Epithelium
Epithelium, Corneal
Seminiferous Epithelium
Epithelial Cells
Retinal Pigment Epithelium
Olfactory Mucosa
Respiratory Mucosa
Intestinal Mucosa
Immunohistochemistry
Trachea
Cornea
Bronchi
Ciliary Body
In Situ Hybridization
Microscopy, Electron
Conjunctiva
Nasal Mucosa
RNA, Messenger
Metaplasia
Cell Differentiation
Keratins
Cells, Cultured
Microscopy, Electron, Scanning
Morphogenesis
Organ Culture Techniques
Mucous Membrane
Colon
Mouth Mucosa
Gene Expression Regulation, Developmental
Esophagus
Reverse Transcriptase Polymerase Chain Reaction
Mice, Transgenic
Lung
Histocytochemistry
Rabbits
Tongue
Epithelial Attachment
Uterus
Mesoderm
Immunoenzyme Techniques
Limbus Corneae
Fluorescent Antibody Technique, Indirect
Precancerous Conditions
Gene Expression
Fallopian Tubes
Cilia
Lens, Crystalline
Retina
Signal Transduction
Intestine, Small
Intestines
Choroid
Mucins
Tight Junctions
Endometrium
Barrett Esophagus
Respiratory System
Goblet Cells
Fluorescent Antibody Technique
Eye
Cell Division
Palate
Blotting, Western
Intercellular Junctions
Mice, Knockout
Sertoli Cells
Pulmonary Alveoli
Stem Cells
Basement Membrane
Membrane Proteins
Cell Polarity
Epididymis
Gene Expression Regulation
Testis
Bruch Membrane
Spermatogenesis
Lipofuscin
Molecular Sequence Data
Choroid Plexus
Microscopy, Confocal
Odontogenesis
Gastric Mucosa
Olfactory Receptor Neurons
Mucus
Seminiferous Tubules
Digestive System
Hyperplasia
Corneal Stroma
Pregnancy
Gills
Fibroblast Growth Factor 10
Cell Count
Tissue Distribution
Homeodomain Proteins
Prostate
Cell Movement
Rats, Sprague-Dawley
Disease Models, Animal
Transcription Factors
Cattle
Chick Embryo
Apoptosis
Microscopy, Fluorescence
Base Sequence
Models, Biological
Microscopy, Electron, Transmission
Caco-2 Cells
Macular Degeneration
Mucin 5AC
Amnion
Olfactory Marker Protein
Zonula Occludens-1 Protein
Vomeronasal Organ
Enterocytes
Olfactory Bulb
Iris
Phenotype
Urinary Bladder
Cadherins
Cervix Uteri
Necturus maculosus
Biological Transport
Jejunum
Turbinates
Labyrinth Supporting Cells
Mice, Inbred Strains
Ovary
Sodium
Gallbladder
Permeability
Uteroglobin
Exocrine Glands
DNA Primers
Nasal Cavity
Olfactory Nerve
Eye Injuries
Amiloride
Bronchioles
Duodenum
Ileum
Diffusion Chambers, Culture
Keratin-14
Cell Membrane Permeability
Gene Expression Profiling
Swine
Blood-Testis Barrier
Retinal Degeneration
Stromal Cells
Up-Regulation
Cell Transformation, Neoplastic
Bacterial Adhesion
Biological Transport, Active
Polymerase Chain Reaction
Bromodeoxyuridine
Carrier Proteins
Culture Techniques
Trans-Activators
Cell Membrane
Amino Acid Sequence
Cystic Fibrosis Transmembrane Conductance Regulator
Sheep
beta Catenin
Tissue Culture Techniques
Fluorescein Angiography
Fetus
Biopsy
Kidney
Mutation
Embryo, Mammalian
Stomach
Rats, Inbred Strains
Chloride Channels
Photoreceptor Cells
Seminal Vesicles
Ameloblasts
Difference between mammary epithelial cells from mature virgin and primiparous mice. (1/13068)
Mammary epithelial cells from mature virgin mice are similar to those from primiparous mice in several respects. However, there is one known difference. The cells from the mature virgin must traverse the cell cycle in order to become competent to make casein and enzymatically active alpha-lactalbumin in vitro; those from the primiparous animal can make these proteins without first traversing the cycle. In this regard, cells from human placental lactogen- and prolactin-treated mature virgins are, after involution, similar to those from primiparous mice. The developemental block in the cells from the mature virgin, imposed by preventing cell cycle traversal, has been partially delineated. It does not appear to reside at the levels of ultrastructural maturation or the formation of casein messenger RNA. Rather, the lesion is postranscriptional and may be at the level of translation, or posttranslational modification, or both. (+info)Expression of nitric oxide synthase in inflammatory bowel disease is not affected by corticosteroid treatment. (2/13068)
AIM: To examine the effect of corticosteroid treatment on the expression of inducible nitric oxide synthase (iNOS) in the colon of patients with inflammatory bowel disease. METHODS: Four groups of patients were studied: (1) ulcerative colitis treated with high dose corticosteroids (six patients, 10 blocks); (2) ulcerative colitis patients who had never received corticosteroids (10 patients, 16 blocks); (3) Crohn's disease treated with high dose corticosteroids (12 patients, 24 blocks); (4) Non-inflammatory, non-neoplastic controls (four patients, six blocks). Full thickness paraffin sections of colons removed at surgery were immunostained with an antibody raised against the C terminal end of iNOS. Sections were assessed semiquantitatively for the presence and degree of inflammation and immunoreactivity for nitric oxide synthase. RESULTS: Cases of ulcerative colitis and Crohn's disease with active inflammation showed strong staining for nitric oxide synthase. The staining was diffuse in ulcerative colitis and patchy in Crohn's disease, in accordance with the distribution of active inflammation. Staining was seen in epithelial cells and was most intense near areas of inflammation such as crypt abscesses. Non-inflamed epithelium showed no immunoreactivity. Treatment with corticosteroids made no difference to the amount of nitric oxide synthase. CONCLUSIONS: Expression of nitric oxide synthase is increased in both ulcerative colitis and Crohn's disease and appears to be unaffected by treatment with corticosteroids. Disease severity necessitated surgery in all the cases included in this study, regardless of whether or not the patients had received long term corticosteroid treatment. It seems therefore that a high level of iNOS expression and, presumably, production of nitric oxide characterise cases which are refractory to clinical treatment; this suggests that specific inhibition of the enzyme may be a useful therapeutic adjunct. (+info)Regulation of neurotrophin-3 expression by epithelial-mesenchymal interactions: the role of Wnt factors. (3/13068)
Neurotrophins regulate survival, axonal growth, and target innervation of sensory and other neurons. Neurotrophin-3 (NT-3) is expressed specifically in cells adjacent to extending axons of dorsal root ganglia neurons, and its absence results in loss of most of these neurons before their axons reach their targets. However, axons are not required for NT-3 expression in limbs; instead, local signals from ectoderm induce NT-3 expression in adjacent mesenchyme. Wnt factors expressed in limb ectoderm induce NT-3 in the underlying mesenchyme. Thus, epithelial-mesenchymal interactions mediated by Wnt factors control NT-3 expression and may regulate axonal growth and guidance. (+info)An ultrastructural study of implantation in the golden hamster. II. Trophoblastic invasion and removal of the uterine epithelium. (4/13068)
Sixty six implantation sites from 18 golden hamsters were examined with light and electron microscopy between 4 and 5 1/2 days of pregnancy (post-ovulation). At 4 days some blastocysts began to invade the uterine epithelium, with trophoblastic processes penetrating and engulfing portions of the uterine epithelium. The majority of epithelial cells appeared normal before invasion, although at two implantation sites three or four adjoining epithelial cells were necrotic before penetration by the trophoblast. In general the epithelial cells were degenerating at the time the trophoblast invaded the epithelium. Inclusions, representing portions of the engulfed epithelium, and varying in size and electron density, were present throughout the invading trophoblast cells at 4 1/2 and 5 days of pregnancy. At 5 1/2 days the uterine epithelium had disappeared and the embryo was now almost completely surrounded by blood lacunae. (+info)The postnatal development of the alimentary canal in the opossum. I. Oesophagus. (5/13068)
The oesophageal epithelium of the newborn opossum generally is two to three cells in depth and in some regions appears pseudostratified. By the 9th postnatal day the epithelium shows two distinct strata. Ciliated cells and occasional goblet cells also are observed within the epithelium during this stage and in subsequent stages. Cilia persist in the oesophagus of the adult opossum, but are restricted to the depths of the transverse folds found in the distal part of the organ. The epithelium covering the transverse folds of the adult likewise has an immature appearance. By 4-5 cm (ca. 20 days), the epithelium has assumed a more mature appearance and is of greater depth. This and later stages show three basic strata: a germinal layer, a spinous layer and, adjacent to the lumen, a flattened layer of cells that retain their nuclei. The epithelium throughout the postnatal period and in the adult does not undergo complete keratinization. The oesophageal glands begin as outgrowths from the epithelium just prior to 4-5 cm (ca. 20 days). The glands continue their development throughout the remainder of the postnatal period. The secretory units of the oesophageal glands of the the major portion of the secretory elements, and a light, rounded cell type which is less numerous and which occupies the terminal portions of the secretory units. Secretory material of the former appears complex, consisting of both neutral and acid glycoproteins. The secretory product of the light cell type is unknown at present. Both cell types are encompassed by myoepithelial cells. The relationship of the mitotic sequences to the observations made by microscopic examination of the developing oesophagus is discussed. (+info)Modulation of distal colonic epithelial barrier function by dietary fibre in normal rats. (6/13068)
