The procedure of presenting the conditioned stimulus without REINFORCEMENT to an organism previously conditioned. It refers also to the diminution of a conditioned response resulting from this procedure.
The ceasing of existence of a species or taxonomic groups of organisms.
The affective response to an actual current external danger which subsides with the elimination of the threatening condition.
Learning that takes place when a conditioned stimulus is paired with an unconditioned stimulus.
An induced response to threatening stimuli characterized by the cessation of body movements, except for those that are involved with BREATHING, and the maintenance of an immobile POSTURE.
A general term referring to the learning of some particular response.
Antibiotic substance produced by Streptomyces garyphalus.
Remains, impressions, or traces of animals or plants of past geological times which have been preserved in the earth's crust.
Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The study of early forms of life through fossil remains.
Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system.
The pattern of any process, or the interrelationship of phenomena, which affects growth or change within a population.
Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states.
The protection, preservation, restoration, and rational use of all resources in the total environment.
The principle that items experienced together enter into a connection, so that one tends to reinstate the other.
A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed)
The variety of all native living organisms and their various forms and interrelationships.
The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics.
The strengthening of a conditioned response.
Administration of a drug or chemical by the individual under the direction of a physician. It includes administration clinically or experimentally, by human or animal.
A response to a cue that is instrumental in avoiding a noxious experience.
The observable response an animal makes to any situation.
Activities performed to obtain licit or illicit substances.
A change in electrical resistance of the skin, occurring in emotion and in certain other conditions.
Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond.
Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
An animal or plant species in danger of extinction. Causes can include human activity, changing climate, or change in predator/prey ratios.
A schedule prescribing when the subject is to be reinforced or rewarded in terms of temporal interval in psychological experiments. The schedule may be continuous or intermittent.
An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake.
The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin.
Elements of limited time intervals, contributing to particular results or situations.
The period of history before 500 of the common era.
Animal searching behavior. The variable introductory phase of an instinctive behavior pattern or sequence, e.g., looking for food, or sequential courtship patterns prior to mating.
Number of individuals in a population relative to space.
An outbred strain of rats developed in 1915 by crossing several Wistar Institute white females with a wild gray male. Inbred strains have been derived from this original outbred strain, including Long-Evans cinnamon rats (RATS, INBRED LEC) and Otsuka-Long-Evans-Tokushima Fatty rats (RATS, INBRED OLETF), which are models for Wilson's disease and non-insulin dependent diabetes mellitus, respectively.
The science dealing with the earth and its life, especially the description of land, sea, and air and the distribution of plant and animal life, including humanity and human industries with reference to the mutual relations of these elements. (From Webster, 3d ed)
The observable, measurable, and often pathological activity of an organism that portrays its inability to overcome a habit resulting in an insatiable craving for a substance or for performing certain acts. The addictive behavior includes the emotional and physical overdependence on the object of habit in increasing amount or frequency.
Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves.
Complex pharmaceutical substances, preparations, or matter derived from organisms usually obtained by biological methods or assay.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A complex involuntary response to an unexpected strong stimulus usually auditory in nature.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The relationships of groups of organisms as reflected by their genetic makeup.
The study of the origin, structure, development, growth, function, genetics, and reproduction of organisms which inhabit the OCEANS AND SEAS.
Activities performed by humans.
The branch of science concerned with the interrelationship of organisms and their ENVIRONMENT, especially as manifested by natural cycles and rhythms, community development and structure, interactions between different kinds of organisms, geographic distributions, and population alterations. (Webster's, 3d ed)
The external elements and conditions which surround, influence, and affect the life and development of an organism or population.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young.
The persistence to perform a learned behavior (facts or experiences) after an interval has elapsed in which there has been no performance or practice of the behavior.
Drugs that block the transport of DOPAMINE into axon terminals or into storage vesicles within terminals. Most of the ADRENERGIC UPTAKE INHIBITORS also inhibit dopamine uptake.
The ash, dust, gases, and lava released by volcanic explosion. The gases are volatile matter composed principally of about 90% water vapor, and carbon dioxide, sulfur dioxide, hydrogen, carbon monoxide, and nitrogen. The ash or dust is pyroclastic ejecta and lava is molten extrusive material consisting mainly of magnesium silicate. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc.
The process whereby a representation of past experience is elicited.
Treatment of diseases with biological materials or biological response modifiers, such as the use of GENES; CELLS; TISSUES; organs; SERUM; VACCINES; and humoral agents.
Use of sound to elicit a response in the nervous system.
VERTEBRATES belonging to the class amphibia such as frogs, toads, newts and salamanders that live in a semiaquatic environment.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The science of the earth and other celestial bodies and their history as recorded in the rocks. It includes the study of geologic processes of an area such as rock formations, weathering and erosion, and sedimentation. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Disorders related or resulting from use of cocaine.
The inanimate matter of Earth, the structures and properties of this matter, and the processes that affect it.
The sequence of transfers of matter and energy from organism to organism in the form of FOOD. Food chains intertwine locally into a food web because most organisms consume more than one type of animal or plant. PLANTS, which convert SOLAR ENERGY to food by PHOTOSYNTHESIS, are the primary food source. In a predator chain, a plant-eating animal is eaten by a larger animal. In a parasite chain, a smaller organism consumes part of a larger host and may itself be parasitized by smaller organisms. In a saprophytic chain, microorganisms live on dead organic matter.
Drugs that are chemically similar to naturally occurring metabolites, but differ enough to interfere with normal metabolic pathways. (From AMA Drug Evaluations Annual, 1994, p2033)
Any significant change in measures of climate (such as temperature, precipitation, or wind) lasting for an extended period (decades or longer). It may result from natural factors such as changes in the sun's intensity, natural processes within the climate system such as changes in ocean circulation, or human activities.
Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge.
A phylum of fungi that was formerly considered a subdivision of Phycomycetes. They are the only fungi that produce motile spores (zoospores) at some stage in their life cycle. Most are saprobes but they also include examples of plant, animal, and fungal pathogens.
Family in the order COLUMBIFORMES, comprised of pigeons or doves. They are BIRDS with short legs, stout bodies, small heads, and slender bills. Some sources call the smaller species doves and the larger pigeons, but the names are interchangeable.
A class in the phylum MOLLUSCA comprised of SQUID; CUTTLEFISH; OCTOPUS; and NAUTILUS. These marine animals are the most highly organized of all the mollusks.
Computer-based representation of physical systems and phenomena such as chemical processes.
An order of MAMMALS, usually flesh eaters with appropriate dentition. Suborders include the terrestrial carnivores Fissipedia, and the aquatic carnivores PINNIPEDIA.
Techniques used to determine the age of materials, based on the content and half-lives of the RADIOACTIVE ISOTOPES they contain.
Animals that have no spinal column.
A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies.
Learning that is manifested in the ability to respond differentially to various stimuli.
A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)).
Warfare involving the use of living organisms or their products as disease etiologic agents against people, animals, or plants.
A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.
Cold-blooded, air-breathing VERTEBRATES belonging to the class Reptilia, usually covered with external scales or bony plates.
Processes that incorporate some element of randomness, used particularly to refer to a time series of random variables.
The longterm manifestations of WEATHER. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Behavior in which persons hurt or harm themselves without the motive of suicide or of sexual deviation.
A method for extinguishing anxiety by a saturation exposure to the feared stimulus situation or its substitute.
The splitting of an ancestral species into daughter species that coexist in time (King, Dictionary of Genetics, 6th ed). Causal factors may include geographic isolation, HABITAT geometry, migration, REPRODUCTIVE ISOLATION, random GENETIC DRIFT and MUTATION.
Innate response elicited by sensory stimuli associated with a threatening situation, or actual confrontation with an enemy.
Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
An order of amoeboid EUKARYOTES characterized by reticulating pseudopods and a complex life cycle with an alternation of generations. Most are less than 1mm in size and found in marine or brackish water.
An object or a situation that can serve to reinforce a response, to satisfy a motive, or to afford pleasure.
Biological activities and function of the whole organism in human, animal, microorgansims, and plants, and of the biosphere.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system.
Instinctual behavior pattern in which food is obtained by killing and consuming other species.
Woody, usually tall, perennial higher plants (Angiosperms, Gymnosperms, and some Pterophyta) having usually a main stem and numerous branches.
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Compounds based on a 7-membered heterocyclic ring including an oxygen. They can be considered a medium ring ether. A natural source is the MONTANOA plant genus. Some dibenzo-dioxepins, called depsidones, are found in GARCINIA plants.
Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes.
Phenoxyacetates are a group of herbicides, including 2,4-D and MCPA, that function by mimicking the plant hormone auxin, causing unregulated growth and eventual death of susceptible plants.
A great expanse of continuous bodies of salt water which together cover more than 70 percent of the earth's surface. Seas may be partially or entirely enclosed by land, and are smaller than the five oceans (Atlantic, Pacific, Indian, Arctic, and Antarctic).
The largest of the medial nuclei of the thalamus. It makes extensive connections with most of the other thalamic nuclei.
Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA.
The dimension of the physical universe which, at a given place, orders the sequence of events. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Mental disorders related to feeding and eating usually diagnosed in infancy or early childhood.
The scientific study of past societies through artifacts, fossils, etc.
The tendency to react to stimuli that are different from, but somewhat similar to, the stimulus used as a conditioned stimulus.
A narcotic analgesic that may be habit-forming. It is a controlled substance (opium derivative) listed in the U.S. Code of Federal Regulations, Title 21 Parts 329.1, 1308.11 (1987). Sale is forbidden in the United States by Federal statute. (Merck Index, 11th ed)
Cognitive disorders characterized by an impaired ability to perceive the nature of objects or concepts through use of the sense organs. These include spatial neglect syndromes, where an individual does not attend to visual, auditory, or sensory stimuli presented from one side of the body.
The physical measurements of a body.
The application of modern theories of learning and conditioning in the treatment of behavior disorders.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Genotypic differences observed among individuals in a population.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
An extinct genus of large mammals in the family Elephantidae that fed by grazing on low vegetation. Most died out at the end of the last ice age.
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.
The relative amount by which the average fitness of a POPULATION is lowered, due to the presence of GENES that decrease survival, compared to the GENOTYPE with maximum or optimal fitness. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals.
Reflex closure of the eyelid occurring as a result of classical conditioning.
A climate which is typical of equatorial and tropical regions, i.e., one with continually high temperatures with considerable precipitation, at least during part of the year. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Organisms that live in water.
The effect of GLOBAL WARMING and the resulting increase in world temperatures. The predicted health effects of such long-term climatic change include increased incidence of respiratory, water-borne, and vector-borne diseases.
Artiodactyla is an order of mammals characterized by an even number of digits (two or four) on each foot, hooves as terminal appendages, and a specialized stomach for fermentative digestion, which includes taxonomic families such as Suidae, Cervidae, Bovidae, and Camelidae among others.
Brief closing of the eyelids by involuntary normal periodic closing, as a protective measure, or by voluntary action.
While there isn't a specific medical definition for "North America," I can provide a geographical definition that is often used in public health and medical contexts: North America is the third largest continent by area, encompassing 23 independent states, including the United States, Canada, and Mexico, which are home to diverse populations, cultures, and ecosystems, and share common health-related challenges such as obesity, diabetes, and healthcare access disparities.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
The ability to detect chemicals through gustatory receptors in the mouth, including those on the TONGUE; the PALATE; the PHARYNX; and the EPIGLOTTIS.
Endogenous compounds and drugs that bind to and activate GAMMA-AMINOBUTYRIC ACID receptors (RECEPTORS, GABA).
Small solar system planetary bodies including asteroids. Most asteroids are found within the gap lying between the orbits of Mars and Jupiter.
Use of naturally-occuring or genetically-engineered organisms to reduce or eliminate populations of pests.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Established cell cultures that have the potential to propagate indefinitely.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
Drugs used to specifically facilitate learning or memory, particularly to prevent the cognitive deficits associated with dementias. These drugs act by a variety of mechanisms. While no potent nootropic drugs have yet been accepted for general use, several are being actively investigated.
Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
General name for two extinct orders of reptiles from the Mesozoic era: Saurischia and Ornithischia.
Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins.
The phenomenon of an organism's responding to all situations similar to one in which it has been conditioned.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Slender-bodies diurnal insects having large, broad wings often strikingly colored and patterned.
A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
A mass of organic or inorganic solid fragmented material, or the solid fragment itself, that comes from the weathering of rock and is carried by, suspended in, or dropped by air, water, or ice. It refers also to a mass that is accumulated by any other natural agent and that forms in layers on the earth's surface, such as sand, gravel, silt, mud, fill, or loess. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1689)
The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes.
Sequential operating programs and data which instruct the functioning of a digital computer.
A salt of lithium that has been used experimentally as an immunomodulator.
Subnormal intellectual functioning which originates during the developmental period. This has multiple potential etiologies, including genetic defects and perinatal insults. Intelligence quotient (IQ) scores are commonly used to determine whether an individual has an intellectual disability. IQ scores between 70 and 79 are in the borderline range. Scores below 67 are in the disabled range. (from Joynt, Clinical Neurology, 1992, Ch55, p28)
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc.
Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.
Learning in which practice proceeds beyond the point where the act can just be performed with the required degree of excellence.
Any of several large carnivorous mammals of the family CANIDAE that usually hunt in packs.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Those factors which cause an organism to behave or act in either a goal-seeking or satisfying manner. They may be influenced by physiological drives or by external stimuli.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Principles applied to the analysis and explanation of psychological or behavioral phenomena.
A diverse genus of minute freshwater CRUSTACEA, of the suborder CLADOCERA. They are a major food source for both young and adult freshwater fish.
A return to earlier, especially to infantile, patterns of thought or behavior, or stage of functioning, e.g., feelings of helplessness and dependency in a patient with a serious physical illness. (From APA, Thesaurus of Psychological Index Terms, 1994).
The direct struggle between individuals for environmental necessities or for a common goal.
A plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of ERECTILE DYSFUNCTION.
Changes in biological features that help an organism cope with its ENVIRONMENT. These changes include physiological (ADAPTATION, PHYSIOLOGICAL), phenotypic and genetic changes.
The rate dynamics in chemical or physical systems.
The spectrum of different living organisms inhabiting a particular region, habitat, or biotope.
The discipline studying genetic composition of populations and effects of factors such as GENETIC SELECTION, population size, MUTATION, migration, and GENETIC DRIFT on the frequencies of various GENOTYPES and PHENOTYPES using a variety of GENETIC TECHNIQUES.
Periodic movements of animals in response to seasonal changes or reproductive instinct. Hormonal changes are the trigger in at least some animals. Most migrations are made for reasons of climatic change, feeding, or breeding.
A class in the phylum MOLLUSCA comprised of mussels; clams; OYSTERS; COCKLES; and SCALLOPS. They are characterized by a bilaterally symmetrical hinged shell and a muscular foot used for burrowing and anchoring.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations.
The total process by which organisms produce offspring. (Stedman, 25th ed)
Persistent and disabling ANXIETY.
A subclass of cannabinoid receptor found primarily on central and peripheral NEURONS where it may play a role modulating NEUROTRANSMITTER release.
A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both.
Comprehensive, methodical analysis of complex biological systems by monitoring responses to perturbations of biological processes. Large scale, computerized collection and analysis of the data are used to develop and test models of biological systems.
Extensive collections, reputedly complete, of facts and data garnered from material of a specialized subject area and made available for analysis and application. The collection can be automated by various contemporary methods for retrieval. The concept should be differentiated from DATABASES, BIBLIOGRAPHIC which is restricted to collections of bibliographic references.
Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION.
The family of carnivorous or omnivorous bears, having massive bodies, coarse heavy fur, relatively short limbs, and almost rudimentary tails.
The interference with or prevention of a behavioral or verbal response even though the stimulus for that response is present; in psychoanalysis the unconscious restraining of an instinctual process.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The collective name for the islands of the central Pacific Ocean, including the Austral Islands, Cook Islands, Easter Island, HAWAII; NEW ZEALAND; Phoenix Islands, PITCAIRN ISLAND; SAMOA; TONGA; Tuamotu Archipelago, Wake Island, and Wallis and Futuna Islands. Polynesians are of the Caucasoid race, but many are of mixed origin. Polynesia is from the Greek poly, many + nesos, island, with reference to the many islands in the group. (From Webster's New Geographical Dictionary, 1988, p966 & Room, Brewer's Dictionary of Names, 1992, p426)
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The state that distinguishes organisms from inorganic matter, manifested by growth, metabolism, reproduction, and adaptation. It includes the course of existence, the sum of experiences, the mode of existing, or the fact of being. Over the centuries inquiries into the nature of life have crossed the boundaries from philosophy to biology, forensic medicine, anthropology, etc., in creative as well as scientific literature. (Random House Unabridged Dictionary, 2d ed; Dr. James H. Cassedy, NLM History of Medicine Division)
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
A family of sodium chloride-dependent neurotransmitter symporters that transport the amino acid GLYCINE. They differ from GLYCINE RECEPTORS, which signal cellular responses to GLYCINE. They are located primarily on the PLASMA MEMBRANE of NEURONS; GLIAL CELLS; EPITHELIAL CELLS; and RED BLOOD CELLS where they remove inhibitory neurotransmitter glycine from the EXTRACELLULAR SPACE.
Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or body fluids. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including hormones, antigens, amino and nucleic acids, enzymes, polyamines, and specific cell membrane proteins and lipids.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population.
A behavior therapy technique in which deep muscle relaxation is used to inhibit the effects of graded anxiety-evoking stimuli.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Physiological and psychological symptoms associated with withdrawal from the use of a drug after prolonged administration or habituation. The concept includes withdrawal from smoking or drinking, as well as withdrawal from an administered drug.
A class in the phylum CNIDARIA, comprised mostly of corals and anemones. All members occur only as polyps; the medusa stage is completely absent.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Learning the correct route through a maze to obtain reinforcement. It is used for human or animal populations. (Thesaurus of Psychological Index Terms, 6th ed)
Any solid objects moving in interplanetary space that are smaller than a planet or asteroid but larger than a molecule. Meteorites are any meteoroid that has fallen to a planetary surface. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
I'm sorry for any confusion, but the term "Pacific Ocean" is a geographical term referring to the largest ocean in the world, covering an area of about 63,800,000 square miles (165,200,000 square kilometers), and it is not a medical term.
The disappearance of responsiveness to a repeated stimulation. It does not include drug habituation.

Removing the threat of diclofenac to critically endangered Asian vultures. (1/713)

Veterinary use of the nonsteroidal anti-inflammatory (NSAID) drug diclofenac in South Asia has resulted in the collapse of populations of three vulture species of the genus Gyps to the most severe category of global extinction risk. Vultures are exposed to diclofenac when scavenging on livestock treated with the drug shortly before death. Diclofenac causes kidney damage, increased serum uric acid concentrations, visceral gout, and death. Concern about this issue led the Indian Government to announce its intention to ban the veterinary use of diclofenac by September 2005. Implementation of a ban is still in progress late in 2005, and to facilitate this we sought potential alternative NSAIDs by obtaining information from captive bird collections worldwide. We found that the NSAID meloxicam had been administered to 35 captive Gyps vultures with no apparent ill effects. We then undertook a phased programme of safety testing of meloxicam on the African white-backed vulture Gyps africanus, which we had previously established to be as susceptible to diclofenac poisoning as the endangered Asian Gyps vultures. We estimated the likely maximum level of exposure (MLE) of wild vultures and dosed birds by gavage (oral administration) with increasing quantities of the drug until the likely MLE was exceeded in a sample of 40 G. africanus. Subsequently, six G. africanus were fed tissues from cattle which had been treated with a higher than standard veterinary course of meloxicam prior to death. In the final phase, ten Asian vultures of two of the endangered species (Gyps bengalensis, Gyps indicus) were dosed with meloxicam by gavage; five of them at more than the likely MLE dosage. All meloxicam-treated birds survived all treatments, and none suffered any obvious clinical effects. Serum uric acid concentrations remained within the normal limits throughout, and were significantly lower than those from birds treated with diclofenac in other studies. We conclude that meloxicam is of low toxicity to Gyps vultures and that its use in place of diclofenac would reduce vulture mortality substantially in the Indian subcontinent. Meloxicam is already available for veterinary use in India.  (+info)

Tracking ancient polyploids: a retroposon insertion reveals an extinct diploid ancestor in the polyploid origin of belladonna. (2/713)

Polyploidy is a prominent process in plant evolution and adaptation, but molecular phylogenetic studies of polyploids based on DNA sequences have often been confounded by their complex gene and genome histories. We report here a retroposon insertion in the nuclear gene granule-bound starch synthase I (GBSSI or "waxy") that clearly reveals the ancient hybrid history of the medically important polyploid species belladonna (Atropa belladonna) and resolves the controversy over the taxonomic group to which it belongs, the tribe Hyoscyameae (Solanaceae). Our inferences based on the pattern of presence or absence of the retroposon insertion are corroborated by phylogenetic analyses of the GBSSI gene sequences. This case may suggest that retroposons are promising molecular markers to study polyploid evolution.  (+info)

Negative environmental perturbations may improve species persistence. (3/713)

Among the factors proximally involved in the extinction of small isolated populations, genetic deterioration and temporal variation in environmental quality have been the subjects of intensive research in ecological and evolutionary sciences. However, previous theoretical studies and population viability assessments generally assumed a strict dichotomy between these two types of threat. Yet a number of empirical studies have recently suggested that the effects of genetic deterioration and environmental variation should not be considered independently, by demonstrating that the main effect of inbreeding depression lies with its tendency to exacerbate the deleterious consequences of environmental stress. Capitalizing on these results, I developed a stochastic model to examine the impact of random environmental perturbations on the persistence time of small isolated populations subject to inbreeding depression and mutation accumulation. The model assumes that spontaneous deleterious mutations have more severe effects when perturbations occur, which results in more efficient purging of the mutation load. Under this assumption, I find that negative perturbations may paradoxically improve middle- and long-term species persistence for realistic frequency of occurrence and severity distribution.  (+info)

Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species. (4/713)

The huge ecological and economic impact of biological invasions creates an urgent need for knowledge of traits that make invading species successful and factors helping indigenous populations to resist displacement by invading species or genotypes. High genetic diversity is generally considered to be advantageous in both processes. Combined with sex, it allows rapid evolution and adaptation to changing environments. We combined paleogenetic analysis with continent-wide survey of genetic diversity at nuclear and mitochondrial loci to reconstruct the invasion history of a single asexual American water flea clone (hybrid Daphnia pulexxDaphnia pulicaria) in Africa. Within 60 years of the original introduction of this invader, it displaced the genetically diverse, sexual population of native D. pulex in Lake Naivasha (Kenya), despite a formidable numerical advantage of the local population and continuous replenishment from a large dormant egg bank. Currently, the invading clone has spread throughout the range of native African D. pulex, where it appears to be the only occurring genotype. The absence of genetic variation did not hamper either the continent-wide establishment of this exotic lineage or the effective displacement of an indigenous and genetically diverse sibling species.  (+info)

Climate change and the demographic demise of a hoarding bird living on the edge. (5/713)

Population declines along the lower-latitude edge of a species' range may be diagnostic of climate change. We report evidence that climate change has contributed to deteriorating reproductive success in a rapidly declining population of the grey jay (Perisoreus canadensis) at the southern edge of its range. This non-migratory bird of boreal and subalpine forest lives on permanent territories, where it hoards enormous amounts of food for winter and then breeds very early, under still-wintry conditions. We hypothesized that warmer autumns have increased the perishability of hoards and compromised subsequent breeding attempts. Our analysis confirmed that warm autumns, especially when followed by cold late winters, have led to delayed breeding and reduced reproductive success. Our findings uniquely show that weather months before the breeding season impact the timing and success of breeding. Warm autumns apparently represent hostile conditions for this species, because it relies on cold storage. Our study population may be especially vulnerable, because it is situated at the southern edge of the range, where the potential for hoard rot is most pronounced. This population's demise may signal a climate-driven range contraction through local extinctions along the trailing edge.  (+info)

Metapopulation extinction risk is increased by environmental stochasticity and assemblage complexity. (6/713)

Extinction risk is a key area of investigation for contemporary ecologists and conservation biologists. Practical conservation efforts for vulnerable species can be considerably enhanced by thoroughly understanding the ecological processes that interact to determine species persistence or extinction. Theory has highlighted the importance of both extrinsic environmental factors and intrinsic demographic processes. In laboratory microcosms, single-species single-habitat patch experimental designs have been widely used to validate the theoretical prediction that environmental heterogeneity can increase extinction risk. Here, we develop on this theme by testing the effects of fluctuating resource levels in experimental multispecies metapopulations. We compare a three-species host-parasitoid assemblage that exhibits apparent competition to the individual pairwise, host-parasitoid interactions. Existing theory is broadly supported for two-species assemblages: environmental stochasticity reduces trophic interaction persistence time, while metapopulation structure increases persistence time. However, with increasing assemblage complexity, the effects of trophic interactions mask environmental impacts and persistence time is further reduced, regardless of resource renewal regime. We relate our findings to recent theory, highlighting the importance of taking into account both intrinsic and extrinsic factors, over a range of spatial scales, in order to understand resource-consumer dynamics.  (+info)

Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers. (7/713)

Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of evolutionary relationships preclude a role for the flower in delimiting the angiosperms. We advocate maintenance of parallel, reciprocally illuminating programmes of morphological and molecular phylogeny reconstruction, respectively supported by homology testing through additional taxa (especially fossils) and evolutionary-developmental genetic studies that explore genes potentially responsible for major phenotypic transitions.  (+info)

Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. (8/713)

Likelihood analyses of 1176 fossil assemblages of marine organisms from Phanerozoic (i.e., Cambrian to Recent) assemblages indicate a shift in typical relative-abundance distributions after the Paleozoic. Ecological theory associated with these abundance distributions implies that complex ecosystems are far more common among Meso-Cenozoic assemblages than among the Paleozoic assemblages that preceded them. This transition coincides not with any major change in the way fossils are preserved or collected but with a shift from communities dominated by sessile epifaunal suspension feeders to communities with elevated diversities of mobile and infaunal taxa. This suggests that the end-Permian extinction permanently altered prevailing marine ecosystem structure and precipitated high levels of ecological complexity and alpha diversity in the Meso-Cenozoic.  (+info)

"Extinction, Psychological" refers to the process by which a conditioned response or behavior becomes weakened and eventually disappears when the behavior is no longer reinforced or rewarded. It is a fundamental concept in learning theory and conditioning.

In classical conditioning, extinction occurs when the conditioned stimulus (CS) is repeatedly presented without the unconditioned stimulus (US), leading to the gradual weakening and eventual disappearance of the conditioned response (CR). For example, if a person learns to associate a tone (CS) with a puff of air to the eye (US), causing blinking (CR), but then the tone is presented several times without the puff of air, the blinking response will become weaker and eventually disappear.

In operant conditioning, extinction occurs when a reinforcer is no longer provided following a behavior, leading to the gradual weakening and eventual disappearance of that behavior. For example, if a child receives candy every time they clean their room (reinforcement), but then the candy is withheld, the child may eventually stop cleaning their room (extinction).

It's important to note that extinction can be a slow process and may require multiple trials or repetitions. Additionally, behaviors that have been extinguished can sometimes reappear in certain circumstances, a phenomenon known as spontaneous recovery.

"Extinction, Biological" refers to the state or process of a species or taxonomic group becoming extinct, meaning that there are no surviving members remaining alive anywhere in the world. This can occur due to various factors such as environmental changes, competition with other species, overexploitation by humans, or a combination of these and other elements. It is an important concept in the field of biology and conservation, as the extinction of a species can have significant impacts on ecosystems and biodiversity.

Fear is a basic human emotion that is typically characterized by a strong feeling of anxiety, apprehension, or distress in response to a perceived threat or danger. It is a natural and adaptive response that helps individuals identify and respond to potential dangers in their environment, and it can manifest as physical, emotional, and cognitive symptoms.

Physical symptoms of fear may include increased heart rate, rapid breathing, sweating, trembling, and muscle tension. Emotional symptoms may include feelings of anxiety, worry, or panic, while cognitive symptoms may include difficulty concentrating, racing thoughts, and intrusive thoughts about the perceived threat.

Fear can be a normal and adaptive response to real dangers, but it can also become excessive or irrational in some cases, leading to phobias, anxiety disorders, and other mental health conditions. In these cases, professional help may be necessary to manage and overcome the fear.

Classical conditioning is a type of learning process that occurs when two stimuli are repeatedly paired together, leading to an association between them. This concept was first introduced by Ivan Pavlov, a Russian physiologist, in his studies on classical conditioning in the late 19th and early 20th centuries.

In classical conditioning, there are typically two types of stimuli involved: the unconditioned stimulus (US) and the neutral stimulus (NS). The US is a stimulus that naturally triggers a response, known as the unconditioned response (UR), in an organism. For example, food is an US that triggers salivation, which is the UR, in dogs.

The NS, on the other hand, is a stimulus that does not initially trigger any response in the organism. However, when the NS is repeatedly paired with the US, it becomes a conditioned stimulus (CS) and begins to elicit a conditioned response (CR). The CR is similar to the UR but is triggered by the CS instead of the US.

