A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE), which is the etiological agent of Japanese encephalitis found in Asia, southeast Asia, and the Indian subcontinent.
A mosquito-borne encephalitis caused by the Japanese B encephalitis virus (ENCEPHALITIS VIRUS, JAPANESE) occurring throughout Eastern Asia and Australia. The majority of infections occur in children and are subclinical or have features limited to transient fever and gastrointestinal symptoms. Inflammation of the brain, spinal cord, and meninges may occur and lead to transient or permanent neurologic deficits (including a POLIOMYELITIS-like presentation); SEIZURES; COMA; and death. (From Adams et al., Principles of Neurology, 6th ed, p751; Lancet 1998 Apr 11;351(9109):1094-7)
A species of ALPHAVIRUS that is the etiologic agent of encephalomyelitis in humans and equines. It is seen most commonly in parts of Central and South America.
A subgroup of the genus FLAVIVIRUS that causes encephalitis and hemorrhagic fevers and is found in eastern and western Europe and the former Soviet Union. It is transmitted by TICKS and there is an associated milk-borne transmission from viremic cattle, goats, and sheep.
A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE), which is the etiologic agent of ST. LOUIS ENCEPHALITIS in the United States, the Caribbean, and Central and South America.
A collection of single-stranded RNA viruses scattered across the Bunyaviridae, Flaviviridae, and Togaviridae families whose common property is the ability to induce encephalitic conditions in infected hosts.
Inflammation of the BRAIN due to infection, autoimmune processes, toxins, and other conditions. Viral infections (see ENCEPHALITIS, VIRAL) are a relatively frequent cause of this condition.
A species of ALPHAVIRUS causing encephalomyelitis in Equidae and humans. The virus ranges along the Atlantic seaboard of the United States and Canada and as far south as the Caribbean, Mexico, and parts of Central and South America. Infections in horses show a mortality of up to 90 percent and in humans as high as 80 percent in epidemics.
A species of ALPHAVIRUS that is the etiologic agent of encephalomyelitis in humans and equines in the United States, southern Canada, and parts of South America.
Inflammation of brain parenchymal tissue as a result of viral infection. Encephalitis may occur as primary or secondary manifestation of TOGAVIRIDAE INFECTIONS; HERPESVIRIDAE INFECTIONS; ADENOVIRIDAE INFECTIONS; FLAVIVIRIDAE INFECTIONS; BUNYAVIRIDAE INFECTIONS; PICORNAVIRIDAE INFECTIONS; PARAMYXOVIRIDAE INFECTIONS; ORTHOMYXOVIRIDAE INFECTIONS; RETROVIRIDAE INFECTIONS; and ARENAVIRIDAE INFECTIONS.
A viral encephalitis caused by the St. Louis encephalitis virus (ENCEPHALITIS VIRUS, ST. LOUIS), a FLAVIVIRUS. It is transmitted to humans and other vertebrates primarily by mosquitoes of the genus CULEX. The primary animal vectors are wild birds and the disorder is endemic to the midwestern and southeastern United States. Infections may be limited to an influenza-like illness or present as an ASEPTIC MENINGITIS or ENCEPHALITIS. Clinical manifestations of the encephalitic presentation may include SEIZURES, lethargy, MYOCLONUS, focal neurologic signs, COMA, and DEATH. (From Adams et al., Principles of Neurology, 6th ed, p750)
A form of arboviral encephalitis endemic to Central America and the northern latitudes of South America. The causative organism (ENCEPHALITIS VIRUS, VENEZUELAN EQUINE) is transmitted to humans and horses via the bite of several mosquito species. Human viral infection may be asymptomatic or remain restricted to a mild influenza-like illness. Encephalitis, usually not severe, occurs in a small percentage of cases and may rarely feature SEIZURES and COMA. (From Joynt, Clinical Neurology, 1996, Ch26, pp9-10)
A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE), found in Australia and New Guinea. It causes a fulminating viremia resembling Japanese encephalitis (ENCEPHALITIS, JAPANESE).
Infections of the brain caused by arthropod-borne viruses (i.e., arboviruses) primarily from the families TOGAVIRIDAE; FLAVIVIRIDAE; BUNYAVIRIDAE; REOVIRIDAE; and RHABDOVIRIDAE. Life cycles of these viruses are characterized by ZOONOSES, with birds and lower mammals serving as intermediate hosts. The virus is transmitted to humans by the bite of mosquitoes (CULICIDAE) or TICKS. Clinical manifestations include fever, headache, alterations of mentation, focal neurologic deficits, and COMA. (From Clin Microbiol Rev 1994 Jan;7(1):89-116; Walton, Brain's Diseases of the Nervous System, 10th ed, p321)
Encephalitis caused by neurotropic viruses that are transmitted via the bite of TICKS. In Europe, the diseases are caused by ENCEPHALITIS VIRUSES, TICK-BORNE, which give rise to Russian spring-summer encephalitis, central European encephalitis, louping ill encephalitis, and related disorders. Powassan encephalitis occurs in North America and Russia and is caused by the Powassan virus. ASEPTIC MENINGITIS and rarely encephalitis may complicate COLORADO TICK FEVER which is endemic to mountainous regions of the western United States. (From Joynt, Clinical Neurology, 1996, Ch26, pp14-5)
A group of ALPHAVIRUS INFECTIONS which affect horses and man, transmitted via the bites of mosquitoes. Disorders in this category are endemic to regions of South America and North America. In humans, clinical manifestations vary with the type of infection, and range from a mild influenza-like syndrome to a fulminant encephalitis. (From Joynt, Clinical Neurology, 1996, Ch26, pp8-10)
Vaccines or candidate vaccines used to prevent infection with Japanese B encephalitis virus (ENCEPHALITIS VIRUS, JAPANESE).
A genus of FLAVIVIRIDAE containing several subgroups and many species. Most are arboviruses transmitted by mosquitoes or ticks. The type species is YELLOW FEVER VIRUS.
A subgroup of the genus FLAVIVIRUS which comprises a number of viral species that are the etiologic agents of human encephalitis in many different geographical regions. These include Japanese encephalitis virus (ENCEPHALITIS VIRUS, JAPANESE), St. Louis encephalitis virus (ENCEPHALITIS VIRUS, ST. LOUIS), Murray Valley encephalitis virus (ENCEPHALITIS VIRUS, MURRAY VALLEY), and WEST NILE VIRUS.
A paraneoplastic syndrome marked by degeneration of neurons in the LIMBIC SYSTEM. Clinical features include HALLUCINATIONS, loss of EPISODIC MEMORY; ANOSMIA; AGEUSIA; TEMPORAL LOBE EPILEPSY; DEMENTIA; and affective disturbance (depression). Circulating anti-neuronal antibodies (e.g., anti-Hu; anti-Yo; anti-Ri; and anti-Ma2) and small cell lung carcinomas or testicular carcinoma are frequently associated with this syndrome.
An acute (or rarely chronic) inflammatory process of the brain caused by SIMPLEXVIRUS infections which may be fatal. The majority of infections are caused by human herpesvirus 1 (HERPESVIRUS 1, HUMAN) and less often by human herpesvirus 2 (HERPESVIRUS 2, HUMAN). Clinical manifestations include FEVER; HEADACHE; SEIZURES; HALLUCINATIONS; behavioral alterations; APHASIA; hemiparesis; and COMA. Pathologically, the condition is marked by a hemorrhagic necrosis involving the medial and inferior TEMPORAL LOBE and orbital regions of the FRONTAL LOBE. (From Adams et al., Principles of Neurology, 6th ed, pp751-4)
A family of the order DIPTERA that comprises the mosquitoes. The larval stages are aquatic, and the adults can be recognized by the characteristic WINGS, ANIMAL venation, the scales along the wing veins, and the long proboscis. Many species are of particular medical importance.
A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE). It can infect birds and mammals. In humans, it is seen most frequently in Africa, Asia, and Europe presenting as a silent infection or undifferentiated fever (WEST NILE FEVER). The virus appeared in North America for the first time in 1999. It is transmitted mainly by CULEX spp mosquitoes which feed primarily on birds, but it can also be carried by the Asian Tiger mosquito, AEDES albopictus, which feeds mainly on mammals.
A form of arboviral encephalitis (primarily affecting equines) endemic to eastern regions of North America. The causative organism (ENCEPHALOMYELITIS VIRUS, EASTERN EQUINE) may be transmitted to humans via the bite of AEDES mosquitoes. Clinical manifestations include the acute onset of fever, HEADACHE, altered mentation, and SEIZURES followed by coma. The condition is fatal in up to 50% of cases. Recovery may be marked by residual neurologic deficits and EPILEPSY. (From Joynt, Clinical Neurology, 1996, Ch26, pp9-10)
Infections with viruses of the genus FLAVIVIRUS, family FLAVIVIRIDAE.
A species of LENTIVIRUS, subgenus ovine-caprine lentiviruses (LENTIVIRUSES, OVINE-CAPRINE), closely related to VISNA-MAEDI VIRUS and causing acute encephalomyelitis; chronic arthritis; PNEUMONIA; MASTITIS; and GLOMERULONEPHRITIS in goats. It is transmitted mainly in the colostrum and milk.
A genus of mosquitoes (CULICIDAE) commonly found in tropical regions. Species of this genus are vectors for ST. LOUIS ENCEPHALITIS as well as many other diseases of man and domestic and wild animals.
Immunoglobulins produced in response to VIRAL ANTIGENS.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
Diseases of domestic and wild horses of the species Equus caballus.
Process of growing viruses in live animals, plants, or cultured cells.
A CELL LINE derived from the kidney of the African green (vervet) monkey, (CERCOPITHECUS AETHIOPS) used primarily in virus replication studies and plaque assays.
The type species of ALPHAVIRUS normally transmitted to birds by CULEX mosquitoes in Egypt, South Africa, India, Malaya, the Philippines, and Australia. It may be associated with fever in humans. Serotypes (differing by less than 17% in nucleotide sequence) include Babanki, Kyzylagach, and Ockelbo viruses.
Ribonucleic acid that makes up the genetic material of viruses.
A genus of TOGAVIRIDAE, also known as Group A arboviruses, serologically related to each other but not to other Togaviridae. The viruses are transmitted by mosquitoes. The type species is the SINDBIS VIRUS.
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
A mosquito-borne viral illness caused by the WEST NILE VIRUS, a FLAVIVIRUS and endemic to regions of Africa, Asia, and Europe. Common clinical features include HEADACHE; FEVER; maculopapular rash; gastrointestinal symptoms; and lymphadenopathy. MENINGITIS; ENCEPHALITIS; and MYELITIS may also occur. The disease may occasionally be fatal or leave survivors with residual neurologic deficits. (From Joynt, Clinical Neurology, 1996, Ch26, p13; Lancet 1998 Sep 5;352(9130):767-71)
Viruses whose genetic material is RNA.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE.
The type species of ORTHOPOXVIRUS, related to COWPOX VIRUS, but whose true origin is unknown. It has been used as a live vaccine against SMALLPOX. It is also used as a vector for inserting foreign DNA into animals. Rabbitpox virus is a subspecies of VACCINIA VIRUS.
Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest.
Arthropod-borne viruses. A non-taxonomic designation for viruses that can replicate in both vertebrate hosts and arthropod vectors. Included are some members of the following families: ARENAVIRIDAE; BUNYAVIRIDAE; REOVIRIDAE; TOGAVIRIDAE; and FLAVIVIRIDAE. (From Dictionary of Microbiology and Molecular Biology, 2nd ed)
Layers of protein which surround the capsid in animal viruses with tubular nucleocapsids. The envelope consists of an inner layer of lipids and virus specified proteins also called membrane or matrix proteins. The outer layer consists of one or more types of morphological subunits called peplomers which project from the viral envelope; this layer always consists of glycoproteins.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
Substances elaborated by viruses that have antigenic activity.
A species in the ORTHOBUNYAVIRUS genus of the family BUNYAVIRIDAE. Serotypes are found in temperate and arctic regions and each is closely associated with a single species of vector mosquito. The vertebrate hosts are usually small mammals but several serotypes infect humans.
A viral infection of the brain caused by serotypes of California encephalitis virus (ENCEPHALITIS VIRUS, CALIFORNIA) transmitted to humans by the mosquito AEDES triseriatus. The majority of cases are caused by the LA CROSSE VIRUS. This condition is endemic to the midwestern United States and primarily affects children between 5-10 years of age. Clinical manifestations include FEVER; VOMITING; HEADACHE; and abdominal pain followed by SEIZURES, altered mentation, and focal neurologic deficits. (From Joynt, Clinical Neurology, 1996, Ch26, p13)
Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response.
Established cell cultures that have the potential to propagate indefinitely.
The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE.
Disorder characterized by symptoms of CATATONIA; HYPOVENTILATION; DYSKINESIAS; ENCEPHALITIS; and SEIZURES followed by a reduced CONSCIOUSNESS. It is often followed by a viral-like prodrome. Many cases are self-limiting and respond well to IMMUNOMODULATORY THERAPIES against the NMDA RECEPTORS antibodies.
Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination.
Proteins encoded by a VIRAL GENOME that are produced in the organisms they infect, but not packaged into the VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The relationships of groups of organisms as reflected by their genetic makeup.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
A form of arboviral encephalitis (which primarily affects horses) endemic to western and central regions of NORTH AMERICA. The causative organism (ENCEPHALOMYELITIS VIRUS, WESTERN EQUINE) may be transferred to humans via the bite of mosquitoes (CULEX tarsalis and others). Clinical manifestations include headache and influenza-like symptoms followed by alterations in mentation, SEIZURES, and COMA. DEATH occurs in a minority of cases. Survivors may recover fully or be left with residual neurologic dysfunction, including PARKINSONISM, POSTENCEPHALITIC. (From Joynt, Clinical Neurology, 1996, Ch26, pp8-9)
Insects that transmit infective organisms from one host to another or from an inanimate reservoir to an animate host.
A general term for diseases produced by viruses.
Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus.
Proteins found in any species of virus.
Live vaccines prepared from microorganisms which have undergone physical adaptation (e.g., by radiation or temperature conditioning) or serial passage in laboratory animal hosts or infected tissue/cell cultures, in order to produce avirulent mutant strains capable of inducing protective immunity.
Diseases of birds not considered poultry, therefore usually found in zoos, parks, and the wild. The concept is differentiated from POULTRY DISEASES which is for birds raised as a source of meat or eggs for human consumption, and usually found in barnyards, hatcheries, etc.
Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP.
The expelling of virus particles from the body. Important routes include the respiratory tract, genital tract, and intestinal tract. Virus shedding is an important means of vertical transmission (INFECTIOUS DISEASE TRANSMISSION, VERTICAL).
Infections caused by arthropod-borne viruses, general or unspecified.
Virus diseases caused by the Lentivirus genus. They are multi-organ diseases characterized by long incubation periods and persistent infection.
Created as a republic in 1918 by Czechs and Slovaks from territories formerly part of the Austro-Hungarian Empire. The country split into the Czech Republic and Slovakia 1 January 1993.
The type species of MORBILLIVIRUS and the cause of the highly infectious human disease MEASLES, which affects mostly children.
A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses.
Viruses parasitic on plants higher than bacteria.
Diseases of the domestic or wild goat of the genus Capra.
The type species of LYSSAVIRUS causing rabies in humans and other animals. Transmission is mostly by animal bites through saliva. The virus is neurotropic multiplying in neurons and myotubes of vertebrates.
The type species of the FLAVIVIRUS genus. Principal vector transmission to humans is by AEDES spp. mosquitoes.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.
Viruses whose nucleic acid is DNA.
The presence of viruses in the blood.
Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A genus of mosquitoes (CULICIDAE) frequently found in tropical and subtropical regions. YELLOW FEVER and DENGUE are two of the diseases that can be transmitted by species of this genus.
The functional hereditary units of VIRUSES.
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
A species of the genus FLAVIVIRUS which causes an acute febrile and sometimes hemorrhagic disease in man. Dengue is mosquito-borne and four serotypes are known.
A subtype of INFLUENZA A VIRUS with the surface proteins hemagglutinin 1 and neuraminidase 1. The H1N1 subtype was responsible for the Spanish flu pandemic of 1918.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
An acute febrile disease transmitted by the bite of AEDES mosquitoes infected with DENGUE VIRUS. It is self-limiting and characterized by fever, myalgia, headache, and rash. SEVERE DENGUE is a more virulent form of dengue.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 5 and neuraminidase 1. The H5N1 subtype, frequently referred to as the bird flu virus, is endemic in wild birds and very contagious among both domestic (POULTRY) and wild birds. It does not usually infect humans, but some cases have been reported.
A family of proteins that promote unwinding of RNA during splicing and translation.
Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS).
Deoxyribonucleic acid that makes up the genetic material of viruses.
A genus of mosquitoes in the family CULICIDAE. A large number of the species are found in the neotropical part of the Americas.
Agglutination of ERYTHROCYTES by a virus.
Inactivation of viruses by non-immune related techniques. They include extremes of pH, HEAT treatment, ultraviolet radiation, IONIZING RADIATION; DESICCATION; ANTISEPTICS; DISINFECTANTS; organic solvents, and DETERGENTS.
The binding of virus particles to receptors on the host cell surface. For enveloped viruses, the virion ligand is usually a surface glycoprotein as is the cellular receptor. For non-enveloped viruses, the virus CAPSID serves as the ligand.
Infections of the BRAIN caused by the protozoan TOXOPLASMA gondii that primarily arise in individuals with IMMUNOLOGIC DEFICIENCY SYNDROMES (see also AIDS-RELATED OPPORTUNISTIC INFECTIONS). The infection may involve the brain diffusely or form discrete abscesses. Clinical manifestations include SEIZURES, altered mentation, headache, focal neurologic deficits, and INTRACRANIAL HYPERTENSION. (From Joynt, Clinical Neurology, 1998, Ch27, pp41-3)
Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS.
The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses.
A subtype of INFLUENZA A VIRUS comprised of the surface proteins hemagglutinin 3 and neuraminidase 2. The H3N2 subtype was responsible for the Hong Kong flu pandemic of 1968.
The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The study of the structure, growth, function, genetics, and reproduction of viruses, and VIRUS DISEASES.
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
An order of insect eating MAMMALS including MOLES; SHREWS; HEDGEHOGS and tenrecs.
The largest genus of TICKS in the family IXODIDAE, containing over 200 species. Many infest humans and other mammals and several are vectors of diseases such as LYME DISEASE, tick-borne encephalitis (ENCEPHALITIS, TICK-BORNE), and KYASANUR FOREST DISEASE.
Antibodies that reduce or abolish some biological activity of a soluble antigen or infectious agent, usually a virus.
Small synthetic peptides that mimic surface antigens of pathogens and are immunogenic, or vaccines manufactured with the aid of recombinant DNA techniques. The latter vaccines may also be whole viruses whose nucleic acids have been modified.
A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
Infectious diseases that are novel in their outbreak ranges (geographic and host) or transmission mode.
Blood-sucking acarid parasites of the order Ixodida comprising two families: the softbacked ticks (ARGASIDAE) and hardbacked ticks (IXODIDAE). Ticks are larger than their relatives, the MITES. They penetrate the skin of their host by means of highly specialized, hooked mouth parts and feed on its blood. Ticks attack all groups of terrestrial vertebrates. In humans they are responsible for many TICK-BORNE DISEASES, including the transmission of ROCKY MOUNTAIN SPOTTED FEVER; TULAREMIA; BABESIOSIS; AFRICAN SWINE FEVER; and RELAPSING FEVER. (From Barnes, Invertebrate Zoology, 5th ed, pp543-44)
Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.
Species of the genus LENTIVIRUS, subgenus primate immunodeficiency viruses (IMMUNODEFICIENCY VIRUSES, PRIMATE), that induces acquired immunodeficiency syndrome in monkeys and apes (SAIDS). The genetic organization of SIV is virtually identical to HIV.
A serotype of the species California encephalitis virus (ENCEPHALITIS VIRUS, CALIFORNIA), in the genus ORTHOBUNYAVIRUS, causing human MENINGOENCEPHALITIS. This is the agent most responsible for California encephalitis (ENCEPHALITIS, CALIFORNIA), the most prevalent mosquito-borne disease recognized in the United States.
Sites on an antigen that interact with specific antibodies.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Proteins that form the CAPSID of VIRUSES.
The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms.
The outer protein protective shell of a virus, which protects the viral nucleic acid.
The ability of a pathogenic virus to lie dormant within a cell (latent infection). In eukaryotes, subsequent activation and viral replication is thought to be caused by extracellular stimulation of cellular transcription factors. Latency in bacteriophage is maintained by the expression of virally encoded repressors.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Diseases of rodents of the order RODENTIA. This term includes diseases of Sciuridae (squirrels), Geomyidae (gophers), Heteromyidae (pouched mice), Castoridae (beavers), Cricetidae (rats and mice), Muridae (Old World rats and mice), Erethizontidae (porcupines), and Caviidae (guinea pigs).
A region, north-central Asia, largely in Russia. It extends from the Ural Mountains to the Pacific Ocean and from the Arctic Ocean to central Kazakhstan and the borders of China and Mongolia.
Animate or inanimate sources which normally harbor disease-causing organisms and thus serve as potential sources of disease outbreaks. Reservoirs are distinguished from vectors (DISEASE VECTORS) and carriers, which are agents of disease transmission rather than continuing sources of potential disease outbreaks.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Diseases of domestic swine and of the wild boar of the genus Sus.
A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Virus diseases caused by members of the ALPHAVIRUS genus of the family TOGAVIRIDAE.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The interactions between a host and a pathogen, usually resulting in disease.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
A mammalian order which consists of 29 families and many genera.
Membrane glycoproteins from influenza viruses which are involved in hemagglutination, virus attachment, and envelope fusion. Fourteen distinct subtypes of HA glycoproteins and nine of NA glycoproteins have been identified from INFLUENZA A VIRUS; no subtypes have been identified for Influenza B or Influenza C viruses.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
Antibodies produced by a single clone of cells.
The type species of RUBULAVIRUS that causes an acute infectious disease in humans, affecting mainly children. Transmission occurs by droplet infection.
I'm sorry for any confusion, but "Venezuela" is a country in South America and not a medical term or concept. Therefore, it doesn't have a medical definition.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
I'm sorry for any confusion, but there seems to be a misunderstanding as "South America" is not a medical term and cannot have a medical definition. It is a geographical term referring to the southern portion of the American continent, consisting of twelve independent countries and three territories of other nations.
A subfamily of the family MURIDAE comprised of 69 genera. New World mice and rats are included in this subfamily.
A species of ALPHAVIRUS isolated in central, eastern, and southern Africa.
EPIDEMIOLOGIC STUDIES based on the detection through serological testing of characteristic change in the serum level of specific ANTIBODIES. Latent subclinical infections and carrier states can thus be detected in addition to clinically overt cases.
Infection with any of various amebae. It is an asymptomatic carrier state in most individuals, but diseases ranging from chronic, mild diarrhea to fulminant dysentery may occur.
Invertebrates or non-human vertebrates which transmit infective organisms from one host to another.
Animals considered to be wild or feral or not adapted for domestic use. It does not include wild animals in zoos for which ANIMALS, ZOO is available.
Inoculation of a series of animals or in vitro tissue with an infectious bacterium or virus, as in VIRULENCE studies and the development of vaccines.
Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types.
Viruses that produce tumors.
Specific hemagglutinin subtypes encoded by VIRUSES.
The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching.
Inbred ICR mice are a strain of albino laboratory mice that have been selectively bred for consistent genetic makeup and high reproductive performance, making them widely used in biomedical research for studies involving reproduction, toxicology, pharmacology, and carcinogenesis.
A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
Inflammation of brain tissue caused by infection with the varicella-zoster virus (HERPESVIRUS 3, HUMAN). This condition is associated with immunocompromised states, including the ACQUIRED IMMUNODEFICIENCY SYNDROME. Pathologically, the virus tends to induce a vasculopathy and infect oligodendrocytes and ependymal cells, leading to CEREBRAL INFARCTION, multifocal regions of demyelination, and periventricular necrosis. Manifestations of varicella encephalitis usually occur 5-7 days after onset of HERPES ZOSTER and include HEADACHE; VOMITING; lethargy; focal neurologic deficits; FEVER; and COMA. (From Joynt, Clinical Neurology, 1996, Ch 26, pp29-32; Hum Pathol 1996 Sep;27(9):927-38)
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children.
Viruses which produce a mottled appearance of the leaves of plants.
The type species of SIMPLEXVIRUS causing most forms of non-genital herpes simplex in humans. Primary infection occurs mainly in infants and young children and then the virus becomes latent in the dorsal root ganglion. It then is periodically reactivated throughout life causing mostly benign conditions.
Elements of limited time intervals, contributing to particular results or situations.
A species of LENTIVIRUS, subgenus ovine-caprine lentiviruses (LENTIVIRUSES, OVINE-CAPRINE), that can cause chronic pneumonia (maedi), mastitis, arthritis, and encephalomyelitis (visna) in sheep. Maedi is a progressive pneumonia of sheep which is similar to but not the same as jaagsiekte (PULMONARY ADENOMATOSIS, OVINE). Visna is a demyelinating leukoencephalomyelitis of sheep which is similar to but not the same as SCRAPIE.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Pathogenic infections of the brain, spinal cord, and meninges. DNA VIRUS INFECTIONS; RNA VIRUS INFECTIONS; BACTERIAL INFECTIONS; MYCOPLASMA INFECTIONS; SPIROCHAETALES INFECTIONS; fungal infections; PROTOZOAN INFECTIONS; HELMINTHIASIS; and PRION DISEASES may involve the central nervous system as a primary or secondary process.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Sensitive tests to measure certain antigens, antibodies, or viruses, using their ability to agglutinate certain erythrocytes. (From Stedman, 26th ed)
A species in the genus HEPATOVIRUS containing one serotype and two strains: HUMAN HEPATITIS A VIRUS and Simian hepatitis A virus causing hepatitis in humans (HEPATITIS A) and primates, respectively.
Vaccines in which the infectious microbial nucleic acid components have been destroyed by chemical or physical treatment (e.g., formalin, beta-propiolactone, gamma radiation) without affecting the antigenicity or immunogenicity of the viral coat or bacterial outer membrane proteins.
Genotypic differences observed among individuals in a population.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Group of alpharetroviruses (ALPHARETROVIRUS) producing sarcomata and other tumors in chickens and other fowl and also in pigeons, ducks, and RATS.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
An inflammatory process involving the brain (ENCEPHALITIS) and meninges (MENINGITIS), most often produced by pathogenic organisms which invade the central nervous system, and occasionally by toxins, autoimmune disorders, and other conditions.
A species of POLYOMAVIRUS apparently infecting over 90% of children but not clearly associated with any clinical illness in childhood. The virus remains latent in the body throughout life and can be reactivated under certain circumstances.
The degree of similarity between sequences. Studies of AMINO ACID SEQUENCE HOMOLOGY and NUCLEIC ACID SEQUENCE HOMOLOGY provide useful information about the genetic relatedness of genes, gene products, and species.
Infections produced by oncogenic viruses. The infections caused by DNA viruses are less numerous but more diverse than those caused by the RNA oncogenic viruses.
Viruses whose taxonomic relationships have not been established.
A species of POLYOMAVIRUS, originally isolated from the brain of a patient with progressive multifocal leukoencephalopathy. The patient's initials J.C. gave the virus its name. Infection is not accompanied by any apparent illness but serious demyelinating disease can appear later, probably following reactivation of latent virus.
Virus diseases caused by the ORTHOMYXOVIRIDAE.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
While there isn't a specific medical definition for "North America," I can provide a geographical definition that is often used in public health and medical contexts: North America is the third largest continent by area, encompassing 23 independent states, including the United States, Canada, and Mexico, which are home to diverse populations, cultures, and ecosystems, and share common health-related challenges such as obesity, diabetes, and healthcare access disparities.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
The quantity of measurable virus in a body fluid. Change in viral load, measured in plasma, is sometimes used as a SURROGATE MARKER in disease progression.
Recombinant DNA vectors encoding antigens administered for the prevention or treatment of disease. The host cells take up the DNA, express the antigen, and present it to the immune system in a manner similar to that which would occur during natural infection. This induces humoral and cellular immune responses against the encoded antigens. The vector is called naked DNA because there is no need for complex formulations or delivery agents; the plasmid is injected in saline or other buffers.
Diseases of non-human animals that may be transmitted to HUMANS or may be transmitted from humans to non-human animals.
The type species of ALPHARETROVIRUS producing latent or manifest lymphoid leukosis in fowl.
Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Degenerative or inflammatory conditions affecting the central or peripheral nervous system that develop in association with a systemic neoplasm without direct invasion by tumor. They may be associated with circulating antibodies that react with the affected neural tissue. (Intern Med 1996 Dec;35(12):925-9)
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
Proteins, usually glycoproteins, found in the viral envelopes of a variety of viruses. They promote cell membrane fusion and thereby may function in the uptake of the virus by cells.
A species of ALPHAVIRUS causing an acute dengue-like fever.
A family of RNA viruses causing INFLUENZA and other diseases. There are five recognized genera: INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; ISAVIRUS; and THOGOTOVIRUS.
The type species of ORBIVIRUS causing a serious disease in sheep, especially lambs. It may also infect wild ruminants and other domestic animals.

