatment for fatty liver is essentially supportive and consists of correcting the underlying condition or eliminating its cause. (health-care-clinic.org)
  • DZD researchers have now discovered new genes that play a role in the development of fatty liver. (medicalxpress.com)
  • These proteins increase a certain form of fat degradation and thus counteract the development of fatty liver. (medicalxpress.com)
  • A poor diet is one of the main factors contributing to the development of fatty liver . (diabetescompass.com)
  • Mice appeared much more sensitive than rats to the development of fatty liver. (cdc.gov)
  • Simple fatty liver typically does not get bad enough to cause liver damage or complications. (medlineplus.gov)
  • Fatty liver is the accumulation of triglycerides and other fats in the liver cells. (medscape.com)
  • This may be related to mitochondrial proteins that regulate apoptosis and necrosis and that are shown to be induced in mouse fatty liver models. (medscape.com)
  • Fatty liver disorder is involved with threat elements this kind of as weight problems and other metabolic ailments like style 2 diabetes , prediabetes, or large triglycerides . (fsa-sky.org)
  • Fatty liver is an abnormal accumulation of certain fats (triglycerides) inside liver cells. (msdmanuals.com)
  • At the beginning, the hepatocytes present small fat vacuoles (liposomes) around the nucleus (microvesicular fatty change). (wikipedia.org)
  • Overtime fat in hepatocytes is vulnerable, because fatty acid becomes unstable and reacts with the free radicles (Oxygen reacting molecules) and forming a chain of free fatty acyl radicle formation. (risingkashmir.com)
  • Hepatocytes damage can increase liver enzyme in the blood stream, such as aspartate transaminase(AST) and alanine transaminase(ALT). (risingkashmir.com)
  • It followed up on previous research, also in Stahl's lab, that first identified these liver-specific transporters as good targets for inhibiting fat uptake to the liver, and then found a bile acid to be the one compound, out of more than 1,000 various molecules tested, to inhibit the fatty liver-specific transporters. (berkeley.edu)
  • Cirrhosis may lead to total liver failure as well as liver cancer, fluid buildup in the abdomen, swollen veins in the esophagus that could rupture or symptoms that include confusion, slurred speech and drowsiness. (livestrong.com)
  • Good prenatal care will help to recognize the symptoms of fatty liver in pregnant women before the condition becomes serious. (health-care-clinic.org)
  • Some common symptoms may include fatigue, abdominal discomfort, and an enlarged liver. (diabetescompass.com)
  • People with fatty liver may feel tired or have mild abdominal discomfort but otherwise have no symptoms. (msdmanuals.com)
  • When these events take place in the liver, they can lead to liver cirrhosis, a condition that impairs liver function. (naturalnews.com)
  • scarring that distorts the structure of the liver and impairs its function). (msdmanuals.com)
  • The amount of fatty acid in the liver depends on the balance between the processes of delivery and removal. (medscape.com)
  • Fatty liver is usually reversible by simply eliminating the cause.This disorder may result in recurrent infection or sudden death from fat emboli in the lungs. (health-care-clinic.org)
  • Kira and her mother both shed important weight, Kira's fatty liver disorder commenced to dissipate, and - most importantly to her mom - Kira's self-esteem enhanced considerably. (fsa-sky.org)
  • The role of the early growth response-1 (EGr-1) transcription factor is thought to be essential for ethanol-induced fatty liver injury in mice. (medscape.com)
  • Researchers have discovered new genes that are responsible for the production of regulatory proteins of the immune-associated GTPase family in humans and mice, respectively, which counteract the accumulation of fat in the liver and thus contribute to the prevention of fatty liver. (medicalxpress.com)
  • In humans and mice, respectively, the genes IRGM, Ifgga2 and Ifgga4 are responsible for the production of regulatory proteins of the family of immunity-related GTPases which counteract fat accumulation in the liver. (medicalxpress.com)
  • In humans and mice, these genes produce regulatory proteins from the family of immunity-related GTPases that counteract fat accumulation in the liver. (medicalxpress.com)
  • The reason for a lower expression in mice with a fatty liver is a small genetic variation. (medicalxpress.com)
  • Functional studies have shown that an overproduction of immunity-related GTPases in liver cells or in the liver of mice, significantly reduced their fat content. (medicalxpress.com)
  • Acute fatty liver of pregnancy (AFLP) is a serious complication unique to pregnancy first described by Sheehan in 1940. (medscape.com)
  • A healthy ketogenic diet can help reduce fats deposited on your liver. (livestrong.com)
  • If your fatty liver is already having trouble functioning, for example, increasing fats in your diet could harm rather than help. (livestrong.com)
  • Avoiding food rich in saturated fats leads to more fat deposits in your liver. (starhealth.in)
  • Complications may include cirrhosis, liver cancer, and esophageal varices. (wikipedia.org)
  • You can prevent fatty liver by maintaining a well-balanced diet and limiting alcohol consumption. (health-care-clinic.org)
  • Excess alcohol consumption overburdens the liver, to the point where it can no longer function properly. (naturalnews.com)
  • Because your liver has grown fatty, your gastroenterologist will advise you to limit alcohol consumption to one drink per day. (manolofood.com)
  • Therefore, effective treatment of type 2 diabetes and metabolic syndrome should target not only the cardiometabolic abnormalities, but also the associated liver disorders. (hindawi.com)
  • Weekly bouts of moderate aerobic exercise on a bike or treadmill, or a brisk walk, combined with some weightlifting, may cut down levels of fat in the liver by up to 40 percent in people with type 2 diabetes, a study by physical fitness experts. (sciencedaily.com)