For example, if Pavlov repeatedly rang a bell (NS) just before presenting food (US) to a dog, the dog would eventually start salivating (CR) in response to the bell (CS) even when food was not presented. This is an example of classical conditioning.

Classical conditioning has been widely studied and is believed to play a role in various physiological processes, such as learning, memory, and emotion regulation. It has also been used in various applications, including behavioral therapy and advertising.

A "freezing reaction" or "cataleptic reaction" is not a formally recognized medical term in psychiatry or neurology. However, the term "catalepsy" is used in neurology to describe a state of immobility and stupor, often associated with certain mental disorders or as a side effect of some medications.

Catalepsy is characterized by:

1. Waxy flexibility: The limbs or body can be placed in unusual positions, which are then maintained for a long time.
2. Stupor: A decreased responsiveness to external stimuli and reduced initiation of voluntary movements.
3. Rigidity: Increased muscle tone and resistance to passive movement.

In the context you provided, "freezing reaction" might refer to an involuntary immobility or stillness, possibly related to anxiety, fear, or stress. However, without more context, it is difficult to provide a precise medical definition for this term.

Cycloserine is an antibiotic medication used to treat tuberculosis (TB) that is resistant to other antibiotics. It works by killing or inhibiting the growth of the bacteria that cause TB. Cycloserine is a second-line drug, which means it is used when first-line treatments have failed or are not effective.

The medical definition of Cycloserine is:

A bacteriostatic antibiotic derived from Streptomyces orchidaceus that inhibits gram-positive and gram-negative bacteria by interfering with peptidoglycan synthesis in the bacterial cell wall. It has been used to treat tuberculosis, but its use is limited due to its adverse effects, including neurotoxicity, which can manifest as seizures, dizziness, and confusion. Cycloserine is also used in the treatment of urinary tract infections and other bacterial infections that are resistant to other antibiotics. It is available in oral form and is typically taken two to four times a day.

In medical terms, "fossils" do not have a specific or direct relevance to the field. However, in a broader scientific context, fossils are the remains or impressions of prehistoric organisms preserved in petrified form or as a mold or cast in rock. They offer valuable evidence about the Earth's history and the life forms that existed on it millions of years ago.

Paleopathology is a subfield of paleontology that deals with the study of diseases in fossils, which can provide insights into the evolution of diseases and human health over time.

Operant conditioning is a type of learning in which behavior is modified by its consequences, either reinforcing or punishing the behavior. It was first described by B.F. Skinner and involves an association between a response (behavior) and a consequence (either reward or punishment). There are two types of operant conditioning: positive reinforcement, in which a desirable consequence follows a desired behavior, increasing the likelihood that the behavior will occur again; and negative reinforcement, in which a undesirable consequence is removed following a desired behavior, also increasing the likelihood that the behavior will occur again.

For example, if a child cleans their room (response) and their parent gives them praise or a treat (positive reinforcement), the child is more likely to clean their room again in the future. If a child is buckling their seatbelt in the car (response) and the annoying buzzer stops (negative reinforcement), the child is more likely to buckle their seatbelt in the future.

It's important to note that operant conditioning is a form of learning, not motivation. The behavior is modified by its consequences, regardless of the individual's internal state or intentions.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Paleontology is not a medical field, but rather it is a branch of earth sciences and biology that deals with the study of prehistoric life forms through the examination of plant and animal fossils, including those of extinct organisms. It involves various disciplines such as stratigraphy, geochronology, and systematics to understand the evolutionary history of life on Earth.

However, I understand that you are looking for information related to a non-medical topic, so here is some additional context:

Paleontology can be divided into several subdisciplines, including vertebrate paleontology (the study of fossilized animals with backbones), invertebrate paleontology (the study of fossilized animals without backbones), paleobotany (the study of fossil plants), micropaleontology (the study of microscopic fossils), and taphonomy (the study of the processes that occur after an organism's death, leading to its preservation as a fossil).

Paleontologists use various techniques to study fossils, including comparative anatomy, histology (the study of tissue structure), and geochemistry. They also rely on other scientific fields such as genetics, physics, and chemistry to help them interpret the data they collect from fossils.

Through their research, paleontologists can learn about the morphology, behavior, ecology, and evolutionary relationships of extinct organisms, providing valuable insights into the history of life on Earth.

The amygdala is an almond-shaped group of nuclei located deep within the temporal lobe of the brain, specifically in the anterior portion of the temporal lobes and near the hippocampus. It forms a key component of the limbic system and plays a crucial role in processing emotions, particularly fear and anxiety. The amygdala is involved in the integration of sensory information with emotional responses, memory formation, and decision-making processes.

In response to emotionally charged stimuli, the amygdala can modulate various physiological functions, such as heart rate, blood pressure, and stress hormone release, via its connections to the hypothalamus and brainstem. Additionally, it contributes to social behaviors, including recognizing emotional facial expressions and responding appropriately to social cues. Dysfunctions in amygdala function have been implicated in several psychiatric and neurological conditions, such as anxiety disorders, depression, post-traumatic stress disorder (PTSD), and autism spectrum disorder (ASD).

Population dynamics, in the context of public health and epidemiology, refers to the study of the changes in size and structure of a population over time, as well as the factors that contribute to those changes. This can include birth rates, death rates, migration patterns, aging, and other demographic characteristics. Understanding population dynamics is crucial for planning and implementing public health interventions, such as vaccination programs or disease prevention strategies, as they allow researchers and policymakers to identify vulnerable populations, predict future health trends, and evaluate the impact of public health initiatives.

Electroshock, also known as electroconvulsive therapy (ECT), is a medical procedure in which electric currents are passed through the brain to treat certain mental health conditions. It is primarily used to treat severe forms of depression that have not responded to other treatments, and it may also be used to treat bipolar disorder and schizophrenia.

During an ECT procedure, electrodes are placed on the patient's head, and a carefully controlled electric current is passed through the brain, intentionally triggering a seizure. The patient is under general anesthesia and given muscle relaxants to prevent physical injury from the seizure.

ECT is typically administered in a series of treatments, usually two or three times a week for several weeks. While the exact mechanism of action is not fully understood, ECT is thought to affect brain chemistry and help regulate mood and other symptoms. It is generally considered a safe and effective treatment option for certain mental health conditions when other treatments have failed. However, it can have side effects, including short-term memory loss and confusion, and it may not be appropriate for everyone.

The conservation of natural resources refers to the responsible use and management of natural resources, such as water, soil, minerals, forests, and wildlife, in a way that preserves their availability for future generations. This may involve measures such as reducing waste and pollution, promoting sustainable practices, protecting habitats and ecosystems, and engaging in careful planning and decision-making to ensure the long-term sustainability of these resources. The goal of conservation is to balance the needs of the present with the needs of the future, so that current and future generations can continue to benefit from the many goods and services that natural resources provide.

Association learning, also known as associative learning, is a type of learning in which an individual learns to associate two stimuli or a response with a particular outcome. This can occur through classical conditioning or operant conditioning.

In classical conditioning, first described by Ivan Pavlov, an initially neutral stimulus (the conditioned stimulus) is repeatedly paired with a biologically significant stimulus (the unconditioned stimulus), until the conditioned stimulus elicits a response (the conditioned response) similar to that of the unconditioned stimulus. For example, a dog may learn to salivate at the sound of a bell if the bell is repeatedly rung just before it is fed.

In operant conditioning, described by B.F. Skinner, behavior is modified by its consequences, with desired behaviors being reinforced and undesired behaviors being punished. For example, a child may learn to put their toys away if they are given a reward for doing so.

Association learning is an important mechanism in the acquisition of many types of knowledge and skills, and it plays a key role in the development and modification of behavior.

An "ecosystem" is not a term that has a specific medical definition, as it is a concept that is more commonly used in the fields of ecology and environmental science. However, I can provide you with the general ecological definition of an ecosystem:

An ecosystem is a community of living organisms interacting with each other and their non-living environment, including both biotic factors (plants, animals, microorganisms) and abiotic factors (climate, soil, water, and air). These interactions create a complex network of relationships that form the foundation of ecological processes, such as energy flow, nutrient cycling, and population dynamics.

While there is no direct medical definition for an ecosystem, understanding the principles of ecosystems can have important implications for human health. For example, healthy ecosystems can provide clean air and water, regulate climate, support food production, and offer opportunities for recreation and relaxation, all of which contribute to overall well-being. Conversely, degraded ecosystems can lead to increased exposure to environmental hazards, reduced access to natural resources, and heightened risks of infectious diseases. Therefore, maintaining the health and integrity of ecosystems is crucial for promoting human health and preventing disease.

Biodiversity is the variety of different species of plants, animals, and microorganisms that live in an ecosystem. It also includes the variety of genes within a species and the variety of ecosystems (such as forests, grasslands, deserts, and oceans) that exist in a region or on Earth as a whole. Biodiversity is important for maintaining the health and balance of ecosystems, providing resources and services such as food, clean water, and pollination, and contributing to the discovery of new medicines and other useful products. The loss of biodiversity can have negative impacts on the functioning of ecosystems and the services they provide, and can threaten the survival of species and the livelihoods of people who depend on them.

Biological evolution is the change in the genetic composition of populations of organisms over time, from one generation to the next. It is a process that results in descendants differing genetically from their ancestors. Biological evolution can be driven by several mechanisms, including natural selection, genetic drift, gene flow, and mutation. These processes can lead to changes in the frequency of alleles (variants of a gene) within populations, resulting in the development of new species and the extinction of others over long periods of time. Biological evolution provides a unifying explanation for the diversity of life on Earth and is supported by extensive evidence from many different fields of science, including genetics, paleontology, comparative anatomy, and biogeography.

Self-administration, in the context of medicine and healthcare, refers to the act of an individual administering medication or treatment to themselves. This can include various forms of delivery such as oral medications, injections, or topical treatments. It is important that individuals who self-administer are properly trained and understand the correct dosage, timing, and technique to ensure safety and effectiveness. Self-administration promotes independence, allows for timely treatment, and can improve overall health outcomes.

Avoidance learning is a type of conditioning in which an individual learns to act in a certain way to avoid experiencing an unpleasant or aversive stimulus. It is a form of learning that occurs when an organism changes its behavior to avoid a negative outcome or situation. This can be seen in both animals and humans, and it is often studied in the field of psychology and neuroscience.

In avoidance learning, the individual learns to associate a particular cue or stimulus with the unpleasant experience. Over time, they learn to perform an action to escape or avoid the cue, thereby preventing the negative outcome from occurring. For example, if a rat receives an electric shock every time it hears a certain tone, it may eventually learn to press a lever to turn off the tone and avoid the shock.

Avoidance learning can be adaptive in some situations, as it allows individuals to avoid dangerous or harmful stimuli. However, it can also become maladaptive if it leads to excessive fear or anxiety, or if it interferes with an individual's ability to function in daily life. For example, a person who has been attacked may develop a phobia of public places and avoid them altogether, even though this limits their ability to engage in social activities and live a normal life.

In summary, avoidance learning is a type of conditioning in which an individual learns to act in a certain way to avoid experiencing an unpleasant or aversive stimulus. It can be adaptive in some situations but can also become maladaptive if it leads to excessive fear or anxiety or interferes with daily functioning.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

Drug-seeking behavior is a term used in the medical field to describe a pattern of actions taken by a person who is trying to obtain drugs, typically prescription medications, for non-medical reasons or in a manner that is considered inappropriate or abusive. This can include behaviors such as:

* Exaggerating symptoms or faking illness to obtain drugs
* Visiting multiple doctors or pharmacies to obtain multiple prescriptions (a practice known as "doctor shopping")
* Using false names or identities to obtain drugs
* Stealing, forging, or altering prescriptions
* Offering to sell or trade prescription medications

Drug-seeking behavior can be a sign of a substance use disorder, such as addiction, and may require medical intervention and treatment. It is important for healthcare providers to be aware of the signs of drug-seeking behavior and to take appropriate measures to ensure that patients are receiving the care and treatment they need while also protecting the integrity of the healthcare system.

Galvanic Skin Response (GSR), also known as Electrodermal Activity (EDA), is a physiological response that reflects the activation of the sympathetic nervous system. It measures changes in the electrical properties of the skin, which are influenced by the sweat gland activity. GSR is often used as an indicator of emotional arousal or psychological stress in various research and clinical settings.

In the context of medicine, "cues" generally refer to specific pieces of information or signals that can help healthcare professionals recognize and respond to a particular situation or condition. These cues can come in various forms, such as:

1. Physical examination findings: For example, a patient's abnormal heart rate or blood pressure reading during a physical exam may serve as a cue for the healthcare professional to investigate further.
2. Patient symptoms: A patient reporting chest pain, shortness of breath, or other concerning symptoms can act as a cue for a healthcare provider to consider potential diagnoses and develop an appropriate treatment plan.
3. Laboratory test results: Abnormal findings on laboratory tests, such as elevated blood glucose levels or abnormal liver function tests, may serve as cues for further evaluation and diagnosis.
4. Medical history information: A patient's medical history can provide valuable cues for healthcare professionals when assessing their current health status. For example, a history of smoking may increase the suspicion for chronic obstructive pulmonary disease (COPD) in a patient presenting with respiratory symptoms.
5. Behavioral or environmental cues: In some cases, behavioral or environmental factors can serve as cues for healthcare professionals to consider potential health risks. For instance, exposure to secondhand smoke or living in an area with high air pollution levels may increase the risk of developing respiratory conditions.

Overall, "cues" in a medical context are essential pieces of information that help healthcare professionals make informed decisions about patient care and treatment.

In the context of medical and clinical neuroscience, memory is defined as the brain's ability to encode, store, retain, and recall information or experiences. Memory is a complex cognitive process that involves several interconnected regions of the brain and can be categorized into different types based on various factors such as duration and the nature of the information being remembered.

The major types of memory include:

1. Sensory memory: The shortest form of memory, responsible for holding incoming sensory information for a brief period (less than a second to several seconds) before it is either transferred to short-term memory or discarded.
2. Short-term memory (also called working memory): A temporary storage system that allows the brain to hold and manipulate information for approximately 20-30 seconds, although this duration can be extended through rehearsal strategies. Short-term memory has a limited capacity, typically thought to be around 7±2 items.
3. Long-term memory: The memory system responsible for storing large amounts of information over extended periods, ranging from minutes to a lifetime. Long-term memory has a much larger capacity compared to short-term memory and is divided into two main categories: explicit (declarative) memory and implicit (non-declarative) memory.

Explicit (declarative) memory can be further divided into episodic memory, which involves the recollection of specific events or episodes, including their temporal and spatial contexts, and semantic memory, which refers to the storage and retrieval of general knowledge, facts, concepts, and vocabulary, independent of personal experience or context.

Implicit (non-declarative) memory encompasses various forms of learning that do not require conscious awareness or intention, such as procedural memory (skills and habits), priming (facilitated processing of related stimuli), classical conditioning (associative learning), and habituation (reduced responsiveness to repeated stimuli).

Memory is a crucial aspect of human cognition and plays a significant role in various aspects of daily life, including learning, problem-solving, decision-making, social interactions, and personal identity. Memory dysfunction can result from various neurological and psychiatric conditions, such as dementia, Alzheimer's disease, stroke, traumatic brain injury, and depression.

An endangered species is a species of animal, plant, or other organism that is at risk of becoming extinct because its population is declining or threatened by changing environmental or demographic factors. This term is defined and used in the context of conservation biology and wildlife management to identify species that need protection and preservation efforts.

The International Union for Conservation of Nature (IUCN) maintains a "Red List" of species, categorizing them based on their extinction risk. The categories include "Critically Endangered," "Endangered," "Vulnerable," and "Near Threatened." A species is considered endangered if it meets certain criteria indicating that it faces a very high risk of extinction in the wild.

The primary causes for species to become endangered include habitat loss, fragmentation, degradation, pollution, climate change, overexploitation, and introduction of invasive species. Conservation efforts often focus on protecting habitats, managing threats, and implementing recovery programs to help endangered species recover their populations and reduce the risk of extinction.

A reinforcement schedule is a concept in behavioral psychology that refers to the timing and pattern of rewards or reinforcements provided in response to certain behaviors. It is used to shape, maintain, or strengthen specific behaviors in individuals. There are several types of reinforcement schedules, including:

1. **Fixed Ratio (FR):** A reward is given after a fixed number of responses. For example, a salesperson might receive a bonus for every 10 sales they make.
2. **Variable Ratio (VR):** A reward is given after an unpredictable number of responses. This schedule is commonly used in gambling, as the uncertainty of when a reward (winning) will occur keeps the individual engaged and motivated to continue the behavior.
3. **Fixed Interval (FI):** A reward is given after a fixed amount of time has passed since the last reward, regardless of the number of responses during that time. For example, an employee might receive a paycheck every two weeks, regardless of how many tasks they completed during that period.
4. **Variable Interval (VI):** A reward is given after an unpredictable amount of time has passed since the last reward, regardless of the number of responses during that time. This schedule can be observed in foraging behavior, where animals search for food at irregular intervals.
5. **Combined schedules:** Reinforcement schedules can also be combined to create more complex patterns, such as a fixed ratio followed by a variable interval (FR-VI) or a variable ratio followed by a fixed interval (VR-FI).

Understanding reinforcement schedules is essential for developing effective behavioral interventions in various settings, including healthcare, education, and rehabilitation.

Cocaine is a highly addictive stimulant drug derived from the leaves of the coca plant (Erythroxylon coca). It is a powerful central nervous system stimulant that affects the brain and body in many ways. When used recreationally, cocaine can produce feelings of euphoria, increased energy, and mental alertness; however, it can also cause serious negative consequences, including addiction, cardiovascular problems, seizures, and death.

Cocaine works by increasing the levels of dopamine in the brain, a neurotransmitter associated with pleasure and reward. This leads to the pleasurable effects that users seek when they take the drug. However, cocaine also interferes with the normal functioning of the brain's reward system, making it difficult for users to experience pleasure from natural rewards like food or social interactions.

Cocaine can be taken in several forms, including powdered form (which is usually snorted), freebase (a purer form that is often smoked), and crack cocaine (a solid form that is typically heated and smoked). Each form of cocaine has different risks and potential harms associated with its use.

Long-term use of cocaine can lead to a number of negative health consequences, including addiction, heart problems, malnutrition, respiratory issues, and mental health disorders like depression or anxiety. It is important to seek help if you or someone you know is struggling with cocaine use or addiction.

The prefrontal cortex is the anterior (frontal) part of the frontal lobe in the brain, involved in higher-order cognitive processes such as planning complex cognitive behavior, personality expression, decision making, and moderating social behavior. It also plays a significant role in working memory and executive functions. The prefrontal cortex is divided into several subregions, each associated with specific cognitive and emotional functions. Damage to the prefrontal cortex can result in various impairments, including difficulties with planning, decision making, and social behavior regulation.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

I'm not a medical professional, but the term "History, Ancient" is not a medical term per se. However, in a broader context, it could refer to the study of ancient medical practices, theories, and beliefs that existed in civilizations prior to the Middle Ages or Classical Antiquity. This might include the examination of ancient texts, artifacts, and archaeological evidence to understand how illnesses were treated and viewed in these historical periods. It forms an essential part of the evolution of medical knowledge and practices over time.

Appetitive behavior is a term used in the field of psychology and neuroscience to refer to actions or behaviors that are performed in order to obtain a reward or positive reinforcement. These behaviors are often driven by basic biological needs, such as hunger, thirst, or the need for social interaction. They can also be influenced by learned associations and past experiences.

In the context of medical terminology, appetitive behavior may be used to describe a patient's level of interest in food or their desire to eat. For example, a patient with a good appetite may have a strong desire to eat and may seek out food regularly, while a patient with a poor appetite may have little interest in food and may need to be encouraged to eat.

Appetitive behavior is regulated by a complex interplay of hormonal, neural, and psychological factors. Disruptions in these systems can lead to changes in appetitive behavior, such as increased or decreased hunger and eating. Appetitive behavior is an important area of study in the field of obesity research, as it is thought that understanding the underlying mechanisms that drive appetitive behavior may help to develop more effective treatments for weight management.

I'm sorry for any confusion, but "population density" is actually a term used in population geography and epidemiology, rather than medical terminology. It refers to the number of people living in a specific area or region, usually measured as the number of people per square mile or square kilometer.

However, understanding population density can be important in public health and medicine because it can influence various factors related to health outcomes and healthcare delivery, such as:

1. Disease transmission rates: Higher population densities can facilitate the spread of infectious diseases, particularly those that are transmitted through close contact between individuals.
2. Access to healthcare services: Areas with lower population density might have fewer healthcare resources and providers available, making it more challenging for residents to access necessary medical care.
3. Health disparities: Population density can contribute to health inequities, as urban areas often have better access to healthcare, education, and economic opportunities than rural areas, leading to differences in health outcomes between these populations.
4. Environmental factors: Higher population densities might lead to increased pollution, noise, and other environmental hazards that can negatively impact health.

Therefore, while "population density" is not a medical definition per se, it remains an essential concept for understanding various public health and healthcare issues.

"Long-Evans" is a strain of laboratory rats commonly used in scientific research. They are named after their developers, the scientists Long and Evans. This strain is albino, with a brownish-black hood over their eyes and ears, and they have an agouti (salt-and-pepper) color on their backs. They are often used as a model organism due to their size, ease of handling, and genetic similarity to humans. However, I couldn't find any specific medical definition related to "Long-Evans rats" as they are not a medical condition or disease.

I'm sorry for any confusion, but "geography" is not a term that has a medical definition. Geography is a field of study that deals with the location and distribution of physical and cultural features on Earth's surface, as well as how humans interact with and affect those features. It is not a concept that is typically used in a medical context. If you have any questions related to medicine or healthcare, I would be happy to try to help answer them for you!

Addictive behavior is a pattern of repeated self-destructive behavior, often identified by the individual's inability to stop despite negative consequences. It can involve a variety of actions such as substance abuse (e.g., alcohol, drugs), gambling, sex, shopping, or using technology (e.g., internet, social media, video games).

These behaviors activate the brain's reward system, leading to feelings of pleasure and satisfaction. Over time, the individual may require more of the behavior to achieve the same level of pleasure, resulting in tolerance. If the behavior is stopped or reduced, withdrawal symptoms may occur.

Addictive behaviors can have serious consequences on an individual's physical, emotional, social, and financial well-being. They are often associated with mental health disorders such as depression, anxiety, and bipolar disorder. Treatment typically involves a combination of behavioral therapy, medication, and support groups to help the individual overcome the addiction and develop healthy coping mechanisms.

I am not aware of a medical definition for the term "birds." Birds are a group of warm-blooded vertebrates constituting the class Aves, characterized by feathers, toothless beaked jaws, the laying of hard-shelled eggs, and lightweight but strong skeletons. Some birds, such as pigeons and chickens, have been used in medical research, but the term "birds" itself does not have a specific medical definition.

According to the United States Food and Drug Administration (FDA), biological products are "products that are made from or contain a living organism or its derivatives, such as vaccines, blood and blood components, cells, genes, tissues, and proteins." These products can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, and they can come from many sources, including humans, animals, microorganisms, or plants.

Biological products are often used to diagnose, prevent, or treat a wide range of medical conditions, and they can be administered in various ways, such as through injection, inhalation, or topical application. Because biological products are derived from living organisms, their manufacturing processes can be complex and must be tightly controlled to ensure the safety, purity, and potency of the final product.

It's important to note that biological products are not the same as drugs, which are chemically synthesized compounds. While drugs are designed to interact with specific targets in the body, such as enzymes or receptors, biological products can have more complex and varied mechanisms of action, making them potentially more difficult to characterize and regulate.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

A startle reaction is a natural, defensive response to an unexpected stimulus that is characterized by a sudden contraction of muscles, typically in the face, neck, and arms. It's a reflexive action that occurs involuntarily and is mediated by the brainstem. The startle reaction can be observed in many different species, including humans, and is thought to have evolved as a protective mechanism to help organisms respond quickly to potential threats. In addition to the muscle contraction, the startle response may also include other physiological changes such as an increase in heart rate and blood pressure.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

I apologize for the confusion, but "Marine Biology" is not a medical term. Instead, it is a branch of biology that deals with the study of marine organisms, their behaviors, and their interactions with the marine environment. Marine biologists investigate various aspects of marine life, such as the ecology, physiology, and genetics of marine plants, animals, and microorganisms. They also study the impact of human activities on marine ecosystems and work towards conservation efforts to protect these environments.

I'm sorry for any confusion, but "Human Activities" is a very broad term and not something that typically has a specific medical definition. Human activities can encompass everything from physical movement like exercise or daily chores, to mental activities like work or hobbies, to social interactions, and more.

However, in a medical context, human activities might be discussed in terms of their impact on health. For example, certain activities could be considered "healthy" if they contribute to physical fitness, stress reduction, or overall well-being. Conversely, other activities might be seen as "risky" or "unhealthy" if they increase the likelihood of injury or disease.

If you're looking for information on a more specific concept related to human activities and health, please provide more details so I can give a more accurate response.

Ecology is not a medical term, but rather a term used in the field of biology. It refers to the study of the relationships between living organisms and their environment. This includes how organisms interact with each other and with their physical surroundings, such as climate, soil, and water. Ecologists may study the distribution and abundance of species, the flow of energy through an ecosystem, and the effects of human activities on the environment. While ecology is not a medical field, understanding ecological principles can be important for addressing public health issues related to the environment, such as pollution, climate change, and infectious diseases.

The term "environment" in a medical context generally refers to the external conditions and surroundings that can have an impact on living organisms, including humans. This includes both physical factors such as air quality, water supply, soil composition, temperature, and radiation, as well as biological factors such as the presence of microorganisms, plants, and animals.

In public health and epidemiology, the term "environmental exposure" is often used to describe the contact between an individual and a potentially harmful environmental agent, such as air pollution or contaminated water. These exposures can have significant impacts on human health, contributing to a range of diseases and disorders, including respiratory illnesses, cancer, neurological disorders, and reproductive problems.

Efforts to protect and improve the environment are therefore critical for promoting human health and preventing disease. This includes measures to reduce pollution, conserve natural resources, promote sustainable development, and mitigate the impacts of climate change.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Mammals are a group of warm-blooded vertebrates constituting the class Mammalia, characterized by the presence of mammary glands (which produce milk to feed their young), hair or fur, three middle ear bones, and a neocortex region in their brain. They are found in a diverse range of habitats and come in various sizes, from tiny shrews to large whales. Examples of mammals include humans, apes, monkeys, dogs, cats, bats, mice, raccoons, seals, dolphins, horses, and elephants.

Dopamine uptake inhibitors are a class of medications that work by blocking the reuptake of dopamine, a neurotransmitter, into the presynaptic neuron. This results in an increased concentration of dopamine in the synapse, leading to enhanced dopaminergic transmission and activity.

These drugs are used in various medical conditions where dopamine is implicated, such as depression, attention deficit hyperactivity disorder (ADHD), and neurological disorders like Parkinson's disease. They can also be used to treat substance abuse disorders, such as cocaine addiction, by blocking the reuptake of dopamine and reducing the rewarding effects of the drug.

Examples of dopamine uptake inhibitors include:

* Bupropion (Wellbutrin), which is used to treat depression and ADHD
* Methylphenidate (Ritalin, Concerta), which is used to treat ADHD
* Amantadine (Symmetrel), which is used to treat Parkinson's disease and also has antiviral properties.

It's important to note that dopamine uptake inhibitors can have side effects, including increased heart rate, blood pressure, and anxiety. They may also have the potential for abuse and dependence, particularly in individuals with a history of substance abuse. Therefore, these medications should be used under the close supervision of a healthcare provider.

I'm sorry for any confusion, but "Volcanic Eruptions" are not a medical term or concept. Volcanic eruptions refer to the release of molten rock, ash, and gases from a volcano's opening, or vent, onto the Earth's surface. This is a geological event that occurs due to the movement of tectonic plates and the build-up of pressure within the Earth's crust.

If you have any medical questions or terms you would like me to define, please feel free to ask!

A biological assay is a method used in biology and biochemistry to measure the concentration or potency of a substance (like a drug, hormone, or enzyme) by observing its effect on living cells or tissues. This type of assay can be performed using various techniques such as:

1. Cell-based assays: These involve measuring changes in cell behavior, growth, or viability after exposure to the substance being tested. Examples include proliferation assays, apoptosis assays, and cytotoxicity assays.
2. Protein-based assays: These focus on measuring the interaction between the substance and specific proteins, such as enzymes or receptors. Examples include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and pull-down assays.
3. Genetic-based assays: These involve analyzing the effects of the substance on gene expression, DNA structure, or protein synthesis. Examples include quantitative polymerase chain reaction (qPCR) assays, reporter gene assays, and northern blotting.

Biological assays are essential tools in research, drug development, and diagnostic applications to understand biological processes and evaluate the potential therapeutic efficacy or toxicity of various substances.

"Mental recall," also known as "memory recall," refers to the ability to retrieve or bring information from your memory storage into your conscious mind, so you can think about, use, or apply it. This process involves accessing and retrieving stored memories in response to certain cues or prompts. It is a fundamental cognitive function that allows individuals to remember and recognize people, places, events, facts, and experiences.

