Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives.
Animal form of fatty acid synthase which is encoded by a single gene and consists of seven catalytic domains and is functional as a homodimer. It is overexpressed in some NEOPLASMS and is a target in humans of some ANTINEOPLASTIC AGENTS and some ANTI-OBESITY AGENTS.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
A gram-positive organism found in dairy products, fresh and salt water, marine organisms, insects, and decaying organic matter.
Consists of a polypeptide chain and 4'-phosphopantetheine linked to a serine residue by a phosphodiester bond. Acyl groups are bound as thiol esters to the pantothenyl group. Acyl carrier protein is involved in every step of fatty acid synthesis by the cytoplasmic system.
An enzyme of long-chain fatty acid synthesis, that adds a two-carbon unit from malonyl-(acyl carrier protein) to another molecule of fatty acyl-(acyl carrier protein), giving a beta-ketoacyl-(acyl carrier protein) with the release of carbon dioxide. EC 2.3.1.41.
Large enzyme complexes composed of a number of component enzymes that are found in STREPTOMYCES which biosynthesize MACROLIDES and other polyketides.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
A flavoprotein enzyme that catalyzes the formation of acetolactate from 2 moles of PYRUVATE in the biosynthesis of VALINE and the formation of acetohydroxybutyrate from pyruvate and alpha-ketobutyrate in the biosynthesis of ISOLEUCINE. This enzyme was formerly listed as EC 4.1.3.18.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds.
A group of fatty acids, often of marine origin, which have the first unsaturated bond in the third position from the omega carbon. These fatty acids are believed to reduce serum triglycerides, prevent insulin resistance, improve lipid profile, prolong bleeding times, reduce platelet counts, and decrease platelet adhesiveness.
Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3.
FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form.
A family of enzymes that catalyze the stereoselective, regioselective, or chemoselective syn-dehydrogenation reactions. They function by a mechanism that is linked directly to reduction of molecular OXYGEN.
Long chain organic acid molecules that must be obtained from the diet. Examples are LINOLEIC ACIDS and LINOLENIC ACIDS.
FATTY ACIDS which have the first unsaturated bond in the sixth position from the omega carbon. A typical American diet tends to contain substantially more omega-6 than OMEGA-3 FATTY ACIDS.
Fatty acids which are unsaturated in only one position.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Lipid infiltration of the hepatic parenchymal cells resulting in a yellow-colored liver. The abnormal lipid accumulation is usually in the form of TRIGLYCERIDES, either as a single large droplet or multiple small droplets. Fatty liver is caused by an imbalance in the metabolism of FATTY ACIDS.
Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans.
An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed)
A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
A broad category of membrane transport proteins that specifically transport FREE FATTY ACIDS across cellular membranes. They play an important role in LIPID METABOLISM in CELLS that utilize free fatty acids as an energy source.
A group of 16-carbon fatty acids that contain no double bonds.
UNSATURATED FATTY ACIDS that contain at least one double bond in the trans configuration, which results in a greater bond angle than the cis configuration. This results in a more extended fatty acid chain similar to SATURATED FATTY ACIDS, with closer packing and reduced fluidity. HYDROGENATION of unsaturated fatty acids increases the trans content.
A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids.
Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados.
A group of compounds that are derivatives of octadecanoic acid which is one of the most abundant fatty acids found in animal lipids. (Stedman, 25th ed)
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
Important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
A somewhat heterogeneous class of enzymes that catalyze the transfer of alkyl or related groups (excluding methyl groups). EC 2.5.
Oils high in unsaturated fats extracted from the bodies of fish or fish parts, especially the LIVER. Those from the liver are usually high in VITAMIN A. The oils are used as DIETARY SUPPLEMENTS. They are also used in soaps and detergents and as protective coatings.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid.
Intracellular proteins that reversibly bind hydrophobic ligands including: saturated and unsaturated FATTY ACIDS; EICOSANOIDS; and RETINOIDS. They are considered a highly conserved and ubiquitously expressed family of proteins that may play a role in the metabolism of LIPIDS.
C22-unsaturated fatty acids found predominantly in FISH OILS.
"Esters are organic compounds that result from the reaction between an alcohol and a carboxylic acid, playing significant roles in various biological processes and often used in pharmaceutical synthesis."
A doubly unsaturated fatty acid, occurring widely in plant glycosides. It is an essential fatty acid in mammalian nutrition and is used in the biosynthesis of prostaglandins and cell membranes. (From Stedman, 26th ed)
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.
The relationships of groups of organisms as reflected by their genetic makeup.
An epoxydodecadienamide isolated from several species, including ACREMONIUM, Acrocylindrum, and Helicoceras. It inhibits the biosynthesis of several lipids by interfering with enzyme function.
An enzyme that converts UDP glucosamine into chitin and UDP. EC 2.4.1.16.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.
Eighteen-carbon essential fatty acids that contain two double bonds.
Unsaturated fats or oils used in foods or as a food.
A coenzyme A derivative which plays a key role in the fatty acid synthesis in the cytoplasmic and microsomal systems.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
The rate dynamics in chemical or physical systems.
Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white.
Usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4 carbons, derived from natural fats and oils, including lauryl, stearyl, oleyl, and linoleyl alcohols. They are used in pharmaceuticals, cosmetics, detergents, plastics, and lube oils and in textile manufacture. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes.
Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure.
12-Carbon saturated monocarboxylic acids.
Ligases that catalyze the joining of adjacent AMINO ACIDS by the formation of carbon-nitrogen bonds between their carboxylic acid groups and amine groups.
Regular course of eating and drinking adopted by a person or animal.
Oils derived from plants or plant products.
A fatty acid that is found in plants and involved in the formation of prostaglandins.
Derivatives of caprylic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated eight carbon aliphatic structure.
Coenzyme A is an essential coenzyme that plays a crucial role in various metabolic processes, particularly in the transfer and activation of acetyl groups in important biochemical reactions such as fatty acid synthesis and oxidation, and the citric acid cycle.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
The addition of an organic acid radical into a molecule.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Enzymes of the isomerase class that catalyze reactions in which a group can be regarded as eliminated from one part of a molecule, leaving a double bond, while remaining covalently attached to the molecule. (From Enzyme Nomenclature, 1992) EC 5.5.
Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation.
An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
The process of converting an acid into an alkyl or aryl derivative. Most frequently the process consists of the reaction of an acid with an alcohol in the presence of a trace of mineral acid as catalyst or the reaction of an acyl chloride with an alcohol. Esterification can also be accomplished by enzymatic processes.
A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in NERVE TISSUE.
An enzyme that catalyzes the formation of oleoyl-CoA, A, and water from stearoyl-CoA, AH2, and oxygen where AH2 is an unspecified hydrogen donor.
The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.
Eighteen-carbon essential fatty acids that contain three double bonds.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor.
The glyceryl esters of a fatty acid, or of a mixture of fatty acids. They are generally odorless, colorless, and tasteless if pure, but they may be flavored according to origin. Fats are insoluble in water, soluble in most organic solvents. They occur in animal and vegetable tissue and are generally obtained by boiling or by extraction under pressure. They are important in the diet (DIETARY FATS) as a source of energy. (Grant & Hackh's Chemical Dictionary, 5th ed)
Oil from soybean or soybean plant.
Compounds that interfere with FATTY ACID SYNTHASE resulting in a reduction of FATTY ACIDS. This is a target mechanism in humans of some ANTINEOPLASTIC AGENTS and ANTI-OBESITY AGENTS and of some ANTI-INFECTIVE AGENTS which interfere with CELL WALL and CELL MEMBRANE formation.
The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE.
Arachidonic acids are polyunsaturated fatty acids, specifically a type of omega-6 fatty acid, that are essential for human nutrition and play crucial roles in various biological processes, including inflammation, immunity, and cell signaling. They serve as precursors to eicosanoids, which are hormone-like substances that mediate a wide range of physiological responses.
A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, and sweetening agent.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted to dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1. (From Merck Index, 11th ed)
GLYCEROL esterified with FATTY ACIDS.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.

The synthesis and hydrolysis of long-chain fatty acyl-coenzyme A thioesters by soluble and microsomal fractions from the brain of the developing rat. (1/1123)

1. The specific activities of long-chain fatty acid-CoA ligase (EC6.2.1.3) and of long-chain fatty acyl-CoA hydrolase (EC3.1.2.2) were measured in soluble and microsomal fractions from rat brain. 2. In the presence of either palmitic acid or stearic acid, the specific activity of the ligase increased during development; the specific activity of this enzyme with arachidic acid or behenic acid was considerably lower. 3. The specific activities of palmitoyl-CoA hydrolase and of stearoyl-CoA hydrolase in the microsomal fraction decreased markedly (75%) between 6 and 20 days after birth; by contrast, the corresponding specific activities in the soluble fraction showed no decline. 4. Stearoyl-CoA hydrolase in the microsomal fraction is inhibited (99%) by bovine serum albumin; this is in contrast with the microsomal fatty acid-chain-elongation system, which is stimulated 3.9-fold by albumin. Inhibition of stearoyl-CoA hydrolase does not stimulate stearoyl-CoA chain elongation. Therefore it does not appear likely that the decline in the specific activity of hydrolase during myelogenesis is responsible for the increased rate of fatty acid chain elongation. 5. It is suggested that the decline in specific activity of the microsomal hydrolase and to a lesser extent the increase in the specific activity of the ligase is directly related to the increased demand for long-chain acyl-CoA esters during myelogenesis as substrates in the biosynthesis of myelin lipids.  (+info)

Transcriptional regulation of fatty acid synthase gene by insulin/glucose, polyunsaturated fatty acid and leptin in hepatocytes and adipocytes in normal and genetically obese rats. (2/1123)

Transcriptional regulation of the fatty acid synthase (FAS) gene by insulin/glucose, polyunsaturated fatty acids and leptin was investigated in hepatocytes and adipocytes of Wistar fatty rats and their lean littermates. The sequence spanning nucleotides -57 to -35 of FAS gene, which is responsive to insulin/glucose stimulation [Fukuda, H., Iritani, N. & Noguchi, T. (1997) FEBS Lett. 406, 243-248], was linked to a reporter gene containing a heterologous promoter and transfected into rat hepatocytes or adipocytes. The activity of the reporter, chloramphenicol acetyltransferase, in the presence of glucose alone was similar in the primary cultured cells from the lean and obese rats. In the presence of insulin/glucose, however, chloramphenicol acetyltransferase activity was markedly increased in hepatocytes of lean rats, but was not significantly increased in those of obese rats. The stimulation by insulin/glucose was reduced in arachidonic acid-treated cells of lean rats. Similarly, the stimulation by insulin/glucose was reduced in leptin-treated cells and in cells from lean rats containing an expression vector encoding leptin. However, neither polyunsaturated fatty acids nor leptin-treated cells from obese rats responded to insulin-stimulation. The same effects were observed at endogenous FAS mRNA and enzyme levels. Similar results were seen in adipocytes, although the stimulation and suppression were much smaller than in hepatocytes. The insulin-binding capacities of the receptors of liver and adipose tissue were reduced in the presence of leptin or polyunsaturated fatty acids. Leptin and polyunsaturated fatty acids appeared to suppress the insulin stimulation of FAS transcription by reducing the insulin-binding capacities of receptors. Leptin converged on the insulin/glucose response element of FAS gene and suppressed the transcription.  (+info)