Genetic variation among isolates of western equine encephalomyelitis virus from California. (1/76)

The mechanism for long-term maintenance of western equine encephalomyelitis (WEE) virus in California was investigated by studying genetic variation in the E2 portion of the genome of 55 strains of WEE virus isolated since 1938 from different locations in California. Four major lineages were evident: virus strains isolated from the Central Valley since 1993 and Los Angeles in 1991 formed lineage A; southern California strains isolated since 1978 and isolates from the Central Valley from 1978 to 1987 formed lineage B; northern California isolates from 1968 to 1971 formed lineage C; and early isolates from 1938 to 1961 formed a fourth lineage, D. The separation of strains from north and south of the Tehachapi and San Bernardino Mountains (i.e., the Central Valley and southern California, respectively) since 1991 indicates that there has been little recent movement of virus between the two regions and recent strains from these two locations appear to be evolving independently. However, within the Central Valley and within southern California, virus appears to circulate freely, perhaps by movement of birds or mosquito vectors. Although the current virus lineage in the Central Valley may have been introduced from an unknown source in 1991, introduction and establishment of new viral genotypes from outside California do not seem to occur regularly. It appears most likely that virus is maintained in separate geographic areas of California through local persistence in enzootic foci.  (+info)

Evaluation of the epidemic potential of western equine encephalitis virus in the northeastern United States. (2/76)

The problem of evaluating the epidemic potential of western equine encephalitis in the northeastern United States is presented and possible reasons are discussed for the present lack of human and horse cases of this disease even though increased numbers of isolations of the virus have been obtained in the East during recent years. Epidemiologic factors of vector bionomics and virus strain variations are considered. It is concluded that while this virus strain can no longer be regarded as uncommon in the Northeast, the evidence indicates there is little potential for epidemic expression of this agent in the human and horse population. This appears to be due to differences in the bionomics of the mosquito Culiseta melanura, which serves as the primary enzootic vector in the northeastern United States and in the bionomics of Culex tarsalis that is the vector in the western region of the United States. Other limiting factors in the epidemic potential may be variations between virus strains located in the East and West.  (+info)

Complete genomic RNA sequence of western equine encephalitis virus and expression of the structural genes. (3/76)

The complete nucleotide sequence of the 71V-1658 strain of western equine encephalitis virus (WEE) was determined (minus 25 nucleotides from the 5' end). A 5' RACE reaction was used to sequence the 5' terminus from WEE strain CBA87. The deduced WEE genome was 11508 nucleotides in length, excluding the 5' cap nucleotide and 3' poly(A) tail. The nucleotide composition was 28% A, 25% C, 25% G and 22% U. Comparison with partial WEE sequences of strain 5614 (nsP2-nsP3 of the nonstructural region) and strain BFS1703 (26S structural region) revealed comparatively little variation; a total of 149 nucleotide differences in 8624 bases (1.7% divergence), of which only 28% (42 nucleotides) altered the encoded amino acids. Comparison of deduced nsP1 and nsP4 amino acid sequences from WEE with the corresponding proteins from eastern equine encephalitis virus (EEE) yielded identities of 84.9 and 83.8%, respectively. Previously uncharacterized stem-loop structures were identified in the nontranslated terminal regions. A cDNA clone of the 26S region encoding the structural polyprotein of WEE strain 71V-1658 was placed under the control of a cytomegalovirus promoter and transfected into tissue culture cells. The viral envelope proteins were functionally expressed in tissue culture, as determined by histochemical staining with monoclonal antibodies that recognize WEE antigens, thus, forming the initial step in the investigation of subunit vaccines to WEE.  (+info)

Development of reverse transcription-PCR assays specific for detection of equine encephalitis viruses. (4/76)

Specific and sensitive reverse transcription-PCR (RT-PCR) assays were developed for the detection of eastern, western, and Venezuelan equine encephalitis viruses (EEE, WEE, and VEE, respectively). Tests for specificity included all known alphavirus species. The EEE-specific RT-PCR amplified a 464-bp region of the E2 gene exclusively from 10 different EEE strains from South and North America with a sensitivity of about 3,000 RNA molecules. In a subsequent nested PCR, the specificity was confirmed by the amplification of a 262-bp fragment, increasing the sensitivity of this assay to approximately 30 RNA molecules. The RT-PCR for WEE amplified a fragment of 354 bp from as few as 2,000 RNA molecules. Babanki virus, as well as Mucambo and Pixuna viruses (VEE subtypes IIIA and IV), were also amplified. However, the latter viruses showed slightly smaller fragments of about 290 and 310 bp, respectively. A subsequent seminested PCR amplified a 195-bp fragment only from the 10 tested strains of WEE from North and South America, rendering this assay virus specific and increasing its sensitivity to approximately 20 RNA molecules. Because the 12 VEE subtypes showed too much divergence in their 26S RNA nucleotide sequences to detect all of them by the use of nondegenerate primers, this assay was confined to the medically important and closely related VEE subtypes IAB, IC, ID, IE, and II. The RT-PCR-seminested PCR combination specifically amplified 342- and 194-bp fragments of the region covering the 6K gene in VEE. The sensitivity was 20 RNA molecules for subtype IAB virus and 70 RNA molecules for subtype IE virus. In addition to the subtypes mentioned above, three of the enzootic VEE (subtypes IIIB, IIIC, and IV) showed the specific amplicon in the seminested PCR. The practicability of the latter assay was tested with human sera gathered as part of the febrile illness surveillance in the Amazon River Basin of Peru near the city of Iquitos. All of the nine tested VEE-positive sera showed the expected 194-bp amplicon of the VEE-specific RT-PCR-seminested PCR.  (+info)

Inhibition by Agaricus blazei Murill fractions of cytopathic effect induced by western equine encephalitis (WEE) virus on VERO cells in vitro. (5/76)

Anti-viral activities of Agaricus blazei Murill were investigated. The water extracts of the cultured mycelia and fruiting bodies were fractionated with different concentrations of ethanol. To several viruses which have cytopathic effects (CPE) on VERO cells, inhibition of these effects by the ethanol fractions was tested. Strong inhibition of CPE induced by western equine encephalitis (WEE) virus was observed in the mycelial fractions but not those of fruiting bodies.  (+info)

Environmental modification of western equine encephalomyelitis infection in the snowshoe hare (Lepus americanus). (6/76)

The snowshoe hare (Lepus americanus) could be infected with western equine encephalomyelitis (WEE) virus and produce a viremia. Furthermore, viremia in hares exposed to variable climatic conditions differed significantly from viremias seen in the control animals held at constant temperatures. The viremia duration and titer were increased in animals subjected to fluctuating temperature and humidity. The time of onset of viremia was accelerated. Antibody response also increased in animals exposed to varying temperatures when compared with controls held at constant temperature and humidity. Snowshoe hares were studied at two distinct seasonal periods: winter, before reproductive activity; and summer, during reproductive midseason. Winter animals experienced greater viremia than did summer hares when exposed to fluctuating temperatures, suggesting a seasonality in the hare's susceptibility to host modification by environmental influences. These findings implicate the snowshoe hare as a possible mammalian amplifying host for WEE virus in the boreal forest.  (+info)

Morphological and physical properties of a multiploid-forming mutant of Western equine encephalitis virus. (7/76)

Morphological and physical properties of a multiploid-forming mutant of Western equine encephalitis virus were studied. Electron micrographs of the infected cells showed that most of mutant virions bud from the plasma or vacuolar membrane as a multiploid particle containing a various number of nucleocapsids enclosed with a defined common envelope. The mutant virions contained three polypeptides which migrated to the position identical with those of wild type on discontinuous acrylamide gels. Cells infected with the mutant virus synthesized the same intracellular viral RNA species as was made after infection of wild type. Cytoplasmic nucleocapsids of the mutant sedimented at 140S and contained 42S virion RNA as those of wild type; they were indistinguishable from those of wild type in an electron microscope examination. On the other hand, mutant nucleocapsids isolated from extracellular virions sedimented as heterogeneous particles larger thant 140S and were shown to be pleomorphic and aggregate in electron micrographs. The budding process of this mutant seemed to be modified, so that it might form the multiploid with the alteration of its nucleocapsids.  (+info)

Pathogenicity of an attenuated, temperature-sensitive mutant of western equine encephalitis virus induced by a chemical mutagen. (8/76)

To know the pathogenicity of the chemically induced, temperature-sensitive (ts) mutant of western equine encephalitis virus, designated tsNG39, the lethality for mice injected with tsNG39, virus yield, interferon production, and histological changes in the brains of these mice were examined in parallel with those of mice inoculated with the parent strain (PS). All of the mice injected intracranially with PS died within 3.5 days after injection irrespective of the inoculum size of virus, whereas the lethality of the mice inoculated with tsNG39 varied from 94.3 to 65.5% among groups of mice and this variation seemed to be correlated with the inoculum size of virus rather than with the maximum virus titer in the brain. By histological examination, two types of changes in the brain were distinguished, inflammatory and degenerative ones. Inflammatory changes were more prominent in the brains injected with tsNG39 than in those receiving PS. Degenerative changes were dominant in the brains injected with PS, but they were slight in the earlier phase of infection by tsNG39 became prominent only later. The degree of degenerative change was well correlated with both the virus titer in the mouse brain and the death pattern of mice injected with PS or tsNG39. Since degenerative changes are thought to be caused by the direct effect of injected virus, these results indicated that the factor responsible for the low virulence of tsNG39 was the slow viral growth in the brain.  (+info)

Japanese Encephalitis Virus (JEV) is a type of flavivirus that is the causative agent of Japanese encephalitis, a mosquito-borne viral infection of the brain. The virus is primarily transmitted to humans through the bite of infected Culex species mosquitoes, particularly Culex tritaeniorhynchus and Culex gelidus.

JEV is endemic in many parts of Asia, including China, Japan, Korea, India, Nepal, Thailand, and Vietnam. It is estimated to cause around 68,000 clinical cases and 13,000-20,000 deaths each year. The virus is maintained in a transmission cycle between mosquitoes and vertebrate hosts, primarily pigs and wading birds.

Most JEV infections are asymptomatic or result in mild symptoms such as fever, headache, and muscle aches. However, in some cases, the infection can progress to severe encephalitis, which is characterized by inflammation of the brain, leading to neurological symptoms such as seizures, tremors, paralysis, and coma. The case fatality rate for Japanese encephalitis is estimated to be 20-30%, and around half of those who survive have significant long-term neurological sequelae.

Prevention of JEV infection includes the use of insect repellent, wearing protective clothing, and avoiding outdoor activities during peak mosquito feeding times. Vaccination is also an effective means of preventing Japanese encephalitis, and vaccines are available for travelers to endemic areas as well as for residents of those areas.

Japanese encephalitis is a viral inflammation of the brain (encephalitis) caused by the Japanese encephalitis virus (JEV). It is transmitted to humans through the bite of infected Culex mosquitoes, particularly in rural and agricultural areas. The majority of JE cases occur in children under the age of 15. Most people infected with JEV do not develop symptoms, but some may experience mild symptoms such as fever, headache, and vomiting. In severe cases, JEV can cause high fever, neck stiffness, seizures, confusion, and coma. There is no specific treatment for Japanese encephalitis, and care is focused on managing symptoms and supporting the patient's overall health. Prevention measures include vaccination and avoiding mosquito bites in endemic areas.

Venezuelan Equine Encephalitis Virus (VEEV) is a type of alphavirus that can cause encephalitis (inflammation of the brain) in horses and humans. It is primarily transmitted through the bite of infected mosquitoes, although it can also be spread through contact with contaminated food or water, or by aerosolization during laboratory work or in bioterrorism attacks.

VEEV infection can cause a range of symptoms in humans, from mild flu-like illness to severe encephalitis, which may result in permanent neurological damage or death. There are several subtypes of VEEV, some of which are more virulent than others. The virus is endemic in parts of Central and South America, but outbreaks can also occur in other regions, including the United States.

VEEV is considered a potential bioterrorism agent due to its ease of transmission through aerosolization and its high virulence. There are no specific treatments for VEEV infection, although supportive care can help manage symptoms. Prevention measures include avoiding mosquito bites in endemic areas, using personal protective equipment during laboratory work with the virus, and implementing strict biocontainment procedures in research settings.

Tick-borne encephalitis (TBE) viruses are a group of related viruses that are primarily transmitted to humans through the bite of infected ticks. The main strains of TBE viruses include:

1. European tick-borne encephalitis virus (TBEV-Eu): This strain is found mainly in Europe and causes the majority of human cases of TBE. It is transmitted by the tick species Ixodes ricinus.
2. Siberian tick-borne encephalitis virus (TBEV-Sib): This strain is prevalent in Russia, Mongolia, and China, and is transmitted by the tick species Ixodes persulcatus.
3. Far Eastern tick-borne encephalitis virus (TBEV-FE): Also known as Russian spring-summer encephalitis (RSSE) virus, this strain is found in Russia, China, and Japan, and is transmitted by the tick species Ixodes persulcatus.
4. Louping ill virus (LIV): This strain is primarily found in the United Kingdom, Ireland, Portugal, and Spain, and is transmitted by the tick species Ixodes ricinus. It mainly affects sheep but can also infect humans.
5. Turkish sheep encephalitis virus (TSEV): This strain is found in Turkey and Greece and is primarily associated with ovine encephalitis, although it can occasionally cause human disease.
6. Negishi virus (NGS): This strain has been identified in Japan and Russia, but its role in human disease remains unclear.

TBE viruses are members of the Flaviviridae family and are closely related to other mosquito-borne flaviviruses such as West Nile virus, dengue virus, and Zika virus. The incubation period for TBE is usually 7-14 days after a tick bite, but it can range from 2 to 28 days. Symptoms of TBE include fever, headache, muscle pain, fatigue, and vomiting, followed by neurological symptoms such as meningitis (inflammation of the membranes surrounding the brain and spinal cord) or encephalitis (inflammation of the brain). Severe cases can lead to long-term complications or even death. No specific antiviral treatment is available for TBE, and management typically involves supportive care. Prevention measures include avoiding tick-infested areas, using insect repellents, wearing protective clothing, and promptly removing attached ticks. Vaccination is also recommended for individuals at high risk of exposure to TBE viruses.

St. Louis Encephalitis Virus (SLEV) is a type of arbovirus (arthropod-borne virus) from the family Flaviviridae and genus Flavivirus. It is the causative agent of St. Louis encephalitis (SLE), a viral disease characterized by inflammation of the brain (encephalitis). The virus is primarily transmitted to humans through the bite of infected mosquitoes, particularly Culex spp.

The SLEV infection in humans is often asymptomatic or may cause mild flu-like symptoms such as fever, headache, nausea, and vomiting. However, in some cases, the virus can invade the central nervous system, leading to severe neurological manifestations like meningitis, encephalitis, seizures, and even coma or death. The risk of severe disease increases in older adults and people with weakened immune systems.

There is no specific antiviral treatment for SLE; management typically focuses on supportive care to alleviate symptoms and address complications. Prevention measures include avoiding mosquito bites, using insect repellents, and eliminating breeding sites for mosquitoes. Vaccines are not available for SLEV, but they have been developed and tested in the past, with potential for future use in high-risk populations during outbreaks.

Encephalitis viruses are a group of viruses that can cause encephalitis, which is an inflammation of the brain. Some of the most common encephalitis viruses include:

1. Herpes simplex virus (HSV) type 1 and 2: These viruses are best known for causing cold sores and genital herpes, but they can also cause encephalitis, particularly in newborns and individuals with weakened immune systems.
2. Varicella-zoster virus (VZV): This virus causes chickenpox and shingles, and it can also lead to encephalitis, especially in people who have had chickenpox.
3. Enteroviruses: These viruses are often responsible for summertime meningitis outbreaks and can occasionally cause encephalitis.
4. Arboviruses: These viruses are transmitted through the bites of infected mosquitoes, ticks, or other insects. Examples include West Nile virus, St. Louis encephalitis virus, Eastern equine encephalitis virus, and Western equine encephalitis virus.
5. Rabies virus: This virus is transmitted through the bite of an infected animal and can cause encephalitis in its later stages.
6. Measles virus: Although rare in developed countries due to vaccination, measles can still cause encephalitis as a complication of the infection.
7. Mumps virus: Like measles, mumps is preventable through vaccination, but it can also lead to encephalitis as a rare complication.
8. Cytomegalovirus (CMV): This virus is a member of the herpesvirus family and can cause encephalitis in people with weakened immune systems, such as those with HIV/AIDS or organ transplant recipients.
9. La Crosse virus: This arbovirus is primarily transmitted through the bites of infected eastern treehole mosquitoes and mainly affects children.
10. Powassan virus: Another arbovirus, Powassan virus is transmitted through the bites of infected black-legged ticks (also known as deer ticks) and can cause severe encephalitis.

It's important to note that many of these viruses are preventable through vaccination or by avoiding exposure to infected animals or mosquitoes. If you suspect you may have been exposed to one of these viruses, consult a healthcare professional for proper diagnosis and treatment.

Encephalitis is defined as inflammation of the brain parenchyma, which is often caused by viral infections but can also be due to bacterial, fungal, or parasitic infections, autoimmune disorders, or exposure to toxins. The infection or inflammation can cause various symptoms such as headache, fever, confusion, seizures, and altered consciousness, ranging from mild symptoms to severe cases that can lead to brain damage, long-term disabilities, or even death.

The diagnosis of encephalitis typically involves a combination of clinical evaluation, imaging studies (such as MRI or CT scans), and laboratory tests (such as cerebrospinal fluid analysis). Treatment may include antiviral medications, corticosteroids, immunoglobulins, and supportive care to manage symptoms and prevent complications.

Eastern equine encephalitis virus (EEEV) is a single-stranded RNA virus that belongs to the family Togaviridae and the genus Alphavirus. It is the causative agent of Eastern equine encephalitis (EEE), a rare but serious viral disease that can affect humans, horses, and some bird species.

EEEV is primarily transmitted through the bite of infected mosquitoes, particularly those belonging to the Culiseta and Coquillettidia genera. The virus is maintained in a transmission cycle between mosquitoes and wild birds, primarily passerine birds. Horses and humans are considered dead-end hosts, meaning they do not develop high enough levels of viremia to infect feeding mosquitoes and perpetuate the transmission cycle.

EEE is most commonly found in the eastern and Gulf Coast states of the United States, as well as in parts of Canada, Central and South America, and the Caribbean. The disease can cause severe neurological symptoms, including inflammation of the brain (encephalitis), meningitis, and neuritis. In severe cases, EEE can lead to seizures, coma, and death. There is no specific treatment for EEE, and prevention efforts focus on reducing mosquito populations and avoiding mosquito bites.

Western equine encephalitis virus (WEEV) is a type of viral encephalitis that is primarily transmitted by mosquitoes. It is caused by the western equine encephalitis virus, which belongs to the family Togaviridae and the genus Alphavirus.

WEEV is most commonly found in North America, particularly in the western and central regions of the United States and Canada. The virus is maintained in a natural cycle between mosquitoes and birds, but it can also infect horses and humans.

In humans, WEEV infection can cause mild flu-like symptoms or more severe neurological manifestations such as encephalitis, meningitis, and seizures. The virus is transmitted to humans through the bite of infected mosquitoes, particularly Culex tarsalis.

The incubation period for WEEV is typically 4-10 days, after which symptoms may appear suddenly or gradually. Mild cases of WEEV may be asymptomatic or may cause fever, headache, muscle aches, and fatigue. Severe cases may involve neck stiffness, disorientation, seizures, coma, and permanent neurological damage.

There is no specific treatment for WEEV, and management is primarily supportive. Prevention measures include the use of insect repellent, wearing long sleeves and pants, and avoiding outdoor activities during peak mosquito hours. Public health authorities may also implement mosquito control measures to reduce the risk of transmission.

Viral encephalitis is a medical condition characterized by inflammation of the brain caused by a viral infection. The infection can be caused by various types of viruses, such as herpes simplex virus, enteroviruses, arboviruses (transmitted through insect bites), or HIV.

The symptoms of viral encephalitis may include fever, headache, stiff neck, confusion, seizures, and altered level of consciousness. In severe cases, it can lead to brain damage, coma, or even death. The diagnosis is usually made based on clinical presentation, laboratory tests, and imaging studies such as MRI or CT scan. Treatment typically involves antiviral medications, supportive care, and management of complications.

St. Louis Encephalitis (SLE) is a type of viral brain inflammation caused by the St. Louis Encephalitis virus. It is transmitted to humans through the bite of infected mosquitoes, primarily Culex species. The virus breeds in warm, stagnant water and is more prevalent in rural and suburban areas.

Most people infected with SLE virus do not develop symptoms or only experience mild flu-like illness. However, some individuals, particularly the elderly, can develop severe illness characterized by sudden onset of fever, headache, neck stiffness, disorientation, coma, seizures, and spastic paralysis. There is no specific treatment for SLE, and management is focused on supportive care, including hydration, respiratory support, and prevention of secondary infections. Vaccination against SLE is not available, and prevention measures include using insect repellent, wearing protective clothing, and eliminating standing water around homes to reduce mosquito breeding sites.

Venezuelan equine encephalomyelitis (VEE) is a viral disease that affects the central nervous system of horses and humans. The medical definition of VEE encephalomyelitis is as follows:

A mosquito-borne viral infection caused by the Venezuelan equine encephalitis virus, which primarily affects equids (horses, donkeys, and mules) but can also infect humans. In horses, VEE is characterized by fever, depression, weakness, ataxia, and often death. In humans, VEE can cause a spectrum of symptoms ranging from mild flu-like illness to severe encephalitis, which may result in permanent neurological damage or death. The virus is endemic in parts of Central and South America, and outbreaks can occur when the virus is amplified in equine populations and then transmitted to humans through mosquito vectors. Prevention measures include vaccination of horses and use of insect repellents to prevent mosquito bites.

Murray Valley Encephalitis Virus (MVEV) is a type of arbovirus (arthropod-borne virus) that is primarily transmitted to humans through the bite of an infected mosquito. The virus is named after the Murray Valley region in Australia where it was first identified.

MVEV is the causative agent of Murray Valley encephalitis, a serious illness that can affect the brain and cause inflammation (encephalitis). The virus is found primarily in Australia, Papua New Guinea, and parts of Southeast Asia.

The transmission cycle of MVEV involves mosquitoes serving as vectors that transmit the virus between birds and mammals, including humans. Infection with MVEV can cause a range of symptoms, from mild fever and headache to severe neurological complications such as seizures, coma, and permanent brain damage. There is no specific treatment for Murray Valley encephalitis, and prevention efforts focus on reducing mosquito populations and avoiding mosquito bites in areas where the virus is known to be present.

Arbovirus encephalitis is a type of encephalitis (inflammation of the brain) caused by a group of viruses that are transmitted through the bite of infected arthropods, such as mosquitoes or ticks. The term "arbovirus" stands for "arthropod-borne virus."

There are many different types of arboviruses that can cause encephalitis, including:

* La Crosse virus
* St. Louis encephalitis virus
* West Nile virus
* Eastern equine encephalitis virus
* Western equine encephalitis virus
* Venezuelan equine encephalitis virus

The symptoms of arbovirus encephalitis can vary, but may include fever, headache, stiff neck, seizures, confusion, and weakness. In severe cases, it can lead to coma or death. Treatment typically involves supportive care to manage symptoms, as there is no specific antiviral treatment for most types of arbovirus encephalitis. Prevention measures include avoiding mosquito and tick bites, using insect repellent, and eliminating standing water where mosquitoes breed.

Tick-borne encephalitis (TBE) is a viral infectious disease that causes inflammation of the brain (encephalitis). It is transmitted to humans through the bite of infected ticks, primarily of the Ixodes species. The TBE virus belongs to the family Flaviviridae and has several subtypes, with different geographical distributions.

The illness typically progresses in two stages:

1. An initial viremic phase, characterized by fever, headache, fatigue, muscle pain, and sometimes rash, which lasts about a week.
2. A second neurological phase, which occurs in approximately 20-30% of infected individuals, can manifest as meningitis (inflammation of the membranes surrounding the brain and spinal cord), encephalitis (inflammation of the brain), or meningoencephalitis (inflammation of both the brain and its membranes). Symptoms may include neck stiffness, severe headache, confusion, disorientation, seizures, and in severe cases, coma and long-term neurological complications.

Preventive measures include avoiding tick-infested areas, using insect repellents, wearing protective clothing, and promptly removing attached ticks. Vaccination is available and recommended for individuals living or traveling to TBE endemic regions. Treatment is primarily supportive, focusing on managing symptoms and addressing complications as they arise. There is no specific antiviral treatment for TBE.

Equine encephalomyelitis is a viral disease that affects the central nervous system (CNS) of horses and other equids such as donkeys and mules. The term "encephalomyelitis" refers to inflammation of both the brain (encephalitis) and spinal cord (myelitis). There are three main types of equine encephalomyelitis found in North America, each caused by a different virus: Eastern equine encephalomyelitis (EEE), Western equine encephalomyelitis (WEE), and Venezuelan equine encephalomyelitis (VEE).

EEE is the most severe form of the disease. It is transmitted to horses through the bite of infected mosquitoes, primarily Culiseta melanura and Coquillettidia perturbans. The virus multiplies in the horse's bloodstream and then spreads to the brain and spinal cord, causing inflammation and damage to nerve cells. Clinical signs of EEE include high fever, depression, loss of appetite, weakness, unsteady gait, muscle twitching, paralysis, and potentially death within 2-3 days after the onset of symptoms. The mortality rate for horses with EEE is approximately 75-90%.

WEE is less severe than EEE but can still cause significant illness in horses. It is also transmitted to horses through mosquito bites, primarily Culex tarsalis. Clinical signs of WEE include fever, depression, loss of appetite, muscle twitching, weakness, and unsteady gait. The mortality rate for horses with WEE is around 20-50%.

VEE is the least severe form of equine encephalomyelitis in horses, but it can still cause significant illness. It is primarily transmitted to horses through mosquito bites, mainly Culex (Melanoconion) spp., and also by direct contact with infected animals or their secretions. Clinical signs of VEE include fever, depression, loss of appetite, muscle twitching, weakness, and unsteady gait. The mortality rate for horses with VEE is around 5-20%.

Prevention measures for equine encephalomyelitis include vaccination, mosquito control, and avoiding exposure to infected animals or their secretions. There are vaccines available for EEE and WEE, which can provide protection against these diseases in horses. Mosquito control measures such as removing standing water, using insect repellents, and installing screens on windows and doors can help reduce the risk of mosquito-borne illnesses. Additionally, avoiding contact with infected animals or their secretions can help prevent the spread of VEE.

Japanese Encephalitis (JE) vaccines are immunobiological preparations used for active immunization against Japanese Encephalitis, a viral infection transmitted through the bite of infected mosquitoes. The vaccines contain inactivated or live attenuated strains of the JE virus. They work by stimulating the immune system to produce antibodies and T-cells that provide protection against the virus. There are several types of JE vaccines available, including inactivated Vero cell-derived vaccine, live attenuated SA14-14-2 vaccine, and inactivated mouse brain-derived vaccine. These vaccines have been shown to be effective in preventing JE and are recommended for use in individuals traveling to or living in areas where the disease is endemic.

Flavivirus is a genus of viruses in the family Flaviviridae. They are enveloped, single-stranded, positive-sense RNA viruses that are primarily transmitted by arthropod vectors such as mosquitoes and ticks. Many flaviviruses cause significant disease in humans, including dengue fever, yellow fever, Japanese encephalitis, West Nile fever, and Zika fever. The name "flavivirus" is derived from the Latin word for "yellow," referring to the yellow fever virus, which was one of the first members of this genus to be discovered.

Japanese Encephalitis Viruses (JEV) are part of the Flaviviridae family and belong to the genus Flavivirus. JEV is the leading cause of viral encephalitis in Asia, resulting in significant morbidity and mortality. The virus is primarily transmitted through the bite of infected Culex mosquitoes, particularly Culex tritaeniorhynchus and Culex vishnui complex.

JEV has a complex transmission cycle involving mosquito vectors, amplifying hosts (primarily pigs and wading birds), and dead-end hosts (humans). The virus is maintained in nature through a enzootic cycle between mosquitoes and amplifying hosts. Humans become infected when bitten by an infective mosquito, but they do not contribute to the transmission cycle.

The incubation period for JEV infection ranges from 5 to 15 days. Most infections are asymptomatic or result in mild symptoms such as fever, headache, and malaise. However, a small percentage of infected individuals develop severe neurological manifestations, including encephalitis, meningitis, and acute flaccid paralysis. The case fatality rate for JEV-induced encephalitis is approximately 20-30%, with up to half of the survivors experiencing long-term neurological sequelae.

There are no specific antiviral treatments available for Japanese encephalitis, and management primarily focuses on supportive care. Prevention strategies include vaccination, personal protective measures against mosquito bites, and vector control programs. JEV vaccines are available and recommended for travelers to endemic areas and for residents living in regions where the virus is circulating.

Limbic encephalitis is a rare type of inflammatory autoimmune disorder that affects the limbic system, which is a part of the brain involved in emotions, behavior, memory, and sense of smell. It is characterized by inflammation of the limbic system, leading to symptoms such as memory loss, confusion, seizures, changes in behavior and mood, and problems with autonomic functions.

Limbic encephalitis can be caused by a variety of factors, including viral infections, cancer, or autoimmune disorders. In some cases, the cause may remain unknown. Diagnosis typically involves a combination of clinical evaluation, imaging studies (such as MRI), and analysis of cerebrospinal fluid. Treatment usually involves immunosuppressive therapy to reduce inflammation, as well as addressing any underlying causes if they can be identified.

It is important to note that limbic encephalitis is a serious condition that requires prompt medical attention and treatment. If you or someone else experiences symptoms such as sudden confusion, memory loss, or seizures, it is essential to seek medical care immediately.

Herpes simplex encephalitis (HSE) is a severe and potentially life-thingening inflammation of the brain caused by the herpes simplex virus (HSV), most commonly HSV-1. It is a rare but serious condition that can cause significant neurological damage if left untreated.

The infection typically begins in the temporal or frontal lobes of the brain and can spread to other areas, causing symptoms such as headache, fever, seizures, confusion, memory loss, and personality changes. In severe cases, it can lead to coma or death.

Diagnosis of HSE is often made through a combination of clinical presentation, imaging studies (such as MRI), and laboratory tests, including polymerase chain reaction (PCR) analysis of cerebrospinal fluid (CSF) to detect the presence of the virus.

Treatment typically involves antiviral medications, such as acyclovir, which can help reduce the severity of the infection and prevent further neurological damage. In some cases, corticosteroids may also be used to reduce inflammation in the brain. Prompt treatment is critical for improving outcomes and reducing the risk of long-term neurological complications.

'Culicidae' is the biological family that includes all species of mosquitoes. It consists of three subfamilies: Anophelinae, Culicinae, and Toxorhynchitinae. Mosquitoes are small, midge-like flies that are known for their ability to transmit various diseases to humans and other animals, such as malaria, yellow fever, dengue fever, and Zika virus. The medical importance of Culicidae comes from the fact that only female mosquitoes require blood meals to lay eggs, and during this process, they can transmit pathogens between hosts.

West Nile Virus (WNV) is an Flavivirus, which is a type of virus that is spread by mosquitoes. It was first discovered in the West Nile district of Uganda in 1937 and has since been found in many countries throughout the world. WNV can cause a mild to severe illness known as West Nile fever.

Most people who become infected with WNV do not develop any symptoms, but some may experience fever, headache, body aches, joint pain, vomiting, diarrhea, or a rash. In rare cases, the virus can cause serious neurological illnesses such as encephalitis (inflammation of the brain) or meningitis (inflammation of the membranes surrounding the brain and spinal cord). These severe forms of the disease can be fatal, especially in older adults and people with weakened immune systems.

WNV is primarily transmitted to humans through the bite of infected mosquitoes, but it can also be spread through blood transfusions, organ transplants, or from mother to baby during pregnancy, delivery, or breastfeeding. There is no specific treatment for WNV, and most people recover on their own with rest and supportive care. However, hospitalization may be necessary in severe cases. Prevention measures include avoiding mosquito bites by using insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito activity hours.

Eastern equine encephalomyelitis (EEE) is a rare but serious viral disease that causes inflammation of the brain and spinal cord. It is caused by the Eastern equine encephalitis virus (EEEV), which is transmitted to humans through the bite of an infected mosquito.

EEE is most commonly found in the eastern and Gulf Coast states of the United States, as well as parts of Canada, Central and South America, and the Caribbean. The disease is more common in the summer and early fall months when mosquitoes are most active.

Symptoms of EEE can include sudden onset of fever, headache, stiff neck, disorientation, seizures, and coma. In severe cases, EEE can lead to permanent neurological damage or death. There is no specific treatment for EEE, and care is primarily supportive. Prevention measures include avoiding mosquito bites and using insect repellent.

EEE is a serious disease that requires prompt medical attention. If you experience symptoms of EEE or have been exposed to mosquitoes in an area where the virus is known to be present, it is important to seek medical care immediately.

Flavivirus infections refer to a group of diseases caused by various viruses belonging to the Flaviviridae family, specifically within the genus Flavivirus. These viruses are primarily transmitted to humans through the bites of infected arthropods, such as mosquitoes and ticks.

Some well-known flavivirus infections include:

1. Dengue Fever: A mosquito-borne viral infection that is prevalent in tropical and subtropical regions worldwide. It can cause a wide range of symptoms, from mild flu-like illness to severe complications like dengue hemorrhagic fever and dengue shock syndrome.
2. Yellow Fever: A viral hemorrhagic disease transmitted by the Aedes and Haemagogus mosquitoes, primarily in Africa and South America. It can cause severe illness, including jaundice, bleeding, organ failure, and death.
3. Japanese Encephalitis: A mosquito-borne viral infection that is endemic to Southeast Asia and the Western Pacific. While most infections are asymptomatic or mild, a small percentage of cases can lead to severe neurological complications, such as encephalitis (inflammation of the brain) and meningitis (inflammation of the membranes surrounding the brain and spinal cord).
4. Zika Virus Infection: A mosquito-borne viral disease that has spread to many regions of the world, particularly in tropical and subtropical areas. Most Zika virus infections are mild or asymptomatic; however, infection during pregnancy can cause severe birth defects, such as microcephaly (abnormally small head size) and other neurological abnormalities in the developing fetus.
5. West Nile Virus Infection: A mosquito-borne viral disease that is endemic to North America, Europe, Africa, Asia, and Australia. Most infections are mild or asymptomatic; however, a small percentage of cases can lead to severe neurological complications, such as encephalitis, meningitis, and acute flaccid paralysis (sudden weakness in the arms and legs).