In the context of medical terminology, mental recall may be used to assess an individual's cognitive abilities, particularly in relation to memory function. Impairments in memory recall can be indicative of various neurological or psychological conditions, such as dementia, Alzheimer's disease, or amnesia.

Biological therapy, also known as biotherapy or immunotherapy, is a type of medical treatment that uses biological agents (such as substances derived from living organisms or laboratory-made versions of these substances) to identify and modify specific targets in the body to treat diseases, including cancer. These therapies can work by boosting the body's natural defenses to fight illness, interfering with the growth and spread of abnormal cells, or replacing absent or faulty proteins in the body. Examples of biological therapies include monoclonal antibodies, cytokines, and vaccines.

Acoustic stimulation refers to the use of sound waves or vibrations to elicit a response in an individual, typically for the purpose of assessing or treating hearing, balance, or neurological disorders. In a medical context, acoustic stimulation may involve presenting pure tones, speech sounds, or other types of auditory signals through headphones, speakers, or specialized devices such as bone conduction transducers.

The response to acoustic stimulation can be measured using various techniques, including electrophysiological tests like auditory brainstem responses (ABRs) or otoacoustic emissions (OAEs), behavioral observations, or functional imaging methods like fMRI. Acoustic stimulation is also used in therapeutic settings, such as auditory training programs for hearing impairment or vestibular rehabilitation for balance disorders.

It's important to note that acoustic stimulation should be administered under the guidance of a qualified healthcare professional to ensure safety and effectiveness.

Amphibians are a class of cold-blooded vertebrates that include frogs, toads, salamanders, newts, and caecilians. They are characterized by their four-limbed body structure, moist skin, and double circulation system with three-chambered hearts. Amphibians are unique because they have a life cycle that involves two distinct stages: an aquatic larval stage (usually as a tadpole or larva) and a terrestrial adult stage. They typically start their lives in water, undergoing metamorphosis to develop lungs and legs for a land-dwelling existence. Many amphibians are also known for their complex reproductive behaviors and vocalizations.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

I'm sorry for any confusion, but "geology" is not a medical term. It is a scientific discipline that deals with the Earth's physical structure and substance, its history, and the processes that act on it. If you have any questions about medical terminology or concepts, I would be happy to help!

"Cocaine-Related Disorders" is a term used in the medical and psychiatric fields to refer to a group of conditions related to the use of cocaine, a powerful stimulant drug. These disorders are classified and diagnosed based on the criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), published by the American Psychiatric Association.

The two main categories of Cocaine-Related Disorders are:

1. Cocaine Use Disorder: This disorder is characterized by a problematic pattern of cocaine use leading to clinically significant impairment or distress, as manifested by at least two symptoms within a 12-month period. These symptoms may include using larger amounts of cocaine over a longer period than intended, persistent desire or unsuccessful efforts to cut down or control cocaine use, spending a great deal of time obtaining, using, or recovering from the effects of cocaine, and continued use despite physical or psychological problems caused or exacerbated by cocaine.
2. Cocaine-Induced Disorders: These disorders are directly caused by the acute effects of cocaine intoxication or withdrawal. They include:
* Cocaine Intoxication: Presents with a reversible syndrome due to recent use of cocaine, characterized by euphoria, increased energy, and psychomotor agitation. It may also cause elevated heart rate, blood pressure, and body temperature, as well as pupillary dilation.
* Cocaine Withdrawal: Occurs when an individual who has been using cocaine heavily for a prolonged period abruptly stops or significantly reduces their use. Symptoms include depressed mood, fatigue, increased appetite, vivid and unpleasant dreams, and insomnia.

Cocaine-Related Disorders can have severe negative consequences on an individual's physical health, mental wellbeing, and social functioning. They often require professional treatment to manage and overcome.

I'm sorry for any confusion, but "geological phenomena" is not a term typically used in medical definitions. Geological phenomena refer to natural processes and features related to the earth's physical structure, composition, and the various changes it undergoes over time. This could include things like volcanic eruptions, earthquakes, rock formations, or the formation of fossil fuels. If you have a term that you would like me to provide a medical definition for, I'd be happy to help!

I'm sorry for any confusion, but the term "food chain" is not typically used in a medical context. It is a concept from ecology that describes the sequence of organisms through which food and energy pass as one organism eats another.

However, if you're referring to "food web" or "dietary intake," these terms might be more applicable in a medical context. For instance, dietary intake refers to what and how much a person consumes, which can have significant implications for their health. A food web, on the other hand, is a more complex network of relationships between different species that consume and are consumed by others, which can help researchers understand the impacts of changes in one species' population or behavior on others within an ecosystem.

If you meant to ask about something else, please provide more context or clarify your question, and I will do my best to provide a helpful answer!

Antimetabolites are a class of drugs that interfere with the normal metabolic processes of cells, particularly those involved in DNA replication and cell division. They are commonly used as chemotherapeutic agents to treat various types of cancer because many cancer cells divide more rapidly than normal cells. Antimetabolites work by mimicking natural substances needed for cell growth and division, such as nucleotides or amino acids, and getting incorporated into the growing cells' DNA or protein structures, which ultimately leads to the termination of cell division and death of the cancer cells. Examples of antimetabolites include methotrexate, 5-fluorouracil, and capecitabine.

Climate change, as defined medically, refers to the long-term alterations in the statistical distribution of weather patterns caused by changes in the Earth's climate system. These changes can have significant impacts on human health and wellbeing.

Medical professionals are increasingly recognizing the importance of addressing climate change as a public health issue. The World Health Organization (WHO) has identified climate change as one of the greatest threats to global health in the 21st century, with potential impacts including increased heat-related mortality, more frequent and severe natural disasters, changes in the distribution of infectious diseases, and decreased food security.

Climate change can also exacerbate existing health disparities, as vulnerable populations such as children, the elderly, low-income communities, and those with chronic medical conditions are often disproportionately affected by its impacts. As a result, addressing climate change is an important public health priority, and medical professionals have a critical role to play in advocating for policies and practices that reduce greenhouse gas emissions and promote adaptation to the changing climate.

In the context of medicine and healthcare, learning is often discussed in relation to learning abilities or disabilities that may impact an individual's capacity to acquire, process, retain, and apply new information or skills. Learning can be defined as the process of acquiring knowledge, understanding, behaviors, and skills through experience, instruction, or observation.

Learning disorders, also known as learning disabilities, are a type of neurodevelopmental disorder that affects an individual's ability to learn and process information in one or more areas, such as reading, writing, mathematics, or reasoning. These disorders are not related to intelligence or motivation but rather result from differences in the way the brain processes information.

It is important to note that learning can also be influenced by various factors, including age, cognitive abilities, physical and mental health status, cultural background, and educational experiences. Therefore, a comprehensive assessment of an individual's learning abilities and needs should take into account these various factors to provide appropriate support and interventions.

Chytridiomycota is a phylum that includes various species of fungi known as chytrids. These fungi are characterized by having a unique life cycle that involves a motile, flagellated stage in their reproductive process. Chytridiomycota fungi can be found in a wide range of environments, including freshwater and terrestrial habitats. Some species of chytrids are parasites that infect various organisms, such as algae, plants, and animals, while others are saprophytes that obtain nutrients by decomposing organic matter.

One notable species of Chytridiomycota is Batrachochytrium dendrobatidis (Bd), which is a pathogenic fungus that infects the skin of amphibians. This fungus has been implicated in declines and extinctions of amphibian populations worldwide, making it a significant concern for global biodiversity conservation efforts.

Columbidae is the family that includes all pigeons and doves. According to the medical literature, there are no specific medical definitions associated with Columbidae. However, it's worth noting that some species of pigeons and doves are commonly kept as pets or used in research, and may be mentioned in medical contexts related to avian medicine, zoonoses (diseases transmissible from animals to humans), or public health concerns such as bird-related allergies.

Cephalopoda is a class of marine mollusks that includes octopuses, squids, cuttlefish, and nautiluses. The name "Cephalopoda" comes from the Greek words "kephale," meaning head, and "pous," meaning foot, which refers to the fact that these animals have their feet located on their heads in the form of arms or tentacles.

Cephalopods are characterized by their highly developed nervous systems, sophisticated behaviors, and complex communication systems. They are also known for their ability to change color and pattern, which they use for communication, camouflage, and mimicry.

Octopuses and squids are the most intelligent and active of the cephalopods, with large brains and well-developed eyes. Some species of squid can swim at high speeds and engage in complex behaviors such as jet propulsion and bioluminescent communication. Cuttlefish are known for their exceptional ability to camouflage themselves, changing color and pattern rapidly to blend in with their surroundings. Nautiluses are the most primitive living cephalopods, with a spiral shell and simple nervous system.

Cephalopods have a unique method of propulsion, using a siphon to expel water from their mantle cavity, which creates a jet of water that propels them through the water. They also have beaks, which they use to bite and tear their prey, as well as radulas, rasping structures located in their mouths that help them to manipulate and consume food.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

Carnivora is an order of mammals that consists of animals whose primary diet consists of flesh. The term "Carnivora" comes from the Latin words "caro", meaning flesh, and "vorare", meaning to devour. This order includes a wide variety of species, ranging from large predators such as lions, tigers, and bears, to smaller animals such as weasels, otters, and raccoons.

While members of the Carnivora order are often referred to as "carnivores," it is important to note that not all members exclusively eat meat. Some species, such as raccoons and bears, have an omnivorous diet that includes both plants and animals. Additionally, some species within this order have evolved specialized adaptations for their specific diets, such as the elongated canines and carnassial teeth of felids (cats) and canids (dogs), which are adapted for tearing and shearing meat.

Overall, the medical definition of Carnivora refers to an order of mammals that have a diet primarily consisting of flesh, although not all members exclusively eat meat.

Radiometric dating is a method used to determine the age of objects, including rocks and other fossilized materials, based on the decay rates of radioactive isotopes. This technique relies on the fact that certain elements, such as carbon-14, potassium-40, and uranium-238, are unstable and gradually decay into different elements over time.

By measuring the ratio of the remaining radioactive isotope to the stable end product, scientists can calculate the age of a sample using the following formula:

age = (ln(Nf/N0)) / λ

where Nf is the number of atoms of the decayed isotope, N0 is the initial number of atoms of the radioactive isotope, and λ is the decay constant.

Radiometric dating has been used to date objects ranging from a few thousand years old to billions of years old, making it an essential tool for archaeologists, geologists, and other scientists who study the history of our planet.

I'm sorry for any confusion, but "Invertebrates" is not a medical term. It is a term used in biology to describe a vast group of animals that do not have a vertebral column or spinal cord. This includes creatures such as insects, worms, starfish, and shellfish, among many others. They are classified as invertebrates because they lack a backbone, which is a characteristic of vertebrates, or animals that include humans and other mammals, birds, reptiles, amphibians, and fish.

Muscimol is defined as a cyclic psychoactive ingredient found in certain mushrooms, including Amanita muscaria and Amanita pantherina. It acts as a potent agonist at GABA-A receptors, which are involved in inhibitory neurotransmission in the central nervous system. Muscimol can cause symptoms such as altered consciousness, delirium, hallucinations, and seizures. It is used in research but has no medical applications.

Discrimination learning is a type of learning in which an individual learns to distinguish between two or more stimuli and respond differently to each. It involves the ability to recognize the differences between similar stimuli and to respond appropriately based on the specific characteristics of each stimulus. This type of learning is important for many aspects of cognition, including perception, language, and problem-solving.

In discrimination learning, an individual may be presented with two or more stimuli and reinforced for responding differently to each. For example, a person might be trained to press a button in response to the color red and to do nothing in response to the color green. Through this process of differential reinforcement, the individual learns to discriminate between the two colors and to respond appropriately to each.

Discrimination learning is often studied in animals as well as humans, and it is thought to involve a range of cognitive processes, including attention, memory, and perception. It is an important aspect of many forms of learning and plays a role in a wide variety of behaviors.

The limbic system is a complex set of structures in the brain that includes the hippocampus, amygdala, fornix, cingulate gyrus, and other nearby areas. It's associated with emotional responses, instinctual behaviors, motivation, long-term memory formation, and olfaction (smell). The limbic system is also involved in the modulation of visceral functions and drives, such as hunger, thirst, and sexual drive.

The structures within the limbic system communicate with each other and with other parts of the brain, particularly the hypothalamus and the cortex, to regulate various physiological and psychological processes. Dysfunctions in the limbic system can lead to a range of neurological and psychiatric conditions, including depression, anxiety disorders, post-traumatic stress disorder (PTSD), and certain types of memory impairment.

Biological warfare, also known as germ warfare, is the use of biological agents or toxins with the intent to cause disease or death in humans, animals, or plants. These agents can be spread through the air, water, or food and can include bacteria, viruses, fungi, or toxic substances produced by living organisms. The purpose of using these agents is typically to cause widespread illness, fear, and disruption. Biological warfare is considered a weapon of mass destruction and is illegal under international law.

An algorithm is not a medical term, but rather a concept from computer science and mathematics. In the context of medicine, algorithms are often used to describe step-by-step procedures for diagnosing or managing medical conditions. These procedures typically involve a series of rules or decision points that help healthcare professionals make informed decisions about patient care.

For example, an algorithm for diagnosing a particular type of heart disease might involve taking a patient's medical history, performing a physical exam, ordering certain diagnostic tests, and interpreting the results in a specific way. By following this algorithm, healthcare professionals can ensure that they are using a consistent and evidence-based approach to making a diagnosis.

Algorithms can also be used to guide treatment decisions. For instance, an algorithm for managing diabetes might involve setting target blood sugar levels, recommending certain medications or lifestyle changes based on the patient's individual needs, and monitoring the patient's response to treatment over time.

Overall, algorithms are valuable tools in medicine because they help standardize clinical decision-making and ensure that patients receive high-quality care based on the latest scientific evidence.

I'm sorry for any confusion, but "Reptiles" is not a medical term. It is a term used in biology to describe a class of cold-blooded, scaly-skinned animals that include snakes, lizards, alligators, crocodiles, turtles, and tortoises. They are characterized by having lungs for breathing, laying eggs on land, and having a three-chambered heart. If you have any medical questions or terms, I'd be happy to help clarify those!

I'm sorry for any confusion, but "Stochastic Processes" is actually a term from the field of mathematics, specifically probability theory and statistics. It doesn't have a direct medical definition.

However, to provide some context that might be relevant if you're studying a medical field with a strong statistical component: A stochastic process is a mathematical model used to describe random systems that evolve over time. It consists of a set of random variables indexed by time or some other parameter. The values of these variables at different times or parameters are not independent, but rather depend on each other in ways described by probability distributions.

In medical research, stochastic processes might be used to model the spread of a disease through a population over time, or the changing health status of an individual patient over the course of their treatment. However, it's important to note that this is a high-level overview and the specific use of stochastic processes in medical research would depend on the particular application.

Climate, in the context of environmental science and medicine, refers to the long-term average of weather conditions (such as temperature, humidity, atmospheric pressure, wind, rainfall, and other meteorological elements) in a given region over a period of years to decades. It is the statistical description of the weather patterns that occur in a particular location over long periods of time.

In medical terms, climate can have significant impacts on human health, both physical and mental. For example, extreme temperatures, air pollution, and ultraviolet radiation levels associated with certain climates can increase the risk of respiratory and cardiovascular diseases, heat-related illnesses, and skin cancer. Similarly, changes in climate patterns can affect the distribution and prevalence of infectious diseases, such as malaria and Lyme disease.

Climate change, which refers to significant long-term changes in the statistical distribution of weather patterns over periods ranging from decades to millions of years, can have even more profound impacts on human health, including increased rates of heat-related illnesses and deaths, worsening air quality, and altered transmission patterns of infectious diseases.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Self-injurious behavior (SIB) refers to the intentional, direct injuring of one's own body without suicidal intentions. It is often repetitive and can take various forms such as cutting, burning, scratching, hitting, or bruising the skin. In some cases, individuals may also ingest harmful substances or objects.

SIB is not a mental disorder itself, but it is often associated with various psychiatric conditions, including borderline personality disorder, depression, anxiety disorders, post-traumatic stress disorder, and eating disorders. It is also common in individuals with developmental disabilities, such as autism spectrum disorder.

The function of SIB can vary widely among individuals, but it often serves as a coping mechanism to deal with emotional distress, negative feelings, or traumatic experiences. It's essential to approach individuals who engage in SIB with compassion and understanding, focusing on treating the underlying causes rather than solely addressing the behavior itself. Professional mental health treatment and therapy can help individuals develop healthier coping strategies and improve their quality of life.

I am not able to find a medical definition for "implosive therapy" as it is not a widely recognized or established term in the field of medicine or psychotherapy. It may be a term specific to certain alternative or unconventional approaches, and I would recommend conducting further research to find more information from reliable sources.

However, in the context of psychotherapy, "implosive therapy" is a technique that was developed by psychiatrist Arnold A. Lazarus as a part of his multimodal therapy approach. It involves the use of imaginal exposure to feared stimuli or situations in order to reduce anxiety and avoidance behaviors. The therapist asks the client to vividly imagine a hierarchy of anxiety-provoking scenarios, starting with less distressing ones and gradually moving towards more anxiety-provoking ones. This process is repeated until the anxiety response to the imagined scenarios decreases or disappears.

It's important to note that implosive therapy should be administered by a qualified mental health professional who has received proper training in this technique, as it can potentially lead to increased distress if not conducted appropriately.

Genetic speciation is not a widely used term in the scientific literature, but it generally refers to the process by which new species arise due to genetic differences and reproductive isolation. This process can occur through various mechanisms such as mutation, gene flow, genetic drift, natural selection, or chromosomal changes that lead to the accumulation of genetic differences between populations. Over time, these genetic differences can result in the development of reproductive barriers that prevent interbreeding between the populations, leading to the formation of new species.

In other words, genetic speciation is a type of speciation that involves the evolution of genetic differences that ultimately lead to the formation of new species. It is an essential concept in the field of evolutionary biology and genetics, as it explains how biodiversity arises over time.

An "escape reaction" is a behavioral response displayed by an organism when it attempts to escape from a harmful, noxious, or stressful stimulus or situation. This response is typically characterized by rapid and directed movement away from the source of discomfort or danger. It is a fundamental survival mechanism that is observed across many species, including humans.

In a medical context, an escape reaction may be observed in response to painful medical procedures or treatments. For example, a patient may try to move or pull away during an injection or other invasive procedure. Healthcare providers must be aware of and prepared to manage escape reactions to ensure the safety and comfort of their patients during medical procedures.

The term "Theoretical Models" is used in various scientific fields, including medicine, to describe a representation of a complex system or phenomenon. It is a simplified framework that explains how different components of the system interact with each other and how they contribute to the overall behavior of the system. Theoretical models are often used in medical research to understand and predict the outcomes of diseases, treatments, or public health interventions.

A theoretical model can take many forms, such as mathematical equations, computer simulations, or conceptual diagrams. It is based on a set of assumptions and hypotheses about the underlying mechanisms that drive the system. By manipulating these variables and observing the effects on the model's output, researchers can test their assumptions and generate new insights into the system's behavior.

Theoretical models are useful for medical research because they allow scientists to explore complex systems in a controlled and systematic way. They can help identify key drivers of disease or treatment outcomes, inform the design of clinical trials, and guide the development of new interventions. However, it is important to recognize that theoretical models are simplifications of reality and may not capture all the nuances and complexities of real-world systems. Therefore, they should be used in conjunction with other forms of evidence, such as experimental data and observational studies, to inform medical decision-making.

I'm sorry for any confusion, but "Foraminifera" is not a medical term. It is a term from the field of biology and refers to a type of single-celled organism called protozoa. These organisms have shells with tiny openings or pores called foramen, hence the name Foraminifera. They are commonly found in marine environments and their fossilized remains are used in various scientific fields such as geology and paleontology.

In the context of medicine, particularly in behavioral neuroscience and psychology, "reward" is not typically used as a definitive medical term. However, it generally refers to a positive outcome or incentive that reinforces certain behaviors, making them more likely to be repeated in the future. This can involve various stimuli such as food, water, sexual activity, social interaction, or drug use, among others.

In the brain, rewards are associated with the activation of the reward system, primarily the mesolimbic dopamine pathway, which includes the ventral tegmental area (VTA) and the nucleus accumbens (NAcc). The release of dopamine in these areas is thought to reinforce and motivate behavior linked to rewards.

It's important to note that while "reward" has a specific meaning in this context, it is not a formal medical diagnosis or condition. Instead, it is a concept used to understand the neural and psychological mechanisms underlying motivation, learning, and addiction.

Biological processes refer to the series of interactions and reactions that occur within a living organism in order to maintain life. These processes are often complex and involve multiple systems and structures within the body. They can include things like metabolism, cell division, growth and development, respiration, circulation, immune response, and digestion, among others.

Biological processes are typically regulated by a combination of genetic and environmental factors, and they can be influenced by various internal and external stimuli. The study of biological processes is a key area of focus in the field of biology, as understanding these processes can shed light on how living organisms function, grow, reproduce, and respond to changes in their environment.

In medical terms, understanding biological processes is essential for developing effective treatments for various diseases and conditions. By studying the underlying mechanisms that contribute to disease, researchers can identify potential targets for therapeutic intervention and develop new drugs or other treatments designed to modulate specific biological processes.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

Anisomycin is an antibiotic derived from the bacterium Streptomyces griseolus. It is a potent inhibitor of protein synthesis and has been found to have antitumor, antiviral, and immunosuppressive properties. In medicine, it has been used experimentally in the treatment of some types of cancer, but its use is limited due to its significant side effects, including neurotoxicity.

In a medical or scientific context, 'anisomycin' refers specifically to this antibiotic compound and not to any general concept related to aniso- (meaning "unequal" or "asymmetrical") or -mycin (suffix indicating a bacterial antibiotic).

In the context of mental health and psychology, "predatory behavior" is not a term that is commonly used as a medical diagnosis or condition. However, it generally refers to aggressive or exploitative behavior towards others with the intention of taking advantage of them for personal gain or pleasure. This could include various types of harmful behaviors such as sexual harassment, assault, stalking, bullying, or financial exploitation.

In some cases, predatory behavior may be associated with certain mental health conditions, such as antisocial personality disorder or psychopathy, which are characterized by a disregard for the rights and feelings of others. However, it's important to note that not all individuals who engage in predatory behavior have a mental health condition, and many people who do may not necessarily exhibit these behaviors.

If you or someone else is experiencing harm or exploitation, it's important to seek help from a trusted authority figure, such as a healthcare provider, law enforcement officer, or social worker.

I'm sorry for any confusion, but "trees" is not a medical term. It is a common term used in various fields, including biology, ecology, and dendrology, to refer to a woody perennial plant with a single stem or trunk that supports branches and leaves in most species.

If you have any questions related to medical terminology or health-related topics, please provide more context so I can offer an accurate and helpful response.

Genetic models are theoretical frameworks used in genetics to describe and explain the inheritance patterns and genetic architecture of traits, diseases, or phenomena. These models are based on mathematical equations and statistical methods that incorporate information about gene frequencies, modes of inheritance, and the effects of environmental factors. They can be used to predict the probability of certain genetic outcomes, to understand the genetic basis of complex traits, and to inform medical management and treatment decisions.

There are several types of genetic models, including:

1. Mendelian models: These models describe the inheritance patterns of simple genetic traits that follow Mendel's laws of segregation and independent assortment. Examples include autosomal dominant, autosomal recessive, and X-linked inheritance.
2. Complex trait models: These models describe the inheritance patterns of complex traits that are influenced by multiple genes and environmental factors. Examples include heart disease, diabetes, and cancer.
3. Population genetics models: These models describe the distribution and frequency of genetic variants within populations over time. They can be used to study evolutionary processes, such as natural selection and genetic drift.
4. Quantitative genetics models: These models describe the relationship between genetic variation and phenotypic variation in continuous traits, such as height or IQ. They can be used to estimate heritability and to identify quantitative trait loci (QTLs) that contribute to trait variation.
5. Statistical genetics models: These models use statistical methods to analyze genetic data and infer the presence of genetic associations or linkage. They can be used to identify genetic risk factors for diseases or traits.

Overall, genetic models are essential tools in genetics research and medical genetics, as they allow researchers to make predictions about genetic outcomes, test hypotheses about the genetic basis of traits and diseases, and develop strategies for prevention, diagnosis, and treatment.

Computational biology is a branch of biology that uses mathematical and computational methods to study biological data, models, and processes. It involves the development and application of algorithms, statistical models, and computational approaches to analyze and interpret large-scale molecular and phenotypic data from genomics, transcriptomics, proteomics, metabolomics, and other high-throughput technologies. The goal is to gain insights into biological systems and processes, develop predictive models, and inform experimental design and hypothesis testing in the life sciences. Computational biology encompasses a wide range of disciplines, including bioinformatics, systems biology, computational genomics, network biology, and mathematical modeling of biological systems.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Oxepins are organic compounds that contain a seven-membered ring with one oxygen atom and six carbon atoms. The structure of an oxepin is similar to that of benzene, but with one methine group (=CH−) replaced by an oxygen atom. This gives the oxepin ring a unique combination of aromaticity and reactivity, which makes it a subject of interest in organic chemistry and medicinal chemistry research.

Oxepins are relatively rare in nature, and they are not typically found in living organisms. However, some synthetic drugs contain an oxepin ring structure, and these compounds have been studied for their potential therapeutic uses. For example, some oxepin-containing drugs have been shown to have anti-inflammatory, antiviral, and antitumor properties.

It's worth noting that the term "oxepins" can also refer to a broader class of compounds that contain a seven-membered ring with one oxygen atom and any number of carbon atoms. However, in medical and pharmaceutical contexts, the term is most commonly used to refer specifically to the class of compounds described above.

A group of chordate animals (Phylum Chordata) that have a vertebral column, or backbone, made up of individual vertebrae. This group includes mammals, birds, reptiles, amphibians, and fish. Vertebrates are characterized by the presence of a notochord, which is a flexible, rod-like structure that runs along the length of the body during development; a dorsal hollow nerve cord; and pharyngeal gill slits at some stage in their development. The vertebral column provides support and protection for the spinal cord and allows for the development of complex movements and behaviors.

Phenoxyacetates are a group of herbicides that are chemically characterized by a phenoxy group attached to an acetic acid moiety. They function as synthetic auxins, mimicking the plant hormone indoleacetic acid (IAA), and cause unregulated growth in susceptible plants leading to their eventual death. Common examples of phenoxyacetate herbicides include 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). These compounds have been widely used for controlling broadleaf weeds in various settings such as agriculture, forestry, and landscaping. However, their use has been associated with environmental concerns and potential health effects, including endocrine disruption and increased risk of certain cancers, leading to regulatory restrictions in many countries.

I'm sorry for any confusion, but "Oceans and Seas" are not medical terms. Generally speaking, an ocean is a large body of saltwater that covers a majority of the Earth's surface, and a sea is a smaller body of saltwater that may be partially enclosed by land. However, if you have any questions related to marine biology or environmental science, I would be happy to try and help answer those for you!

The mediodorsal thalamic nucleus (MDTN) is a collection of neurons located in the dorsal part of the thalamus, a region of the brain that serves as a relay station for sensory and motor signals to the cerebral cortex. The MDTN is primarily involved in cognitive functions such as memory, attention, and emotion regulation.

The MDTN receives inputs from various regions of the brain, including the prefrontal cortex, amygdala, and hippocampus, and projects to the same areas of the cerebral cortex. It has been implicated in several neurological and psychiatric conditions, such as Alzheimer's disease, Parkinson's disease, schizophrenia, and depression.

Anatomically, the MDTN is divided into several subnuclei, including the parvocellular, magnocellular, and intermediate parts, each with distinct connectivity patterns and functions. Overall, the MDTN plays a crucial role in integrating information from different brain regions to facilitate higher-order cognitive processes.

The nucleus accumbens is a part of the brain that is located in the ventral striatum, which is a key region of the reward circuitry. It is made up of two subregions: the shell and the core. The nucleus accumbens receives inputs from various sources, including the prefrontal cortex, amygdala, and hippocampus, and sends outputs to the ventral pallidum and other areas.

The nucleus accumbens is involved in reward processing, motivation, reinforcement learning, and addiction. It plays a crucial role in the release of the neurotransmitter dopamine, which is associated with pleasure and reinforcement. Dysfunction in the nucleus accumbens has been implicated in various neurological and psychiatric conditions, including substance use disorders, depression, and obsessive-compulsive disorder.

"Time" is not a medical term or concept. It is a fundamental concept in physics that refers to the ongoing sequence of events taking place. While there are medical terms that include the word "time," such as "reaction time" or "pregnancy due date," these refer to specific measurements or periods within a medical context, rather than the concept of time itself.

"Feeding and Eating Disorders of Childhood" is a diagnostic category in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), which is used by mental health professionals to diagnose mental disorders. This category includes several specific feeding and eating disorders that typically first occur during childhood or infancy. They are:

1. Pica: The persistent eating of non-nutritive, non-food substances for a period of at least one month.
2. Rumination Disorder: The repeated regurgitation of food for a period of at least one month.
3. Avoidant/Restrictive Food Intake Disorder (ARFID): The avoidance or restriction of food intake that leads to significant nutritional deficiency or failure to gain weight, but it's not due to lack of available food or a cultural practice.
4. Other Specified Feeding and Eating Disorders: This includes disorders that don't meet the criteria for any specific feeding or eating disorder, such as a child who eats only a very limited range of foods and has significant distress about it.
5. Unspecified Feeding and Eating Disorders: This is used when the clinician chooses not to specify the reason for not meeting the criteria for any specific feeding or eating disorder.

