An NAD-dependent enzyme that catalyzes the oxidation of acyl-[acyl-carrier protein] to trans-2,3-dehydroacyl-[acyl-carrier protein]. It has a preference for acyl groups with a carbon chain length between 4 to 16.
A diphenyl ether derivative used in cosmetics and toilet soaps as an antiseptic. It has some bacteriostatic and fungistatic action.
Consists of a polypeptide chain and 4'-phosphopantetheine linked to a serine residue by a phosphodiester bond. Acyl groups are bound as thiol esters to the pantothenyl group. Acyl carrier protein is involved in every step of fatty acid synthesis by the cytoplasmic system.
A 3-oxoacyl reductase that has specificity for ACYL CARRIER PROTEIN-derived FATTY ACIDS.
An enzyme that catalyzes the oxidation of acyl-[acyl-carrier protein] to trans-2,3-dehydroacyl-[acyl-carrier protein] in the fatty acid biosynthesis pathway. It has a preference for acyl derivatives with carbon chain length from 4 to 16.
An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
The form of fatty acid synthase complex found in BACTERIA; FUNGI; and PLANTS. Catalytic steps are like the animal form but the protein structure is different with dissociated enzymes encoded by separate genes. It is a target of some ANTI-INFECTIVE AGENTS which result in disruption of the CELL MEMBRANE and CELL WALL.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
An enzyme of long-chain fatty acid synthesis, that adds a two-carbon unit from malonyl-(acyl carrier protein) to another molecule of fatty acyl-(acyl carrier protein), giving a beta-ketoacyl-(acyl carrier protein) with the release of carbon dioxide. EC 2.3.1.41.
Proteins found in any species of bacterium.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Large enzyme complexes composed of a number of component enzymes that are found in STREPTOMYCES which biosynthesize MACROLIDES and other polyketides.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
This enzyme catalyzes the transacylation of malonate from MALONYL CoA to activated holo-ACP, to generate malonyl-(acyl-carrier protein), which is an elongation substrate in FATTY ACIDS biosynthesis. It is an essential enzyme in the biosynthesis of FATTY ACIDS in all BACTERIA.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
A class of enzymes that transfers substituted phosphate groups. EC 2.7.8.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy.

Triclosan is an antimicrobial agent that has been used in various consumer products, such as soaps, toothpastes, and cosmetics, to reduce or prevent bacterial contamination. It works by inhibiting the growth of bacteria and other microorganisms. The chemical formula for triclosan is 5-chloro-2-(2,4-dichlorophenoxy)phenol.

It's worth noting that in recent years, there has been some controversy surrounding the use of triclosan due to concerns about its potential health effects and environmental impact. Some studies have suggested that triclosan may interfere with hormone regulation and contribute to antibiotic resistance. As a result, the U.S. Food and Drug Administration (FDA) banned the use of triclosan in over-the-counter consumer antiseptic washes in 2016, citing concerns about its safety and effectiveness. However, it is still allowed in other products such as toothpaste.

Acyl Carrier Protein (ACP) is a small, acidic protein that plays a crucial role in the fatty acid synthesis process. It functions as a cofactor by carrying acyl groups during the elongation cycles of fatty acid chains. The ACP molecule has a characteristic prosthetic group known as 4'-phosphopantetheine, to which the acyl groups get attached covalently. This protein is highly conserved across different species and is essential for the production of fatty acids in both prokaryotic and eukaryotic organisms.

Pantetheine is not a medical term per se, but it is a biochemical compound with relevance to medicine. Pantetheine is the alcohol form of pantothenic acid (vitamin B5), and it plays a crucial role in the metabolism of proteins, carbohydrates, and fats. It is a component of coenzyme A, which is involved in numerous biochemical reactions within the body.

Coenzyme A, containing pantetheine, participates in oxidation-reduction reactions, energy production, and the synthesis of various compounds, such as fatty acids, cholesterol, steroid hormones, and neurotransmitters. Therefore, pantetheine is essential for maintaining proper cellular function and overall health.

While there isn't a specific medical condition associated with pantetheine deficiency, ensuring adequate intake of vitamin B5 (through diet or supplementation) is vital for optimal health and well-being.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Fatty acid synthases (FAS) are a group of enzymes that are responsible for the synthesis of fatty acids in the body. They catalyze a series of reactions that convert acetyl-CoA and malonyl-CoA into longer chain fatty acids, which are then used for various purposes such as energy storage or membrane formation.