Prevention measures for these diseases typically involve avoiding mosquito bites through the use of insect repellent, wearing long sleeves and pants, staying indoors during peak mosquito hours, and removing standing water from around homes and businesses. Additionally, vaccines are available for some of these diseases, such as Japanese encephalitis and yellow fever, and should be considered for individuals traveling to areas where these diseases are common.

I apologize, but there is no medical definition for "Arthritis-Encephalitis Virus, Caprine." The term "Caprine" refers to something related to or derived from goats. Arthritis-Encephalitis Viruses (AEV) are a group of viruses that can affect various animal species and cause joint inflammation (arthritis) and brain inflammation (encephalitis). However, I couldn't find any specific virus named "Arthritis-Encephalitis Virus, Caprine" in the medical literature.

There are several viruses that can affect goats and cause arthritis and encephalitis, such as CAEV (Caprine Arthritis-Encephalitis Virus) or PPRV (Peste des Petits Ruminants Virus). If you have any specific concerns about a particular virus affecting goats, please provide more context so I can give you a more accurate and helpful response.

'Culex' is a genus of mosquitoes that includes many species that are vectors for various diseases, such as West Nile virus, filariasis, and avian malaria. They are often referred to as "house mosquitoes" because they are commonly found in urban environments. These mosquitoes typically lay their eggs in standing water and have a cosmopolitan distribution, being found on all continents except Antarctica. The life cycle of Culex mosquitoes includes four stages: egg, larva, pupa, and adult. Both male and female adults feed on nectar, but only females require blood meals to lay eggs.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

I understand you are asking for a medical definition of "Horse Diseases." However, it's important to note that there isn't a specific medical field dedicated to horse diseases as we typically categorize medical fields by human diseases and conditions. Veterinary medicine is the field responsible for studying, diagnosing, and treating diseases in animals, including horses.

Here's a general definition of 'Horse Diseases':

Horse diseases are health issues or medical conditions that affect equine species, particularly horses. These diseases can be caused by various factors such as bacterial, viral, fungal, or parasitic infections; genetic predispositions; environmental factors; and metabolic disorders. Examples of horse diseases include Strangles (Streptococcus equi), Equine Influenza, Equine Herpesvirus, West Nile Virus, Rabies, Potomac Horse Fever, Lyme Disease, and internal or external parasites like worms and ticks. Additionally, horses can suffer from musculoskeletal disorders such as arthritis, laminitis, and various injuries. Regular veterinary care, preventative measures, and proper management are crucial for maintaining horse health and preventing diseases.

Virus cultivation, also known as virus isolation or viral culture, is a laboratory method used to propagate and detect viruses by introducing them to host cells and allowing them to replicate. This process helps in identifying the specific virus causing an infection and studying its characteristics, such as morphology, growth pattern, and sensitivity to antiviral agents.

The steps involved in virus cultivation typically include:

1. Collection of a clinical sample (e.g., throat swab, blood, sputum) from the patient.
2. Preparation of the sample by centrifugation or filtration to remove cellular debris and other contaminants.
3. Inoculation of the prepared sample into susceptible host cells, which can be primary cell cultures, continuous cell lines, or embryonated eggs, depending on the type of virus.
4. Incubation of the inoculated cells under appropriate conditions to allow viral replication.
5. Observation for cytopathic effects (CPE), which are changes in the host cells caused by viral replication, such as cell rounding, shrinkage, or lysis.
6. Confirmation of viral presence through additional tests, like immunofluorescence assays, polymerase chain reaction (PCR), or electron microscopy.

Virus cultivation is a valuable tool in diagnostic virology, vaccine development, and research on viral pathogenesis and host-virus interactions. However, it requires specialized equipment, trained personnel, and biosafety measures due to the potential infectivity of the viruses being cultured.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

Sindbis virus is an alphavirus that belongs to the Togaviridae family. It's named after the location where it was first isolated, in Sindbis, Egypt, in 1952. This virus is primarily transmitted by mosquitoes and can infect a wide range of animals, including birds and humans. In humans, Sindbis virus infection often causes a mild flu-like illness characterized by fever, rash, and joint pain. However, some people may develop more severe symptoms, such as neurological disorders, although this is relatively rare. There is no specific treatment for Sindbis virus infection, and management typically involves supportive care to alleviate symptoms.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

Alphaviruses are a genus of single-stranded, positive-sense RNA viruses that belong to the family Togaviridae. They are enveloped viruses and have a icosahedral symmetry with a diameter of approximately 70 nanometers. Alphaviruses are transmitted to vertebrates by mosquitoes and other arthropods, and can cause a range of diseases in humans and animals, including arthritis, encephalitis, and rash.

Some examples of alphaviruses that can infect humans include Chikungunya virus, Eastern equine encephalitis virus, Western equine encephalitis virus, Sindbis virus, and Venezuelan equine encephalitis virus. These viruses are usually found in tropical and subtropical regions around the world, and can cause outbreaks of disease in humans and animals.

Alphaviruses have a wide host range, including mammals, birds, reptiles, and insects. They replicate in the cytoplasm of infected cells and have a genome that encodes four non-structural proteins (nsP1 to nsP4) involved in viral replication, and five structural proteins (C, E3, E2, 6K, and E1) that form the virion.

Prevention and control of alphavirus infections rely on avoiding mosquito bites, using insect repellents, wearing protective clothing, and reducing mosquito breeding sites. There are no specific antiviral treatments available for alphavirus infections, but supportive care can help manage symptoms. Vaccines are available for some alphaviruses, such as Eastern equine encephalitis virus and Western equine encephalitis virus, but not for others, such as Chikungunya virus.

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

West Nile Fever is defined as a viral infection primarily transmitted to humans through the bite of infected mosquitoes. The virus responsible for this febrile illness, known as West Nile Virus (WNV), is maintained in nature between mosquito vectors and avian hosts. Although most individuals infected with WNV are asymptomatic, some may develop a mild, flu-like illness characterized by fever, headache, fatigue, body aches, skin rash, and swollen lymph glands. A minority of infected individuals, particularly the elderly and immunocompromised, may progress to severe neurological symptoms such as encephalitis (inflammation of the brain), meningitis (inflammation of the membranes surrounding the brain and spinal cord), or acute flaccid paralysis (sudden weakness in the limbs). The diagnosis is confirmed through laboratory tests, such as serological assays or nucleic acid amplification techniques. Treatment primarily focuses on supportive care, as there are no specific antiviral therapies available for West Nile Fever. Preventive measures include personal protection against mosquito bites and vector control strategies to reduce mosquito populations.

RNA viruses are a type of virus that contain ribonucleic acid (RNA) as their genetic material, as opposed to deoxyribonucleic acid (DNA). RNA viruses replicate by using an enzyme called RNA-dependent RNA polymerase to transcribe and replicate their RNA genome.

There are several different groups of RNA viruses, including:

1. Negative-sense single-stranded RNA viruses: These viruses have a genome that is complementary to the mRNA and must undergo transcription to produce mRNA before translation can occur. Examples include influenza virus, measles virus, and rabies virus.
2. Positive-sense single-stranded RNA viruses: These viruses have a genome that can serve as mRNA and can be directly translated into protein after entry into the host cell. Examples include poliovirus, rhinoviruses, and coronaviruses.
3. Double-stranded RNA viruses: These viruses have a genome consisting of double-stranded RNA and use a complex replication strategy involving both transcription and reverse transcription. Examples include rotaviruses and reoviruses.

RNA viruses are known to cause a wide range of human diseases, ranging from the common cold to more severe illnesses such as hepatitis C, polio, and COVID-19. Due to their high mutation rates and ability to adapt quickly to new environments, RNA viruses can be difficult to control and treat with antiviral drugs or vaccines.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

A viral plaque assay is a laboratory technique used to measure the infectivity and concentration of viruses in a sample. This method involves infecting a monolayer of cells (usually in a petri dish or multi-well plate) with a known volume of a virus-containing sample, followed by overlaying the cells with a nutrient-agar medium to restrict viral spread and enable individual plaques to form.

After an incubation period that allows for viral replication and cell death, the cells are stained, and clear areas or "plaques" become visible in the monolayer. Each plaque represents a localized region of infected and lysed cells, caused by the progeny of a single infectious virus particle. The number of plaques is then counted, and the viral titer (infectious units per milliliter or PFU/mL) is calculated based on the dilution factor and volume of the original inoculum.

Viral plaque assays are essential for determining viral titers, assessing virus-host interactions, evaluating antiviral agents, and studying viral pathogenesis.

Vaccinia virus is a large, complex DNA virus that belongs to the Poxviridae family. It is the virus used in the production of the smallpox vaccine. The vaccinia virus is not identical to the variola virus, which causes smallpox, but it is closely related and provides cross-protection against smallpox infection.

The vaccinia virus has a unique replication cycle that occurs entirely in the cytoplasm of infected cells, rather than in the nucleus like many other DNA viruses. This allows the virus to evade host cell defenses and efficiently produce new virions. The virus causes the formation of pocks or lesions on the skin, which contain large numbers of virus particles that can be transmitted to others through close contact.

Vaccinia virus has also been used as a vector for the delivery of genes encoding therapeutic proteins, vaccines against other infectious diseases, and cancer therapies. However, the use of vaccinia virus as a vector is limited by its potential to cause adverse reactions in some individuals, particularly those with weakened immune systems or certain skin conditions.

I'm sorry for any confusion, but "horses" is not a medical term. It is the common name given to the species *Equus ferus caballus*, which are large domesticated mammals used for transportation, work, and recreation. If you have any questions about horses or a related topic that you would like a medical perspective on, please let me know and I'd be happy to help!

Arboviruses are a group of viruses that are primarily transmitted to humans and animals through the bites of infected arthropods, such as mosquitoes, ticks, and sandflies. The term "arbovirus" is short for "arthropod-borne virus."

Arboviruses can cause a wide range of symptoms, depending on the specific virus and the individual host's immune response. Some common symptoms associated with arboviral infections include fever, headache, muscle and joint pain, rash, and fatigue. In severe cases, arboviral infections can lead to serious complications such as encephalitis (inflammation of the brain), meningitis (inflammation of the membranes surrounding the brain and spinal cord), or hemorrhagic fever (bleeding disorders).

There are hundreds of different arboviruses, and they are found in many parts of the world. Some of the most well-known arboviral diseases include dengue fever, chikungunya, Zika virus infection, West Nile virus infection, yellow fever, and Japanese encephalitis.

Prevention of arboviral infections typically involves avoiding mosquito bites and other arthropod vectors through the use of insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito feeding times. Public health efforts also focus on reducing vector populations through environmental management and the use of larvicides. Vaccines are available for some arboviral diseases, such as yellow fever and Japanese encephalitis.

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. Viral antigens are antigens that are found on or produced by viruses. They can be proteins, glycoproteins, or carbohydrates present on the surface or inside the viral particle.

Viral antigens play a crucial role in the immune system's recognition and response to viral infections. When a virus infects a host cell, it may display its antigens on the surface of the infected cell. This allows the immune system to recognize and target the infected cells for destruction, thereby limiting the spread of the virus.

Viral antigens are also important targets for vaccines. Vaccines typically work by introducing a harmless form of a viral antigen to the body, which then stimulates the production of antibodies and memory T-cells that can recognize and respond quickly and effectively to future infections with the actual virus.

It's worth noting that different types of viruses have different antigens, and these antigens can vary between strains of the same virus. This is why there are often different vaccines available for different viral diseases, and why flu vaccines need to be updated every year to account for changes in the circulating influenza virus strains.

There is no medical definition or specific virus named "Encephalitis Virus, California." However, there are several viruses that can cause encephalitis (inflammation of the brain) and some of them have been identified in California. Some examples include:

1. West Nile Virus: A mosquito-borne virus that is the most common cause of encephalitis in the United States, including California.
2. St. Louis Encephalitis Virus: Another mosquito-borne virus that is less common but can cause encephalitis, particularly in older adults. It has been identified in California.
3. Californian serogroup viruses (La Crosse, Jamestown Canyon, Snowshoe Hare): These are transmitted through the bite of infected mosquitoes and have been known to cause encephalitis, particularly in children. They are named after California because they were first identified there.
4. Tick-borne encephalitis viruses: There are several tick-borne viruses that can cause encephalitis, including Powassan virus and deer tick virus. These have been reported in California but are rare.

It's important to note that any virus that causes an infection in the body has the potential to spread to the brain and cause encephalitis, so there are many other viruses that could potentially be associated with encephalitis in California or any other location.

"California encephalitis" is not a medical term used to describe a specific type of encephalitis. Instead, it refers to a group of related viral infections that are common in California and other western states. These viruses are transmitted to humans through the bite of infected mosquitoes.

The most common cause of California encephalitis is the California serogroup of viruses, which includes the La Crosse virus, Jamestown Canyon virus, and Snowshoe Hare virus. These viruses can cause inflammation of the brain (encephalitis) and can lead to symptoms such as fever, headache, vomiting, confusion, seizures, and coma.

California encephalitis is typically a mild illness, but in some cases, it can be severe or even life-threatening. Treatment usually involves supportive care, such as fluids and medication to manage symptoms. There is no specific antiviral treatment for California encephalitis. Prevention measures include avoiding mosquito bites, using insect repellent, and eliminating standing water where mosquitoes breed.

Virus receptors are specific molecules (commonly proteins) on the surface of host cells that viruses bind to in order to enter and infect those cells. This interaction between the virus and its receptor is a critical step in the infection process. Different types of viruses have different receptor requirements, and identifying these receptors can provide important insights into the biology of the virus and potential targets for antiviral therapies.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Virus assembly, also known as virion assembly, is the final stage in the virus life cycle where individual viral components come together to form a complete viral particle or virion. This process typically involves the self-assembly of viral capsid proteins around the viral genome (DNA or RNA) and, in enveloped viruses, the acquisition of a lipid bilayer membrane containing viral glycoproteins. The specific mechanisms and regulation of virus assembly vary among different viral families, but it is often directed by interactions between viral structural proteins and genomic nucleic acid.

Anti-N-Methyl-D-Aspartate (NMDA) receptor encephalitis is a type of autoimmune encephalitis, which is a inflammation of the brain. It occurs when the body's immune system produces antibodies against NMDA receptors, which are proteins found on the surface of certain brain cells (neurons). These antibodies can bind to and disrupt the function of the NMDA receptors, leading to a range of neurological symptoms.

The symptoms of anti-NMDA receptor encephalitis typically develop over several weeks or months and can include:

* Behavioral changes, such as anxiety, agitation, or paranoia
* Memory loss
* Seizures
* Movement disorders, such as involuntary jerking or twitching of muscles
* Speech difficulties
* Loss of consciousness
* Autonomic instability (problems regulating heart rate, blood pressure, breathing and temperature)

The diagnosis is confirmed by detecting the anti-NMDA receptor antibodies in the cerebrospinal fluid (CSF) or serum. Treatment typically involves a combination of immunotherapy (such as corticosteroids, intravenous immunoglobulin, and plasma exchange) and tumor removal if a tumor is present.

It's important to note that this disorder can affect both children and adults, and it can be associated with ovarian teratoma in women of childbearing age.

Hemagglutination inhibition (HI) tests are a type of serological assay used in medical laboratories to detect and measure the amount of antibodies present in a patient's serum. These tests are commonly used to diagnose viral infections, such as influenza or HIV, by identifying the presence of antibodies that bind to specific viral antigens and prevent hemagglutination (the agglutination or clumping together of red blood cells).

In an HI test, a small amount of the patient's serum is mixed with a known quantity of the viral antigen, which has been treated to attach to red blood cells. If the patient's serum contains antibodies that bind to the viral antigen, they will prevent the antigen from attaching to the red blood cells and inhibit hemagglutination. The degree of hemagglutination inhibition can be measured and used to estimate the amount of antibody present in the patient's serum.

HI tests are relatively simple and inexpensive to perform, but they have some limitations. For example, they may not detect early-stage infections before the body has had a chance to produce antibodies, and they may not be able to distinguish between different strains of the same virus. Nonetheless, HI tests remain an important tool for diagnosing viral infections and monitoring immune responses to vaccination or infection.

Viral nonstructural proteins (NS) are viral proteins that are not part of the virion structure. They play various roles in the viral life cycle, such as replication of the viral genome, transcription, translation regulation, and modulation of the host cell environment to favor virus replication. These proteins are often produced in large quantities during infection and can manipulate or disrupt various cellular pathways to benefit the virus. They may also be involved in evasion of the host's immune response. The specific functions of viral nonstructural proteins vary depending on the type of virus.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

Western equine encephalomyelitis (WEE) is a viral disease that affects the central nervous system of horses and, less commonly, humans. The medical definition of WEE is as follows:

Western equine encephalomyelitis is an inflammation of the brain and spinal cord (encephalomyelitis) caused by the Western equine encephalitis virus (WEEV), a member of the family Togaviridae, genus Alphavirus. The virus is primarily transmitted to horses and other animals through the bite of infected mosquitoes, most commonly Culex tarsalis.

Horses are the primary amplifying host for WEEV, meaning that they can develop high levels of the virus in their bloodstream, which makes them attractive targets for mosquitoes. Humans and other animals can become incidentally infected when bitten by an infectious mosquito.

In humans, WEE is often asymptomatic or may cause mild flu-like symptoms such as fever, headache, and muscle aches. However, in severe cases, the virus can invade the central nervous system, causing encephalitis (inflammation of the brain) or meningitis (inflammation of the membranes surrounding the brain and spinal cord). These neurological manifestations can lead to symptoms such as seizures, coma, and permanent neurological damage or death.

There is no specific treatment for WEE, and management primarily focuses on supportive care, such as addressing fever, dehydration, and other complications. Prevention measures include avoiding mosquito bites through the use of insect repellent, wearing protective clothing, and reducing mosquito breeding sites around homes and communities. Vaccines are available for horses to protect them from WEEV infection, but no human vaccine is currently available.

Insect vectors are insects that transmit disease-causing pathogens (such as viruses, bacteria, parasites) from one host to another. They do this while feeding on the host's blood or tissues. The insects themselves are not infected by the pathogen but act as mechanical carriers that pass it on during their bite. Examples of diseases spread by insect vectors include malaria (transmitted by mosquitoes), Lyme disease (transmitted by ticks), and plague (transmitted by fleas). Proper prevention measures, such as using insect repellent and reducing standing water where mosquitoes breed, can help reduce the risk of contracting these diseases.

Viral diseases are illnesses caused by the infection and replication of viruses in host organisms. These infectious agents are obligate parasites, meaning they rely on the cells of other living organisms to survive and reproduce. Viruses can infect various types of hosts, including animals, plants, and microorganisms, causing a wide range of diseases with varying symptoms and severity.

Once a virus enters a host cell, it takes over the cell's machinery to produce new viral particles, often leading to cell damage or death. The immune system recognizes the viral components as foreign and mounts an immune response to eliminate the infection. This response can result in inflammation, fever, and other symptoms associated with viral diseases.

Examples of well-known viral diseases include:

1. Influenza (flu) - caused by influenza A, B, or C viruses
2. Common cold - usually caused by rhinoviruses or coronaviruses
3. HIV/AIDS - caused by human immunodeficiency virus (HIV)
4. Measles - caused by measles morbillivirus
5. Hepatitis B and C - caused by hepatitis B virus (HBV) and hepatitis C virus (HCV), respectively
6. Herpes simplex - caused by herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2)
7. Chickenpox and shingles - both caused by varicella-zoster virus (VZV)
8. Rabies - caused by rabies lyssavirus
9. Ebola - caused by ebolaviruses
10. COVID-19 - caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Prevention and treatment strategies for viral diseases may include vaccination, antiviral medications, and supportive care to manage symptoms while the immune system fights off the infection.

Defective viruses are viruses that have lost the ability to complete a full replication cycle and produce progeny virions independently. These viruses require the assistance of a helper virus, which provides the necessary functions for replication. Defective viruses can arise due to mutations, deletions, or other genetic changes that result in the loss of essential genes. They are often non-infectious and cannot cause disease on their own, but they may interfere with the replication of the helper virus and modulate the course of infection. Defective viruses can be found in various types of viruses, including retroviruses, bacteriophages, and DNA viruses.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Attenuated vaccines consist of live microorganisms that have been weakened (attenuated) through various laboratory processes so they do not cause disease in the majority of recipients but still stimulate an immune response. The purpose of attenuation is to reduce the virulence or replication capacity of the pathogen while keeping it alive, allowing it to retain its antigenic properties and induce a strong and protective immune response.

Examples of attenuated vaccines include:

1. Sabin oral poliovirus vaccine (OPV): This vaccine uses live but weakened polioviruses to protect against all three strains of the disease-causing poliovirus. The weakened viruses replicate in the intestine and induce an immune response, which provides both humoral (antibody) and cell-mediated immunity.
2. Measles, mumps, and rubella (MMR) vaccine: This combination vaccine contains live attenuated measles, mumps, and rubella viruses. It is given to protect against these three diseases and prevent their spread in the population.
3. Varicella (chickenpox) vaccine: This vaccine uses a weakened form of the varicella-zoster virus, which causes chickenpox. By introducing this attenuated virus into the body, it stimulates an immune response that protects against future infection with the wild-type virus.
4. Yellow fever vaccine: This live attenuated vaccine is used to prevent yellow fever, a viral disease transmitted by mosquitoes in tropical and subtropical regions of Africa and South America. The vaccine contains a weakened form of the yellow fever virus that cannot cause the disease but still induces an immune response.
5. Bacillus Calmette-Guérin (BCG) vaccine: This live attenuated vaccine is used to protect against tuberculosis (TB). It contains a weakened strain of Mycobacterium bovis, which does not cause TB in humans but stimulates an immune response that provides some protection against the disease.

Attenuated vaccines are generally effective at inducing long-lasting immunity and can provide robust protection against targeted diseases. However, they may pose a risk for individuals with weakened immune systems, as the attenuated viruses or bacteria could potentially cause illness in these individuals. Therefore, it is essential to consider an individual's health status before administering live attenuated vaccines.

'Bird diseases' is a broad term that refers to the various medical conditions and infections that can affect avian species. These diseases can be caused by bacteria, viruses, fungi, parasites, or toxic substances and can affect pet birds, wild birds, and poultry. Some common bird diseases include:

1. Avian influenza (bird flu) - a viral infection that can cause respiratory symptoms, decreased appetite, and sudden death in birds.
2. Psittacosis (parrot fever) - a bacterial infection that can cause respiratory symptoms, fever, and lethargy in birds and humans who come into contact with them.
3. Aspergillosis - a fungal infection that can cause respiratory symptoms and weight loss in birds.
4. Candidiasis (thrush) - a fungal infection that can affect the mouth, crop, and other parts of the digestive system in birds.
5. Newcastle disease - a viral infection that can cause respiratory symptoms, neurological signs, and decreased egg production in birds.
6. Salmonellosis - a bacterial infection that can cause diarrhea, lethargy, and decreased appetite in birds and humans who come into contact with them.
7. Trichomoniasis - a parasitic infection that can affect the mouth, crop, and digestive system in birds.
8. Chlamydiosis (psittacosis) - a bacterial infection that can cause respiratory symptoms, lethargy, and decreased appetite in birds and humans who come into contact with them.
9. Coccidiosis - a parasitic infection that can affect the digestive system in birds.
10. Mycobacteriosis (avian tuberculosis) - a bacterial infection that can cause chronic weight loss, respiratory symptoms, and skin lesions in birds.

It is important to note that some bird diseases can be transmitted to humans and other animals, so it is essential to practice good hygiene when handling birds or their droppings. If you suspect your bird may be sick, it is best to consult with a veterinarian who specializes in avian medicine.

I'm sorry for any confusion, but "goats" is not a term commonly used in medical definitions. It is a common noun referring to the domesticated animal species Capra aegagrus hircus. If you have any questions about a specific medical condition or term, please provide that and I would be happy to help.

Virus shedding refers to the release of virus particles by an infected individual, who can then transmit the virus to others through various means such as respiratory droplets, fecal matter, or bodily fluids. This occurs when the virus replicates inside the host's cells and is released into the surrounding environment, where it can infect other individuals. The duration of virus shedding varies depending on the specific virus and the individual's immune response. It's important to note that some individuals may shed viruses even before they show symptoms, making infection control measures such as hand hygiene, mask-wearing, and social distancing crucial in preventing the spread of infectious diseases.

Arbovirus infections are a group of diseases caused by viruses that are transmitted to humans through the bites of infected arthropods, such as mosquitoes, ticks, and midges. "Arbo" is short for "arthropod-borne."

There are over 150 different Arboviruses, but only a few cause significant illness in humans. Some of the most common Arbovirus infections include:

* Dengue fever
* Chikungunya fever
* Yellow fever
* Zika virus infection
* Japanese encephalitis
* West Nile fever
* Tick-borne encephalitis

The symptoms of Arbovirus infections can vary widely, depending on the specific virus and the individual infected. Some people may experience only mild illness or no symptoms at all, while others may develop severe, life-threatening complications.

Common symptoms of Arbovirus infections include fever, headache, muscle and joint pain, rash, and fatigue. In more severe cases, Arbovirus infections can cause neurological problems such as meningitis (inflammation of the membranes surrounding the brain and spinal cord) or encephalitis (inflammation of the brain).

There is no specific treatment for most Arbovirus infections. Treatment is generally supportive, with fluids and medications to relieve symptoms. In severe cases, hospitalization may be necessary to manage complications such as dehydration or neurological problems.

Prevention of Arbovirus infections involves avoiding mosquito and tick bites, using insect repellent, wearing protective clothing, and eliminating breeding sites for mosquitoes and ticks. Vaccines are available to prevent some Arbovirus infections, such as yellow fever and Japanese encephalitis.

Lentivirus infections refer to the infectious disease caused by lentiviruses, a genus of retroviruses. These viruses are characterized by their ability to cause persistent and long-term infections, often leading to chronic diseases. They primarily target cells of the immune system, such as T-cells and macrophages, and can cause significant immunosuppression.

Lentiviruses have a slow replication cycle and can remain dormant in the host for extended periods. This makes them particularly effective at evading the host's immune response and can result in progressive damage to infected tissues over time.

One of the most well-known lentiviruses is the human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS). HIV infects and destroys CD4+ T-cells, leading to a weakened immune system and increased susceptibility to opportunistic infections.

Other examples of lentiviruses include simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV). While these viruses primarily infect non-human animals, they are closely related to HIV and serve as important models for studying lentivirus infections and developing potential therapies.

Czechoslovakia was a sovereign state in Central Europe that existed from October 28, 1918, when it declared its independence from the Austro-Hungarian Empire, until January 1, 1993. On that date, Czechoslovakia underwent a "velvet divorce" into two separate countries, the Czech Republic and Slovakia.

The medical definition of 'Czechoslovakia' is not applicable as it was a country and not a medical term or condition.

Measles virus is a single-stranded, negative-sense RNA virus belonging to the genus Morbillivirus in the family Paramyxoviridae. It is the causative agent of measles, a highly contagious infectious disease characterized by fever, cough, runny nose, and a red, blotchy rash. The virus primarily infects the respiratory tract and then spreads throughout the body via the bloodstream.

The genome of the measles virus is approximately 16 kilobases in length and encodes for eight proteins: nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F), hemagglutinin (H), large protein (L), and two non-structural proteins, V and C. The H protein is responsible for binding to the host cell receptor CD150 (SLAM) and mediating viral entry, while the F protein facilitates fusion of the viral and host cell membranes.

Measles virus is transmitted through respiratory droplets and direct contact with infected individuals. The virus can remain airborne for up to two hours in a closed space, making it highly contagious. Measles is preventable through vaccination, which has led to significant reductions in the incidence of the disease worldwide.

Simian Virus 40 (SV40) is a polyomavirus that is found in both monkeys and humans. It is a DNA virus that has been extensively studied in laboratory settings due to its ability to transform cells and cause tumors in animals. In fact, SV40 was discovered as a contaminant of poliovirus vaccines that were prepared using rhesus monkey kidney cells in the 1950s and 1960s.

SV40 is not typically associated with human disease, but there has been some concern that exposure to the virus through contaminated vaccines or other means could increase the risk of certain types of cancer, such as mesothelioma and brain tumors. However, most studies have failed to find a consistent link between SV40 infection and cancer in humans.

The medical community generally agrees that SV40 is not a significant public health threat, but researchers continue to study the virus to better understand its biology and potential impact on human health.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

A Cytopathic Effect (CPE) is a visible change in the cell or group of cells due to infection by a pathogen, such as a virus. When the cytopathic effect is caused specifically by a viral infection, it is referred to as a "Viral Cytopathic Effect" (VCPE).

The VCPE can include various changes in the cell's morphology, size, and structure, such as rounding, shrinkage, multinucleation, inclusion bodies, and formation of syncytia (multinucleated giant cells). These changes are often used to identify and characterize viruses in laboratory settings.

The VCPE is typically observed under a microscope after the virus has infected cell cultures, and it can help researchers determine the type of virus, the degree of infection, and the effectiveness of antiviral treatments. The severity and timing of the VCPE can vary depending on the specific virus and the type of cells that are infected.

A plant virus is not defined in medical terms, as viruses are typically considered within the context of living organisms and plants are not classified as such. However, I can provide a general virology definition for you:

Plant viruses are small infectious agents that consist of nucleic acid (DNA or RNA) enclosed in a protein coat. They infect various plant species, causing a wide range of symptoms and diseases, which can result in significant economic losses in agriculture and horticulture. Plant viruses lack the ability to replicate outside a host cell, and they rely on the host's metabolic machinery for their reproduction. They can be transmitted through various means, such as insect vectors, seeds, or mechanical contact.

I believe there may be a misunderstanding in your question. "Goat diseases" refers to illnesses that affect goats specifically. It does not mean diseases that are caused by goats or related to them in some way. Here are some examples of goat diseases:

1. Caprine Arthritis Encephalitis (CAE): A viral disease that affects goats, causing arthritis, pneumonia, and sometimes encephalitis.
2. Caseous Lymphadenitis (CL): A bacterial disease that causes abscesses in the lymph nodes of goats.
3. Contagious Caprine Pleuropneumonia (CCPP): A contagious respiratory disease caused by mycoplasma bacteria.
4. Johne's Disease: A chronic wasting disease caused by a type of bacterium called Mycobacterium avium subspecies paratuberculosis.
5. Pasteurellosis: A bacterial disease that can cause pneumonia, septicemia, and other infections in goats.
6. Salmonellosis: A bacterial disease caused by Salmonella bacteria, which can cause diarrhea, fever, and septicemia in goats.
7. Soremouth (Orf): A viral disease that causes sores and scabs around the mouth and nose of goats.

These are just a few examples of diseases that can affect goats. If you have any specific questions about goat health or diseases, I would recommend consulting with a veterinarian who specializes in small ruminants.

Rabies is a viral disease that affects the nervous system of mammals, including humans. It's caused by the rabies virus (RV), which belongs to the family Rhabdoviridae and genus Lyssavirus. The virus has a bullet-shaped appearance under an electron microscope and is encased in a lipid envelope.

The rabies virus primarily spreads through the saliva of infected animals, usually via bites. Once inside the body, it travels along nerve fibers to the brain, where it multiplies rapidly and causes inflammation (encephalitis). The infection can lead to symptoms such as anxiety, confusion, hallucinations, seizures, paralysis, coma, and ultimately death if left untreated.

Rabies is almost always fatal once symptoms appear, but prompt post-exposure prophylaxis (PEP), which includes vaccination and sometimes rabies immunoglobulin, can prevent the disease from developing when administered after an exposure to a potentially rabid animal. Pre-exposure vaccination is also recommended for individuals at high risk of exposure, such as veterinarians and travelers visiting rabies-endemic areas.