These disorders can lead to significant impairment in social, academic, or occupational functioning. It's important to note that children with these disorders should receive comprehensive evaluation and treatment from a mental health professional who specializes in eating disorders.

I believe you may have made a typo in your question. "Archaeology" is the scientific study of past human cultures and societies through the recovery, examination, and analysis of material remains such as artifacts, buildings, biofacts (e.g., bones, shells), and cultural landscapes. It is not typically associated with medical definitions. If you intended to ask for a different term related to medicine or healthcare, please let me know so I can provide the correct information.

For more information about archaeology, you may be interested in visiting the World Archaeological Congress () or the Society for American Archaeology () websites to learn more about this fascinating field of study.

Stimulus generalization in a medical or clinical context refers to the phenomenon where an individual responds similarly to different stimuli that are similar to the original stimulus that elicited the response. This is a fundamental concept in learning theories and psychology. In other words, if a person learns to associate a particular response to a specific stimulus, they may also exhibit that same response to other related or similar stimuli.

For example, if an individual has a fearful reaction to a specific snake (stimulus A), they may also have a similar fearful reaction to other snakes (stimulus B, C, D) due to stimulus generalization. This can occur in various contexts such as classical conditioning or operant conditioning and can be seen in different areas of psychopathology, including anxiety disorders and phobias.

Stimulus generalization is a crucial concept in understanding the development and treatment of these conditions, as it may lead to overgeneralized fear responses that impact an individual's daily functioning. Clinicians working with individuals who have overgeneralized fear responses may use various techniques such as exposure therapy or cognitive-behavioral therapy to help them learn to differentiate between safe and potentially dangerous stimuli and reduce the overgeneralization of their fear response.

Heroin is a highly addictive drug that is processed from morphine, a naturally occurring substance extracted from the seed pod of the Asian opium poppy plant. It is a "downer" or depressant that affects the brain's pleasure systems and interferes with the brain's ability to perceive pain.

Heroin can be injected, smoked, or snorted. It is sold as a white or brownish powder or as a black, sticky substance known as "black tar heroin." Regardless of how it is taken, heroin enters the brain rapidly and is highly addictive.

The use of heroin can lead to serious health problems, including fatal overdose, spontaneous abortion, and infectious diseases like HIV and hepatitis. Long-term use of heroin can lead to physical dependence and addiction, a chronic disease that can be difficult to treat.

Perceptual disorders are conditions that affect the way a person perceives or interprets sensory information from their environment. These disorders can involve any of the senses, including sight, sound, touch, taste, and smell. They can cause a person to have difficulty recognizing, interpreting, or responding appropriately to sensory stimuli.

Perceptual disorders can result from damage to the brain or nervous system, such as from a head injury, stroke, or degenerative neurological condition. They can also be caused by certain mental health conditions, such as schizophrenia or severe depression.

Symptoms of perceptual disorders may include:

* Misinterpretations of sensory information, such as seeing things that are not there or hearing voices that are not present
* Difficulty recognizing familiar objects or people
* Problems with depth perception or spatial awareness
* Difficulty judging the size, shape, or distance of objects
* Trouble distinguishing between similar sounds or colors
* Impaired sense of smell or taste

Perceptual disorders can have a significant impact on a person's daily life and functioning. Treatment may involve medication, therapy, or rehabilitation to help the person better cope with their symptoms and improve their ability to interact with their environment.

"Body size" is a general term that refers to the overall physical dimensions and proportions of an individual's body. It can encompass various measurements, including height, weight, waist circumference, hip circumference, blood pressure, and other anthropometric measures.

In medical and public health contexts, body size is often used to assess health status, risk factors for chronic diseases, and overall well-being. For example, a high body mass index (BMI) may indicate excess body fat and increase the risk of conditions such as diabetes, hypertension, and cardiovascular disease. Similarly, a large waist circumference or high blood pressure may also be indicators of increased health risks.

It's important to note that body size is just one aspect of health and should not be used as the sole indicator of an individual's overall well-being. A holistic approach to health that considers multiple factors, including diet, physical activity, mental health, and social determinants of health, is essential for promoting optimal health outcomes.

Behavior therapy is a type of psychotherapy that focuses on modifying harmful or unhealthy behaviors, thoughts, and emotions by applying learning principles derived from behavioral psychology. The goal of behavior therapy is to reinforce positive behaviors and eliminate negative ones through various techniques such as systematic desensitization, aversion therapy, exposure therapy, and operant conditioning.

Systematic desensitization involves gradually exposing the individual to a feared situation or stimulus while teaching them relaxation techniques to reduce anxiety. Aversion therapy aims to associate an undesirable behavior with an unpleasant stimulus to discourage the behavior. Exposure therapy exposes the individual to a feared situation or object in a controlled and safe environment to help them overcome their fear. Operant conditioning uses reinforcement and punishment to encourage desirable behaviors and discourage undesirable ones.

Behavior therapy has been found to be effective in treating various mental health conditions, including anxiety disorders, phobias, depression, obsessive-compulsive disorder, post-traumatic stress disorder, and substance use disorders. It is often used in combination with other forms of therapy and medication to provide a comprehensive treatment plan for individuals seeking help for mental health concerns.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

I'm sorry for any confusion, but "mammoths" are not a medical term. They are actually large extinct mammals that lived during the Ice Age, similar to elephants and characterized by their long curved tusks and thick fur. If you have any questions about medical terminology or concepts, I'd be happy to help with those instead!

The hippocampus is a complex, curved formation in the brain that resembles a seahorse (hence its name, from the Greek word "hippos" meaning horse and "kampos" meaning sea monster). It's part of the limbic system and plays crucial roles in the formation of memories, particularly long-term ones.

This region is involved in spatial navigation and cognitive maps, allowing us to recognize locations and remember how to get to them. Additionally, it's one of the first areas affected by Alzheimer's disease, which often results in memory loss as an early symptom.

Anatomically, it consists of two main parts: the Ammon's horn (or cornu ammonis) and the dentate gyrus. These structures are made up of distinct types of neurons that contribute to different aspects of learning and memory.

Genetic load is a term used in population genetics that refers to the reduction in average fitness (or reproductive success) of a population due to the presence of deleterious or harmful alleles (versions of genes). These alleles can negatively impact an individual's survival, reproduction, or both. Genetic load can be caused by various factors such as mutations, genetic drift, and selection.

There are several types of genetic load, including:

1. Mutation load: The decrease in fitness due to the accumulation of new deleterious mutations in a population over time.
2. Segregation load: The reduction in average fitness caused by the presence of recessive deleterious alleles that are hidden in heterozygotes (individuals with one normal and one deleterious allele).
3. Inbreeding load: The decrease in fitness due to an increase in homozygosity (the presence of identical alleles on both chromosomes) resulting from inbreeding, which exposes recessive deleterious alleles.
4. Genetic drift load: The reduction in fitness caused by the random loss of beneficial or neutral alleles due to genetic drift, leading to a decrease in genetic diversity and an increase in the frequency of deleterious alleles.
5. Coevolutionary load: The decline in fitness resulting from the disruption of coadapted gene complexes (combinations of interacting genes) when populations are separated or experience environmental changes.

Overall, genetic load represents the cost of maintaining genetic variation within a population and can impact its long-term evolutionary potential and adaptability to changing environments.

Feeding behavior refers to the various actions and mechanisms involved in the intake of food and nutrition for the purpose of sustaining life, growth, and health. This complex process encompasses a coordinated series of activities, including:

1. Food selection: The identification, pursuit, and acquisition of appropriate food sources based on sensory cues (smell, taste, appearance) and individual preferences.
2. Preparation: The manipulation and processing of food to make it suitable for consumption, such as chewing, grinding, or chopping.
3. Ingestion: The act of transferring food from the oral cavity into the digestive system through swallowing.
4. Digestion: The mechanical and chemical breakdown of food within the gastrointestinal tract to facilitate nutrient absorption and eliminate waste products.
5. Assimilation: The uptake and utilization of absorbed nutrients by cells and tissues for energy production, growth, repair, and maintenance.
6. Elimination: The removal of undigested material and waste products from the body through defecation.

Feeding behavior is regulated by a complex interplay between neural, hormonal, and psychological factors that help maintain energy balance and ensure adequate nutrient intake. Disruptions in feeding behavior can lead to various medical conditions, such as malnutrition, obesity, eating disorders, and gastrointestinal motility disorders.

Eyelid conditioning, also known as eyelid classical conditioning or Ursinus' phenomenon, is a type of reflex conditioning that involves associating a neutral stimulus with the natural act of blinking. This concept was first described by Russian physiologist Ivan Pavlov and later studied in detail by German ophthalmologist Hermann Ludwig Ferdinand von Helmholtz and Austrian physician Sigmund Exner.

In this procedure, a conditioned stimulus (like a sound or light) is repeatedly presented just before the unconditioned stimulus (such as a puff of air directed at the eye), which naturally triggers the blink reflex. Over time, the subject begins to associate the conditioned stimulus with the blinking response and will start to blink even when only the conditioned stimulus is presented, without the presence of the unconditioned stimulus. This learning process is an example of classical conditioning and can be used in various research and clinical applications.

I'm sorry for any confusion, but "tropical climate" is not a medical term. It is a geographical term that refers to the climate of tropical regions, which are located around the equator. These regions are characterized by high temperatures and consistent rainfall throughout the year.

However, it's worth noting that certain environmental factors, such as climate, can have an impact on human health. For instance, tropical climates can contribute to the spread of certain diseases, like malaria and dengue fever, due to the presence of mosquitoes that thrive in warm, wet environments. But a "tropical climate" itself is not a medical condition or diagnosis.

'Aquatic organisms' are living beings that inhabit bodies of water, such as oceans, seas, lakes, rivers, and ponds. This group includes a wide variety of species, ranging from tiny microorganisms like plankton to large marine mammals like whales. Aquatic organisms can be divided into several categories based on their specific adaptations to their environment, including:

1. Plankton: small organisms that drift with the water currents and include both plants (phytoplankton) and animals (zooplankton).
2. Nekton: actively swimming aquatic organisms, such as fish, squid, and marine mammals.
3. Benthos: organisms that live on or in the bottom of bodies of water, including crustaceans, mollusks, worms, and some types of algae.
4. Neuston: organisms that live at the air-water interface, such as certain species of insects and small fish.

Aquatic organisms play a critical role in maintaining the health and balance of aquatic ecosystems, providing food and habitat for other species, and contributing to global nutrient cycling and climate regulation.

The greenhouse effect is not a medical term, but rather a term used in the field of environmental science and meteorology. However, I can certainly provide a definition for you:

The greenhouse effect refers to the warming of Earth's surface and lower atmosphere caused by the trapping of heat by certain gases in the atmosphere, known as greenhouse gases. These gases include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases.

When sunlight reaches Earth's surface, it is absorbed and then re-emitted as heat energy, which would normally escape back into space. However, some of this heat is trapped by greenhouse gases in the atmosphere, causing the planet to warm up. This process is essential for life on Earth, as it helps to maintain a stable temperature that supports plant and animal growth.

However, human activities such as burning fossil fuels, deforestation, and agriculture have led to an increase in greenhouse gas emissions, which has caused the natural greenhouse effect to become amplified. This has resulted in global warming and climate change, with potentially serious consequences for both human health and the environment.

Artiodactyla is an order of mammals that includes even-toed ungulates, or hooved animals, with an odd number of toes. This group includes animals such as pigs, peccaries, hippos, camels, deer, giraffes, antelopes, and ruminants like cattle, sheep, and goats. The primary identifying feature of Artiodactyls is the presence of a pair of weight-bearing toes located in the middle of the foot, with the other toes being either reduced or absent. This arrangement provides stability and adaptability for these animals to thrive in various habitats worldwide.

Blinking is the rapid and repetitive closing and reopening of the eyelids. It is a normal physiological process that helps to keep the eyes moist, protected and comfortable by spreading tears over the surface of the eye and removing any foreign particles or irritants that may have accumulated on the eyelid or the conjunctiva (the mucous membrane that covers the front of the eye and lines the inside of the eyelids).

Blinking is controlled by the facial nerve (cranial nerve VII), which sends signals to the muscles that control the movement of the eyelids. On average, people blink about 15-20 times per minute, but this rate can vary depending on factors such as mood, level of attention, and visual tasks. For example, people tend to blink less frequently when they are concentrating on a visual task or looking at a screen, which can lead to dry eye symptoms.

I'm sorry for any confusion, but "North America" is not a medical term. It is a geographical term that refers to the third largest continent in the world, which includes countries such as the United States, Canada, and Mexico, among others. If you have any questions related to medical terminology or health topics, I'd be happy to help with those!

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

In a medical context, taste is the sensation produced when a substance in the mouth reacts with taste buds, which are specialized sensory cells found primarily on the tongue. The tongue's surface contains papillae, which house the taste buds. These taste buds can identify five basic tastes: salty, sour, bitter, sweet, and umami (savory). Different areas of the tongue are more sensitive to certain tastes, but all taste buds can detect each of the five tastes, although not necessarily equally.

Taste is a crucial part of our sensory experience, helping us identify and differentiate between various types of food and drinks, and playing an essential role in appetite regulation and enjoyment of meals. Abnormalities in taste sensation can be associated with several medical conditions or side effects of certain medications.

GABA (gamma-aminobutyric acid) agonists are substances that bind to and activate GABA receptors in the brain, mimicking the actions of GABA, which is the primary inhibitory neurotransmitter in the central nervous system. These agents can produce various effects such as sedation, anxiolysis, muscle relaxation, and anticonvulsant activity by enhancing the inhibitory tone in the brain. They are used clinically to treat conditions such as anxiety disorders, seizures, and muscle spasticity. Examples of GABA agonists include benzodiazepines, barbiturates, and certain non-benzodiazepine hypnotics.

I'm sorry for any confusion, but the term "minor planets" is not typically used in medical definitions. It is a term from astronomy that refers to small celestial bodies orbiting the Sun, which are smaller than planets and dwarf planets. They are also commonly known as asteroids. If you have any questions related to medical terminology or health concerns, I would be happy to help with those instead!

Biological pest control, also known as biocontrol, is a method of managing or eliminating pests such as insects, mites, weeds, and plant diseases using natural enemies or other organisms. These biological control agents include predators, parasites, pathogens, and competitors that regulate pest populations and reduce the need for chemical pesticides. Biological pest control is a key component of integrated pest management (IPM) programs and has minimal impact on the environment compared to traditional pest control methods.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Nootropic agents, also known as cognition enhancers or smart drugs, are substances that are believed to improve cognitive functions such as memory, motivation, creativity, and executive functions. The term "nootropic" is derived from the Greek words "nous," meaning mind, and "tropos," meaning a turn or bend.

Nootropics can be divided into several categories, including dietary supplements, prescription medications, and illicit substances. Some examples of nootropics include:

* Piracetam and other racetams
* Caffeine and other stimulants
* Nicotine and other cholinergic compounds
* Modafinil and other wakefulness-promoting agents
* Certain antidepressants, such as fluoxetine and bupropion
* Illicit substances, such as methylphenidate (Ritalin) and amphetamines (Adderall), which are sometimes used off-label for cognitive enhancement.

It is important to note that while some nootropic agents have been shown to have cognitive benefits in certain studies, their effectiveness and safety are not fully understood. Additionally, the long-term use of some nootropics can have potential risks and side effects. Therefore, it is recommended to consult with a healthcare professional before starting any new supplement or medication regimen for cognitive enhancement.

Proto-oncogene proteins, such as c-Fos, are normal cellular proteins that play crucial roles in various biological processes including cell growth, differentiation, and survival. They can be activated or overexpressed due to genetic alterations, leading to the formation of cancerous cells. The c-Fos protein is a nuclear phosphoprotein involved in signal transduction pathways and forms a heterodimer with c-Jun to create the activator protein-1 (AP-1) transcription factor complex. This complex binds to specific DNA sequences, thereby regulating the expression of target genes that contribute to various cellular responses, including proliferation, differentiation, and apoptosis. Dysregulation of c-Fos can result in uncontrolled cell growth and malignant transformation, contributing to tumor development and progression.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Dinosaurs are a group of reptiles that were the dominant terrestrial vertebrates for over 160 million years, from the late Triassic period until the end of the Cretaceous period. They first appeared approximately 230 million years ago and went extinct around 65 million years ago.

Dinosaurs are characterized by their upright stance, with legs positioned directly under their bodies, and a wide range of body sizes and shapes. Some dinosaurs were enormous, such as the long-necked sauropods that could reach lengths of over 100 feet, while others were small and agile.

Dinosaurs are classified into two main groups: the saurischians (lizard-hipped) and the ornithischians (bird-hipped). The saurischians include both the large carnivorous theropods, such as Tyrannosaurus rex, and the long-necked sauropods. The ornithischians were primarily herbivores and included a diverse array of species, such as the armored ankylosaurs and the horned ceratopsians.

Despite their extinction, dinosaurs have left a lasting impact on our planet and continue to be a source of fascination for people of all ages. The study of dinosaurs, known as paleontology, has shed light on many aspects of Earth's history and the evolution of life on our planet.

Protein synthesis inhibitors are a class of medications or chemical substances that interfere with the process of protein synthesis in cells. Protein synthesis is the biological process by which cells create proteins, essential components for the structure, function, and regulation of tissues and organs. This process involves two main stages: transcription and translation.

Translation is the stage where the genetic information encoded in messenger RNA (mRNA) is translated into a specific sequence of amino acids, resulting in a protein molecule. Protein synthesis inhibitors work by targeting various components of the translation machinery, such as ribosomes, transfer RNAs (tRNAs), or translation factors, thereby preventing or disrupting the formation of new proteins.

These inhibitors have clinical applications in treating various conditions, including bacterial and viral infections, cancer, and autoimmune disorders. Some examples of protein synthesis inhibitors include:

1. Antibiotics: Certain antibiotics, like tetracyclines, macrolides, aminoglycosides, and chloramphenicol, target bacterial ribosomes and inhibit their ability to synthesize proteins, thereby killing or inhibiting the growth of bacteria.
2. Antiviral drugs: Protein synthesis inhibitors are used to treat viral infections by targeting various stages of the viral replication cycle, including protein synthesis. For example, ribavirin is an antiviral drug that can inhibit viral RNA-dependent RNA polymerase and mRNA capping, which are essential for viral protein synthesis.
3. Cancer therapeutics: Some chemotherapeutic agents target rapidly dividing cancer cells by interfering with their protein synthesis machinery. For instance, puromycin is an aminonucleoside antibiotic that can be incorporated into elongating polypeptide chains during translation, causing premature termination and inhibiting overall protein synthesis in cancer cells.
4. Immunosuppressive drugs: Protein synthesis inhibitors are also used as immunosuppressants to treat autoimmune disorders and prevent organ rejection after transplantation. For example, tacrolimus and cyclosporine bind to and inhibit the activity of calcineurin, a protein phosphatase that plays a crucial role in T-cell activation and cytokine production.

In summary, protein synthesis inhibitors are valuable tools for treating various diseases, including bacterial and viral infections, cancer, and autoimmune disorders. By targeting the protein synthesis machinery of pathogens or abnormal cells, these drugs can selectively inhibit their growth and proliferation while minimizing harm to normal cells.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

"Butterflies" is not a medical term, but rather a colloquial or informal term that is often used to describe a feeling of nervousness or excitement in the stomach. It is thought to be due to the release of adrenaline and the increased heart rate and breathing that can occur when someone is anxious or excited. The sensation may be caused by the contraction of the muscles in the stomach, which can feel like fluttering or flips. This feeling is not a medical condition and does not typically require treatment, but if it is severe or persistent, it may be helpful to speak with a healthcare provider to address any underlying anxiety or stress.

N-Methyl-D-Aspartate (NMDA) receptors are a type of ionotropic glutamate receptor, which are found in the membranes of excitatory neurons in the central nervous system. They play a crucial role in synaptic plasticity, learning, and memory processes. NMDA receptors are ligand-gated channels that are permeable to calcium ions (Ca2+) and other cations.

NMDA receptors are composed of four subunits, which can be a combination of NR1, NR2A-D, and NR3A-B subunits. The binding of the neurotransmitter glutamate to the NR2 subunit and glycine to the NR1 subunit leads to the opening of the ion channel and the influx of Ca2+ ions.

NMDA receptors have a unique property in that they require both agonist binding and membrane depolarization for full activation, making them sensitive to changes in the electrical activity of the neuron. This property allows NMDA receptors to act as coincidence detectors, playing a critical role in synaptic plasticity and learning.

Abnormal functioning of NMDA receptors has been implicated in various neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and chronic pain. Therefore, NMDA receptors are a common target for drug development in the treatment of these conditions.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

I'm sorry for any confusion, but "geologic sediments" is not a term used in medical definitions. Geological sediments are deposits of material that accumulate over time, usually in layers, as a result of natural geological processes such as weathering, erosion, and deposition. These sediments can eventually become rock formations and provide important clues about the Earth's history, including information about past climates, environments, and life on Earth.

Microinjection is a medical technique that involves the use of a fine, precise needle to inject small amounts of liquid or chemicals into microscopic structures, cells, or tissues. This procedure is often used in research settings to introduce specific substances into individual cells for study purposes, such as introducing DNA or RNA into cell nuclei to manipulate gene expression.

In clinical settings, microinjections may be used in various medical and cosmetic procedures, including:

1. Intracytoplasmic Sperm Injection (ICSI): A type of assisted reproductive technology where a single sperm is injected directly into an egg to increase the chances of fertilization during in vitro fertilization (IVF) treatments.
2. Botulinum Toxin Injections: Microinjections of botulinum toxin (Botox, Dysport, or Xeomin) are used for cosmetic purposes to reduce wrinkles and fine lines by temporarily paralyzing the muscles responsible for their formation. They can also be used medically to treat various neuromuscular disorders, such as migraines, muscle spasticity, and excessive sweating (hyperhidrosis).
3. Drug Delivery: Microinjections may be used to deliver drugs directly into specific tissues or organs, bypassing the systemic circulation and potentially reducing side effects. This technique can be particularly useful in treating localized pain, delivering growth factors for tissue regeneration, or administering chemotherapy agents directly into tumors.
4. Gene Therapy: Microinjections of genetic material (DNA or RNA) can be used to introduce therapeutic genes into cells to treat various genetic disorders or diseases, such as cystic fibrosis, hemophilia, or cancer.

Overall, microinjection is a highly specialized and precise technique that allows for the targeted delivery of substances into small structures, cells, or tissues, with potential applications in research, medical diagnostics, and therapeutic interventions.

I am not aware of a widely accepted medical definition for the term "software," as it is more commonly used in the context of computer science and technology. Software refers to programs, data, and instructions that are used by computers to perform various tasks. It does not have direct relevance to medical fields such as anatomy, physiology, or clinical practice. If you have any questions related to medicine or healthcare, I would be happy to try to help with those instead!

Lithium Chloride (LiCl) is not typically defined in a medical context as it is not a medication or a clinical condition. However, it can be defined chemically as an inorganic compound consisting of lithium and chlorine. Its chemical formula is LiCl, and it is commonly used in laboratory settings for various purposes such as a drying agent or a component in certain chemical reactions.

It's worth noting that while lithium salts like lithium carbonate (Li2CO3) are used medically to treat bipolar disorder, lithium chloride is not used for this purpose due to its higher toxicity compared to other lithium salts.

Intellectual disability (ID) is a term used when there are significant limitations in both intellectual functioning and adaptive behavior, which covers many everyday social and practical skills. This disability originates before the age of 18.

Intellectual functioning, also known as intelligence, refers to general mental capacity, such as learning, reasoning, problem-solving, and other cognitive skills. Adaptive behavior includes skills needed for day-to-day life, such as communication, self-care, social skills, safety judgement, and basic academic skills.

Intellectual disability is characterized by below-average intelligence or mental ability and a lack of skills necessary for day-to-day living. It can be mild, moderate, severe, or profound, depending on the degree of limitation in intellectual functioning and adaptive behavior.

It's important to note that people with intellectual disabilities have unique strengths and limitations, just like everyone else. With appropriate support and education, they can lead fulfilling lives and contribute to their communities in many ways.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Statistical models are mathematical representations that describe the relationship between variables in a given dataset. They are used to analyze and interpret data in order to make predictions or test hypotheses about a population. In the context of medicine, statistical models can be used for various purposes such as:

1. Disease risk prediction: By analyzing demographic, clinical, and genetic data using statistical models, researchers can identify factors that contribute to an individual's risk of developing certain diseases. This information can then be used to develop personalized prevention strategies or early detection methods.

2. Clinical trial design and analysis: Statistical models are essential tools for designing and analyzing clinical trials. They help determine sample size, allocate participants to treatment groups, and assess the effectiveness and safety of interventions.

3. Epidemiological studies: Researchers use statistical models to investigate the distribution and determinants of health-related events in populations. This includes studying patterns of disease transmission, evaluating public health interventions, and estimating the burden of diseases.

4. Health services research: Statistical models are employed to analyze healthcare utilization, costs, and outcomes. This helps inform decisions about resource allocation, policy development, and quality improvement initiatives.

5. Biostatistics and bioinformatics: In these fields, statistical models are used to analyze large-scale molecular data (e.g., genomics, proteomics) to understand biological processes and identify potential therapeutic targets.

In summary, statistical models in medicine provide a framework for understanding complex relationships between variables and making informed decisions based on data-driven insights.

Oligonucleotide Array Sequence Analysis is a type of microarray analysis that allows for the simultaneous measurement of the expression levels of thousands of genes in a single sample. In this technique, oligonucleotides (short DNA sequences) are attached to a solid support, such as a glass slide, in a specific pattern. These oligonucleotides are designed to be complementary to specific target mRNA sequences from the sample being analyzed.

During the analysis, labeled RNA or cDNA from the sample is hybridized to the oligonucleotide array. The level of hybridization is then measured and used to determine the relative abundance of each target sequence in the sample. This information can be used to identify differences in gene expression between samples, which can help researchers understand the underlying biological processes involved in various diseases or developmental stages.

It's important to note that this technique requires specialized equipment and bioinformatics tools for data analysis, as well as careful experimental design and validation to ensure accurate and reproducible results.

"Overlearning" is not a term that has a specific medical definition in the context of health or medicine. However, it is a concept that is often used in the field of education and psychology. Overlearning refers to the process of continuing to practice or study something even after you have already learned it. The idea is that by doing so, you can help to consolidate your memory of the information and make it less likely that you will forget it.

In some cases, overlearning can be beneficial and can help to improve performance on tasks that require a high degree of accuracy or precision. However, it is also possible for people to overlearn to the point where they become stuck in their ways and have difficulty adapting to new situations or learning alternative approaches. This can potentially be a hindrance in fields such as rehabilitation, where flexibility and the ability to adapt to changing circumstances are important.

I believe there may be some confusion in your question. "Wolves" are not a medical term, but rather they refer to a large canine species. If you're asking about a medical condition that might be referred to as "wolf," the closest possible term I could find is "wolfian development." This term refers to the development of structures in the human body that originate from the wolfian ducts during embryonic development, such as the epididymis, vas deferens, and seminal vesicles in males. However, I want to emphasize that this is not a common medical term and might not be what you're looking for.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

In the context of healthcare and medical psychology, motivation refers to the driving force behind an individual's goal-oriented behavior. It is the internal or external stimuli that initiate, direct, and sustain a person's actions towards achieving their desired outcomes. Motivation can be influenced by various factors such as biological needs, personal values, emotional states, and social contexts.

In clinical settings, healthcare professionals often assess patients' motivation to engage in treatment plans, adhere to medical recommendations, or make lifestyle changes necessary for improving their health status. Enhancing a patient's motivation can significantly impact their ability to manage chronic conditions, recover from illnesses, and maintain overall well-being. Various motivational interviewing techniques and interventions are employed by healthcare providers to foster intrinsic motivation and support patients in achieving their health goals.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

A psychological theory is a proposed explanation or framework that aims to describe, explain, and predict psychological phenomena. It is based on established scientific principles and methods, and it integrates various observations, facts, and findings to provide a coherent understanding of psychological processes and behaviors. Psychological theories can encompass a wide range of topics, including cognition, emotion, motivation, perception, personality, learning, memory, development, and psychopathology. They are used to guide research, inform clinical practice, and advance our knowledge of the human mind and behavior.

'Daphnia' is not a medical term, but rather it refers to a group of small, planktonic crustaceans commonly known as water fleas. They are widely distributed in various freshwater environments and play an important role in the aquatic food chain as they serve as a food source for many larger animals such as fish.

While Daphnia may not have a direct medical definition, there has been some research into their potential use in biomedical applications due to their sensitivity to environmental changes. For instance, they have been used as indicators of water quality and toxicity levels in ecotoxicological studies. However, it is important to note that Daphnia itself is not a medical term or concept.