The human genome encodes two types of FAS: type I and type II. Type I FAS is a large multifunctional enzyme complex found in the cytoplasm of cells, while type II FAS consists of individual enzymes located in the mitochondria. Both types of FAS play important roles in lipid metabolism, but their regulation and expression differ depending on the tissue and physiological conditions.

Inhibition of FAS has been explored as a potential therapeutic strategy for various diseases, including cancer, obesity, and metabolic disorders. However, more research is needed to fully understand the complex mechanisms regulating FAS activity and its role in human health and disease.

Alcohol oxidoreductases are a class of enzymes that catalyze the oxidation of alcohols to aldehydes or ketones, while reducing nicotinamide adenine dinucleotide (NAD+) to NADH. These enzymes play an important role in the metabolism of alcohols and other organic compounds in living organisms.

The most well-known example of an alcohol oxidoreductase is alcohol dehydrogenase (ADH), which is responsible for the oxidation of ethanol to acetaldehyde in the liver during the metabolism of alcoholic beverages. Other examples include aldehyde dehydrogenases (ALDH) and sorbitol dehydrogenase (SDH).

These enzymes are important targets for the development of drugs used to treat alcohol use disorder, as inhibiting their activity can help to reduce the rate of ethanol metabolism and the severity of its effects on the body.

Fatty acid synthase type II (FASN2) is an alternative form of fatty acid synthase, which is a multi-functional enzyme complex responsible for the de novo synthesis of palmitate, a 16-carbon saturated fatty acid. In contrast to the classical type I fatty acid synthase (FASN), which is found in the cytoplasm and exists as a homodimer, FASN2 is localized in the mitochondria and consists of individual, monofunctional enzymes that catalyze each step of the fatty acid synthesis process.

The type II fatty acid synthase system includes several enzymes: acetyl-CoA carboxylase (ACC), which provides malonyl-CoA; 3-ketoacyl-CoA thiolase, which catalyzes the initial condensation of acetyl-CoA and malonyl-CoA to form acetoacetyl-CoA; 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (HAD), which catalyzes the reduction, dehydration, and isomerization of acetoacetyl-CoA to form hydroxybutyryl-CoA; 3-ketoacyl-CoA reductase, which reduces hydroxybutyryl-CoA to butyryl-CoA; and enoyl-CoA reductase (ECR), which catalyzes the final reduction of butyryl-CoA to palmitate.

FASN2 is involved in various cellular processes, including energy metabolism, lipid biosynthesis, and protein acetylation. Dysregulation of FASN2 has been implicated in several diseases, such as cancer, obesity, and neurodegenerative disorders.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Polyketide synthases (PKSs) are a type of large, multifunctional enzymes found in bacteria, fungi, and other organisms. They play a crucial role in the biosynthesis of polyketides, which are a diverse group of natural products with various biological activities, including antibiotic, antifungal, anticancer, and immunosuppressant properties.

PKSs are responsible for the assembly of polyketide chains by repetitively adding two-carbon units derived from acetyl-CoA or other extender units to a growing chain. The PKS enzymes can be classified into three types based on their domain organization and mechanism of action: type I, type II, and type III PKSs.

Type I PKSs are large, modular enzymes that contain multiple domains responsible for different steps in the polyketide biosynthesis process. These include acyltransferase (AT) domains that load extender units onto the PKS, acyl carrier proteins (ACPs) that tether the growing chain to the PKS, and ketosynthase (KS) domains that catalyze the condensation of the extender unit with the growing chain.

Type II PKSs are simpler enzymes that consist of several separate proteins that work together in a complex to synthesize polyketides. These include ketosynthase, acyltransferase, and acyl carrier protein domains, as well as other domains responsible for reducing or modifying the polyketide chain.

Type III PKSs are the simplest of the three types and consist of a single catalytic domain that is responsible for both loading extender units and catalyzing their condensation with the growing chain. These enzymes typically synthesize shorter polyketide chains, such as those found in certain plant hormones and pigments.

Overall, PKSs are important enzymes involved in the biosynthesis of a wide range of natural products with significant medical and industrial applications.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Acyl-Carrier Protein S-Malonyltransferase is an enzyme that plays a crucial role in the biosynthesis of fatty acids. The systematic name for this enzyme is 3-oxoacyl-[acyl-carrier-protein] reductase (NADPH).

The enzyme catalyzes the following reaction:
malonyl-CoA + [acyl-carrier protein] = CoA + malonyl-[acyl-carrier protein]

This reaction is part of the fatty acid synthase complex, which is responsible for the synthesis of long-chain fatty acids. The enzyme transfers a malonyl group from malonyl-CoA to an acyl carrier protein (ACP), which acts as a cofactor in the reaction. This transfer forms a malonyl-ACP, which is then used as a building block for the synthesis of fatty acids.

