A species of parasitic protozoa causing ENTAMOEBIASIS and amebic dysentery (DYSENTERY, AMEBIC). Characteristics include a single nucleus containing a small central karyosome and peripheral chromatin that is finely and regularly beaded.
A genus of ameboid protozoa characterized by the presence of beaded chromatin on the inner surface of the nuclear membrane. Its organisms are parasitic in invertebrates and vertebrates, including humans.
Infection with amoebae of the genus ENTAMOEBA. Infection with E. histolytica causes DYSENTERY, AMEBIC and LIVER ABSCESS, AMEBIC.
DYSENTERY caused by intestinal amebic infection, chiefly with ENTAMOEBA HISTOLYTICA. This condition may be associated with amebic infection of the LIVER and other distant sites.
Single or multiple areas of PUS due to infection by any ameboid protozoa (AMEBIASIS). A common form is caused by the ingestion of ENTAMOEBA HISTOLYTICA.
Cells or feeding stage in the life cycle of sporozoan protozoa. In the malarial parasite, the trophozoite develops from the MEROZOITE and then splits into the SCHIZONT. Trophozoites that are left over from cell division can go on to form gametocytes.
Agents which are destructive to amebae, especially the parasitic species causing AMEBIASIS in man and animal.
Infection with any of various amebae. It is an asymptomatic carrier state in most individuals, but diseases ranging from chronic, mild diarrhea to fulminant dysentery may occur.
Infections of the INTESTINES with PARASITES, commonly involving PARASITIC WORMS. Infections with roundworms (NEMATODE INFECTIONS) and tapeworms (CESTODE INFECTIONS) are also known as HELMINTHIASIS.
Infections with unicellular organisms formerly members of the subkingdom Protozoa.
Proteins found in any species of protozoan.
Deoxyribonucleic acid that makes up the genetic material of protozoa.
Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
A species of parasitic EUKARYOTES that attaches itself to the intestinal mucosa and feeds on mucous secretions. The organism is roughly pear-shaped and motility is somewhat erratic, with a slow oscillation about the long axis.
The study of parasites and PARASITIC DISEASES.
Any part or derivative of any protozoan that elicits immunity; malaria (Plasmodium) and trypanosome antigens are presently the most frequently encountered.
A genus of ameboid protozoa found in the intestines of vertebrates and invertebrates.
A genus of parasitic flagellate EUKARYOTES distinguished by the presence of four anterior flagella, an undulating membrane, and a trailing flagellum.
A subclass of peptide hydrolases that depend on a CYSTEINE residue for their activity.
The complete genetic complement contained in a set of CHROMOSOMES in a protozoan.
Immunoglobulins produced in a response to PROTOZOAN ANTIGENS.
A species of parasitic protozoa found in the intestines of humans and other primates. It was classified as a yeast in 1912. Over the years, questions arose about this designation. In 1967, many physiological and morphological B. hominis characteristics were reported that fit a protozoan classification. Since that time, other papers have corroborated this work and the organism is now recognized as a protozoan parasite of humans causing intestinal disease with potentially disabling symptoms.
The functional hereditary units of protozoa.
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition.
The N-acetyl derivative of galactosamine.
A genus of flagellate intestinal EUKARYOTES parasitic in various vertebrates, including humans. Characteristics include the presence of four pairs of flagella arising from a complicated system of axonemes and cysts that are ellipsoidal to ovoidal in shape.
A genus of minute EUKARYOTES that are characterized by the preponderance of binucleate over uninucleate forms, the presence of several distinct granules in the karyosome, and the lack of a cystic stage. It is parasitic in the large intestine of humans and certain monkeys.
Invertebrate organisms that live on or in another organism (the host), and benefit at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically.
Substances that are destructive to protozoans.
An infection of the SMALL INTESTINE caused by the flagellated protozoan GIARDIA LAMBLIA. It is spread via contaminated food and water and by direct person-to-person contact.
A nitroimidazole used to treat AMEBIASIS; VAGINITIS; TRICHOMONAS INFECTIONS; GIARDIASIS; ANAEROBIC BACTERIA; and TREPONEMAL INFECTIONS. It has also been proposed as a radiation sensitizer for hypoxic cells. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985, p133), this substance may reasonably be anticipated to be a carcinogen (Merck, 11th ed).
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys.
A vegetative stage in the life cycle of sporozoan protozoa. It is characteristic of members of the phyla APICOMPLEXA and MICROSPORIDIA.
Infestation with parasitic worms of the helminth class.
A tri-benzene-ammonium usually compounded with zinc chloride. It is used as a biological stain and for the dyeing and printing of textiles.
Ribonucleic acid in protozoa having regulatory and catalytic roles as well as involvement in protein synthesis.
One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista.
Commonly known as parasitic worms, this group includes the ACANTHOCEPHALA; NEMATODA; and PLATYHELMINTHS. Some authors consider certain species of LEECHES that can become temporarily parasitic as helminths.
Agents used to treat trichomonas infections.
An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Suspensions of attenuated or killed protozoa administered for the prevention or treatment of infectious protozoan disease.
Solitary or multiple collections of PUS within the liver as a result of infection by bacteria, protozoa, or other agents.
A class of animal lectins that bind specifically to beta-galactoside in a calcium-independent manner. Members of this class are distiguished from other lectins by the presence of a conserved carbohydrate recognition domain. The majority of proteins in this class bind to sugar molecules in a sulfhydryl-dependent manner and are often referred to as S-type lectins, however this property is not required for membership in this class.
A property of the surface of an object that makes it stick to another surface.
A linear polysaccharide of beta-1->4 linked units of ACETYLGLUCOSAMINE. It is the second most abundant biopolymer on earth, found especially in INSECTS and FUNGI. When deacetylated it is called CHITOSAN.
An enzyme that catalyzes the conversion of L-SERINE to COENZYME A and O-acetyl-L-serine, using ACETYL-COA as a donor.
The study of animals - their morphology, growth, distribution, classification, and behavior.
A supergroup (some say phylum) of ameboid EUKARYOTES, comprising ARCHAMOEBAE; LOBOSEA; and MYCETOZOA.
Works containing information articles on subjects in every field of knowledge, usually arranged in alphabetical order, or a similar work limited to a special field or subject. (From The ALA Glossary of Library and Information Science, 1983)
Infections or infestations with parasitic organisms. The infestation may be experimental or veterinary.

Myosin IB from Entamoeba histolytica is involved in phagocytosis of human erythrocytes. (1/167)

Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery in humans. The disease is prevalent worldwide. Infection with E. histolytica results in invasion of the intestine by the parasite, followed by tissue damage and inflammation. During this invasive process, parasites kill and phagocytose human epithelial cells, immune cells and erythrocytes. Expression of amoebic pathogenicity requires a dynamic cytoskeleton that allows movement, tissue penetration and changes in parasite morphology. Myosin IB is a member of the myosin I family of motor proteins. Studies conducted both with Dictyostelium discoideum, a non-pathogenic amoeba, and with the yeast Saccharomyces cerevisiae indicate the involvement of myosin IB in cellular processes including movement, phagocytosis and endocytosis. Recently, we isolated the gene encoding myosin IB from E. histolytica. Thus, we decided to analyze the role of myosin IB in pathogenesis of amoeba. Using a specific anti-myosin IB antibody, this protein was localized in cell regions including the pseudopod, vesicles and underneath the plasma membrane. When E. histolytica was activated for erythrophagocytosis, myosin IB was markedly recruited to both the phagocytic cup and around internalized phagosomes. To analyze the role of myosin IB in phagocytosis, a strain overexpressing the myosin IB gene was constructed. This strain synthesizes threefold more myosin IB than the wild-type strain. Challenge of the transfected cell line with erythrocytes showed that these amoebae were deficient in erythrophagocytosis mainly in the uptake step, suggesting a role for myosin IB in the pathogenic activity of a human parasite.  (+info)