Competitive behavior, in a medical or psychological context, refers to the actions, attitudes, and strategies that individuals employ in order to achieve their goals while contending with others who have similar objectives. This concept is often studied within the framework of social psychology and personality psychology.

Competitive behavior can manifest in various domains, including sports, academics, professional settings, and social relationships. It may involve direct competition, where individuals or groups engage in head-to-head contests to determine a winner, or indirect competition, where individuals strive for limited resources or recognition without necessarily interacting with one another.

In some cases, competitive behavior can be adaptive and contribute to personal growth, skill development, and motivation. However, excessive competitiveness may also lead to negative outcomes such as stress, anxiety, reduced cooperation, and strained relationships. Factors that influence the expression of competitive behavior include genetic predispositions, environmental influences, cultural norms, and individual personality traits.

In a medical setting, healthcare providers may encounter competitive behavior among patients vying for attention or resources, between colleagues striving for professional advancement, or in the context of patient-provider relationships where power dynamics can influence decision-making processes. Understanding the nuances of competitive behavior is essential for fostering positive interactions and promoting collaboration in various domains.

Yohimbine is defined as an alkaloid derived from the bark of the Pausinystalia yohimbe tree, primarily found in Central Africa. It functions as a selective antagonist of α2-adrenergers, which results in increased noradrenaline levels and subsequent vasodilation, improved sexual dysfunction, and potentially increased energy and alertness.

It is used in traditional medicine for the treatment of erectile dysfunction and as an aphrodisiac, but its efficacy and safety are still subjects of ongoing research and debate. It's important to note that yohimbine can have significant side effects, including anxiety, increased heart rate, and high blood pressure, and should only be used under the supervision of a healthcare professional.

Biological adaptation is the process by which a organism becomes better suited to its environment over generations as a result of natural selection. It involves changes in an organism's structure, metabolism, or behavior that increase its fitness, or reproductive success, in a given environment. These changes are often genetic and passed down from one generation to the next through the process of inheritance.

Examples of biological adaptation include the development of camouflage in animals, the ability of plants to photosynthesize, and the development of antibiotic resistance in bacteria. Biological adaptation is an important concept in the field of evolutionary biology and helps to explain the diversity of life on Earth.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

'Biota' is a term that refers to the total collection of living organisms in a particular habitat, ecosystem, or region. It includes all forms of life such as plants, animals, fungi, bacteria, and other microorganisms. Biota can be used to describe the communities of living things in a specific area, like a forest biota or marine biota, and it can also refer to the study of these organisms and their interactions with each other and their environment. In medical contexts, 'biota' may specifically refer to the microorganisms that inhabit the human body, such as the gut microbiota.

Population Genetics is a subfield of genetics that deals with the genetic composition of populations and how this composition changes over time. It involves the study of the frequency and distribution of genes and genetic variations in populations, as well as the evolutionary forces that contribute to these patterns, such as mutation, gene flow, genetic drift, and natural selection.

Population genetics can provide insights into a wide range of topics, including the history and relationships between populations, the genetic basis of diseases and other traits, and the potential impacts of environmental changes on genetic diversity. This field is important for understanding evolutionary processes at the population level and has applications in areas such as conservation biology, medical genetics, and forensic science.

Animal migration is a seasonal movement of animals from one place to another, typically over long distances, to find food, reproduce, or escape harsh conditions. This phenomenon is observed in various species, including birds, mammals, fish, and insects. The routes and destinations of these migrations are often genetically programmed and can be quite complex. Animal migration has important ecological consequences and is influenced by factors such as climate change, habitat loss, and human activities.

Bivalvia is a class of mollusks, also known as "pelecypods," that have a laterally compressed body and two shells or valves. These valves are hinged together on one side and can be opened and closed to allow the animal to feed or withdraw into its shell for protection.

Bivalves include clams, oysters, mussels, scallops, and numerous other species. They are characterized by their simple body structure, which consists of a muscular foot used for burrowing or anchoring, a soft mantle that secretes the shell, and gills that serve both as respiratory organs and feeding structures.

Bivalves play an important role in aquatic ecosystems as filter feeders, helping to maintain water quality by removing particles and organic matter from the water column. They are also commercially important as a source of food for humans and other animals, and their shells have been used historically for various purposes such as tools, jewelry, and building materials.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Neuronal plasticity, also known as neuroplasticity or neural plasticity, refers to the ability of the brain and nervous system to change and adapt as a result of experience, learning, injury, or disease. This can involve changes in the structure, organization, and function of neurons (nerve cells) and their connections (synapses) in the central and peripheral nervous systems.

Neuronal plasticity can take many forms, including:

* Synaptic plasticity: Changes in the strength or efficiency of synaptic connections between neurons. This can involve the formation, elimination, or modification of synapses.
* Neural circuit plasticity: Changes in the organization and connectivity of neural circuits, which are networks of interconnected neurons that process information.
* Structural plasticity: Changes in the physical structure of neurons, such as the growth or retraction of dendrites (branches that receive input from other neurons) or axons (projections that transmit signals to other neurons).
* Functional plasticity: Changes in the physiological properties of neurons, such as their excitability, responsiveness, or sensitivity to stimuli.

Neuronal plasticity is a fundamental property of the nervous system and plays a crucial role in many aspects of brain function, including learning, memory, perception, and cognition. It also contributes to the brain's ability to recover from injury or disease, such as stroke or traumatic brain injury.

Reproduction, in the context of biology and medicine, refers to the process by which organisms produce offspring. It is a complex process that involves the creation, development, and growth of new individuals from parent organisms. In sexual reproduction, this process typically involves the combination of genetic material from two parents through the fusion of gametes (sex cells) such as sperm and egg cells. This results in the formation of a zygote, which then develops into a new individual with a unique genetic makeup.

In contrast, asexual reproduction does not involve the fusion of gametes and can occur through various mechanisms such as budding, fragmentation, or parthenogenesis. Asexual reproduction results in offspring that are genetically identical to the parent organism.

Reproduction is a fundamental process that ensures the survival and continuation of species over time. It is also an area of active research in fields such as reproductive medicine, where scientists and clinicians work to understand and address issues related to human fertility, contraception, and genetic disorders.

Anxiety disorders are a category of mental health disorders characterized by feelings of excessive and persistent worry, fear, or anxiety that interfere with daily activities. They include several different types of disorders, such as:

1. Generalized Anxiety Disorder (GAD): This is characterized by chronic and exaggerated worry and tension, even when there is little or nothing to provoke it.
2. Panic Disorder: This is characterized by recurring unexpected panic attacks and fear of experiencing more panic attacks.
3. Social Anxiety Disorder (SAD): Also known as social phobia, this is characterized by excessive fear, anxiety, or avoidance of social situations due to feelings of embarrassment, self-consciousness, and concern about being judged or viewed negatively by others.
4. Phobias: These are intense, irrational fears of certain objects, places, or situations. When a person with a phobia encounters the object or situation they fear, they may experience panic attacks or other severe anxiety responses.
5. Agoraphobia: This is a fear of being in places where it may be difficult to escape or get help if one has a panic attack or other embarrassing or incapacitating symptoms.
6. Separation Anxiety Disorder (SAD): This is characterized by excessive anxiety about separation from home or from people to whom the individual has a strong emotional attachment (such as a parent, sibling, or partner).
7. Selective Mutism: This is a disorder where a child becomes mute in certain situations, such as at school, but can speak normally at home or with close family members.

These disorders are treatable with a combination of medication and psychotherapy (cognitive-behavioral therapy, exposure therapy). It's important to seek professional help if you suspect that you or someone you know may have an anxiety disorder.

A cannabinoid receptor, CB1, is a G protein-coupled receptor that is primarily found in the brain and central nervous system. It is one of the two main types of cannabinoid receptors, the other being CB2, and is activated by the endocannabinoid anandamide and the phytocannabinoid Delta-9-tetrahydrocannabinol (THC), which is the primary psychoactive component of cannabis. The activation of CB1 receptors is responsible for many of the psychological effects of cannabis, including euphoria, altered sensory perception, and memory impairment. CB1 receptors are also found in peripheral tissues, such as the adipose tissue, liver, and muscles, where they play a role in regulating energy metabolism, appetite, and pain perception.

I believe there may be a misunderstanding in your question. The term "fishes" is not typically used in a medical context. "Fish" or "fishes" refers to any aquatic organism belonging to the taxonomic class Actinopterygii (bony fish), Chondrichthyes (sharks and rays), or Agnatha (jawless fish).

However, if you are referring to a condition related to fish or consuming fish, there is a medical issue called scombroid fish poisoning. It's a foodborne illness caused by eating spoiled or improperly stored fish from the Scombridae family, which includes tuna, mackerel, and bonito, among others. The bacteria present in these fish can produce histamine, which can cause symptoms like skin flushing, headache, diarrhea, and itchy rash. But again, this is not related to the term "fishes" itself but rather a condition associated with consuming certain types of fish.

Cluster analysis is a statistical method used to group similar objects or data points together based on their characteristics or features. In medical and healthcare research, cluster analysis can be used to identify patterns or relationships within complex datasets, such as patient records or genetic information. This technique can help researchers to classify patients into distinct subgroups based on their symptoms, diagnoses, or other variables, which can inform more personalized treatment plans or public health interventions.

Cluster analysis involves several steps, including:

1. Data preparation: The researcher must first collect and clean the data, ensuring that it is complete and free from errors. This may involve removing outlier values or missing data points.
2. Distance measurement: Next, the researcher must determine how to measure the distance between each pair of data points. Common methods include Euclidean distance (the straight-line distance between two points) or Manhattan distance (the distance between two points along a grid).
3. Clustering algorithm: The researcher then applies a clustering algorithm, which groups similar data points together based on their distances from one another. Common algorithms include hierarchical clustering (which creates a tree-like structure of clusters) or k-means clustering (which assigns each data point to the nearest centroid).
4. Validation: Finally, the researcher must validate the results of the cluster analysis by evaluating the stability and robustness of the clusters. This may involve re-running the analysis with different distance measures or clustering algorithms, or comparing the results to external criteria.

Cluster analysis is a powerful tool for identifying patterns and relationships within complex datasets, but it requires careful consideration of the data preparation, distance measurement, and validation steps to ensure accurate and meaningful results.

Systems Biology is a multidisciplinary approach to studying biological systems that involves the integration of various scientific disciplines such as biology, mathematics, physics, computer science, and engineering. It aims to understand how biological components, including genes, proteins, metabolites, cells, and organs, interact with each other within the context of the whole system. This approach emphasizes the emergent properties of biological systems that cannot be explained by studying individual components alone. Systems biology often involves the use of computational models to simulate and predict the behavior of complex biological systems and to design experiments for testing hypotheses about their functioning. The ultimate goal of systems biology is to develop a more comprehensive understanding of how biological systems function, with applications in fields such as medicine, agriculture, and bioengineering.

A factual database in the medical context is a collection of organized and structured data that contains verified and accurate information related to medicine, healthcare, or health sciences. These databases serve as reliable resources for various stakeholders, including healthcare professionals, researchers, students, and patients, to access evidence-based information for making informed decisions and enhancing knowledge.

Examples of factual medical databases include:

1. PubMed: A comprehensive database of biomedical literature maintained by the US National Library of Medicine (NLM). It contains citations and abstracts from life sciences journals, books, and conference proceedings.
2. MEDLINE: A subset of PubMed, MEDLINE focuses on high-quality, peer-reviewed articles related to biomedicine and health. It is the primary component of the NLM's database and serves as a critical resource for healthcare professionals and researchers worldwide.
3. Cochrane Library: A collection of systematic reviews and meta-analyses focused on evidence-based medicine. The library aims to provide unbiased, high-quality information to support clinical decision-making and improve patient outcomes.
4. OVID: A platform that offers access to various medical and healthcare databases, including MEDLINE, Embase, and PsycINFO. It facilitates the search and retrieval of relevant literature for researchers, clinicians, and students.
5. ClinicalTrials.gov: A registry and results database of publicly and privately supported clinical studies conducted around the world. The platform aims to increase transparency and accessibility of clinical trial data for healthcare professionals, researchers, and patients.
6. UpToDate: An evidence-based, physician-authored clinical decision support resource that provides information on diagnosis, treatment, and prevention of medical conditions. It serves as a point-of-care tool for healthcare professionals to make informed decisions and improve patient care.
7. TRIP Database: A search engine designed to facilitate evidence-based medicine by providing quick access to high-quality resources, including systematic reviews, clinical guidelines, and practice recommendations.
8. National Guideline Clearinghouse (NGC): A database of evidence-based clinical practice guidelines and related documents developed through a rigorous review process. The NGC aims to provide clinicians, healthcare providers, and policymakers with reliable guidance for patient care.
9. DrugBank: A comprehensive, freely accessible online database containing detailed information about drugs, their mechanisms, interactions, and targets. It serves as a valuable resource for researchers, healthcare professionals, and students in the field of pharmacology and drug discovery.
10. Genetic Testing Registry (GTR): A database that provides centralized information about genetic tests, test developers, laboratories offering tests, and clinical validity and utility of genetic tests. It serves as a resource for healthcare professionals, researchers, and patients to make informed decisions regarding genetic testing.

I'm sorry for any confusion, but "hybrid cells" is not a standard medical term with a widely accepted or specific definition in the field of medicine. The term "hybrid" is used in various scientific and medical contexts to describe combinations or mixtures of different elements, such as hybridoma cells (a type of fusion cell used in research, created by combining a B cell and a tumor cell) or hybridization (in genetics, the process of combining DNA from two different sources).

Without more specific context, it's difficult to provide an accurate medical definition for "hybrid cells." If you could provide more information about the context in which this term was used, I would be happy to help you further!

Ursidae is not a medical term, but rather a taxonomic category in biology. It refers to the family of mammals that includes bears. The order of these animals is Carnivora, and Ursidae is one of the eight families within this order.

The members of Ursidae are characterized by their large size, stocky bodies, strong limbs, and a plantigrade posture (walking on the entire sole of the foot). They have a keen sense of smell and most species have a diet that varies widely based on what's available in their environment.

While not directly related to medical terminology, understanding various biological classifications can be helpful in medical fields such as epidemiology or zoonotic diseases, where knowing about different animal families can provide insight into potential disease carriers or transmission patterns.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

I'm sorry for any confusion, but "Polynesia" is not a medical term. It is a geographical region in the Pacific Ocean, consisting of numerous island countries and territories. If you have any questions related to medical terminology or health, I would be happy to try and help answer those for you.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Defining "life" is a complex question that has been debated by philosophers, scientists, and theologians for centuries. From a biological or medical perspective, life can be defined as a characteristic that distinguishes physical entities that do have biological processes, such as growth, reproduction, and response to stimuli, from those that do not, either because such functions have ceased (death), or because they never had such functions and are classified as inanimate.

The National Institutes of Health (NIH) defines life as "the condition that distinguishes animals and plants from inorganic matter, including the capacity for growth, reproduction, functional activity, and continual change preceding death."

It's important to note that there is no one universally accepted definition of life, and different fields and disciplines may have slightly different definitions or criteria.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Glycine is an important amino acid that plays a role in various physiological processes in the human body. Plasma membrane transport proteins are specialized molecules found in the cell membrane that facilitate the movement of specific molecules, such as ions or neurotransmitters like glycine, into and out of cells.

Glycine plasma membrane transport proteins specifically regulate the transcellular movement of glycine across the plasma membrane. These transport proteins belong to a family of solute carriers (SLC) known as the glycine transporters (GlyTs). There are two main isoforms, GlyT1 and GlyT2, which differ in their distribution, function, and regulation.

GlyT1 is widely expressed throughout the central nervous system and plays a crucial role in terminating glycinergic neurotransmission by rapidly removing glycine from the synaptic cleft. This isoform is also involved in regulating extracellular glycine concentrations in various tissues, including the brainstem, spinal cord, and retina.

GlyT2, on the other hand, is primarily localized to presynaptic terminals of glycinergic neurons, where it functions as a vesicular glycine transporter (VGT). Its primary role is to transport glycine into synaptic vesicles for subsequent release into the synapse during neurotransmission.

Dysfunction in glycine plasma membrane transport proteins has been implicated in several neurological disorders, such as hyperekplexia (startle disease) and certain forms of epilepsy. In these cases, impaired glycinergic neurotransmission can lead to motor and cognitive deficits, highlighting the importance of proper glycine transport protein function for normal physiological processes.

Tumor markers are substances that can be found in the body and their presence can indicate the presence of certain types of cancer or other conditions. Biological tumor markers refer to those substances that are produced by cancer cells or by other cells in response to cancer or certain benign (non-cancerous) conditions. These markers can be found in various bodily fluids such as blood, urine, or tissue samples.

Examples of biological tumor markers include:

1. Proteins: Some tumor markers are proteins that are produced by cancer cells or by other cells in response to the presence of cancer. For example, prostate-specific antigen (PSA) is a protein produced by normal prostate cells and in higher amounts by prostate cancer cells.
2. Genetic material: Tumor markers can also include genetic material such as DNA, RNA, or microRNA that are shed by cancer cells into bodily fluids. For example, circulating tumor DNA (ctDNA) is genetic material from cancer cells that can be found in the bloodstream.
3. Metabolites: Tumor markers can also include metabolic products produced by cancer cells or by other cells in response to cancer. For example, lactate dehydrogenase (LDH) is an enzyme that is released into the bloodstream when cancer cells break down glucose for energy.

It's important to note that tumor markers are not specific to cancer and can be elevated in non-cancerous conditions as well. Therefore, they should not be used alone to diagnose cancer but rather as a tool in conjunction with other diagnostic tests and clinical evaluations.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Genetic selection, also known as natural selection, is a fundamental mechanism of evolution. It refers to the process by which certain heritable traits become more or less common in a population over successive generations due to differential reproduction of organisms with those traits.

In genetic selection, traits that increase an individual's fitness (its ability to survive and reproduce) are more likely to be passed on to the next generation, while traits that decrease fitness are less likely to be passed on. This results in a gradual change in the distribution of traits within a population over time, leading to adaptation to the environment and potentially speciation.

Genetic selection can occur through various mechanisms, including viability selection (differential survival), fecundity selection (differences in reproductive success), and sexual selection (choices made by individuals during mating). The process of genetic selection is driven by environmental pressures, such as predation, competition for resources, and changes in the availability of food or habitat.

Desensitization, psychologic, also known as psychological desensitization or systematic desensitization, is a therapeutic technique used in behavioral therapy to reduce or eliminate fear, anxiety, or other negative emotional responses associated with specific stimuli or situations. This process involves gradually and systematically exposing the individual to the feared stimulus or situation, beginning with less threatening versions and progressively increasing the level of exposure until the anxiety response is significantly reduced or eliminated. The technique is often used in conjunction with relaxation training and cognitive restructuring to help the person develop more adaptive responses to the previously distressing stimuli.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Substance Withdrawal Syndrome is a medically recognized condition that occurs when an individual who has been using certain substances, such as alcohol, opioids, or benzodiazepines, suddenly stops or significantly reduces their use. The syndrome is characterized by a specific set of symptoms that can be physical, cognitive, and emotional in nature. These symptoms can vary widely depending on the substance that was being used, the length and intensity of the addiction, and individual factors such as genetics, age, and overall health.

The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), published by the American Psychiatric Association, provides the following diagnostic criteria for Substance Withdrawal Syndrome:

A. The development of objective evidence of withdrawal, referring to the specific physiological changes associated with the particular substance, or subjective evidence of withdrawal, characterized by the individual's report of symptoms that correspond to the typical withdrawal syndrome for the substance.

B. The symptoms cause clinically significant distress or impairment in social, occupational, or other important areas of functioning.

C. The symptoms are not better explained by co-occurring mental, medical, or other substance use disorders.

D. The withdrawal syndrome is not attributable to another medical condition and is not better accounted for by another mental disorder.

The DSM-5 also specifies that the diagnosis of Substance Withdrawal Syndrome should be substance-specific, meaning that it should specify the particular class of substances (e.g., alcohol, opioids, benzodiazepines) responsible for the withdrawal symptoms. This is important because different substances have distinct withdrawal syndromes and require different approaches to management and treatment.

In general, Substance Withdrawal Syndrome can be a challenging and potentially dangerous condition that requires professional medical supervision and support during the detoxification process. The specific symptoms and their severity will vary depending on the substance involved, but they may include:

* For alcohol: tremors, seizures, hallucinations, agitation, anxiety, nausea, vomiting, and insomnia.
* For opioids: muscle aches, restlessness, lacrimation (tearing), rhinorrhea (runny nose), yawning, perspiration, chills, mydriasis (dilated pupils), piloerection (goosebumps), nausea or vomiting, diarrhea, and abdominal cramps.
* For benzodiazepines: anxiety, irritability, insomnia, restlessness, confusion, hallucinations, seizures, and increased heart rate and blood pressure.

It is essential to consult with a healthcare professional if you or someone you know is experiencing symptoms of Substance Withdrawal Syndrome. They can provide appropriate medical care, support, and referrals for further treatment as needed.

Anthozoa is a major class of marine animals, which are exclusively aquatic and almost entirely restricted to shallow waters. They are classified within the phylum Cnidaria, which also includes corals, jellyfish, sea anemones, and hydroids. Anthozoans are characterized by their lack of medusa stage in their life cycle, as they exist solely as polyps.

This class is divided into two main subclasses: Hexacorallia (also known as Zoantharia) and Octocorallia (also known as Alcyonaria). The primary differences between these subclasses lie in the structure of their polyps and the composition of their skeletons.

1. Hexacorallia: These are commonly referred to as 'stony' or 'hard' corals, due to their calcium carbonate-based skeletons. They have a simple polyp structure with six-fold symmetry (hence the name Hexacorallia), featuring 6 tentacles around the mouth opening. Examples of Hexacorallia include reef-building corals, sea fans, and black corals.
2. Octocorallia: These are also called 'soft' corals or 'leather' corals because they lack a calcium carbonate skeleton. Instead, their supporting structures consist of proteins and other organic compounds. Octocorallia polyps exhibit eight-fold symmetry (hence the name Octocorallia), with eight tentacles around the mouth opening. Examples of Octocorallia include sea fans, sea whips, and blue corals.

Anthozoa species are primarily found in tropical and subtropical oceans, but some can be found in colder, deeper waters as well. They play a crucial role in marine ecosystems by providing habitats and shelter for various other marine organisms, particularly on coral reefs. Additionally, they contribute to the formation of limestone deposits through their calcium carbonate-based skeletons.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Maze learning is not a medical term per se, but it is a concept that is often used in the field of neuroscience and psychology. It refers to the process by which an animal or human learns to navigate through a complex environment, such as a maze, in order to find its way to a goal or target.

Maze learning involves several cognitive processes, including spatial memory, learning, and problem-solving. As animals or humans navigate through the maze, they encode information about the location of the goal and the various landmarks within the environment. This information is then used to form a cognitive map that allows them to navigate more efficiently in subsequent trials.

Maze learning has been widely used as a tool for studying learning and memory processes in both animals and humans. For example, researchers may use maze learning tasks to investigate the effects of brain damage or disease on cognitive function, or to evaluate the efficacy of various drugs or interventions for improving cognitive performance.

I'm sorry for any confusion, but "meteoroids" is not a term used in medical definitions. It is a term from the field of astronomy. Meteoroids are small particles or bits of rock that are traveling in space. When they enter the Earth's atmosphere, they can become meteors (also known as "shooting stars") and can sometimes make it to the ground as meteorites.

Pyrazoles are heterocyclic aromatic organic compounds that contain a six-membered ring with two nitrogen atoms at positions 1 and 2. The chemical structure of pyrazoles consists of a pair of nitrogen atoms adjacent to each other in the ring, which makes them unique from other azole heterocycles such as imidazoles or triazoles.

Pyrazoles have significant biological activities and are found in various pharmaceuticals, agrochemicals, and natural products. Some pyrazole derivatives exhibit anti-inflammatory, analgesic, antipyretic, antimicrobial, antiviral, antifungal, and anticancer properties.

In the medical field, pyrazoles are used in various drugs to treat different conditions. For example, celecoxib (Celebrex) is a selective COX-2 inhibitor used for pain relief and inflammation reduction in arthritis patients. It contains a pyrazole ring as its core structure. Similarly, febuxostat (Uloric) is a medication used to treat gout, which also has a pyrazole moiety.

Overall, pyrazoles are essential compounds with significant medical applications and potential for further development in drug discovery and design.

I'm sorry for any confusion, but the term "Pacific Ocean" is a geographical term referring to the largest single body of saltwater on Earth, extending from the Arctic in the north to the Antarctic in the south. It covers an area of about 63,800,000 square miles (165,200,000 square kilometers).

If you're looking for a medical term or definition, I'd be happy to help with that as well. Could you please provide more context?

Habituation, psychophysiologic, refers to the decrease in autonomic nervous system response to repeated exposure to a stimulus. It is a form of learning that occurs when an individual is exposed to a stimulus repeatedly over time, leading to a reduced reaction or no reaction at all. This process involves the decreased responsiveness of both the sympathetic and parasympathetic branches of the autonomic nervous system.

Examples of psychophysiologic habituation include the decreased heart rate and skin conductance response that occurs with repeated exposure to a startling stimulus, such as a loud noise. This form of habituation is thought to be an adaptive mechanism that allows individuals to respond appropriately to novel or important stimuli while reducing the response to non-significant or irrelevant stimuli.

It's worth noting that habituation can also occur in other systems and contexts, such as sensory habituation (decreased response to repeated sensory stimulation) or cognitive habituation (reduced attention or memory for repeated exposure to a stimulus). However, the term "psychophysiologic habituation" specifically refers to the decreased autonomic nervous system response that occurs with repeated exposure to a stimulus.

Phylogeography is not a medical term, but rather a subfield of biogeography and phylogenetics that investigates the spatial distribution of genealogical lineages and the historical processes that have shaped them. It uses genetic data to infer the geographic origins, dispersal routes, and demographic history of organisms, including pathogens and vectors that can affect human health.

In medical and public health contexts, phylogeography is often used to study the spread of infectious diseases, such as HIV/AIDS, influenza, or tuberculosis, by analyzing the genetic diversity and geographic distribution of pathogen isolates. This information can help researchers understand how diseases emerge, evolve, and move across populations and landscapes, which can inform disease surveillance, control, and prevention strategies.

Narcotics, in a medical context, are substances that induce sleep, relieve pain, and suppress cough. They are often used for anesthesia during surgical procedures. Narcotics are derived from opium or its synthetic substitutes and include drugs such as morphine, codeine, fentanyl, oxycodone, and hydrocodone. These drugs bind to specific receptors in the brain and spinal cord, reducing the perception of pain and producing a sense of well-being. However, narcotics can also produce physical dependence and addiction, and their long-term use can lead to tolerance, meaning that higher doses are required to achieve the same effect. Narcotics are classified as controlled substances due to their potential for abuse and are subject to strict regulations.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

"Biological clocks" refer to the internal time-keeping systems in living organisms that regulate the timing of various physiological processes and behaviors according to a daily (circadian) rhythm. These rhythms are driven by genetic mechanisms and can be influenced by environmental factors such as light and temperature.

In humans, biological clocks help regulate functions such as sleep-wake cycles, hormone release, body temperature, and metabolism. Disruptions to these internal timekeeping systems have been linked to various health problems, including sleep disorders, mood disorders, and cognitive impairment.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

I'm sorry for any confusion, but "population growth" is actually a demographic term rather than a medical one. It refers to the increase in the size of a population over time, typically due to births and immigrants exceeding deaths and emigrants. It is commonly used in discussions of societal development, resource management, and environmental impact, among other fields.

If you have any questions related to medical definitions or health-related topics, I'd be happy to help with those as well!

Gene Regulatory Networks (GRNs) are complex systems of molecular interactions that regulate the expression of genes within an organism. These networks consist of various types of regulatory elements, including transcription factors, enhancers, promoters, and silencers, which work together to control when, where, and to what extent a gene is expressed.

In GRNs, transcription factors bind to specific DNA sequences in the regulatory regions of target genes, either activating or repressing their transcription into messenger RNA (mRNA). This process is influenced by various intracellular and extracellular signals that modulate the activity of transcription factors, allowing for precise regulation of gene expression in response to changing environmental conditions.

The structure and behavior of GRNs can be represented as a network of nodes (genes) and edges (regulatory interactions), with the strength and directionality of these interactions determined by the specific molecular mechanisms involved. Understanding the organization and dynamics of GRNs is crucial for elucidating the underlying causes of various biological processes, including development, differentiation, homeostasis, and disease.

I'm sorry for any confusion, but "Uranium" is not a medical term. It is a chemical element with the symbol "U" and atomic number 92. Uranium is a dense, silvery-gray metal that is hard and brittle at room temperature. It's primarily used as a fuel in nuclear power plants and in the manufacture of weapons.

While uranium does not have direct medical applications, it does pose potential health risks due to its radioactivity. Exposure to high levels of radiation from uranium can lead to acute radiation sickness, anemia, and an increased risk of cancer. However, under normal circumstances, the general public is not exposed to significant amounts of uranium, so it's not a common health concern.

The "immobility response, tonic" is a medical term that refers to a state of decreased movement or complete immobility, often in response to stress or fear. This reaction is characterized by an increased muscle tone, which can lead to rigidity and stiffness. It's a primitive response that occurs in many animals, including humans, and is thought to be a protective mechanism that helps individuals avoid detection by predators.

