Endothelins: 21-Amino-acid peptides produced by vascular endothelial cells and functioning as potent vasoconstrictors. The endothelin family consists of three members, ENDOTHELIN-1; ENDOTHELIN-2; and ENDOTHELIN-3. All three peptides contain 21 amino acids, but vary in amino acid composition. The three peptides produce vasoconstrictor and pressor responses in various parts of the body. However, the quantitative profiles of the pharmacological activities are considerably different among the three isopeptides.Endothelin-2: A 21-amino acid peptide produced predominantly within the kidney and intestine, with smaller amounts produced in the myocardium, placenta, and uterus, but the cells of origin are not clear. Endothelin-2 has no unique physiologic functions, as compared with endothelin-1. (N Eng J Med 1995;333(6):356-63)Endothelin-3: A 21-amino acid peptide that circulates in the plasma, but its source is not known. Endothelin-3 has been found in high concentrations in the brain and may regulate important functions in neurons and astrocytes, such as proliferation and development. It also is found throughout the gastrointestinal tract and in the lung and kidney. (N Eng J Med 1995;333(6):356-63)Receptors, Endothelin: Cell surface proteins that bind ENDOTHELINS with high affinity and trigger intracellular changes which influence the behavior of cells.Receptor, Endothelin B: A subtype of endothelin receptor found predominantly in the KIDNEY. It may play a role in reducing systemic ENDOTHELIN levels.Endothelin-1: A 21-amino acid peptide produced in a variety of tissues including endothelial and vascular smooth-muscle cells, neurons and astrocytes in the central nervous system, and endometrial cells. It acts as a modulator of vasomotor tone, cell proliferation, and hormone production. (N Eng J Med 1995;333(6):356-63)Viper Venoms: Venoms from SNAKES of the viperid family. They tend to be less toxic than elapid or hydrophid venoms and act mainly on the vascular system, interfering with coagulation and capillary membrane integrity and are highly cytotoxic. They contain large amounts of several enzymes, other factors, and some toxins.Receptor, Endothelin A: A subtype of endothelin receptor found predominantly in the VASCULAR SMOOTH MUSCLE. It has a high affinity for ENDOTHELIN-1 and ENDOTHELIN-2.Peptides, Cyclic: Peptides whose amino and carboxy ends are linked together with a peptide bond forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS. Some of them are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL).Tachyphylaxis: Rapidly decreasing response to a drug or physiologically active agent after administration of a few doses. In immunology, it is the rapid immunization against the effect of toxic doses of an extract or serum by previous injection of small doses. (Dorland, 28th ed)Neprilysin: Enzyme that is a major constituent of kidney brush-border membranes and is also present to a lesser degree in the brain and other tissues. It preferentially catalyzes cleavage at the amino group of hydrophobic residues of the B-chain of insulin as well as opioid peptides and other biologically active peptides. The enzyme is inhibited primarily by EDTA, phosphoramidon, and thiorphan and is reactivated by zinc. Neprilysin is identical to common acute lymphoblastic leukemia antigen (CALLA Antigen), an important marker in the diagnosis of human acute lymphocytic leukemia. There is no relationship with CALLA PLANT.Aspartic Acid Endopeptidases: A sub-subclass of endopeptidases that depend on an ASPARTIC ACID residue for their activity.Sulfonamides: A group of compounds that contain the structure SO2NH2.Adrenergic Agents: Drugs that act on adrenergic receptors or affect the life cycle of adrenergic transmitters. Included here are adrenergic agonists and antagonists and agents that affect the synthesis, storage, uptake, metabolism, or release of adrenergic transmitters.Metalloendopeptidases: ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism.Vasoconstrictor Agents: Drugs used to cause constriction of the blood vessels.PyrrolidinesPiperidines: A family of hexahydropyridines.Polymethacrylic Acids: Poly-2-methylpropenoic acids. Used in the manufacture of methacrylate resins and plastics in the form of pellets and granules, as absorbent for biological materials and as filters; also as biological membranes and as hydrogens. Synonyms: methylacrylate polymer; poly(methylacrylate); acrylic acid methyl ester polymer.Glycopeptides: Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight.Oligopeptides: Peptides composed of between two and twelve amino acids.Vasoconstriction: The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.Thermolysin: A thermostable extracellular metalloendopeptidase containing four calcium ions. (Enzyme Nomenclature, 1992) Fragments: Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.Endothelium, Vascular: Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.Protein PrecursorsRats, Wistar: A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.Muscle Contraction: A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.Muscle, Smooth: Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed)Nitric Oxide: A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Peptides: Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.Kidney: Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.Rats, Sprague-Dawley: A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Binding, Competitive: The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.Dose-Response Relationship, Drug: The relationship between the dose of an administered drug and the response of the organism to the drug.Chromatography, High Pressure Liquid: Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Blood Pressure: PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.Encyclopedias as Topic: Works containing information articles on subjects in every field of knowledge, usually arranged in alphabetical order, or a similar work limited to a special field or subject. (From The ALA Glossary of Library and Information Science, 1983)MedlinePlus: NATIONAL LIBRARY OF MEDICINE service for health professionals and consumers. It links extensive information from the National Institutes of Health and other reviewed sources of information on specific diseases and conditions.Carotid Artery, External: Branch of the common carotid artery which supplies the exterior of the head, the face, and the greater part of the neck.Neurons: The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.Superior Cervical Ganglion: The largest and uppermost of the paravertebral sympathetic ganglia.Isosorbide Dinitrate: A vasodilator used in the treatment of ANGINA PECTORIS. Its actions are similar to NITROGLYCERIN but with a slower onset of action.Pulmonary Edema: Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening.Heart Failure: A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION.Hypotension: Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients.Acute Coronary Syndrome: An episode of MYOCARDIAL ISCHEMIA that generally lasts longer than a transient anginal episode that ultimately may lead to MYOCARDIAL INFARCTION.Acute Disease: Disease having a short and relatively severe course.

Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. (1/1796)

The terminal colon is aganglionic in mice lacking endothelin-3 or its receptor, endothelin B. To analyze the effects of endothelin-3/endothelin B on the differentiation of enteric neurons, E11-13 mouse gut was dissociated, and positive and negative immunoselection with antibodies to p75(NTR )were used to isolate neural crest- and non-crest-derived cells. mRNA encoding endothelin B was present in both the crest-and non-crest-derived cells, but that encoding preproendothelin-3 was detected only in the non-crest-derived population. The crest- and non-crest-derived cells were exposed in vitro to endothelin-3, IRL 1620 (an endothelin B agonist), and/or BQ 788 (an endothelin B antagonist). Neurons and glia developed only in cultures of crest-derived cells, and did so even when endothelin-3 was absent and BQ 788 was present. Endothelin-3 inhibited neuronal development, an effect that was mimicked by IRL 1620 and blocked by BQ 788. Endothelin-3 failed to stimulate the incorporation of [3H]thymidine or bromodeoxyuridine. Smooth muscle development in non-crest-derived cell cultures was promoted by endothelin-3 and inhibited by BQ 788. In contrast, transcription of laminin alpha1, a smooth muscle-derived promoter of neuronal development, was inhibited by endothelin-3, but promoted by BQ 788. Neurons did not develop in explants of the terminal bowel of E12 ls/ls (endothelin-3-deficient) mice, but could be induced to do so by endothelin-3 if a source of neural precursors was present. We suggest that endothelin-3/endothelin B normally prevents the premature differentiation of crest-derived precursors migrating to and within the fetal bowel, enabling the precursor population to persist long enough to finish colonizing the bowel.  (+info)

Endogenous plasma endothelin concentrations and coronary circulation in patients with mild dilated cardiomyopathy. (2/1796)

OBJECTIVE: To determine whether increased plasma concentrations of endothelin-1 (ET-1) and big endothelin (BET) play a role in the regulation of coronary circulation in patients with idiopathic dilated cardiomyopathy (IDCM). SETTING: Tertiary referral centre for cardiac diseases. PATIENTS: Fourteen patients (eight male/six female; mean (SD) age 59 (9) years) with IDCM (ejection fraction 36 (9)%) and five normotensive subjects (two male/three female; age 52 (7) years) serving as controls were studied. METHODS: Functional status was classified according to New York Heart Association (NYHA) class. Endogenous ET-1 and BET plasma concentrations from the aorta and the coronary sinus were determined by radioimmunoassay. Coronary blood flow, using the inert chromatographic argon method, myocardial oxygen consumption, and coronary sinus oxygen content under basal conditions were determined. RESULTS: In the aorta, mean (SD) concentrations of ET-1 (IDCM 0.76 (0.25) v controls 0.31 (0.06) fmol/ml; p = 0.002) and BET (IDCM 3.58 (1.06) v controls 2.11 (0.58) fmol/ml; p = 0.014) were increased in patients with IDCM. Aortic ET-1 concentrations correlated positively with NYHA class (r = 0. 731; p < 0.001), myocardial oxygen consumption (r = 0.749; p < 0. 001), and coronary blood flow (r = 0.645; p = 0.003), but inversely with coronary sinus oxygen content (r = -0.633; p = 0.004), which was significantly decreased in IDCM patients (IDCM 4.68 (1.05) v controls 6.70 (1.06) vol%; p = 0.003). CONCLUSIONS: The coronary circulation in patients with IDCM is exposed to an increased endothelin load. ET-1 concentrations correlate with functional deterioration. A decrease of the coronary sinus content of oxygen suggests a mismatch between coronary blood flow and metabolic demand. Thus, ET-1 might be a marker of a disequilibrium between myocardial oxygen demand and coronary blood flow in IDCM.  (+info)