BACKGROUND: Dietary fibre influences the turnover and differentiation of the colonic epithelium, but its effects on barrier function are unknown. AIMS: To determine whether altering the type and amount of fibre in the diet affects paracellular permeability of intestinal epithelium, and to identify the mechanisms of action. METHODS: Rats were fed isoenergetic low fibre diets with or without supplements of wheat bran (10%) or methylcellulose (10%), for four weeks. Paracellular permeability was determined by measurement of conductance and 51Cr-EDTA flux across tissue mounted in Ussing chambers. Faecal short chain fatty acid (SCFA) concentrations were assessed by gas chromatography, epithelial kinetics stathmokinetically, and mucosal brush border hydrolase activities spectrophotometrically. RESULTS: Body weight was similar across the dietary groups. Conductance and 51Cr-EDTA flux were approximately 25% higher in animals fed no fibre, compared with those fed wheat bran or methylcellulose in the distal colon, but not in the caecum or jejunum. Histologically, there was no evidence of epithelial injury or erosion associated with any diet. The fibres exerted different spectra of effects on luminal SCFA concentrations and pH, and on mucosal indexes, but both bulked the faeces, were trophic to the epithelium, and stimulated expression of a marker of epithelial differentiation. CONCLUSIONS: Both a fermentable and a non-fermentable fibre reduce paracellular permeability specifically in the distal colon, possibly by promoting epithelial cell differentiation. The mechanisms by which the two fibres exert their effects are likely to be different. (+info)Morphology of intraepithelial corpuscular nerve endings in the nasal respiratory mucosa of the dog. (7/13068)
Corpuscular nerve endings in the nasal respiratory mucosa of the dog were investigated by immunohistochemical staining specific for protein gene product 9.5 by light and electron microscopy. In the nasal respiratory mucosa, complex corpuscular endings, which displayed bulbous, laminar and varicose expansions, were distributed on the dorsal elevated part of the nasal septum and on the dorsal nasal concha. The endings were 300-500 microm long and 100-250 microm wide. Some axons gave rise to a single ending while others branched into 2 endings. Cryostat sections revealed that the corpuscular endings were located within the nasal respiratory epithelium. On electron microscopy, immunoreactive nerve terminals that contained organelles, including mitochondria and neurofilaments, were observed within the epithelial layer near the lumen of the nasal cavity. Some terminals contacted the goblet cell. Such terminal regions were covered by the cytoplasmic process of ciliated cells and were never exposed to the lumen of the nasal cavity. These nerve endings are probably activated by pressure changes. (+info)Characterization of beta cells developed in vitro from rat embryonic pancreatic epithelium. (8/13068)
The present study evaluates the development and functional properties of beta cells differentiated in vitro. The authors have previously demonstrated that when E12.5 rat pancreatic rudiments are cultured in vitro in the absence of mesenchyme, the majority of the epithelial cells differentiate into endocrine beta cells. Thus, depletion of the mesenchyme provokes the expansion of endocrine tissue at the expense of exocrine tissue. The potential use of this procedure for the production of beta cells led the authors to characterize the beta cells differentiated in this model and to compare their properties with those of the endocrine cells of the embryonic and adult pancreas. This study shows that the beta cells that differentiate in vitro in the absence of mesenchyme express the homeodomain protein Nkx6.1, a transcription factor that is characteristic of adult mature beta cells. Further, electron microscopy analysis shows that these beta cells are highly granulated, and the ultrastructural analysis of the granules shows that they are characteristic of mature beta cells. The maturity of these granules was confirmed by a double-immunofluorescence study that demonstrated that Rab3A and SNAP-25, two proteins associated with the secretory pathway of insulin, are strongly expressed. Finally, the maturity of the differentiated beta cells in this model was confirmed when the cells responded to stimulation with 16 mM glucose by a 5-fold increase in insulin release. The authors conclude that the beta cells differentiated in vitro from rat embryonic pancreatic rudiments devoid of mesenchyme are mature beta cells. (+info)Examples and Observations:
1. Gastric metaplasia: This is a condition where the stomach lining is replaced by cells that are similar to those found in the esophagus. This can occur as a result of chronic acid reflux, leading to an increased risk of developing esophageal cancer.
2. Bronchial metaplasia: This is a condition where the airways in the lungs are replaced by cells that are similar to those found in the trachea. This can occur as a result of chronic inflammation, leading to an increased risk of developing lung cancer.
3. Pancreatic metaplasia: This is a condition where the pancreas is replaced by cells that are similar to those found in the ducts of the pancreas. This can occur as a result of chronic inflammation, leading to an increased risk of developing pancreatic cancer.
4. Breast metaplasia: This is a condition where the breast tissue is replaced by cells that are similar to those found in the salivary glands. This can occur as a result of chronic inflammation, leading to an increased risk of developing salivary gland cancer.
Etiology and Pathophysiology:
Metaplasia is thought to be caused by chronic inflammation, which can lead to the replacement of one type of cell or tissue with another. This can occur as a result of a variety of factors, including infection, injury, or exposure to carcinogens. Once the metaplastic changes have occurred, there is an increased risk of developing cancer if the underlying cause is not addressed.
Clinical Presentation:
Patients with metaplasia may present with a variety of symptoms, depending on the location and extent of the condition. These can include pain, difficulty swallowing or breathing, coughing up blood, and weight loss. In some cases, patients may be asymptomatic and the condition may be detected incidentally during diagnostic testing for another condition.
Diagnosis:
The diagnosis of metaplasia is typically made based on a combination of clinical findings, radiologic imaging (such as CT scans or endoscopies), and histopathological examination of biopsy specimens. Imaging studies can help to identify the location and extent of the metaplastic changes, while histopathology can confirm the presence of the metaplastic cells and rule out other potential diagnoses.
Treatment:
Treatment for metaplasia depends on the underlying cause and the severity of the condition. In some cases, treatment may involve addressing the underlying cause, such as removing a tumor or treating an infection. In other cases, treatment may be directed at managing symptoms and preventing complications. This can include medications to reduce inflammation and pain, as well as surgery to remove affected tissue.
Prognosis:
The prognosis for metaplasia varies depending on the underlying cause and the severity of the condition. In general, the prognosis is good for patients with benign metaplastic changes, while those with malignant changes may have a poorer prognosis if the cancer is not treated promptly and effectively.
Complications:
Metaplasia can lead to a number of complications, including:
1. Cancer: Metaplastic changes can sometimes progress to cancer, which can be life-threatening.
2. Obstruction: The growth of metaplastic cells can block the normal functioning of the organ or gland, leading to obstruction and potentially life-threatening complications.
3. Inflammation: Metaplasia can lead to chronic inflammation, which can cause scarring and further damage to the affected tissue.
4. Bleeding: Metaplastic changes can increase the risk of bleeding, particularly if they occur in the digestive tract or other organs.
Examples of precancerous conditions include:
1. Dysplasia: This is a condition where abnormal cells are present in the tissue, but have not yet invaded surrounding tissues. Dysplasia can be found in organs such as the cervix, colon, and breast.
2. Carcinoma in situ (CIS): This is a condition where cancer cells are present in the tissue, but have not yet invaded surrounding tissues. CIS is often found in organs such as the breast, prostate, and cervix.
3. Atypical hyperplasia: This is a condition where abnormal cells are present in the tissue, but they are not yet cancerous. Atypical hyperplasia can be found in organs such as the breast and uterus.
4. Lobular carcinoma in situ (LCIS): This is a condition where cancer cells are present in the milk-producing glands of the breasts, but have not yet invaded surrounding tissues. LCIS is often found in both breasts and can increase the risk of developing breast cancer.
5. Adenomas: These are small growths on the surface of the colon that can become malignant over time if left untreated.
6. Leukoplakia: This is a condition where thick, white patches develop on the tongue or inside the mouth. Leukoplakia can be a precancerous condition and may increase the risk of developing oral cancer.
7. Oral subsquamous carcinoma: This is a type of precancerous lesion that develops in the mouth and can progress to squamous cell carcinoma if left untreated.
8. Cervical intraepithelial neoplasia (CIN): This is a condition where abnormal cells are present on the surface of the cervix, but have not yet invaded surrounding tissues. CIN can progress to cancer over time if left untreated.
9. Vulvar intraepithelial neoplasia (VIN): This is a condition where abnormal cells are present on the vulva, but have not yet invaded surrounding tissues. VIN can progress to cancer over time if left untreated.
10. Penile intraepithelial neoplasia (PIN): This is a condition where abnormal cells are present on the penis, but have not yet invaded surrounding tissues. PIN can progress to cancer over time if left untreated.