Yellow fever virus (YFV) is an single-stranded RNA virus belonging to the Flaviviridae family, genus Flavivirus. It is primarily transmitted to humans through the bite of infected mosquitoes, most commonly Aedes and Haemagogus species. The virus is named for the jaundice that can occur in some patients, giving their skin and eyes a yellowish color.

Yellow fever is endemic in tropical regions of Africa and South America, with outbreaks occurring when large numbers of people are infected. After an incubation period of 3 to 6 days, symptoms typically begin with fever, chills, headache, back pain, and muscle aches. In more severe cases, the infection can progress to cause bleeding, organ failure, and death.

Prevention measures include vaccination, mosquito control, and personal protective measures such as wearing long sleeves and using insect repellent in areas where yellow fever is endemic or outbreaks are occurring.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

DNA viruses are a type of virus that contain DNA (deoxyribonucleic acid) as their genetic material. These viruses replicate by using the host cell's machinery to synthesize new viral components, which are then assembled into new viruses and released from the host cell.

DNA viruses can be further classified based on the structure of their genomes and the way they replicate. For example, double-stranded DNA (dsDNA) viruses have a genome made up of two strands of DNA, while single-stranded DNA (ssDNA) viruses have a genome made up of a single strand of DNA.

Examples of DNA viruses include herpes simplex virus, varicella-zoster virus, human papillomavirus, and adenoviruses. Some DNA viruses are associated with specific diseases, such as cancer (e.g., human papillomavirus) or neurological disorders (e.g., herpes simplex virus).

It's important to note that while DNA viruses contain DNA as their genetic material, RNA viruses contain RNA (ribonucleic acid) as their genetic material. Both DNA and RNA viruses can cause a wide range of diseases in humans, animals, and plants.

Viremia is a medical term that refers to the presence of viruses in the bloodstream. It occurs when a virus successfully infects a host and replicates within the body's cells, releasing new viral particles into the blood. This condition can lead to various clinical manifestations depending on the specific virus involved and the immune response of the infected individual. Some viral infections result in asymptomatic viremia, while others can cause severe illness or even life-threatening conditions. The detection of viremia is crucial for diagnosing certain viral infections and monitoring disease progression or treatment effectiveness.

I'm sorry for any confusion, but "replicon" is not a term that has a widely accepted or specific medical definition. It is a term that is used in the field of molecular biology, where it refers to a segment of DNA that contains an origin of replication. The origin of replication is the site on the DNA molecule where the process of DNA replication is initiated. This concept is important in the fields of genetics and virology, but it is not a term that is commonly used in clinical medicine.

If you have any questions related to the medical field, I would be happy to try to help answer them for you!

"Aedes" is a genus of mosquitoes that are known to transmit various diseases, including Zika virus, dengue fever, chikungunya, and yellow fever. These mosquitoes are typically found in tropical and subtropical regions around the world. They are distinguished by their black and white striped legs and thorax. Aedes aegypti is the most common species associated with disease transmission, although other species such as Aedes albopictus can also transmit diseases. It's important to note that only female mosquitoes bite and feed on blood, while males feed solely on nectar and plant juices.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

Dengue virus (DENV) is a single-stranded, positive-sense RNA virus that belongs to the genus Flavivirus in the family Flaviviridae. It is primarily transmitted to humans through the bites of infected female mosquitoes, mainly Aedes aegypti and Aedes albopictus.

The DENV genome contains approximately 11,000 nucleotides and encodes three structural proteins (capsid, pre-membrane/membrane, and envelope) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). There are four distinct serotypes of DENV (DENV-1, DENV-2, DENV-3, and DENV-4), each of which can cause dengue fever, a mosquito-borne viral disease.

Infection with one serotype provides lifelong immunity against that particular serotype but only temporary and partial protection against the other three serotypes. Subsequent infections with different serotypes can increase the risk of developing severe dengue, such as dengue hemorrhagic fever or dengue shock syndrome, due to antibody-dependent enhancement (ADE) and original antigenic sin phenomena.

DENV is a significant public health concern in tropical and subtropical regions worldwide, with an estimated 390 million annual infections and approximately 100-400 million clinical cases. Preventive measures include vector control strategies to reduce mosquito populations and the development of effective vaccines against all four serotypes.

'Influenza A Virus, H1N1 Subtype' is a specific subtype of the influenza A virus that causes flu in humans and animals. It contains certain proteins called hemagglutinin (H) and neuraminidase (N) on its surface, with this subtype specifically having H1 and N1 antigens. The H1N1 strain is well-known for causing the 2009 swine flu pandemic, which was a global outbreak of flu that resulted in significant morbidity and mortality. This subtype can also cause seasonal flu, although the severity and symptoms may vary. It is important to note that influenza viruses are constantly changing, and new strains or subtypes can emerge over time, requiring regular updates to vaccines to protect against them.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

I am not aware of a medical definition for the term "birds." Birds are a group of warm-blooded vertebrates constituting the class Aves, characterized by feathers, toothless beaked jaws, the laying of hard-shelled eggs, and lightweight but strong skeletons. Some birds, such as pigeons and chickens, have been used in medical research, but the term "birds" itself does not have a specific medical definition.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Dengue is a mosquito-borne viral infection that is primarily transmitted by the Aedes aegypti and Aedes albopictus species of mosquitoes. It is caused by one of four closely related dengue viruses (DENV 1, DENV 2, DENV 3, or DENV 4). The infection can cause a wide range of symptoms, ranging from mild fever and headache to severe flu-like illness, which is often characterized by the sudden onset of high fever, severe headache, muscle and joint pain, nausea, vomiting, and skin rash. In some cases, dengue can progress to more severe forms, such as dengue hemorrhagic fever or dengue shock syndrome, which can be life-threatening if not treated promptly and appropriately.

Dengue is prevalent in many tropical and subtropical regions around the world, particularly in urban and semi-urban areas with poor sanitation and inadequate mosquito control. There is no specific treatment for dengue, and prevention efforts focus on reducing mosquito populations and avoiding mosquito bites. Vaccines are available in some countries to prevent dengue infection, but they are not widely used due to limitations in their effectiveness and safety.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

"Influenza A Virus, H5N1 Subtype" is a specific subtype of the Influenza A virus that is often found in avian species (birds) and can occasionally infect humans. The "H5N1" refers to the specific proteins (hemagglutinin and neuraminidase) found on the surface of the virus. This subtype has caused serious infections in humans, with high mortality rates, especially in cases where people have had close contact with infected birds. It does not commonly spread from person to person, but there is concern that it could mutate and adapt to efficiently transmit between humans, which would potentially cause a pandemic.

RNA helicases are a class of enzymes that are capable of unwinding RNA secondary structures using the energy derived from ATP hydrolysis. They play crucial roles in various cellular processes involving RNA, such as transcription, splicing, translation, ribosome biogenesis, and RNA degradation. RNA helicases can be divided into several superfamilies based on their sequence and structural similarities, with the two largest being superfamily 1 (SF1) and superfamily 2 (SF2). These enzymes typically contain conserved motifs that are involved in ATP binding and hydrolysis, as well as RNA binding. By unwinding RNA structures, RNA helicases facilitate the access of other proteins to their target RNAs, thereby enabling the coordinated regulation of RNA metabolism.

Viral structural proteins are the protein components that make up the viral particle or capsid, providing structure and stability to the virus. These proteins are encoded by the viral genome and are involved in the assembly of new virus particles during the replication cycle. They can be classified into different types based on their location and function, such as capsid proteins, matrix proteins, and envelope proteins. Capsid proteins form the protein shell that encapsulates the viral genome, while matrix proteins are located between the capsid and the envelope, and envelope proteins are embedded in the lipid bilayer membrane that surrounds some viruses.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

"Ochlerotatus" is not a medical term itself, but it is a genus of mosquitoes that includes several species that can transmit diseases to humans and animals. Some of the medically important species in this genus include:

* Ochlerotatus triseriatus (Eastern treehole mosquito), which can transmit La Crosse encephalitis virus.
* Ochlerotatus trivittatus (Blacktailed mosquito), which can transmit West Nile virus and eastern equine encephalitis virus.
* Ochlerotatus japonicus (Asian bush mosquito), which is a potential vector of several arboviruses, including West Nile virus.

It's important to note that not all species in the genus "Ochlerotatus" are vectors of disease and some may not even bite humans or animals.

Hemagglutination is a process where red blood cells (RBCs) agglutinate or clump together. Viral hemagglutination refers to the ability of certain viruses to bind to and agglutinate RBCs. This is often due to viral surface proteins known as hemagglutinins, which can recognize and attach to specific receptors on the surface of RBCs.

In virology, viral hemagglutination assays are commonly used for virus identification and quantification. For example, the influenza virus is known to hemagglutinate chicken RBCs, and this property can be used to identify and titrate the virus in a sample. The hemagglutination titer is the highest dilution of a virus that still causes visible agglutination of RBCs. This information can be useful in understanding the viral load in a patient or during vaccine production.

Virus inactivation is the process of reducing or eliminating the infectivity of a virus, making it no longer capable of replicating and causing infection. This can be achieved through various physical or chemical methods such as heat, radiation, chemicals (like disinfectants), or enzymes that damage the viral genome or disrupt the viral particle's structure.

It is important to note that virus inactivation does not necessarily mean complete destruction of the viral particles; it only implies that they are no longer infectious. The effectiveness of virus inactivation depends on factors such as the type and concentration of the virus, the inactivation method used, and the duration of exposure to the inactivating agent.

Virus inactivation is crucial in various settings, including healthcare, laboratory research, water treatment, food processing, and waste disposal, to prevent the spread of viral infections and ensure safety.

A viral attachment, in the context of virology, refers to the initial step in the infection process of a host cell by a virus. This involves the binding or adsorption of the viral particle to specific receptors on the surface of the host cell. The viral attachment proteins, often located on the viral envelope or capsid, recognize and interact with these receptors, leading to a close association between the virus and the host cell. This interaction is highly specific, as different viruses may target various cell types based on their unique receptor-binding preferences. Following attachment, the virus can enter the host cell and initiate the replication cycle, ultimately leading to the production of new viral particles and potential disease manifestations.

Cerebral toxoplasmosis is a type of toxoplasmosis, which is an infection caused by the Toxoplasma gondii parasite. In cerebral toxoplasmosis, the infection primarily affects the brain, leading to inflammation and the formation of lesions or abscesses in the brain tissue.

This condition is most commonly observed in individuals with weakened immune systems, such as those living with HIV/AIDS, receiving immunosuppressive therapy after organ transplantation, or having other conditions that compromise their immune function. The infection can cause a range of neurological symptoms, including headaches, seizures, confusion, memory loss, poor coordination, and in severe cases, coma or even death. Early diagnosis and treatment with appropriate antiparasitic medications are crucial to manage the infection and prevent complications.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

Viral activation, also known as viral reactivation or virus reactivation, refers to the process in which a latent or dormant virus becomes active and starts to replicate within a host cell. This can occur when the immune system is weakened or compromised, allowing the virus to evade the body's natural defenses and cause disease.

In some cases, viral activation can be triggered by certain environmental factors, such as stress, exposure to UV light, or infection with another virus. Once activated, the virus can cause symptoms similar to those seen during the initial infection, or it may lead to new symptoms depending on the specific virus and the host's immune response.

Examples of viruses that can remain dormant in the body and be reactivated include herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). It is important to note that not all viruses can be reactivated, and some may remain dormant in the body indefinitely without causing any harm.

"Influenza A Virus, H3N2 Subtype" is a specific subtype of the influenza A virus that causes respiratory illness and is known to circulate in humans and animals, including birds and pigs. The "H3N2" refers to the two proteins on the surface of the virus: hemagglutinin (H) and neuraminidase (N). In this subtype, the H protein is of the H3 variety and the N protein is of the N2 variety. This subtype has been responsible for several influenza epidemics and pandemics in humans, including the 1968 Hong Kong flu pandemic. It is one of the influenza viruses that are monitored closely by public health authorities due to its potential to cause significant illness and death, particularly in high-risk populations such as older adults, young children, and people with certain underlying medical conditions.

Hepatitis B virus (HBV) is a DNA virus that belongs to the Hepadnaviridae family and causes the infectious disease known as hepatitis B. This virus primarily targets the liver, where it can lead to inflammation and damage of the liver tissue. The infection can range from acute to chronic, with chronic hepatitis B increasing the risk of developing serious liver complications such as cirrhosis and liver cancer.

The Hepatitis B virus has a complex life cycle, involving both nuclear and cytoplasmic phases. It enters hepatocytes (liver cells) via binding to specific receptors and is taken up by endocytosis. The viral DNA is released into the nucleus, where it is converted into a covalently closed circular DNA (cccDNA) form, which serves as the template for viral transcription.

HBV transcribes several RNAs, including pregenomic RNA (pgRNA), which is used as a template for reverse transcription during virion assembly. The pgRNA is encapsidated into core particles along with the viral polymerase and undergoes reverse transcription to generate new viral DNA. This process occurs within the cytoplasm of the hepatocyte, resulting in the formation of immature virions containing partially double-stranded DNA.

These immature virions are then enveloped by host cell membranes containing HBV envelope proteins (known as surface antigens) to form mature virions that can be secreted from the hepatocyte and infect other cells. The virus can also integrate into the host genome, which may contribute to the development of hepatocellular carcinoma in chronic cases.

Hepatitis B is primarily transmitted through exposure to infected blood or bodily fluids containing the virus, such as through sexual contact, sharing needles, or from mother to child during childbirth. Prevention strategies include vaccination, safe sex practices, and avoiding needle-sharing behaviors. Treatment for hepatitis B typically involves antiviral medications that can help suppress viral replication and reduce the risk of liver damage.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Virology is the study of viruses, their classification, and their effects on living organisms. It involves the examination of viral genetic material, viral replication, how viruses cause disease, and the development of antiviral drugs and vaccines to treat or prevent virus infections. Virologists study various types of viruses that can infect animals, plants, and microorganisms, as well as understand their evolution and transmission patterns.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

'Insectivora' is an outdated taxonomic grouping that was once used to classify small, insect-eating mammals. This order included shrews, moles, hedgehogs, and several other related species. However, modern molecular evidence has revealed that this grouping is not monophyletic, meaning it does not include all descendants of a common ancestor. As a result, the order Insectivora is no longer recognized in current taxonomy. Instead, these animals are now classified into several different orders based on their evolutionary relationships.

"Ixodes" is a genus of tick that includes several species known to transmit various diseases to humans and animals. These ticks are often referred to as "hard ticks" because of their hard, shield-like plate on their backs. Ixodes ticks have a complex life cycle involving three stages: larva, nymph, and adult. They feed on the blood of hosts during each stage, and can transmit diseases such as Lyme disease, Anaplasmosis, Babesiosis, and Powassan virus disease.

The most common Ixodes species in North America is Ixodes scapularis, also known as the black-legged tick or deer tick, which is the primary vector of Lyme disease in this region. In Europe, Ixodes ricinus, or the castor bean tick, is a widespread and important vector of diseases such as Lyme borreliosis, tick-borne encephalitis, and several other tick-borne pathogens.

Ixodes ticks are typically found in wooded or grassy areas with high humidity and moderate temperatures. They can be carried by various hosts, including mammals, birds, and reptiles, and can survive for long periods without feeding, making them efficient disease vectors.

Neutralizing antibodies are a type of antibody that defends against pathogens such as viruses or bacteria by neutralizing their ability to infect cells. They do this by binding to specific regions on the surface proteins of the pathogen, preventing it from attaching to and entering host cells. This renders the pathogen ineffective and helps to prevent or reduce the severity of infection. Neutralizing antibodies can be produced naturally in response to an infection or vaccination, or they can be generated artificially for therapeutic purposes.

Synthetic vaccines are artificially produced, designed to stimulate an immune response and provide protection against specific diseases. Unlike traditional vaccines that are derived from weakened or killed pathogens, synthetic vaccines are created using synthetic components, such as synthesized viral proteins, DNA, or RNA. These components mimic the disease-causing agent and trigger an immune response without causing the actual disease. The use of synthetic vaccines offers advantages in terms of safety, consistency, and scalability in production, making them valuable tools for preventing infectious diseases.

Respiratory Syncytial Viruses (RSV) are a common type of virus that cause respiratory infections, particularly in young children and older adults. They are responsible for inflammation and narrowing of the small airways in the lungs, leading to breathing difficulties and other symptoms associated with bronchiolitis and pneumonia.

The term "syncytial" refers to the ability of these viruses to cause infected cells to merge and form large multinucleated cells called syncytia, which is a characteristic feature of RSV infections. The virus spreads through respiratory droplets when an infected person coughs or sneezes, and it can also survive on surfaces for several hours, making transmission easy.

RSV infections are most common during the winter months and can cause mild to severe symptoms depending on factors such as age, overall health, and underlying medical conditions. While RSV is typically associated with respiratory illnesses in children, it can also cause significant disease in older adults and immunocompromised individuals. Currently, there is no vaccine available for RSV, but antiviral medications and supportive care are used to manage severe infections.

Immunoglobulin M (IgM) is a type of antibody that is primarily found in the blood and lymph fluid. It is the first antibody to be produced in response to an initial exposure to an antigen, making it an important part of the body's primary immune response. IgM antibodies are large molecules that are composed of five basic units, giving them a pentameric structure. They are primarily found on the surface of B cells as membrane-bound immunoglobulins (mlgM), where they function as receptors for antigens. Once an mlgM receptor binds to an antigen, it triggers the activation and differentiation of the B cell into a plasma cell that produces and secretes large amounts of soluble IgM antibodies.

IgM antibodies are particularly effective at agglutination (clumping) and complement activation, which makes them important in the early stages of an immune response to help clear pathogens from the bloodstream. However, they are not as stable or long-lived as other types of antibodies, such as IgG, and their levels tend to decline after the initial immune response has occurred.

In summary, Immunoglobulin M (IgM) is a type of antibody that plays a crucial role in the primary immune response to antigens by agglutination and complement activation. It is primarily found in the blood and lymph fluid, and it is produced by B cells after they are activated by an antigen.

Emerging communicable diseases are infections whose incidence has increased in the past two decades or threatens to increase in the near future. These diseases can be caused by new microbial agents, or by previously known agents that have newly acquired the ability to cause disease in humans. They may also result from changes in human demographics, behavior, or travel patterns, or from technological or environmental changes. Examples of emerging communicable diseases include COVID-19, Ebola virus disease, Zika virus infection, and West Nile fever.

A medical definition of "ticks" would be:

Ticks are small, blood-sucking parasites that belong to the arachnid family, which also includes spiders. They have eight legs and can vary in size from as small as a pinhead to about the size of a marble when fully engorged with blood. Ticks attach themselves to the skin of their hosts (which can include humans, dogs, cats, and wild animals) by inserting their mouthparts into the host's flesh.

Ticks can transmit a variety of diseases, including Lyme disease, Rocky Mountain spotted fever, anaplasmosis, ehrlichiosis, and babesiosis. It is important to remove ticks promptly and properly to reduce the risk of infection. To remove a tick, use fine-tipped tweezers to grasp the tick as close to the skin's surface as possible and pull upward with steady, even pressure. Do not twist or jerk the tick, as this can cause the mouthparts to break off and remain in the skin. After removing the tick, clean the area with soap and water and disinfect the tweezers.

Preventing tick bites is an important part of protecting against tick-borne diseases. This can be done by wearing protective clothing (such as long sleeves and pants), using insect repellent containing DEET or permethrin, avoiding wooded and brushy areas with high grass, and checking for ticks after being outdoors.

Vaccination is a simple, safe, and effective way to protect people against harmful diseases, before they come into contact with them. It uses your body's natural defenses to build protection to specific infections and makes your immune system stronger.

A vaccination usually contains a small, harmless piece of a virus or bacteria (or toxins produced by these germs) that has been made inactive or weakened so it won't cause the disease itself. This piece of the germ is known as an antigen. When the vaccine is introduced into the body, the immune system recognizes the antigen as foreign and produces antibodies to fight it.

If a person then comes into contact with the actual disease-causing germ, their immune system will recognize it and immediately produce antibodies to destroy it. The person is therefore protected against that disease. This is known as active immunity.

Vaccinations are important for both individual and public health. They prevent the spread of contagious diseases and protect vulnerable members of the population, such as young children, the elderly, and people with weakened immune systems who cannot be vaccinated or for whom vaccination is not effective.

Simian Immunodeficiency Virus (SIV) is a retrovirus that primarily infects African non-human primates and is the direct ancestor of Human Immunodeficiency Virus type 2 (HIV-2). It is similar to HIV in its structure, replication strategy, and ability to cause an immunodeficiency disease in its host. SIV infection in its natural hosts is typically asymptomatic and non-lethal, but it can cause AIDS-like symptoms in other primate species. Research on SIV in its natural hosts has provided valuable insights into the mechanisms of HIV pathogenesis and potential strategies for prevention and treatment of AIDS.

La Crosse virus (LACV) is an orthobunyavirus that belongs to the California serogroup and is the most common cause of pediatric arboviral encephalitis in the United States. It is named after La Crosse, Wisconsin, where it was first identified in 1963.

LACV is primarily transmitted through the bite of infected eastern treehole mosquitoes (Aedes triseriatus), which serve as the primary vector and amplifying host for the virus. The virus can also be found in other mosquito species, such as Aedes albopictus and Aedes japonicus.

The transmission cycle of LACV involves mosquitoes feeding on infected small mammals, particularly chipmunks and squirrels, which serve as the natural reservoirs for the virus. The virus then replicates in the salivary glands of the mosquito, making it possible to transmit the virus through their bite.

LACV infection can cause a range of symptoms, from mild flu-like illness to severe neurological complications such as encephalitis (inflammation of the brain) and meningitis (inflammation of the membranes surrounding the brain and spinal cord). Most cases occur in children under the age of 16, with peak transmission during summer months.

Preventive measures for LACV include using insect repellent, wearing protective clothing, eliminating standing water around homes to reduce mosquito breeding sites, and staying indoors during peak mosquito activity hours (dawn and dusk). There is currently no specific antiviral treatment available for LACV infection, and management typically involves supportive care to address symptoms.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Capsid proteins are the structural proteins that make up the capsid, which is the protective shell of a virus. The capsid encloses the viral genome and helps to protect it from degradation and detection by the host's immune system. Capsid proteins are typically arranged in a symmetrical pattern and can self-assemble into the capsid structure when exposed to the viral genome.

The specific arrangement and composition of capsid proteins vary between different types of viruses, and they play important roles in the virus's life cycle, including recognition and binding to host cells, entry into the cell, and release of the viral genome into the host cytoplasm. Capsid proteins can also serve as targets for antiviral therapies and vaccines.

Vesicular stomatitis Indiana virus (VSIV) is a single-stranded, negative-sense RNA virus that belongs to the family Rhabdoviridae and genus Vesiculovirus. It is the causative agent of vesicular stomatitis (VS), a viral disease that primarily affects horses and cattle, but can also infect other species including swine, sheep, goats, and humans.

The virus is transmitted through direct contact with infected animals or their saliva, as well as through insect vectors such as black flies and sandflies. The incubation period for VS ranges from 2 to 8 days, after which infected animals develop fever, lethargy, and vesicular lesions in the mouth, nose, and feet. These lesions can be painful and may cause difficulty eating or walking.

In humans, VSIV infection is typically asymptomatic or causes mild flu-like symptoms such as fever, muscle aches, and headache. Occasionally, individuals may develop vesicular lesions on their skin or mucous membranes, particularly if they have had contact with infected animals.

Diagnosis of VSIV infection is typically made through virus isolation from lesion exudates or blood, as well as through serological testing. Treatment is generally supportive and aimed at relieving symptoms, as there are no specific antiviral therapies available for VS. Prevention measures include vaccination of susceptible animals, vector control, and biosecurity measures to prevent the spread of infection between animals.

A capsid is the protein shell that encloses and protects the genetic material of a virus. It is composed of multiple copies of one or more proteins that are arranged in a specific structure, which can vary in shape and symmetry depending on the type of virus. The capsid plays a crucial role in the viral life cycle, including protecting the viral genome from host cell defenses, mediating attachment to and entry into host cells, and assisting with the assembly of new virus particles during replication.

Virus latency, also known as viral latency, refers to a state of infection in which a virus remains dormant or inactive within a host cell for a period of time. During this phase, the virus does not replicate or cause any noticeable symptoms. However, under certain conditions such as stress, illness, or a weakened immune system, the virus can become reactivated and begin to produce new viruses, potentially leading to disease.

One well-known example of a virus that exhibits latency is the varicella-zoster virus (VZV), which causes chickenpox in children. After a person recovers from chickenpox, the virus remains dormant in the nervous system for years or even decades. In some cases, the virus can reactivate later in life, causing shingles, a painful rash that typically occurs on one side of the body.

Virus latency is an important concept in virology and infectious disease research, as it has implications for understanding the persistence of viral infections, developing treatments and vaccines, and predicting the risk of disease recurrence.

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Rodent-borne diseases are infectious diseases transmitted to humans (and other animals) by rodents, their parasites or by contact with rodent urine, feces, or saliva. These diseases can be caused by viruses, bacteria, fungi, or parasites. Some examples of rodent-borne diseases include Hantavirus Pulmonary Syndrome, Leptospirosis, Salmonellosis, Rat-bite fever, and Plague. It's important to note that rodents can also cause allergic reactions in some people through their dander, urine, or saliva. Proper sanitation, rodent control measures, and protective equipment when handling rodents can help prevent the spread of these diseases.

I'm sorry for any confusion, but "Siberia" is not a medical term. It's a geographical region in Russia, known for its harsh, cold climate and vast wilderness. If you have any questions about medical terms or concepts, I'd be happy to help answer those!

A disease reservoir refers to a population or group of living organisms, including humans, animals, and even plants, that can naturally carry and transmit a particular pathogen (disease-causing agent) without necessarily showing symptoms of the disease themselves. These hosts serve as a source of infection for other susceptible individuals, allowing the pathogen to persist and circulate within a community or environment.

Disease reservoirs can be further classified into:

1. **Primary (or Main) Reservoir**: This refers to the species that primarily harbors and transmits the pathogen, contributing significantly to its natural ecology and maintaining its transmission cycle. For example, mosquitoes are the primary reservoirs for many arboviruses like dengue, Zika, and chikungunya viruses.

2. **Amplifying Hosts**: These hosts can become infected with the pathogen and experience a high rate of replication, leading to an increased concentration of the pathogen in their bodies. This allows for efficient transmission to other susceptible hosts or vectors. For instance, birds are amplifying hosts for West Nile virus, as they can become viremic (have high levels of virus in their blood) and infect feeding mosquitoes that then transmit the virus to other animals and humans.

3. **Dead-end Hosts**: These hosts may become infected with the pathogen but do not contribute significantly to its transmission cycle, as they either do not develop sufficient quantities of the pathogen to transmit it or do not come into contact with potential vectors or susceptible hosts. For example, humans are dead-end hosts for many zoonotic diseases like rabies, as they cannot transmit the virus to other humans.

Understanding disease reservoirs is crucial in developing effective strategies for controlling and preventing infectious diseases, as it helps identify key species and environments that contribute to their persistence and transmission.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Swine diseases refer to a wide range of infectious and non-infectious conditions that affect pigs. These diseases can be caused by viruses, bacteria, fungi, parasites, or environmental factors. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): a viral disease that causes reproductive failure in sows and respiratory problems in piglets and grower pigs.
2. Classical Swine Fever (CSF): also known as hog cholera, is a highly contagious viral disease that affects pigs of all ages.
3. Porcine Circovirus Disease (PCVD): a group of diseases caused by porcine circoviruses, including Porcine CircoVirus Associated Disease (PCVAD) and Postweaning Multisystemic Wasting Syndrome (PMWS).
4. Swine Influenza: a respiratory disease caused by type A influenza viruses that can infect pigs and humans.
5. Mycoplasma Hyopneumoniae: a bacterial disease that causes pneumonia in pigs.
6. Actinobacillus Pleuropneumoniae: a bacterial disease that causes severe pneumonia in pigs.
7. Salmonella: a group of bacteria that can cause food poisoning in humans and a variety of diseases in pigs, including septicemia, meningitis, and abortion.
8. Brachyspira Hyodysenteriae: a bacterial disease that causes dysentery in pigs.
9. Erysipelothrix Rhusiopathiae: a bacterial disease that causes erysipelas in pigs.
10. External and internal parasites, such as lice, mites, worms, and flukes, can also cause diseases in swine.

Prevention and control of swine diseases rely on good biosecurity practices, vaccination programs, proper nutrition, and management practices. Regular veterinary check-ups and monitoring are essential to detect and treat diseases early.

Cerebrospinal fluid (CSF) is a clear, colorless fluid that surrounds and protects the brain and spinal cord. It acts as a shock absorber for the central nervous system and provides nutrients to the brain while removing waste products. CSF is produced by specialized cells called ependymal cells in the choroid plexus of the ventricles (fluid-filled spaces) inside the brain. From there, it circulates through the ventricular system and around the outside of the brain and spinal cord before being absorbed back into the bloodstream. CSF analysis is an important diagnostic tool for various neurological conditions, including infections, inflammation, and cancer.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Alphavirus infections refer to a group of diseases caused by viruses belonging to the Alphavirus genus of the Togaviridae family. These viruses are transmitted to humans through the bite of infected mosquitoes, and can cause a range of symptoms depending on the specific virus and the individual's immune response.

Some of the more common alphaviruses that cause human disease include:

* Chikungunya virus (CHIKV): This virus is transmitted by Aedes mosquitoes and can cause a fever, rash, and severe joint pain. While most people recover from CHIKV infection within a few weeks, some may experience long-term joint pain and inflammation.
* Eastern equine encephalitis virus (EEEV): This virus is transmitted by mosquitoes that feed on both birds and mammals, including humans. EEEV can cause severe neurological symptoms such as fever, headache, seizures, and coma. It has a high mortality rate of up to 30-50% in infected individuals.
* Western equine encephalitis virus (WEEV): This virus is also transmitted by mosquitoes that feed on both birds and mammals. WEEV can cause mild flu-like symptoms or more severe neurological symptoms such as fever, headache, and seizures. It has a lower mortality rate than EEEV but can still cause significant illness.
* Venezuelan equine encephalitis virus (VEEV): This virus is transmitted by mosquitoes that feed on horses and other mammals, including humans. VEEV can cause mild flu-like symptoms or more severe neurological symptoms such as fever, headache, and seizures. It is considered a potential bioterrorism agent due to its ability to cause severe illness and death in large populations.

There are no specific treatments for alphavirus infections other than supportive care to manage symptoms. Prevention measures include avoiding mosquito bites through the use of insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito hours. Public health efforts also focus on reducing mosquito populations through environmental controls such as eliminating standing water and using insecticides.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

"Rodentia" is not a medical term, but a taxonomic category in biology. It refers to the largest order of mammals, comprising over 40% of all mammal species. Commonly known as rodents, this group includes mice, rats, hamsters, gerbils, guinea pigs, squirrels, prairie dogs, capybaras, beavers, and many others.

While "Rodentia" itself is not a medical term, certain conditions or issues related to rodents can have medical implications. For instance, rodents are known to carry and transmit various diseases that can affect humans, such as hantavirus, leptospirosis, salmonellosis, and lymphocytic choriomeningitis (LCMV). Therefore, understanding the biology and behavior of rodents is important in the context of public health and preventive medicine.

Hemagglutinin (HA) glycoproteins are surface proteins found on influenza viruses. They play a crucial role in the virus's ability to infect and spread within host organisms.

The HAs are responsible for binding to sialic acid receptors on the host cell's surface, allowing the virus to attach and enter the cell. After endocytosis, the viral and endosomal membranes fuse, releasing the viral genome into the host cell's cytoplasm.

There are several subtypes of hemagglutinin (H1-H18) identified so far, with H1, H2, and H3 being common in human infections. The significant antigenic differences among these subtypes make them important targets for the development of influenza vaccines. However, due to their high mutation rate, new vaccine formulations are often required to match the circulating virus strains.