FIRE3 in the promoter of the rat fatty acid synthase (FAS) gene binds the ubiquitous transcription factors CBF and USF but does not mediate an insulin response in a rat hepatoma cell line. (3/1123)

Several putative insulin-responsive elements (IRE) in the fatty acid synthase (FAS) promoter have been identified and shown to be functional in adipocytes and hepatocytes. Here we report on the insulin-responsiveness in the rat hepatoma cell line H4IIE of four cis-elements in the FAS promoter: the FAS insulin-responsive elements, FIRE2 and FIRE3; the inverted CCAAT element, ICE; and the insulin/glucose-binding element, designated hepatic FIRE element, hFIRE, originally identified in rat hepatocytes. Using electrophoretic mobility shift assay (EMSA) competition experiments together with supershifts and in vitro transcription/translation we show that FIRE3 (-68/-58) binds not only the upstream stimulatory factors USF-1/USF-2 but also the CCAAT-binding factor CBF, also known as the nuclear factor Y, NF-Y. The putative IRE FIRE2, which shows sequence similarity to FIRE3, is located between -267 and -249. Gel retardation experiments indicate that USF-1 and USF-2 also bind to this element, which contains an imperfect E-box motif. Using the same approach we have shown that hFIRE binds the stimulatory proteins Sp1 and Sp3 in addition to CBF. Transient transfection experiments using FAS promoter constructs deleted for FIRE2 and FIRE3 demonstrate that neither of these elements mediates the insulin response of the FAS promoter in the rat hepatoma cell line H4IIE, however, ICE at -103/-87 is responsible for mediating the effect of the insulin antagonist cAMP. The hFIRE element located at -57/-34, in spite of its role in the glucose/insulin response in primary rat hepatocytes, is apparently not involved in the insulin regulation of the rat FAS promoter in H4IIE cells. The fact that the topology of the promoters of the FAS genes in rat, human, goose and chicken is conserved regarding CBF-binding sites and USF-binding sites implies an important role for these ubiquitously expressed transcription factors in the regulation of the FAS promoter.  (+info)

Dibromopropanone cross-linking of the phosphopantetheine and active-site cysteine thiols of the animal fatty acid synthase can occur both inter- and intrasubunit. Reevaluation of the side-by-side, antiparallel subunit model. (4/1123)

The objective of this study was to test a new model for the homodimeric animal FAS which implies that the condensation reaction can be catalyzed by the amino-terminal beta-ketoacyl synthase domain in cooperation with the penultimate carboxyl-terminal acyl carrier protein domain of either subunit. Treatment of animal fatty acid synthase dimers with dibromopropanone generates three new molecular species with decreased electrophoretic mobilities; none of these species are formed by fatty acid synthase mutant dimers lacking either the active-site cysteine of the beta-ketoacyl synthase domain (C161A) or the phosphopantetheine thiol of the acyl carrier protein domain (S2151A). A double affinity-labeling strategy was used to isolate dimers that carried one or both mutations on one or both subunits; the heterodimers were treated with dibromopropanone and analyzed by a combination of sodium dodecyl sulfate/polyacrylamide gel electrophoresis, Western blotting, gel filtration, and matrix-assisted laser desorption mass spectrometry. Thus the two slowest moving of these species, which accounted for 45 and 15% of the total, were identified as doubly and singly cross-linked dimers, respectively, whereas the fastest moving species, which accounted for 35% of the total, was identified as originating from internally cross-linked subunits. These results show that the two polypeptides of the fatty acid synthase are oriented such that head-to-tail contacts are formed both between and within subunits, and provide the first structural evidence in support of the new model.  (+info)

Induction of lipogenesis during differentiation in a "preadipocyte" cell line. (5/1123)

3T3-L1 fibroblasts differentiate in culture into cells having adipocyte character. This transition is accompanied by a 40- to 50-fold rise in the incorporation of [14C]acetate into triglyceride. The increase in lipogenic rate is exactly parallel to a coordinate rise in the activities of the key enzymes of the fatty acid biosynthetic pathway (ATP-citrate lyase, acetyl-CoA carboxylase, and fatty acid synthetase). Immunological studies indicate that the elevated acetyl-CoA carboxylase activity is the product of an increased cellular enzyme level.  (+info)

Arachidonic acid and PGE2 regulation of hepatic lipogenic gene expression. (6/1123)

N-6 polyunsaturated fatty acids (PUFA) suppress hepatic and adipocyte de novo lipogenesis by inhibiting the transcription of genes encoding key lipogenic proteins. In cultured 3T3-L1 adipocytes, arachidonic acid (20:4,n-6) suppression of lipogenic gene expression requires cyclooxygenase (COX) activity. In this study, we found no evidence to support a role for COX-1 or -2 in the 20:4,n-6 inhibition of hepatocyte lipogenic gene expression. In contrast to L1 preadipocytes, adipocytes and rat liver, RT-PCR and Western analyses did not detect COX-1 or COX-2 expression in cultured primary hepatocytes. Moreover, the COX inhibitor, flurbiprofen, did not affect the 20:4,n-6 regulation of lipogenic gene expression in primary hepatocytes. Despite the absence of COX-1 and -2 expression in primary hepatocytes, prostaglandins (PGE2 and PGF2alpha) suppressed fatty acid synthase, l-pyruvate kinase, and the S14 protein mRNA, while having no effect on acyl-CoA oxidase or CYP4A2 mRNA. Using PGE2 receptor agonist, the PGE2 effect on lipogenic gene expression was linked to EP3 receptors. PGE2 inhibited S14CAT activity in transfected primary hepatocytes and targeted the S14 PUFA-response region located -220 to -80 bp upstream from the transcription start site. Taken together, these studies show that COX-1 and COX-2 do not contribute to the n-6 PUFA suppression of hepatocyte lipogenic gene expression. However, cyclooxygenase products from non-parenchymal cells can act on parenchymal cells through a paracrine process and mimic the effects of n-6 PUFA on lipogenic gene expression.  (+info)

Novel form of lipolysis induced by leptin. (7/1123)

Hyperleptinemia causes disappearance of body fat without a rise in free fatty acids (FFA) or ketones, suggesting that leptin can deplete adipocytes of fat without releasing FFA. To test this, we measured FFA and glycerol released from adipocytes obtained from normal lean Zucker diabetic fatty rats (+/+) and incubated for 0, 3, 6, or 24 h in either 20 ng/ml recombinant leptin or 100 nM norepinephrine (NE). Whereas NE increased both FFA and glycerol release from adipocytes of +/+ rats, leptin increased glycerol release in +/+ adipocytes without a parallel increase in FFA release. In adipocytes of obese Zucker diabetic fatty rats (fa/fa) with defective leptin receptors, NE increased both FFA and glycerol release, but leptin had no effect on either. Leptin significantly lowered the mRNA of leptin and fatty acid synthase of adipocytes (FAS) (p < 0.05), and up-regulated the mRNA of peroxisome proliferator-activated receptor (PPAR)-alpha, carnitine palmitoyl transferase-1, (CPT-1), and acyl CoA oxidase (ACO) (p < 0.05). NE (100 nM) also lowered leptin mRNA (p < 0.05) but did not affect FAS, PPARalpha, ACO, or CPT-1 expression. We conclude that in normal adipocytes leptin directly decreases FAS expression, increases PPARalpha and the enzymes of FFA oxidation, and stimulates a novel form of lipolysis in which glycerol is released without a proportional release of FFA.  (+info)

Polyunsaturated fatty acids inhibit fatty acid synthase and spot-14-protein gene expression in cultured rat hepatocytes by a peroxidative mechanism. (8/1123)

In vivo, polyunsaturated fatty acids (PUFA) inhibit the expression of hepatic genes related to the lipogenic process such as fatty acid synthase and spot-14-protein (S14) genes. In vitro studies have suggested that this was a direct transcriptional effect of PUFA. In hepatocytes, the inhibition of the lipogenic rate by PUFA is not specific, but is linked to a cytotoxic effect due to peroxidative mechanisms. We have investigated whether peroxidation could also explain the inhibitory effect of PUFA on gene expression. Rat hepatocytes were cultured for 24 h with mono-unsaturated or PUFA. PUFA inhibited the expression of fatty acid synthase and S14 genes, and this inhibition was directly related to the number of unsaturations. However, the beta-actin and albumin mRNA concentrations were also affected by the most unsaturated fatty acids, suggesting a non-specific effect of PUFA on gene expression. Measurement of lactate dehydrogenase released into the medium indicated a cytotoxicity of PUFA. This was associated with their peroxidation as evaluated by the presence of thiobarbituric acid-reactive substances in the culture medium. The addition of high concentrations of antioxidants abolished lipid peroxidation and lactate dehydrogenase leakage and completely reversed the inhibitory effect of PUFA on gene expression. This suggests (i) that the results obtained previously in cultured hepatocytes in the presence of low concentrations of antioxidants must be interpretated cautiously and (ii) that in vivo, the inhibitory effect of PUFA on lipogenesis-related genes could be indirect through hormonal or metabolic changes or that their effect on gene expression is somehow linked to peroxidative mechanisms.  (+info)

Fatty acid synthases (FAS) are a group of enzymes that are responsible for the synthesis of fatty acids in the body. They catalyze a series of reactions that convert acetyl-CoA and malonyl-CoA into longer chain fatty acids, which are then used for various purposes such as energy storage or membrane formation.

The human genome encodes two types of FAS: type I and type II. Type I FAS is a large multifunctional enzyme complex found in the cytoplasm of cells, while type II FAS consists of individual enzymes located in the mitochondria. Both types of FAS play important roles in lipid metabolism, but their regulation and expression differ depending on the tissue and physiological conditions.

Inhibition of FAS has been explored as a potential therapeutic strategy for various diseases, including cancer, obesity, and metabolic disorders. However, more research is needed to fully understand the complex mechanisms regulating FAS activity and its role in human health and disease.

Fatty acid synthase (FAS) is a multi-enzyme complex that plays a crucial role in the synthesis of long-chain fatty acids in the body. There are two main types of FAS: type I and type II.

Type I fatty acid synthase, also known as FASN, is found primarily in the cytoplasm of cells in tissues such as the liver, adipose tissue, and lactating mammary glands. It is a large protein made up of several distinct enzymatic domains that work together to synthesize long-chain fatty acids from acetyl-CoA and malonyl-CoA.

The process of fatty acid synthesis involves a series of reactions, starting with the condensation of acetyl-CoA and malonyl-CoA to form acetoacetyl-CoA. This reaction is followed by a series of reductions, dehydrations, and another reduction to form a saturated fatty acid molecule with 16 carbons (palmitate).

Type I FAS is often upregulated in conditions associated with increased lipogenesis, such as obesity, metabolic syndrome, and certain types of cancer. Inhibiting FAS has been explored as a potential therapeutic strategy for treating these conditions.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Brevibacterium is a genus of Gram-positive, rod-shaped bacteria that are commonly found in nature, particularly in soil, water, and various types of decaying organic matter. Some species of Brevibacterium can also be found on the skin of animals and humans, where they play a role in the production of body odor.