It is important to note that not all precancerous conditions will develop into cancer, and some may resolve on their own without treatment. However, it is important to follow up with a healthcare provider to monitor any changes and determine the best course of treatment.
The condition is named after Dr. Norman Barrett, who first described it in 1956. It is a precancerous condition, meaning that if left untreated, it can progress to esophageal cancer over time. The exact cause of Barrett esophagus is not fully understood, but chronic acid reflux is thought to play a role in its development.
The symptoms of Barrett esophagus are similar to those of GERD and may include heartburn, difficulty swallowing, chest pain, and regurgitation of food. The condition can be diagnosed through an endoscopy, which involves inserting a flexible tube with a camera into the esophagus to visualize the cells lining the esophagus.
Treatment for Barrett esophagus typically involves controlling the underlying acid reflux through lifestyle changes and medications. In some cases, surgery may be necessary to repair any damage to the esophageal lining or to strengthen the lower esophageal sphincter (LES), which is the muscle that separates the esophagus from the stomach and prevents acid reflux.
It's important for individuals with chronic acid reflux to be screened regularly for Barrett esophagus, as early detection and treatment can help prevent the development of esophageal cancer.
1. Keratoconus: This is a progressive thinning of the cornea that can cause it to bulge into a cone-like shape, leading to blurred vision and sensitivity to light.
2. Fuchs' dystrophy: This is a condition in which the cells in the innermost layer of the cornea become damaged, leading to clouding and blurred vision.
3. Bullous keratopathy: This is a condition in which there is a large, fluid-filled bubble on the surface of the cornea, which can cause blurred vision and discomfort.
4. Corneal ulcers: These are open sores on the surface of the cornea that can be caused by infection or other conditions.
5. Dry eye syndrome: This is a condition in which the eyes do not produce enough tears, leading to dryness, irritation, and blurred vision.
6. Corneal abrasions: These are scratches on the surface of the cornea that can be caused by injury or other conditions.
7. Trachoma: This is an infectious eye disease that can cause scarring and blindness if left untreated.
8. Ocular herpes: This is a viral infection that can cause blisters on the surface of the cornea and lead to scarring and vision loss if left untreated.
9. Endophthalmitis: This is an inflammation of the inner layer of the eye that can be caused by bacterial or fungal infections, and can lead to severe vision loss if left untreated.
10. Corneal neovascularization: This is the growth of new blood vessels into the cornea, which can be a complication of other conditions such as dry eye syndrome or ocular trauma.
These are just a few examples of the many different types of corneal diseases that can affect the eyes. It's important to seek medical attention if you experience any symptoms such as pain, redness, or blurred vision in one or both eyes. Early diagnosis and treatment can help prevent complications and preserve vision.
There are different types of hyperplasia, depending on the location and cause of the condition. Some examples include:
1. Benign hyperplasia: This type of hyperplasia is non-cancerous and does not spread to other parts of the body. It can occur in various tissues and organs, such as the uterus (fibroids), breast tissue (fibrocystic changes), or prostate gland (benign prostatic hyperplasia).
2. Malignant hyperplasia: This type of hyperplasia is cancerous and can invade nearby tissues and organs, leading to serious health problems. Examples include skin cancer, breast cancer, and colon cancer.
3. Hyperplastic polyps: These are abnormal growths that occur in the gastrointestinal tract and can be precancerous.
4. Adenomatous hyperplasia: This type of hyperplasia is characterized by an increase in the number of glandular cells in a specific organ, such as the colon or breast. It can be a precursor to cancer.
The symptoms of hyperplasia depend on the location and severity of the condition. In general, they may include:
* Enlargement or swelling of the affected tissue or organ
* Pain or discomfort in the affected area
* Abnormal bleeding or discharge
* Changes in bowel or bladder habits
* Unexplained weight loss or gain
Hyperplasia is diagnosed through a combination of physical examination, imaging tests such as ultrasound or MRI, and biopsy. Treatment options depend on the underlying cause and severity of the condition, and may include medication, surgery, or other interventions.
1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.
2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.
3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.
4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.
5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.
6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.
7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.
8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.
9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.
10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.
There are two main types of MD:
1. Dry Macular Degeneration (DMD): This is the most common form of MD, accounting for about 90% of cases. It is caused by the gradual accumulation of waste material in the macula, which can lead to cell death and vision loss over time.
2. Wet Macular Degeneration (WMD): This type of MD is less common but more aggressive, accounting for about 10% of cases. It occurs when new blood vessels grow underneath the retina, leaking fluid and causing damage to the macula. This can lead to rapid vision loss if left untreated.
The symptoms of MD can vary depending on the severity and type of the condition. Common symptoms include:
* Blurred vision
* Distorted vision (e.g., straight lines appearing wavy)
* Difficulty reading or recognizing faces
* Difficulty adjusting to bright light
* Blind spots in central vision
MD can have a significant impact on daily life, making it difficult to perform everyday tasks such as driving, reading, and recognizing faces.
There is currently no cure for MD, but there are several treatment options available to slow down the progression of the disease and manage its symptoms. These include:
* Anti-vascular endothelial growth factor (VEGF) injections: These medications can help prevent the growth of new blood vessels and reduce inflammation in the macula.
* Photodynamic therapy: This involves the use of a light-sensitive drug and low-intensity laser to damage and shrink the abnormal blood vessels in the macula.
* Vitamin supplements: Certain vitamins, such as vitamin C, E, and beta-carotene, have been shown to slow down the progression of MD.
* Laser surgery: This can be used to reduce the number of abnormal blood vessels in the macula and improve vision.
It is important for individuals with MD to receive regular monitoring and treatment from an eye care professional to manage their condition and prevent complications.
There are several types of eye burns, including:
1. Chemical burns: These occur when the eye comes into contact with a corrosive substance, such as bleach or drain cleaner.
2. Thermal burns: These occur when the eye is exposed to heat or flames, such as from a fire or a hot surface.
3. Ultraviolet (UV) burns: These occur when the eye is exposed to UV radiation, such as from the sun or a tanning bed.
4. Radiation burns: These occur when the eye is exposed to ionizing radiation, such as from a nuclear accident or cancer treatment.
Symptoms of eye burns can include:
* Pain and redness in the eye
* Discharge or crusting around the eye
* Blurred vision or sensitivity to light
* Swelling of the eyelids or the surface of the eye
* Increased tearing or dryness
Treatment for eye burns depends on the cause and severity of the injury. Mild cases may require only topical medications, such as antibiotic ointments or anti-inflammatory drops. More severe cases may require more aggressive treatment, such as oral medications, patching, or even surgery. In some cases, eye burns can lead to long-term vision problems or scarring, so it is important to seek medical attention if symptoms persist or worsen over time.
Adenocarcinoma is a term used to describe a variety of different types of cancer that arise in glandular tissue, including:
1. Colorectal adenocarcinoma (cancer of the colon or rectum)
2. Breast adenocarcinoma (cancer of the breast)
3. Prostate adenocarcinoma (cancer of the prostate gland)
4. Pancreatic adenocarcinoma (cancer of the pancreas)
5. Lung adenocarcinoma (cancer of the lung)
6. Thyroid adenocarcinoma (cancer of the thyroid gland)
7. Skin adenocarcinoma (cancer of the skin)
The symptoms of adenocarcinoma depend on the location of the cancer and can include:
1. Blood in the stool or urine
2. Abdominal pain or discomfort
3. Changes in bowel habits
4. Unusual vaginal bleeding (in the case of endometrial adenocarcinoma)
5. A lump or thickening in the breast or elsewhere
6. Weight loss
7. Fatigue
8. Coughing up blood (in the case of lung adenocarcinoma)
The diagnosis of adenocarcinoma is typically made through a combination of imaging tests, such as CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a sample of tissue from the affected area and examining it under a microscope for cancer cells.
Treatment options for adenocarcinoma depend on the location of the cancer and can include:
1. Surgery to remove the tumor
2. Chemotherapy, which involves using drugs to kill cancer cells
3. Radiation therapy, which involves using high-energy X-rays or other particles to kill cancer cells
4. Targeted therapy, which involves using drugs that target specific molecules on cancer cells to kill them
5. Immunotherapy, which involves using drugs that stimulate the immune system to fight cancer cells.
The prognosis for adenocarcinoma is generally good if the cancer is detected and treated early, but it can be more challenging to treat if the cancer has spread to other parts of the body.
Types of Eye Injuries:
1. Corneal abrasion: A scratch on the cornea, the clear outer layer of the eye.
2. Conjunctival bleeding: Bleeding in the conjunctiva, the thin membrane that covers the white part of the eye.
3. Hyphema: Blood in the space between the iris and the cornea.
4. Hemorrhage: Bleeding in the eyelid or under the retina.
5. Retinal detachment: Separation of the retina from the underlying tissue, which can cause vision loss if not treated promptly.
6. Optic nerve damage: Damage to the nerve that carries visual information from the eye to the brain, which can cause vision loss or blindness.
7. Orbital injury: Injury to the bones and tissues surrounding the eye, which can cause double vision, swelling, or vision loss.