Chitinase secretion by encysting Entamoeba invadens and transfected Entamoeba histolytica trophozoites: localization of secretory vesicles, endoplasmic reticulum, and Golgi apparatus. (2/167)

Entamoeba histolytica, the protozoan parasite that phagocytoses bacteria and host cells, has a vesicle/vacuole-filled cytosol like that of macrophages. In contrast, the infectious cyst form has four nuclei and a chitin wall. Here, anti-chitinase antibodies identified hundreds of small secretory vesicles in encysting E. invadens parasites and in E. histolytica trophozoites overexpressing chitinase under an actin gene promoter. Abundant small secretory vesicles were also identified with antibodies to the surface antigen Ariel and with a fluorescent substrate of cysteine proteinases. Removal of an N-terminal signal sequence directed chitinase to the cytosol. Addition of a C-terminal KDEL peptide, identified on amebic BiP, retained chitinase in a putative endoplasmic reticulum, which was composed of a few vesicles of mixed sizes. A putative Golgi apparatus, which was Brefeldin A sensitive and composed of a few large, perinuclear vesicles, was identified with antibodies to ADP-ribosylating factor and to epsilon-COP. We conclude that the amebic secretory pathway is similar to those of other eukaryotic cells, even if its appearance is somewhat different.  (+info)

Proteasome-dependent cyst formation and stage-specific ubiquitin mRNA accumulation in Entamoeba invadens. (3/167)

Proteases play an important role in the pathogenic mechanisms and differentiation events of protozoan parasites; the proteasome/ubiquitin system is essential for maintaining the differentiation state of many cell types. A single input of the specific inhibitor of proteasomes, lactacystin, prevented encystation of the protozoan parasite Entameoba invadens, whereas a cysteine protease inhibitor, E64, only delayed encystation. The ameba target of lactacystin was purified and it displayed the features typical of eukaryotic 20S proteasome complexes. In addition, transcripts encoding ubiquitin were detectable in trophozoites stage cells, disappeared immediately following transfer of amoebae to encystation induction medium, and reappeared at the same time during encystation as other encystation-specific transcripts. These results demonstrate that proteasome function is required during the conversion of the disease-causing trophozoite into the infectious cyst stage of Entamoeba parasites, and that ubiquitin transcript levels undergo an unusual decrease during the early stages of this differentiation process.  (+info)

Pore-forming peptides of Entamoeba dispar. Similarity and divergence to amoebapores in structure, expression and activity. (4/167)

Amoebapore, a 77-residue peptide with pore-forming activity from the human pathogen Entamoeba histolytica, is implicated in the killing of phagocytosed bacteria and in the cytolytic reaction of the amoeba against host cells. Previously, we structurally and functionally characterized three amoebapore isoforms in E. histolytica but recognized only one homolog in the closely related but non-pathogenic species Entamoeba dispar. Here, we identified two novel amoebapore homologs from E. dispar by molecular cloning. Despite strong resemblance of the primary structures of the homologs, molecular modeling predicts a species-specific variance between the peptide structures. Parallel isolation from trophozoite extracts of the two species revealed a lower amount of pore-forming peptides in E. dispar and substantially higher activity of the major isoform from E. histolytica towards natural membranes than that from E. dispar. Differences in abundance and activity of the lytic polypeptides may have an impact on the pathogenicity of amoebae.  (+info)

Entamoeba histolytica and Entamoeba dispar: epidemiology and comparison of diagnostic methods in a setting of nonendemicity. (5/167)

Recent studies suggest that stool antigen assays are more sensitive and specific than microscopy for the diagnosis of Entamoeba histolytica infection. One hundred twelve patients presenting at 3 centers with symptoms or risk factors of E. histolytica infection were prospectively enrolled in this study to evaluate new diagnostic tests for infections with E. histolytica and Entamoeba dispar. Four ELISA-based stool antigen kits for detecting E. histolytica or E. dispar were blindly compared with stool microscopy. Amebic serology was assessed by indirect hemagglutination. When antigen assays were used as the reference standard, microscopy performed at referral centers was more specific (68.4% vs. 9.5%) but less sensitive (70.4% vs. 92.1%) than microscopy performed in community laboratories. Diagnosis with the E. histolytica test and Merlin Optimun S ELISA indicated that only 3 (4.2%) of 72 coproantigen-positive stools were positive for E. histolytica. Indirect hemagglutination was a good predictor of E. histolytica infection when titers of antibody to ameba were >/=1:512.  (+info)

A DNA sequence corresponding to the gene encoding cysteine proteinase 5 in Entamoeba histolytica is present and positionally conserved but highly degenerated in Entamoeba dispar. (6/167)

Cysteine proteinases of Entamoeba histolytica are considered to be one of the most important classes of molecules responsible for the parasite's ability to destroy human tissues. Interestingly, one particular cysteine proteinase, located on the surface of E. histolytica trophozoites and designated cysteine proteinase 5 (CP5), is not expressed in the closely related but nonpathogenic species Entamoeba dispar. By comparing the E. histolytica and E. dispar genomic loci containing the gene for CP5 (cp5), it was found that the position of cp5 within the genomic context is conserved between the two organisms, but that the gene is highly degenerated in E. dispar, as it contains numerous nucleotide exchanges, insertions, and deletions, resulting in multiple stop codons within the cp5 reading frame. An alignment of all available orthologous E. histolytica and E. dispar DNA sequences suggested that cp5 started to degenerate in E. dispar coincidently when the two organisms began to diverge from a common ancestor.  (+info)

Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba. (7/167)

The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.  (+info)

Phylogeny of the genera Entamoeba and Endolimax as deduced from small-subunit ribosomal RNA sequences. (8/167)

We sequenced small-subunit ribosomal RNA genes (16S-like rDNAs) of 10 species belonging to the genera Entamoeba and Endolimax. This study was undertaken to (1) resolve the relationships among the major lineages of Entamoeba previously identified by riboprinting; (2) examine the validity of grouping the genera Entamoeba and Endolimax in the same family, the Entamoebidae; and (3) examine how different models of nucleotide evolution influence the position of Entamoeba in eukaryotic phylogenetic reconstructions. The results obtained with distance, parsimony, and maximum-likelihood analyses support monophyly of the genus Entamoeba and are largely in accord with riboprinting results. Species of Entamoeba producing cysts with the same number of nuclei from monophyletic groups. The most basal Entamoeba species are those that produce cysts with eight nuclei, while the group producing four-nucleated cysts is most derived. Most phylogenetic reconstructions support monophyly of the Entamoebidae. In maximum-likelihood and parsimony analyses, Endolimax is a sister taxon to Entamoeba, while in some distance analyses, it represents a separate lineage. The secondary loss of mitochondria and other organelles from these genera is confirmed by their relatively late divergence in eukaryotic 16S-like rDNA phylogenies. Finally, we show that the positions of some (fast-evolving) eukaryotic lineages are uncertain in trees constructed with models that make corrections for among-site rate variation.  (+info)

'Entamoeba histolytica' is a species of microscopic, single-celled protozoan parasites that can cause a range of human health problems, primarily in the form of intestinal and extra-intestinal infections. The medical definition of 'Entamoeba histolytica' is as follows:

Entamoeba histolytica: A species of pathogenic protozoan parasites belonging to the family Entamoebidae, order Amoebida, and phylum Sarcomastigophora. These microorganisms are typically found in the form of cysts or trophozoites and can infect humans through the ingestion of contaminated food, water, or feces.

Once inside the human body, 'Entamoeba histolytica' parasites can colonize the large intestine, where they may cause a range of symptoms, from mild diarrhea to severe dysentery, depending on the individual's immune response and the location of the infection. In some cases, these parasites can also invade other organs, such as the liver, lungs, or brain, leading to more serious health complications.

The life cycle of 'Entamoeba histolytica' involves two main stages: the cyst stage and the trophozoite stage. The cysts are the infective form, which can be transmitted from person to person through fecal-oral contact or by ingesting contaminated food or water. Once inside the human body, these cysts excyst in the small intestine, releasing the motile and feeding trophozoites.