Endothelin up-regulation and localization following renal ischemia and reperfusion. (3/1796)

BACKGROUND: Endothelin (ET), a potent vasoconstrictor, is known to play a role in ischemic acute renal failure. Although preproET-1 (ppET-1) mRNA is known to be up-regulated following ischemia/reperfusion injury, it has not been determined which component of the injury (ischemia or reperfusion) leads to initial gene up-regulation. Likewise, although ET-1 peptide expression has been localized in the normal kidney, its expression pattern in the ischemic kidney has not been determined. Therefore, the purpose of this study was twofold: (a) to determine whether ischemia alone or ischemia plus reperfusion is required for the up-regulation of ppET-1 mRNA to occur, and (b) to localize ET-1 peptide expression following ischemia in the rat kidney to clarify better the role of ET in the pathophysiology of ischemia-induced acute renal failure. METHODS: Male Lewis rats underwent clamping of the right renal vascular pedicle for either 30 minutes of ischemia (group 1), 60 minutes of ischemia (group 2), 30 minutes of ischemia followed by 30 minutes of reperfusion (group 3), or 60 minutes of ischemia followed by three hours of reperfusion (group 4). The contralateral kidney acted as a control. ppET-1 mRNA up-regulation and ET-1 peptide expression were examined using the reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. RESULTS: Reverse transcription-polymerase chain reaction yielded a control (nonischemic) value of 0.6 +/- 0.2 densitometric units (DU) of ppET-1 mRNA in the kidney. Group 1 levels (30 min of ischemia alone) were 1.8 +/- 0.4 DU, a threefold increase (P < 0.05). Group 2 levels (60 min of ischemia alone) increased almost six times above baseline, 3.5 +/- 0.2 DU (P < 0.01), whereas both group 3 and group 4 (ischemia plus reperfusion) did not experience any further significant increases in mRNA levels (1.9 +/- 0.4 DU and 2.8 +/- 0.6 DU, respectively) beyond levels in group 1 or 2 animals subjected to similar ischemic periods. ET-1 peptide expression in the ischemic kidneys was significantly increased over controls and was clearly localized to the endothelium of the peritubular capillary network of the kidney. CONCLUSIONS: Initial ET-1 gene up-regulation in the kidney occurs secondary to ischemia, but reperfusion most likely contributes to sustaining this up-regulation. The marked increase of ET-1 in the peritubular capillary network suggests that ET-induced vasoconstriction may have a pathophysiological role in ischemic acute tubular necrosis.  (+info)

Nitric oxide limits the eicosanoid-dependent bronchoconstriction and hypotension induced by endothelin-1 in the guinea-pig. (4/1796)