In a clinical setting, the immobility response, tonic may be observed during medical procedures or situations that cause fear or discomfort. For example, some people may become immobile and rigid when they are afraid of needles or other sharp objects. This response can make it difficult to perform certain medical procedures, and healthcare providers may need to take special precautions to ensure the safety and comfort of their patients.

It's important to note that while the immobility response, tonic is a normal physiological reaction in many situations, prolonged or frequent episodes can have negative consequences on an individual's physical and mental health. Chronic stress and fear can lead to a range of health problems, including anxiety, depression, and chronic pain.

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

Saccharin is not a medical term, but it is a chemical compound that is widely used as an artificial sweetener. Medically speaking, saccharin is classified as an intense sugar substitute, meaning it is many times sweeter than sucrose (table sugar) but contributes little to no calories when added to food or drink.

Saccharin is often used by people with diabetes or those who are trying to reduce their calorie intake. It has been in use for over a century and has undergone extensive safety testing. The U.S. Food and Drug Administration (FDA) has classified saccharin as generally recognized as safe (GRAS), although it once required a warning label due to concerns about bladder cancer. However, subsequent research has largely dismissed this risk for most people, and the warning label is no longer required.

It's important to note that while saccharin and other artificial sweeteners can be helpful for some individuals, they should not be used as a replacement for a balanced diet and regular exercise. Additionally, excessive consumption of these sugar substitutes may have negative health consequences, such as altering gut bacteria or contributing to metabolic disorders.

Anxiety: A feeling of worry, nervousness, or unease, typically about an imminent event or something with an uncertain outcome. In a medical context, anxiety refers to a mental health disorder characterized by feelings of excessive and persistent worry, fear, or panic that interfere with daily activities. It can also be a symptom of other medical conditions, such as heart disease, diabetes, or substance abuse disorders. Anxiety disorders include generalized anxiety disorder, panic disorder, social anxiety disorder, and phobias.

Cannabinoid receptor agonists are compounds that bind to and activate cannabinoid receptors, which are part of the endocannabinoid system in the human body. These receptors are involved in various physiological processes, including pain modulation, appetite regulation, memory, and mood.

There are two main types of cannabinoid receptors: CB1 receptors, which are primarily found in the brain and central nervous system, and CB2 receptors, which are mainly found in the immune system and peripheral tissues.

Cannabinoid receptor agonists can be classified based on their chemical structure and origin. Some naturally occurring cannabinoids, such as THC (tetrahydrocannabinol) and CBD (cannabidiol), are found in the Cannabis sativa plant and can activate cannabinoid receptors. Synthetic cannabinoids, on the other hand, are human-made compounds designed to mimic or enhance the effects of natural cannabinoids.

Examples of cannabinoid receptor agonists include:

1. THC (tetrahydrocannabinol): The primary psychoactive component of marijuana, THC binds to CB1 receptors and produces feelings of euphoria or "high." It also has analgesic, anti-inflammatory, and appetite-stimulating properties.
2. CBD (cannabidiol): A non-psychoactive compound found in cannabis, CBD has a more complex interaction with the endocannabinoid system. While it does not bind strongly to CB1 or CB2 receptors, it can influence their activity and modulate the effects of other cannabinoids. CBD is known for its potential therapeutic benefits, including anti-inflammatory, analgesic, anxiolytic, and neuroprotective properties.
3. Synthetic cannabinoids: These are human-made compounds designed to mimic or enhance the effects of natural cannabinoids. Examples include dronabinol (Marinol), a synthetic THC used to treat nausea and vomiting in cancer patients, and nabilone (Cesamet), another synthetic THC used to manage pain and nausea in cancer and AIDS patients.
4. CP 55,940: A potent synthetic cannabinoid agonist that binds to both CB1 and CB2 receptors with high affinity. It is used in research to study the endocannabinoid system and its functions.
5. WIN 55,212-2: Another synthetic cannabinoid agonist that binds to both CB1 and CB2 receptors. It is often used in research to investigate the therapeutic potential of cannabinoids.

It's important to note that while some cannabinoid receptor agonists have demonstrated therapeutic benefits, they can also have side effects and potential risks, particularly when used in high doses or without medical supervision. Always consult a healthcare professional before using any cannabinoid-based medication or supplement.

Piperidines are not a medical term per se, but they are a class of organic compounds that have important applications in the pharmaceutical industry. Medically relevant piperidines include various drugs such as some antihistamines, antidepressants, and muscle relaxants.

A piperidine is a heterocyclic amine with a six-membered ring containing five carbon atoms and one nitrogen atom. The structure can be described as a cyclic secondary amine. Piperidines are found in some natural alkaloids, such as those derived from the pepper plant (Piper nigrum), which gives piperidines their name.

In a medical context, it is more common to encounter specific drugs that belong to the class of piperidines rather than the term itself.

Ecological and environmental processes refer to the complex interactions and relationships between living organisms and their physical surroundings. These processes can be biological, chemical, or physical in nature and they play a critical role in shaping the distribution and abundance of species, as well as the overall health and functioning of ecosystems.

Biological processes include things like predation, competition, and symbiosis, which describe how organisms interact with one another for resources and survival. Chemical processes involve the cycling of nutrients and energy through an ecosystem, such as the carbon cycle or nitrogen cycle. Physical processes include things like weather patterns, geological formations, and water cycles, which can all impact the distribution and diversity of species in an area.

Environmental processes can also refer to human activities that impact the environment, such as pollution, land use changes, and climate change. These processes can have significant consequences for both natural ecosystems and human health, making it essential to understand and manage them effectively.

In a medical or psychological context, attention is the cognitive process of selectively concentrating on certain aspects of the environment while ignoring other things. It involves focusing mental resources on specific stimuli, sensory inputs, or internal thoughts while blocking out irrelevant distractions. Attention can be divided into different types, including:

1. Sustained attention: The ability to maintain focus on a task or stimulus over time.
2. Selective attention: The ability to concentrate on relevant stimuli while ignoring irrelevant ones.
3. Divided attention: The capacity to pay attention to multiple tasks or stimuli simultaneously.
4. Alternating attention: The skill of shifting focus between different tasks or stimuli as needed.

Deficits in attention are common symptoms of various neurological and psychiatric conditions, such as ADHD, dementia, depression, and anxiety disorders. Assessment of attention is an essential part of neuropsychological evaluations and can be measured using various tests and tasks.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

I'm not a medical professional, but I can tell you that the term "animal distribution" is not typically used in medical definitions. It is more commonly used in ecology and wildlife biology to refer to the pattern or manner in which animals are spatially arranged or distributed in their environment. If you have any concerns related to health or medicine, it would be best to consult a healthcare professional for accurate information.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Post-traumatic stress disorder (PTSD) is a psychiatric condition that can occur in people who have experienced or witnessed a traumatic event such as a natural disaster, serious accident, war combat, rape, or violent personal assault. According to the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5), PTSD is characterized by the following symptoms, which must last for more than one month:

1. Intrusion symptoms: These include distressing memories, nightmares, flashbacks, or intense psychological distress or reactivity to internal or external cues that symbolize or resemble an aspect of the traumatic event.
2. Avoidance symptoms: Persistent avoidance of stimuli associated with the traumatic event, including thoughts, feelings, conversations, activities, places, or people.
3. Negative alterations in cognitions and mood: This includes negative beliefs about oneself, others, or the world; distorted blame of self or others for causing the trauma; persistent negative emotional state; decreased interest in significant activities; and feelings of detachment or estrangement from others.
4. Alterations in arousal and reactivity: This includes irritable behavior and angry outbursts, reckless or self-destructive behavior, hypervigilance, exaggerated startle response, problems with concentration, and sleep disturbance.
5. Duration of symptoms: The symptoms must last for more than one month.
6. Functional significance: The symptoms cause clinically significant distress or impairment in social, occupational, or other important areas of functioning.

It is essential to note that PTSD can occur at any age and can be accompanied by various physical and mental health problems, such as depression, substance abuse, memory problems, and other difficulties in cognition. Appropriate treatment, which may include psychotherapy, medication, or a combination of both, can significantly improve the symptoms and overall quality of life for individuals with PTSD.

Excitatory amino acid antagonists are a class of drugs that block the action of excitatory neurotransmitters, particularly glutamate and aspartate, in the brain. These drugs work by binding to and blocking the receptors for these neurotransmitters, thereby reducing their ability to stimulate neurons and produce an excitatory response.

Excitatory amino acid antagonists have been studied for their potential therapeutic benefits in a variety of neurological conditions, including stroke, epilepsy, traumatic brain injury, and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. However, their use is limited by the fact that blocking excitatory neurotransmission can also have negative effects on cognitive function and memory.

There are several types of excitatory amino acid receptors, including N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainite receptors. Different excitatory amino acid antagonists may target one or more of these receptor subtypes, depending on their specific mechanism of action.

Examples of excitatory amino acid antagonists include ketamine, memantine, and dextromethorphan. These drugs have been used in clinical practice for various indications, such as anesthesia, sedation, and treatment of neurological disorders. However, their use must be carefully monitored due to potential side effects and risks associated with blocking excitatory neurotransmission.

Physiological adaptation refers to the changes or modifications that occur in an organism's biological functions or structures as a result of environmental pressures or changes. These adaptations enable the organism to survive and reproduce more successfully in its environment. They can be short-term, such as the constriction of blood vessels in response to cold temperatures, or long-term, such as the evolution of longer limbs in animals that live in open environments.

In the context of human physiology, examples of physiological adaptation include:

1. Acclimatization: The process by which the body adjusts to changes in environmental conditions, such as altitude or temperature. For example, when a person moves to a high-altitude location, their body may produce more red blood cells to compensate for the lower oxygen levels, leading to improved oxygen delivery to tissues.

2. Exercise adaptation: Regular physical activity can lead to various physiological adaptations, such as increased muscle strength and endurance, enhanced cardiovascular function, and improved insulin sensitivity.

3. Hormonal adaptation: The body can adjust hormone levels in response to changes in the environment or internal conditions. For instance, during prolonged fasting, the body releases stress hormones like cortisol and adrenaline to help maintain energy levels and prevent muscle wasting.

4. Sensory adaptation: Our senses can adapt to different stimuli over time. For example, when we enter a dark room after being in bright sunlight, it takes some time for our eyes to adjust to the new light level. This process is known as dark adaptation.

5. Aging-related adaptations: As we age, various physiological changes occur that help us adapt to the changing environment and maintain homeostasis. These include changes in body composition, immune function, and cognitive abilities.

Bayes' theorem, also known as Bayes' rule or Bayes' formula, is a fundamental principle in the field of statistics and probability theory. It describes how to update the probability of a hypothesis based on new evidence or data. The theorem is named after Reverend Thomas Bayes, who first formulated it in the 18th century.

In mathematical terms, Bayes' theorem states that the posterior probability of a hypothesis (H) given some observed evidence (E) is proportional to the product of the prior probability of the hypothesis (P(H)) and the likelihood of observing the evidence given the hypothesis (P(E|H)):

Posterior Probability = P(H|E) = [P(E|H) x P(H)] / P(E)

Where:

* P(H|E): The posterior probability of the hypothesis H after observing evidence E. This is the probability we want to calculate.
* P(E|H): The likelihood of observing evidence E given that the hypothesis H is true.
* P(H): The prior probability of the hypothesis H before observing any evidence.
* P(E): The marginal likelihood or probability of observing evidence E, regardless of whether the hypothesis H is true or not. This value can be calculated as the sum of the products of the likelihood and prior probability for all possible hypotheses: P(E) = Σ[P(E|Hi) x P(Hi)]

Bayes' theorem has many applications in various fields, including medicine, where it can be used to update the probability of a disease diagnosis based on test results or other clinical findings. It is also widely used in machine learning and artificial intelligence algorithms for probabilistic reasoning and decision making under uncertainty.

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are ligand-gated ion channels found in the postsynaptic membrane of excitatory synapses in the central nervous system. They play a crucial role in fast synaptic transmission and are responsible for the majority of the fast excitatory postsynaptic currents (EPSCs) in the brain.

AMPA receptors are tetramers composed of four subunits, which can be any combination of GluA1-4 (previously known as GluR1-4). When the neurotransmitter glutamate binds to the AMPA receptor, it causes a conformational change that opens the ion channel, allowing the flow of sodium and potassium ions. This leads to depolarization of the postsynaptic membrane and the generation of an action potential if the depolarization is sufficient.

In addition to their role in synaptic transmission, AMPA receptors are also involved in synaptic plasticity, which is the ability of synapses to strengthen or weaken over time in response to changes in activity. This process is thought to underlie learning and memory.

Demography is the statistical study of populations, particularly in terms of size, distribution, and characteristics such as age, race, gender, and occupation. In medical contexts, demography is often used to analyze health-related data and trends within specific populations. This can include studying the prevalence of certain diseases or conditions, identifying disparities in healthcare access and outcomes, and evaluating the effectiveness of public health interventions. Demographic data can also be used to inform policy decisions and allocate resources to address population health needs.

Seawater is not a medical term, but it is a type of water that covers more than 70% of the Earth's surface. Medically, seawater can be relevant in certain contexts, such as in discussions of marine biology, environmental health, or water safety. Seawater has a high salt content, with an average salinity of around 3.5%, which is much higher than that of freshwater. This makes it unsuitable for drinking or irrigation without desalination.

Exposure to seawater can also have medical implications, such as in cases of immersion injuries, marine envenomations, or waterborne illnesses. However, there is no single medical definition of seawater.

I'm sorry for any confusion, but "Madagascar" is not a medical term. It is actually the fourth-largest island country in the world, located in the Indian Ocean, off the southeastern coast of Africa. If you have any questions about medical terms or concepts, I'd be happy to help answer those!

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

A learning disorder is a neurodevelopmental disorder that affects an individual's ability to acquire, process, and use information in one or more academic areas despite normal intelligence and adequate instruction. It can manifest as difficulties with reading (dyslexia), writing (dysgraphia), mathematics (dyscalculia), or other academic skills. Learning disorders are not the result of low intelligence, lack of motivation, or environmental factors alone, but rather reflect a significant discrepancy between an individual's cognitive abilities and their academic achievement. They can significantly impact a person's ability to perform in school, at work, and in daily life, making it important to diagnose and manage these disorders effectively.

Long-term memory is the cognitive system that stores information for extended periods of time, ranging from hours to a lifetime. It is responsible for the retention and retrieval of factual knowledge (semantic memory), personal experiences (episodic memory), skills (procedural memory), and other types of information. Long-term memory has a larger capacity compared to short-term or working memory, and its contents are more resistant to interference and forgetting. The formation and consolidation of long-term memories often involve the hippocampus and other medial temporal lobe structures, as well as widespread cortical networks.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Reaction time, in the context of medicine and physiology, refers to the time period between the presentation of a stimulus and the subsequent initiation of a response. This complex process involves the central nervous system, particularly the brain, which perceives the stimulus, processes it, and then sends signals to the appropriate muscles or glands to react.

There are different types of reaction times, including simple reaction time (responding to a single, expected stimulus) and choice reaction time (choosing an appropriate response from multiple possibilities). These measures can be used in clinical settings to assess various aspects of neurological function, such as cognitive processing speed, motor control, and alertness.

However, it is important to note that reaction times can be influenced by several factors, including age, fatigue, attention, and the use of certain medications or substances.

Biology is the scientific study of living organisms and their vital processes. It deals with the characteristics, classification, and behaviors of plants, animals, and microorganisms, as well as how they interact with each other and the environment. Biology covers a wide range of topics, including genetics, cell biology, evolution, ecology, and physiology. The goal of biological research is to understand the fundamental principles that govern the functioning of living systems and to apply this knowledge to improve human health, agriculture, and the environment.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Central nervous system (CNS) stimulants are a class of drugs that increase alertness, attention, energy, and/or mood by directly acting on the brain. They can be prescribed to treat medical conditions such as narcolepsy, attention deficit hyperactivity disorder (ADHD), and depression that has not responded to other treatments.

Examples of CNS stimulants include amphetamine (Adderall), methylphenidate (Ritalin, Concerta), and modafinil (Provigil). These medications work by increasing the levels of certain neurotransmitters, such as dopamine and norepinephrine, in the brain.

In addition to their therapeutic uses, CNS stimulants are also sometimes misused for non-medical reasons, such as to enhance cognitive performance or to get high. However, it's important to note that misusing these drugs can lead to serious health consequences, including addiction, cardiovascular problems, and mental health issues.

A genetic database is a type of biomedical or health informatics database that stores and organizes genetic data, such as DNA sequences, gene maps, genotypes, haplotypes, and phenotype information. These databases can be used for various purposes, including research, clinical diagnosis, and personalized medicine.

There are different types of genetic databases, including:

1. Genomic databases: These databases store whole genome sequences, gene expression data, and other genomic information. Examples include the National Center for Biotechnology Information's (NCBI) GenBank, the European Nucleotide Archive (ENA), and the DNA Data Bank of Japan (DDBJ).
2. Gene databases: These databases contain information about specific genes, including their location, function, regulation, and evolution. Examples include the Online Mendelian Inheritance in Man (OMIM) database, the Universal Protein Resource (UniProt), and the Gene Ontology (GO) database.
3. Variant databases: These databases store information about genetic variants, such as single nucleotide polymorphisms (SNPs), insertions/deletions (INDELs), and copy number variations (CNVs). Examples include the Database of Single Nucleotide Polymorphisms (dbSNP), the Catalogue of Somatic Mutations in Cancer (COSMIC), and the International HapMap Project.
4. Clinical databases: These databases contain genetic and clinical information about patients, such as their genotype, phenotype, family history, and response to treatments. Examples include the ClinVar database, the Pharmacogenomics Knowledgebase (PharmGKB), and the Genetic Testing Registry (GTR).
5. Population databases: These databases store genetic information about different populations, including their ancestry, demographics, and genetic diversity. Examples include the 1000 Genomes Project, the Human Genome Diversity Project (HGDP), and the Allele Frequency Net Database (AFND).

Genetic databases can be publicly accessible or restricted to authorized users, depending on their purpose and content. They play a crucial role in advancing our understanding of genetics and genomics, as well as improving healthcare and personalized medicine.

Excitatory amino acid agonists are substances that bind to and activate excitatory amino acid receptors, leading to an increase in the excitation or activation of neurons. The most common excitatory amino acids in the central nervous system are glutamate and aspartate.

Agonists of excitatory amino acid receptors can be divided into two main categories: ionotropic and metabotropic. Ionotropic receptors, such as N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainite receptors, are ligand-gated ion channels that directly mediate fast excitatory synaptic transmission. Metabotropic receptors, on the other hand, are G protein-coupled receptors that modulate synaptic activity through second messenger systems.

Excitatory amino acid agonists have been implicated in various physiological and pathophysiological processes, including learning and memory, neurodevelopment, and neurodegenerative disorders such as stroke, epilepsy, and Alzheimer's disease. They are also used in research to study the functions of excitatory amino acid receptors and their roles in neuronal signaling. However, due to their potential neurotoxic effects, the therapeutic use of excitatory amino acid agonists is limited.

Angiosperms, also known as flowering plants, are a group of plants that produce seeds enclosed within an ovary. The term "angiosperm" comes from the Greek words "angeion," meaning "case" or "capsule," and "sperma," meaning "seed." This group includes the majority of plant species, with over 300,000 known species.

Angiosperms are characterized by their reproductive structures, which consist of flowers. The flower contains male and female reproductive organs, including stamens (which produce pollen) and carpels (which contain the ovules). After fertilization, the ovule develops into a seed, while the ovary matures into a fruit, which provides protection and nutrition for the developing embryo.

Angiosperms are further divided into two main groups: monocots and eudicots. Monocots have one cotyledon or embryonic leaf, while eudicots have two. Examples of monocots include grasses, lilies, and orchids, while examples of eudicots include roses, sunflowers, and legumes.

Angiosperms are ecologically and economically important, providing food, shelter, and other resources for many organisms, including humans. They have evolved a wide range of adaptations to different environments, from the desert to the ocean floor, making them one of the most diverse and successful groups of plants on Earth.

In medical terms, the term "atmosphere" is not typically used as a standalone definition or diagnosis. However, in some contexts, it may refer to the physical environment or surroundings in which medical care is provided. For example, some hospitals and healthcare facilities may have different atmospheres depending on their specialties, design, or overall ambiance.

Additionally, "atmosphere" may also be used more broadly to describe the social or emotional climate of a particular healthcare setting. For instance, a healthcare provider might describe a patient's home atmosphere as warm and welcoming, or a hospital ward's atmosphere as tense or chaotic.

It is important to note that "atmosphere" is not a medical term with a specific definition, so its meaning may vary depending on the context in which it is used.

Statistical data interpretation involves analyzing and interpreting numerical data in order to identify trends, patterns, and relationships. This process often involves the use of statistical methods and tools to organize, summarize, and draw conclusions from the data. The goal is to extract meaningful insights that can inform decision-making, hypothesis testing, or further research.

In medical contexts, statistical data interpretation is used to analyze and make sense of large sets of clinical data, such as patient outcomes, treatment effectiveness, or disease prevalence. This information can help healthcare professionals and researchers better understand the relationships between various factors that impact health outcomes, develop more effective treatments, and identify areas for further study.

Some common statistical methods used in data interpretation include descriptive statistics (e.g., mean, median, mode), inferential statistics (e.g., hypothesis testing, confidence intervals), and regression analysis (e.g., linear, logistic). These methods can help medical professionals identify patterns and trends in the data, assess the significance of their findings, and make evidence-based recommendations for patient care or public health policy.

A nerve net, also known as a neural net or neuronal network, is not a medical term per se, but rather a concept in neuroscience and artificial intelligence (AI). It refers to a complex network of interconnected neurons that process and transmit information. In the context of the human body, the nervous system can be thought of as a type of nerve net, with the brain and spinal cord serving as the central processing unit and peripheral nerves carrying signals to and from various parts of the body.

In the field of AI, artificial neural networks are computational models inspired by the structure and function of biological nerve nets. These models consist of interconnected nodes or "neurons" that process information and learn patterns through a process of training and adaptation. They have been used in a variety of applications, including image recognition, natural language processing, and machine learning.

A dugong is a large marine mammal that belongs to the family Dugongidae. Its scientific name is Dugong dugon. It is also known as the sea cow because of its habit of feeding on seagrasses. Dugongs are found in warm coastal waters of the Indian and Pacific Oceans, ranging from East Africa to Vanuatu in the west and from Japan to Australia in the east. They can grow up to 3 meters in length and weigh between 200-500 kilograms.

Dugongs have a streamlined body with a flat, paddle-like tail and two flippers. Their skin is thick and wrinkled, and they are usually gray or brownish-gray in color. Dugongs have a unique feeding apparatus that allows them to graze on seagrasses, which include specialized lips and teeth.

Dugongs are social animals that live in small groups called herds. They communicate with each other using a variety of sounds, including clicks, chirps, and whistles. Dugongs have a long lifespan, with some individuals living up to 70 years or more.

Unfortunately, dugongs are threatened by various human activities, such as hunting, habitat loss, and entanglement in fishing nets. They are currently listed as vulnerable on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species.

I apologize for any confusion, but "insects" are not a medical term. Insects are small air-breathing arthropods that have a segmented body with six legs and usually have wings. They make up the largest group of animals on Earth, with over a million described species.

If you're looking for information about a specific medical condition or topic, please provide more details so I can offer a relevant response.

In the context of medical and ecological health, an "introduced species" refers to a plant or animal population that has been intentionally or unintentionally introduced by human actions into a new environment, outside of their natural historical range, where they do not have any known native predecessors. These introductions can occur through various means such as accidental transportation in cargo, deliberate releases for purposes like biological control or pets, and escapes from cultivation.

Introduced species can become invasive if they adapt well to their new environment, reproduce rapidly, outcompete native species for resources, and disrupt local ecosystems. This can lead to significant ecological changes, loss of biodiversity, impacts on human health, and economic consequences. Some introduced species carry diseases or parasites that can affect humans, livestock, and wildlife in the new environment, posing potential public health concerns.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Spectrophotometry, Ultraviolet (UV-Vis) is a type of spectrophotometry that measures how much ultraviolet (UV) and visible light is absorbed or transmitted by a sample. It uses a device called a spectrophotometer to measure the intensity of light at different wavelengths as it passes through a sample. The resulting data can be used to determine the concentration of specific components within the sample, identify unknown substances, or evaluate the physical and chemical properties of materials.

UV-Vis spectroscopy is widely used in various fields such as chemistry, biology, pharmaceuticals, and environmental science. It can detect a wide range of substances including organic compounds, metal ions, proteins, nucleic acids, and dyes. The technique is non-destructive, meaning that the sample remains unchanged after the measurement.

In UV-Vis spectroscopy, the sample is placed in a cuvette or other container, and light from a source is directed through it. The light then passes through a monochromator, which separates it into its component wavelengths. The monochromatic light is then directed through the sample, and the intensity of the transmitted or absorbed light is measured by a detector.

The resulting absorption spectrum can provide information about the concentration and identity of the components in the sample. For example, if a compound has a known absorption maximum at a specific wavelength, its concentration can be determined by measuring the absorbance at that wavelength and comparing it to a standard curve.

Overall, UV-Vis spectrophotometry is a versatile and powerful analytical technique for quantitative and qualitative analysis of various samples in different fields.

Sucrose is a type of simple sugar, also known as a carbohydrate. It is a disaccharide, which means that it is made up of two monosaccharides: glucose and fructose. Sucrose occurs naturally in many fruits and vegetables and is often extracted and refined for use as a sweetener in food and beverages.

The chemical formula for sucrose is C12H22O11, and it has a molecular weight of 342.3 g/mol. In its pure form, sucrose is a white, odorless, crystalline solid that is highly soluble in water. It is commonly used as a reference compound for determining the sweetness of other substances, with a standard sucrose solution having a sweetness value of 1.0.

Sucrose is absorbed by the body through the small intestine and metabolized into glucose and fructose, which are then used for energy or stored as glycogen in the liver and muscles. While moderate consumption of sucrose is generally considered safe, excessive intake can contribute to weight gain, tooth decay, and other health problems.

Aggression is defined in medical terms as behavior that is intended to cause harm or damage to another individual or their property. It can take the form of verbal or physical actions and can be a symptom of various mental health disorders, such as intermittent explosive disorder, conduct disorder, antisocial personality disorder, and dementia. Aggression can also be a side effect of certain medications or a result of substance abuse. It is important to note that aggression can have serious consequences, including physical injury, emotional trauma, and legal repercussions. If you or someone you know is experiencing problems with aggression, it is recommended to seek help from a mental health professional.

I'm sorry for any confusion, but "Wyoming" is not a medical term or condition. It is the name of a state, the 44th state to be admitted into the United States of America. Wyoming is located in the western part of the country and is known for its natural beauty, including Yellowstone National Park, which is partially located within its borders. If you have any questions about medical terms or conditions, I'd be happy to try to help answer those for you!

In the context of medicine and healthcare, 'probability' does not have a specific medical definition. However, in general terms, probability is a branch of mathematics that deals with the study of numerical quantities called probabilities, which are assigned to events or sets of events. Probability is a measure of the likelihood that an event will occur. It is usually expressed as a number between 0 and 1, where 0 indicates that the event is impossible and 1 indicates that the event is certain to occur.

In medical research and statistics, probability is often used to quantify the uncertainty associated with statistical estimates or hypotheses. For example, a p-value is a probability that measures the strength of evidence against a hypothesis. A small p-value (typically less than 0.05) suggests that the observed data are unlikely under the assumption of the null hypothesis, and therefore provides evidence in favor of an alternative hypothesis.

Probability theory is also used to model complex systems and processes in medicine, such as disease transmission dynamics or the effectiveness of medical interventions. By quantifying the uncertainty associated with these models, researchers can make more informed decisions about healthcare policies and practices.

Photic stimulation is a medical term that refers to the exposure of the eyes to light, specifically repetitive pulses of light, which is used as a method in various research and clinical settings. In neuroscience, it's often used in studies related to vision, circadian rhythms, and brain function.

In a clinical context, photic stimulation is sometimes used in the diagnosis of certain medical conditions such as seizure disorders (like epilepsy). By observing the response of the brain to this light stimulus, doctors can gain valuable insights into the functioning of the brain and the presence of any neurological disorders.

However, it's important to note that photic stimulation should be conducted under the supervision of a trained healthcare professional, as improper use can potentially trigger seizures in individuals who are susceptible to them.

A metabotropic glutamate receptor 5 (mGluR5) is a type of G protein-coupled receptor that binds to the neurotransmitter glutamate, which is the primary excitatory neurotransmitter in the brain. When activated, mGluR5 receptors trigger a variety of intracellular signaling pathways that modulate synaptic transmission, neuronal excitability, and neural plasticity.

mGluR5 receptors are widely expressed throughout the central nervous system, where they play important roles in various physiological processes, including learning and memory, anxiety, addiction, and pain perception. Dysregulation of mGluR5 signaling has been implicated in several neurological and psychiatric disorders, such as fragile X syndrome, Parkinson's disease, schizophrenia, and drug addiction.