Symptoms of Eye Injuries:
1. Pain in the eye or around the eye
2. Redness and swelling of the eye or eyelid
3. Difficulty seeing or blurred vision
4. Sensitivity to light
5. Double vision or loss of vision
6. Discharge or crusting around the eye
7. Swelling of the eyelids or face
Treatment of Eye Injuries:
1. Depending on the severity and nature of the injury, treatment may include antibiotics, pain relief medication, or surgery.
2. In some cases, a tube may be inserted into the eye to help drain fluid or prevent pressure from building up.
3. In severe cases, vision may not return completely, but there are many options for corrective glasses and contact lenses to improve remaining vision.
4. It is essential to seek medical attention immediately if there is a foreign object in the eye, as this can cause further damage if left untreated.
5. In cases of penetrating trauma, such as a blow to the eye, it is important to seek medical attention right away, even if there are no immediate signs of injury.
6. Follow-up appointments with an ophthalmologist are essential to monitor healing and address any complications that may arise.
There are many different types of retinal degeneration, each with its own set of symptoms and causes. Some common forms of retinal degeneration include:
1. Age-related macular degeneration (AMD): This is the most common form of retinal degeneration and affects the macula, the part of the retina responsible for central vision. AMD can cause blind spots or distorted vision.
2. Retinitis pigmentosa (RP): This is a group of inherited conditions that affect the retina and can lead to night blindness, loss of peripheral vision, and eventually complete vision loss.
3. Leber congenital amaurosis (LCA): This is a rare inherited condition that causes severe vision loss or blindness at birth or within the first few years of life.
4. Stargardt disease: This is a rare inherited condition that causes progressive vision loss and can lead to blindness.
5. Retinal detachment: This occurs when the retina becomes separated from the underlying tissue, causing vision loss.
6. Diabetic retinopathy (DR): This is a complication of diabetes that can cause damage to the blood vessels in the retina and lead to vision loss.
7. Retinal vein occlusion (RVO): This occurs when a blockage forms in the small veins that carry blood away from the retina, causing vision loss.
There are several risk factors for retinal degeneration, including:
1. Age: Many forms of retinal degeneration are age-related and become more common as people get older.
2. Family history: Inherited conditions such as RP and LCA can increase the risk of retinal degeneration.
3. Genetics: Some forms of retinal degeneration are caused by genetic mutations.
4. Diabetes: Diabetes is a major risk factor for diabetic retinopathy, which can cause vision loss.
5. Hypertension: High blood pressure can increase the risk of retinal vein occlusion and other forms of retinal degeneration.
6. Smoking: Smoking has been linked to an increased risk of several forms of retinal degeneration.
7. UV exposure: Prolonged exposure to UV radiation from sunlight can increase the risk of retinal degeneration.
There are several treatment options for retinal degeneration, including:
1. Vitamin and mineral supplements: Vitamins A, C, and E, as well as zinc and selenium, have been shown to slow the progression of certain forms of retinal degeneration.
2. Anti-vascular endothelial growth factor (VEGF) injections: These medications can help reduce swelling and slow the progression of diabetic retinopathy and other forms of retinal degeneration.
3. Photodynamic therapy: This involves the use of a light-sensitive medication and low-intensity laser light to damage and shrink abnormal blood vessels in the retina.
4. Retinal implants: These devices can be used to restore some vision in people with advanced forms of retinal degeneration.
5. Stem cell therapy: Research is ongoing into the use of stem cells to repair damaged retinal cells and restore vision.
It's important to note that early detection and treatment of retinal degeneration can help to slow or stop the progression of the disease, preserving vision for as long as possible. Regular eye exams are crucial for detecting retinal degeneration in its early stages, when treatment is most effective.
Explanation: Neoplastic cell transformation is a complex process that involves multiple steps and can occur as a result of genetic mutations, environmental factors, or a combination of both. The process typically begins with a series of subtle changes in the DNA of individual cells, which can lead to the loss of normal cellular functions and the acquisition of abnormal growth and reproduction patterns.
Over time, these transformed cells can accumulate further mutations that allow them to survive and proliferate despite adverse conditions. As the transformed cells continue to divide and grow, they can eventually form a tumor, which is a mass of abnormal cells that can invade and damage surrounding tissues.
In some cases, cancer cells can also break away from the primary tumor and travel through the bloodstream or lymphatic system to other parts of the body, where they can establish new tumors. This process, known as metastasis, is a major cause of death in many types of cancer.
It's worth noting that not all transformed cells will become cancerous. Some forms of cellular transformation, such as those that occur during embryonic development or tissue regeneration, are normal and necessary for the proper functioning of the body. However, when these transformations occur in adult tissues, they can be a sign of cancer.
See also: Cancer, Tumor
Word count: 190
Examples of retinal diseases include:
1. Age-related macular degeneration (AMD): a leading cause of vision loss in people over the age of 50, AMD affects the macula, the part of the retina responsible for central vision.
2. Diabetic retinopathy (DR): a complication of diabetes that damages blood vessels in the retina and can cause blindness.
3. Retinal detachment: a condition where the retina becomes separated from the underlying tissue, causing vision loss.
4. Macular edema: swelling of the macula that can cause vision loss.
5. Retinal vein occlusion (RVO): a blockage of the small veins in the retina that can cause vision loss.
6. Retinitis pigmentosa (RP): a group of inherited disorders that affect the retina and can cause progressive vision loss.
7. Leber congenital amaurosis (LCA): an inherited disorder that causes blindness or severe visual impairment at birth or in early childhood.
8. Stargardt disease: a rare inherited disorder that affects the retina and can cause progressive vision loss, usually starting in childhood.
9. Juvenile macular degeneration: a rare inherited disorder that causes vision loss in young adults.
10. Retinal dystrophy: a group of inherited disorders that affect the retina and can cause progressive vision loss.
Retinal diseases can be diagnosed with a comprehensive eye exam, which includes a visual acuity test, dilated eye exam, and imaging tests such as optical coherence tomography (OCT) or fluorescein angiography. Treatment options vary depending on the specific disease and can include medication, laser surgery, or vitrectomy.
It's important to note that many retinal diseases can be inherited, so if you have a family history of eye problems, it's important to discuss your risk factors with your eye doctor. Early detection and treatment can help preserve vision and improve quality of life for those affected by these diseases.
A burn that is caused by direct contact with a chemical substance or agent, such as a strong acid or base, and results in damage to the skin and underlying tissues. Chemical burns can be particularly severe and may require extensive treatment, including surgery and skin grafting.
Examples of how Burns, Chemical is used in medical literature:
1. "The patient sustained a chemical burn on her hand when she spilled a beaker of sulfuric acid."
2. "The burn team was called in to treat the victim of a chemical explosion, who had suffered extensive burns, including chemical burns to his face and arms."
3. "The patient was admitted with severe chemical burns on her legs and feet, caused by exposure to a corrosive substance at work."
4. "Chemical burns can be difficult to treat, as they may require specialized equipment and techniques to remove the damaged tissue and promote healing."
5. "The patient required multiple debridements and skin grafting procedures to treat her chemical burns, which had resulted in extensive scarring and disfigurement."
SCC typically appears as a firm, flat, or raised bump on the skin, and may be pink, red, or scaly. The cancer cells are usually well-differentiated, meaning they resemble normal squamous cells, but they can grow rapidly and invade surrounding tissues if left untreated.
SCC is more common in fair-skinned individuals and those who spend a lot of time in the sun, as UV radiation can damage the skin cells and increase the risk of cancer. The cancer can also spread to other parts of the body, such as lymph nodes or organs, and can be life-threatening if not treated promptly and effectively.
Treatment for SCC usually involves surgery to remove the cancerous tissue, and may also include radiation therapy or chemotherapy to kill any remaining cancer cells. Early detection and treatment are important to improve outcomes for patients with SCC.
Symptoms of cystic fibrosis can vary from person to person, but may include:
* Persistent coughing and wheezing
* Thick, sticky mucus that clogs airways and can lead to respiratory infections
* Difficulty gaining weight or growing at the expected rate
* Intestinal blockages or digestive problems
* Fatty stools
* Nausea and vomiting
* Diarrhea
* Rectal prolapse
* Increased risk of liver disease and respiratory failure
Cystic fibrosis is usually diagnosed in infancy, and treatment typically includes a combination of medications, respiratory therapy, and other supportive care. Management of the disease focuses on controlling symptoms, preventing complications, and improving quality of life. With proper treatment and care, many people with cystic fibrosis can lead long, fulfilling lives.
In summary, cystic fibrosis is a genetic disorder that affects the respiratory, digestive, and reproductive systems, causing thick and sticky mucus to build up in these organs, leading to serious health problems. It can be diagnosed in infancy and managed with a combination of medications, respiratory therapy, and other supportive care.
The retina is a layer of cells that lines the inside of the eye and senses light to send visual signals to the brain. When the retina becomes detached, it can no longer function properly, leading to vision loss or distortion.
Retinal detachment can be caused by a variety of factors, including:
1. Age-related changes: As we age, the vitreous gel that fills the eye can become more liquid and pull away from the retina, causing a retinal detachment.