Brevibacterium species are known for their ability to produce a variety of enzymes that allow them to break down complex organic compounds into simpler molecules. This makes them useful in a number of industrial applications, such as the production of cheese and other fermented foods, as well as in the bioremediation of contaminated environments.

In medical contexts, Brevibacterium species are rarely associated with human disease. However, there have been occasional reports of infections caused by these bacteria, particularly in individuals with weakened immune systems or who have undergone surgical procedures. These infections can include bacteremia (bloodstream infections), endocarditis (inflammation of the heart valves), and soft tissue infections. Treatment typically involves the use of antibiotics that are effective against Gram-positive bacteria, such as vancomycin or teicoplanin.

Acyl Carrier Protein (ACP) is a small, acidic protein that plays a crucial role in the fatty acid synthesis process. It functions as a cofactor by carrying acyl groups during the elongation cycles of fatty acid chains. The ACP molecule has a characteristic prosthetic group known as 4'-phosphopantetheine, to which the acyl groups get attached covalently. This protein is highly conserved across different species and is essential for the production of fatty acids in both prokaryotic and eukaryotic organisms.

Polyketide synthases (PKSs) are a type of large, multifunctional enzymes found in bacteria, fungi, and other organisms. They play a crucial role in the biosynthesis of polyketides, which are a diverse group of natural products with various biological activities, including antibiotic, antifungal, anticancer, and immunosuppressant properties.

PKSs are responsible for the assembly of polyketide chains by repetitively adding two-carbon units derived from acetyl-CoA or other extender units to a growing chain. The PKS enzymes can be classified into three types based on their domain organization and mechanism of action: type I, type II, and type III PKSs.

Type I PKSs are large, modular enzymes that contain multiple domains responsible for different steps in the polyketide biosynthesis process. These include acyltransferase (AT) domains that load extender units onto the PKS, acyl carrier proteins (ACPs) that tether the growing chain to the PKS, and ketosynthase (KS) domains that catalyze the condensation of the extender unit with the growing chain.

Type II PKSs are simpler enzymes that consist of several separate proteins that work together in a complex to synthesize polyketides. These include ketosynthase, acyltransferase, and acyl carrier protein domains, as well as other domains responsible for reducing or modifying the polyketide chain.

Type III PKSs are the simplest of the three types and consist of a single catalytic domain that is responsible for both loading extender units and catalyzing their condensation with the growing chain. These enzymes typically synthesize shorter polyketide chains, such as those found in certain plant hormones and pigments.

Overall, PKSs are important enzymes involved in the biosynthesis of a wide range of natural products with significant medical and industrial applications.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

Acetolactate synthase (ALS), also known as acetohydroxyacid synthase (AHAS), is a key enzyme in the biosynthetic pathway of branched-chain amino acids (valine, leucine, and isoleucine) in bacteria, fungi, and plants. It catalyzes the first step in the pathway, which is the condensation of two molecules of pyruvate to form acetolactate.

Inhibitors of ALS, such as sulfonylureas and imidazolinones, are widely used as herbicides because they disrupt the biosynthesis of amino acids that are essential for plant growth and development. These inhibitors work by binding to the active site of the enzyme and preventing the substrate from accessing it.

In humans, ALS is not involved in the biosynthesis of branched-chain amino acids, but a homologous enzyme called dihydroorotate dehydrogenase (DHOD) plays a crucial role in the synthesis of pyrimidine nucleotides. Inhibitors of DHOD are used as immunosuppressants to treat autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Unsaturated fatty acids are a type of fatty acid that contain one or more double bonds in their carbon chain. These double bonds can be either cis or trans configurations, although the cis configuration is more common in nature. The presence of these double bonds makes unsaturated fatty acids more liquid at room temperature and less prone to spoilage than saturated fatty acids, which do not have any double bonds.

Unsaturated fatty acids can be further classified into two main categories: monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). MUFAs contain one double bond in their carbon chain, while PUFAs contain two or more.

Examples of unsaturated fatty acids include oleic acid (a MUFA found in olive oil), linoleic acid (a PUFA found in vegetable oils), and alpha-linolenic acid (an omega-3 PUFA found in flaxseed and fish). Unsaturated fatty acids are essential nutrients for the human body, as they play important roles in various physiological processes such as membrane structure, inflammation, and blood clotting. It is recommended to consume a balanced diet that includes both MUFAs and PUFAs to maintain good health.

Omega-3 fatty acids are a type of polyunsaturated fats that are essential for human health. The "omega-3" designation refers to the location of a double bond in the chemical structure of the fatty acid, specifically three carbon atoms from the end of the molecule.

There are three main types of omega-3 fatty acids: eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA). EPA and DHA are primarily found in fatty fish, such as salmon, mackerel, and sardines, as well as in algae. ALA is found in plant sources, such as flaxseeds, chia seeds, walnuts, and some vegetable oils.

Omega-3 fatty acids have been shown to have numerous health benefits, including reducing inflammation, lowering the risk of heart disease, improving brain function, and supporting eye health. They are also important for fetal development during pregnancy and breastfeeding. It is recommended that adults consume at least 250-500 milligrams of combined EPA and DHA per day, although higher intakes may be beneficial for certain conditions. ALA can be converted to EPA and DHA in the body, but this process is not very efficient, so it is important to consume preformed EPA and DHA from dietary sources or supplements.

Oxo-acid lyases are a class of enzymes that catalyze the cleavage of a carbon-carbon bond in an oxo-acid to give a molecule with a carbonyl group and a carbanion, which then reacts non-enzymatically with a proton to form a new double bond. The reaction is reversible, and the enzyme can also catalyze the reverse reaction.

Oxo-acid lyases play important roles in various metabolic pathways, such as the citric acid cycle, glyoxylate cycle, and the degradation of certain amino acids. These enzymes are characterized by the presence of a conserved catalytic mechanism involving a nucleophilic attack on the carbonyl carbon atom of the oxo-acid substrate.

The International Union of Biochemistry and Molecular Biology (IUBMB) has classified oxo-acid lyases under EC 4.1.3, which includes enzymes that catalyze the formation of a carbon-carbon bond by means other than carbon-carbon bond formation to an enolate or carbonion, a carbanionic fragment, or a Michael acceptor.

Nonesterified fatty acids (NEFA), also known as free fatty acids (FFA), refer to fatty acid molecules that are not bound to glycerol in the form of triglycerides or other esters. In the bloodstream, NEFAs are transported while bound to albumin and can serve as a source of energy for peripheral tissues. Under normal physiological conditions, NEFA levels are tightly regulated by the body; however, elevated NEFA levels have been associated with various metabolic disorders such as insulin resistance, obesity, and type 2 diabetes.

Fatty acid desaturases are enzymes that introduce double bonds into fatty acid molecules, thereby reducing their saturation level. These enzymes play a crucial role in the synthesis of unsaturated fatty acids, which are essential components of cell membranes and precursors for various signaling molecules.

The position of the introduced double bond is specified by the type of desaturase enzyme. For example, Δ-9 desaturases introduce a double bond at the ninth carbon atom from the methyl end of the fatty acid chain. This enzyme is responsible for converting saturated fatty acids like stearic acid (18:0) to monounsaturated fatty acids like oleic acid (18:1n-9).

In humans, there are several fatty acid desaturases, including Δ-5 and Δ-6 desaturases, which introduce double bonds at the fifth and sixth carbon atoms from the methyl end, respectively. These enzymes are essential for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3).

Disorders in fatty acid desaturase activity or expression have been linked to various diseases, including cardiovascular disease, cancer, and metabolic disorders. Therefore, understanding the regulation and function of these enzymes is crucial for developing strategies to modulate fatty acid composition in cells and tissues, which may have therapeutic potential.

Essential fatty acids (EFAs) are a type of fatty acid that cannot be synthesized by the human body and must be obtained through diet. There are two main types of essential fatty acids: linoleic acid (omega-6) and alpha-linolenic acid (omega-3).

Linoleic acid is found in foods such as vegetable oils, nuts, and seeds, while alpha-linolenic acid is found in foods such as flaxseeds, walnuts, and fatty fish. These essential fatty acids play important roles in the body, including maintaining the fluidity and function of cell membranes, producing eicosanoids (hormone-like substances that regulate various bodily functions), and supporting the development and function of the brain and nervous system.

Deficiency in essential fatty acids can lead to a variety of health problems, including skin disorders, poor growth and development, and increased risk of heart disease. It is important to maintain a balanced intake of both omega-6 and omega-3 fatty acids, as excessive consumption of omega-6 relative to omega-3 has been linked to inflammation and chronic diseases.

Omega-6 fatty acids are a type of polyunsaturated fats that are essential for human health. The "omega-6" designation refers to the location of a double bond in the chemical structure of the fatty acid. Specifically, the double bond is located six carbons from the omega end of the molecule.

Omega-6 fatty acids play important roles in the body, including supporting brain function, stimulating skin and hair growth, regulating metabolism, and maintaining the reproductive system. They are also involved in the production of hormones that regulate inflammation and blood clotting.

The most common omega-6 fatty acids found in the Western diet include linoleic acid (LA) and arachidonic acid (AA). LA is found in vegetable oils such as soybean, corn, and sunflower oil, while AA is found in animal products such as meat, poultry, and eggs.

While omega-6 fatty acids are essential for human health, it's important to maintain a balance between omega-6 and omega-3 fatty acids. A diet that is too high in omega-6 fatty acids and low in omega-3 fatty acids can contribute to chronic inflammation and increase the risk of heart disease, cancer, and other health problems. Therefore, it's recommended to consume omega-6 and omega-3 fatty acids in a ratio of 2:1 to 4:1.

Monounsaturated fatty acids (MUFAs) are a type of fatty acid that contains one double bond in its chemical structure. The presence of the double bond means that there is one less hydrogen atom, hence the term "unsaturated." In monounsaturated fats, the double bond occurs between the second and third carbon atoms in the chain, which makes them "mono"unsaturated.

MUFAs are considered to be a healthy type of fat because they can help reduce levels of harmful cholesterol (low-density lipoprotein or LDL) while maintaining levels of beneficial cholesterol (high-density lipoprotein or HDL). They have also been associated with a reduced risk of heart disease and improved insulin sensitivity.

Common sources of monounsaturated fats include olive oil, canola oil, avocados, nuts, and seeds. It is recommended to consume MUFAs as part of a balanced diet that includes a variety of nutrient-dense foods.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Fatty liver, also known as hepatic steatosis, is a medical condition characterized by the abnormal accumulation of fat in the liver. The liver's primary function is to process nutrients, filter blood, and fight infections, among other tasks. When excess fat builds up in the liver cells, it can impair liver function and lead to inflammation, scarring, and even liver failure if left untreated.

Fatty liver can be caused by various factors, including alcohol consumption, obesity, nonalcoholic fatty liver disease (NAFLD), viral hepatitis, and certain medications or medical conditions. NAFLD is the most common cause of fatty liver in the United States and other developed countries, affecting up to 25% of the population.