The trophozoites then migrate to the large intestine, where they can multiply by binary fission and cause tissue damage through their ability to phagocytize host cells and release cytotoxic substances. Some of these trophozoites may transform back into cysts, which are excreted in feces and can then infect other individuals.

Diagnosis of 'Entamoeba histolytica' infection typically involves the examination of stool samples for the presence of cysts or trophozoites, as well as serological tests to detect antibodies against the parasite. Treatment usually involves the use of antiparasitic drugs such as metronidazole or tinidazole, which can kill the trophozoites and help to control the infection. However, it is important to note that these drugs do not affect the cysts, so proper sanitation and hygiene measures are crucial to prevent the spread of the parasite.

'Entamoeba' is a genus of protozoan parasites that are commonly found in the intestinal tract of humans and other primates. The most well-known species is 'Entamoeba histolytica,' which can cause a serious infection known as amoebiasis. This parasite is typically transmitted through the ingestion of contaminated food or water, and it can invade the intestinal wall and spread to other organs in the body, causing symptoms such as diarrhea, abdominal pain, and fever. Other species of Entamoeba are generally considered non-pathogenic, meaning that they do not cause disease in healthy individuals.

Entamoebiasis is a parasitic infection caused by the protozoan Entamoeba histolytica. It can affect various organs, but the most common site of infection is the large intestine (colon), leading to symptoms such as diarrhea, stomach pain, and cramping. In severe cases, it may cause invasive disease, including amoebic dysentery or extraintestinal infections like liver abscesses.

The life cycle of Entamoeba histolytica involves two stages: the infective cyst stage and the proliferative trophozoite stage. Transmission occurs through ingestion of contaminated food, water, or hands containing cysts. Once inside the human body, these cysts excyst in the small intestine, releasing trophozoites that colonize the large intestine and cause disease.

Entamoebiasis is more prevalent in areas with poor sanitation and hygiene practices. Preventive measures include proper handwashing, safe food handling, and access to clean water. Treatment typically involves antiparasitic medications such as metronidazole or tinidazole.

Amebic dysentery is a type of dysentery caused by the parasitic protozoan Entamoeba histolytica. It is characterized by severe diarrhea containing blood and mucus, abdominal pain, and cramping. The infection is typically acquired through the ingestion of contaminated food or water. Once inside the body, the parasites invade the intestinal lining, causing damage and leading to the symptoms of dysentery. In severe cases, the parasites can spread to other organs such as the liver, lungs, or brain, causing more serious infections. Amebic dysentery is treated with medications that kill the parasites, such as metronidazole or tinidazole. Prevention measures include practicing good hygiene and sanitation, including proper handwashing and safe food handling practices.

Amebic liver abscess is a medical condition characterized by the presence of a pus-filled cavity (abscess) in the liver caused by the infection of the amoeba Entamoeba histolytica. This parasite typically enters the body through contaminated food or water and makes its way to the liver, where it can cause tissue damage and abscess formation. The abscess is usually solitary and contains necrotic debris and inflammatory cells, primarily composed of neutrophils. Symptoms may include fever, right upper quadrant pain, and tender hepatomegaly (enlarged liver). If left untreated, amebic liver abscess can lead to serious complications such as perforation of the liver, bacterial superinfection, or spread of the infection to other organs.

Trophozoites are the feeding and motile stage in the life cycle of certain protozoa, including those that cause diseases such as amebiasis and malaria. They are typically larger than the cyst stage of these organisms and have a more irregular shape. Trophozoites move by means of pseudopods (false feet) and engulf food particles through a process called phagocytosis. In the case of pathogenic protozoa, this feeding stage is often when they cause damage to host tissues.

In the case of amebiasis, caused by Entamoeba histolytica, trophozoites can invade the intestinal wall and cause ulcers, leading to symptoms such as diarrhea and abdominal pain. In malaria, caused by Plasmodium species, trophozoites infect red blood cells and multiply within them, eventually causing their rupture and release of more parasites into the bloodstream, which can lead to severe complications like cerebral malaria or organ failure.

It's important to note that not all protozoa have a trophozoite stage in their life cycle, and some may refer to this feeding stage with different terminology depending on the specific species.

Amebicides are medications that are used to treat infections caused by amebae, which are single-celled microorganisms. One common ameba that can cause infection in humans is Entamoeba histolytica, which can lead to a condition called amebiasis. Amebicides work by killing or inhibiting the growth of the amebae. Some examples of amebicides include metronidazole, tinidazole, and chloroquine. It's important to note that these medications should only be used under the guidance of a healthcare professional, as they can have side effects and may interact with other medications.

Amebiasis is defined as an infection caused by the protozoan parasite Entamoeba histolytica, which can affect the intestines and other organs. The infection can range from asymptomatic to symptomatic with various manifestations such as abdominal pain, diarrhea (which may be mild or severe), bloody stools, and fever. In some cases, it can lead to serious complications like liver abscess. Transmission of the parasite typically occurs through the ingestion of contaminated food or water.

Parasitic intestinal diseases are disorders caused by microscopic parasites that invade the gastrointestinal tract, specifically the small intestine. These parasites include protozoa (single-celled organisms) and helminths (parasitic worms). The most common protozoan parasites that cause intestinal disease are Giardia lamblia, Cryptosporidium parvum, and Entamoeba histolytica. Common helminthic parasites include roundworms (Ascaris lumbricoides), tapeworms (Taenia saginata and Taenia solium), hookworms (Ancylostoma duodenale and Necator americanus), and pinworms (Enterobius vermicularis).

Parasitic intestinal diseases can cause a variety of symptoms, including diarrhea, abdominal pain, bloating, nausea, vomiting, fatigue, and weight loss. The severity and duration of the symptoms depend on the type of parasite, the number of organisms present, and the immune status of the host.

Transmission of these parasites can occur through various routes, including contaminated food and water, person-to-person contact, and contact with contaminated soil or feces. Preventive measures include practicing good hygiene, washing hands thoroughly after using the toilet and before handling food, cooking food thoroughly, and avoiding consumption of raw or undercooked meat, poultry, or seafood.

Treatment of parasitic intestinal diseases typically involves the use of antiparasitic medications that target the specific parasite causing the infection. In some cases, supportive care such as fluid replacement and symptom management may also be necessary.

Protozoan infections are diseases caused by microscopic, single-celled organisms known as protozoa. These parasites can enter the human body through contaminated food, water, or contact with an infected person or animal. Once inside the body, they can multiply and cause a range of symptoms depending on the type of protozoan and where it infects in the body. Some common protozoan infections include malaria, giardiasis, amoebiasis, and toxoplasmosis. Symptoms can vary widely but may include diarrhea, abdominal pain, fever, fatigue, and skin rashes. Treatment typically involves the use of antiprotozoal medications to kill the parasites and alleviate symptoms.

I'm sorry for any confusion, but "Protozoan Proteins" is not a specific medical or scientific term. Protozoa are single-celled eukaryotic organisms, and proteins are large biological molecules consisting of one or more chains of amino acid residues. Therefore, "Protozoan Proteins" generally refers to the various types of proteins found in protozoa.

However, if you're looking for information about proteins specific to certain protozoan parasites with medical relevance (such as Plasmodium falciparum, which causes malaria), I would be happy to help! Please provide more context or specify the particular protozoan of interest.

There doesn't seem to be a specific medical definition for "DNA, protozoan" as it is simply a reference to the DNA found in protozoa. Protozoa are single-celled eukaryotic organisms that can be found in various environments such as soil, water, and the digestive tracts of animals.

Protozoan DNA refers to the genetic material present in these organisms. It is composed of nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which contain the instructions for the development, growth, and reproduction of the protozoan.

The DNA in protozoa, like in other organisms, is made up of two strands of nucleotides that coil together to form a double helix. The four nucleotide bases that make up protozoan DNA are adenine (A), thymine (T), guanine (G), and cytosine (C). These bases pair with each other to form the rungs of the DNA ladder, with A always pairing with T and G always pairing with C.