In summary, hemagglutinin glycoproteins on influenza viruses are essential for host cell recognition and entry, making them important targets for diagnosis, prevention, and treatment of influenza infections.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

The Mumps virus is a single-stranded, negative-sense RNA virus that belongs to the Paramyxoviridae family and Rubulavirus genus. It is the causative agent of mumps, an acute infectious disease characterized by painful swelling of the salivary glands, particularly the parotid glands.

The Mumps virus has a spherical or pleomorphic shape with a diameter of approximately 150-250 nanometers. It is surrounded by a lipid bilayer membrane derived from the host cell, which contains viral glycoproteins that facilitate attachment and entry into host cells.

The M protein, located beneath the envelope, plays a crucial role in virus assembly and budding. The genome of the Mumps virus consists of eight genes encoding nine proteins, including two major structural proteins (nucleocapsid protein and matrix protein) and several non-structural proteins involved in viral replication and pathogenesis.

Transmission of the Mumps virus occurs through respiratory droplets or direct contact with infected saliva. After infection, the incubation period ranges from 12 to 25 days, followed by a prodromal phase characterized by fever, headache, malaise, and muscle pain. The characteristic swelling of the parotid glands usually appears 1-3 days after the onset of symptoms.

Complications of mumps can include meningitis, encephalitis, orchitis, oophoritis, pancreatitis, and deafness. Prevention relies on vaccination with the measles-mumps-rubella (MMR) vaccine, which is highly effective in preventing mumps and its complications.

I'm sorry for any confusion, but "Venezuela" is not a medical term. It is the name of a country located in South America, known officially as the Bolivarian Republic of Venezuela. If you have any questions about medical terms or health-related topics, I would be happy to try and help answer those for you!

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

I'm sorry for any confusion, but "South America" is not a medical term. It is a geographical term that refers to the southern portion of the Americas, which is a continent in the Western Hemisphere. South America is generally defined as including the countries of Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, and Venezuela, as well as the overseas departments and territories of French Guiana (France), and the Falkland Islands (UK).

If you have any questions related to medical terminology or health-related topics, I would be happy to help answer them for you.

Sigmodontinae is a subfamily of rodents, more specifically within the family Cricetidae. This group is commonly known as the New World rats and mice, and it includes over 300 species that are primarily found in North, Central, and South America. The members of Sigmodontinae vary greatly in size and habits, with some being arboreal while others live on the ground or burrow. Some species have specialized diets, such as eating insects or seeds, while others are more generalist feeders. This subfamily is also notable for its high degree of speciation and diversity, making it an interesting subject for evolutionary biologists and ecologists.

Semliki Forest Virus (SFV) is an alphavirus in the Togaviridae family, which is primarily transmitted to vertebrates through mosquito vectors. The virus was initially isolated from mosquitoes in the Semliki Forest of Uganda and has since been found in various parts of Africa and Asia. SFV infection in humans can cause a mild febrile illness characterized by fever, headache, muscle pain, and rash. However, it is more commonly known for causing severe disease in animals, particularly non-human primates and cattle, where it can lead to encephalitis or hemorrhagic fever. SFV has also been used as a model organism in laboratory studies of virus replication and pathogenesis.

Seroepidemiologic studies are a type of epidemiological study that measures the presence and levels of antibodies in a population's blood serum to investigate the prevalence, distribution, and transmission of infectious diseases. These studies help to identify patterns of infection and immunity within a population, which can inform public health policies and interventions.

Seroepidemiologic studies typically involve collecting blood samples from a representative sample of individuals in a population and testing them for the presence of antibodies against specific pathogens. The results are then analyzed to estimate the prevalence of infection and immunity within the population, as well as any factors associated with increased or decreased risk of infection.

These studies can provide valuable insights into the spread of infectious diseases, including emerging and re-emerging infections, and help to monitor the effectiveness of vaccination programs. Additionally, seroepidemiologic studies can also be used to investigate the transmission dynamics of infectious agents, such as identifying sources of infection or tracking the spread of antibiotic resistance.

Amebiasis is defined as an infection caused by the protozoan parasite Entamoeba histolytica, which can affect the intestines and other organs. The infection can range from asymptomatic to symptomatic with various manifestations such as abdominal pain, diarrhea (which may be mild or severe), bloody stools, and fever. In some cases, it can lead to serious complications like liver abscess. Transmission of the parasite typically occurs through the ingestion of contaminated food or water.

A disease vector is a living organism that transmits infectious pathogens from one host to another. These vectors can include mosquitoes, ticks, fleas, and other arthropods that carry viruses, bacteria, parasites, or other disease-causing agents. The vector becomes infected with the pathogen after biting an infected host, and then transmits the infection to another host through its saliva or feces during a subsequent blood meal.

Disease vectors are of particular concern in public health because they can spread diseases rapidly and efficiently, often over large geographic areas. Controlling vector-borne diseases requires a multifaceted approach that includes reducing vector populations, preventing bites, and developing vaccines or treatments for the associated diseases.

Wild animals are those species of animals that are not domesticated or tamed by humans and live in their natural habitats without regular human intervention. They can include a wide variety of species, ranging from mammals, birds, reptiles, amphibians, fish, to insects and other invertebrates.

Wild animals are adapted to survive in specific environments and have behaviors, physical traits, and social structures that enable them to find food, shelter, and mates. They can be found in various habitats such as forests, grasslands, deserts, oceans, rivers, and mountains. Some wild animals may come into contact with human populations, particularly in urban areas where their natural habitats have been destroyed or fragmented.

It is important to note that the term "wild" does not necessarily mean that an animal is aggressive or dangerous. While some wild animals can be potentially harmful to humans if provoked or threatened, many are generally peaceful and prefer to avoid contact with people. However, it is essential to respect their natural behaviors and habitats and maintain a safe distance from them to prevent any potential conflicts or harm to either party.

"Serial passage" is a term commonly used in the field of virology and microbiology. It refers to the process of repeatedly transmitting or passing a virus or other microorganism from one cultured cell line or laboratory animal to another, usually with the aim of adapting the microorganism to grow in that specific host system or to increase its virulence or pathogenicity. This technique is often used in research to study the evolution and adaptation of viruses and other microorganisms.

Culture techniques are methods used in microbiology to grow and multiply microorganisms, such as bacteria, fungi, or viruses, in a controlled laboratory environment. These techniques allow for the isolation, identification, and study of specific microorganisms, which is essential for diagnostic purposes, research, and development of medical treatments.

The most common culture technique involves inoculating a sterile growth medium with a sample suspected to contain microorganisms. The growth medium can be solid or liquid and contains nutrients that support the growth of the microorganisms. Common solid growth media include agar plates, while liquid growth media are used for broth cultures.

Once inoculated, the growth medium is incubated at a temperature that favors the growth of the microorganisms being studied. During incubation, the microorganisms multiply and form visible colonies on the solid growth medium or turbid growth in the liquid growth medium. The size, shape, color, and other characteristics of the colonies can provide important clues about the identity of the microorganism.

Other culture techniques include selective and differential media, which are designed to inhibit the growth of certain types of microorganisms while promoting the growth of others, allowing for the isolation and identification of specific pathogens. Enrichment cultures involve adding specific nutrients or factors to a sample to promote the growth of a particular type of microorganism.

Overall, culture techniques are essential tools in microbiology and play a critical role in medical diagnostics, research, and public health.

Oncogenic viruses are a type of viruses that have the ability to cause cancer in host cells. They do this by integrating their genetic material into the DNA of the infected host cell, which can lead to the disruption of normal cellular functions and the activation of oncogenes (genes that have the potential to cause cancer). This can result in uncontrolled cell growth and division, ultimately leading to the formation of tumors. Examples of oncogenic viruses include human papillomavirus (HPV), hepatitis B virus (HBV), and human T-cell leukemia virus type 1 (HTLV-1). It is important to note that only a small proportion of viral infections lead to cancer, and the majority of cancers are not caused by viruses.

Hemagglutinins are glycoprotein spikes found on the surface of influenza viruses. They play a crucial role in the viral infection process by binding to sialic acid receptors on host cells, primarily in the respiratory tract. After attachment, hemagglutinins mediate the fusion of the viral and host cell membranes, allowing the viral genome to enter the host cell and initiate replication.

There are 18 different subtypes of hemagglutinin (H1-H18) identified in influenza A viruses, which naturally infect various animal species, including birds, pigs, and humans. The specificity of hemagglutinins for particular sialic acid receptors can influence host range and tissue tropism, contributing to the zoonotic potential of certain influenza A virus subtypes.

Hemagglutination inhibition (HI) assays are commonly used in virology and epidemiology to measure the antibody response to influenza viruses and determine vaccine effectiveness. In these assays, hemagglutinins bind to red blood cells coated with sialic acid receptors, forming a diffuse mat of cells that can be observed visually. The addition of specific antisera containing antibodies against the hemagglutinin prevents this binding and results in the formation of discrete buttons of red blood cells, indicating a positive HI titer and the presence of neutralizing antibodies.

A chick embryo refers to the developing organism that arises from a fertilized chicken egg. It is often used as a model system in biological research, particularly during the stages of development when many of its organs and systems are forming and can be easily observed and manipulated. The study of chick embryos has contributed significantly to our understanding of various aspects of developmental biology, including gastrulation, neurulation, organogenesis, and pattern formation. Researchers may use various techniques to observe and manipulate the chick embryo, such as surgical alterations, cell labeling, and exposure to drugs or other agents.

ICR (Institute of Cancer Research) is a strain of albino Swiss mice that are widely used in scientific research. They are an outbred strain, which means that they have been bred to maintain maximum genetic heterogeneity. However, it is also possible to find inbred strains of ICR mice, which are genetically identical individuals produced by many generations of brother-sister mating.

Inbred ICR mice are a specific type of ICR mouse that has been inbred for at least 20 generations. This means that they have a high degree of genetic uniformity and are essentially genetically identical to one another. Inbred strains of mice are often used in research because their genetic consistency makes them more reliable models for studying biological phenomena and testing new therapies or treatments.

It is important to note that while inbred ICR mice may be useful for certain types of research, they do not necessarily represent the genetic diversity found in human populations. Therefore, it is important to consider the limitations of using any animal model when interpreting research findings and applying them to human health.

Simplexvirus is a genus of viruses in the family Herpesviridae, subfamily Alphaherpesvirinae. This genus contains two species: Human alphaherpesvirus 1 (also known as HSV-1 or herpes simplex virus type 1) and Human alphaherpesvirus 2 (also known as HSV-2 or herpes simplex virus type 2). These viruses are responsible for causing various medical conditions, most commonly oral and genital herpes. They are characterized by their ability to establish lifelong latency in the nervous system and reactivate periodically to cause recurrent symptoms.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

Encephalitis, Varicella Zoster is a type of encephalitis (inflammation of the brain) caused by the varicella-zoster virus, which also causes chickenpox and shingles. It typically occurs in individuals who have previously had chickenpox, and the virus remains dormant in the body and can reactivate later in life as shingles. In some cases, the virus can spread to the brain and cause encephalitis.

Symptoms of Varicella Zoster encephalitis may include fever, headache, confusion, seizures, and changes in consciousness. It is a serious condition that requires prompt medical attention and treatment with antiviral medications. Complications can include long-term neurological damage or even death.

It's important to note that not everyone who has shingles will develop encephalitis, but it is a potential complication of the infection. People who are at higher risk for developing Varicella Zoster encephalitis include those with weakened immune systems, such as people undergoing cancer treatment or those with HIV/AIDS.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Parainfluenza Virus 1, Human (HPIV-1) is a type of respiratory virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory infections in children, immunocompromised individuals, and the elderly.

HPIV-1 primarily infects the upper respiratory tract, causing symptoms such as cough, runny nose, sore throat, and fever. However, it can also cause lower respiratory tract infections, including bronchitis, bronchiolitis, and pneumonia, particularly in young children and infants.

HPIV-1 is transmitted through respiratory droplets or direct contact with infected individuals. The incubation period for HPIV-1 infection ranges from 2 to 7 days, after which symptoms can last for up to 10 days. There is no specific antiviral treatment available for HPIV-1 infections, and management typically involves supportive care such as hydration, fever reduction, and respiratory support if necessary.

Prevention measures include good hand hygiene, avoiding close contact with infected individuals, and practicing cough etiquette. Vaccines are not currently available for HPIV-1 infections, but research is ongoing to develop effective vaccines against these viruses.

Mosaic viruses are a group of plant viruses that can cause mottled or mosaic patterns of discoloration on leaves, which is why they're named as such. These viruses infect a wide range of plants, including important crops like tobacco, tomatoes, and cucumbers. The infection can lead to various symptoms such as stunted growth, leaf deformation, reduced yield, or even plant death.

Mosaic viruses are typically spread by insects, such as aphids, that feed on the sap of infected plants and then transmit the virus to healthy plants. They can also be spread through contaminated seeds, tools, or contact with infected plant material. Once inside a plant, these viruses hijack the plant's cellular machinery to replicate themselves, causing damage to the host plant in the process.

It is important to note that mosaic viruses are not related to human or animal health; they only affect plants.

Medical Definition of "Herpesvirus 1, Human" (also known as Human Herpesvirus 1 or HHV-1):

Herpesvirus 1, Human is a type of herpesvirus that primarily causes infection in humans. It is also commonly referred to as human herpesvirus 1 (HHV-1) or oral herpes. This virus is highly contagious and can be transmitted through direct contact with infected saliva, skin, or mucous membranes.

After initial infection, the virus typically remains dormant in the body's nerve cells and may reactivate later, causing recurrent symptoms. The most common manifestation of HHV-1 infection is oral herpes, characterized by cold sores or fever blisters around the mouth and lips. In some cases, HHV-1 can also cause other conditions such as encephalitis (inflammation of the brain) and keratitis (inflammation of the eye's cornea).

There is no cure for HHV-1 infection, but antiviral medications can help manage symptoms and reduce the severity and frequency of recurrent outbreaks.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Visna-maedi virus (VMV) is an retrovirus that belongs to the genus Lentivirus, which is part of the family Retroviridae. This virus is the causative agent of a slowly progressive, fatal disease in sheep known as maedi-visna. The term "visna" refers to a inflammatory disease of the central nervous system (CNS) and "maedi" refers to a progressive interstitial pneumonia.

The Visna-Maedi virus is closely related to the human immunodeficiency virus (HIV), which causes AIDS, as well as to other lentiviruses that affect animals such as caprine arthritis encephalitis virus (CAEV) and equine infectious anemia virus (EIAV).

Visna-maedi virus primarily targets the immune system cells, specifically monocytes/macrophages, leading to a weakened immune response in infected animals. This makes them more susceptible to other infections and diseases. The virus is transmitted through the respiratory route and infection can occur through inhalation of infectious aerosols or by ingestion of contaminated milk or colostrum from infected ewes.

There is no effective treatment or vaccine available for Visna-maedi virus infection, and control measures are focused on identifying and isolating infected animals to prevent the spread of the disease within sheep flocks.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Central nervous system (CNS) infections refer to infectious processes that affect the brain, spinal cord, and their surrounding membranes, known as meninges. These infections can be caused by various microorganisms, including bacteria, viruses, fungi, and parasites. Examples of CNS infections are:

1. Meningitis: Inflammation of the meninges, usually caused by bacterial or viral infections. Bacterial meningitis is a medical emergency that requires immediate treatment.
2. Encephalitis: Inflammation of the brain parenchyma, often caused by viral infections. Some viruses associated with encephalitis include herpes simplex virus, enteroviruses, and arboviruses.
3. Meningoencephalitis: A combined inflammation of both the brain and meninges, commonly seen in certain viral infections or when bacterial pathogens directly invade the brain.
4. Brain abscess: A localized collection of pus within the brain caused by a bacterial or fungal infection.
5. Spinal epidural abscess: An infection in the space surrounding the spinal cord, usually caused by bacteria.
6. Myelitis: Inflammation of the spinal cord, which can result from viral, bacterial, or fungal infections.
7. Rarely, parasitic infections like toxoplasmosis and cysticercosis can also affect the CNS.

Symptoms of CNS infections may include fever, headache, stiff neck, altered mental status, seizures, focal neurological deficits, or meningeal signs (e.g., Brudzinski's and Kernig's signs). The specific symptoms depend on the location and extent of the infection, as well as the causative organism. Prompt diagnosis and treatment are crucial to prevent long-term neurological complications or death.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Hemagglutination tests are laboratory procedures used to detect the presence of antibodies or antigens in a sample, typically in blood serum. These tests rely on the ability of certain substances, such as viruses or bacteria, to agglutinate (clump together) red blood cells.

In a hemagglutination test, a small amount of the patient's serum is mixed with a known quantity of red blood cells that have been treated with a specific antigen. If the patient has antibodies against that antigen in their serum, they will bind to the antigens on the red blood cells and cause them to agglutinate. This clumping can be observed visually, indicating a positive test result.

Hemagglutination tests are commonly used to diagnose infectious diseases caused by viruses or bacteria that have hemagglutinating properties, such as influenza, parainfluenza, and HIV. They can also be used in blood typing and cross-matching before transfusions.

Hepatitis A virus (HAV) is the causative agent of hepatitis A, a viral infection that causes inflammation of the liver. It is a small, non-enveloped, single-stranded RNA virus belonging to the Picornaviridae family and Hepatovirus genus. The virus primarily spreads through the fecal-oral route, often through contaminated food or water, or close contact with an infected person. After entering the body, HAV infects hepatocytes in the liver, leading to liver damage and associated symptoms such as jaundice, fatigue, abdominal pain, and nausea. The immune system eventually clears the infection, providing lifelong immunity against future HAV infections. Preventive measures include vaccination and practicing good hygiene to prevent transmission.

Inactivated vaccines, also known as killed or non-live vaccines, are created by using a version of the virus or bacteria that has been grown in a laboratory and then killed or inactivated with chemicals, heat, or radiation. This process renders the organism unable to cause disease, but still capable of stimulating an immune response when introduced into the body.

Inactivated vaccines are generally considered safer than live attenuated vaccines since they cannot revert back to a virulent form and cause illness. However, they may require multiple doses or booster shots to maintain immunity because the immune response generated by inactivated vaccines is not as robust as that produced by live vaccines. Examples of inactivated vaccines include those for hepatitis A, rabies, and influenza (inactivated flu vaccine).

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Avian sarcoma viruses (ASVs) are a group of retroviruses that primarily infect birds and cause various types of tumors, particularly sarcomas. These viruses contain an oncogene, which is a gene that has the ability to transform normal cells into cancerous ones. The oncogene in ASVs is often derived from cellular genes called proto-oncogenes, which are normally involved in regulating cell growth and division.

ASVs can be divided into two main types: non-defective and defective. Non-defective ASVs contain a complete set of viral genes that allow them to replicate independently, while defective ASVs lack some of the necessary viral genes and require assistance from other viruses to replicate.

One well-known example of an avian sarcoma virus is the Rous sarcoma virus (RSV), which was first discovered in chickens by Peyton Rous in 1910. RSV causes a highly malignant form of sarcoma in chickens and has been extensively studied as a model system for cancer research. The oncogene in RSV is called v-src, which is derived from the normal cellular gene c-src.

Avian sarcoma viruses have contributed significantly to our understanding of the molecular mechanisms underlying cancer development and have provided valuable insights into the role of oncogenes in tumorigenesis.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

Meningoencephalitis is a medical term that refers to an inflammation of both the brain (encephalitis) and the membranes covering the brain and spinal cord (meninges), known as the meninges. It is often caused by an infection, such as bacterial or viral infections, that spreads to the meninges and brain. In some cases, it can also be caused by other factors like autoimmune disorders or certain medications.

The symptoms of meningoencephalitis may include fever, headache, stiff neck, confusion, seizures, and changes in mental status. If left untreated, this condition can lead to serious complications, such as brain damage, hearing loss, learning disabilities, or even death. Treatment typically involves antibiotics for bacterial infections or antiviral medications for viral infections, along with supportive care to manage symptoms and prevent complications.

BK virus, also known as BK polyomavirus, is a type of virus that belongs to the Polyomaviridae family. It is named after the initials of a patient in whom the virus was first isolated. The BK virus is a common infection in humans and is typically acquired during childhood. After the initial infection, the virus remains dormant in the body, often found in the urinary tract and kidneys.

In immunocompetent individuals, the virus usually does not cause any significant problems. However, in people with weakened immune systems, such as those who have undergone organ transplantation or have HIV/AIDS, BK virus can lead to severe complications. One of the most common manifestations of BK virus infection in immunocompromised individuals is hemorrhagic cystitis, a condition characterized by inflammation and bleeding in the bladder. In transplant recipients, BK virus can also cause nephropathy, leading to kidney damage or even failure.

There is no specific treatment for BK virus infection, but antiviral medications may be used to help control the virus's replication in some cases. Maintaining a strong immune system and monitoring viral load through regular testing are essential strategies for managing BK virus infections in immunocompromised individuals.

Sequence homology is a term used in molecular biology to describe the similarity between the nucleotide or amino acid sequences of two or more genes or proteins. It is a measure of the degree to which the sequences are related, indicating a common evolutionary origin.

In other words, sequence homology implies that the compared sequences have a significant number of identical or similar residues in the same order, suggesting that they share a common ancestor and have diverged over time through processes such as mutation, insertion, deletion, or rearrangement. The higher the degree of sequence homology, the more closely related the sequences are likely to be.

Sequence homology is often used to identify similarities between genes or proteins from different species, which can provide valuable insights into their functions, structures, and evolutionary relationships. It is commonly assessed using various bioinformatics tools and algorithms, such as BLAST (Basic Local Alignment Search Tool), Clustal Omega, and multiple sequence alignment (MSA) methods.

A tumor virus infection is a condition in which a person's cells become cancerous or transformed due to the integration and disruption of normal cellular functions by a viral pathogen. These viruses are also known as oncoviruses, and they can cause tumors or cancer by altering the host cell's genetic material, promoting uncontrolled cell growth and division, evading immune surveillance, and inhibiting apoptosis (programmed cell death).

Examples of tumor viruses include:

1. DNA tumor viruses: These are double-stranded DNA viruses that can cause cancer in humans. Examples include human papillomavirus (HPV), hepatitis B virus (HBV), and Merkel cell polyomavirus (MCV).
2. RNA tumor viruses: Also known as retroviruses, these single-stranded RNA viruses can cause cancer in humans. Examples include human T-cell leukemia virus type 1 (HTLV-1) and human immunodeficiency virus (HIV).

Tumor virus infections are responsible for approximately 15-20% of all cancer cases worldwide, making them a significant public health concern. Prevention strategies, such as vaccination against HPV and HBV, have been shown to reduce the incidence of associated cancers.

I'm sorry for any confusion, but "Viruses, Unclassified" is not a recognized medical or scientific category. Generally, viruses are classified based on various characteristics such as genome structure, mode of replication, host range, and symptoms they cause. The International Committee on Taxonomy of Viruses (ICTV) is the organization responsible for the formal classification of viruses.

If you have any specific questions about certain unclassified viral entities or phenomena, I'd be happy to help if I can! Please provide more context so I can give a more accurate and helpful response.

The JC (John Cunningham) virus, also known as human polyomavirus 2 (HPyV-2), is a type of double-stranded DNA virus that belongs to the Polyomaviridae family. It is named after the initials of the patient in whom it was first identified.

JC virus is a ubiquitous virus, meaning that it is commonly found in the general population worldwide. Most people get infected with JC virus during childhood and do not experience any symptoms. After the initial infection, the virus remains dormant in the kidneys and other organs of the body.

However, in individuals with weakened immune systems, such as those with HIV/AIDS or who have undergone organ transplantation, JC virus can reactivate and cause a serious brain infection called progressive multifocal leukoencephalopathy (PML). PML is a rare but often fatal disease that affects the white matter of the brain, causing cognitive decline, weakness, and paralysis.

There is currently no cure for PML, and treatment is focused on managing the underlying immune deficiency and controlling the symptoms of the disease.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which can cause respiratory infections in humans. Orthomyxoviridae infections are typically characterized by symptoms such as fever, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue.

Influenza A and B viruses can cause seasonal epidemics of respiratory illness that occur mainly during the winter months in temperate climates. Influenza A viruses can also cause pandemics, which are global outbreaks of disease that occur when a new strain of the virus emerges to which there is little or no immunity in the human population.

Influenza C viruses are less common and typically cause milder illness than influenza A and B viruses. They do not cause epidemics and are not usually included in seasonal flu vaccines.

Orthomyxoviridae infections can be prevented through vaccination, good respiratory hygiene (such as covering the mouth and nose when coughing or sneezing), hand washing, and avoiding close contact with sick individuals. Antiviral medications may be prescribed to treat influenza A and B infections, particularly for people at high risk of complications, such as older adults, young children, pregnant women, and people with certain underlying medical conditions.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

I'm sorry for any confusion, but "North America" is not a medical term. It is a geographical term that refers to the third largest continent in the world, which includes countries such as the United States, Canada, and Mexico, among others. If you have any questions related to medical terminology or health topics, I'd be happy to help with those!

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Viral load refers to the amount or quantity of virus (like HIV, Hepatitis C, SARS-CoV-2) present in an individual's blood or bodily fluids. It is often expressed as the number of virus copies per milliliter of blood or fluid. Monitoring viral load is important in managing and treating certain viral infections, as a higher viral load may indicate increased infectivity, disease progression, or response to treatment.

I could not find a specific medical definition for "Vaccines, DNA." However, I can provide you with some information about DNA vaccines.

DNA vaccines are a type of vaccine that uses genetically engineered DNA to stimulate an immune response in the body. They work by introducing a small piece of DNA into the body that contains the genetic code for a specific antigen (a substance that triggers an immune response). The cells of the body then use this DNA to produce the antigen, which prompts the immune system to recognize and attack it.

DNA vaccines have several advantages over traditional vaccines. They are relatively easy to produce, can be stored at room temperature, and can be designed to protect against a wide range of diseases. Additionally, because they use DNA to stimulate an immune response, DNA vaccines do not require the growth and culture of viruses or bacteria, which can make them safer than traditional vaccines.

DNA vaccines are still in the experimental stages, and more research is needed to determine their safety and effectiveness. However, they have shown promise in animal studies and are being investigated as a potential tool for preventing a variety of infectious diseases, including influenza, HIV, and cancer.

Zoonoses are infectious diseases that can be transmitted from animals to humans. They are caused by pathogens such as viruses, bacteria, parasites, or fungi that naturally infect non-human animals and can sometimes infect and cause disease in humans through various transmission routes like direct contact with infected animals, consumption of contaminated food or water, or vectors like insects. Some well-known zoonotic diseases include rabies, Lyme disease, salmonellosis, and COVID-19 (which is believed to have originated from bats). Public health officials work to prevent and control zoonoses through various measures such as surveillance, education, vaccination, and management of animal populations.

Avian leukosis virus (ALV) is a type of retrovirus that primarily affects chickens and other birds. It is responsible for a group of diseases known as avian leukosis, which includes various types of tumors and immunosuppressive conditions. The virus is transmitted horizontally through the shedder's dander, feathers, and vertical transmission through infected eggs.

There are several subgroups of ALV (A, B, C, D, E, and J), each with different host ranges and pathogenicity. Some strains can cause rapid death in young chickens, while others may take years to develop clinical signs. The most common form of the disease is neoplastic, characterized by the development of various types of tumors such as lymphomas, myelomas, and sarcomas.

Avian leukosis virus infection can have significant economic impacts on the poultry industry due to decreased growth rates, increased mortality, and condemnation of infected birds at processing. Control measures include eradication programs, biosecurity practices, vaccination, and breeding for genetic resistance.

Viral core proteins are the structural proteins that make up the viral capsid or protein shell, enclosing and protecting the viral genome. These proteins play a crucial role in the assembly of the virion, assist in the infection process by helping to deliver the viral genome into the host cell, and may also have functions in regulating viral replication. The specific composition and structure of viral core proteins vary among different types of viruses.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Paraneoplastic syndromes of the nervous system are a group of rare disorders that occur in some individuals with cancer. These syndromes are caused by an immune system response to the cancer tumor, which can lead to the damage or destruction of nerve cells. The immune system produces antibodies and/or activated immune cells that attack the neural tissue, leading to neurological symptoms.

Paraneoplastic syndromes can affect any part of the nervous system, including the brain, spinal cord, peripheral nerves, and muscles. Symptoms vary depending on the specific syndrome and the location of the affected nerve tissue. Some common neurological symptoms include muscle weakness, numbness or tingling, seizures, memory loss, confusion, difficulty speaking or swallowing, visual disturbances, and coordination problems.

Paraneoplastic syndromes are often associated with specific types of cancer, such as small cell lung cancer, breast cancer, ovarian cancer, and lymphoma. Diagnosis can be challenging because the symptoms may precede the discovery of the underlying cancer. A combination of clinical evaluation, imaging studies, laboratory tests, and sometimes a brain biopsy may be necessary to confirm the diagnosis.

Treatment typically involves addressing the underlying cancer with surgery, chemotherapy, or radiation therapy. Immunosuppressive therapies may also be used to manage the immune response that is causing the neurological symptoms. While treatment can help alleviate symptoms and improve quality of life, paraneoplastic syndromes are often difficult to cure completely.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Viral fusion proteins are specialized surface proteins found on the envelope of enveloped viruses. These proteins play a crucial role in the viral infection process by mediating the fusion of the viral membrane with the target cell membrane, allowing the viral genetic material to enter the host cell and initiate replication.

The fusion protein is often synthesized as an inactive precursor, which undergoes a series of conformational changes upon interaction with specific receptors on the host cell surface. This results in the exposure of hydrophobic fusion peptides or domains that insert into the target cell membrane, bringing the two membranes into close proximity and facilitating their merger.

A well-known example of a viral fusion protein is the gp120/gp41 complex found on the Human Immunodeficiency Virus (HIV). The gp120 subunit binds to CD4 receptors and chemokine coreceptors on the host cell surface, triggering conformational changes in the gp41 subunit that expose the fusion peptide and enable membrane fusion. Understanding the structure and function of viral fusion proteins is important for developing antiviral strategies and vaccines.

Chikungunya virus (CHIKV) is an alphavirus from the Togaviridae family that is transmitted to humans through the bite of infected mosquitoes, primarily Aedes aegypti and Aedes albopictus. The name "Chikungunya" is derived from a Makonde word meaning "to become contorted," which describes the stooped posture developed as a result of severe arthralgia (joint pain) that is a primary symptom of infection with this virus.

CHIKV infection typically causes a febrile illness, characterized by an abrupt onset of high fever, severe joint pain, muscle pain, headache, nausea, fatigue, and rash. While the symptoms are usually self-limiting and resolve within 10 days, some individuals may experience persistent or recurring joint pain for several months or even years after the initial infection.

There is no specific antiviral treatment available for Chikungunya virus infection, and management primarily focuses on relieving symptoms with rest, fluids, and over-the-counter pain relievers such as acetaminophen or nonsteroidal anti-inflammatory drugs (NSAIDs). Prevention measures include avoiding mosquito bites through the use of insect repellent, wearing long sleeves and pants, staying in air-conditioned or screened rooms, and eliminating standing water where mosquitoes breed.

Chikungunya virus is found primarily in Africa, Asia, and the Indian subcontinent, but it has also caused outbreaks in Europe and the Americas due to the spread of its vectors, Aedes aegypti and Aedes albopictus. The virus can cause large-scale epidemics, with millions of cases reported during outbreaks. There is currently no approved vaccine for Chikungunya virus infection.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which are the causative agents of flu in humans and animals. These viruses are enveloped, meaning they have a lipid membrane derived from the host cell, and have a single-stranded, negative-sense RNA genome. The genome is segmented, meaning it consists of several separate pieces of RNA, which allows for genetic reassortment or "shuffling" when two different strains infect the same cell, leading to the emergence of new strains.