2. Injury or trauma: A blow to the head or a penetrating injury can cause a retinal detachment.
3. Medical conditions: Certain conditions, such as diabetes, high blood pressure, and sickle cell disease, can increase the risk of developing a retinal detachment.
4. Genetic factors: Some people may be more prone to developing a retinal detachment due to inherited genetic factors.
Symptoms of retinal detachment may include:
1. Flashes of light: People may see flashes of light in the peripheral vision.
2. Floaters: Specks or cobwebs may appear in the vision, particularly in the periphery.
3. Blurred vision: Blurred vision or distorted vision may occur as the retina becomes detached.
4. Loss of vision: In severe cases, a retinal detachment can cause a complete loss of vision in one eye.
If you experience any of these symptoms, it is important to seek medical attention immediately. A comprehensive eye exam can diagnose a retinal detachment and determine the appropriate treatment.
Treatment for retinal detachment typically involves surgery to reattach the retina to the underlying tissue. In some cases, laser surgery may be used to seal off any tears or holes in the retina that caused the detachment. In more severe cases, a scleral buckle or other device may be implanted to support the retina and prevent further detachment.
In addition to surgical treatment, there are some lifestyle changes you can make to help reduce your risk of developing a retinal detachment:
1. Quit smoking: Smoking has been linked to an increased risk of retinal detachment. Quitting smoking can help reduce this risk.
2. Maintain a healthy blood pressure: High blood pressure can increase the risk of retinal detachment. Monitoring and controlling your blood pressure can help reduce this risk.
3. Wear protective eyewear: If you participate in activities that could potentially cause eye injury, such as sports or working with hazardous materials, wearing protective eyewear can help reduce the risk of retinal detachment.
4. Get regular eye exams: Regular comprehensive eye exams can help detect any potential issues with the retina before they become serious problems.
Overall, a retinal detachment is a serious condition that requires prompt medical attention to prevent long-term vision loss. By understanding the causes and symptoms of retinal detachment, as well as making lifestyle changes to reduce your risk, you can help protect your vision and maintain good eye health.
Types of Esophageal Neoplasms:
1. Barrett's Esophagus: This is a precancerous condition that occurs when the cells lining the esophagus undergo abnormal changes, increasing the risk of developing esophageal cancer.
2. Adenocarcinoma: This is the most common type of esophageal cancer, accounting for approximately 70% of all cases. It originates in the glands that line the esophagus.
3. Squamous Cell Carcinoma: This type of cancer accounts for about 20% of all esophageal cancers and originates in the squamous cells that line the esophagus.
4. Other rare types: Other rare types of esophageal neoplasms include lymphomas, sarcomas, and carcinoid tumors.
Causes and Risk Factors:
1. Gastroesophageal reflux disease (GERD): Long-standing GERD can lead to the development of Barrett's esophagus, which is a precancerous condition that increases the risk of developing esophageal cancer.
2. Obesity: Excess body weight is associated with an increased risk of developing esophageal cancer.
3. Diet: A diet high in processed meats and low in fruits and vegetables may increase the risk of developing esophageal cancer.
4. Alcohol consumption: Heavy alcohol consumption is a known risk factor for esophageal cancer.
5. Smoking: Cigarette smoking is a major risk factor for esophageal cancer.
6. Family history: Having a family history of esophageal cancer or other cancers may increase an individual's risk.
7. Age: The risk of developing esophageal cancer increases with age, with most cases occurring in people over the age of 50.
8. Other medical conditions: Certain medical conditions, such as achalasia, may increase the risk of developing esophageal cancer.
Symptoms and Diagnosis:
1. Dysphagia (difficulty swallowing): This is the most common symptom of esophageal cancer, and can be caused by a narrowing or blockage of the esophagus due to the tumor.
2. Chest pain or discomfort: Pain in the chest or upper back can be a symptom of esophageal cancer.
3. Weight loss: Losing weight without trying can be a symptom of esophageal cancer.
4. Coughing or hoarseness: If the tumor is obstructing the airway, it can cause coughing or hoarseness.
5. Fatigue: Feeling tired or weak can be a symptom of esophageal cancer.
6. Diagnosis: A diagnosis of esophageal cancer is typically made through a combination of endoscopy, imaging tests (such as CT scans), and biopsies.
Treatment Options:
1. Surgery: Surgery is the primary treatment for esophageal cancer, and can involve removing the tumor and some surrounding tissue, or removing the entire esophagus and replacing it with a section of stomach or intestine.
2. Chemotherapy: Chemotherapy involves using drugs to kill cancer cells, and is often used in combination with surgery to treat esophageal cancer.
3. Radiation therapy: Radiation therapy uses high-energy X-rays to kill cancer cells, and can be used alone or in combination with surgery or chemotherapy.
4. Targeted therapy: Targeted therapy drugs are designed to target specific molecules that are involved in the growth and spread of cancer cells, and can be used in combination with other treatments.
Prognosis and Survival Rate:
1. The prognosis for esophageal cancer is generally poor, with a five-year survival rate of around 20%.
2. Factors that can improve the prognosis include early detection, small tumor size, and absence of spread to lymph nodes or other organs.
3. The overall survival rate for esophageal cancer has not improved much over the past few decades, but advances in treatment have led to a slight increase in survival time for some patients.
Lifestyle Changes and Prevention:
1. Avoiding tobacco and alcohol: Tobacco and alcohol are major risk factors for esophageal cancer, so avoiding them can help reduce the risk of developing the disease.
2. Maintaining a healthy diet: Eating a balanced diet that is high in fruits, vegetables, and whole grains can help protect against esophageal cancer.
3. Managing obesity: Obesity is a risk factor for esophageal cancer, so maintaining a healthy weight through diet and exercise can help reduce the risk of developing the disease.
4. Reducing exposure to pollutants: Exposure to certain chemicals and pollutants, such as pesticides and asbestos, has been linked to an increased risk of esophageal cancer. Avoiding these substances can help reduce the risk of developing the disease.
5. Getting regular screening: Regular screening for Barrett's esophagus, a precancerous condition that can develop in people with gastroesophageal reflux disease (GERD), can help detect and treat esophageal cancer early, when it is most treatable.
Current Research and Future Directions:
1. Targeted therapies: Researchers are working on developing targeted therapies that can specifically target the genetic mutations that drive the growth of esophageal cancer cells. These therapies may be more effective and have fewer side effects than traditional chemotherapy.
2. Immunotherapy: Immunotherapy, which uses the body's immune system to fight cancer, is being studied as a potential treatment for esophageal cancer. Researchers are working on developing vaccines and other immunotherapies that can help the body recognize and attack cancer cells.
3. Precision medicine: With the help of advanced genomics and precision medicine, researchers are working to identify specific genetic mutations that drive the growth of esophageal cancer in each patient. This information can be used to develop personalized treatment plans that are tailored to the individual patient's needs.
4. Early detection: Researchers are working on developing new methods for early detection of esophageal cancer, such as using machine learning algorithms to analyze medical images and detect signs of cancer at an early stage.
5. Lifestyle modifications: Studies have shown that lifestyle modifications, such as quitting smoking and maintaining a healthy diet, can help reduce the risk of developing esophageal cancer. Researchers are working on understanding the specific mechanisms by which these modifications can help prevent the disease.
In conclusion, esophageal cancer is a complex and aggressive disease that is often diagnosed at an advanced stage. However, with advances in technology, research, and treatment options, there is hope for improving outcomes for patients with this disease. By understanding the risk factors, early detection methods, and current treatments, as well as ongoing research and future directions, we can work towards a future where esophageal cancer is more manageable and less deadly.
Also known as CIS.
Retinal drusen appear as small, flat spots or patches in the retina and are usually yellow or orange in color. They are made up of lipids (fatty substances) and other waste products that have accumulated in the retina over time. The exact cause of retinal drusen is not known, but they are thought to be related to the natural aging process and the decline in the function of the retina over time.
Retinal drusen can be diagnosed with a comprehensive eye exam, which includes a visual acuity test, dilated eye exam, and imaging tests such as optical coherence tomography (OCT). There is no treatment for retinal drusen, but they can be monitored with regular eye exams to ensure that they are not progressing or causing any vision problems.
In some cases, retinal drusen may be a sign of a more serious underlying condition such as macular degeneration, which can cause vision loss if left untreated. It is important for individuals over the age of 50 to have regular comprehensive eye exams to detect any changes in the retina and to prevent vision loss.
In summary, retinal drusen are small deposits that accumulate in the retina and are a common age-related change. They do not cause vision problems on their own but can be an early warning sign of more serious eye diseases such as macular degeneration. Regular comprehensive eye exams can detect any changes in the retina and prevent vision loss.
Types of Intestinal Neoplasms:
1. Adenomas: These are benign tumors that grow on the inner lining of the intestine. They can become malignant over time if left untreated.
2. Carcinomas: These are malignant tumors that develop in the inner lining of the intestine. They can be subdivided into several types, including colon cancer and rectal cancer.