The genetic information stored in protozoan DNA is encoded in the sequence of these nucleotide bases. This information is used to synthesize proteins, which are essential for the structure and function of the organism's cells. Protozoan DNA also contains other types of genetic material, such as regulatory sequences that control gene expression and repetitive elements with no known function.

Understanding the DNA of protozoa is important for studying their biology, evolution, and pathogenicity. It can help researchers develop new treatments for protozoan diseases and gain insights into the fundamental principles of genetics and cellular function.

Feces are the solid or semisolid remains of food that could not be digested or absorbed in the small intestine, along with bacteria and other waste products. After being stored in the colon, feces are eliminated from the body through the rectum and anus during defecation. Feces can vary in color, consistency, and odor depending on a person's diet, health status, and other factors.

"Giardia lamblia," also known as "Giardia duodenalis" or "Giardia intestinalis," is a species of microscopic parasitic protozoan that colonizes and reproduces in the small intestine of various vertebrates, including humans. It is the most common cause of human giardiasis, a diarrheal disease. The trophozoite (feeding form) of Giardia lamblia has a distinctive tear-drop shape and possesses flagella for locomotion. It attaches to the intestinal epithelium, disrupting the normal function of the small intestine and leading to various gastrointestinal symptoms such as diarrhea, stomach cramps, nausea, and dehydration. Giardia lamblia is typically transmitted through the fecal-oral route, often via contaminated food or water.

Parasitology is a branch of biology that deals with the study of parasites, their life cycles, the relationship between parasites and their hosts, the transmission of parasitic diseases, and the development of methods for their control and elimination. It involves understanding various types of parasites including protozoa, helminths, and arthropods that can infect humans, animals, and plants. Parasitologists also study the evolution, genetics, biochemistry, and ecology of parasites to develop effective strategies for their diagnosis, treatment, and prevention.

Antigens are substances (usually proteins) found on the surface of cells, or viruses, that can be recognized by the immune system and stimulate an immune response. In the context of protozoa, antigens refer to the specific proteins or other molecules found on the surface of these single-celled organisms that can trigger an immune response in a host organism.

Protozoa are a group of microscopic eukaryotic organisms that include a diverse range of species, some of which can cause diseases in humans and animals. When a protozoan infects a host, the host's immune system recognizes the protozoan antigens as foreign and mounts an immune response to eliminate the infection. This response involves the activation of various types of immune cells, such as T-cells and B-cells, which recognize and target the protozoan antigens.

Understanding the nature of protozoan antigens is important for developing vaccines and other immunotherapies to prevent or treat protozoan infections. For example, researchers have identified specific antigens on the surface of the malaria parasite that are recognized by the human immune system and have used this information to develop vaccine candidates. However, many protozoan infections remain difficult to prevent or treat, and further research is needed to identify new targets for vaccines and therapies.

'Endolimax' is a genus of protozoan parasites belonging to the family Retortamonadidae. These microscopic organisms are commonly found in the digestive tracts of various animals, including humans, and are typically considered to be non-pathogenic. However, their presence in the body can sometimes lead to gastrointestinal symptoms such as diarrhea or abdominal discomfort.

Endolimax species are pear-shaped or oval in shape and possess a single nucleus and several flagella that allow them to move around. They are typically found in the large intestine, where they feed on bacteria and other organic matter. While they can be detected through microscopic examination of stool samples, their presence is not usually considered indicative of a specific medical condition.

It's worth noting that while Endolimax species are generally harmless, other types of protozoan parasites such as Giardia or Cryptosporidium can cause significant illness and should be ruled out in cases of persistent gastrointestinal symptoms.

Trichomonas is a genus of protozoan parasites that are commonly found in the human body, particularly in the urogenital tract. The most well-known species is Trichomonas vaginalis, which is responsible for the sexually transmitted infection known as trichomoniasis. This infection can cause various symptoms in both men and women, including vaginitis, urethritis, and pelvic inflammatory disease.

T. vaginalis is a pear-shaped flagellate protozoan that measures around 10 to 20 micrometers in length. It has four flagella at the anterior end and an undulating membrane along one side of its body, which helps it move through its environment. The parasite can attach itself to host cells using a specialized structure called an adhesion zone.

Trichomonas species are typically transmitted through sexual contact, although they can also be spread through the sharing of contaminated towels or clothing. Infection with T. vaginalis can increase the risk of acquiring other sexually transmitted infections, such as HIV and human papillomavirus (HPV).

Diagnosis of trichomoniasis typically involves the detection of T. vaginalis in a sample of vaginal or urethral discharge. Treatment usually involves the administration of antibiotics, such as metronidazole or tinidazole, which are effective at killing the parasite and curing the infection.

Cysteine proteases are a type of enzymes that cleave peptide bonds in proteins, and they require a cysteine residue in their active site to do so. These enzymes play important roles in various biological processes, including protein degradation, cell signaling, and inflammation. They can be found in various tissues and organisms, including humans, where they are involved in many physiological and pathological conditions.

Cysteine proteases are characterized by a conserved catalytic mechanism that involves a nucleophilic attack on the peptide bond carbonyl carbon by the thiolate anion of the cysteine residue, resulting in the formation of an acyl-enzyme intermediate. This intermediate is then hydrolyzed to release the cleaved protein fragments.

Some examples of cysteine proteases include cathepsins, caspases, and calpains, which are involved in various cellular processes such as apoptosis, autophagy, and signal transduction. Dysregulation of these enzymes has been implicated in several diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, cysteine proteases have emerged as important therapeutic targets for the development of new drugs to treat these conditions.

A protozoan genome refers to the complete set of genetic material or DNA present in a protozoan organism. Protozoa are single-celled eukaryotic microorganisms that lack cell walls and have diverse morphology and nutrition modes. The genome of a protozoan includes all the genes that code for proteins, as well as non-coding DNA sequences that regulate gene expression and other cellular processes.

The size and complexity of protozoan genomes can vary widely depending on the species. Some protozoa have small genomes with only a few thousand genes, while others have larger genomes with tens of thousands of genes or more. The genome sequencing of various protozoan species has provided valuable insights into their evolutionary history, biology, and potential as model organisms for studying eukaryotic cellular processes.

It is worth noting that the study of protozoan genomics is still an active area of research, and new discoveries are continually being made about the genetic diversity and complexity of these fascinating microorganisms.

Antibodies, protozoan, refer to the immune system's response to an infection caused by a protozoan organism. Protozoa are single-celled microorganisms that can cause various diseases in humans, such as malaria, giardiasis, and toxoplasmosis.

When the body is infected with a protozoan, the immune system responds by producing specific proteins called antibodies. Antibodies are produced by a type of white blood cell called a B-cell, and they recognize and bind to specific antigens on the surface of the protozoan organism.

There are five main types of antibodies: IgA, IgD, IgE, IgG, and IgM. Each type of antibody has a different role in the immune response. For example, IgG is the most common type of antibody and provides long-term immunity to previously encountered pathogens. IgM is the first antibody produced in response to an infection and is important for activating the complement system, which helps to destroy the protozoan organism.

Overall, the production of antibodies against protozoan organisms is a critical part of the immune response and helps to protect the body from further infection.

'Blastocystis hominis' is a species of microscopic single-celled organisms (protozoa) that can inhabit the human gastrointestinal tract. It is often found in the stool of both healthy individuals and those with gastrointestinal symptoms. The role of 'Blastocystis hominis' as a pathogen or commensal organism remains a subject of ongoing research and debate, as some studies have associated its presence with various digestive complaints such as diarrhea, abdominal pain, and nausea, while others suggest it may not cause any harm in most cases.

Medical professionals typically do not consider 'Blastocystis hominis' a primary pathogen requiring treatment unless there is clear evidence of its involvement in causing symptoms or if the individual has persistent gastrointestinal issues that have not responded to other treatments. The recommended treatment, when necessary, usually involves antiprotozoal medications such as metronidazole or tinidazole. However, it's essential to consult a healthcare professional for an accurate diagnosis and appropriate treatment plan.