The viral envelope contains two major glycoproteins: hemagglutinin (HA) and neuraminidase (NA). The HA protein is responsible for binding to host cells and facilitating entry into the cell, while NA helps release newly formed virus particles from infected cells by cleaving sialic acid residues on the host cell surface.

Orthomyxoviruses are known to cause respiratory infections in humans and animals, with influenza A viruses being the most virulent and capable of causing pandemics. Influenza B viruses typically cause less severe illness and are primarily found in humans, while influenza C viruses generally cause mild upper respiratory symptoms and are also mainly restricted to humans.

Bluetongue virus (BTV) is an infectious agent that causes Bluetongue disease, a non-contagious viral disease affecting sheep and other ruminants. It is a member of the Orbivirus genus within the Reoviridae family. The virus is transmitted by biting midges of the Culicoides species and can infect various animals such as sheep, cattle, goats, and wild ruminants.

The virus has a double-stranded RNA genome and consists of ten segments that encode seven structural and four non-structural proteins. The clinical signs of Bluetongue disease in sheep include fever, salivation, swelling of the head and neck, nasal discharge, and respiratory distress, which can be severe or fatal. In contrast, cattle usually show milder symptoms or are asymptomatic, although they can serve as reservoirs for the virus.

Bluetongue virus is an important veterinary pathogen that has a significant economic impact on the global sheep industry. The disease is prevalent in many parts of the world, particularly in tropical and subtropical regions, but has also spread to temperate areas due to climate change and the movement of infected animals. Prevention and control measures include vaccination, insect control, and restricting the movement of infected animals.

Arthropod vectors are living organisms, specifically arthropods such as mosquitoes, ticks, fleas, and lice, that can transmit infectious agents (such as viruses, bacteria, or parasites) from one host to another. This process is called vector-borne transmission. The arthropod vectors become infected with the pathogen while taking a blood meal from an infected host, then transmit the pathogen to another host during subsequent feedings. The transmission can occur through various means, including biting, stinging, or even mechanical contact. It's important to note that not all arthropods are vectors, and only certain species within each group are capable of transmitting diseases.

"Gene products, GAG" refer to the proteins that are produced by the GAG (Group-specific Antigen) gene found in retroviruses, such as HIV (Human Immunodeficiency Virus). These proteins play a crucial role in the structure and function of the viral particle or virion.

The GAG gene encodes for a polyprotein that is cleaved by a protease into several individual proteins, including matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. These proteins are involved in the formation of the viral core, which encloses the viral RNA genome and associated enzymes required for replication.

The MA protein is responsible for binding to the host cell membrane during viral entry, while the CA protein forms the capsid shell that surrounds the viral RNA and NC protein. The NC protein binds to the viral RNA and helps to package it into the virion during assembly. Overall, GAG gene products are essential for the life cycle of retroviruses and are important targets for antiretroviral therapy in HIV-infected individuals.

Serine endopeptidases are a type of enzymes that cleave peptide bonds within proteins (endopeptidases) and utilize serine as the nucleophilic amino acid in their active site for catalysis. These enzymes play crucial roles in various biological processes, including digestion, blood coagulation, and programmed cell death (apoptosis). Examples of serine endopeptidases include trypsin, chymotrypsin, thrombin, and elastase.

I'm sorry for any confusion, but "Vietnam" is not a medical term. It is the name of a country located in Southeast Asia. If you have any questions about medical conditions or terminology, I would be happy to help clarify those for you.

Complement fixation tests are a type of laboratory test used in immunology and serology to detect the presence of antibodies in a patient's serum. These tests are based on the principle of complement activation, which is a part of the immune response. The complement system consists of a group of proteins that work together to help eliminate pathogens from the body.

In a complement fixation test, the patient's serum is mixed with a known antigen and complement proteins. If the patient has antibodies against the antigen, they will bind to it and activate the complement system. This results in the consumption or "fixation" of the complement proteins, which are no longer available to participate in a secondary reaction.

A second step involves adding a fresh source of complement proteins and a dye-labeled antibody that recognizes a specific component of the complement system. If complement was fixed during the first step, it will not be available for this secondary reaction, and the dye-labeled antibody will remain unbound. Conversely, if no antibodies were present in the patient's serum, the complement proteins would still be available for the second reaction, leading to the binding of the dye-labeled antibody.

The mixture is then examined under a microscope or using a spectrophotometer to determine whether the dye-labeled antibody has bound. If it has not, this indicates that the patient's serum contains antibodies specific to the antigen used in the test, and a positive result is recorded.

Complement fixation tests have been widely used for the diagnosis of various infectious diseases, such as syphilis, measles, and influenza. However, they have largely been replaced by more modern serological techniques, like enzyme-linked immunosorbent assays (ELISAs) and nucleic acid amplification tests (NAATs), due to their increased sensitivity, specificity, and ease of use.

I apologize for any confusion, but "Asia" is not a medical term. It is the largest continent in the world, comprising about 30% of the Earth's total land area and containing around 60% of the world's current human population. It is divided into several regions, including Northern Asia (Siberia), Eastern Asia (China, Japan, Korea, Mongolia, Taiwan), Southern Asia (India, Pakistan, Bangladesh, Sri Lanka, Maldives), Southeastern Asia (Vietnam, Thailand, Indonesia, Philippines, Malaysia, Singapore, Myanmar, Cambodia, Laos, Brunei), and Western Asia (Middle East).

If you have any questions related to medical terminology or health-related topics, I'd be happy to help.

Sendai virus, also known as murine parainfluenza virus or pneumonia virus of mice, is a species of paramyxovirus that primarily infects rodents. It is an enveloped, negative-sense, single-stranded RNA virus with a nonsegmented genome. The virus is named after the city of Sendai in Japan where it was first isolated in 1952.

Sendai virus is highly contagious and can cause respiratory illness in mice, rats, and other small rodents. It replicates in the respiratory epithelium, leading to inflammation and necrosis of the airways. The virus can also suppress the host's immune response, making infected animals more susceptible to secondary bacterial infections.

In laboratory settings, Sendai virus is sometimes used as a tool for studying viral pathogenesis, immunology, and gene therapy. It has been used as a vector for delivering genes into mammalian cells, including human cells, due to its ability to efficiently infect and transduce a wide range of cell types.

It's important to note that Sendai virus is not known to infect humans or cause disease in humans, and it is not considered a significant public health concern.

The Moloney murine leukemia virus (Mo-MLV) is a type of retrovirus, specifically a gammaretrovirus, that is commonly found in mice. It was first discovered and isolated by John Moloney in 1960. Mo-MLV is known to cause various types of cancerous conditions, particularly leukemia, in susceptible mouse strains.

Mo-MLV has a single-stranded RNA genome that is reverse transcribed into double-stranded DNA upon infection of the host cell. This viral DNA then integrates into the host's genome and utilizes the host's cellular machinery to produce new virus particles. The Mo-MLV genome encodes for several viral proteins, including gag (group-specific antigen), pol (polymerase), and env (envelope) proteins, which are essential for the replication cycle of the virus.

Mo-MLV is widely used in laboratory research as a model retrovirus to study various aspects of viral replication, gene therapy, and oncogenesis. It has also been engineered as a vector for gene delivery applications due to its ability to efficiently integrate into the host genome and deliver large DNA sequences. However, it is important to note that Mo-MLV and other retroviruses have the potential to cause insertional mutagenesis, which can lead to unintended genetic alterations and adverse effects in some cases.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

Virus integration, in the context of molecular biology and virology, refers to the insertion of viral genetic material into the host cell's genome. This process is most commonly associated with retroviruses, such as HIV (Human Immunodeficiency Virus), which have an enzyme called reverse transcriptase that converts their RNA genome into DNA. This DNA can then integrate into the host's chromosomal DNA, becoming a permanent part of the host's genetic material.

This integration is a crucial step in the retroviral life cycle, allowing the virus to persist within the host cell and evade detection by the immune system. It also means that the viral genome can be passed on to daughter cells when the host cell divides.

However, it's important to note that not all viruses integrate their genetic material into the host's genome. Some viruses, like influenza, exist as separate entities within the host cell and do not become part of the host's DNA.

RNA-dependent RNA polymerase, also known as RNA replicase, is an enzyme that catalyzes the production of RNA from an RNA template. It plays a crucial role in the replication of certain viruses, such as positive-strand RNA viruses and retroviruses, which use RNA as their genetic material. The enzyme uses the existing RNA strand as a template to create a new complementary RNA strand, effectively replicating the viral genome. This process is essential for the propagation of these viruses within host cells and is a target for antiviral therapies.

I'm sorry for any confusion, but "seasons" is not a term that has a medical definition. Seasons refer to the four divisions of the year (spring, summer, autumn or fall, and winter) based on the position of the earth in its orbit around the sun. If you have any questions related to health or medicine, I'd be happy to try to help answer those!

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Influenza, also known as the flu, is a highly contagious viral infection that attacks the respiratory system of humans. It is caused by influenza viruses A, B, or C and is characterized by the sudden onset of fever, chills, headache, muscle pain, sore throat, cough, runny nose, and fatigue. Influenza can lead to complications such as pneumonia, bronchitis, and ear infections, and can be particularly dangerous for young children, older adults, pregnant women, and people with weakened immune systems or chronic medical conditions. The virus is spread through respiratory droplets produced when an infected person coughs, sneezes, or talks, and can also survive on surfaces for a period of time. Influenza viruses are constantly changing, which makes it necessary to get vaccinated annually to protect against the most recent and prevalent strains.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Passive immunization is a type of temporary immunity that is transferred to an individual through the injection of antibodies produced outside of the body, rather than through the active production of antibodies in the body in response to vaccination or infection. This can be done through the administration of preformed antibodies, such as immune globulins, which contain a mixture of antibodies that provide immediate protection against specific diseases.

Passive immunization is often used in situations where individuals have been exposed to a disease and do not have time to develop their own active immune response, or in cases where individuals are unable to produce an adequate immune response due to certain medical conditions. It can also be used as a short-term measure to provide protection until an individual can receive a vaccination that will confer long-term immunity.

Passive immunization provides immediate protection against disease, but the protection is typically short-lived, lasting only a few weeks or months. This is because the transferred antibodies are gradually broken down and eliminated by the body over time. In contrast, active immunization confers long-term immunity through the production of memory cells that can mount a rapid and effective immune response upon re-exposure to the same pathogen in the future.

Interferon-beta (IFN-β) is a type of cytokine - specifically, it's a protein that is produced and released by cells in response to stimulation by a virus or other foreign substance. It belongs to the interferon family of cytokines, which play important roles in the body's immune response to infection.

IFN-β has antiviral properties and helps to regulate the immune system. It works by binding to specific receptors on the surface of cells, which triggers a signaling cascade that leads to the activation of genes involved in the antiviral response. This results in the production of proteins that inhibit viral replication and promote the death of infected cells.

IFN-β is used as a medication for the treatment of certain autoimmune diseases, such as multiple sclerosis (MS). In MS, the immune system mistakenly attacks the protective coating around nerve fibers in the brain and spinal cord, causing inflammation and damage to the nerves. IFN-β has been shown to reduce the frequency and severity of relapses in people with MS, possibly by modulating the immune response and reducing inflammation.

It's important to note that while IFN-β is an important component of the body's natural defense system, it can also have side effects when used as a medication. Common side effects of IFN-β therapy include flu-like symptoms such as fever, chills, and muscle aches, as well as injection site reactions. More serious side effects are rare but can occur, so it's important to discuss the risks and benefits of this treatment with a healthcare provider.

I'm sorry for any confusion, but "geese" is not a medical term. It refers to various waterbirds constituting the family Anatidae and the genus Branta, characterized by a long neck, wide wings, and a honking call. They are not related to human health or medicine. If you have any medical concerns or questions, I'd be happy to help you with those!

HIV (Human Immunodeficiency Virus) infection is a viral illness that progressively attacks and weakens the immune system, making individuals more susceptible to other infections and diseases. The virus primarily infects CD4+ T cells, a type of white blood cell essential for fighting off infections. Over time, as the number of these immune cells declines, the body becomes increasingly vulnerable to opportunistic infections and cancers.

HIV infection has three stages:

1. Acute HIV infection: This is the initial stage that occurs within 2-4 weeks after exposure to the virus. During this period, individuals may experience flu-like symptoms such as fever, fatigue, rash, swollen glands, and muscle aches. The virus replicates rapidly, and the viral load in the body is very high.
2. Chronic HIV infection (Clinical latency): This stage follows the acute infection and can last several years if left untreated. Although individuals may not show any symptoms during this phase, the virus continues to replicate at low levels, and the immune system gradually weakens. The viral load remains relatively stable, but the number of CD4+ T cells declines over time.
3. AIDS (Acquired Immunodeficiency Syndrome): This is the most advanced stage of HIV infection, characterized by a severely damaged immune system and numerous opportunistic infections or cancers. At this stage, the CD4+ T cell count drops below 200 cells/mm3 of blood.

It's important to note that with proper antiretroviral therapy (ART), individuals with HIV infection can effectively manage the virus, maintain a healthy immune system, and significantly reduce the risk of transmission to others. Early diagnosis and treatment are crucial for improving long-term health outcomes and reducing the spread of HIV.

I'm sorry for any confusion, but "Russia" is not a medical term or concept. Russia is the largest country in the world by land area, located primarily in Asia with a smaller portion extending into Europe. It is a nation rich in history and culture, known for its diverse landscapes, from tundra and forests to subtropical beaches.

If you have any medical questions or terms that you would like me to define, please feel free to ask!

"Suckling animals" refers to young mammals that are in the process of nursing from their mother's teats or nipples, typically for the purpose of obtaining milk and nutrition. This behavior is instinctual in newborn mammals and helps to establish a strong bond between the mother and offspring, as well as providing essential nutrients for growth and development.

The duration of suckling can vary widely among different species, ranging from just a few days or weeks in some animals to several months or even years in others. In many cases, suckling also helps to stimulate milk production in the mother, ensuring an adequate supply of milk for her offspring.

Examples of suckling animals include newborn humans, as well as young mammals such as puppies, kittens, piglets, lambs, calves, and fawns, among others.

A polyprotein is a long, continuous chain of amino acids that are produced through the translation of a single mRNA (messenger RNA) molecule. This occurs in some viruses, including retroviruses like HIV, where the viral genome contains instructions for the production of one or more polyproteins.

After the polyprotein is synthesized, it is cleaved into smaller, functional proteins by virus-encoded proteases. These individual proteins then assemble to form new virus particles. The concept of polyproteins is important in understanding viral replication and may provide targets for antiviral therapy.

Dengue vaccines are designed to protect against dengue fever, a mosquito-borne viral disease that can cause severe flu-like symptoms and potentially life-threatening complications. Dengue is caused by four distinct serotypes of the virus (DENV-1, DENV-2, DENV-3, and DENV-4), and infection with one serotype does not provide immunity against the others.

The first licensed dengue vaccine, Dengvaxia (CYD-TDV), is a chimeric yellow fever-dengue tetravalent vaccine developed by Sanofi Pasteur. It is approved for use in several countries and has demonstrated efficacy against dengue fever caused by all four serotypes in clinical trials. However, the vaccine has raised concerns about the risk of severe disease in individuals who have not been previously exposed to dengue. As a result, it is recommended primarily for people with a documented past dengue infection or living in areas with high dengue prevalence and where the benefits outweigh the risks.

Another dengue vaccine candidate, Takeda's TAK-003 (also known as TDV), is a live attenuated tetravalent dengue vaccine that has shown efficacy against all four serotypes in clinical trials. It was granted approval by the European Medicines Agency (EMA) and several other countries for use in individuals aged 4-16 years old, living in endemic areas.

Research and development of additional dengue vaccine candidates are ongoing to address concerns about safety, efficacy, and accessibility, particularly for at-risk populations in low- and middle-income countries where dengue is most prevalent.

Tobacco mosaic virus (TMV) is not typically considered in the context of medical definitions, as it's primarily known for its impact on plants rather than humans or animals. However, I will provide the botanical definition for your interest.

Tobacco mosaic virus (TMV) is a positive-sense single-stranded RNA virus that infects a wide range of plants, including tobacco, tomatoes, cucumbers, and many ornamental plants. The virus is named after its initial discovery in tobacco plants, which exhibit symptoms such as mosaic patterns of light and dark green on the leaves, leaf curling, and stunted growth. TMV is highly contagious and can be spread through mechanical means, such as touching infected plants or using contaminated tools. It's also one of the most well-studied viruses due to its impact on agriculture and its historical significance in early virology research.

Epstein-Barr virus (EBV) infections, also known as infectious mononucleosis or "mono," is a viral infection that most commonly affects adolescents and young adults. The virus is transmitted through saliva and other bodily fluids, and can cause a variety of symptoms including fever, sore throat, swollen lymph nodes, fatigue, and skin rash.

EBV is a member of the herpesvirus family and establishes lifelong latency in infected individuals. After the initial infection, the virus remains dormant in the body and can reactivate later in life, causing symptoms such as fatigue and swollen lymph nodes. In some cases, EBV infection has been associated with the development of certain types of cancer, such as Burkitt's lymphoma and nasopharyngeal carcinoma.

The diagnosis of EBV infections is typically made based on a combination of clinical symptoms and laboratory tests, such as blood tests that detect the presence of EBV antibodies or viral DNA. Treatment is generally supportive and aimed at alleviating symptoms, as there is no specific antiviral therapy for EBV infections.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Respiratory Syncytial Virus (RSV) infections refer to the clinical illnesses caused by the Respiratory Syncytial Virus. RSV is a highly contagious virus that spreads through respiratory droplets, contact with infected surfaces, or direct contact with infected people. It primarily infects the respiratory tract, causing inflammation and damage to the cells lining the airways.

RSV infections can lead to a range of respiratory illnesses, from mild, cold-like symptoms to more severe conditions such as bronchiolitis (inflammation of the small airways in the lungs) and pneumonia (infection of the lung tissue). The severity of the infection tends to depend on factors like age, overall health status, and presence of underlying medical conditions.

In infants and young children, RSV is a leading cause of bronchiolitis and pneumonia, often resulting in hospitalization. In older adults, people with weakened immune systems, and those with chronic heart or lung conditions, RSV infections can also be severe and potentially life-threatening.

Symptoms of RSV infection may include runny nose, cough, sneezing, fever, wheezing, and difficulty breathing. Treatment typically focuses on managing symptoms and providing supportive care, although hospitalization and more aggressive interventions may be necessary in severe cases or for high-risk individuals. Preventive measures such as hand hygiene, wearing masks, and avoiding close contact with infected individuals can help reduce the spread of RSV.

Myxoma virus (MYXV) is a member of the Poxviridae family, specifically in the Leporipoxvirus genus. It is a double-stranded DNA virus that naturally infects European rabbits (Oryctolagus cuniculus) and causes a fatal disease called myxomatosis. The virus is transmitted through insect vectors such as mosquitoes and fleas, and it replicates in the cytoplasm of infected cells.

Myxoma virus has been studied extensively as a model organism for viral pathogenesis and host-pathogen interactions. It has also been explored as a potential oncolytic virus for cancer therapy due to its ability to selectively infect and kill certain types of cancer cells while leaving normal cells unharmed. However, it is important to note that the use of Myxoma virus in humans is still experimental and requires further research and development before it can be considered safe and effective for therapeutic purposes.

I'm sorry for any confusion, but the abbreviation "USSR" stands for the Union of Soviet Socialist Republics, which was a socialist state in Eastern Europe and northern and central Asia that existed from 1922 until its dissolution in 1991. It was not a medical term or concept. If you have any questions related to medicine, I would be happy to try to help answer them for you.

3-Deazauridine is a chemical compound that is an analog of the nucleoside uridine. In this case, the nitrogen atom at the 3 position of the uracil ring has been replaced with a carbon atom. This modification can affect the way the molecule is processed in cells and can be used in research to study various biological processes. It's important to note that 3-Deazauridine itself does not have any specific medical definition or application, but it might be used in certain biochemical or pharmacological studies.

Cowpox virus is a species of the Orthopoxvirus genus, which belongs to the Poxviridae family. It is a double-stranded DNA virus that primarily infects cows and occasionally other animals such as cats, dogs, and humans. The virus causes a mild disease in its natural host, cattle, characterized by the development of pustular lesions on the udder or teats.

In humans, cowpox virus infection can cause a localized skin infection, typically following contact with an infected animal or contaminated fomites. The infection is usually self-limiting and resolves within 1-2 weeks without specific treatment. However, in rare cases, the virus may spread to other parts of the body and cause more severe symptoms.

Historically, cowpox virus has played a significant role in medical research as it was used by Edward Jenner in 1796 to develop the first successful vaccine against smallpox. The similarity between the two viruses allowed for cross-protection, providing immunity to smallpox without exposing individuals to the more deadly disease. Smallpox has since been eradicated globally, and vaccination with cowpox virus is no longer necessary. However, understanding the biology of cowpox virus remains important due to its potential use as a model organism for studying poxvirus infections and developing countermeasures against related viruses.

I'm sorry for any confusion, but "Japan" is not a medical term. Japan is the name of a country, officially known as Nippon-koku or Nihon-koku in Japanese, and is located in East Asia. It is an island nation in the Pacific Ocean with a population of about 126 million people.

If you have any medical questions or terms that you would like me to define, please let me know!

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Variola virus is the causative agent of smallpox, a highly contagious and deadly disease that was eradicated in 1980 due to a successful global vaccination campaign led by the World Health Organization (WHO). The virus belongs to the family Poxviridae and genus Orthopoxvirus. It is a large, enveloped, double-stranded DNA virus with a complex structure that includes a lipoprotein membrane and an outer protein layer called the lateral body.

The Variola virus has two main clinical forms: variola major and variola minor. Variola major is more severe and deadly, with a mortality rate of up to 30%, while variola minor is less severe and has a lower mortality rate. The virus is transmitted through direct contact with infected individuals or contaminated objects, such as clothing or bedding.

Smallpox was once a major public health threat worldwide, causing millions of deaths and severe illnesses. However, since its eradication, Variola virus has been kept in secure laboratories for research purposes only. The virus is considered a potential bioterrorism agent, and efforts are being made to develop new vaccines and antiviral treatments to protect against possible future outbreaks.

Antibody formation, also known as humoral immune response, is the process by which the immune system produces proteins called antibodies in response to the presence of a foreign substance (antigen) in the body. This process involves several steps:

1. Recognition: The antigen is recognized and bound by a type of white blood cell called a B lymphocyte or B cell, which then becomes activated.
2. Differentiation: The activated B cell undergoes differentiation to become a plasma cell, which is a type of cell that produces and secretes large amounts of antibodies.
3. Antibody production: The plasma cells produce and release antibodies, which are proteins made up of four polypeptide chains (two heavy chains and two light chains) arranged in a Y-shape. Each antibody has two binding sites that can recognize and bind to specific regions on the antigen called epitopes.
4. Neutralization or elimination: The antibodies bind to the antigens, neutralizing them or marking them for destruction by other immune cells. This helps to prevent the spread of infection and protect the body from harmful substances.

Antibody formation is an important part of the adaptive immune response, which allows the body to specifically recognize and respond to a wide variety of pathogens and foreign substances.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Respiratory Syncytial Virus (RSV) is a highly contagious virus that causes infections in the respiratory system. In humans, it primarily affects the nose, throat, lungs, and bronchioles (the airways leading to the lungs). It is a major cause of lower respiratory tract infections and bronchiolitis (inflammation of the small airways in the lung) in young children, but can also infect older children and adults.

Human Respiratory Syncytial Virus (hRSV) belongs to the family Pneumoviridae and is an enveloped, single-stranded, negative-sense RNA virus. The viral envelope contains two glycoproteins: the G protein, which facilitates attachment to host cells, and the F protein, which mediates fusion of the viral and host cell membranes.

Infection with hRSV typically occurs through direct contact with respiratory droplets from an infected person or contaminated surfaces. The incubation period ranges from 2 to 8 days, after which symptoms such as runny nose, cough, sneezing, fever, and wheezing may appear. In severe cases, particularly in infants, young children, older adults, and individuals with weakened immune systems, hRSV can cause pneumonia or bronchiolitis, leading to hospitalization and, in rare cases, death.

Currently, there is no approved vaccine for hRSV; however, passive immunization with palivizumab, a monoclonal antibody, is available for high-risk infants to prevent severe lower respiratory tract disease caused by hRSV. Supportive care and prevention of complications are the mainstays of treatment for hRSV infections.

An open reading frame (ORF) is a continuous stretch of DNA or RNA sequence that has the potential to be translated into a protein. It begins with a start codon (usually "ATG" in DNA, which corresponds to "AUG" in RNA) and ends with a stop codon ("TAA", "TAG", or "TGA" in DNA; "UAA", "UAG", or "UGA" in RNA). The sequence between these two points is called a coding sequence (CDS), which, when transcribed into mRNA and translated into amino acids, forms a polypeptide chain.

In eukaryotic cells, ORFs can be located in either protein-coding genes or non-coding regions of the genome. In prokaryotic cells, multiple ORFs may be present on a single strand of DNA, often organized into operons that are transcribed together as a single mRNA molecule.

It's important to note that not all ORFs necessarily represent functional proteins; some may be pseudogenes or result from errors in genome annotation. Therefore, additional experimental evidence is typically required to confirm the expression and functionality of a given ORF.

Lassa virus is an arenavirus that causes Lassa fever, a type of hemorrhagic fever. It is primarily transmitted to humans through contact with infected rodents or their urine and droppings. The virus can also be spread through person-to-person transmission via direct contact with the blood, urine, feces, or other bodily fluids of an infected person.

The virus was first discovered in 1969 in the town of Lassa in Nigeria, hence its name. It is endemic to West Africa and is a significant public health concern in countries such as Sierra Leone, Liberia, Guinea, and Nigeria. The symptoms of Lassa fever can range from mild to severe and may include fever, sore throat, muscle pain, chest pain, and vomiting. In severe cases, the virus can cause bleeding, organ failure, and death.

Prevention measures for Lassa fever include avoiding contact with rodents, storing food in rodent-proof containers, and practicing good hygiene. There is no vaccine available to prevent Lassa fever, but ribavirin, an antiviral drug, has been shown to be effective in treating the disease if administered early in the course of illness.

Sentinel surveillance is a type of public health surveillance that is used to monitor the occurrence and spread of specific diseases or health events in a defined population. It is called "sentinel" because it relies on a network of carefully selected healthcare providers, hospitals, or laboratories to report cases of the disease or event of interest.

The main goal of sentinel surveillance is to provide timely and accurate information about the incidence and trends of a particular health problem in order to inform public health action. This type of surveillance is often used when it is not feasible or practical to monitor an entire population, such as in the case of rare diseases or emerging infectious diseases.

Sentinel surveillance systems typically require well-defined criteria for case identification and reporting, as well as standardized data collection and analysis methods. They may also involve active monitoring and follow-up of cases to better understand the epidemiology of the disease or event. Overall, sentinel surveillance is an important tool for detecting and responding to public health threats in a timely and effective manner.

Skin manifestations refer to visible changes on the skin that can indicate an underlying medical condition or disease process. These changes can include rashes, lesions, discoloration, eruptions, blisters, hives, and other abnormalities. The appearance, distribution, and pattern of these manifestations can provide important clues for healthcare professionals to diagnose and manage the underlying condition.

Skin manifestations can be caused by a wide range of factors, including infections, inflammatory conditions, allergic reactions, genetic disorders, autoimmune diseases, and cancer. In some cases, skin manifestations may be the primary symptom of a medical condition, while in other cases, they may be a secondary effect of medication or treatment.

It is important to note that while skin manifestations can provide valuable diagnostic information, they should always be evaluated in the context of the patient's overall medical history and presentation. A thorough physical examination and appropriate diagnostic tests are often necessary to confirm a diagnosis and develop an effective treatment plan.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

Host specificity, in the context of medical and infectious diseases, refers to the tendency of a pathogen (such as a virus, bacterium, or parasite) to infect and cause disease only in specific host species or individuals with certain genetic characteristics. This means that the pathogen is not able to establish infection or cause illness in other types of hosts. Host specificity can be determined by various factors such as the ability of the pathogen to attach to and enter host cells, replicate within the host, evade the host's immune response, and obtain necessary nutrients from the host. Understanding host specificity is important for developing effective strategies to prevent and control infectious diseases.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

Southeast Asia is a geographical region that consists of the countries that are located at the southeastern part of the Asian continent. The definition of which countries comprise Southeast Asia may vary, but it generally includes the following 11 countries:

* Brunei
* Cambodia
* East Timor (Timor-Leste)
* Indonesia
* Laos
* Malaysia
* Myanmar (Burma)
* Philippines
* Singapore
* Thailand
* Vietnam

Southeast Asia is known for its rich cultural diversity, with influences from Hinduism, Buddhism, Islam, and Christianity. The region is also home to a diverse range of ecosystems, including rainforests, coral reefs, and mountain ranges. In recent years, Southeast Asia has experienced significant economic growth and development, but the region still faces challenges related to poverty, political instability, and environmental degradation.

Poultry diseases refer to a wide range of infectious and non-infectious disorders that affect domesticated birds, particularly those raised for meat, egg, or feather production. These diseases can be caused by various factors including viruses, bacteria, fungi, parasites, genetic predisposition, environmental conditions, and management practices.

Infectious poultry diseases are often highly contagious and can lead to significant economic losses in the poultry industry due to decreased production, increased mortality, and reduced quality of products. Some examples of infectious poultry diseases include avian influenza, Newcastle disease, salmonellosis, colibacillosis, mycoplasmosis, aspergillosis, and coccidiosis.

Non-infectious poultry diseases can be caused by factors such as poor nutrition, environmental stressors, and management issues. Examples of non-infectious poultry diseases include ascites, fatty liver syndrome, sudden death syndrome, and various nutritional deficiencies.

Prevention and control of poultry diseases typically involve a combination of biosecurity measures, vaccination programs, proper nutrition, good management practices, and monitoring for early detection and intervention. Rapid and accurate diagnosis of poultry diseases is crucial to implementing effective treatment and prevention strategies, and can help minimize the impact of disease outbreaks on both individual flocks and the broader poultry industry.

Per the Centers for Disease Control and Prevention (CDC), Norovirus is a highly contagious virus that often causes vomiting and diarrhea. It is a common cause of gastroenteritis, which is an inflammation of the stomach and intestines. This infection is often referred to as the "stomach flu," although it is not related to the influenza virus.

Norovirus spreads easily from person to person, through contaminated food or water, or by touching contaminated surfaces. Symptoms usually develop 12 to 48 hours after exposure and include nausea, vomiting, diarrhea, stomach pain, fever, and headache.

The Norwalk virus is named after Norwalk, Ohio, where an outbreak of the illness occurred in 1968. It was first identified during an investigation into an outbreak of gastroenteritis among school children. The virus was later renamed norovirus in 2002 to reflect its broader range of hosts and clinical manifestations.

It's important to note that while Norwalk virus is a common cause of viral gastroenteritis, there are many other viruses, bacteria, and parasites that can also cause similar symptoms. If you suspect you have norovirus or any other foodborne illness, it's important to seek medical attention and avoid preparing food for others until your symptoms have resolved.

Hendra virus (HeV) is an enveloped, negative-sense, single-stranded RNA virus that belongs to the genus Henipavirus in the family Paramyxoviridae. It was initially identified in 1994 during an outbreak of a mysterious disease affecting horses and humans in Hendra, a suburb of Brisbane, Australia. The natural host of this virus is the fruit bat (Pteropus spp.), also known as flying foxes.

HeV infection can cause severe respiratory and neurological diseases in various mammals, including horses, humans, and other domestic animals. Horses are considered the primary source of human infections, as they get infected after direct or indirect contact with body fluids (e.g., urine, saliva, or nasal discharge) from infected fruit bats. Human cases usually occur through close contact with infected horses or their bodily fluids during veterinary care, slaughtering, or other activities.