Pharmacological targeting of mGluR5 receptors has emerged as a promising therapeutic strategy for the treatment of these disorders. Positive allosteric modulators (PAMs) of mGluR5 have shown potential in preclinical studies for improving cognitive function and reducing negative symptoms in schizophrenia, while negative allosteric modulators (NAMs) have shown promise in preclinical models of fragile X syndrome, Parkinson's disease, and addiction.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

Relative Biological Effectiveness (RBE) is a term used in radiation biology and medicine to describe the relative effectiveness of different types or energies of ionizing radiation in causing biological damage, compared to a reference radiation such as high-energy photons (X-rays or gamma rays). RBE takes into account the differences in biological impact between various types of radiation, which can be due to differences in linear energy transfer (LET), quality factor, and other factors. It is used to estimate the biological effects of mixed radiation fields, such as those encountered in radiotherapy treatments that combine different types or energies of radiation. The RBE value for a specific type of radiation is determined through experimental studies that compare its biological impact to that of the reference radiation.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

I'm sorry for any confusion, but "Fisheries" is not a term typically used in medical definitions. Fisheries are places or practices concerned with the catching, processing, or selling of fish, shellfish, and other forms of aquatic life. They can refer to commercial operations, recreational activities, or scientific research related to aquatic species. If you have any questions about medical terminology or concepts, I'd be happy to help answer those for you!

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

The Caribbean Region, also known as the Caribbean Basin or simply the Caribbean, is a geographical area that includes the Caribbean Sea and its surrounding islands and coasts. It is located in the tropical waters of the Atlantic Ocean, southeast of the Gulf of Mexico and North America, east of Central America, and south of the Greater Antilles.

The region consists of more than 7,000 islands, islets, reefs, and cays, which are divided into three main groups: the Greater Antilles, the Lesser Antilles, and the Lucayan Archipelago (which includes the Bahamas and the Turks and Caicos Islands). The Caribbean Region also includes the coasts of several countries in North, Central, and South America that border the Caribbean Sea.

The Caribbean Region is known for its diverse cultures, rich history, and unique biodiversity. It is home to a wide range of ecosystems, including coral reefs, mangroves, seagrass beds, rainforests, and dry forests, which support a variety of plant and animal species, many of which are found nowhere else in the world.

The Caribbean Region is also an important economic and political area, with several countries and territories that have strong ties to each other and to the United States, Canada, and Europe. Tourism, fishing, agriculture, and shipping are major industries in the region, and many of its islands serve as popular destinations for travelers from around the world.

Exploratory behavior refers to the actions taken by an individual to investigate and gather information about their environment. This type of behavior is often driven by curiosity and a desire to understand new or unfamiliar situations, objects, or concepts. In a medical context, exploratory behavior may refer to a patient's willingness to learn more about their health condition, try new treatments, or engage in self-care activities. It can also refer to the behaviors exhibited by young children as they explore their world and develop their cognitive and motor skills. Exploratory behavior is an important aspect of learning and development, and it can have a positive impact on overall health and well-being.

I'm sorry for any confusion, but "geological processes" is not a term typically used in medical definitions. Geological processes refer to the natural events that shape the Earth's surface and interior over time, such as volcanic activity, plate tectonics, erosion, and sedimentation. These processes are studied within the field of geology. If you have any questions related to medicine or health, I would be happy to try to help answer those!

A User-Computer Interface (also known as Human-Computer Interaction) refers to the point at which a person (user) interacts with a computer system. This can include both hardware and software components, such as keyboards, mice, touchscreens, and graphical user interfaces (GUIs). The design of the user-computer interface is crucial in determining the usability and accessibility of a computer system for the user. A well-designed interface should be intuitive, efficient, and easy to use, minimizing the cognitive load on the user and allowing them to effectively accomplish their tasks.

Sweetening agents are substances that are added to foods or drinks to give them a sweet taste. They can be natural, like sugar (sucrose), honey, and maple syrup, or artificial, like saccharin, aspartame, and sucralose. Artificial sweeteners are often used by people who want to reduce their calorie intake or control their blood sugar levels. However, it's important to note that some sweetening agents may have potential health concerns when consumed in large amounts.

I'm sorry for any confusion, but "Marsupialia" is not a medical term. It is a taxonomic category in biology, specifically an order that includes mammals known as marsupials. These are mammals that carry their young in a pouch after birth. Examples of marsupials include kangaroos, koalas, and opossums. If you have any medical questions or terms you would like defined, I'd be happy to help!

In a medical or scientific context, "Primates" is a biological order that includes various species of mammals, such as humans, apes, monkeys, and prosimians (like lemurs and lorises). This group is characterized by several distinct features, including:

1. A forward-facing eye position, which provides stereoscopic vision and depth perception.
2. Nails instead of claws on most digits, except for the big toe in some species.
3. A rotating shoulder joint that allows for a wide range of motion in the arms.
4. A complex brain with a well-developed cortex, which is associated with higher cognitive functions like problem-solving and learning.
5. Social structures and behaviors, such as living in groups and exhibiting various forms of communication.

Understanding primates is essential for medical and biological research since many human traits, diseases, and behaviors have their origins within this group.

In the context of medicine, classification refers to the process of categorizing or organizing diseases, disorders, injuries, or other health conditions based on their characteristics, symptoms, causes, or other factors. This helps healthcare professionals to understand, diagnose, and treat various medical conditions more effectively.

There are several well-known classification systems in medicine, such as:

1. The International Classification of Diseases (ICD) - developed by the World Health Organization (WHO), it is used worldwide for mortality and morbidity statistics, reimbursement systems, and automated decision support in health care. This system includes codes for diseases, signs and symptoms, abnormal findings, social circumstances, and external causes of injury or diseases.
2. The Diagnostic and Statistical Manual of Mental Disorders (DSM) - published by the American Psychiatric Association, it provides a standardized classification system for mental health disorders to improve communication between mental health professionals, facilitate research, and guide treatment.
3. The International Classification of Functioning, Disability and Health (ICF) - developed by the WHO, this system focuses on an individual's functioning and disability rather than solely on their medical condition. It covers body functions and structures, activities, and participation, as well as environmental and personal factors that influence a person's life.
4. The TNM Classification of Malignant Tumors - created by the Union for International Cancer Control (UICC), it is used to describe the anatomical extent of cancer, including the size of the primary tumor (T), involvement of regional lymph nodes (N), and distant metastasis (M).

These classification systems help medical professionals communicate more effectively about patients' conditions, make informed treatment decisions, and track disease trends over time.

Iridium is not a medical term, but rather a chemical element with the symbol Ir and atomic number 77. It's a transition metal that is part of the platinum group. Iridium has no known biological role in humans or other organisms, and it is not used in medical treatments or diagnoses.

However, iridium is sometimes mentioned in the context of geological time scales because iridium-rich layers in rock formations are associated with major extinction events, such as the one that marked the end of the Cretaceous period 65 million years ago. The leading hypothesis for this association is that large asteroid impacts can create iridium-rich vapor plumes that settle onto the Earth's surface and leave a distinct layer in the rock record.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Protein interaction mapping is a research approach used to identify and characterize the physical interactions between different proteins within a cell or organism. This process often involves the use of high-throughput experimental techniques, such as yeast two-hybrid screening, mass spectrometry-based approaches, or protein fragment complementation assays, to detect and quantify the binding affinities of protein pairs. The resulting data is then used to construct a protein interaction network, which can provide insights into functional relationships between proteins, help elucidate cellular pathways, and inform our understanding of biological processes in health and disease.

Bryozoa, also known as moss animals, are a phylum of mostly marine aquatic invertebrates that form colonies of tiny, modular individuals called zooids. Each zooid is typically only a few millimeters long and has a set of ciliated tentacles used for feeding and gas exchange.

Bryozoans are filter feeders, using their tentacles to capture plankton and organic particles from the water. They can be found in a variety of habitats, including shallow coastal waters, deep sea environments, and freshwater systems.

The colonies formed by bryozoans can take many different forms, ranging from encrusting mats to branching or leafy structures. Some species produce mineralized skeletons made of calcium carbonate, while others have soft, flexible bodies.

Bryozoa is a relatively small phylum, with around 6,000 known species. While they are not well-known outside of scientific circles, bryozoans play important ecological roles in many aquatic ecosystems, providing habitat and shelter for other organisms and contributing to the formation of complex communities.

Genomics is the scientific study of genes and their functions. It involves the sequencing and analysis of an organism's genome, which is its complete set of DNA, including all of its genes. Genomics also includes the study of how genes interact with each other and with the environment. This field of study can provide important insights into the genetic basis of diseases and can lead to the development of new diagnostic tools and treatments.

Baclofen is a muscle relaxant and antispastic medication. It is primarily used to treat spasticity, a common symptom in individuals with spinal cord injuries, multiple sclerosis, cerebral palsy, and other neurological disorders that can cause stiff and rigid muscles.

Baclofen works by reducing the activity of overactive nerves in the spinal cord that are responsible for muscle contractions. It binds to GABA-B receptors in the brain and spinal cord, increasing the inhibitory effects of gamma-aminobutyric acid (GABA), a neurotransmitter that helps regulate communication between nerve cells. This results in decreased muscle spasticity and improved range of motion.

The medication is available as an oral tablet or an injectable solution for intrathecal administration, which involves direct delivery to the spinal cord via a surgically implanted pump. The oral formulation is generally preferred as a first-line treatment due to its non-invasive nature and lower risk of side effects compared to intrathecal administration.

Common side effects of baclofen include drowsiness, weakness, dizziness, headache, and nausea. Intrathecal baclofen may cause more severe side effects, such as seizures, respiratory depression, and allergic reactions. Abrupt discontinuation of the medication can lead to withdrawal symptoms, including hallucinations, confusion, and increased muscle spasticity.

It is essential to consult a healthcare professional for personalized medical advice regarding the use and potential side effects of baclofen.