Symptoms of fatty liver may include fatigue, weakness, weight loss, loss of appetite, nausea, abdominal pain or discomfort, and jaundice (yellowing of the skin and eyes). However, many people with fatty liver do not experience any symptoms, making it essential to diagnose and manage the condition through regular check-ups and blood tests.

Treatment for fatty liver depends on the underlying cause. Lifestyle changes such as weight loss, exercise, and dietary modifications are often recommended for people with NAFLD or alcohol-related fatty liver disease. Medications may also be prescribed to manage related conditions such as diabetes, high cholesterol, or metabolic syndrome. In severe cases of liver damage, a liver transplant may be necessary.

Volatile fatty acids (VFA) are a type of fatty acid that have a low molecular weight and are known for their ability to evaporate at room temperature. They are produced in the body during the breakdown of carbohydrates and proteins in the absence of oxygen, such as in the digestive tract by certain bacteria.

The most common volatile fatty acids include acetic acid, propionic acid, and butyric acid. These compounds have various roles in the body, including providing energy to cells in the intestines, modulating immune function, and regulating the growth of certain bacteria. They are also used as precursors for the synthesis of other molecules, such as cholesterol and bile acids.

In addition to their role in the body, volatile fatty acids are also important in the food industry, where they are used as flavorings and preservatives. They are produced naturally during fermentation and aging processes, and are responsible for the distinctive flavors of foods such as yogurt, cheese, and wine.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and peanut oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature with a slight odor. Oleic acid is an important component of human diet and has been shown to have various health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other industrial products.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and grapeseed oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature. Oleic acid is an important component of human diet and has been shown to have potential health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other personal care products.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

Fatty acid transport proteins (FATPs) are a group of membrane-bound proteins that play a crucial role in the uptake and transport of long-chain fatty acids across the plasma membrane of cells. They are widely expressed in various tissues, including the heart, muscle, adipose tissue, and liver.

FATPs have several domains that enable them to perform their functions, including a cytoplasmic domain that binds to fatty acids, a transmembrane domain that spans the plasma membrane, and an ATP-binding cassette (ABC) domain that hydrolyzes ATP to provide energy for fatty acid transport.

FATPs also play a role in the regulation of intracellular lipid metabolism by modulating the activity of enzymes involved in fatty acid activation, desaturation, and elongation. Mutations in FATP genes have been associated with various metabolic disorders, including congenital deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), a rare autosomal recessive disorder that affects fatty acid oxidation.

In summary, fatty acid transport proteins are essential for the uptake and metabolism of long-chain fatty acids in cells and have implications in various metabolic disorders.

Palmitic acid is a type of saturated fatty acid, which is a common component in many foods and also produced by the body. Its chemical formula is C16:0, indicating that it contains 16 carbon atoms and no double bonds. Palmitic acid is found in high concentrations in animal fats, such as butter, lard, and beef tallow, as well as in some vegetable oils, like palm kernel oil and coconut oil.

In the human body, palmitic acid can be synthesized from other substances or absorbed through the diet. It plays a crucial role in various biological processes, including energy storage, membrane structure formation, and signaling pathways regulation. However, high intake of palmitic acid has been linked to an increased risk of developing cardiovascular diseases due to its potential to raise low-density lipoprotein (LDL) cholesterol levels in the blood.

It is essential to maintain a balanced diet and consume palmitic acid-rich foods in moderation, along with regular exercise and a healthy lifestyle, to reduce the risk of chronic diseases.

Trans fatty acids, also known as trans fats, are a type of unsaturated fat that occur in small amounts in nature, primarily in some animal-derived foods. However, most trans fats in the diet come from artificially produced trans fats, created through an industrial process called hydrogenation. This process converts liquid vegetable oils into solid or semi-solid fats, which are then used in a variety of food products for their functional properties and extended shelf life.

Artificial trans fats are formed when hydrogen is added to vegetable oil to make it more solid, a process called hydrogenation. Trans fats can raise levels of harmful LDL cholesterol and lower the level of beneficial HDL cholesterol. This can increase the risk of heart disease, stroke, and type 2 diabetes. Therefore, it is recommended to limit the intake of trans fats as much as possible. Many countries have implemented regulations to limit or ban the use of artificial trans fats in food products.

Palmitic acid is a type of saturated fatty acid, which is a common component in many foods and also produced naturally by the human body. Its chemical formula is C16H32O2. It's named after palm trees because it was first isolated from palm oil, although it can also be found in other vegetable oils, animal fats, and dairy products.

In the human body, palmitic acid plays a role in energy production and storage. However, consuming large amounts of this fatty acid has been linked to an increased risk of heart disease due to its association with elevated levels of bad cholesterol (LDL). The World Health Organization recommends limiting the consumption of saturated fats, including palmitic acid, to less than 10% of total energy intake.

Dietary fats, also known as fatty acids, are a major nutrient that the body needs for energy and various functions. They are an essential component of cell membranes and hormones, and they help the body absorb certain vitamins. There are several types of dietary fats:

1. Saturated fats: These are typically solid at room temperature and are found in animal products such as meat, butter, and cheese, as well as tropical oils like coconut and palm oil. Consuming a high amount of saturated fats can raise levels of unhealthy LDL cholesterol and increase the risk of heart disease.
2. Unsaturated fats: These are typically liquid at room temperature and can be further divided into monounsaturated and polyunsaturated fats. Monounsaturated fats, found in foods such as olive oil, avocados, and nuts, can help lower levels of unhealthy LDL cholesterol while maintaining levels of healthy HDL cholesterol. Polyunsaturated fats, found in foods such as fatty fish, flaxseeds, and walnuts, have similar effects on cholesterol levels and also provide essential omega-3 and omega-6 fatty acids that the body cannot produce on its own.
3. Trans fats: These are unsaturated fats that have been chemically modified to be solid at room temperature. They are often found in processed foods such as baked goods, fried foods, and snack foods. Consuming trans fats can raise levels of unhealthy LDL cholesterol and lower levels of healthy HDL cholesterol, increasing the risk of heart disease.

It is recommended to limit intake of saturated and trans fats and to consume more unsaturated fats as part of a healthy diet.

Stearic acid is not typically considered a medical term, but rather a chemical compound. It is a saturated fatty acid with the chemical formula C18H36O2. Stearic acid is commonly found in various foods such as animal fats and vegetable oils, including cocoa butter and palm oil.

In a medical context, stearic acid might be mentioned in relation to nutrition or cosmetics. For example, it may be listed as an ingredient in some skincare products or medications where it is used as an emollient or thickening agent. It's also worth noting that while stearic acid is a saturated fat, some studies suggest that it may have a more neutral effect on blood cholesterol levels compared to other saturated fats. However, this is still a topic of ongoing research and debate in the medical community.

Lipid metabolism is the process by which the body breaks down and utilizes lipids (fats) for various functions, such as energy production, cell membrane formation, and hormone synthesis. This complex process involves several enzymes and pathways that regulate the digestion, absorption, transport, storage, and consumption of fats in the body.

The main types of lipids involved in metabolism include triglycerides, cholesterol, phospholipids, and fatty acids. The breakdown of these lipids begins in the digestive system, where enzymes called lipases break down dietary fats into smaller molecules called fatty acids and glycerol. These molecules are then absorbed into the bloodstream and transported to the liver, which is the main site of lipid metabolism.

In the liver, fatty acids may be further broken down for energy production or used to synthesize new lipids. Excess fatty acids may be stored as triglycerides in specialized cells called adipocytes (fat cells) for later use. Cholesterol is also metabolized in the liver, where it may be used to synthesize bile acids, steroid hormones, and other important molecules.

Disorders of lipid metabolism can lead to a range of health problems, including obesity, diabetes, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). These conditions may be caused by genetic factors, lifestyle habits, or a combination of both. Proper diagnosis and management of lipid metabolism disorders typically involves a combination of dietary changes, exercise, and medication.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

Eicosapentaenoic acid (EPA) is a type of omega-3 fatty acid that is found in fish and some algae. It is a 20-carbon long polyunsaturated fatty acid with five double bonds, and has the chemical formula C20:5 n-3. EPA is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet.

EPA is a precursor to a group of hormone-like substances called eicosanoids, which include prostaglandins, thromboxanes, and leukotrienes. These compounds play important roles in regulating various physiological processes, such as inflammation, blood clotting, and immune function.

EPA has been studied for its potential health benefits, including reducing inflammation, lowering the risk of heart disease, and improving symptoms of depression. It is often taken as a dietary supplement in the form of fish oil or algal oil. However, it is important to note that while some studies have suggested potential health benefits of EPA, more research is needed to confirm these effects and establish recommended dosages.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Alkyl and aryl transferases are a group of enzymes that catalyze the transfer of alkyl or aryl groups from one molecule to another. These enzymes play a role in various biological processes, including the metabolism of drugs and other xenobiotics, as well as the biosynthesis of certain natural compounds.

Alkyl transferases typically catalyze the transfer of methyl or ethyl groups, while aryl transferases transfer larger aromatic rings. These enzymes often use cofactors such as S-adenosylmethionine (SAM) or acetyl-CoA to donate the alkyl or aryl group to a recipient molecule.

Examples of alkyl and aryl transferases include:

1. Methyltransferases: enzymes that transfer methyl groups from SAM to various acceptor molecules, such as DNA, RNA, proteins, and small molecules.
2. Histone methyltransferases: enzymes that methylate specific residues on histone proteins, which can affect chromatin structure and gene expression.
3. N-acyltransferases: enzymes that transfer acetyl or other acyl groups to amino groups in proteins or small molecules.
4. O-acyltransferases: enzymes that transfer acyl groups to hydroxyl groups in lipids, steroids, and other molecules.
5. Arylsulfatases: enzymes that remove sulfate groups from aromatic rings, releasing an alcohol and sulfate.
6. Glutathione S-transferases (GSTs): enzymes that transfer the tripeptide glutathione to electrophilic centers in xenobiotics and endogenous compounds, facilitating their detoxification and excretion.

Fish oils are a type of fat or lipid derived from the tissues of oily fish. They are a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These fatty acids have been associated with various health benefits such as reducing inflammation, decreasing the risk of heart disease, improving brain function, and promoting eye health. Fish oils can be consumed through diet or taken as a dietary supplement in the form of capsules or liquid. It is important to note that while fish oils have potential health benefits, they should not replace a balanced diet and medical advice should be sought before starting any supplementation.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

"Palmitates" are salts or esters of palmitic acid, a saturated fatty acid that is commonly found in animals and plants. Palmitates can be found in various substances, including cosmetics, food additives, and medications. For example, sodium palmitate is a common ingredient in soaps and detergents, while retinyl palmitate is a form of vitamin A used in skin care products and dietary supplements.

In a medical context, "palmitates" may be mentioned in the results of laboratory tests that measure lipid metabolism or in discussions of nutrition and dietary fats. However, it is important to note that "palmitates" themselves are not typically a focus of medical diagnosis or treatment, but rather serve as components of various substances that may have medical relevance.

Fatty acid-binding proteins (FABPs) are a group of small intracellular proteins that play a crucial role in the transport and metabolism of fatty acids within cells. They are responsible for binding long-chain fatty acids, which are hydrophobic molecules, and facilitating their movement across the cell while protecting the cells from lipotoxicity.