Genes in protozoa refer to the hereditary units of these single-celled organisms that carry genetic information necessary for their growth, development, and reproduction. These genes are made up of DNA (deoxyribonucleic acid) molecules, which contain sequences of nucleotide bases that code for specific proteins or RNA molecules. Protozoan genes are responsible for various functions, such as metabolism, response to environmental stimuli, and reproduction.

It is important to note that the study of protozoan genes has contributed significantly to our understanding of genetics and evolution, particularly in areas such as molecular biology, cell biology, and genomics. However, there is still much to be learned about the genetic diversity and complexity of these organisms, which continue to be an active area of research.

Lectins are a type of proteins that bind specifically to carbohydrates and have been found in various plant and animal sources. They play important roles in biological recognition events, such as cell-cell adhesion, and can also be involved in the immune response. Some lectins can agglutinate certain types of cells or precipitate glycoproteins, while others may have a more direct effect on cellular processes. In some cases, lectins from plants can cause adverse effects in humans if ingested, such as digestive discomfort or allergic reactions.

Acetylgalactosamine (also known as N-acetyl-D-galactosamine or GalNAc) is a type of sugar molecule called a hexosamine that is commonly found in glycoproteins and proteoglycans, which are complex carbohydrates that are attached to proteins and lipids. It plays an important role in various biological processes, including cell-cell recognition, signal transduction, and protein folding.

In the context of medical research and biochemistry, Acetylgalactosamine is often used as a building block for synthesizing glycoconjugates, which are molecules that consist of a carbohydrate attached to a protein or lipid. These molecules play important roles in many biological processes, including cell-cell recognition, signaling, and immune response.

Acetylgalactosamine is also used as a target for enzymes called glycosyltransferases, which add sugar molecules to proteins and lipids. In particular, Acetylgalactosamine is the acceptor substrate for a class of glycosyltransferases known as galactosyltransferases, which add galactose molecules to Acetylgalactosamine-containing structures.

Defects in the metabolism of Acetylgalactosamine have been linked to various genetic disorders, including Schindler disease and Kanzaki disease, which are characterized by neurological symptoms and abnormal accumulation of glycoproteins in various tissues.

Giardia is a genus of microscopic parasitic flagellates that cause giardiasis, a type of diarrheal disease. The most common species to infect humans is Giardia intestinalis (also known as Giardia lamblia or Giardia duodenalis). These microscopic parasites are found worldwide, particularly in areas with poor sanitation and unsafe water.

Giardia exists in two forms: the trophozoite, which is the actively feeding form that multiplies in the small intestine, and the cyst, which is the infective stage that is passed in feces and can survive outside the body for long periods under appropriate conditions. Infection occurs when a person ingests contaminated water or food, or comes into direct contact with an infected person's feces.

Once inside the body, the cysts transform into trophozoites, which attach to the lining of the small intestine and disrupt the normal function of the digestive system, leading to symptoms such as diarrhea, stomach cramps, nausea, dehydration, and weight loss. In some cases, giardiasis can cause long-term health problems, particularly in children, including malnutrition and developmental delays.

Preventing the spread of Giardia involves maintaining good hygiene practices, such as washing hands thoroughly after using the toilet or changing diapers, avoiding contaminated water sources, and practicing safe food handling and preparation. In cases where infection occurs, medication is usually effective in treating the illness.

Dientamoeba is a genus of protozoan parasites that can infect the human gastrointestinal tract and cause digestive symptoms. It is a species of amoeba that belongs to the family Dientamoebidae. Dientamoeba fragilis is the only known species within this genus, and it is commonly found in the stools of infected individuals.

Dientamoeba fragilis is a non-invasive parasite, which means that it does not typically invade the tissues of the host. Instead, it lives in the lumen of the intestine and feeds on bacteria and other microorganisms present in the gut. The exact mode of transmission of Dientamoeba fragilis is not well understood, but it is thought to be spread through the fecal-oral route, possibly via contaminated food or water.

Infection with Dientamoeba fragilis can cause a variety of digestive symptoms, including abdominal pain, diarrhea, nausea, and flatulence. However, some people infected with the parasite may not experience any symptoms at all. The diagnosis of Dientamoeba fragilis infection is typically made through microscopic examination of stool samples. Treatment usually involves the use of antibiotics to eliminate the parasite from the gut.

A parasite is an organism that lives on or in a host organism and gets its sustenance at the expense of the host. Parasites are typically much smaller than their hosts, and they may be classified as either ectoparasites (which live on the outside of the host's body) or endoparasites (which live inside the host's body).

Parasites can cause a range of health problems in humans, depending on the type of parasite and the extent of the infection. Some parasites may cause only mild symptoms or none at all, while others can lead to serious illness or even death. Common symptoms of parasitic infections include diarrhea, abdominal pain, weight loss, and fatigue.

There are many different types of parasites that can infect humans, including protozoa (single-celled organisms), helminths (worms), and ectoparasites (such as lice and ticks). Parasitic infections are more common in developing countries with poor sanitation and hygiene, but they can also occur in industrialized nations.

Preventing parasitic infections typically involves practicing good hygiene, such as washing hands regularly, cooking food thoroughly, and avoiding contaminated water. Treatment for parasitic infections usually involves medication to kill the parasites and relieve symptoms.

Antiprotozoal agents are a type of medication used to treat protozoal infections, which are infections caused by microscopic single-celled organisms called protozoa. These agents work by either killing the protozoa or inhibiting their growth and reproduction. They can be administered through various routes, including oral, topical, and intravenous, depending on the type of infection and the severity of the illness.

Examples of antiprotozoal agents include:

* Metronidazole, tinidazole, and nitazoxanide for treating infections caused by Giardia lamblia and Entamoeba histolytica.
* Atovaquone, clindamycin, and pyrimethamine-sulfadoxine for treating malaria caused by Plasmodium falciparum or other Plasmodium species.
* Pentamidine and suramin for treating African trypanosomiasis (sleeping sickness) caused by Trypanosoma brucei gambiense or T. b. rhodesiense.
* Nitroimidazoles, such as benznidazole and nifurtimox, for treating Chagas disease caused by Trypanosoma cruzi.
* Sodium stibogluconate and paromomycin for treating leishmaniasis caused by Leishmania species.

Antiprotozoal agents can have side effects, ranging from mild to severe, depending on the drug and the individual patient's response. It is essential to follow the prescribing physician's instructions carefully when taking these medications and report any adverse reactions promptly.

Giardiasis is a digestive infection caused by the microscopic parasite Giardia intestinalis, also known as Giardia lamblia or Giardia duodenalis. The parasite is found worldwide, especially in areas with poor sanitation and unsafe water.

The infection typically occurs after ingesting contaminated water, food, or surfaces that have been exposed to fecal matter containing the cyst form of the parasite. Once inside the body, the cysts transform into trophozoites, which attach to the lining of the small intestine and cause symptoms such as diarrhea, stomach cramps, nausea, dehydration, and greasy stools that may float due to excess fat.

In some cases, giardiasis can lead to lactose intolerance and malabsorption of nutrients, resulting in weight loss and vitamin deficiencies. The infection is usually diagnosed through a stool sample test and treated with antibiotics such as metronidazole or tinidazole. Preventive measures include practicing good hygiene, avoiding contaminated water and food, and washing hands regularly.

Metronidazole is an antibiotic and antiprotozoal medication. It is primarily used to treat infections caused by anaerobic bacteria and certain parasites. Metronidazole works by interfering with the DNA of these organisms, which inhibits their ability to grow and multiply.

It is available in various forms, including tablets, capsules, creams, and gels, and is often used to treat conditions such as bacterial vaginosis, pelvic inflammatory disease, amebiasis, giardiasis, and pseudomembranous colitis.