The incubation period in humans ranges from 5 to 16 days, followed by the onset of nonspecific influenza-like symptoms such as fever, cough, sore throat, and muscle pain. In severe cases, HeV can cause pneumonia, encephalitis, or both, with a high fatality rate (approximately 57%). No specific treatment or vaccine is currently available for humans; however, ribavirin has shown some efficacy in treating HeV infections in vitro and in animal models. Preventive measures include avoiding contact with infected horses and implementing strict biosecurity practices when handling potentially infected animals.

An enterovirus is a type of virus that primarily infects the gastrointestinal tract. There are over 100 different types of enteroviruses, including polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses such as EV-D68 and EV-A71. These viruses are typically spread through close contact with an infected person, or by consuming food or water contaminated with the virus.

While many people infected with enteroviruses may not experience any symptoms, some may develop mild to severe illnesses such as hand, foot and mouth disease, herpangina, meningitis, encephalitis, myocarditis, and paralysis (in case of poliovirus). Infection can occur in people of all ages, but young children are more susceptible to infection and severe illness.

Prevention measures include practicing good hygiene, such as washing hands frequently with soap and water, avoiding close contact with sick individuals, and not sharing food or drinks with someone who is ill. There are also vaccines available to prevent poliovirus infection.

Medical Definition of "Herpesvirus 4, Human" (Epstein-Barr Virus)

"Herpesvirus 4, Human," also known as Epstein-Barr virus (EBV), is a member of the Herpesviridae family and is one of the most common human viruses. It is primarily transmitted through saliva and is often referred to as the "kissing disease."

EBV is the causative agent of infectious mononucleosis (IM), also known as glandular fever, which is characterized by symptoms such as fatigue, sore throat, fever, and swollen lymph nodes. The virus can also cause other diseases, including certain types of cancer, such as Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma.

Once a person becomes infected with EBV, the virus remains in the body for the rest of their life, residing in certain white blood cells called B lymphocytes. In most people, the virus remains dormant and does not cause any further symptoms. However, in some individuals, the virus may reactivate, leading to recurrent or persistent symptoms.

EBV infection is diagnosed through various tests, including blood tests that detect antibodies against the virus or direct detection of the virus itself through polymerase chain reaction (PCR) assays. There is no cure for EBV infection, and treatment is generally supportive, focusing on relieving symptoms and managing complications. Prevention measures include practicing good hygiene, avoiding close contact with infected individuals, and not sharing personal items such as toothbrushes or drinking glasses.

Arachnid vectors are arthropods belonging to the class Arachnida that are capable of transmitting infectious diseases to humans and other animals. Arachnids include spiders, scorpions, mites, and ticks. Among these, ticks and some mites are the most significant as disease vectors.

Ticks can transmit a variety of bacterial, viral, and protozoan pathogens, causing diseases such as Lyme disease, Rocky Mountain spotted fever, anaplasmosis, ehrlichiosis, babesiosis, tularemia, and several types of encephalitis. They attach to the host's skin and feed on their blood, during which they can transmit pathogens from their saliva.

Mites, particularly chiggers and some species of birds and rodents mites, can also act as vectors for certain diseases, such as scrub typhus and rickettsialpox. Mites are tiny arachnids that live on the skin or in the nests of their hosts and feed on their skin cells, fluids, or blood.

It is important to note that not all arachnids are disease vectors, and only a small percentage of them can transmit infectious diseases. However, those that do pose a significant public health risk and require proper prevention measures, such as using insect repellents, wearing protective clothing, and checking for and promptly removing attached ticks.

Serologic tests are laboratory tests that detect the presence or absence of antibodies or antigens in a patient's serum (the clear liquid that separates from clotted blood). These tests are commonly used to diagnose infectious diseases, as well as autoimmune disorders and other medical conditions.

In serologic testing for infectious diseases, a sample of the patient's blood is collected and allowed to clot. The serum is then separated from the clot and tested for the presence of antibodies that the body has produced in response to an infection. The test may be used to identify the specific type of infection or to determine whether the infection is active or has resolved.

Serologic tests can also be used to diagnose autoimmune disorders, such as rheumatoid arthritis and lupus, by detecting the presence of antibodies that are directed against the body's own tissues. These tests can help doctors confirm a diagnosis and monitor the progression of the disease.

It is important to note that serologic tests are not always 100% accurate and may produce false positive or false negative results. Therefore, they should be interpreted in conjunction with other clinical findings and laboratory test results.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Acyclovir is an antiviral medication used for the treatment of infections caused by herpes simplex viruses (HSV) including genital herpes, cold sores, and shingles (varicella-zoster virus). It works by interfering with the replication of the virus's DNA, thereby preventing the virus from multiplying further. Acyclovir is available in various forms such as oral tablets, capsules, creams, and intravenous solutions.

The medical definition of 'Acyclovir' is:

Acyclovir (brand name Zovirax) is a synthetic nucleoside analogue that functions as an antiviral agent, specifically against herpes simplex viruses (HSV) types 1 and 2, varicella-zoster virus (VZV), and Epstein-Barr virus (EBV). Acyclovir is converted to its active form, acyclovir triphosphate, by viral thymidine kinase. This activated form then inhibits viral DNA polymerase, preventing further replication of the virus's DNA.

Acyclovir has a relatively low toxicity profile and is generally well-tolerated, although side effects such as nausea, vomiting, diarrhea, and headache can occur. In rare cases, more serious side effects such as kidney damage, seizures, or neurological problems may occur. It is important to take acyclovir exactly as directed by a healthcare provider and to report any unusual symptoms promptly.

Enterovirus infections are viral illnesses caused by enteroviruses, which are a type of picornavirus. These viruses commonly infect the gastrointestinal tract and can cause a variety of symptoms depending on the specific type of enterovirus and the age and overall health of the infected individual.

There are over 100 different types of enteroviruses, including polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses such as EV-D68 and EV-A71. Some enterovirus infections may be asymptomatic or cause only mild symptoms, while others can lead to more severe illnesses.

Common symptoms of enterovirus infections include fever, sore throat, runny nose, cough, muscle aches, and skin rashes. In some cases, enteroviruses can cause more serious complications such as meningitis (inflammation of the membranes surrounding the brain and spinal cord), encephalitis (inflammation of the brain), myocarditis (inflammation of the heart muscle), and paralysis.

Enterovirus infections are typically spread through close contact with an infected person, such as through respiratory droplets or fecal-oral transmission. They can also be spread through contaminated surfaces or objects. Preventive measures include good hygiene practices, such as washing hands frequently and avoiding close contact with sick individuals.

There are no specific antiviral treatments for enterovirus infections, and most cases resolve on their own within a few days to a week. However, severe cases may require hospitalization and supportive care, such as fluids and medication to manage symptoms. Prevention efforts include vaccination against poliovirus and surveillance for emerging enteroviruses.

Togaviridae is a family of single-stranded, enveloped RNA viruses that includes several important pathogens affecting humans and animals. The most well-known member of this family is the genus Alphavirus, which includes viruses such as Chikungunya, Eastern equine encephalitis, Sindbis, O'nyong-nyong, Ross River, and Western equine encephalitis viruses.

Togaviridae infections typically cause symptoms such as fever, rash, arthralgia (joint pain), myalgia (muscle pain), and sometimes more severe manifestations like meningitis or encephalitis, depending on the specific virus and the host's immune status. The transmission of these viruses usually occurs through the bite of infected mosquitoes, although some members of this family can also be transmitted via other arthropod vectors or through contact with infected animals or their bodily fluids.

Prevention strategies for Togaviridae infections include using insect repellent, wearing protective clothing, and eliminating breeding sites for mosquitoes. Vaccines are available for some members of this family, such as the Eastern and Western equine encephalitis viruses, but not for others like Chikungunya virus. Treatment is generally supportive, focusing on relieving symptoms and managing complications.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

DNA virus infections refer to diseases or conditions caused by the invasion and replication of DNA viruses in a host organism. DNA viruses are a type of virus that uses DNA as their genetic material. They can cause a variety of diseases, ranging from relatively mild illnesses to severe or life-threatening conditions.

Some examples of DNA viruses include herpes simplex virus (HSV), varicella-zoster virus (VZV), human papillomavirus (HPV), hepatitis B virus (HBV), and adenoviruses. These viruses can cause a range of diseases, including cold sores, genital herpes, chickenpox, shingles, cervical cancer, liver cancer, and respiratory infections.

DNA virus infections typically occur when the virus enters the body through a break in the skin or mucous membranes, such as those found in the eyes, nose, mouth, or genitals. Once inside the body, the virus infects cells and uses their machinery to replicate itself, often causing damage to the host cells in the process.

The symptoms of DNA virus infections can vary widely depending on the specific virus and the severity of the infection. Treatment may include antiviral medications, which can help to reduce the severity and duration of symptoms, as well as prevent the spread of the virus to others. In some cases, vaccines may be available to prevent DNA virus infections.

Viral meningitis is a form of meningitis, which is an inflammation of the membranes (meninges) surrounding the brain and spinal cord. It is caused by viral infections, such as enteroviruses, herpesviruses, and HIV. The infection enters the body through the respiratory system or the gastrointestinal tract and then spreads to the central nervous system.

Symptoms of viral meningitis may include fever, headache, stiff neck, photophobia (intolerance to light), and altered mental status. In some cases, patients may also experience vomiting, seizures, or skin rash. However, viral meningitis is generally less severe than bacterial meningitis and has a lower mortality rate.

Most cases of viral meningitis resolve on their own within 7-10 days, and treatment typically involves supportive care such as hydration, pain relief, and fever reduction. Antibiotics are not effective against viruses, so they are not used to treat viral meningitis. In some cases, antiviral medications may be prescribed for certain types of viral meningitis, such as herpes simplex virus (HSV) meningitis.

Preventive measures include practicing good hygiene, such as washing hands frequently and avoiding close contact with people who are sick. There is also a vaccine available to protect against enterovirus D68, which can cause viral meningitis in some cases.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

"Mesocricetus" is a genus of rodents, more commonly known as hamsters. It includes several species of hamsters that are native to various parts of Europe and Asia. The best-known member of this genus is the Syrian hamster, also known as the golden hamster or Mesocricetus auratus, which is a popular pet due to its small size and relatively easy care. These hamsters are burrowing animals and are typically solitary in the wild.

I'm sorry for any confusion, but "Virus Physiological Phenomena" is not a widely recognized or established medical term or concept. It seems to be a combination of two concepts: "virus" and "physiological phenomena."

1. A virus is a small infectious agent that replicates inside the living cells of an organism. Viruses can cause many different types of illnesses, from the common cold to more serious diseases like HIV/AIDS or hepatitis.

2. Physiological phenomena refer to the functions and activities of living organisms and their parts, including cells, tissues, and organs.

If you're looking for information about how viruses affect physiological processes in the body, I would be happy to help provide some general information on that topic! However, it would be best to consult a specific medical text or expert for more detailed or specialized knowledge.

A fatal outcome is a term used in medical context to describe a situation where a disease, injury, or illness results in the death of an individual. It is the most severe and unfortunate possible outcome of any medical condition, and is often used as a measure of the severity and prognosis of various diseases and injuries. In clinical trials and research, fatal outcome may be used as an endpoint to evaluate the effectiveness and safety of different treatments or interventions.

AIDS Dementia Complex (ADC) is a neurological disorder that occurs in people with advanced HIV infection or AIDS. It is also known as HIV-associated dementia (HAD) or HIV encephalopathy. ADC is characterized by cognitive impairment, motor dysfunction, and behavioral changes that can significantly affect the individual's daily functioning and quality of life.

The symptoms of AIDS Dementia Complex may include:
- Difficulty with concentration and memory
- Slowness in thinking, processing information, or making decisions
- Changes in mood or personality, such as depression, irritability, or apathy
- Difficulty with coordination, balance, or speech
- Progressive weakness and wasting of muscles
- Difficulty with swallowing or speaking

The exact cause of ADC is not fully understood, but it is believed to be related to the direct effects of HIV on the brain. The virus can infect and damage nerve cells, leading to inflammation and degeneration of brain tissue. Treatment for ADC typically involves antiretroviral therapy (ART) to control HIV replication, as well as medications to manage specific symptoms. In some cases, supportive care such as physical therapy or occupational therapy may also be recommended.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

The Fluorescent Antibody Technique (FAT), Indirect is a type of immunofluorescence assay used to detect the presence of specific antigens in a sample. In this method, the sample is first incubated with a primary antibody that binds to the target antigen. After washing to remove unbound primary antibodies, a secondary fluorescently labeled antibody is added, which recognizes and binds to the primary antibody. This indirect labeling approach allows for amplification of the signal, making it more sensitive than direct methods. The sample is then examined under a fluorescence microscope to visualize the location and amount of antigen based on the emitted light from the fluorescent secondary antibody. It's commonly used in diagnostic laboratories for detection of various bacteria, viruses, and other antigens in clinical specimens.

I'm sorry for any confusion, but "Panama" is not a medical term. It is a country located in Central America, known for its famous canal and diverse wildlife. If you have any questions about medical terms or conditions, I would be happy to help answer those!

Membrane fusion is a fundamental biological process that involves the merging of two initially separate lipid bilayers, such as those surrounding cells or organelles, to form a single continuous membrane. This process plays a crucial role in various physiological events including neurotransmitter release, hormone secretion, fertilization, viral infection, and intracellular trafficking of proteins and lipids. Membrane fusion is tightly regulated and requires the participation of specific proteins called SNAREs (Soluble NSF Attachment Protein REceptors) and other accessory factors that facilitate the recognition, approximation, and merger of the membranes. The energy required to overcome the repulsive forces between the negatively charged lipid headgroups is provided by these proteins, which undergo conformational changes during the fusion process. Membrane fusion is a highly specific and coordinated event, ensuring that the correct membranes fuse at the right time and place within the cell.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Hepacivirus is a genus of viruses in the family Flaviviridae. The most well-known member of this genus is Hepatitis C virus (HCV), which is a major cause of liver disease worldwide. HCV infection can lead to chronic hepatitis, cirrhosis, and liver cancer.

Hepaciviruses are enveloped viruses with a single-stranded, positive-sense RNA genome. They have a small icosahedral capsid and infect a variety of hosts, including humans, non-human primates, horses, and birds. The virus enters the host cell by binding to specific receptors on the cell surface and is then internalized through endocytosis.

HCV has a high degree of genetic diversity and is classified into seven major genotypes and numerous subtypes based on differences in its RNA sequence. This genetic variability can affect the virus's ability to evade the host immune response, making treatment more challenging.

In addition to HCV, other hepaciviruses have been identified in various animal species, including equine hepacivirus (EHCV), rodent hepacivirus (RHV), and bat hepacivirus (BtHepCV). These viruses are being studied to better understand the biology of hepaciviruses and their potential impact on human health.

I apologize for any confusion, but "Argentina" is a country in South America and not a medical term or concept. The term "argyria" may be what you're looking for, which is a rare condition resulting from the accumulation of silver compounds in the body, causing the skin to turn blue-gray. However, Argentina and argyria are two distinct terms with different meanings.

Canine distemper virus (CDV) is a single-stranded RNA virus that belongs to the family Paramyxoviridae and causes a contagious and serious disease in dogs and other animals. The virus primarily affects the respiratory, gastrointestinal, and central nervous systems of infected animals.

The symptoms of canine distemper can vary widely depending on the age and immune status of the animal, as well as the strain of the virus. Initial signs may include fever, lethargy, loss of appetite, and discharge from the eyes and nose. As the disease progresses, affected animals may develop vomiting, diarrhea, pneumonia, and neurological symptoms such as seizures, muscle twitching, and paralysis.

Canine distemper is highly contagious and can be spread through direct contact with infected animals or their respiratory secretions. The virus can also be transmitted through contaminated objects such as food bowls, water dishes, and bedding.

Prevention of canine distemper is achieved through vaccination, which is recommended for all dogs as a core vaccine. It is important to keep dogs up-to-date on their vaccinations and to avoid contact with unfamiliar or unvaccinated animals. There is no specific treatment for canine distemper, and therapy is generally supportive, focusing on managing symptoms and preventing complications.

Uridine is a nucleoside that consists of a pyrimidine base (uracil) linked to a pentose sugar (ribose). It is a component of RNA, where it pairs with adenine. Uridine can also be found in various foods such as beer, broccoli, yeast, and meat. In the body, uridine can be synthesized from orotate or from the breakdown of RNA. It has several functions, including acting as a building block for RNA, contributing to energy metabolism, and regulating cell growth and differentiation. Uridine is also available as a dietary supplement and has been studied for its potential benefits in various health conditions.

Parainfluenza Virus 3, Human (HPIV-3) is an enveloped, single-stranded RNA virus that belongs to the family Paramyxoviridae and genus Respirovirus. It is one of the four serotypes of human parainfluenza viruses (HPIVs), which are important causes of acute respiratory tract infections in infants, young children, and immunocompromised individuals.

HPIV-3 primarily infects the upper and lower respiratory tract, causing a wide range of clinical manifestations, from mild to severe respiratory illnesses. The incubation period for HPIV-3 infection is typically 3-7 days. In infants and young children, HPIV-3 can cause croup (laryngotracheobronchitis), bronchiolitis, and pneumonia, while in adults, it usually results in mild upper respiratory tract infections, such as the common cold.

The virus is transmitted through direct contact with infected respiratory secretions or contaminated surfaces, and infection can occur throughout the year but tends to peak during fall and winter months. Currently, there are no approved vaccines for HPIV-3; treatment is primarily supportive and focuses on managing symptoms and complications.

Postencephalitic Parkinson's disease (PEPD) is a secondary form of Parkinsonism that occurs as a result of viral encephalitis, most commonly following the 1918-1920 influenza pandemic. It is a rare condition today due to advancements in healthcare and vaccinations.

The infection causes inflammation in the brain, leading to damage in various areas, particularly the substantia nigra pars compacta, where dopamine-producing neurons are located. This results in decreased levels of dopamine, a neurotransmitter essential for smooth and controlled muscle movements.

The symptoms of PEPD can be similar to those seen in primary Parkinson's disease (PD), such as bradykinesia (slowness of movement), rigidity, resting tremors, and postural instability. However, there are some distinct differences between the two conditions:

1. Age at onset: PEPD tends to affect younger individuals, often in their 20s or 30s, while primary PD usually manifests in people over 50.
2. Symptom progression: The progression of symptoms in PEPD is typically more rapid and severe than in primary PD.
3. Non-motor symptoms: PEPD often presents with a wider range of non-motor symptoms, including sleep disturbances, mood changes, autonomic dysfunction, and oculogyric crises (involuntary upward deviation of the eyes).
4. Response to treatment: PEPD may not respond as well to levodopa therapy compared to primary PD, and patients often experience more severe side effects such as dyskinesias (abnormal involuntary movements) and motor fluctuations.

It is essential to differentiate between postencephalitic Parkinson's disease and primary Parkinson's disease, as the treatment approaches and prognosis may differ significantly.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

The Central Nervous System (CNS) is the part of the nervous system that consists of the brain and spinal cord. It is called the "central" system because it receives information from, and sends information to, the rest of the body through peripheral nerves, which make up the Peripheral Nervous System (PNS).

The CNS is responsible for processing sensory information, controlling motor functions, and regulating various autonomic processes like heart rate, respiration, and digestion. The brain, as the command center of the CNS, interprets sensory stimuli, formulates thoughts, and initiates actions. The spinal cord serves as a conduit for nerve impulses traveling to and from the brain and the rest of the body.

The CNS is protected by several structures, including the skull (which houses the brain) and the vertebral column (which surrounds and protects the spinal cord). Despite these protective measures, the CNS remains vulnerable to injury and disease, which can have severe consequences due to its crucial role in controlling essential bodily functions.

Feline Leukemia Virus (FeLV) is a retrovirus that primarily infects cats, causing a variety of diseases and disorders. It is the causative agent of feline leukemia, a name given to a syndrome characterized by a variety of symptoms such as lymphoma (cancer of the lymphatic system), anemia, immunosuppression, and reproductive disorders. FeLV is typically transmitted through close contact with infected cats, such as through saliva, nasal secretions, urine, and milk. It can also be spread through shared litter boxes and feeding dishes.

FeLV infects cells of the immune system, leading to a weakened immune response and making the cat more susceptible to other infections. The virus can also integrate its genetic material into the host's DNA, potentially causing cancerous changes in infected cells. FeLV is a significant health concern for cats, particularly those that are exposed to outdoor environments or come into contact with other cats. Vaccination and regular veterinary care can help protect cats from this virus.

Molecular epidemiology is a branch of epidemiology that uses laboratory techniques to identify and analyze the genetic material (DNA, RNA) of pathogens or host cells to understand their distribution, transmission, and disease associations in populations. It combines molecular biology methods with epidemiological approaches to investigate the role of genetic factors in disease occurrence and outcomes. This field has contributed significantly to the identification of infectious disease outbreaks, tracking the spread of antibiotic-resistant bacteria, understanding the transmission dynamics of viruses, and identifying susceptible populations for targeted interventions.

Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape. This method involves the use of a centrifuge and a density gradient medium, such as sucrose or cesium chloride, to create a stable density gradient within a column or tube.

The sample is carefully layered onto the top of the gradient and then subjected to high-speed centrifugation. During centrifugation, the particles in the sample move through the gradient based on their size, density, and shape, with heavier particles migrating faster and further than lighter ones. This results in the separation of different components of the mixture into distinct bands or zones within the gradient.

This technique is commonly used to purify and concentrate various types of biological materials, such as viruses, organelles, ribosomes, and subcellular fractions, from complex mixtures. It allows for the isolation of pure and intact particles, which can then be collected and analyzed for further study or use in downstream applications.

In summary, Centrifugation, Density Gradient is a medical laboratory technique used to separate and purify different components of a mixture based on their size, density, and shape using a centrifuge and a density gradient medium.

3' Untranslated Regions (3' UTRs) are segments of messenger RNA (mRNA) that do not code for proteins. They are located after the last exon, which contains the coding sequence for a protein, and before the poly-A tail in eukaryotic mRNAs.

The 3' UTR plays several important roles in regulating gene expression, including:

1. Stability of mRNA: The 3' UTR contains sequences that can bind to proteins that either stabilize or destabilize the mRNA, thereby controlling its half-life and abundance.
2. Localization of mRNA: Some 3' UTRs contain sequences that direct the localization of the mRNA to specific cellular compartments, such as the synapse in neurons.
3. Translation efficiency: The 3' UTR can also contain regulatory elements that affect the translation efficiency of the mRNA into protein. For example, microRNAs (miRNAs) can bind to complementary sequences in the 3' UTR and inhibit translation or promote degradation of the mRNA.
4. Alternative polyadenylation: The 3' UTR can also contain multiple alternative polyadenylation sites, which can lead to different lengths of the 3' UTR and affect gene expression.

Overall, the 3' UTR plays a critical role in post-transcriptional regulation of gene expression, and mutations or variations in the 3' UTR can contribute to human diseases.

Acute disseminated encephalomyelitis (ADEM) is a rare inflammatory demyelinating disease of the central nervous system, characterized by a sudden onset of widespread inflammation and damage to the brain and spinal cord. It typically follows a viral infection or, less commonly, vaccination and is more prevalent in children than adults.

The condition involves the rapid development of multiple inflammatory lesions throughout the white matter of the brain and spinal cord. These lesions lead to demyelination, which means the loss of the protective myelin sheath surrounding nerve fibers, disrupting communication between neurons. This results in various neurological symptoms such as:

1. Encephalopathy (changes in consciousness, behavior, or mental status)
2. Weakness or paralysis of limbs
3. Visual disturbances
4. Speech and language problems
5. Seizures
6. Ataxia (loss of coordination and balance)
7. Sensory changes
8. Autonomic nervous system dysfunction (e.g., temperature regulation, blood pressure, heart rate)

The diagnosis of ADEM is based on clinical presentation, radiological findings, and laboratory tests to exclude other possible causes. Magnetic resonance imaging (MRI) typically shows multiple, large, bilateral lesions in the white matter of the brain and spinal cord. Cerebrospinal fluid analysis may reveal an elevated white blood cell count and increased protein levels.

Treatment for ADEM generally includes high-dose corticosteroids to reduce inflammation and improve outcomes. Intravenous immunoglobulin (IVIG) or plasma exchange (plasmapheresis) may be used if there is no response to steroid therapy. Most patients with ADEM recover completely or have significant improvement within several months, although some may experience residual neurological deficits.

Foot-and-Mouth Disease Virus (FMDV) is a single-stranded, positive-sense RNA virus belonging to the family Picornaviridae and the genus Aphthovirus. It is the causative agent of Foot-and-Mouth Disease (FMD), a highly contagious and severe viral disease that affects cloven-hoofed animals, including cattle, swine, sheep, goats, and buffalo. The virus can be transmitted through direct contact with infected animals or their bodily fluids, as well as through aerosolized particles in the air. FMDV has seven distinct serotypes (O, A, C, Asia 1, and South African Territories [SAT] 1, 2, and 3), and infection with one serotype does not provide cross-protection against other serotypes. The virus primarily targets the animal's epithelial tissues, causing lesions and blisters in and around the mouth, feet, and mammary glands. FMD is not a direct threat to human health but poses significant economic consequences for the global livestock industry due to its high infectivity and morbidity rates.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Herpes Simplex is a viral infection caused by the Herpes Simplex Virus (HSV). There are two types of HSV: HSV-1 and HSV-2. Both types can cause sores or blisters on the skin or mucous membranes, but HSV-1 is typically associated with oral herpes (cold sores) and HSV-2 is usually linked to genital herpes. However, either type can infect any area of the body. The virus remains in the body for life and can reactivate periodically, causing recurrent outbreaks of lesions or blisters. It is transmitted through direct contact with infected skin or mucous membranes, such as during kissing or sexual activity.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

A chimera, in the context of medicine and biology, is a single organism that is composed of cells with different genetics. This can occur naturally in some situations, such as when fraternal twins do not fully separate in utero and end up sharing some organs or tissues. The term "chimera" can also refer to an organism that contains cells from two different species, which can happen in certain types of genetic research or medical treatments. For example, a patient's cells might be genetically modified in a lab and then introduced into their body to treat a disease; if some of these modified cells mix with the patient's original cells, the result could be a chimera.

It's worth noting that the term "chimera" comes from Greek mythology, where it referred to a fire-breathing monster that was part lion, part goat, and part snake. In modern scientific usage, the term has a specific technical meaning related to genetics and organisms, but it may still evoke images of fantastical creatures for some people.

Rabies is a viral zoonotic disease that is typically transmitted through the saliva of infected animals, usually by a bite or scratch. The virus infects the central nervous system, causing encephalopathy and ultimately leading to death in both humans and animals if not treated promptly and effectively.

The rabies virus belongs to the Rhabdoviridae family, with a negative-sense single-stranded RNA genome. It is relatively fragile and cannot survive for long outside of its host, but it can be transmitted through contact with infected tissue or nerve cells.

Initial symptoms of rabies in humans may include fever, headache, and general weakness or discomfort. As the disease progresses, more specific symptoms appear, such as insomnia, anxiety, confusion, partial paralysis, excitation, hallucinations, agitation, hypersalivation (excessive saliva production), difficulty swallowing, and hydrophobia (fear of water).

Once clinical signs of rabies appear, the disease is almost always fatal. However, prompt post-exposure prophylaxis with rabies vaccine and immunoglobulin can prevent the onset of the disease if administered promptly after exposure. Preventive vaccination is also recommended for individuals at high risk of exposure to the virus, such as veterinarians, animal handlers, and travelers to areas where rabies is endemic.

Also known as Varicella-zoster virus (VZV), Herpesvirus 3, Human is a species-specific alphaherpesvirus that causes two distinct diseases: chickenpox (varicella) during primary infection and herpes zoster (shingles) upon reactivation of latent infection.

Chickenpox is typically a self-limiting disease characterized by a generalized, pruritic vesicular rash, fever, and malaise. After resolution of the primary infection, VZV remains latent in the sensory ganglia and can reactivate later in life to cause herpes zoster, which is characterized by a unilateral, dermatomal vesicular rash and pain.

Herpesvirus 3, Human is highly contagious and spreads through respiratory droplets or direct contact with the chickenpox rash. Vaccination is available to prevent primary infection and reduce the risk of complications associated with chickenpox and herpes zoster.

Haplorhini is a term used in the field of primatology and physical anthropology to refer to a parvorder of simian primates, which includes humans, apes (both great and small), and Old World monkeys. The name "Haplorhini" comes from the Greek words "haploos," meaning single or simple, and "rhinos," meaning nose.

The defining characteristic of Haplorhini is the presence of a simple, dry nose, as opposed to the wet, fleshy noses found in other primates, such as New World monkeys and strepsirrhines (which include lemurs and lorises). The nostrils of haplorhines are located close together at the tip of the snout, and they lack the rhinarium or "wet nose" that is present in other primates.

Haplorhini is further divided into two infraorders: Simiiformes (which includes apes and Old World monkeys) and Tarsioidea (which includes tarsiers). These groups are distinguished by various anatomical and behavioral differences, such as the presence or absence of a tail, the structure of the hand and foot, and the degree of sociality.

Overall, Haplorhini is a group of primates that share a number of distinctive features related to their sensory systems, locomotion, and social behavior. Understanding the evolutionary history and diversity of this group is an important area of research in anthropology, biology, and psychology.

I'm not aware of any medical definition for the term "Florida." It is primarily used to refer to a state in the United States located in the southeastern region. If you have any specific medical context in which this term was used, please let me know and I will do my best to provide a relevant answer.

Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) is an enveloped, positive-stranded RNA virus belonging to the Arteriviridae family. It is the causative agent of Porcine Respiratory and Reproductive Syndrome (PRRS), also known as "blue ear disease" or "porcine reproductive and respiratory syndrome."

The virus primarily affects pigs, causing a wide range of clinical signs including respiratory distress in young animals and reproductive failure in pregnant sows. The infection can lead to late-term abortions, stillbirths, premature deliveries, and weak or mummified fetuses. In growing pigs, PRRSV can cause pneumonia, which is often accompanied by secondary bacterial infections.

PRRSV has a tropism for cells of the monocyte-macrophage lineage, and it replicates within these cells, leading to the release of pro-inflammatory cytokines and the development of the clinical signs associated with the disease. The virus is highly infectious and can spread rapidly in susceptible pig populations, making it a significant concern for the swine industry worldwide.

It's important to note that PRRSV has two distinct genotypes: Type 1 (European) and Type 2 (North American). Both types have a high degree of genetic diversity, which can make controlling the virus challenging. Vaccination is available for PRRSV, but it may not provide complete protection against all strains of the virus, and it may not prevent infection or shedding. Therefore, biosecurity measures, such as strict sanitation and animal movement controls, are critical to preventing the spread of this virus in pig populations.

An endemic disease is a type of disease that is regularly found among particular people or in a certain population, and is spread easily from person to person. The rate of infection is consistently high in these populations, but it is relatively stable and does not change dramatically over time. Endemic diseases are contrasted with epidemic diseases, which suddenly increase in incidence and spread rapidly through a large population.

Endemic diseases are often associated with poverty, poor sanitation, and limited access to healthcare. They can also be influenced by environmental factors such as climate, water quality, and exposure to vectors like mosquitoes or ticks. Examples of endemic diseases include malaria in some tropical countries, tuberculosis (TB) in many parts of the world, and HIV/AIDS in certain populations.

Effective prevention and control measures for endemic diseases typically involve improving access to healthcare, promoting good hygiene and sanitation practices, providing vaccinations when available, and implementing vector control strategies. By addressing the underlying social and environmental factors that contribute to the spread of these diseases, it is possible to reduce their impact on affected populations and improve overall health outcomes.