3. Lymphoma: This is a type of cancer that affects the immune system and can occur in the intestines.
4. Leiomyosarcomas: These are rare malignant tumors that develop in the smooth muscle layers of the intestine.
Causes and Risk Factors:
The exact cause of intestinal neoplasms is not known, but several factors can increase the risk of developing these growths. These include:
1. Age: The risk of developing intestinal neoplasms increases with age.
2. Family history: Having a family history of colon cancer or other intestinal neoplasms can increase the risk of developing these growths.
3. Inflammatory bowel disease: People with inflammatory bowel diseases, such as ulcerative colitis and Crohn's disease, are at higher risk of developing intestinal neoplasms.
4. Genetic mutations: Certain genetic mutations can increase the risk of developing intestinal neoplasms.
5. Diet and lifestyle factors: A diet high in fat and low in fiber, as well as lack of physical activity, may increase the risk of developing intestinal neoplasms.
Symptoms:
Intestinal neoplasms can cause a variety of symptoms, including:
1. Abdominal pain or discomfort
2. Changes in bowel habits, such as diarrhea or constipation
3. Blood in the stool
4. Weight loss
5. Fatigue
6. Loss of appetite
Diagnosis:
To diagnose intestinal neoplasms, a doctor may perform several tests, including:
1. Colonoscopy: A colonoscope is inserted through the rectum and into the colon to visualize the inside of the colon and detect any abnormal growths.
2. Biopsy: A small sample of tissue is removed from the colon and examined under a microscope for cancer cells.
3. Imaging tests: Such as X-rays, CT scans, or MRI scans to look for any abnormalities in the colon.
4. Blood tests: To check for certain substances in the blood that are associated with intestinal neoplasms.
Treatment:
The treatment of intestinal neoplasms depends on the type and location of the growth, as well as the stage of the cancer. Treatment options may include:
1. Surgery: To remove the tumor and any affected tissue.
2. Chemotherapy: To kill any remaining cancer cells with drugs.
3. Radiation therapy: To kill cancer cells with high-energy X-rays or other forms of radiation.
4. Targeted therapy: To use drugs that target specific molecules on cancer cells to kill them.
5. Immunotherapy: To use drugs that stimulate the immune system to fight cancer cells.
Prognosis:
The prognosis for intestinal neoplasms depends on several factors, including the type and stage of the cancer, the location of the growth, and the effectiveness of treatment. In general, early detection and treatment improve the prognosis, while later-stage cancers have a poorer prognosis.
Complications:
Intestinal neoplasms can cause several complications, including:
1. Obstruction: The tumor can block the normal flow of food through the intestine, leading to abdominal pain and other symptoms.
2. Bleeding: The tumor can cause bleeding in the intestine, which can lead to anemia and other complications.
3. Perforation: The tumor can create a hole in the wall of the intestine, leading to peritonitis (inflammation of the lining of the abdomen) and other complications.
4. Metastasis: The cancer cells can spread to other parts of the body, such as the liver or lungs, and cause further complications.
5. Malnutrition: The tumor can make it difficult for the body to absorb nutrients, leading to malnutrition and other health problems.
Prevention:
There is no sure way to prevent intestinal neoplasms, but there are several steps that may help reduce the risk of developing these types of cancer. These include:
1. Avoiding known risk factors: Avoiding known risk factors such as smoking, excessive alcohol consumption, and a diet high in processed meat can help reduce the risk of developing intestinal neoplasms.
2. Maintaining a healthy diet: Eating a balanced diet that is high in fruits, vegetables, and whole grains can help keep the intestines healthy and may reduce the risk of cancer.
3. Exercise regularly: Regular exercise can help maintain a healthy weight, improve digestion, and may reduce the risk of developing intestinal neoplasms.
4. Managing chronic conditions: Managing chronic conditions such as inflammatory bowel disease, diabetes, and obesity can help reduce the risk of developing intestinal neoplasms.
5. Screening tests: Regular screening tests such as colonoscopy, CT scan, or barium enema can help detect precancerous polyps or early-stage cancer, allowing for early treatment and prevention of advanced disease.
Early detection and diagnosis are crucial for effective treatment and survival rates for intestinal neoplasms. If you have any of the risk factors or symptoms mentioned above, it is essential to consult a doctor as soon as possible. A thorough examination and diagnostic tests can help determine the cause of your symptoms and recommend appropriate treatment.
There are many different types of cysts that can occur in the body, including:
1. Sebaceous cysts: These are small, usually painless cysts that form in the skin, particularly on the face, neck, or torso. They are filled with a thick, cheesy material and can become inflamed or infected.
2. Ovarian cysts: These are fluid-filled sacs that form on the ovaries. They are common in women of childbearing age and can cause pelvic pain, bloating, and other symptoms.
3. Kidney cysts: These are fluid-filled sacs that form in the kidneys. They are usually benign but can cause problems if they become large or infected.
4. Dermoid cysts: These are small, usually painless cysts that form in the skin or organs. They are filled with skin cells, hair follicles, and other tissue and can become inflamed or infected.
5. Pilar cysts: These are small, usually painless cysts that form on the scalp. They are filled with a thick, cheesy material and can become inflamed or infected.
6. Epidermoid cysts: These are small, usually painless cysts that form just under the skin. They are filled with a thick, cheesy material and can become inflamed or infected.
7. Mucous cysts: These are small, usually painless cysts that form on the fingers or toes. They are filled with a clear, sticky fluid and can become inflamed or infected.
8. Baker's cyst: This is a fluid-filled cyst that forms behind the knee. It can cause swelling and pain in the knee and is more common in women than men.
9. Tarlov cysts: These are small, fluid-filled cysts that form in the spine. They can cause back pain and other symptoms, such as sciatica.
10. ganglion cysts: These are noncancerous lumps that form on the joints or tendons. They are filled with a thick, clear fluid and can cause pain, swelling, and limited mobility.
It's important to note that this is not an exhaustive list and there may be other types of cysts that are not included here. If you suspect that you have a cyst, it's always best to consult with a healthcare professional for proper diagnosis and treatment.
Adenomas are caused by genetic mutations that occur in the DNA of the affected cells. These mutations can be inherited or acquired through exposure to environmental factors such as tobacco smoke, radiation, or certain chemicals.
The symptoms of an adenoma can vary depending on its location and size. In general, they may include abdominal pain, bleeding, or changes in bowel movements. If the adenoma becomes large enough, it can obstruct the normal functioning of the affected organ or cause a blockage that can lead to severe health complications.
Adenomas are usually diagnosed through endoscopy, which involves inserting a flexible tube with a camera into the affected organ to visualize the inside. Biopsies may also be taken to confirm the presence of cancerous cells.
Treatment for adenomas depends on their size, location, and severity. Small, non-pedunculated adenomas can often be removed during endoscopy through a procedure called endoscopic mucosal resection (EMR). Larger adenomas may require surgical resection, and in some cases, chemotherapy or radiation therapy may also be necessary.
In summary, adenoma is a type of benign tumor that can occur in glandular tissue throughout the body. While they are not cancerous, they have the potential to become malignant over time if left untreated. Therefore, it is important to seek medical attention if symptoms persist or worsen over time. Early detection and treatment can help prevent complications and improve outcomes for patients with adenomas.
There are several subtypes of carcinoma, including:
1. Adenocarcinoma: This type of carcinoma originates in glandular cells, which produce fluids or mucus. Examples include breast cancer, prostate cancer, and colon cancer.
2. Squamous cell carcinoma: This type of carcinoma originates in squamous cells, which are found on the surface layers of skin and mucous membranes. Examples include head and neck cancers, cervical cancer, and anal cancer.
3. Basal cell carcinoma: This type of carcinoma originates in the deepest layer of skin, called the basal layer. It is the most common type of skin cancer and tends to grow slowly.
4. Neuroendocrine carcinoma: This type of carcinoma originates in cells that produce hormones and neurotransmitters. Examples include lung cancer, pancreatic cancer, and thyroid cancer.
5. Small cell carcinoma: This type of carcinoma is a highly aggressive form of lung cancer that spreads quickly to other parts of the body.
The signs and symptoms of carcinoma depend on the location and stage of the cancer. Some common symptoms include:
* A lump or mass
* Pain
* Skin changes, such as a new mole or a change in the color or texture of the skin
* Changes in bowel or bladder habits
* Abnormal bleeding
The diagnosis of carcinoma typically involves a combination of imaging tests, such as X-rays, CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a small sample of tissue for examination under a microscope. Treatment options for carcinoma depend on the location and stage of the cancer and may include surgery, radiation therapy, chemotherapy, or a combination of these.
In conclusion, carcinoma is a type of cancer that originates in epithelial cells and can occur in various parts of the body. Early detection and treatment are important for improving outcomes.
References:
1. American Cancer Society. (2022). Carcinoma. Retrieved from
2. Mayo Clinic. (2022). Carcinoma. Retrieved from
3. MedlinePlus. (2022). Carcinoma. Retrieved from
Pterygium is caused by prolonged exposure to ultraviolet (UV) radiation, particularly UVB, which can damage the ocular surface and cause inflammation. It is more common in people who spend a lot of time outdoors, especially in sunny or high-altitude environments. Pterygium is also associated with certain medical conditions, such as dry eye syndrome, and it can be a side effect of certain medications.