Like all antibiotics, metronidazole should be taken only under the direction of a healthcare provider, as misuse can lead to antibiotic resistance and other complications.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Gerbillinae is a subfamily of rodents that includes gerbils, jirds, and sand rats. These small mammals are primarily found in arid regions of Africa and Asia. They are characterized by their long hind legs, which they use for hopping, and their long, thin tails. Some species have adapted to desert environments by developing specialized kidneys that allow them to survive on minimal water intake.

Medical definitions for "spores" and "protozoan" are as follows:

1. Spores: These are typically single-celled reproductive units that are resistant to heat, drying, and chemicals. They are produced by certain bacteria, fungi, algae, and plants. In the context of infectious diseases, spores are particularly relevant in relation to certain types of bacteria such as Clostridium tetani (causes tetanus) and Bacillus anthracis (causes anthrax). These bacterial spores can survive for long periods in harsh environments and can cause illness if they germinate and multiply in a host.
2. Protozoan: This term refers to a diverse group of single-celled eukaryotic organisms, which are typically classified as animals rather than plants or fungi. Some protozoa can exist as free-living organisms, while others are parasites that require a host to complete their life cycle. Protozoa can cause various diseases in humans, such as malaria (caused by Plasmodium spp.), giardiasis (caused by Giardia lamblia), and amoebic dysentery (caused by Entamoeba histolytica).

Therefore, there isn't a specific medical definition for "spores, protozoan" as spores are produced by various organisms, including bacteria and fungi, while protozoa are single-celled organisms that can be free-living or parasitic. However, some protozoa do produce spores as part of their life cycle in certain species.

Helminthiasis is a medical condition characterized by the infection and infestation of body tissues and organs by helminths, which are parasitic worms. These worms can be classified into three main groups: nematodes (roundworms), cestodes (tapeworms), and trematodes (flukes).

Helminthiasis infections can occur through various modes of transmission, such as ingestion of contaminated food or water, skin contact with contaminated soil, or direct contact with an infected person or animal. The severity of the infection depends on several factors, including the type and number of worms involved, the duration of the infestation, and the overall health status of the host.

Common symptoms of helminthiasis include abdominal pain, diarrhea, nausea, vomiting, weight loss, anemia, and nutritional deficiencies. In severe cases, the infection can lead to organ damage or failure, impaired growth and development in children, and even death.

Diagnosis of helminthiasis typically involves microscopic examination of stool samples to identify the presence and type of worms. Treatment usually consists of administering anthelmintic drugs that are effective against specific types of worms. Preventive measures include improving sanitation and hygiene, avoiding contact with contaminated soil or water, and practicing safe food handling and preparation.

Methyl Green is not typically considered a medical term, but it is a chemical compound that has been used in various medical and laboratory contexts. Here's the general definition:

Methyl Green is a basic dye, which is a type of organic compound with positively charged ions (cations). It is commonly used as a biological stain to selectively color certain structures in cells or tissues, such as nucleic acids (DNA and RNA), during microscopic examination.

In the medical field, Methyl Green has been used as a component of some topical ointments for treating superficial bacterial infections. However, its use is not widespread due to the availability of more effective antibiotics.

It's important to note that Methyl Green should not be confused with Methylene Blue, another basic dye that has broader medical applications, such as treating methemoglobinemia and used as a marker in some diagnostic tests.

I'd be happy to help! However, I believe there might be a slight confusion in your question. RNA stands for Ribonucleic Acid, which is a type of nucleic acid involved in various biological roles in the coding, decoding, regulation, and expression of genes. On the other hand, protozoan refers to a unicellular organism from the kingdom Protista, which includes a wide variety of simple eukaryotic organisms such as amoebas, paramecia, and plasmodium (the malaria-causing parasite).

There isn't a specific medical definition for "RNA, protozoan" since RNA is a molecule present in all living cells, including human cells, and protozoans are a group of organisms. However, I can tell you that RNA plays crucial roles in protozoan biology, such as acting as a messenger between DNA and ribosomes during protein synthesis or regulating gene expression.

If you have any further questions or need more specific information about RNA in protozoans, please let me know!

Eukaryota is a domain that consists of organisms whose cells have a true nucleus and complex organelles. This domain includes animals, plants, fungi, and protists. The term "eukaryote" comes from the Greek words "eu," meaning true or good, and "karyon," meaning nut or kernel. In eukaryotic cells, the genetic material is housed within a membrane-bound nucleus, and the DNA is organized into chromosomes. This is in contrast to prokaryotic cells, which do not have a true nucleus and have their genetic material dispersed throughout the cytoplasm.

Eukaryotic cells are generally larger and more complex than prokaryotic cells. They have many different organelles, including mitochondria, chloroplasts, endoplasmic reticulum, and Golgi apparatus, that perform specific functions to support the cell's metabolism and survival. Eukaryotic cells also have a cytoskeleton made up of microtubules, actin filaments, and intermediate filaments, which provide structure and shape to the cell and allow for movement of organelles and other cellular components.

Eukaryotes are diverse and can be found in many different environments, ranging from single-celled organisms that live in water or soil to multicellular organisms that live on land or in aquatic habitats. Some eukaryotes are unicellular, meaning they consist of a single cell, while others are multicellular, meaning they consist of many cells that work together to form tissues and organs.

In summary, Eukaryota is a domain of organisms whose cells have a true nucleus and complex organelles. This domain includes animals, plants, fungi, and protists, and the eukaryotic cells are generally larger and more complex than prokaryotic cells.

Helminths are a type of parasitic worm that can infect humans and animals. They are multi-cellular organisms that belong to the phyla Platyhelminthes (flatworms) or Nematoda (roundworms). Helminths can be further classified into three main groups: nematodes (roundworms), cestodes (tapeworms), and trematodes (flukes).

Helminth infections are typically acquired through contact with contaminated soil, food, or water. The symptoms of helminth infections can vary widely depending on the type of worm and the location and extent of the infection. Some common symptoms include abdominal pain, diarrhea, anemia, and malnutrition.

Helminths have complex life cycles that often involve multiple hosts. They can be difficult to diagnose and treat, and in some cases, may require long-term treatment with anti-parasitic drugs. Preventive measures such as good hygiene practices, proper sanitation, and access to clean water can help reduce the risk of helminth infections.

Antitrichomonatal agents are a group of medications specifically used to treat infections caused by the protozoan parasite, Trichomonas vaginalis. The most common antitrichomonal agent is metronidazole, which works by disrupting the parasite's ability to reproduce and survive within the human body. Other antitrichomonal agents include tinidazole and secnidazole, which also belong to the nitroimidazole class of antibiotics. These medications are available in various forms, such as tablets, capsules, or topical creams, and are typically prescribed by healthcare professionals for the treatment of trichomoniasis, a common sexually transmitted infection (STI) that can affect both men and women. It is important to note that these medications should only be used under the guidance of a healthcare provider, as they may have potential side effects and drug interactions.

Galactose is a simple sugar or monosaccharide that is a constituent of lactose, the disaccharide found in milk and dairy products. It's structurally similar to glucose but with a different chemical structure, and it plays a crucial role in various biological processes.

Galactose can be metabolized in the body through the action of enzymes such as galactokinase, galactose-1-phosphate uridylyltransferase, and UDP-galactose 4'-epimerase. Inherited deficiencies in these enzymes can lead to metabolic disorders like galactosemia, which can cause serious health issues if not diagnosed and treated promptly.

In summary, Galactose is a simple sugar that plays an essential role in lactose metabolism and other biological processes.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

There is no medical definition for "Protozoan Vaccines" as such because there are currently no licensed vaccines available for human protozoan diseases. Protozoa are single-celled microorganisms that can cause various diseases in humans, such as malaria, toxoplasmosis, and leishmaniasis.

Researchers have been working on developing vaccines against some of these diseases, but none have yet been approved for use in humans. Therefore, it is not possible to provide a medical definition for "Protozoan Vaccines" as a recognized category of vaccines.