FABPs are expressed in various tissues, including the heart, liver, muscle, and brain, with different isoforms found in specific organs. These proteins have a high affinity for long-chain fatty acids and can regulate their intracellular concentration by controlling the uptake, storage, and metabolism of these molecules.

FABPs also play a role in modulating cell signaling pathways that are involved in various physiological processes such as inflammation, differentiation, and apoptosis. Dysregulation of FABP expression and function has been implicated in several diseases, including diabetes, obesity, cancer, and neurodegenerative disorders.

In summary, fatty acid-binding proteins are essential intracellular proteins that facilitate the transport and metabolism of long-chain fatty acids while regulating cell signaling pathways.

Docosahexaenoic acid (DHA) is a type of long-chain omega-3 fatty acid that is essential for human health. It is an important structural component of the phospholipid membranes in the brain and retina, and plays a crucial role in the development and function of the nervous system. DHA is also involved in various physiological processes, including inflammation, blood pressure regulation, and immune response.

DHA is not produced in sufficient quantities by the human body and must be obtained through dietary sources or supplements. The richest dietary sources of DHA are fatty fish such as salmon, mackerel, and sardines, as well as algae and other marine organisms. DHA can also be found in fortified foods such as eggs, milk, and juice.

Deficiency in DHA has been linked to various health issues, including cognitive decline, vision problems, and cardiovascular disease. Therefore, it is recommended that individuals consume adequate amounts of DHA through diet or supplementation to maintain optimal health.

Esters are organic compounds that are formed by the reaction between an alcohol and a carboxylic acid. They are widely found in nature and are used in various industries, including the production of perfumes, flavors, and pharmaceuticals. In the context of medical definitions, esters may be mentioned in relation to their use as excipients in medications or in discussions of organic chemistry and biochemistry. Esters can also be found in various natural substances such as fats and oils, which are triesters of glycerol and fatty acids.

Linoleic acid is an essential polyunsaturated fatty acid, specifically an omega-6 fatty acid. It is called "essential" because our bodies cannot produce it; therefore, it must be obtained through our diet. Linoleic acid is a crucial component of cell membranes and is involved in the production of prostaglandins, which are hormone-like substances that regulate various bodily functions such as inflammation, blood pressure, and muscle contraction.

Foods rich in linoleic acid include vegetable oils (such as soybean, corn, and sunflower oil), nuts, seeds, and some fruits and vegetables. It is important to maintain a balance between omega-6 and omega-3 fatty acids in the diet, as excessive consumption of omega-6 fatty acids can contribute to inflammation and other health issues.

Acyl Coenzyme A (often abbreviated as Acetyl-CoA or Acyl-CoA) is a crucial molecule in metabolism, particularly in the breakdown and oxidation of fats and carbohydrates to produce energy. It is a thioester compound that consists of a fatty acid or an acetate group linked to coenzyme A through a sulfur atom.

Acyl CoA plays a central role in several metabolic pathways, including:

1. The citric acid cycle (Krebs cycle): In the mitochondria, Acyl-CoA is formed from the oxidation of fatty acids or the breakdown of certain amino acids. This Acyl-CoA then enters the citric acid cycle to produce high-energy electrons, which are used in the electron transport chain to generate ATP (adenosine triphosphate), the main energy currency of the cell.
2. Beta-oxidation: The breakdown of fatty acids occurs in the mitochondria through a process called beta-oxidation, where Acyl-CoA is sequentially broken down into smaller units, releasing acetyl-CoA, which then enters the citric acid cycle.
3. Ketogenesis: In times of low carbohydrate availability or during prolonged fasting, the liver can produce ketone bodies from acetyl-CoA to supply energy to other organs, such as the brain and heart.
4. Protein synthesis: Acyl-CoA is also involved in the modification of proteins by attaching fatty acid chains to them (a process called acetylation), which can influence protein function and stability.

In summary, Acyl Coenzyme A is a vital molecule in metabolism that connects various pathways related to energy production, fatty acid breakdown, and protein modification.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Cerulenin is a fungal metabolite that inhibits the enzyme delta-9-desaturase, which is involved in fatty acid synthesis. This compound is often used in research to study the biology and function of fatty acid synthase and lipid metabolism. It has been investigated for its potential as an anti-cancer agent, but its clinical use is not approved due to its limited specificity and potential toxicity.

Chitin synthase is an enzyme that is responsible for the biosynthesis of chitin, which is a long-chain polymer of N-acetylglucosamine. Chitin is a structural component in the exoskeletons of arthropods, such as insects and crustaceans, as well as in the cell walls of fungi.

Chitin synthase catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to a growing chitin chain. There are several different isoforms of chitin synthase, which are classified based on their sequence similarity and biochemical properties. These isoforms play distinct roles in the biosynthesis of chitin in different organisms.

Inhibitors of chitin synthase have been developed as potential therapeutic agents for the control of insect pests and fungal pathogens.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Coenzyme A (CoA) ligases, also known as CoA synthetases, are a class of enzymes that activate acyl groups, such as fatty acids and amino acids, by forming a thioester bond with coenzyme A. This activation is an essential step in various metabolic pathways, including fatty acid oxidation, amino acid catabolism, and the synthesis of several important compounds like steroids and acetylcholine.

CoA ligases catalyze the following reaction:

acyl group + ATP + CoA ↔ acyl-CoA + AMP + PP~i~

In this reaction, an acyl group (R-) from a carboxylic acid is linked to the thiol (-SH) group of coenzyme A through a high-energy thioester bond. The energy required for this activation is provided by the hydrolysis of ATP to AMP and inorganic pyrophosphate (PP~i~).

CoA ligases are classified into three main types based on the nature of the acyl group they activate:

1. Acyl-CoA synthetases (or long-chain fatty acid CoA ligases) activate long-chain fatty acids, typically containing 12 or more carbon atoms.
2. Aminoacyl-CoA synthetases activate amino acids to form aminoacyl-CoAs, which are essential intermediates in the catabolism of certain amino acids.
3. Short-chain specific CoA ligases activate short-chain fatty acids (up to 6 carbon atoms) and other acyl groups like acetate or propionate.

These enzymes play a crucial role in maintaining cellular energy homeostasis, metabolism, and the synthesis of various essential biomolecules.

Linoleic acid is a type of polyunsaturated fatty acid (PUFA) that is essential for human health. It is one of the two essential fatty acids, meaning that it cannot be produced by the body and must be obtained through diet.

Linoleic acid is a member of the omega-6 fatty acid family and has a chemical structure with two double bonds at the sixth and ninth carbon atoms from the methyl end of the molecule. It is found in various plant sources, such as vegetable oils (e.g., soybean, corn, safflower, and sunflower oils), nuts, seeds, and whole grains.

Linoleic acid plays a crucial role in maintaining the fluidity and function of cell membranes, producing eicosanoids (hormone-like substances that regulate various bodily functions), and supporting skin health. However, excessive intake of linoleic acid can lead to an imbalance between omega-6 and omega-3 fatty acids, which may contribute to inflammation and chronic diseases. Therefore, it is recommended to maintain a balanced diet with appropriate amounts of both omega-6 and omega-3 fatty acids.

Unsaturated dietary fats are a type of fat that are primarily found in foods from plants. They are called "unsaturated" because of their chemical structure, which contains one or more double bonds in the carbon chain of the fat molecule. These double bonds can be either monounsaturated (one double bond) or polyunsaturated (multiple double bonds).

Monounsaturated fats are found in foods such as olive oil, avocados, and nuts, while polyunsaturated fats are found in foods such as fatty fish, flaxseeds, and vegetable oils. Unsaturated fats are generally considered to be heart-healthy, as they can help lower levels of harmful cholesterol in the blood and reduce the risk of heart disease.

It is important to note that while unsaturated fats are healthier than saturated and trans fats, they are still high in calories and should be consumed in moderation as part of a balanced diet.

Malonyl Coenzyme A (CoA) is not a medical term per se, but rather a biochemical concept. Here's the scientific or biochemical definition:

Malonyl Coenzyme A is an important intermediate in various metabolic pathways, particularly in fatty acid synthesis. It is formed through the reaction between malonic acid and coenzyme A, catalyzed by the enzyme acetyl-CoA carboxylase. Malonyl CoA plays a crucial role in the elongation step of fatty acid synthesis, where it provides the two-carbon unit that is added to a growing fatty acid chain.

In a medical context, understanding the function and regulation of Malonyl CoA metabolism can be relevant for several pathological conditions, including metabolic disorders like diabetes and obesity.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Adipose tissue, also known as fatty tissue, is a type of connective tissue that is composed mainly of adipocytes (fat cells). It is found throughout the body, but is particularly abundant in the abdominal cavity, beneath the skin, and around organs such as the heart and kidneys.

Adipose tissue serves several important functions in the body. One of its primary roles is to store energy in the form of fat, which can be mobilized and used as an energy source during periods of fasting or exercise. Adipose tissue also provides insulation and cushioning for the body, and produces hormones that help regulate metabolism, appetite, and reproductive function.

There are two main types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is the more common form and is responsible for storing energy as fat. BAT, on the other hand, contains a higher number of mitochondria and is involved in heat production and energy expenditure.

Excessive accumulation of adipose tissue can lead to obesity, which is associated with an increased risk of various health problems such as diabetes, heart disease, and certain types of cancer.

Fatty alcohols, also known as long-chain alcohols or long-chain fatty alcohols, are a type of fatty compound that contains a hydroxyl group (-OH) and a long alkyl chain. They are typically derived from natural sources such as plant and animal fats and oils, and can also be synthetically produced.

Fatty alcohols can vary in chain length, typically containing between 8 and 30 carbon atoms. They are commonly used in a variety of industrial and consumer products, including detergents, emulsifiers, lubricants, and personal care products. In the medical field, fatty alcohols may be used as ingredients in certain medications or topical treatments.

Arachidonic acid is a type of polyunsaturated fatty acid that is found naturally in the body and in certain foods. It is an essential fatty acid, meaning that it cannot be produced by the human body and must be obtained through the diet. Arachidonic acid is a key component of cell membranes and plays a role in various physiological processes, including inflammation and blood clotting.

In the body, arachidonic acid is released from cell membranes in response to various stimuli, such as injury or infection. Once released, it can be converted into a variety of bioactive compounds, including prostaglandins, thromboxanes, and leukotrienes, which mediate various physiological responses, including inflammation, pain, fever, and blood clotting.

Arachidonic acid is found in high concentrations in animal products such as meat, poultry, fish, and eggs, as well as in some plant sources such as certain nuts and seeds. It is also available as a dietary supplement. However, it is important to note that excessive intake of arachidonic acid can contribute to the development of inflammation and other health problems, so it is recommended to consume this fatty acid in moderation as part of a balanced diet.

Acetates, in a medical context, most commonly refer to compounds that contain the acetate group, which is an functional group consisting of a carbon atom bonded to two hydrogen atoms and an oxygen atom (-COO-). An example of an acetate is sodium acetate (CH3COONa), which is a salt formed from acetic acid (CH3COOH) and is often used as a buffering agent in medical solutions.