Symptoms of pterygium may include:
* Redness and inflammation of the conjunctiva (the thin membrane that covers the white part of the eye)
* A triangular or wing-shaped growth on the surface of the eye
* Discomfort or pain in the eye
* Blurred vision or sensitivity to light
* Dryness or irritation of the eye
If you suspect you have pterygium, your doctor will perform a comprehensive eye exam to confirm the diagnosis. Treatment options for pterygium include:
1. Observation: Small pterygia may not require treatment and can be monitored with regular eye exams.
2. Medications: Anti-inflammatory medications, such as corticosteroids, can help reduce inflammation and discomfort associated with pterygium.
3. Surgery: In more severe cases, surgical removal of the growth may be necessary. This is typically done under local anesthesia and involves removing the growth and any affected tissue.
4. Laser treatment: Laser therapy can be used to remove the growth and reduce inflammation.
It's important to note that pterygium is a relatively common condition and is usually not a serious threat to vision, but it can cause significant discomfort and affect your quality of life. If you suspect you have pterygium, it's important to see an eye doctor as soon as possible to determine the best course of treatment for you.
There are several types of colonic neoplasms, including:
1. Adenomas: These are benign growths that are usually precursors to colorectal cancer.
2. Carcinomas: These are malignant tumors that arise from the epithelial lining of the colon.
3. Sarcomas: These are rare malignant tumors that arise from the connective tissue of the colon.
4. Lymphomas: These are cancers of the immune system that can affect the colon.
Colonic neoplasms can cause a variety of symptoms, including bleeding, abdominal pain, and changes in bowel habits. They are often diagnosed through a combination of medical imaging tests (such as colonoscopy or CT scan) and biopsy. Treatment for colonic neoplasms depends on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.
Overall, colonic neoplasms are a common condition that can have serious consequences if left untreated. It is important for individuals to be aware of their risk factors and to undergo regular screening for colon cancer to help detect and treat any abnormal growths or tumors in the colon.
There are several key features of inflammation:
1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.
Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.
There are several types of inflammation, including:
1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.
There are several ways to reduce inflammation, including:
1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.
It's important to note that chronic inflammation can lead to a range of health problems, including:
1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.
Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.
Some common examples of nose diseases include:
1. Nasal congestion: This is a condition where the nasal passages become blocked or constricted, leading to difficulty breathing through the nose. It can be caused by a variety of factors, such as allergies, colds, or sinus infections.
2. Sinusitis: This is an inflammation of the sinuses, which are air-filled cavities within the skull. Sinusitis can cause headaches, facial pain, and difficulty breathing through the nose.
3. Nasal polyps: These are growths that occur in the nasal passages and can block the flow of air through the nose. They can be caused by allergies or other conditions.
4. Rhinitis: This is an inflammation of the nasal passages, which can cause symptoms such as congestion, runny nose, and sneezing. There are several different types of rhinitis, including allergic rhinitis and non-allergic rhinitis.
5. Nasal tumors: These are abnormal growths that occur in the nasal passages and can cause symptoms such as nasal congestion, bleeding, and facial pain. They can be benign or malignant.
6. Deviated septum: This is a condition where the thin wall of cartilage and bone that separates the two sides of the nasal passages is displaced, causing difficulty breathing through the nose.
7. Nasal dryness: This can be caused by a variety of factors, such as dry air, allergies, or certain medications. It can lead to symptoms such as nasal congestion and difficulty breathing through the nose.
8. Nasal fractures: These are breaks in the bones of the nose, which can be caused by trauma such as a blow to the face. They can cause symptoms such as pain, swelling, and difficulty breathing through the nose.
9. Sinusitis: This is an inflammation of the sinuses, which are air-filled cavities in the skull. It can cause symptoms such as facial pain, headaches, and congestion.
10. Nasal polyps: These are growths that occur in the nasal passages and can cause symptoms such as nasal congestion, loss of sense of smell, and facial pain. They can be caused by a variety of factors, including allergies and chronic sinusitis.
These are just a few examples of the many different conditions that can affect the nose. If you are experiencing symptoms such as nasal congestion, loss of sense of smell, or facial pain, it is important to see a healthcare professional for proper diagnosis and treatment.
There are several types of dry eye syndromes, including:
1. Dry eye disease (DED): This is the most common type of dry eye syndrome and is characterized by a deficiency in the tear film that covers the surface of the eye. It can be caused by a variety of factors such as aging, hormonal changes, medications, and environmental conditions.
2. Meibomian gland dysfunction (MGD): This type of dry eye syndrome is caused by problems with the meibomian glands, which are located in the eyelids and produce the fatty layer of the tear film. MGD can be caused by inflammation, blockages, or other issues that prevent the glands from functioning properly.
3. Aqueous deficient dry eye (ADDE): This type of dry eye syndrome is caused by a lack of the aqueous layer of the tear film, which is produced by the lacrimal gland. It can be caused by surgical removal of the lacrimal gland, injury to the gland, or other conditions that affect its function.
4. Evaporative dry eye (EDE): This type of dry eye syndrome is caused by a problem with the meibomian glands and the lipid layer of the tear film. It can be caused by inflammation, blockages, or other issues that prevent the glands from functioning properly.
5. Contact lens-related dry eye (CLDE): This type of dry eye syndrome is caused by wearing contact lenses, which can disrupt the natural tear film and cause dryness and irritation.
6. Sjögren's syndrome: This is an autoimmune disorder that affects the glands that produce tears and saliva, leading to dry eye syndrome and other symptoms.
7. Medications: Certain medications, such as antihistamines, decongestants, and blood pressure medications, can reduce tear production and lead to dry eye syndrome.
8. Hormonal changes: Changes in hormone levels, such as during menopause or pregnancy, can lead to dry eye syndrome.
9. Environmental factors: Dry air, smoke, wind, and dry climates can all contribute to dry eye syndrome.
10. Nutritional deficiencies: A lack of omega-3 fatty acids in the diet has been linked to an increased risk of dry eye syndrome.
It is important to note that dry eye syndrome can be a complex condition and may involve multiple factors. A comprehensive diagnosis from an eye doctor or other healthcare professional is necessary to determine the underlying cause and develop an effective treatment plan.
Also known as: Corneal inflammation, Eye inflammation, Keratoconjunctivitis, Ocular inflammation.
Here are some common types of conjunctival diseases:
1. Conjunctivitis: This is an inflammation of the conjunctiva, often caused by a virus or bacteria. It can be highly contagious and can cause symptoms such as redness, itching, and discharge.
2. Pink eye: This is a common term for conjunctivitis that is caused by a virus or bacteria. It can be highly contagious and can cause symptoms such as redness, itching, and discharge.
3. Dry eye syndrome: This is a condition where the eyes do not produce enough tears, leading to dryness, itching, and irritation.
4. Allergic conjunctivitis: This is an inflammation of the conjunctiva caused by an allergic reaction to pollen, dust, or other substances. It can cause symptoms such as redness, itching, and tearing.
5. Contact lens-related conjunctivitis: This is an inflammation of the conjunctiva caused by wearing contact lenses that are not properly cleaned and maintained. It can cause symptoms such as redness, itching, and discharge.
6. Trachoma: This is a bacterial infection of the conjunctiva that is common in developing countries. It can cause symptoms such as redness, itching, and scarring.
7. Blepharitis: This is an inflammation of the eyelids and conjunctiva caused by poor eyelid hygiene or a bacterial infection. It can cause symptoms such as redness, itching, and tearing.
8. Meibomian gland dysfunction: This is a condition where the meibomian glands in the eyelids do not function properly, leading to dryness, itching, and irritation of the eyes.
9. Pink eye (viral conjunctivitis): This is an infection of the conjunctiva caused by a virus, such as the common cold or flu. It can cause symptoms such as redness, itching, and discharge.
10. Chlamydial conjunctivitis: This is an infection of the conjunctiva caused by the bacteria Chlamydia trachomatis. It can cause symptoms such as redness, itching, and discharge.
It's important to note that while these conditions may have similar symptoms, they require different treatments and diagnoses. If you suspect you have conjunctivitis or any other eye condition, it's important to consult an eye doctor for proper diagnosis and treatment.
CNV develops when the underlying choroidal layers experience changes that lead to the growth of new blood vessels, which can leak fluid and cause damage to the retina. This can result in vision distortion, loss of central vision, and even blindness if left untreated.
The formation of CNV is a complex process that involves various cellular and molecular mechanisms. It is thought to be triggered by factors such as oxidative stress, inflammation, and the presence of certain growth factors and proteins.
There are several clinical signs and symptoms associated with CNV, including:
1. Distortion of vision, including metamorphopsia (distorted vision of geometric shapes)
2. Blind spots or scotomas
3. Decreased central vision
4. Difficulty reading or performing other daily tasks
5. Reduced color perception
6. Sensitivity to light and glare
The diagnosis of CNV is typically made based on a comprehensive eye exam, including a visual acuity test, dilated eye exam, and imaging tests such as fluorescein angiography or optical coherence tomography (OCT).