A liver abscess is a localized collection of pus within the liver tissue caused by an infection. It can result from various sources such as bacterial or amebic infections that spread through the bloodstream, bile ducts, or directly from nearby organs. The abscess may cause symptoms like fever, pain in the upper right abdomen, nausea, vomiting, and weight loss. If left untreated, a liver abscess can lead to serious complications, including sepsis and organ failure. Diagnosis typically involves imaging tests like ultrasound or CT scan, followed by drainage of the pus and antibiotic treatment.

Galectins are a family of animal lectins (carbohydrate-binding proteins) that bind specifically to beta-galactosides. They play important roles in various biological processes, including inflammation, immune response, cancer progression, and development. Galectins are widely distributed in various tissues and organ systems, and they can be found both intracellularly and extracellularly.

There are 15 known mammalian galectins, which are classified into three groups based on their structure: prototype (Gal-1, -2, -5, -7, -10, -13, -14, and -16), chimera-type (Gal-3), and tandem-repeat type (Gal-4, -6, -8, -9, and -12). Each galectin has a unique set of functions, but they often work together to regulate cellular processes.

Abnormal expression or function of galectins has been implicated in various diseases, including cancer, fibrosis, and autoimmune disorders. Therefore, galectins are considered potential targets for the development of new therapeutic strategies.

'Adhesiveness' is a term used in medicine and biology to describe the ability of two surfaces to stick or adhere to each other. In medical terms, it often refers to the property of tissues or cells to adhere to one another, as in the case of scar tissue formation where healing tissue adheres to adjacent structures.

In the context of microbiology, adhesiveness can refer to the ability of bacteria or other microorganisms to attach themselves to surfaces, such as medical devices or human tissues, which can lead to infection and other health problems. Adhesives used in medical devices, such as bandages or wound dressings, also have adhesiveness properties that allow them to stick to the skin or other surfaces.

Overall, adhesiveness is an important property in many areas of medicine and biology, with implications for wound healing, infection control, and the design and function of medical devices.

Chitin is a long-chain polymer of N-acetylglucosamine, which is a derivative of glucose. It is a structural component found in the exoskeletons of arthropods such as insects and crustaceans, as well as in the cell walls of fungi and certain algae. Chitin is similar to cellulose in structure and is one of the most abundant natural biopolymers on Earth. It has a variety of industrial and biomedical applications due to its unique properties, including biocompatibility, biodegradability, and adsorption capacity.

Serine O-acetyltransferase (SAT) is an enzyme involved in the biosynthesis of cysteine, an amino acid that is a crucial component of proteins. This enzyme catalyzes the transfer of an acetyl group from acetyl-CoA to the amino acid serine, forming O-acetylserine and CoA. The O-acetylserine is then converted into cysteine through a series of additional reactions. SAT plays a critical role in maintaining the balance of sulfur-containing amino acids in cells and has been implicated in various cellular processes, including stress response, antioxidant defense, and protein folding. Dysregulation of SAT activity has been associated with several diseases, such as cancer, neurodegenerative disorders, and cardiovascular disease.

I'm sorry for any confusion, but "zoology" is not a term used in medical definitions. Zoology is a branch of biology that deals with the study of animals and animal life. It involves understanding their evolution, classification, behavior, structure, genetics, and distribution. If you have any questions related to medical terminology or concepts, I'd be happy to help!

Amoebozoa is a supergroup of unicellular eukaryotic organisms that includes various kinds of amoebas and slime molds. These organisms are characterized by the presence of lobose pseudopodia, which are temporary protrusions of cytoplasm used for locomotion and feeding. Amoebozoa is a diverse group with over 9,000 described species, including both free-living and symbiotic forms. Some amoebozoans can form multicellular structures during their life cycle, such as slime molds, which are known for their complex behaviors and social interactions. The study of Amoebozoa is important for understanding the evolutionary history and diversity of eukaryotic organisms.

An encyclopedia is a comprehensive reference work containing articles on various topics, usually arranged in alphabetical order. In the context of medicine, a medical encyclopedia is a collection of articles that provide information about a wide range of medical topics, including diseases and conditions, treatments, tests, procedures, and anatomy and physiology. Medical encyclopedias may be published in print or electronic formats and are often used as a starting point for researching medical topics. They can provide reliable and accurate information on medical subjects, making them useful resources for healthcare professionals, students, and patients alike. Some well-known examples of medical encyclopedias include the Merck Manual and the Stedman's Medical Dictionary.

Parasitic diseases, animal, refer to conditions in animals that are caused by parasites, which are organisms that live on or inside a host and derive benefits from the host at its expense. Parasites can be classified into different groups such as protozoa, helminths (worms), and arthropods (e.g., ticks, fleas).

Parasitic diseases in animals can cause a wide range of clinical signs depending on the type of parasite, the animal species affected, and the location and extent of infection. Some common examples of parasitic diseases in animals include:

* Heartworm disease in dogs and cats caused by Dirofilaria immitis
* Coccidiosis in various animals caused by different species of Eimeria
* Toxoplasmosis in cats and other animals caused by Toxoplasma gondii
* Giardiasis in many animal species caused by Giardia spp.
* Lungworm disease in dogs and cats caused by Angiostrongylus vasorum or Aelurostrongylus abstrusus
* Tapeworm infection in dogs, cats, and other animals caused by different species of Taenia or Dipylidium caninum

Prevention and control of parasitic diseases in animals typically involve a combination of strategies such as regular veterinary care, appropriate use of medications, environmental management, and good hygiene practices.