1. This study attempts to investigate if endogenous nitric oxide (NO) can modulate the eicosanoid-releasing properties of intravenously administered endothelin-1 (ET-1) in the pulmonary and circulatory systems in the guinea-pig. 2. The nitric oxide synthase blocker N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 microM; 30 min infusion) potentiated, in an L-arginine sensitive fashion, the release of thromboxane A2 (TxA2) stimulated by ET-1, the selective ET(B) receptor agonist IRL 1620 (Suc-[Glu9,Ala11,15]-ET-1(8-21)) or bradykinin (BK) (5, 50 and 50 nM, respectively, 3 min infusion) in guinea-pig isolated and perfused lungs. 3. In anaesthetized and ventilated guinea-pigs intravenous injection of ET-1 (0.1-1.0 nmol kg(-1)), IRL 1620 (0.2-1.6 nmol kg(-1)), BK (1.0-10.0 nmol kg(-1)) or U 46619 (0.2-5.7 nmol kg(-1)) each induced dose-dependent increases in pulmonary insufflation pressure (PIP). Pretreatment with L-NAME (5 mg kg(-1)) did not change basal PIP, but increased, in L-arginine sensitive manner, the magnitude of the PIP increases (in both amplitude and duration) triggered by each of the peptides (at 0.25, 0.4 and 1.0 nmol kg(-1), respectively), without modifying bronchoconstriction caused by U 46619 (0.57 nmol kg(-1)). 4. The increases in PIP induced by ET-1, IRL 1620 (0.25 and 0.4 nmol kg(-1), respectively) or U 46619 (0.57 nmol kg(-1)) were accompanied by rapid and transient increases of mean arterial blood pressure (MAP). Pretreatment with L-NAME (5 mg kg(-1); i.v. raised basal MAP persistently and, under this condition, subsequent administration of ET-1 or IRL 1620, but not of U-46619, induced hypotensive responses which were prevented by pretreatment with the cyclo-oxygenase inhibitor indomethacin. 5. Thus, endogenous NO appears to modulate ET-1-induced bronchoconstriction and pressor effects in the guinea-pig by limiting the peptide's ability to induce, possibly via ET(B) receptors, the release of TxA2 in the lungs and of vasodilatory prostanoids in the systemic circulation. Furthermore, it would seem that these eicosanoid-dependent actions of ET-1 in the pulmonary system and on systemic arterial resistance in this species are physiologically dissociated.  (+info)

Blockade and reversal of endothelin-induced constriction in pial arteries from human brain. (5/1796)

BACKGROUND AND PURPOSE: Substantial evidence now implicates endothelin (ET) in the pathophysiology of cerebrovascular disorders such as the delayed vasospasm associated with subarachnoid hemorrhage and ischemic stroke. We investigated the ET receptor subtypes mediating vasoconstriction in human pial arteries. METHODS: ET receptors on human pial and intracerebral arteries were visualized with the use of autoradiography, and the subtypes mediating vasoconstriction were identified by means of wire myography. RESULTS: ET-1 was more potent than ET-3 as a vasoconstrictor, indicating an ETA-mediated effect. Similarly, the selective ETB agonist sarafotoxin S6c had no effect on contractile action at concentrations up to 30 nmol/L. The nonpeptide ETA receptor antagonist PD156707 (3 to 30 nmol/L) caused a parallel rightward shift of the ET-1-induced response, yielding a pA2 of 9.2. Consistent with these results, PD156707 (30 nmol/L) fully reversed an established constriction in pial arteries induced by 1 nmol/L ET-1, while the selective ETB receptor antagonist BQ788 (1 micromol/L) had little effect. The calcium channel blocker nimodipine (0.3 to 3 micromol/L) significantly attenuated the maximum response to ET-1 in a concentration-dependent manner without changing potency. In agreement with the functional data, specific binding of [125I]PD151242 to ETA receptors was localized to the smooth muscle layer of pial and intracerebral blood vessels. In contrast, little or no [125I]BQ3020 binding to ETB receptors was detected. CONCLUSIONS: These data indicate an important role for ETA receptors in ET-1-induced constriction of human pial arteries and suggest that ETA receptor antagonists may provide additional dilatory benefit in cerebrovascular disorders associated with raised ET levels.  (+info)

Endothelin-1 and its mRNA in the wall layers of human arteries ex vivo. (6/1796)

BACKGROUND: The participation of endothelin-1 (ET-1) in the control of vascular tone in humans has been questioned, on the basis of the finding of subthreshold immunoreactive (ir) ET-1 plasma levels. However, because most ET-1 is secreted abluminally, it might attain a higher concentration in the tunica media than in plasma. Furthermore, evidence indicates that vascular smooth muscle cells (VSMCs) can synthesize ET-1 on stimulation in vitro. We therefore looked for irET-1 in the different layers of the wall of human arteries, including renal, gastric, and internal thoracic artery wall, obtained ex vivo from consenting patients with coronary artery disease and/or high blood pressure undergoing surgery, as well as from young organ donors. METHODS AND RESULTS: We performed immunohistochemistry with specific anti-ET-1 and anti-vWF antibodies followed by detection with an avidin-biotin complex ultrasensitive kit. The presence of preproET-1 and human endothelin-converting enzyme-1 (hECE-1) mRNA was also investigated by reverse transcription-polymerase chain reaction in homogenates of vessel wall, including preparations deprived of both endothelium and adventitia, and in isolated VSMCs. We detected irET-1 in the endothelium of all arteries and in the tunica media of internal thoracic artery from most patients with coronary artery disease. PreproET-1 and hECE-1 mRNA was also detected in VSMCs isolated from these vessels. irET-1 and irvWF staining in endothelium and tunica media was measured by use of microscope-coupled computer-assisted technology. Significant correlations between the amount of irET-1 in the tunica media and mean blood pressure (P<0.05), total serum cholesterol (P<0.05), and number of atherosclerotic sites (P<0.001) were found. Thus, in organ donors, irET-1 was detectable almost exclusively in endothelial cells, whereas in patients with coronary artery disease and/or arterial hypertension, sizable amounts of irET-1 were detectable in the tunica media of different types of arteries. In addition, VSMCs isolated from these vessels coexpressed the preproET-1 and hECE-1 genes. CONCLUSIONS: Collectively, these findings are consistent with the contention that endothelial damage occurs in most patients with atherosclerosis and/or hypertension and that ET-1 is synthesized in VSMCs of these patients.  (+info)