Acetates can also refer to a group of medications that contain acetate as an active ingredient, such as magnesium acetate, which is used as a laxative, or calcium acetate, which is used to treat high levels of phosphate in the blood.

In addition, acetates can also refer to a process called acetylation, which is the addition of an acetyl group (-COCH3) to a molecule. This process can be important in the metabolism and regulation of various substances within the body.

Lauric acid is a type of saturated fatty acid, meaning it contains only single bonds between its carbon atoms. It is named after the laurel tree, from which it was originally isolated, and has the chemical formula CH3(CH2)10COOH.

In a medical context, lauric acid is often discussed in relation to its presence in certain foods and its potential effects on health. For example, lauric acid is the primary fatty acid found in coconut oil, making up about 50% of its total fat content. It is also found in smaller amounts in other foods such as palm kernel oil, dairy products, and human breast milk.

Some studies have suggested that lauric acid may have beneficial effects on health, such as raising levels of "good" HDL cholesterol and having antimicrobial properties. However, it is also high in calories and can contribute to weight gain if consumed in excess. Additionally, like other saturated fats, it can raise levels of "bad" LDL cholesterol when consumed in large amounts, which may increase the risk of heart disease over time.

Overall, while lauric acid may have some potential health benefits, it is important to consume it in moderation as part of a balanced diet.

Peptide synthases are a group of enzymes that catalyze the formation of peptide bonds between specific amino acids to produce peptides or proteins. They are responsible for the biosynthesis of many natural products, including antibiotics, bacterial toxins, and immunomodulatory peptides.

Peptide synthases are large, complex enzymes that consist of multiple domains and modules, each of which is responsible for activating and condensing specific amino acids. The activation of amino acids involves the formation of an aminoacyl-adenylate intermediate, followed by transfer of the activated amino acid to a thiol group on the enzyme. The condensation of two activated amino acids results in the formation of a peptide bond and release of adenosine monophosphate (AMP) and pyrophosphate.

Peptide synthases are found in all three domains of life, but are most commonly associated with bacteria and fungi. They play important roles in the biosynthesis of many natural products that have therapeutic potential, making them targets for drug discovery and development.

A diet, in medical terms, refers to the planned and regular consumption of food and drinks. It is a balanced selection of nutrient-rich foods that an individual eats on a daily or periodic basis to meet their energy needs and maintain good health. A well-balanced diet typically includes a variety of fruits, vegetables, whole grains, lean proteins, and low-fat dairy products.

A diet may also be prescribed for therapeutic purposes, such as in the management of certain medical conditions like diabetes, hypertension, or obesity. In these cases, a healthcare professional may recommend specific restrictions or modifications to an individual's regular diet to help manage their condition and improve their overall health.

It is important to note that a healthy and balanced diet should be tailored to an individual's age, gender, body size, activity level, and any underlying medical conditions. Consulting with a healthcare professional, such as a registered dietitian or nutritionist, can help ensure that an individual's dietary needs are being met in a safe and effective way.

Medical definitions generally do not include plant oils as a specific term. However, in a biological or biochemical context, plant oils, also known as vegetable oils, are defined as lipid extracts derived from various parts of plants such as seeds, fruits, and leaves. They mainly consist of triglycerides, which are esters of glycerol and three fatty acids. The composition of fatty acids can vary between different plant sources, leading to a range of physical and chemical properties that make plant oils useful for various applications in the pharmaceutical, cosmetic, and food industries. Some common examples of plant oils include olive oil, coconut oil, sunflower oil, and jojoba oil.

Alpha-linolenic acid (ALA) is a type of essential fatty acid, which means that it cannot be produced by the human body and must be obtained through diet. It is an 18-carbon fatty acid with three cis double bonds, and its chemical formula is C18:3 n-3 or 9c,12c,15c-18:3.

ALA is one of the two essential omega-3 fatty acids, along with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA is found in a variety of plant sources, including flaxseeds, chia seeds, hemp seeds, walnuts, soybeans, and some vegetable oils such as canola and soybean oil.

ALA is an important precursor to EPA and DHA, which have been shown to have numerous health benefits, including reducing inflammation, improving heart health, and supporting brain function. However, the conversion of ALA to EPA and DHA is limited in humans, and it is recommended to consume foods rich in EPA and DHA directly, such as fatty fish and fish oil supplements.

Medically speaking, a deficiency in ALA can lead to various health issues, including dry skin, hair loss, poor wound healing, and increased risk of heart disease. Therefore, it is important to include adequate amounts of ALA-rich foods in the diet to maintain optimal health.

Caprylates are the salts or esters of capric acid, a saturated fatty acid with a chain length of 8 carbon atoms. In medical and biological contexts, caprylate refers to the anion (negatively charged ion) form of capric acid, which has the chemical formula C8H17O2-. Caprylates are used in various applications, including as food additives, pharmaceuticals, and personal care products.

Some examples of caprylate compounds include:

* Sodium caprylate (sodium octanoate): a sodium salt commonly used as a preservative and flavor enhancer in foods.
* Calcium caprylate (calcium octanoate): a calcium salt used as an emulsifier in food products and as a stabilizer in cosmetics.
* Caprylic acid/caprylate triglycerides: esters of glycerin with caprylic acid, used as emollients and solvents in skin care products and pharmaceuticals.

Caprylates have antimicrobial properties against certain bacteria, fungi, and viruses, making them useful in various medical applications. For instance, sodium caprylate is sometimes used as an antifungal agent to treat conditions like candidiasis (yeast infections). However, more research is needed to fully understand the potential benefits and risks of using caprylates for medicinal purposes.

Coenzyme A, often abbreviated as CoA or sometimes holo-CoA, is a coenzyme that plays a crucial role in several important chemical reactions in the body, particularly in the metabolism of carbohydrates, fatty acids, and amino acids. It is composed of a pantothenic acid (vitamin B5) derivative called pantothenate, an adenosine diphosphate (ADP) molecule, and a terminal phosphate group.

Coenzyme A functions as a carrier molecule for acetyl groups, which are formed during the breakdown of carbohydrates, fatty acids, and some amino acids. The acetyl group is attached to the sulfur atom in CoA, forming acetyl-CoA, which can then be used as a building block for various biochemical pathways, such as the citric acid cycle (Krebs cycle) and fatty acid synthesis.

In summary, Coenzyme A is a vital coenzyme that helps facilitate essential metabolic processes by carrying and transferring acetyl groups in the body.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

Acylation is a medical and biological term that refers to the process of introducing an acyl group (-CO-) into a molecule. This process can occur naturally or it can be induced through chemical reactions. In the context of medicine and biology, acylation often occurs during post-translational modifications of proteins, where an acyl group is added to specific amino acid residues, altering the protein's function, stability, or localization.

An example of acylation in medicine is the administration of neuraminidase inhibitors, such as oseltamivir (Tamiflu), for the treatment and prevention of influenza. These drugs work by inhibiting the activity of the viral neuraminidase enzyme, which is essential for the release of newly formed virus particles from infected cells. Oseltamivir is administered orally as an ethyl ester prodrug, which is then hydrolyzed in the body to form the active acylated metabolite that inhibits the viral neuraminidase.

In summary, acylation is a vital process in medicine and biology, with implications for drug design, protein function, and post-translational modifications.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Intramolecular lyases are a type of enzyme that catalyzes the breakdown of a molecule by removing a group of atoms from within the same molecule, creating a new chemical bond in the process. These enzymes specifically cleave a molecule through an intramolecular mechanism, meaning they act on a single substrate molecule. Intramolecular lyases are involved in various biological processes, such as DNA replication, repair, and recombination. They play a crucial role in maintaining the integrity of genetic material by removing or adding specific groups of atoms to DNA or RNA molecules.

Membrane lipids are the main component of biological membranes, forming a lipid bilayer in which various cellular processes take place. These lipids include phospholipids, glycolipids, and cholesterol. Phospholipids are the most abundant type, consisting of a hydrophilic head (containing a phosphate group) and two hydrophobic tails (composed of fatty acid chains). Glycolipids contain a sugar group attached to the lipid molecule. Cholesterol helps regulate membrane fluidity and permeability. Together, these lipids create a selectively permeable barrier that separates cells from their environment and organelles within cells.

Carnitine O-palmitoyltransferase (CPT) is an enzyme that plays a crucial role in the transport of long-chain fatty acids into the mitochondrial matrix, where they undergo beta-oxidation to produce energy. There are two main forms of this enzyme: CPT1 and CPT2.

CPT1 is located on the outer mitochondrial membrane and catalyzes the transfer of a long-chain fatty acyl group from coenzyme A (CoA) to carnitine, forming acylcarnitine. This reaction is reversible and allows for the regulation of fatty acid oxidation in response to changes in energy demand.

CPT2 is located on the inner mitochondrial membrane and catalyzes the reverse reaction, transferring the long-chain fatty acyl group from carnitine back to CoA, allowing for the entry of the fatty acid into the beta-oxidation pathway.

Deficiencies in CPT1 or CPT2 can lead to serious metabolic disorders, such as carnitine deficiency and mitochondrial myopathies, which can cause muscle weakness, cardiomyopathy, and other symptoms. Treatment may involve dietary modifications, supplementation with carnitine or medium-chain fatty acids, and in some cases, enzyme replacement therapy.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Esterification is a chemical reaction that involves the conversion of an alcohol and a carboxylic acid into an ester, typically through the removal of a molecule of water. This reaction is often catalyzed by an acid or a base, and it is a key process in organic chemistry. Esters are commonly found in nature and are responsible for the fragrances of many fruits and flowers. They are also important in the production of various industrial and consumer products, including plastics, resins, and perfumes.

Nitric Oxide Synthase Type I, also known as NOS1 or neuronal nitric oxide synthase (nNOS), is an enzyme that catalyzes the production of nitric oxide (NO) from L-arginine. It is primarily expressed in the nervous system, particularly in neurons, and plays a crucial role in the regulation of neurotransmission, synaptic plasticity, and cerebral blood flow. NOS1 is calcium-dependent and requires several cofactors for its activity, including NADPH, FAD, FMN, and calmodulin. It is involved in various physiological and pathological processes, such as learning and memory, seizure susceptibility, and neurodegenerative disorders.

Stearoyl-CoA desaturase (SCD) is an enzyme that plays a crucial role in the synthesis of monounsaturated fatty acids (MUFAs) in the body. Specifically, SCD catalyzes the conversion of saturated fatty acids, such as stearic acid and palmitic acid, into MUFAs by introducing a double bond into their carbon chain.

The two main isoforms of SCD in humans are SCD1 and SCD5, with SCD1 being the most well-studied. SCD1 is primarily located in the endoplasmic reticulum of cells in various tissues, including the liver, adipose tissue, and skin.

The regulation of SCD activity has important implications for human health, as MUFAs are essential components of cell membranes and play a role in maintaining their fluidity and functionality. Additionally, abnormal levels of SCD activity have been linked to several diseases, including obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. Therefore, understanding the function and regulation of SCD is an active area of research in the field of lipid metabolism and related diseases.