The enzyme is found in bacteria, plants, and animals, including humans. In humans, it is encoded by the MAT1A gene and is primarily located in the liver, where it plays a role in the production of palmitate, a 16-carbon saturated fatty acid that is an important precursor for the synthesis of other lipids.

Deficiencies in Acyl-Carrier Protein S-Malonyltransferase have been associated with various metabolic disorders, including cardiovascular disease and nonalcoholic fatty liver disease.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Antitubercular agents, also known as anti-tuberculosis drugs or simply TB drugs, are a category of medications specifically used for the treatment and prevention of tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis. These drugs target various stages of the bacteria's growth and replication process to eradicate it from the body or prevent its spread.

There are several first-line antitubercular agents, including:

1. Isoniazid (INH): This is a bactericidal drug that inhibits the synthesis of mycolic acids, essential components of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
2. Rifampin (RIF) or Rifampicin: A bactericidal drug that inhibits DNA-dependent RNA polymerase, preventing the transcription of genetic information into mRNA. This results in the interruption of protein synthesis and ultimately leads to the death of the bacteria.
3. Ethambutol (EMB): A bacteriostatic drug that inhibits the arabinosyl transferase enzyme, which is responsible for the synthesis of arabinan, a crucial component of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
4. Pyrazinamide (PZA): A bactericidal drug that inhibits the synthesis of fatty acids and mycolic acids in the mycobacterial cell wall, particularly under acidic conditions. PZA is most effective during the initial phase of treatment when the bacteria are in a dormant or slow-growing state.

These first-line antitubercular agents are often used together in a combination therapy to ensure complete eradication of the bacteria and prevent the development of drug-resistant strains. Treatment duration typically lasts for at least six months, with the initial phase consisting of daily doses of INH, RIF, EMB, and PZA for two months, followed by a continuation phase of INH and RIF for four months.

Second-line antitubercular agents are used when patients have drug-resistant TB or cannot tolerate first-line drugs. These include drugs like aminoglycosides (e.g., streptomycin, amikacin), fluoroquinolones (e.g., ofloxacin, moxifloxacin), and injectable bacteriostatic agents (e.g., capreomycin, ethionamide).

It is essential to closely monitor patients undergoing antitubercular therapy for potential side effects and ensure adherence to the treatment regimen to achieve optimal outcomes and prevent the development of drug-resistant strains.