Sahney S, Benton MJ (April 2008). "Recovery from the most profound mass extinction of all time". Proceedings. Biological ... Cretaceous-Paleogene extinction event (End Cretaceous, K-Pg extinction, or formerly K-T extinction): 66 Ma, at the Cretaceous ( ... the End-Permian Extinction Event, the Smithian-Spathian Extinction, the Triassic-Jurassic Extinction Event, the Toarcian ... Holocene extinction: currently ongoing. Extinctions have occurred at over 1000 times the background extinction rate since 1900 ...
Cousins, S. A. O.; Vanhoenacker, D. (2011). "Detection of extinction debt depends on scale and specialisation". Biological ... Extinction debt is caused by many of the same drivers as extinction. The most well-known drivers of extinction debt are habitat ... As extinction debt may last longest near extinction thresholds, it may be hardest to detect the threat of extinction for ... Extinction debts may also be caused by invasive species or by climate change. Extinction debt may also occur due to the loss of ...
Biological Conservation. 92: 25-33. doi:10.1016/S0006-3207(99)00065-8. Christian, C. E. Consequences of biological invasion the ... Unfortunately, the threshold of ecological extinction has long passed due to over fishing now that many local extinctions of ... Estes, Duggins, and Rathburn (1989) recognize two other distinct types of extinction: Global extinction is defined as "the ... Ecological extinction is "the reduction of a species to such low abundance that, although it is still present in the community ...
... it is the Earth's most severe known extinction event, with the extinction of 57% of biological families, 83% of genera, 81% of ... extinction event (PTME), also known as the Late Permian extinction event, the Latest Permian extinction event, the End-Permian ... Permian-Triassic extinction event, Early Triassic extinctions, Lopingian extinctions, Events that forced the climate, ... The decline in biological silicate deposition resulting from the mass extinction of siliceous organisms acted as a positive ...
In January 2020, the UN's Convention on Biological Diversity drafted a plan to mitigate the contemporary extinction crisis by ... causing further extinctions. These are also called "chains of extinction". This is especially common with extinction of ... conservation biology uses the extinction vortex model to classify extinctions by cause. When concerns about human extinction ... Extinction may occur a long time after the events that set it in motion, a phenomenon known as extinction debt. Assessing the ...
Biological Conservation. 7 (2): 129-146. doi:10.1016/0006-3207(75)90052-X. Retrieved 21 November 2021. Holsinger, Kent. "Local ... Local extinctions are contrasted with global extinctions. Local extinctions mark a change in the ecology of an area. It has ... Helens eruption, which led to a fern spike extinction. Heat waves can lead to local extinction. In New Zealand, during the ... Local extinction, also extirpation, is the termination of a species (or other taxon) in a chosen geographic area of study, ...
The Extinction Crisis. Center for Biological Diversity. Vanishing: The extinction crisis is far worse than you think. CNN. ... The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event caused by humans damaging the environment ... portal World portal Biodiversity loss Extinction Rebellion Extinction risk from climate change Extinction symbol Extinction: ... The Holocene extinction is also known as the "sixth extinction", as it is possibly the sixth mass extinction event, after the ...
Biological Reviews. 92 (2): 776-814. doi:10.1111/brv.12255. ISSN 1469-185X. PMC 6849608. PMID 26888552. József Pálfy; Paul L. ... This is a list of extinction events, both mass and minor: "Big Five" major extinction events (see graphic) Marine extinction ... "On the causes of mass extinctions". Palaeogeography, Palaeoclimatology, Palaeoecology. Mass Extinction Causality: Records of ... Moreover, we have unleashed a mass extinction event, the sixth in roughly 540 million years, wherein many current life forms ...
"BioLib: Biological library". www.biolib.cz. Retrieved 2016-04-12. "Fossilworks: Phoenicopterus copei". fossilworks.org. ... The megafaunal extinctions covered a vast period of time and highly variable climatic situations. The earliest extinctions in ... Overall, the Holocene extinction can be characterised by the human impact on the environment. The Holocene extinction continues ... The extinctions during the Late Pleistocene are differentiated from previous extinctions by the widespread absence of ...
Series B, Biological Sciences. 370 (1663): 1-11. doi:10.1098/rstb.2014.0062. PMC 4305163. PMID 25602066. Weaver, Anne (2005). " ... Neanderthal extinction Neanderthals became extinct around 40,000 years ago. Hypotheses on the causes of the extinction include ... List of hominina (hominid) fossils Quaternary extinction event - Extinction event occurring during the late Quaternary period ... Their populations are so small that it has caused inbreeding, making them even more vulnerable to extinction. Neanderthals went ...
"Marine Late Triassic-Jurassic carbon-isotope excursion and biological extinction records: New evidence from the Qiangtang Basin ... Triassic-Jurassic extinction event, Extinction events, Early Jurassic extinctions, Rhaetian extinctions, Jurassic events, ... The extinction event marks a floral turnover as well, with estimates of the percentage of Rhaetian pre-extinction plants being ... However, their extinction rate at the Triassic-Jurassic boundary was not elevated. The highest extinction rates experienced by ...
A Biological Survey of North Dakota, Vernon, B. (1926) North American Fauna, Number 49: pp. 150-156. Cook (6 July 1964). "News ... List of extinct animals Extinction event Quaternary extinction event Holocene extinction Timeline of the evolutionary history ... 1986) Extinction of Harrington's mountain goat. Proceedings of the National Academy of Sciences, 83(4), 836-839. Faith, J.T. ( ... Proceedings of the Biological Society of Washington, 120(4), 367-376. Jones, T.L. et al. (2008) The protracted Holocene ...
"Extinctions and Biodiversity in the Fossil Record - Volume Two, The earth system: biological and ecological dimensions of ... Late Devonian mass extinctions at The Devonian Times. An excellent overview. Devonian Mass Extinction BBC "The Extinction files ... A second mass extinction called the Hangenberg event, also known as the end-Devonian extinction, occurred 359 million years ago ... The term primarily refers to a major extinction, the Kellwasser event, also known as the Frasnian-Famennian extinction, which ...
One of the most common of these poisonous chemicals is hydrogen sulfide, a biological waste product and major component of the ... event Late Devonian extinction Capitanian mass extinction event Permian-Triassic extinction event Triassic-Jurassic extinction ... only the Permian-Triassic mass extinction exceeds the Late Ordovician mass extinction in biodiversity loss. The extinction ... The extinction was divided into two major extinction pulses. The first pulse occurred at the base of the global Metabolograptus ...
Biological Sciences. 275 (1636): 759-65. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148. Lucas, S. G. (1 July 2017). " ... The impact of Olson's Extinction amplified the effects of the Permian-Triassic extinction event and the final extinction killed ... Olson's Extinction was a mass extinction that occurred 273 million years ago in the late Cisuralian or early Guadalupian of the ... Olson's Extinction represents the third highest peak of extinction rates seen in plants throughout the Paleozoic, and the ...
Biological Sciences. 325 (1228): 327-355. Bibcode:1989RSPTB.325..327F. doi:10.1098/rstb.1989.0092. Retrieved 19 April 2023. ... Extinction events, History of climate variability and change, Furongian extinctions, Early Ordovician extinctions, All stub ... End-Botomian mass extinction, circa 517 mya Dresbachian extinction event, circa 502 mya Geologic time scale Furongian, Late or ... and the Dresbachian extinction event about 502 million years ago. The Cambrian-Ordovician extinction event ended the Cambrian ...
It is revealed that Patrick is her biological father. She was taken away by Jack because Patrick became an alcoholic and when ... "Extinction review: Zombies on ice". NY Daily News. 29 July 2015. Retrieved 2016-10-23. "'Extinction': Film Review". The ... "Extinction (2015)". Rotten Tomatoes. Retrieved 2016-10-23. "Extinction Reviews - Metacritic". Metacritic. Retrieved 2016-10-23 ... Extinction (formerly known as Welcome to Harmony) is a 2015 post-apocalyptic horror film directed by Miguel Ángel Vivas who ...
Ricciardi, Anthony (January 21, 2007). "Are Modern Biological Invasions an Unprecedented Form of Global Change?". Conservation ... Based on observed extinction rates far beyond expected background extinction rates, we can predict that an event of a ... Kolbert uses the extinction of graptolites and other clades to explain glaciation as a mechanism for extinction. She then ... In the book, Kolbert chronicles previous mass extinction events, and compares them to the accelerated, widespread extinctions ...
Biological Sciences. 325 (1228): 469-477. doi:10.1098/rstb.1989.0100. ISSN 0962-8436. PMID 2574887. "Extinction - Causes". ... Human activity is the greatest cause of bird extinction around the world. The top human causes of bird extinction involve: the ... Its sudden extinction highlights the susceptibility of endemic island species, and the dodo serves as an early poster species ... "Extinction", American Bird Conservatory, Accessed July 4, 2019. Diamond, J. M.; Ashmole, N. P.; Purves, P. E. (1989-11-06). " ...
All ammonites were wiped out during or shortly after the K-Pg extinction event, caused by the Chicxulub impact. It has been ... Biological Reviews. 96 (2): 576-610. doi:10.1111/brv.12669. PMID 33438316. S2CID 231593832. Ward, Peter (1996). "Ammonoid ... The ammonoids as a group continued through several major extinction events, although often only a few species survived. Each ... Ammonites were devastated by the end-Triassic extinction, with only a handful of genera belonging to the family Psiloceratidae ...
Frankham, R (2005). "Genetics and extinction". Biological Conservation. 126 (2): 131-140. doi:10.1016/j.biocon.2005.05.002. ... sexual reproduction and other main biological features. It is also important in animal breeding and, of course, in conservation ... genetics, because inbreeding depression may be a relevant factor determining the extinction risk of endangered populations, and ...
cite book}}: ,journal= ignored (help) Frankham, Richard (November 2005). "Genetics and Extinction". Biological Conservation. ... Changes in genetic diversity, such as in loss of species, leads to a loss of biological diversity. Loss of genetic diversity in ... Livestock biodiversity can be lost as a result of breed extinctions and other forms of genetic erosion. As of June 2014, among ... 17 percent were classified as being at risk of extinction and 7 percent already extinct. There is now a Global Plan of Action ...
Frankham, Richard (2005-11-01). "Genetics and extinction". Biological Conservation. 126 (2): 131-140. doi:10.1016/j.biocon. ... Other more general techniques can be used to correct genetic factors that lead to extinction and risk of extinction. For ... Solutions to minimize the factors that lead to extinction and risk of extinction often overlap because the factors themselves ... In the biological realm increased genotypic diversity has been shown to help ecosystem recovery, as seen in a community of ...
"Cylindraspis peltastes". The Sixth Extinction. Archived from the original on 13 July 2013. Retrieved on 15 May 2015. Cheke, A ... Biological Conservation. 159: 501-506. doi:10.1016/j.biocon.2012.11.027 - via ResearchGate. " ... Reptile extinctions since 1500, Fauna of Rodrigues, Extinct turtles, Reptiles described in 1835, Species endangered by invasive ...
"Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines". PNAS. 114 ... The biological as well as the physical features of the environment are included. Some of the primary environmental challenges ... Scientists assert that human activity has pushed the earth into a sixth mass extinction event. The loss of biodiversity has ... Moreover, we have unleashed a mass extinction event, the sixth in roughly 540 million years, wherein many current life forms ...
"Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines". PNAS. 114 ... The biological as well as the physical features of the environment are included. Some of the primary environmental challenges ... Conservation biologists agree that humanity is on the verge of causing a mass extinction and that its primary driver is our ... Cafaro, Philip (2022). "Reducing Human Numbers and the Size of our Economies is Necessary to Avoid a Mass Extinction and Share ...
B, Biological Sciences. 303 (1113): 1-62. Bibcode:1983RSPTB.303....1W. doi:10.1098/rstb.1983.0080. ISSN 0080-4622. Cox, C. ... Lucas, S.G. (2017). "Permian tetrapod extinction events". Earth-Science Reviews. 170: 31-60. Bibcode:2017ESRv..170...31L. doi: ... Bolt, J.R.; Lombard, R.E. (1985). "Evolution of the amphibian tympanic ear and the origin of frogs". Biological Journal of the ... BOLT, JOHN R.; LOMBARD, R. ERIC (1985). "Evolution of the amphibian tympanic ear and the origin of frogs". Biological Journal ...
Dodson, C.H.; Gentry, A.H. (1991). "Biological Extinction in Western Ecuador". Annals of the Missouri Botanical Garden. 78 (2 ...
Brocklehurst, Neil (2020-06-10). "Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to resolving stratigraphic ... Biological Sciences. 278 (1725): 3731-3737. doi:10.1098/rspb.2011.0439. ISSN 0962-8452. PMC 3203498. PMID 21525061. Murray ( ... uncertainty". Proceedings of the Royal Society B: Biological Sciences. 287 (1928): 20200154. doi:10.1098/rspb.2020.0154. ISSN ...
Center for Biological Diversity. "How Eating Meat Hurts Wildlife and the Planet". Take Extinction Off Your Plate. Retrieved ... In 1939, the Bureau of Biological Survey of USDA and the Bureau of Fisheries in the Department of Commerce were transferred to ... Amy Atwood, of the Center for Biological Diversity, was quoted in the article describing Wildlife Services' work as "a ... Center for Biological Diversity, Predator Defense, the Natural Resources Defense Council, and others. These groups argue that ...
"The extinction of the dinosaurs". Biological Reviews. 90 (2): 628-642. doi:10.1111/brv.12128. hdl:20.500.11820/176e5907-26ec- ... and also note the role of flood basalt volcanism in other mass extinctions like the Permian-Triassic extinction event. They ... However, due to large error margins in the dating of the eruptions, the role of the Deccan Traps in the K-Pg extinction remains ... The Cretaceous-Paleogene extinction event, which occurred approximately 66 million years ago at the end of the Cretaceous, ...
Didier, Gilles; Laurin, Michel (9 December 2021). "Distributions of extinction times from fossil ages and tree topologies: the ... Biological Sciences. 287 (1928): 20200154. doi:10.1098/rspb.2020.0154. PMID 32517621. Laurin, Michel; Hook, Robert W. (2022). " ... Through his research studying terrestrial vertebrate fossils he identified intervals of extinction in the Permian and Triassic ... Brocklehurst, Neil; Day, Michael O.; Rubidge, Bruce S.; Fröbisch, Jörg (12 April 2017). "Olson's Extinction and the latitudinal ...
Center for Biological Diversity: WASHINGTON- A scientific study published today concludes that natural life-support systems ... The study, Vertebrates On the Brink as Indicators of Biological Annihilation and the Sixth Mass Extinction, was authored by ... The Center for Biological Diversity is a national, nonprofit conservation organization with more than 1.7 million members and ... "Extinction is a political choice," said Curry. "Weve reached a crossroads where our own future is at stake if we dont move ...
Sahney S, Benton MJ (April 2008). "Recovery from the most profound mass extinction of all time". Proceedings. Biological ... Cretaceous-Paleogene extinction event (End Cretaceous, K-Pg extinction, or formerly K-T extinction): 66 Ma, at the Cretaceous ( ... the End-Permian Extinction Event, the Smithian-Spathian Extinction, the Triassic-Jurassic Extinction Event, the Toarcian ... Holocene extinction: currently ongoing. Extinctions have occurred at over 1000 times the background extinction rate since 1900 ...
Global conservation targets to reverse biodiversity declines and halt species extinctions are not being met despite decades of ... Biological Invasions (2023). * Widespread extinction debts and colonization credits in United States breeding bird communities ... Hanski, I. & Ovaskainen, O. Extinction debt at extinction threshold. Conserv. Biol. 16, 666-673 (2002). ... Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol. Conserv. 142, 1166-1177 ...
Ongoing mass extinction causing biological annihilation, new study says by John Cannon 11 July 2017 ... How a mass extinction event gave us the majority of frogs alive today by Mike Gaworecki 11 July 2017 ... We are now in the middle of a "sixth great extinction" of animal species, scientists warn, with loss of species about 1,000 ... More than 40 percent of Madagascars freshwater life sliding toward extinction, IUCN finds by Mongabay.com 22 March 2018 ...
The missing link in biogeographic reconstruction: Accounting for lineage extinction rewrites history. 2022 - Published. ...
Experts warn of a "biological holocaust" as human-caused extinction "mutilates" the tree of life. 3 months ago ... Home » Experts warn of a "biological holocaust" as human-caused extinction "mutilates" the tree of life ... "During past mass extinctions there was no species with the power or interest to stop extinctions, and no conscious stake in ... Humans have caused so many changes to our planet that some experts say were on par with mass extinctions of eons past. We are ...
Vatican invites pro-abortion Population Bomb author to speak at Biological Extinction conference. Emily Morris2019-10-07T12: ... Titled Biological Extinction, the February conference will address what Vatican organizers call an unsustainable "imbalance" ...
"Biological extinction - lack of reproduction - is almost there now. If we go at this rate, we have at most, whats left of this ... Orca task force adds 13 recommendations at final meeting as biological extinction looms KNKX Public Radio , By Bellamy ...
Biological Conservation DOI: 10.1016/j.biocon.2019.01.020 Read more: Monarch butterflies beautiful wing scales enable their ... Huge global extinction risk for insects could be worse than we thought. By Michael Le Page ... Read more: Is life on Earth really at risk? The truth about the extinction crisis. ...
... www.cnrs.fr/en/cnrsinfo/60-species-extinctions-are-caused-biological-in… ...
1996-2023, The Marine Biological Laboratory, MARINE BIOLOGICAL LABORATORY, MBL, and the 1888 logo are registered trademarks and ... The University of Chicago Marine Biological Laboratory MBL In Your Inbox. Sign up to receive "The Collecting Net," our bi- ...
The biological and oceanographic consequences of the mass extinction are, however, still poorly understood. According to the ... Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous-Paleogene boundary Johan ... Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous-Paleogene boundary, ... model, the biological crisis at the K-Pg boundary resulted in a long-term reduction of export productivity in the early ...
Center for Biological Diversity. P.O. Box 710. Tucson, AZ 85702. United States. ... Two new studies show how population growth is driving many beloved animals to extinction. The first study, by Population ... This Halloween, join Center staff in raising awareness about extinction by dressing up as an endangered species. Check out our ... Changing hearts and minds is as important a step toward stopping extinctions as the lawsuits and scientific research the Center ...
NCAA All-American: Trans Athletes Competing With Biological Females Will Lead To Extinction Of Womens Sports. Culture Posted ... NCAA All-American: Trans Athletes Competing With Biological Females Will Lead To Extinction Of Womens Sports. ... Thomas recently defeated biological female opponents by up to 38 seconds at the University of Akrons Zippy Invitational, ... and it is that what you see right now in womens athletics is going to be the extinction of womens sports in general," said ...
Trophy hunting and other activities involving the targeting of high-quality male animals could lead to the extinction of ... Lead author Dr Rob Knell, from QMULs School of Biological and Chemical Sciences, said: "This demonstration that trophy hunting ... Trophy hunting may cause extinction in a changing environment. Date:. November 28, 2017. Source:. Queen Mary University of ... "Trophy hunting may cause extinction in a changing environment." ScienceDaily. www.sciencedaily.com. /. releases. /. 2017. /. 11 ...
Proceedings of the Royal Society B/Biological Sciences. Journal Article. https://www.doi.org/. 10.1098/rspb.2022.0543. ... especially if extinctions show spatial patterns, such as being clustered. Therefore, it is crucial to investigate extinctions ... However, it is unclear how local extinctions affect regional processes, such as the distribution of diversity in space, ... We found that local patch extinctions increased local diversity (α-diversity) and inter-patch diversity (β-diversity) by ...
SUDOANG , To the rescue of the European eel, a species of high biological value in critical danger of extinction ...
Biological Annihilation And The Sixth Mass Extinction. Source: Resilience Human beings are now waging war against life itself ... Health Magazine Covers Climate Engineering: "Heavy Metal Contamination And Mass Extinction - Whats The Connection?". As the ... Dane Wigington GeoengineeringWatch.org Climate engineering is nothing short of weather and biological warfare. Not only are our ... Dane Wigington geoengineeringwatch.org Our once thriving planet is spiraling toward complete meltdown and total extinction. ...
Biological Annihilation And The Sixth Mass Extinction. Source: Resilience Human beings are now waging war against life itself ... They occur naturally, but researchers are concerned that more and more of these biological deserts are developing due to human ... Health Magazine Covers Climate Engineering: "Heavy Metal Contamination And Mass Extinction - Whats The Connection?". As the ... Dane Wigington GeoengineeringWatch.org Climate engineering is nothing short of weather and biological warfare. Not only are our ...
Evolution Of Extinction, Consequence Of Solution, Banishing Illusion... ... Evolution Of Extinction. Reduction in Planetary Bio Diversity. Self Awareness Self Perseverance Biological Warfare. ... Evolution Of Extinction. 1. Expulsion Of Fury. Time has com - to and end FOR THE CENTER OF LIFE. Metamorphosis of a STAR. Fury ... On the Extinction of Man. Death. Existence of our species ends. Bred to take more than it gives BLEED DRY ALL LIFE. Eradication ...
Photo by Rhett A. Butler 94 of the worlds 103 lemur species are at risk of extinction according to a new assessment by the ... But Madagascars biological bounty has been under siege for nearly a year in the aftermath of a political crisis which saw its ... 94 of the worlds 103 lemur species are at risk of extinction according to a new assessment by the International Union for ... "This new assessment highlights the very high extinction risk faced by Madagascars unique lemur fauna and it is indicative of ...
Arkhipova, I. R., & Meselson, M. (2005). "Deleterious transposable elements and the extinction of asexuals." Bioessays, 27(1), ... 1996-2023, The Marine Biological Laboratory, MARINE BIOLOGICAL LABORATORY, MBL, and the 1888 logo are registered trademarks and ... The University of Chicago Marine Biological Laboratory MBL In Your Inbox. Sign up to receive "The Collecting Net," our bi- ... Kenney, D. E., & Borisy, G. G. (2009). "Thomas Hunt Morgan at the marine biological laboratory: naturalist and experimentalist. ...
... new study shows yet again that the very survival of humanity is at stake if we dont end the heartbreaking wildlife extinction ... In a statement Monday, the Center for Biological Diversity (CBD) noted that such comments are unusual for a scientific journal. ... Given that extinction breeds extinctions and the consequences of such losses, the study recommends that the International ... Given that extinction breeds extinctions and the consequences of such losses, the study recommends that the International ...
The response was mass extinction events, when many species went extinct followed by a very slow recovery. The history of coral ... What we find is reefs were particularly impacted in mass extinctions, taking many millions of years to recover. These intervals ... Full text of Veron 2008 here: Mass extinctions and ocean acidification: biological constraints on geological dilemmas 0 0 ... The end Cretaceous extinction is a case in point. Its quite likely that this extinction was the result of a long environmental ...
Read the latest Research articles in Biological techniques from Nature ... Ancient plant survived the formation of the Himalayas, but might now be facing extinction. ... A study shows that water can control macroscopic properties of biological materials through the hydration force, giving rise to ... The Human Breast Cell Atlas identifies 12 major breast cell types and 58 biological cell states, revealing abundant pericyte, ...
Peterson, A., & Taylor, B. (1980). The biological approach to adolescence: Biological change and psychological adaptation. In J ... Kim, Jee Hyun; Richardson, Rick (February 2010). "New Findings on Extinction of Conditioned Fear Early in Development: ... Biological development. Puberty in general. Main article: Puberty. Upper body of a teenage boy. The structure has changed to ... In addition to biological factors, an adolescents sexual socialization is highly dependent upon whether their culture takes a ...
... viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics ... causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of ... resistance and biological implications. Virus Res. 2005, 107, 173-181. [Google Scholar] [CrossRef] [PubMed] ... Mutagenic Effects of Ribavirin on Hepatitis E Virus-Viral Extinction versus Selection of Fitness-Enhancing Mutations by Daniel ...
... with marine species extinctions and plant extinctions not yet looking as grave as the rate of extinctions seen in many land ... "Current extinction rates, notably in terrestrial invertebrates, are far higher than background extinction rates," the authors ... "We also show that use of IUCN Red List extinction data to determine current extinction rates inevitably leads to dramatic under ... assumption is often made that assessments of extinction rates of mammals and birds are reflective of extinction rates of all ...
Support the claim that if mass extinction hadnt occurred, modern organisms wouldnt exist.. ... Mass extinction is, therefore, when a large number of species becomes extinct in a relatively short time. ... Support the claim that if mass extinction hadnt occurred, modern organisms wouldnt exist. ... When all members of the same species die, we call that extinction. ...
Extinction: Cuvier * Evolution Happens: Lamarck * Developmental Similarities: von Baer * Biostratigraphy: Smith * ... Biological Anthropology/Unit 1: Evolutionary Theory/History of Evolutionary Thought. From WikiEducator ... Retrieved from "https://wikieducator.org/index.php?title=Biological_Anthropology/Unit_1:_Evolutionary_Theory/History_of_ ...
  • The study , Vertebrates On the Brink as Indicators of Biological Annihilation and the Sixth Mass Extinction , was authored by Gerardo Ceballos, Paul Ehrlich and Peter Raven. (biologicaldiversity.org)
  • Marine extinction intensity during the Phanerozoic % Millions of years ago (H) K-Pg Tr-J P-Tr Cap Late D O-S An extinction event (also known as a mass extinction or biotic crisis) is a widespread and rapid decrease in the biodiversity on Earth. (wikipedia.org)
  • In May 2020, studies suggested that the causes of the mass extinction were global warming, related to volcanism, and anoxia, and not, as considered earlier, cooling and glaciation. (wikipedia.org)
  • After all, animals go extinct regularly on geological timescales, but this mass extinction is largely human-driven. (appton.co)
  • Beyond any doubt, the human-driven sixth mass extinction is more severe than previously assessed and is rapidly accelerating," the authors explained. (appton.co)
  • The other new study, from researchers at Stanford and the National Autonomous University of Mexico , warns that human-driven mass extinction is eliminating entire branches of the tree of life. (biologicaldiversity.org)
  • It is commonly accepted that the mass extinction associated with the Cretaceous-Paleogene (K-Pg) boundary (∼ 66 Ma) is related to the environmental effects of a large extraterrestrial impact. (copernicus.org)
  • The biological and oceanographic consequences of the mass extinction are, however, still poorly understood. (copernicus.org)
  • Brinkhuis, H., and Speijer, R. P.: Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous-Paleogene boundary, Biogeosciences, 14, 885-900, https://doi.org/10.5194/bg-14-885-2017, 2017. (copernicus.org)
  • The Cretaceous-Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. (copernicus.org)
  • After years of warnings from scientists that the world is witnessing Earth's sixth mass extinction, a new study concludes that the current crisis is not only 'human caused and accelerating' but also 'may be the most serious environmental threat to the persistence of civilization, because it is irreversible. (commondreams.org)
  • The response was mass extinction events, when many species went extinct followed by a very slow recovery. (skepticalscience.com)
  • Figure 1: Timeline of mass extinction events. (skepticalscience.com)
  • The five named vertical bars indicate mass extinction events. (skepticalscience.com)
  • The first great mass extinction event took place at the end of the Ordovician, when according to the fossil record, 60% of all genera of both terrestrial and marine life worldwide were exterminated. (skepticalscience.com)
  • 360 million years ago in the Late Devonian period, the environment that had clearly nurtured reefs for at least 13 million years turned hostile and the world plunged into the second mass extinction event. (skepticalscience.com)
  • The fossil record of the end Permian mass extinction reveals a staggering loss of life: perhaps 80-95% of all marine species went extinct. (skepticalscience.com)
  • The end Triassic mass extinction is estimated to have claimed about half of all marine invertebrates. (skepticalscience.com)
  • The end Cretaceous mass extinction 65 million years ago is famously associated with the demise of the dinosaurs. (skepticalscience.com)
  • What Veron 2008 found was each mass extinction event corresponded to periods of quickly changing atmospheric CO2. (skepticalscience.com)
  • For years, scientists have rung the alarm bell , warning that grave declines in animal biodiversity around the globe herald the onset of what will be Earth's sixth mass extinction. (sciencealert.com)
  • Drastically increased rates of species extinctions and declining abundances of many animal and plant populations are well documented, yet some deny that these phenomena amount to mass extinction," says bioscientist Robert Cowie from the University of Hawai'i at Mānoa. (sciencealert.com)
  • Since 1500 CE, about 1.5 percent of evaluated mammal and bird species have gone extinct per the IUCN's count, the researchers say - which isn't so far off the 'background' extinction rate that exists in between mass extinction events. (sciencealert.com)
  • Including invertebrates was key to confirming that we are indeed witnessing the onset of the sixth mass extinction in Earth's history," Cowie says . (sciencealert.com)
  • Mass extinction is, therefore, when a large number of species becomes extinct in a relatively short time. (quizlet.com)
  • The Sixth Mass Extinction: fact, fiction or speculation? (google.fr)
  • Explaining the ∼5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. (lu.se)
  • Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction. (lu.se)
  • While this news might have a silver lining if humanity was at least arresting the trends driving these mass extinctions, the exact opposite is true. (appton.co)
  • Together they are ranked by many scientists as the second-largest of the five major extinctions in Earth's history in terms of percentage of genera that became extinct. (wikipedia.org)
  • Earth's largest extinction killed 53% of marine families, 84% of marine genera, about 81% of all marine species and an estimated 70% of terrestrial vertebrate species. (wikipedia.org)
  • A few mass extinctions occurred during Earth's geological history. (quizlet.com)
  • Earth's tallest land mammal, the giraffe, is now threatened with extinction, according to an update to an international list of threatened species. (livescience.com)
  • At this rate of extinctions, we are in for a very unpleasant shock in the near future. (appton.co)
  • Depending on where you look, however, some kinds of species are faring better than others in the current crisis, the researchers point out, with marine species extinctions and plant extinctions not yet looking as grave as the rate of extinctions seen in many land animals. (sciencealert.com)
  • They support estimates that one-fifth of all species are in danger of extinction by midcentury, and half or more by 2100, if governments don't take action to stop extinction. (biologicaldiversity.org)
  • 2018. British phenological records indicate high diversity and extinction rate among late-summer-flying pollinators . (sussex.ac.uk)
  • This new study shows yet again that the very survival of humanity is at stake if we don't end the heartbreaking wildlife extinction crisis," said Tierra Curry, a senior scientist at the Center for Biological Diversity. (biologicaldiversity.org)
  • The plan calls for the United States to become a global leader in protecting wildlife by declaring the extinction crisis a national emergency, creating new protected areas, and prioritizing wildlife protection over other uses of public lands. (biologicaldiversity.org)
  • The response to the coronavirus outbreak has shown us that rapid change is possible and that funding is available to address the extinction crisis," said Curry. (biologicaldiversity.org)
  • model, the biological crisis at the K-Pg boundary resulted in a long-term reduction of export productivity in the early Paleocene. (copernicus.org)
  • What we do to deal with the current extinction crisis in the next two decades will define the fate of millions of species,' warned Ceballos Gonzalez. (commondreams.org)
  • This IUCN Red List update shows that the scale of the global extinction crisis may be even greater than we thought," Inger Andersen, the IUCN's director general, said in a statement . (livescience.com)
  • The Center for Biological Diversity is a national, nonprofit conservation organization with more than 1.7 million members and online activists dedicated to the protection of endangered species and wild places. (biologicaldiversity.org)
  • In a statement Monday, the Center for Biological Diversity (CBD) noted that such comments are unusual for a scientific journal. (commondreams.org)
  • The annual award is given by the Center for Biological Diversity to a person or a group who has aggressively sought to drive endangered species extinct or destroy America's natural heritage. (biologicaldiversity.org)
  • If you answered the elephant - or rhino - or tiger, you certainly fingered some of the planet's most threatened and charismatic creatures, but according to the Center for Biological Diversity there's one mammal more trafficked than all of these combined. (loe.org)
  • Sarah Uhlemann of the Center for Biological Diversity joins us now. (loe.org)
  • Permian-Triassic extinction event (End Permian): 252 Ma, at the Permian-Triassic transition. (wikipedia.org)
  • The whole late Permian was a difficult time, at least for marine life, even before the P-T boundary extinction. (wikipedia.org)
  • Global conservation targets to reverse biodiversity declines and halt species extinctions are not being met despite decades of conservation action. (nature.com)
  • Global Biodiversity Outlook 4 (Secretariat of the Convention on Biological Diversity, 2014). (nature.com)
  • Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. (nature.com)
  • Extinction debt: a challenge for biodiversity conservation. (nature.com)
  • This new assessment highlights the very high extinction risk faced by Madagascar's unique lemur fauna and it is indicative of the grave threats to Madagascar biodiversity as a whole, which is vital to supporting its people," added Russ Mittermeier, President of Conservation International (CI) and Chair of IUCN/SSC's Primate Specialist Group. (mongabay.com)
  • In a new study , Cowie and his fellow researchers seek to refute the deniers by focusing the spotlight on the decline of invertebrate creatures, which receive significantly less attention than vertebrate animals in discussions of biodiversity loss - even in the esteemed IUCN Red List of Threatened Species , arguably the world's foremost record of species extinctions, yet skewed towards birds, mammals, and amphibians. (sciencealert.com)
  • Almost all birds and mammals but only a minute fraction of invertebrates have been evaluated against conservation criteria… The implicit, and sometimes explicit, assumption is often made that assessments of extinction rates of mammals and birds are reflective of extinction rates of all biodiversity, an assumption accepted not only among the vertebrate-centric media but also among many vertebrate-centric scientific and conservation organizations. (sciencealert.com)
  • Nonetheless, particular extinction rates so far suggested by the IUCN Red List are not something that reveal the full picture of biodiversity loss, the researchers say. (sciencealert.com)
  • We continue to lose biodiversity at a rate never before seen in history - extinction rates may be up to 1000 times higher than the historical background rate. (smh.com.au)
  • A target to halt species extinction rates by 2010 was not reached by any of the 193 signatories to the UN biodiversity treaty, including Australia. (smh.com.au)
  • We identify both the underlying drivers of biodiversity and the potential proxies that are fundamental for understanding reciprocal linkages between biological and cultural diversity in oases. (bvsalud.org)
  • The extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-economic and environmental factors, which exhibit high variation among countries. (bvsalud.org)
  • Last year, a landmark report by scientists from IPBES (the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services ) stated that one million species are facing extinction. (lu.se)
  • This year, the Convention on Biological Diversity's Global Biodiversity Outlook, which tracks the progress of the past 10 years of the Aichi targets, found that only six of the 20 targets had been partially met. (lu.se)
  • Threatened species are on average moving closer to extinction due to the impact of humans and climate change. (smh.com.au)
  • U.S. land vertebrates on the brink of extinction include the Humboldt marten, Sierra Nevada fisher, eastern red wolf, Kauai 'Akepa, Maui parrotbill and Attwater's prairie chicken. (biologicaldiversity.org)
  • They also found that 84% of land vertebrate species with populations under 5,000 live in the same areas as those on the brink of extinction. (commondreams.org)
  • These differences stem from disagreement as to what constitutes a "major" extinction event, and the data chosen to measure past diversity. (wikipedia.org)
  • The Late Devonian was an interval of high diversity loss, concentrated into two extinction events. (wikipedia.org)
  • However, it is unclear how local extinctions affect regional processes, such as the distribution of diversity in space, especially if extinctions show spatial patterns, such as being clustered. (santafe.edu)
  • We found that local patch extinctions increased local diversity (α-diversity) and inter-patch diversity (β-diversity) by delaying the exclusion of inferior competitors. (santafe.edu)
  • Importantly, recolonization dynamics depended more strongly on the spatial distribution than on the number of patch extinctions: clustered local patch extinctions resulted in slower recovery, lower α-diversity and higher β-diversity. (santafe.edu)
  • The executive-secretary of the UN's Convention on Biological Diversity, Ahmed Djoghlaf, said: ''The news is not good. (smh.com.au)
  • The service aims to protect species from extinction, restore habitats, and foster biological diversity. (fws.gov)
  • The update was released today (Dec. 8) at the 13th Conference of the Parties to the Convention on Biological Diversity in Cancun, Mexico. (livescience.com)
  • The diversity of life sensu lato comprises both biological and cultural diversity, described as "biocultural diversity. (bvsalud.org)
  • Finally, we discuss follow-up research questions to better understand the underlying mechanisms that control the coupling and decoupling of biological and cultural diversity in oases. (bvsalud.org)
  • The 15th Conference of the Parties (COP15) of the Convention on Biological Diversity (CBD) is due to take place in Kunming in China next year. (lu.se)
  • Preparatory meetings have been ongoing on how to revise the Convention on Biological Diversity - the international framework for nature conservation and restoration - and the targets therein. (lu.se)
  • Covid-19 has stalled the progress of UN talks about the Convention on Biological Diversity (CBD). (lu.se)
  • Titled Biological Extinction, the February conference will address what Vatican organizers call an unsustainable "imbalance" between the world's population and what the earth is capable of producing. (cal-catholic.com)
  • 94 of the world's 103 lemur species are at risk of extinction according to a new assessment by the International Union for Conservation of Nature (IUCN) released by the group's Species Survival Commission during a workshop this week. (mongabay.com)
  • However, if this were the cause of coral reef extinction, 99% of the world's coral species would be wiped out in weeks or months. (skepticalscience.com)
  • In a statement unusual in a scientific journal, the authors move beyond science and state that is a "moral imperative" for humans to take action to stop extinction. (biologicaldiversity.org)
  • a scientific and moral imperative for scientists to take whatever actions they can to stop extinction,' according to the study. (commondreams.org)
  • The report states that if the rate of species extinction hits crucial ''tipping points,'' not yet identified, there is a high risk that natural systems that help crops grow and keep water clean could be damaged irreversibly. (smh.com.au)
  • Obviously, species extinction is different from cultural extinction is different from linguistic extinction," Shankman says. (colorado.edu)
  • If all now-endangered genera were to vanish by 2100, extinction rates would be 354 (average) or 511 (for mammals) times higher than background rates, meaning that genera lost in three centuries would have taken 106,000 and 153,000 (years) to become (extinct) in the absence of humans. (appton.co)
  • Yet overall the researchers found that "most recorded extinctions have occurred in birds, followed by amphibians, mammals, and then reptiles. (appton.co)
  • We also show that use of IUCN Red List extinction data to determine current extinction rates inevitably leads to dramatic under-estimation of rates, except for birds, mammals and perhaps amphibians. (sciencealert.com)
  • Dedicated conservation biologists and conservation agencies are doing what they can, focused mainly on threatened birds and mammals, among which some species may be saved from the extinction that would otherwise ensue," the researchers explain . (sciencealert.com)
  • The evidence regarding plants is less clear, but new taxa became dominant after the extinction. (wikipedia.org)
  • The extinction of Late Triassic palynomorph species is coincident with a spike in the spore/pollen ratio and approximately synchronous with the last appearances of tetrapod taxa and ichnofossil genera. (geoscienceworld.org)
  • Even though many of these weapons reach the highest level of power (in the order of megatons), they are no match for the asteroid that caused the Cretaceous extinction event. (listverse.com)
  • The infamous fifth extinction, commonly known as the Cretaceous-Paleocene event, wiped out 75 percent of all species some 65 million years ago. (colorado.edu)
  • The biological carbon cycle has a very fast circulation rate compared to the geological cycle. (lu.se)
  • Whereas the biological cycle is complete with the life span of a living organism, the geological cycle regards the formation and weathering of rocks - a very slow process - and so the circulation rate of the geological carbon cycle can take around 600 million years! (lu.se)
  • This means that there is much more carbon bound within the geological cycle, but also that changes in the carbon distribution can be noticed much faster in the biological cycle. (lu.se)
  • We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. (copernicus.org)
  • Therefore, it is crucial to investigate extinctions and their consequences in a spatially explicit framework. (santafe.edu)
  • Extinction has dire consequences not only for the species that are wiped out but also for humanity, including an increased risk of health threats like Covid-19, which has killed over 376,000 people worldwide and infected more than 6.3 million, coauthor and Stanford biologist Paul Ehrlich explained in a statement Monday. (commondreams.org)
  • Given that 'extinction breeds extinctions' and the consequences of such losses, the study recommends that the International Union for Conservation of Nature (IUCN) 'immediately' classify all species with populations under 5,000 as critically endangered. (commondreams.org)
  • Based on "bold" extrapolations from a number of previous studies examining invertebrate declines, the researchers suggest between 7.5 to 13 percent of all the roughly 2 million known plant and animal species on Earth could have gone extinct since 1500 CE - an extinction toll orders of magnitude greater than what the IUCN recognizes. (sciencealert.com)
  • The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. (lu.se)
  • Nature-oriented tourists and conservation dollars are returning to Madagascar, buoying efforts to protect their habitat and support local enterprises and communities that benefit from Madagascar's incredible biological wealth. (mongabay.com)
  • A common goal of conservation biology is to determine the ecological characteristics that relate to a species' risk of extinction. (googleapis.com)
  • so determining the ecological characteristics that exacerbate their extinction risk may be of importance to bat conservation. (googleapis.com)
  • analyzed dietary breadth as a correlate of extinction risk in insectivorous bats and reported no relationship between diet and The World Conservation Union (IUCN) ranking of a species. (googleapis.com)
  • Following postdoctoral research projects at the University of Wyoming and UC Davis and a Lecturer position at the University of York (UK), he joined the Department of Biological Science at CSU Fullerton in 2002, where he teaches courses in ecology, conservation biology, and mammalogy, as well as graduate courses. (fullerton.edu)
  • Current generic extinction rates will likely greatly accelerate in the next few decades due to drivers accompanying the growth and consumption of the human enterprise such as habitat destruction, illegal trade and climate disruption," Ceballosa and Ehrlich write. (appton.co)
  • The outlook finds extinction rates of plant and animal species will continue and potentially accelerate far above the natural rate across this century. (smh.com.au)
  • Lead author Dr Rob Knell, from QMUL's School of Biological and Chemical Sciences, said: "This demonstration that trophy hunting can potentially push otherwise resilient populations to extinction when the environment changes is concerning. (sciencedaily.com)
  • Due to the effects of climate change, some populations may decline, many will shift their ranges substantially, and still others will face increased risk of extinction. (fws.gov)
  • The insights gleaned from this research are poised to contribute significantly to our understanding of extinction risk and resilience in bird populations. (lu.se)
  • Ordovician-Silurian extinction events (End Ordovician or O-S): 445-444 Ma, just prior to and at the Ordovician-Silurian transition. (wikipedia.org)
  • In the course Shankman, Sauther and their students have explored various modes of extinction - evolutionary extinction, genocide, cultural and linguistic extinction, apocalyptic scenarios and the ongoing catastrophic loss of species known as the "sixth extinction," a modern sequel to the "big five" prehistoric events that completely reconfigured life on Earth. (colorado.edu)
  • Human activities put ecosystems under increasing pressure, often resulting in local extinctions. (santafe.edu)
  • This is also the largest known extinction event for insects. (wikipedia.org)
  • It occurs when the rate of extinction increases with respect to the background extinction rate and the rate of speciation. (wikipedia.org)
  • Lead author Gerardo Ceballos Gonzalez, a professor of ecology at the National Autonomous University of Mexico, told CNN that approximately 173 species went extinct between 2001 and 2014, which 'is 25 times more extinct species than you would expect under the normal, background, extinction rate. (commondreams.org)
  • Scientists recognize that species continually disappear at a background extinction rate estimated at about one species per million species per year, with new species replacing the lost in a sustainable fashion. (motherjones.com)
  • That's not to say meteorites or global warming played no part in coral extinction - both have been contributing factors at various times. (skepticalscience.com)
  • Compared with previous mass extinctions the Earth has experienced due to catastrophic events including volcanic eruptions or collision with an asteroid, the one that is happening now 'is entirely our fault,' Ceballos Gonzalez added. (commondreams.org)
  • The Chicxulub asteroid, which caused the dinosaurs' extinction, released an energy equivalent to 10 billion Hiroshima atomic bombs at the moment of impact. (listverse.com)
  • This extinction annihilated coral reefs and numerous tropical benthic (seabed-living) animals such as jawless fish, brachiopods, and trilobites. (wikipedia.org)
  • To find the major driver of coral extinction, Veron 2008 looks at the possible options and eliminates many as the primary cause. (skepticalscience.com)
  • The fossil record shows coral extinction occurred over much longer periods. (skepticalscience.com)
  • But they cannot fully explain the nature of coral extinctions as observed in the fossil record. (skepticalscience.com)
  • While the number of species in extinction increases, the effect is adverse: instead of reducing the traffic, the demand for these species has intensified due to its rarity. (scirp.org)
  • The scientists consider it far from a good thing that so many extinctions have occurred at a time when humans have had the technology to record them. (appton.co)
  • The United Nations has warned that one million species are at risk of extinction. (biologicaldiversity.org)
  • Several recent papers evaluate the relationship between ecological characteristics and extinction risk in bats. (googleapis.com)
  • These studies report that extinction risk is negatively related to geographic range size and positively related to habitat specialization. (googleapis.com)
  • Here, we evaluate the hypothesis that extinction risk is also related to dietary specialization in insectivorous vespertilionid bats using both traditional and phylogenetically-controlled analysis of variance. (googleapis.com)
  • Additional analyses show that dietary breadth is not correlated to geographic range size or wing morphology, characteristics previously found to correlate with extinction risk. (googleapis.com)
  • however, the large variation in dietary breadth within species of least concern suggests that diet alone cannot explain extinction risk. (googleapis.com)
  • Our results may have important implications for the development of predictive models of extinction risk and for the assignment of extinction risk to insectivorous bat species. (googleapis.com)
  • Similar analyses should be conducted on additional bat families to assess the generality of this relationship between niche breadth and extinction risk. (googleapis.com)
  • They suggested that diet may not correlate with extinction risk in insectivorous bats because fecal analysis, the most common method of diet assessment in bats, may not be precise enough to elucidate the level of dietary specialization. (googleapis.com)
  • KEY natural processes that sustain human life, such as crop production and clean water, face a high risk of ''rapid degradation and collapse'' because of the record rate of extinction of animal and plant species. (smh.com.au)
  • No new sources of disease have been identified, and current practices, which combine improved recognition of potentially infected persons with new disinfection methods for fragile surgical instruments and biological products, should continue to minimize the risk for iatrogenic disease until a blood screening test for the detection of preclinical infection is validated for human use. (cdc.gov)
  • [17] As with most human biological processes, this specific order may vary among some individuals. (wikipedia.org)
  • The authors of today's study support the U.N. estimate and conclude that future rates of extinction are probably underestimated. (biologicaldiversity.org)
  • They were originally identified as outliers on a general trend of decreasing extinction rates during the Phanerozoic, but as more stringent statistical tests have been applied to the accumulating data, it has been established that multicellular animal life has experienced at least five major and many minor mass extinctions. (wikipedia.org)
  • The researchers predict that in some circumstances, when an animal population is faced with a changing environment, harvesting rates of as low as five per cent of these high quality males can cause extinction. (sciencedaily.com)
  • Current extinction rates, notably in terrestrial invertebrates, are far higher than background extinction rates," the authors write . (sciencealert.com)
  • The findings will be used this year to negotiate a global agreement to slow extinction rates. (smh.com.au)
  • Similar to plant and animal species, cultures and languages are threatened by extinction. (bvsalud.org)
  • That's precisely why Shankman and anthropology professor Michelle Sauther co-created their 2013 graduate-level seminar, "Extinction: Biological and Cultural Perspectives. (colorado.edu)
  • Sauther brings expertise in biological anthropology and years of research on how primates on Madagascar are adapting to natural and human-induced biological change. (colorado.edu)
  • These two closely-spaced extinction events collectively eliminated about 19% of all families, 50% of all genera and at least 70% of all species. (wikipedia.org)
  • Indeed, according to a recent study published in the journal Proceedings of the National Academy of Sciences, humans have caused so many extinctions in the last 500 years that it would have taken 18,000 years for those same genera to have naturally vanished if we had never existed. (appton.co)
  • Estimates of the number of major mass extinctions in the last 540 million years range from as few as five to more than twenty. (wikipedia.org)
  • What we find is reefs were particularly impacted in mass extinctions, taking many millions of years to recover. (skepticalscience.com)
  • Humans have caused so many changes to our planet that some experts say we're on par with mass extinctions of eons past. (appton.co)
  • Her death marked the end of a chapter that began in 1803 when the British created a penal colony on Tasmania, an island off the south coast of Australia, and ended with the extinction of the Palawa people seven decades later. (colorado.edu)