Base composition in genetics refers to the relative proportion of the four nucleotide bases (adenine, thymine, guanine, and cytosine) in a DNA or RNA molecule. In DNA, adenine pairs with thymine, and guanine pairs with cytosine, so the base composition is often expressed in terms of the ratio of adenine + thymine (A-T) to guanine + cytosine (G-C). This ratio can vary between species and even between different regions of the same genome. The base composition can provide important clues about the function, evolution, and structure of genetic material.

Linolenic acids are a type of polyunsaturated fatty acids (PUFAs) that are essential to the human body, meaning they cannot be produced by the body and must be obtained through diet. There are two main types of linolenic acids: alpha-linolenic acid (ALA), an omega-3 fatty acid, and gamma-linolenic acid (GLA), an omega-6 fatty acid.

Alpha-linolenic acid is found in plant-based sources such as flaxseeds, chia seeds, hemp seeds, walnuts, and soybeans. It is a precursor to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two other important omega-3 fatty acids that are found in fatty fish and are associated with numerous health benefits.

Gamma-linolenic acid is found in smaller amounts in certain plant-based oils such as borage oil, black currant seed oil, and evening primrose oil. It has been studied for its potential anti-inflammatory effects and may be beneficial for conditions such as rheumatoid arthritis, eczema, and premenstrual syndrome (PMS).

It is important to maintain a balance between omega-3 and omega-6 fatty acids in the diet, as excessive intake of omega-6 fatty acids can contribute to inflammation and chronic disease. ALA and GLA are both important components of a healthy diet and have been associated with numerous health benefits, including reduced inflammation, improved heart health, and reduced risk of chronic diseases such as cancer and diabetes.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Prostaglandin-Endoperoxide Synthases (PTGS), also known as Cyclooxygenases (COX), are a group of enzymes that catalyze the conversion of arachidonic acid into prostaglandin G2 and H2, which are further metabolized to produce various prostaglandins and thromboxanes. These lipid mediators play crucial roles in several physiological processes such as inflammation, pain, fever, and blood clotting. There are two major isoforms of PTGS: PTGS-1 (COX-1) and PTGS-2 (COX-2). While COX-1 is constitutively expressed in most tissues and involved in homeostatic functions, COX-2 is usually induced during inflammation and tissue injury. Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their therapeutic effects by inhibiting these enzymes, thereby reducing the production of prostaglandins and thromboxanes.

Fats, also known as lipids, are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. In the body, fats serve as a major fuel source, providing twice the amount of energy per gram compared to carbohydrates and proteins. They also play crucial roles in maintaining cell membrane structure and function, serving as precursors for various signaling molecules, and assisting in the absorption and transport of fat-soluble vitamins.

There are several types of fats:

1. Saturated fats: These fats contain no double bonds between their carbon atoms and are typically solid at room temperature. They are mainly found in animal products, such as meat, dairy, and eggs, as well as in some plant-based sources like coconut oil and palm kernel oil. Consuming high amounts of saturated fats can raise levels of harmful low-density lipoprotein (LDL) cholesterol in the blood, increasing the risk of heart disease.
2. Unsaturated fats: These fats contain one or more double bonds between their carbon atoms and are usually liquid at room temperature. They can be further divided into monounsaturated fats (one double bond) and polyunsaturated fats (two or more double bonds). Unsaturated fats, especially those from plant sources, tend to have beneficial effects on heart health by lowering LDL cholesterol levels and increasing high-density lipoprotein (HDL) cholesterol levels.
3. Trans fats: These are unsaturated fats that have undergone a process called hydrogenation, which adds hydrogen atoms to the double bonds, making them more saturated and solid at room temperature. Partially hydrogenated trans fats are commonly found in processed foods, such as baked goods, fried foods, and snack foods. Consumption of trans fats has been linked to increased risks of heart disease, stroke, and type 2 diabetes.
4. Omega-3 fatty acids: These are a specific type of polyunsaturated fat that is essential for human health. They cannot be synthesized by the body and must be obtained through diet. Omega-3 fatty acids have been shown to have numerous health benefits, including reducing inflammation, improving heart health, and supporting brain function.
5. Omega-6 fatty acids: These are another type of polyunsaturated fat that is essential for human health. They can be synthesized by the body but must also be obtained through diet. While omega-6 fatty acids are necessary for various bodily functions, excessive consumption can contribute to inflammation and other health issues. It is recommended to maintain a balanced ratio of omega-3 to omega-6 fatty acids in the diet.

Soybean oil is a vegetable oil extracted from the seeds of the soybean (Glycine max). It is one of the most widely consumed cooking oils and is also used in a variety of food and non-food applications.

Medically, soybean oil is sometimes used as a vehicle for administering certain medications, particularly those that are intended to be absorbed through the skin. It is also used as a dietary supplement and has been studied for its potential health benefits, including its ability to lower cholesterol levels and reduce the risk of heart disease.

However, it's important to note that soybean oil is high in omega-6 fatty acids, which can contribute to inflammation when consumed in excess. Therefore, it should be used in moderation as part of a balanced diet.

Fatty acid synthesis inhibitors are a class of drugs that block the production of fatty acids in the body. Fatty acids are necessary for the normal functioning of the body, but an overproduction of certain types of fatty acids can contribute to the development of various medical conditions, such as obesity, diabetes, and cardiovascular disease.

Fatty acid synthesis inhibitors work by targeting enzymes involved in the synthesis of fatty acids, particularly fatty acid synthase (FAS). FAS is an enzyme that plays a key role in the production of palmitate, a saturated fatty acid that is a building block for other fatty acids. By inhibiting FAS, these drugs can reduce the amount of palmitate and other fatty acids produced in the body.

There are several types of fatty acid synthesis inhibitors, including:

1. Orlistat (Xenical, Alli): This drug works by blocking the action of lipases, enzymes that break down dietary fats in the gut. By preventing the absorption of dietary fats, orlistat can help reduce calorie intake and promote weight loss.
2. Tebufelone: This is a non-steroidal anti-inflammatory drug (NSAID) that has been shown to inhibit FAS and reduce the production of pro-inflammatory cytokines. It has been studied as a potential treatment for various inflammatory conditions, such as rheumatoid arthritis and psoriasis.
3. Cerulenin: This is a natural product that inhibits FAS and has been used in research to study the role of fatty acid synthesis in various biological processes.
4. C75: This is a synthetic compound that inhibits FAS and has been studied as a potential anti-cancer agent, as cancer cells often have increased rates of fatty acid synthesis.

It's important to note that while fatty acid synthesis inhibitors can be effective in reducing the production of certain types of fatty acids, they may also have side effects and potential risks. Therefore, it is essential to use these drugs under the supervision of a healthcare provider and to follow their instructions carefully.

Lipolysis is the process by which fat cells (adipocytes) break down stored triglycerides into glycerol and free fatty acids. This process occurs when the body needs to use stored fat as a source of energy, such as during fasting, exercise, or in response to certain hormonal signals. The breakdown products of lipolysis can be used directly by cells for energy production or can be released into the bloodstream and transported to other tissues for use. Lipolysis is regulated by several hormones, including adrenaline (epinephrine), noradrenaline (norepinephrine), cortisol, glucagon, and growth hormone, which act on lipases, enzymes that mediate the breakdown of triglycerides.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

Nitric Oxide Synthase (NOS) is a group of enzymes that catalyze the production of nitric oxide (NO) from L-arginine. There are three distinct isoforms of NOS, each with different expression patterns and functions:

1. Neuronal Nitric Oxide Synthase (nNOS or NOS1): This isoform is primarily expressed in the nervous system and plays a role in neurotransmission, synaptic plasticity, and learning and memory processes.
2. Inducible Nitric Oxide Synthase (iNOS or NOS2): This isoform is induced by various stimuli such as cytokines, lipopolysaccharides, and hypoxia in a variety of cells including immune cells, endothelial cells, and smooth muscle cells. iNOS produces large amounts of NO, which functions as a potent effector molecule in the immune response, particularly in the defense against microbial pathogens.
3. Endothelial Nitric Oxide Synthase (eNOS or NOS3): This isoform is constitutively expressed in endothelial cells and produces low levels of NO that play a crucial role in maintaining vascular homeostasis by regulating vasodilation, inhibiting platelet aggregation, and preventing smooth muscle cell proliferation.

Overall, NOS plays an essential role in various physiological processes, including neurotransmission, immune response, cardiovascular function, and respiratory regulation. Dysregulation of NOS activity has been implicated in several pathological conditions such as hypertension, atherosclerosis, neurodegenerative diseases, and inflammatory disorders.

Arachidonic acids are a type of polyunsaturated fatty acid that is primarily found in the phospholipids of cell membranes. They contain 20 carbon atoms and four double bonds (20:4n-6), with the first double bond located at the sixth carbon atom from the methyl end.

Arachidonic acids are derived from linoleic acid, an essential fatty acid that cannot be synthesized by the human body and must be obtained through dietary sources such as meat, fish, and eggs. Once ingested, linoleic acid is converted to arachidonic acid in a series of enzymatic reactions.

Arachidonic acids play an important role in various physiological processes, including inflammation, immune response, and cell signaling. They serve as precursors for the synthesis of eicosanoids, which are signaling molecules that include prostaglandins, thromboxanes, and leukotrienes. These eicosanoids have diverse biological activities, such as modulating blood flow, platelet aggregation, and pain perception, among others.

However, excessive production of arachidonic acid-derived eicosanoids has been implicated in various pathological conditions, including inflammation, atherosclerosis, and cancer. Therefore, the regulation of arachidonic acid metabolism is an important area of research for the development of new therapeutic strategies.

Glycerol, also known as glycerine or glycerin, is a simple polyol (a sugar alcohol) with a sweet taste and a thick, syrupy consistency. It is a colorless, odorless, viscous liquid that is slightly soluble in water and freely miscible with ethanol and ether.

In the medical field, glycerol is often used as a medication or supplement. It can be used as a laxative to treat constipation, as a source of calories and energy for people who cannot eat by mouth, and as a way to prevent dehydration in people with certain medical conditions.

Glycerol is also used in the production of various medical products, such as medications, skin care products, and vaccines. It acts as a humectant, which means it helps to keep things moist, and it can also be used as a solvent or preservative.

In addition to its medical uses, glycerol is also widely used in the food industry as a sweetener, thickening agent, and moisture-retaining agent. It is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA).

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Gamma-linolenic acid (GLA) is an omega-6 fatty acid that the body derives from linoleic acid, another omega-6 fatty acid. It is found in small amounts in some plant-based oils such as evening primrose oil, borage oil, and black currant seed oil. GLA has been studied for its potential anti-inflammatory effects and has been suggested to help with conditions such as rheumatoid arthritis, eczema, and diabetic neuropathy. However, more research is needed to confirm these potential health benefits.