... function occurs through the inhibition of mycolic acid synthesis through the NADH-dependent enoyl-acyl carrier protein (ACP)- ... reductase. This is encoded by the inhA gene. As a result, isoniazid resistance is primarily due to mutations within inhA and ... The mycobacterial membrane protein large (MmpL) proteins are transmembrane proteins which play a key role in the synthesis of ... These proteins have a conserved N-terminal motif, deletion of which impairs growth in macrophages and granulomas. Noncoding ...
NADH-Enoyl+ACP+Reductase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) EC 1.3.1.9 Portal: Biology ( ... Enoyl-(acyl-carrier-protein) reductase (NADPH, A-specific) Enoyl-(acyl-carrier-protein) reductase (NADPH, B-specific) Cis-2- ... Enoyl-acyl carrier protein reductase (or ENR) (EC 1.3.1.9), is a key enzyme of the type II fatty acid synthesis (FAS) system. ... "Mutational analysis of the triclosan-binding region of enoyl-ACP (acyl-carrier protein) reductase from Plasmodium falciparum". ...
This complex binds tightly to the enoyl-acyl carrier protein reductase InhA, thereby blocking the natural enoyl-AcpM substrate ... KatG catalyzes the formation of the isonicotinic acyl radical, which spontaneously couples with NADH to form the nicotinoyl-NAD ... March 2009). "An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of ... purified protein derivative) reaction of at least 5 mm induration Contacts of people with tuberculosis and who have a PPD ...
... to produce adducts that are very potent inhibitors of the enzymes enoyl-acyl carrier protein reductase, and dihydrofolate ... with NADH-ubiquinone oxidoreductase commonly being called NADH dehydrogenase or sometimes coenzyme Q reductase. There are many ... In this case, an enzyme can produce one of two stereoisomers of NADH. Despite the similarity in how proteins bind the two ... The properties of the fluorescence signal changes when NADH binds to proteins, so these changes can be used to measure ...
... enoyl-(acyl-carrier-protein) reductase (nadh) MeSH D08.811.682.660.390 - enoyl-(acyl-carrier protein) reductase (nadph, b- ... nitrate reductase MeSH D08.811.682.655.500.200 - nitrate reductase (nadh) MeSH D08.811.682.655.500.249 - nitrate reductase (nad ... acyl-carrier protein s-acetyltransferase MeSH D08.811.913.050.134.060 - acetyl-CoA C-acetyltransferase MeSH D08.811.913.050. ... acyl-carrier protein s-malonyltransferase MeSH D08.811.913.050.173 - 1-acylglycerol-3-phosphate O-acyltransferase MeSH D08.811. ...
... enoyl-[acyl-carrier-protein] reductase (NADH) EC 1.3.1.10: enoyl-[acyl-carrier-protein] reductase (NADPH, Si-specific) EC 1.3. ... 2-alkenal reductase (NADP+) * EC 1.3.1.103: 2-haloacrylate reductase * EC 1.3.1.104: enoyl-[acyl-carrier-protein] reductase ( ... hydroxycinnamoyl-CoA reductase * EC 1.3.1.118: meromycolic acid enoyl-[acyl-carrier-protein] reductase * EC 1.3.1.119: ... acyl-lipid Δ6-acetylenase EC 1.14.19.39: acyl-lipid Δ12-acetylenase EC 1.14.19.40: hex-5-enoyl-[acyl-carrier protein] ...
These include the acyl carrier protein (ACP), acetyl transferase (AT), ketosynthase (KS), malonyl transferase (MT; which can ... and enoyl reductase (ER). An example of the possible modular biosynthetic pathway detailing the combination of these enzymes ... As NADH-dehydrogenase is responsible for the conversion of NADH to NAD+ as well as the establishment of a proton gradient in ... Like other acetogenins, it is a mitochondrial complex I (NADH-dehydrogenase) inhibitor. ...
... acyl-carrier-protein) synthase (ACPS) domain. ACPS attaches the 4′-phosphopantetheine prosthetic group of CoA to the acyl ... Another reduction reaction then performed in the enoyl reductase (ER) domain of the β subunit to form a saturated acyl-ACP ... Portal: Biology (EC 2.3.1, NADPH-dependent enzymes, NADH-dependent enzymes, Enzymes of known structure). ... Leibundgut M, Jenni S, Frick C, Ban N (April 2007). "Structural basis for substrate delivery by acyl carrier protein in the ...
Trans-2-enoyl-CoA reductase, mitochondrial MFAP2: Microfibrillar-associated protein 2 MIB2 (1p36) MIER1 (1p31) MIGA1: encoding ... encoding protein Solute carrier family 30 member 10 SLC39A1 (1q21) SLC50A1: Solute carrier family 50 member 1 SMCP: Sperm ... acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain ACTG1P6: encoding protein Actin, gamma 1 pseudogene 6 ACTL8: Actin- ... encoding protein Nadh dehydrogenase (ubiquinone) 1 alpha subcomplex, 4, 9kda, pseudogene 1 NGF: Nerve Growth Factor NOL9: ...
... holo-CmaA peptidyl-carrier protein ligase EC 6.2.1.47: Medium-chain-fatty-acid-(acyl-carrier-protein) ligase EC 6.2.1.48: ... reductase EC 1.17.4.1 Ribonucleoside-triphosphate reductase EC 1.17.4.2 Vitamin K epoxide reductase Vitamin-K-epoxide reductase ... EC 5.3.3 Enoyl CoA isomerase (EC 5.3.3.8) Category:EC 5.3.4 Protein disulfide isomerase (EC 5.3.4.1) Category:EC 5.4.2 ... NADH dehydrogenase EC 1.6.5.3 Category:EC 1.6.6 (with a nitrogenous group as acceptor) Category:EC 1.6.7 now Category:EC 1.18.1 ...
Abbreviations: ACP - Acyl carrier protein, CoA - Coenzyme A, NADP - Nicotinamide adenine dinucleotide phosphate. Note that ... yielding 1 FADH2 Hydration by enoyl-CoA hydratase Dehydrogenation by 3-hydroxyacyl-CoA dehydrogenase, yielding 1 NADH + H+ ... "Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications". The ... to give a fatty acyl-adenylate, which then reacts with free coenzyme A to give a fatty acyl-CoA molecule. In order for the acyl ...

No FAQ available that match "enoyl acyl carrier protein reductase nadh"