Wikimedia Commons has media related to Entamoeba. Entamoeba Homepage Pathema-Entamoeba Resource Entamoeba Genome Database at ... The genus Entamoeba was defined by Casagrandi and Barbagallo for the species Entamoeba coli, which is known to be a commensal ... Many other species of Entamoeba have been described, and it is likely that many others remain to be found. Entamoeba cells are ... all Entamoeba species are found in the intestines of the animals they infect. Entamoeba invadens is a species that can cause a ...
Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) ... The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba mosh … ... Host-Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes? Wilson IW, ... Entamoeba histolytica, a protozoan parasite, causes amoebiasis in humans. ...IMPORTANCE Amoebiasis is caused by Entamoeba hist ...
Genus: Entamoeba. Species: E. barreti - E. bovis - E. coli - E. gingivalis - E. hartmanni - E. histolytica - E. invadens - E. ... Entamoeba coli. Taxonavigation[edit]. Taxonavigation: Pelobiontida Superregnum: Eukaryota. Cladus: Unikonta. Phylum: Amoebozoa ... Entamoeba Casagrandi & Barbagallo, 1895 [1897] Synonyms[edit]. *Heterotypic *Loeschia Chatton & Lalung-Bonnaire, Arch. Soc. ... Entamoeba hominis s. Amoeba coli (Lösch). Studio biologico e clinico. Annali digiene sperimentale 7: 103-166. Google Books ...
Entamoeba histolytica is an intestinal parasite and the causative agent of amoebiasis, which is a significant source of ... The genome of the protist parasite Entamoeba histolytica. Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, ...
Crystal structure of a leucine rich repeat and phosphatase domain containing protein from Entamoeba histolytica ... Entamoeba histolytica. Mutation(s): 0 Gene Names: EHI_044170. EC: 3.1.3. ... Find proteins for D0VX03 (Entamoeba histolytica (strain ATCC 30459 / HM-1:IMSS / ABRM)) ... Crystal structure of a leucine rich repeat and phosphatase domain containing protein from Entamoeba histolytica. *PDB DOI: ...
Relationship Between Oxidative Stress Production and Virulence Capacity of Entamoeba Strains ... Entamoeba histolytica infections in a King Horseshoe Bat (Rhinolophus rex): A first case report. Asian J. Anim. Vet. Adv., 6: ... Entamoeba histolytica Infections in a King Horseshoe Bat (Rhinolophus rex): A First Case Report. Asian Journal of Animal and ... Relationship Between Oxidative Stress Production and Virulence Capacity of Entamoeba Strains. Research Journal of Parasitology ...
Some Quantitative Data on the Growth of Entamoeba Histolytica from Single-Cell Isolations in Microcultures published on Mar ... Some Quantitative Data on the Growth of Entamoeba Histolytica from Single-Cell Isolations in Microcultures ... that microisolation of single trophozoites offers a good means of studying genetic and metabolic characteristics of Entamoeba ...
Genetic Diversity of Iranian Isolates Based on Serine-Rich Entamoeba dispar Protein Gene ... Entamoeba dispar: Genetic Diversity of Iranian Isolates Based on Serine-Rich Entamoeba dispar Protein Gene. Pakistan Journal of ... Entamoeba dispar: Genetic Diversity of Iranian Isolates Based on Serine-Rich Entamoeba dispar Protein Gene table, th, td { ... Based on morphology and structure, Entamoeba dispar is very similar to Entamoeba histolytica (WHO/PAHO/UNESCO, 1997). Although ...
Background: Entamoeba gingivalis has been associated with periodontal diseases. Baseline data from the background population, ... Background: Entamoeba gingivalis has been associated with periodontal diseases. Baseline data from the background population, ... Entamoeba gingivalis : epidemiology, genetic diversity and association with oral microbiota signatures in North Eastern ... article{2246e202-13c4-4d7c-b08d-2508adc4247e, abstract = {{,p,Background: Entamoeba gingivalis has been associated with ...
Entamoeba histolytica, the agent of amoebiasis, colonizes the human colon and can invade the lining of the colon to disseminate ... This project is a part of the international Infect-Era program, AMOEBAC: Entamoeba histolytica-bacterium interaction and the ... Human Immune Response Triggered by Entamoeba histolytica in a 3D-Intestinal Model. ...
Structure of Entamoeba histolytica, Educational Resources for Biology by D G Mackean ... Entamoeba histolytica Next Drawing >. Entamoeba histolytica is one of a number of species of small amoebae which live in the ... In certain conditions, entamoeba invades the wall of the intestine or rectum causing ulceration and bleeding, with pain, ...
... is a protozoal (single-celled) parasite of the Entamoebidae family. Living in the large intestine the ... Entamoeba histolytica is a protozoal (single-celled) parasite of the Entamoebidae family. ...
Entamoeba histolytica) case definitions; uniform criteria used to define a disease for public health surveillance. ...
Entamoeba histolytica 4-11 y + ,10 cysts 2-4 we - + + + + Contaminated water and raw foods May cause intestinal amebiasis and ... Entamoeba histolytica Etiologic Agent of: Amoebiasis; Amoebic dysentery; Extraintestinal Amoebiasis, usually Amoebic Liver ... Life-cycle of the Entamoeba histolytica. This page is about microbiologic aspects of the organism(s). For clinical aspects of ... Infection by Entamoeba histolytica occurs by ingestion of mature cysts in fecally contaminated food, water, or hands. ...
Entamoeba histolytica]. / Kobayashi, Seiki. In: Nippon rinsho. Japanese journal of clinical medicine, Vol. 68 Suppl 6, 06.2010 ... Entamoeba histolytica]. In: Nippon rinsho. Japanese journal of clinical medicine. 2010 ; Vol. 68 Suppl 6. pp. 288-291. ... Kobayashi, S 2010, [Entamoeba histolytica]., Nippon rinsho. Japanese journal of clinical medicine, vol. 68 Suppl 6, pp. 288- ... Kobayashi, S. (2010). [Entamoeba histolytica]. Nippon rinsho. Japanese journal of clinical medicine, 68 Suppl 6, 288-291. ...
Entamoeba is a genus of Amoebozoa found as internal parasites or commensals of animals. ... all Entamoeba species. Catalogue no: Path-Entamoeba_spp. Catalogue no: Path-Entamoeba_spp-standard. ...
Entamoeba histolytica is a parasitic protozoan that can cause amoebiasis, an intestinal disease that can spread throughout the ... Facts about Entamoeba histolytica. * Entamoeba histolytica is a parasitic protozoan that can cause amoebiasis, a disease that ... There is currently no vaccine for Entamoeba histolytica infection.. *Entamoeba histolytica can be resistant to some antibiotics ... Entamoeba histolytica infection can be fatal if left untreated or if it spreads to other parts of the body in extreme ...
Entamoeba histolytica. Mature cysts are ingested via contaminated water or food. After excystation in the small intestine, ... Biochemical homogeneity of Entamoeba histolytica isolates, especially those from liver abscess. Lancet. 1982. 1:1386-8. [QxMD ... Quach J, St-Pierre J, Chadee K. The future for vaccine development against Entamoeba histolytica.. Hum Vaccin Immunother. 2014 ... Others, such as Trichomonas hominis (in infants) and Entamoeba polecki (associated with pigs), have rarely been associated with ...
Scalar energy is capable of disassembling Entamoeba histolytica, the causative agent of amoebiasis. - Entamoeba Histolytica ... entamoeba histolytica. enzymes. epilepsy. epsteinbarr. essential amino acids. estradiol. fibromyalgia. fungal infection. fungus ... Humans are the only reservoir for contamination of Entamoeba histolytica as the infection occurs by ingestion of mature cysts ... Ultimately, the cysts of Entamoeba histolytica enter the small intestine and release trophozoites, which subsequently invade ...
Entamoeba histolytica answers are found in the Johns Hopkins ABX Guide powered by Unbound Medicine. Available for iPhone, iPad ... Protozoan species, genus Entamoeba. *E. histolytica is morphologically similar to E. dispar, E. moshkovskii, and E. bangladeshi ... Spacek, Lisa A. "Entamoeba Histolytica." Johns Hopkins ABX Guide, The Johns Hopkins University, 2021. Johns Hopkins Guides, www ... TY - ELEC T1 - Entamoeba histolytica ID - 540199 A1 - Spacek,Lisa,M.D., Ph.D. Y1 - 2021/07/04/ BT - Johns Hopkins ABX Guide UR ...
ENTAMOEBA POLECKI LABORATORY DIAGNOSIS. Biology. Geographic Distribution. Clinical Features. Laboratory Diagnosis. Treatment ...
... entamoeba pitheci怎麽讀,entamoeba pitheci的發音是什麽可 ... entamoeba pitheci英語什麽意思:皮
... Guzmán-Silva, ... Experimental amoebic liver abscess in hamsters caused by trophozoites of a Brazilian strain of Entamoeba dispar. Experimental ... responsible for host tissue destruction and are present in both pathogenic Entamoeba histolytica and non-pathogenic Entamoeba ...
Entamoeba histolytica IgM Kit available from Bios at SZABO-SCANDIC. You can find out more about Parasitology here. ...
43, Kalpataru Industrial Estate, Near Runwal Estate, Behind R-mall, Ghodbunder Road, Thane (W)- 400607, Maharashtra, India.. Tel: +91-9320126789 (International ...
Test ID EHOLG Entamoeba histolytica Antibody, Serum Ordering Guidance. Direct detection of Entamoeba histolytica in fecal ... Positive: Results are suggestive of current or past infection with Entamoeba histolytica. Direct detection of E histolytica in ... 2. Petri WA, Haque R, Moonah SN: Entamoeba species, including amebic colitis and liver abscess. In: Bennett JE, Dolin R, Blaser ... Amebiasis is an infection caused by the protozoan parasite, Entamoeba histolytica. The infection is acquired by ingestion of ...
... ênfase na identificação de determinantes socioambientais e da diversidade genética de Entamoeba histolytica/Entamoeba dispar, ... Positive samples for Entamoeba spp. were submitted to molecular analysis by Polymerase Chain Reaction (PCR) and DNA sequencing ... As amostras positivas para Entamoeba spp. foram submetidas à análises moleculares por meio de Reação em Cadeia da Polimerase ( ... iii) Analyzing nucleotide sequences of the Small subunit rRNA gene (SSU rDNA) of Entamoeba species that produce octanucleated ...

No FAQ available that match "entamoeba"

No images available that match "entamoeba"