Glycerides are esters formed from glycerol and one, two, or three fatty acids. They include monoglycerides (one fatty acid), diglycerides (two fatty acids), and triglycerides (three fatty acids). Triglycerides are the main constituents of natural fats and oils, and they are a major form of energy storage in animals and plants. High levels of triglycerides in the blood, also known as hypertriglyceridemia, can increase the risk of heart disease and stroke.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Fatty acid synthesis Fatty acid metabolism Fatty acid degradation Enoyl-acyl carrier protein reductase List of fatty acid ... Fatty acid synthase (FAS) is an enzyme that in humans is encoded by the FASN gene. Fatty acid synthase is a multi-enzyme ... Jayakumar A, Chirala SS, Wakil SJ (1997). "Human fatty acid synthase: assembling recombinant halves of the fatty acid synthase ... Fatty+Acid+Synthase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Fatty Acid Synthesis: Rensselaer ...
View and buy high purity products active at Fatty Acid Synthase from Tocris Bioscience. ... Fatty Acid Synthase. Fatty acid synthase (FASN), EC 2.3.1.85, is a multienzyme that catalyzes the conversion of acetyl-CoA and ... Literature for Fatty Acid Synthase. Tocris offers the following scientific literature for Fatty Acid Synthase to showcase our ... Fatty acid synthase (FASN), EC 2.3.1.85, catalyzes the final stage of de novo fatty acid (FA) synthesis, that is the conversion ...
Recombinant protein of human fatty acid synthase (FASN), 20 µg ... Rabbit Polyclonal antibody to Fatty Acid Synthase (fatty acid ... FASN (Myc-DDK-tagged)-Human fatty acid synthase (FASN). Get a free Anti-DDK antibody sample free with this product. Use code: " ... Transient overexpression lysate of fatty acid synthase (FASN). * * 100 ug. 100 ug ... into long-chain saturated fatty acids. In some cancer cell lines, this protein has been found to be fused with estrogen ...
The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid ... U. Bruning et al., "Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation," CELL METABOLISM, ... We report that fatty acid synthase knockdown (FASN(KD)) in ECs impedes vessel sprouting by reducing proliferation. Endothelial ... Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Ulrike Bruning, Francisco Morales- ...
fatty acid synthase - 2.3.1.- Acyltransferases. Detailed annotation on the structure, function, physiology, pharmacology and ... 2014) A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. Nat Chem Biol, 10 (9): 774-9 ... 2008) Synthesis of novel beta-lactone inhibitors of fatty acid synthase. J Med Chem, 51 (17): 5285-96. [PMID:18710210] ... 2.3.1.- Acyltransferases: fatty acid synthase. Last modified on 01/10/2021. Accessed on 11/12/2023. IUPHAR/BPS Guide to ...
Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key ... We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and ... Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is ... Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is ...
Here this mechanism was addressed and two lines of evidence showed for the first time that fatty acid synthase (Fas) plays a ... Very-long-chain fatty acids (VLCFA) through interdigitation or by modulating formation of lipid rafts may decrease the overall ... However, the fas1Δ strain plasma membrane had large increases in the levels of lignoceric acid (C24:0) (40%) and cerotic acid ( ... Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. ...
Fatty Acid Synthase Is a Key Enabler for Endocrine Opposition. Posted on November 20, 2023. by admin ...
... and fatty acid metabolic process-associated pathways are involved in the functional mechanisms of fatty acid synthase. ... Results: Fatty acid synthase is profoundly expressed in most cancers and is an important factor in predicting the outcome of ... Methods: We investigated the oncogenic roles of fatty acid synthase in 33 cancers based on the cancer genome atlas and gene ... Conclusions: This study provides a complete understanding of the oncogenic role of fatty acid synthase in human tumors. ...
Structure and regulation of the avian gene for fatty acid synthase. A.G. Goodridge, W.R. Carpenter, J.E. Fisch, M.J. Goldman, K ... Messenger RNAs encoding lipoprotein lipase, fatty acid synthase and hormone-sensitive lipase in the adipose tissue of underfed- ... Effects of fatty acids on S 14 expression in murine preadipocyte cell lines Reprod. Nutr. Dev. 37, 370-371 (1997). ...
Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and hyperactivated in a ... N2 - Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and hyperactivated in ... AB - Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and hyperactivated in ... abstract = "Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and ...
The experimental data indicated that the molecular mechanisms of fatty acid synthase gene suppression by tea polyphenols (EGCG ... of growth and suppression of lipogenesis in MCF-7 breast cancer cells may be through down-regulation of fatty acid synthase ...
Reconstitution of the FK228 biosynthetic pathway reveals cross talk between modular polyketide synthases and fatty acid ... of the FK228 biosynthetic pathway reveals cross talk between modular polyketide synthases and fatty acid synthase. Together ...
Transcription factors acting on the promoter of the rat fatty acid synthase gene. / Schweizer, M.; Roder, K.; Zhang, L. et al. ... N2 - Fatty acid synthase (FAS), one of the main lipogenic enzymes, converts dietary calories into a storage form of energy. The ... AB - Fatty acid synthase (FAS), one of the main lipogenic enzymes, converts dietary calories into a storage form of energy. The ... Fatty acid synthase (FAS), one of the main lipogenic enzymes, converts dietary calories into a storage form of energy. The ...
초청강연] Statin therapy inhibits fatty acid synthase via dynamic protein modifications. 2023-09-14l 조회수 195 ...
Fatty acid synthase (FAS), as a key enzyme involved in de novo lipogenesis, is highly expressed in many cancers. FAS inhibition ... Keywords: fatty acid synthase, apoptosis, redox homeostasis, breast cancer. Received: November 02, 2016 Accepted: February 22, ... NADPH accumulation is responsible for apoptosis in breast cancer cells induced by fatty acid synthase inhibition. ...
The clinicopathological significance of the adipophilin and fatty acid synthase expression in salivary duct carcinoma. In: ... The clinicopathological significance of the adipophilin and fatty acid synthase expression in salivary duct carcinoma. Virchows ... Dive into the research topics of The clinicopathological significance of the adipophilin and fatty acid synthase expression in ... The clinicopathological significance of the adipophilin and fatty acid synthase expression in salivary duct carcinoma. / Hirai ...
Non-alcoholic fatty liver disease (NAFLD) parallels the global obesity epidemic with unmet therapeutic needs. We investigated ... fatty acid synthase; FA, fatty acid; GPAM, mitochondrial glycerol-3-phosphate acyltransferase; GPX1, glutathione peroxidase 1; ... fatty acid synthase; GPAM, mitochondrial glycerol-3-phosphate acyltransferase; LPIN, lipin; PPAR a/g, peroxisome proliferator- ... 1i). There were no differences in serum triglyceride and free fatty acid (FFA) levels between the genotypes (Fig. 1j). ...
N2 - Fatty acid synthase (FAS) is a key enzyme involved in de novo lipogenesis that produces lipids that are necessary for cell ... AB - Fatty acid synthase (FAS) is a key enzyme involved in de novo lipogenesis that produces lipids that are necessary for cell ... Fatty acid synthase (FAS) is a key enzyme involved in de novo lipogenesis that produces lipids that are necessary for cell ... abstract = "Fatty acid synthase (FAS) is a key enzyme involved in de novo lipogenesis that produces lipids that are necessary ...
... in the pathology of non-alcoholic fatty liver disease (NAFLD). Lipid deposition in the liver seems to be a critical process in ... fatty acid; FABP4: fatty acid binding protein 4; FAS: fatty acid synthase; IL6: interleukin 6; LCN2: lipocalin 2; LXRα: liver X ... PNPLA3; morbid obesity; non-alcoholic fatty liver disease; simple steatosis; fatty acid metabolism; non-alcoholic ... Altered fatty acid metabolism-related gene expression in liver from morbidly obese women with non-alcoholic fatty liver disease ...
Bora, P. S., Guruge, B. L., Douglas Miller, D., Chairman, B. R., & Fortson, W. (1997). Human fatty acid ethyl ester synthase- ... Bora PS, Guruge BL, Douglas Miller D, Chairman BR, Fortson W. Human fatty acid ethyl ester synthase-III gene: Genomic ... Human fatty acid ethyl ester synthase-III gene : Genomic organization, nucleotide sequencing and chromosomal localization. In: ... Bora, PS, Guruge, BL, Douglas Miller, D, Chairman, BR & Fortson, W 1997, Human fatty acid ethyl ester synthase-III gene: ...
... fatty acid synthase; MAPs = microtubule associated proteins; MARK = microtube affinity-regulating kinases; MO25 = calcium- ... fatty acid synthase; MAPs = microtubule associated proteins; MARK = microtube affinity-regulating kinases; MO25 = calcium- ... STK11/LKB1 encodes a 433 amino acid ubiquitously expressed protein with a central catalytic domain and regulatory N- and C- ...
... elongation of long chain fatty acids family member 6; Fasn, fatty acid synthase; Scd1, stearoyl CoA desaturase 1. ... Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J ... of the fatty acids in TGs in liver are derived from de novo lipogenesis, while approximately 15% come from diet and the ... correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta. 2009;1792( ...
... fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator- ... fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator- ... Perchloric acid was obtained from GFS Chemical Co. (Columbus, OH, USA), thiobarbituric acid (TBA) from Lancaster Co. ( ... polyunsaturated fatty acids oppose cholesterol-mediated induction of SREBP-1 maturation," Annals of the New York Academy of ...
... fatty acid translocase; CR, carbohydrate resistant; CS, carbohydrate sensitive; FAS, fatty acid synthase; FR, fat resistant; FS ... Fatty acid synthase (FAS)]; fatty acid oxidation (Peroxisomal acyl-coenzyme A oxidase 1 (ACOX1), Carnitine palmitoyltransferase ... In muscle (Figure 5B), no difference was observed for the expression of genes involved in the control of fatty acid oxidation ... Other genes involved in fatty acid oxidation in liver, such as ACOX1 and CD36, were unchanged. These results suggest that CS ...
The role of fatty acid synthase (FASN) in the initial stages of senescence and ageing. Posted on October 13, 2020. July 7, 2021 ... This study explored the role of fatty acid synthase (FASN) in senescence and its potential as a therapeutic target for ageing. ... "The role of fatty acid synthase (FASN) in the initial stages of senescence and ageing". ...
title = "Angiotensin II-responsive element is the insulin-responsive element in the adipocyte fatty acid synthase gene: Role of ... Angiotensin II-responsive element is the insulin-responsive element in the adipocyte fatty acid synthase gene: Role of ... Angiotensin II-responsive element is the insulin-responsive element in the adipocyte fatty acid synthase gene: Role of ... Angiotensin II-responsive element is the insulin-responsive element in the adipocyte fatty acid synthase gene : Role of ...
Fatty acid synthase (FASN) is frequently activated and overexpressed in human cancers, and plays a crucial role in the ... Menendez JA, Lupu R: Fatty acid synthase-catalyzed de novo fatty acid biosynthesis: from anabolic-energy-storage pathway in ... Lupu R, Menendez JA: Pharmacological inhibitors of Fatty Acid Synthase (FASN)-catalyzed endogenous fatty acid biogenesis: a new ... Loss of fatty acid synthase inhibits the "HER2-PI3K/Akt axis" activity and malignant phenotype of Caco-2 cells. *Nan Li. 1, ...
Fatty Acid Synthase (cluster #2 Of 2), Eukaryotic (11 Compounds) Code:. Q965D7-2-E. Compound Summary. Annotation Type. ... Fatty Acid Synthase (cluster #1 Of 2), Eukaryotic. 1. 0. 0. 0. ...

No FAQ available that match "fatty acid synthases"

No images available that match "fatty acid synthases"