There are several treatment options for CNV, including:
1. Anti-vascular endothelial growth factor (VEGF) injections: These medications work by blocking the growth of new blood vessels and can help improve vision and reduce the risk of further damage.
2. Photodynamic therapy: This involves the use of a light-sensitive medication and low-intensity laser therapy to damage and shrink the abnormal blood vessels.
3. Focal photocoagulation: This involves the use of a high-intensity laser to destroy the abnormal blood vessels in the central retina.
4. Vitrectomy: In severe cases, a vitrectomy may be performed to remove the vitreous gel and blood vessels that are causing the CNV.
It is important to note that these treatments do not cure CNV, but they can help improve vision and slow the progression of the disease. Regular follow-up appointments with an eye care professional are necessary to monitor the condition and adjust treatment as needed.
Benign ovarian neoplasms include:
1. Serous cystadenoma: A fluid-filled sac that develops on the surface of the ovary.
2. Mucinous cystadenoma: A tumor that is filled with mucin, a type of protein.
3. Endometrioid tumors: Tumors that are similar to endometrial tissue (the lining of the uterus).
4. Theca cell tumors: Tumors that develop in the supportive tissue of the ovary called theca cells.
Malignant ovarian neoplasms include:
1. Epithelial ovarian cancer (EOC): The most common type of ovarian cancer, which arises from the surface epithelium of the ovary.
2. Germ cell tumors: Tumors that develop from germ cells, which are the cells that give rise to eggs.
3. Stromal sarcomas: Tumors that develop in the supportive tissue of the ovary.
Ovarian neoplasms can cause symptoms such as pelvic pain, abnormal bleeding, and abdominal swelling. They can also be detected through pelvic examination, imaging tests such as ultrasound and CT scan, and biopsy. Treatment options for ovarian neoplasms depend on the type, stage, and location of the tumor, and may include surgery, chemotherapy, and radiation therapy.
Examples of 'Mammary Neoplasms, Experimental' in a sentence:
1. The researchers studied the effects of hormone therapy on mammary neoplasms in experimental animals to better understand its potential role in human breast cancer.
2. The lab used mice with genetic mutations that predispose them to developing mammary neoplasms to test the efficacy of new cancer drugs.
3. In order to investigate the link between obesity and breast cancer, the researchers conducted experiments on mammary neoplasms in rats with diet-induced obesity.
Epithelium
Intestinal epithelium
Transitional epithelium
Junctional epithelium
Vaginal epithelium
Stratified epithelium
Germinal epithelium
Olfactory epithelium
Corneal epithelium
Coelomic epithelium
Respiratory epithelium
Sulcular epithelium
Uterine epithelium
Simple cuboidal epithelium
Outer enamel epithelium
Reduced enamel epithelium
Germinal epithelium (male)
Stratified cuboidal epithelium
Pseudostratified columnar epithelium
Stratified columnar epithelium
Germinal epithelium (female)
Retinal pigment epithelium
Inner enamel epithelium
Simple columnar epithelium
Stratified squamous epithelium
Iris pigment epithelium
Simple squamous epithelium
Glossary of gastropod terms
Descending limb of loop of Henle
Vaginal rugae
Epithelium: MedlinePlus Medical Encyclopedia
morphogenesis of an epithelium Gene Ontology Term (GO:0002009)
Circular RNA CircHIPK3 Promotes Homeostasis of the Intestinal Epithelium by Reducing MicroRNA 29b Function
morphogenesis of embryonic epithelium Antibodies | Invitrogen
...
Essay on Epithelium | Free Essay Examples to Spark Your Writing Enthusiasm | WePapers
Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with...
PEDF (Pigment Epithelium-derived Factor) Recombinant Protein
Enhanced anti-apoptosis and gut epithelium protection function of acidic fibroblast growth factor after cancelling of its...
Comment on: Long-Term Outcome After Superficial Keratectomy of the Abnormal Epithelium for Partial Limbal Stem Cell Deficiency....
BiiGC-1-Epithelium-of-an-entire-human-cornea - Deutsche Gesellschaft für Gewebetransplantation
MHC Class II Antigen Presentation by the Intestinal Epithelium Initiates Graft-versus-Host Disease and Is Influenced by the...
CFTR regulation by microRNA-145, -223 and -494 is altered in deltaF508 cystic fibrosis airway epithelium
Modifications to epithelium - Veterinary Histology
Elucidating the Structure of the Glycocalyx-Microvilli Complex on the Surface of a Model Epithelia Cell Using Freeze-Etch and...
A single-cell survey of the small intestinal epithelium - 10x Genomics
Widespread somatic L1 retrotransposition in normal colorectal epithelium. | Nature;617(7961): 540-547, 2023 May. | MEDLINE
Alveolar progenitor and stem cells in lung development, renewal and cancer | Nature
Apoptotic index in periapical cysts with atrophic and hyperplastic epithelium
Apoptotic index in periapical cysts with atrophic and hyperplastic epithelium
Comparative analysis of the epithelium stroma interaction of acquired middle ear cholesteatoma in children and adults<...
Mouse Models for Studying of Physiology and Pathophysilogy of Digestive Epithelia - Czech Centre for Phenogenomics
Ethnicity, race and Covid 19: socioeconomic inequality, discrimination, culture, nature?
Olfactory Mucosa - Medical Dictionary online-medical-dictionary.org
Emergency Response Safety and Health Database: Glossary | NIOSH | CDC
Substrate metabolism by rat jejunal epithelium: The role of glutamine<...
A Role for the Adenomatous Polposis Coli Protein in Mitotic Spindle Alignment in Gut Epithelium<...
Differential expression of specific cytokeratin polypeptides in the basal and luminal epithelia of the human prostate<...
Intestinal epithelium5
- Although circRNAs influence many biological processes, little is known about their role in intestinal epithelium homeostasis. (nih.gov)
- Increasing the levels of circHIPK3 enhanced intestinal epithelium repair after wounding, whereas circHIPK3 silencing repressed epithelial recovery. (nih.gov)
- CircHIPK3 silencing also inhibited growth of IECs and intestinal organoids, and circHIPK3 overexpression promoted intestinal epithelium renewal in mice. (nih.gov)
- In studies of mice, IECs, and human tissues, our results indicate that circHIPK3 improves repair of the intestinal epithelium at least in part by reducing miR-29b availability. (nih.gov)
- The brush border, columnar glycocalyx filaments and the terminal cover net arrange into a stratified but highly integrated transcellular organization that maintains a regular structure across the intestinal epithelium. (nih.gov)
Columnar1
- Microvilli are present on the apical aspect of the columnar epithelium from the duodenum. (pressbooks.pub)
Olfactory2
- Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. (alzforum.org)
- The primary objective of this study was to define the deposition, uptake, and transport of inhaled ultrafine iron-soot particles in the nasal cavities of mice to determine whether combustion-generated nanoparticles reach the olfactory bulb via the olfactory epithelium and nerve fascicles. (cdc.gov)
Organs2
- The term "epithelium" refers to layers of cells that line hollow organs and glands. (medlineplus.gov)
- Microvilli are often seen in organs where the epithelium plays a primary role in the absorption of molecules. (pressbooks.pub)
Epithelial2
- This assists in the movement of material over the epithelial surface in a manner parallel with the surface of the epithelium. (pressbooks.pub)
- Methodology: 15 samples of periapical cyst with most of the epithelial lining represented by the atrophic type and 15 samples with most of the epithelium lining represented by the hyperplastic type were selected, all originating in the Anatomical Pathology Laboratory of the Dental School, Pontificia Universidade Católica of Minas Gerais. (bvsalud.org)
Nasal1
- Asphalt exposure enhances Substance P (SP) levels in sensory neurons projecting to nasal epithelium. (cdc.gov)
Surface1
- Pseudostratified epithelium of the trachea with prominent cilia on the apical surface. (pressbooks.pub)
Cells3
- Adamson, I. Y. & Bowden, D. H. Derivation of type 1 epithelium from type 2 cells in the developing rat lung. (nature.com)
- A major role of the keratin intermediate filaments in simple epithelia is to protect cells from mechanical and non-mechanical stresses. (phenogenomics.cz)
- Epithelia of 30 and 36 week fetal prostate contained only basal cells whereas both luminal and basal cells were noted in 7 month and 1 year old juvenile prostate. (northwestern.edu)
Term1
- Comment on: Long-Term Outcome After Superficial Keratectomy of the Abnormal Epithelium for Partial Limbal Stem Cell Deficiency. (ca.gov)
Function1
- They can contribute to the barrier function of epithelia and control the paracellular transport. (pressbooks.pub)
Type2
- So stop wasting time and begin searching our open-access Epithelium essay samples directory right now - by topic, type of paper, or keywords. (wepapers.com)
- In digestive simple-type epithelia, the major keratins are keratin polypeptide 8 and 18 (K8/K18) with variable levels of K7, K19 and K20 depending on the cell type. (phenogenomics.cz)
Free1
- In such a case, browsing the WePapers.com database of free sample essays on Epithelium, discovering an inspiring, expertly crafted paper, and then using it as a prototype to follow might be a really viable plan! (wepapers.com)