Effects of hypertension, diabetes mellitus, and hypercholesterolemia on endothelin type B receptor-mediated nitric oxide release from rat kidney. (7/1796)

BACKGROUND: Although endothelin-1 is a potent vasoconstrictor peptide, stimulation of endothelin type B receptor (ETBR) causes bidirectional changes in vascular tone, ie, vasodilation and vasoconstriction. Roles of ETBR in pathological conditions are largely unknown. METHODS AND RESULTS: We studied the effect of BQ-3020, a highly selective ETBR agonist, on renal vascular resistance and nitric oxide (NO) release in the isolated, perfused kidney of rats with hypertension, diabetes mellitus, and hypercholesterolemia. Immunohistochemistry of endothelial NO synthase and ETBR was also examined. Infusion of BQ-3020 at concentrations of +info)

Maintenance of blood pressure in normotensive dogs by endothelin. (8/1796)

The role of endothelin (ET)-1 in blood pressure homeostasis and the interaction with the renin-angiotensin system (RAS) was investigated in normotensive conscious dogs. ETA receptors were blocked by LU-135252 (1-30 mg/kg); trandolapril (2 mg/kg) or losartan (10 mg/kg) was used to inhibit the RAS. LU-135252 in oral doses of 3-30 mg/kg significantly reduced mean arterial pressure (MAP) by approximately 10 mmHg maximally, whereas trandolapril or losartan were without any effect. MAP reduction was more pronounced when LU-135252 was combined with either losartan (-15.5 +/- 3.2 mmHg; 2 h postadministration; P < 0.05) or trandolapril (-30.9 +/- 3.6 mmHg; P < 0.05). When endogenous nitric oxide (NO) generation was blocked but NO concomitantly infused, this synergistic effect on MAP was prevented. The data show that ET-1 contributes to the maintenance of blood pressure via ETA receptors. Furthermore, ET-1 and ANG II play a prominent role in the control of blood pressure by opposing the effects of NO. The pronounced blood pressure fall after combined blockade of ETA receptors and the RAS may be mediated by an enhanced release of NO.  (+info)

  • abstract = "The regulatory role of endothelins in cerebral microvessels was investigated in a recently developed model system which allows the study of small cerebral vessels in their normal microenvironment. (elsevier.com)
  • We measured plasma endothelin levels in 100 normal subjects and in 40 patients with atherosclerosis predominantly of the following types: aortic and peripheral vascular disease (14 patients), renovascular disease (9 patients), coronary artery disease (9 patients), and carotid disease (8 patients). (elsevier.com)
  • In the normal subjects, the mean (±SD) plasma endothelin concentration was 1.4±0.2 pmol per liter, with no correlation between age and plasma endothelin concentration (r = 0.13, P = 0.2). (elsevier.com)
  • Increased plasma levels of big-endothelin-2 and big-endothelin-3 in patients with end-stage renal disease. (nih.gov)
  • Bosentan, an endothelin A and B receptor antagonist, did not affect baseline P pa , P pao or systemic arterial pressure ( P sa ) and did not alter HPV (n=8). (ersjournals.com)
  • Big Endothelin-1 can be hydrolyzed by chymase to generate endothelin 1 (1-21) in vitro. (anaspec.com)
  • Exogenous endothelin-1 is a prostate cancer mitogen in vitro and increases alkaline phosphatase activity in new bone formation, indicating that ectopic endothelin-1 may be a mediator of the osteoblastic response of bone to metastatic prostate cancer. (elsevier.com)
  • Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination. (nih.gov)