Hepatitis viruses refer to a group of viral agents that primarily target the liver, causing inflammation and damage to hepatocytes (liver cells). This results in various clinical manifestations, ranging from an acute infection to a chronic, persistent infection. There are five main types of hepatitis viruses, named Hepatitis A, B, C, D, and E virus, each with distinct genetic material, modes of transmission, and disease severity.

1. Hepatitis A Virus (HAV): This is a single-stranded RNA virus that is primarily transmitted through the fecal-oral route, often via contaminated food or water. Infected individuals may experience symptoms such as jaundice, fatigue, abdominal pain, and loss of appetite. While most people recover completely within a few months, severe complications can occur in rare cases. A vaccine is available to prevent HAV infection.
2. Hepatitis B Virus (HBV): This is a double-stranded DNA virus that is primarily transmitted through contact with infected blood or bodily fluids, such as during sexual contact, sharing needles, or from mother to child during childbirth. HBV can cause both acute and chronic hepatitis, which may lead to severe liver complications like cirrhosis and liver cancer if left untreated. A vaccine is available to prevent HBV infection.
3. Hepatitis C Virus (HCV): This is a single-stranded RNA virus that is primarily transmitted through contact with infected blood, often through sharing needles or during medical procedures using contaminated equipment. Like HBV, HCV can cause both acute and chronic hepatitis, which may lead to severe liver complications if left untreated. No vaccine is currently available for HCV; however, antiviral treatments can cure the infection in many cases.
4. Hepatitis D Virus (HDV): This is a defective RNA virus that requires the presence of HBV to replicate and cause infection. HDV is primarily transmitted through contact with infected blood or bodily fluids, similar to HBV. Co-infection with both HBV and HDV can result in more severe liver disease compared to HBV infection alone. Antiviral treatments are available for HDV; however, a vaccine is not.
5. Hepatitis E Virus (HEV): This is a single-stranded RNA virus that primarily causes acute hepatitis and is usually transmitted through the fecal-oral route, often through contaminated food or water. In most cases, HEV infection resolves on its own without treatment. However, in pregnant women and individuals with weakened immune systems, HEV can cause severe liver complications. No vaccine is currently available for HEV in the United States; however, a vaccine has been approved in some countries.

HIV-1 (Human Immunodeficiency Virus type 1) is a species of the retrovirus genus that causes acquired immunodeficiency syndrome (AIDS). It is primarily transmitted through sexual contact, exposure to infected blood or blood products, and from mother to child during pregnancy, childbirth, or breastfeeding. HIV-1 infects vital cells in the human immune system, such as CD4+ T cells, macrophages, and dendritic cells, leading to a decline in their numbers and weakening of the immune response over time. This results in the individual becoming susceptible to various opportunistic infections and cancers that ultimately cause death if left untreated. HIV-1 is the most prevalent form of HIV worldwide and has been identified as the causative agent of the global AIDS pandemic.

Interferon type I is a class of signaling proteins, also known as cytokines, that are produced and released by cells in response to the presence of pathogens such as viruses, bacteria, and parasites. These interferons play a crucial role in the body's innate immune system and help to establish an antiviral state in surrounding cells to prevent the spread of infection.

Interferon type I includes several subtypes, such as interferon-alpha (IFN-α), interferon-beta (IFN-β), and interferon-omega (IFN-ω). When produced, these interferons bind to specific receptors on the surface of nearby cells, triggering a cascade of intracellular signaling events that lead to the activation of genes involved in the antiviral response.

The activation of these genes results in the production of enzymes that inhibit viral replication and promote the destruction of infected cells. Interferon type I also enhances the adaptive immune response by promoting the activation and proliferation of immune cells such as T-cells and natural killer (NK) cells, which can directly target and eliminate infected cells.

Overall, interferon type I plays a critical role in the body's defense against viral infections and is an important component of the immune response to many different types of pathogens.

I'm sorry for any confusion, but "Laos" is not a medical term. It is the name of a country, the Lao People's Democratic Republic, located in Southeast Asia. If you have any questions about medical terms or health-related topics, I'd be happy to try and help answer them!

Inclusion bodies, viral are typically described as intracellular inclusions that appear as a result of viral infections. These inclusion bodies consist of aggregates of virus-specific proteins, viral particles, or both, which accumulate inside the host cell's cytoplasm or nucleus during the replication cycle of certain viruses.

The presence of inclusion bodies can sometimes be observed through histological or cytological examination using various staining techniques. Different types of viruses may exhibit distinct morphologies and locations of these inclusion bodies, which can aid in the identification and diagnosis of specific viral infections. However, it is important to note that not all viral infections result in the formation of inclusion bodies, and their presence does not necessarily indicate active viral replication or infection.

Rift Valley fever virus (RVFV) is an arbovirus, a type of virus that is transmitted through the bite of infected arthropods such as mosquitoes and ticks. It belongs to the family Bunyaviridae and the genus Phlebovirus. The virus was first identified in 1930 during an investigation into a large epidemic of cattle deaths near Lake Naivasha in the Rift Valley of Kenya.

RVFV primarily affects animals, particularly sheep, goats, and cattle, causing severe illness and death in newborn animals and abortions in pregnant females. The virus can also infect humans, usually through contact with infected animal tissues or fluids, or through the bite of an infected mosquito. In humans, RVFV typically causes a self-limiting febrile illness, but in some cases, it can lead to more severe complications such as encephalitis (inflammation of the brain) and retinitis (inflammation of the retina), which can result in permanent vision loss.

RVFV is endemic to parts of Africa, particularly in the Rift Valley region, but it has also been found in other parts of the continent, as well as in Saudi Arabia and Yemen. The virus can be transmitted through the movement of infected animals or contaminated animal products, as well as through the spread of infected mosquitoes by wind or travel.

Prevention measures for RVFV include vaccination of livestock, use of personal protective equipment (PPE) when handling animals or their tissues, and avoidance of mosquito bites in areas where the virus is known to be present. There is currently no approved vaccine for humans, but several candidates are in development. Treatment for RVFV infection typically involves supportive care to manage symptoms and prevent complications.

RNA virus infections refer to diseases or conditions caused by the invasion and replication of RNA (Ribonucleic acid) viruses in host cells. These viruses use RNA as their genetic material, which is different from DNA (Deoxyribonucleic acid) viruses. Upon entering a host cell, the RNA virus releases its genetic material, which then uses the host cell's machinery to produce new viral components and replicate. This process can lead to various outcomes, depending on the specific virus and the host's immune response:

1. Asymptomatic infection: Some RNA virus infections may not cause any noticeable symptoms and may only be discovered through diagnostic testing.
2. Acute infection: Many RNA viruses cause acute infections, characterized by the rapid onset of symptoms that typically last for a short period (days to weeks). Examples include the common cold (caused by rhinoviruses), influenza (caused by orthomyxoviruses), and some gastrointestinal infections (caused by noroviruses or rotaviruses).
3. Chronic infection: A few RNA viruses can establish chronic infections, where the virus persists in the host for an extended period, sometimes leading to long-term health complications. Examples include HIV (Human Immunodeficiency Virus), HCV (Hepatitis C Virus), and HTLV-1 (Human T-lymphotropic virus type 1).
4. Latent infection: Some RNA viruses, like herpesviruses, can establish latency in the host, where they remain dormant for extended periods but can reactivate under certain conditions, causing recurrent symptoms or diseases.
5. Oncogenic potential: Certain RNA viruses have oncogenic properties and can contribute to the development of cancer. For example, retroviruses like HTLV-1 can cause leukemia and lymphoma by integrating their genetic material into the host cell's DNA and altering gene expression.

Treatment for RNA virus infections varies depending on the specific virus and the severity of the infection. Antiviral medications, immunotherapy, and supportive care are common treatment strategies. Vaccines are also available to prevent some RNA virus infections, such as measles, mumps, rubella, influenza, and hepatitis A and B.

Human Herpesvirus 6 (HHV-6) is a species of the Roseolovirus genus in the Herpesviridae family. It is a double-stranded DNA virus and is one of the human herpesviruses, which are a group of viruses that includes eight different types that can infect humans.

There are two variants of HHV-6, known as HHV-6A and HHV-6B. Both variants are closely related but have distinct biological properties and clinical manifestations. HHV-6B is the cause of exanthem subitum (also known as roseola infantum or sixth disease), a common childhood illness characterized by fever and rash, while HHV-6A has been associated with various diseases in immunocompromised individuals, such as encephalitis, pneumonitis, and bone marrow suppression.

HHV-6 is highly prevalent in the human population, with most people getting infected during early childhood. After the initial infection, the virus remains latent in the body for the rest of a person's life, and it can reactivate under certain conditions, such as immune suppression or stress. Reactivation of HHV-6 has been associated with various diseases, including encephalitis, seizures, and fatigue.

It is important to note that while HHV-6 infection is common, most people do not develop any symptoms or long-term complications. However, in some cases, the virus can cause significant illness, especially in immunocompromised individuals.

Borna Disease Virus (BoDV) is a negative-stranded RNA virus that belongs to the family Bornaviridae. It is the causative agent of Borna disease, a neurological disorder primarily affecting horses and sheep in Europe, although it has also been found in other mammals including cats, dogs, rabbits, and humans.

The virus is named after the town of Borna in Saxony, Germany, where an outbreak of the disease occurred in horses in the late 19th century. BoDV is unique among animal viruses because it can establish a persistent infection in the central nervous system (CNS) of its hosts and has been shown to have neurotropic properties.

In humans, BoDV infection has been linked to cases of encephalitis, a potentially life-threatening inflammation of the brain. However, human infections with BoDV are rare and often associated with close contact with infected animals or their tissues. There is currently no specific treatment for Borna disease or BoDV infection, and prevention efforts focus on reducing exposure to the virus through appropriate handling and care of infected animals.

There is no medical definition for "dog diseases" as it is too broad a term. However, dogs can suffer from various health conditions and illnesses that are specific to their species or similar to those found in humans. Some common categories of dog diseases include:

1. Infectious Diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include distemper, parvovirus, kennel cough, Lyme disease, and heartworms.
2. Hereditary/Genetic Disorders: Some dogs may inherit certain genetic disorders from their parents. Examples include hip dysplasia, elbow dysplasia, progressive retinal atrophy (PRA), and degenerative myelopathy.
3. Age-Related Diseases: As dogs age, they become more susceptible to various health issues. Common age-related diseases in dogs include arthritis, dental disease, cancer, and cognitive dysfunction syndrome (CDS).
4. Nutritional Disorders: Malnutrition or improper feeding can lead to various health problems in dogs. Examples include obesity, malnutrition, and vitamin deficiencies.
5. Environmental Diseases: These are caused by exposure to environmental factors such as toxins, allergens, or extreme temperatures. Examples include heatstroke, frostbite, and toxicities from ingesting harmful substances.
6. Neurological Disorders: Dogs can suffer from various neurological conditions that affect their nervous system. Examples include epilepsy, intervertebral disc disease (IVDD), and vestibular disease.
7. Behavioral Disorders: Some dogs may develop behavioral issues due to various factors such as anxiety, fear, or aggression. Examples include separation anxiety, noise phobias, and resource guarding.

It's important to note that regular veterinary care, proper nutrition, exercise, and preventative measures can help reduce the risk of many dog diseases.

Simian Acquired Immunodeficiency Syndrome (SAIDS) is not recognized as a medical condition in humans. However, it is a disease that affects non-human primates like African green monkeys and sooty mangabeys. SAIDS is caused by the Simian Immunodeficiency Virus (SIV), which is similar to the Human Immunodeficiency Virus (HIV) that leads to Acquired Immunodeficiency Syndrome (AIDS) in humans.

In non-human primates, SIV infection can lead to a severe immunodeficiency state, characterized by the destruction of CD4+ T cells and impaired immune function, making the host susceptible to various opportunistic infections and cancers. However, it is important to note that most non-human primates infected with SIV do not develop SAIDS spontaneously, unlike humans who acquire HIV infection.

In summary, Simian Acquired Immunodeficiency Syndrome (SAIDS) is a disease affecting non-human primates due to Simian Immunodeficiency Virus (SIV) infection, characterized by immunodeficiency and susceptibility to opportunistic infections and cancers. It should not be confused with Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome (HIV/AIDS) in humans.

HIV (Human Immunodeficiency Virus) is a species of lentivirus (a subgroup of retrovirus) that causes HIV infection and over time, HIV infection can lead to AIDS (Acquired Immunodeficiency Syndrome). This virus attacks the immune system, specifically the CD4 cells, also known as T cells, which are a type of white blood cell that helps coordinate the body's immune response. As HIV destroys these cells, the body becomes more vulnerable to other infections and diseases. It is primarily spread through bodily fluids like blood, semen, vaginal fluids, and breast milk.

It's important to note that while there is no cure for HIV, with proper medical care, HIV can be controlled. Treatment for HIV is called antiretroviral therapy (ART). If taken as prescribed, this medicine reduces the amount of HIV in the body to a very low level, which keeps the immune system working and prevents illness. This treatment also greatly reduces the risk of transmission.

Rhabdoviruses are negative-sense, single-stranded RNA viruses that belong to the family Rhabdoviridae. They have a wide host range, including humans, and can cause various diseases.

Rhabdoviridae infections refer to the infectious diseases caused by rhabdoviruses. The most well-known member of this family is the rabies virus, which causes rabies, a fatal zoonotic disease that affects warm-blooded animals, including humans. Rabies is transmitted through the saliva of infected animals, usually via bites or scratches.

Other rhabdoviruses can also cause human diseases, such as:

1. Vesicular stomatitis virus (VSV): It primarily affects livestock, causing vesicular lesions in the mouth and on the feet. However, it can also infect humans, causing flu-like symptoms or a rash around the mouth and hands.
2. Chandipura virus: This rhabdovirus is associated with acute encephalitis, particularly in children. It is transmitted through mosquitoes and has been identified in several countries, including India and Nigeria.
3. Human basalotid fibroblast growth factor (bFGF) receptor-binding virus: This recently discovered rhabdovirus was found to be associated with a case of acute respiratory illness. More research is needed to understand its epidemiology, transmission, and clinical significance.

Prevention and control measures for Rhabdoviridae infections include vaccination against rabies, public education on avoiding contact with potentially infected animals, and personal protective measures such as wearing gloves when handling animals or their tissues.

CD8-positive T-lymphocytes, also known as CD8+ T cells or cytotoxic T cells, are a type of white blood cell that plays a crucial role in the adaptive immune system. They are named after the CD8 molecule found on their surface, which is a protein involved in cell signaling and recognition.

CD8+ T cells are primarily responsible for identifying and destroying virus-infected cells or cancerous cells. When activated, they release cytotoxic granules that contain enzymes capable of inducing apoptosis (programmed cell death) in the target cells. They also produce cytokines such as interferon-gamma, which can help coordinate the immune response and activate other immune cells.

CD8+ T cells are generated in the thymus gland and are a type of T cell, which is a lymphocyte that matures in the thymus and plays a central role in cell-mediated immunity. They recognize and respond to specific antigens presented on the surface of infected or cancerous cells in conjunction with major histocompatibility complex (MHC) class I molecules.

Overall, CD8+ T cells are an essential component of the immune system's defense against viral infections and cancer.

"Satellite viruses" are a type of viruses that require the presence of another virus, known as a "helper virus," to complete their replication cycle. They lack certain genes that are essential for replication and therefore depend on the helper virus to provide these functions. Satellite viruses can either be satellite RNA or satellite DNA viruses, and they can affect plants, animals, and bacteria.

Satellite viruses can influence the severity of the disease caused by the helper virus, either increasing or decreasing it. They can also interfere with the replication of the helper virus and affect its transmission. The relationship between satellite viruses and their helper viruses is complex and can vary depending on the specific viruses involved.

It's important to note that the term "satellite virus" is not used consistently in the scientific literature, and some researchers may use it to refer to other types of dependent or defective viruses. Therefore, it's always a good idea to consult the original research when interpreting the use of this term.

Oncolytic viruses are a type of viruses that preferentially infect and kill cancer cells, while leaving normal cells relatively unharmed. These viruses can replicate inside the cancer cells, causing them to rupture and ultimately leading to their death. The release of new virus particles from the dead cancer cells allows the infection to spread to nearby cancer cells, resulting in a potential therapeutic effect.

Oncolytic viruses can be genetically modified to enhance their ability to target specific types of cancer cells and to increase their safety and efficacy. They may also be used in combination with other cancer therapies, such as chemotherapy or radiation therapy, to improve treatment outcomes. Oncolytic virus therapy is a promising area of cancer research, with several clinical trials underway to evaluate its potential benefits for patients with various types of cancer.

Flaviviridae is a family of viruses that includes many important human pathogens. According to the International Committee on Taxonomy of Viruses (ICTV), Flaviviridae is divided into four genera: Flavivirus, Hepacivirus, Pegivirus, and Pestivirus. These viruses are enveloped and have a single-stranded, positive-sense RNA genome.

1. Flavivirus genus includes several medically important viruses, such as dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus, Zika virus, and tick-borne encephalitis virus. These viruses are primarily transmitted by arthropod vectors (mosquitoes or ticks) and can cause a wide range of symptoms, from mild febrile illness to severe hemorrhagic fever and neuroinvasive disease.
2. Hepacivirus genus contains hepatitis C virus (HCV), which is a major causative agent of viral hepatitis and liver diseases, such as cirrhosis and hepatocellular carcinoma. HCV is primarily transmitted through percutaneous exposure to infected blood or blood products, sexual contact, and mother-to-child transmission during childbirth.
3. Pegivirus genus includes pegiviruses (formerly known as GB viruses) that are associated with persistent infection in humans and other animals. While pegiviruses can cause acute illness, they are mostly linked to asymptomatic or mild infections.
4. Pestivirus genus contains several animal pathogens, such as bovine viral diarrhea virus (BVDV), Classical swine fever virus (CSFV), and border disease virus (BDV). These viruses can cause significant economic losses in the livestock industry due to reproductive failure, growth retardation, and immunosuppression.

In summary, Flaviviridae is a family of enveloped, single-stranded, positive-sense RNA viruses that includes several important human and animal pathogens. The family is divided into four genera: Flavivirus, Hepacivirus, Pegivirus, and Pestivirus.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Orf virus, also known as contagious ecthyma virus, is a member of the Parapoxvirus genus in the Poxviridae family. It primarily affects sheep and goats, causing a contagious skin disease characterized by papules, vesicles, pustules, and scabs, mainly on the mouth and legs. The virus can also infect humans, particularly those who handle infected animals or consume raw meat from an infected animal. In human cases, it typically causes a papular or pustular dermatitis, often on the hands, fingers, or forearms. The infection is usually self-limiting and resolves within 4-6 weeks without scarring.

Roseolovirus infections are typically caused by human herpesvirus 6 (HHV-6) and human herpesvirus 7 (HHV-7). The most common manifestation of roseolovirus infection is exanthem subitum, also known as roseola infantum or sixth disease, which primarily affects children aged 6 months to 2 years.

The infection usually begins with a fever that can last for up to a week, followed by the appearance of a rash once the fever subsides. The rash is typically pinkish-red, maculopapular (consisting of both flat and raised lesions), and appears on the trunk, spreading to the face, neck, and extremities. It usually lasts for 1-2 days.

In addition to exanthem subitum, roseolovirus infections can also cause a variety of other clinical manifestations, including febrile seizures, hepatitis, pneumonitis, myocarditis, and encephalitis. HHV-6 and HHV-7 have also been associated with several chronic diseases, such as chronic fatigue syndrome, multiple sclerosis, and certain malignancies.

Transmission of roseolovirus occurs through saliva and other bodily fluids, and primary infection is usually acquired during childhood. Once infected, the virus remains latent in the body and can reactivate later in life, although reactivation rarely causes symptoms.

'C3H' is the name of an inbred strain of laboratory mice that was developed at the Jackson Laboratory in Bar Harbor, Maine. The mice are characterized by their uniform genetic background and have been widely used in biomedical research for many decades.

The C3H strain is particularly notable for its susceptibility to certain types of cancer, including mammary tumors and lymphomas. It also has a high incidence of age-related macular degeneration and other eye diseases. The strain is often used in studies of immunology, genetics, and carcinogenesis.

Like all inbred strains, the C3H mice are the result of many generations of brother-sister matings, which leads to a high degree of genetic uniformity within the strain. This makes them useful for studying the effects of specific genes or environmental factors on disease susceptibility and other traits. However, it also means that they may not always be representative of the genetic diversity found in outbred populations, including humans.

I'm sorry for any confusion, but "India" is not a medical term or concept. It is a country in South Asia, the second-most populous country in the world, known for its rich history, diverse culture, and numerous contributions to various fields including medicine. If you have any questions related to medical topics, I would be happy to help answer them!

Human T-lymphotropic virus 1 (HTLV-1) is a complex retrovirus that infects CD4+ T lymphocytes and can cause adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus is primarily transmitted through breastfeeding, sexual contact, or contaminated blood products. After infection, the virus integrates into the host's genome and can remain latent for years or even decades before leading to disease. HTLV-1 is endemic in certain regions of the world, including Japan, the Caribbean, Central and South America, and parts of Africa.

Bovine viral diarrhea (BVD) is a viral disease that primarily affects cattle, but can also infect other ruminants such as sheep and goats. The disease is caused by the bovine viral diarrhea virus (BVDV), which belongs to the family Flaviviridae and genus Pestivirus.

There are two biotypes of BVDV, type 1 and type 2, which can be further divided into various subtypes based on their genetic makeup. The virus can cause a range of clinical signs in infected animals, depending on the age and immune status of the animal, as well as the strain of the virus.

Acute infection with BVDV can cause fever, lethargy, loss of appetite, nasal discharge, and diarrhea, which can be severe and life-threatening in young calves. In addition, BVDV can cause reproductive problems such as abortion, stillbirth, and the birth of persistently infected (PI) calves. PI animals are those that were infected with BVDV in utero and have the virus continuously present in their bloodstream and other tissues throughout their lives. These animals serve as a source of infection for other cattle and can spread the virus to naive herds.

BVDV is transmitted through direct contact with infected animals or their bodily fluids, such as saliva, nasal secretions, and feces. The virus can also be spread indirectly through contaminated feed, water, and equipment. Prevention and control measures for BVDV include biosecurity practices, vaccination, and testing to identify and remove PI animals from herds.

I apologize for any confusion, but "Colombia" is not a medical term. It is the name of a country located in South America, known officially as the Republic of Colombia. If you are looking for medical information related to Colombia or its healthcare system, I would be happy to try to help you with that.

Hepatitis E virus (HEV) is a single-stranded, positive-sense RNA virus that belongs to the family Hepeviridae and genus Orthohepevirus. It primarily infects the liver, causing acute hepatitis in humans. The virus is transmitted through the fecal-oral route, often through contaminated water or food sources. Ingestion of raw or undercooked pork or deer meat can also lead to HEV infection.

HEV infection typically results in self-limiting acute hepatitis, characterized by symptoms such as jaundice, fatigue, loss of appetite, abdominal pain, and dark urine. In some cases, particularly among pregnant women and individuals with weakened immune systems, HEV infection can lead to severe complications, including fulminant hepatic failure and death.

There are four main genotypes of HEV that infect humans: genotype 1 and 2 are primarily found in developing countries and are transmitted through contaminated water; genotype 3 and 4 are found worldwide and can be transmitted through both zoonotic and human-to-human routes.

Prevention measures include improving sanitation, access to clean water, and food safety practices. Currently, there is no specific antiviral treatment for HEV infection, but supportive care can help manage symptoms. A vaccine against HEV is available in China and has shown efficacy in preventing the disease.

Nucleic acid conformation refers to the three-dimensional structure that nucleic acids (DNA and RNA) adopt as a result of the bonding patterns between the atoms within the molecule. The primary structure of nucleic acids is determined by the sequence of nucleotides, while the conformation is influenced by factors such as the sugar-phosphate backbone, base stacking, and hydrogen bonding.

Two common conformations of DNA are the B-form and the A-form. The B-form is a right-handed helix with a diameter of about 20 Ã… and a pitch of 34 Ã…, while the A-form has a smaller diameter (about 18 Ã…) and a shorter pitch (about 25 Ã…). RNA typically adopts an A-form conformation.

The conformation of nucleic acids can have significant implications for their function, as it can affect their ability to interact with other molecules such as proteins or drugs. Understanding the conformational properties of nucleic acids is therefore an important area of research in molecular biology and medicine.

Friend murine leukemia virus (F-MuLV) is a type of retrovirus that specifically infects mice. It was first discovered by Charlotte Friend in the 1950s and has since been widely used as a model system to study retroviral pathogenesis, oncogenesis, and immune responses.

F-MuLV is a complex retrovirus that contains several accessory genes, including gag, pol, env, and others. The virus can cause leukemia and other malignancies in susceptible mice, particularly when it is transmitted from mother to offspring through the milk.

The virus is also known to induce immunosuppression, which makes infected mice more susceptible to other infections and diseases. F-MuLV has been used extensively in laboratory research to investigate various aspects of retroviral biology, including viral entry, replication, gene expression, and host immune responses.

It is important to note that Friend murine leukemia virus only infects mice and is not known to cause any disease in humans or other animals.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Epitope mapping is a technique used in immunology to identify the specific portion or regions (called epitopes) on an antigen that are recognized and bind to antibodies or T-cell receptors. This process helps to understand the molecular basis of immune responses against various pathogens, allergens, or transplanted tissues.

Epitope mapping can be performed using different methods such as:

1. Peptide scanning: In this method, a series of overlapping peptides spanning the entire length of the antigen are synthesized and tested for their ability to bind to antibodies or T-cell receptors. The peptide that shows binding is considered to contain the epitope.
2. Site-directed mutagenesis: In this approach, specific amino acids within the antigen are altered, and the modified antigens are tested for their ability to bind to antibodies or T-cell receptors. This helps in identifying the critical residues within the epitope.
3. X-ray crystallography and NMR spectroscopy: These techniques provide detailed information about the three-dimensional structure of antigen-antibody complexes, allowing for accurate identification of epitopes at an atomic level.

The results from epitope mapping can be useful in various applications, including vaccine design, diagnostic test development, and understanding the basis of autoimmune diseases.

Henipavirus infections are caused by two paramyxoviruses, Hendra virus and Nipah virus. These viruses can cause severe illness in both humans and animals, particularly horses and pigs.

The natural hosts for these viruses are fruit bats (Pteropus spp.), also known as flying foxes. Transmission to humans can occur through direct contact with infected animals or their bodily fluids, consumption of contaminated food or drink, or through exposure to an environment contaminated with the virus.

Infection with Hendra virus can cause respiratory and neurological symptoms in humans, with a high fatality rate. Nipah virus infection can cause respiratory illness, fever, headache, dizziness, and altered consciousness, which can progress to encephalitis and coma. The case fatality rate for Nipah virus infection is estimated to be around 40-75%.

There are no specific treatments or vaccines available for henipavirus infections, and prevention efforts focus on reducing exposure to the viruses through public health measures such as avoiding contact with infected animals and their bodily fluids, practicing good hygiene and food safety, and implementing appropriate infection control practices.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

"Ducks" is not a medical term. It is a common name used to refer to a group of birds that belong to the family Anatidae, which also includes swans and geese. Some ducks are hunted for their meat, feathers, or down, but they do not have any specific medical relevance. If you have any questions about a specific medical term or concept, I would be happy to help if you could provide more information!

Virus internalization, also known as viral entry, is the process by which a virus enters a host cell to infect it and replicate its genetic material. This process typically involves several steps:

1. Attachment: The viral envelope proteins bind to specific receptors on the surface of the host cell.
2. Entry: The virus then enters the host cell through endocytosis or membrane fusion, depending on the type of virus.
3. Uncoating: Once inside the host cell, the viral capsid is removed, releasing the viral genome into the cytoplasm.
4. Replication: The viral genome then uses the host cell's machinery to replicate itself and produce new viral particles.

It's important to note that the specific mechanisms of virus internalization can vary widely between different types of viruses, and are an active area of research in virology and infectious disease.

Secondary immunization, also known as "anamnestic response" or "booster," refers to the enhanced immune response that occurs upon re-exposure to an antigen, having previously been immunized or infected with the same pathogen. This response is characterized by a more rapid and robust production of antibodies and memory cells compared to the primary immune response. The secondary immunization aims to maintain long-term immunity against infectious diseases and improve vaccine effectiveness. It usually involves administering additional doses of a vaccine or booster shots after the initial series of immunizations, which helps reinforce the immune system's ability to recognize and combat specific pathogens.

Medical Definition:

Mammary tumor virus, mouse (MMTV) is a type of retrovirus that specifically infects mice and is associated with the development of mammary tumors or breast cancer in these animals. The virus is primarily transmitted through mother's milk, leading to a high incidence of mammary tumors in female offspring.

MMTV contains an oncogene, which can integrate into the host's genome and induce uncontrolled cell growth and division, ultimately resulting in the formation of tumors. While MMTV is not known to infect humans, it has been a valuable model for studying retroviral pathogenesis and cancer biology.

Neuraminidase is an enzyme that occurs on the surface of influenza viruses. It plays a crucial role in the life cycle of the virus by helping it to infect host cells and to spread from cell to cell within the body. Neuraminidase works by cleaving sialic acid residues from glycoproteins, allowing the virus to detach from infected cells and to move through mucus and other bodily fluids. This enzyme is a major target of antiviral drugs used to treat influenza, such as oseltamivir (Tamiflu) and zanamivir (Relenza). Inhibiting the activity of neuraminidase can help to prevent the spread of the virus within the body and reduce the severity of symptoms.

Cell transformation, viral refers to the process by which a virus causes normal cells to become cancerous or tumorigenic. This occurs when the genetic material of the virus integrates into the DNA of the host cell and alters its regulation, leading to uncontrolled cell growth and division. Some viruses known to cause cell transformation include human papillomavirus (HPV), hepatitis B virus (HBV), and certain types of herpesviruses.

Blood is the fluid that circulates in the body of living organisms, carrying oxygen and nutrients to the cells and removing carbon dioxide and other waste products. It is composed of red and white blood cells suspended in a liquid called plasma. The main function of blood is to transport oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs. It also transports nutrients, hormones, and other substances to the cells and removes waste products from them. Additionally, blood plays a crucial role in the body's immune system by helping to fight infection and disease.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

Vesiculovirus is a genus of enveloped, negative-stranded RNA viruses in the family Rhabdoviridae. They are known to cause vesicular diseases (hence the name) in both animals and humans, characterized by the formation of blisters or vesicles on the skin. The most well-known member of this genus is the vesicular stomatitis virus (VSV), which primarily affects cattle, horses, and pigs, causing oral and foot lesions. However, VSV can also infect humans, resulting in a flu-like illness. Other members of the Vesiculovirus genus include the Isfahan virus, Chandipura virus, and the Piry virus. These viruses are transmitted through insect vectors such as mosquitoes and sandflies, and can cause significant economic losses in the agricultural industry.

I'm sorry for any confusion, but "Papua New Guinea" is not a medical term or concept. It is the name of a country located in the southwest Pacific Ocean, made up of the eastern half of the island of New Guinea and numerous offshore islands. If you have any questions about medical topics or definitions, I would be happy to help with those!

Viral interference is a phenomenon where the replication of one virus is inhibited or blocked by the presence of another virus. This can occur when two different viruses infect the same cell and compete for the cell's resources, such as nucleotides, energy, and replication machinery. As a result, the replication of one virus may be suppressed, allowing the other virus to predominate.

This phenomenon has been observed in both in vitro (laboratory) studies and in vivo (in the body) studies. It has been suggested that viral interference may play a role in the outcome of viral coinfections, where an individual is infected with more than one virus at the same time. Viral interference can also be exploited as a potential strategy for antiviral therapy, where one virus is used to inhibit the replication of another virus.

It's important to note that not all viruses interfere with each other, and the outcome of viral coinfections can depend on various factors such as the specific viruses involved, the timing and sequence of infection, and the host's immune response.

Sarcoma viruses, murine, are a group of RNA viruses that primarily affect mice and other rodents. They are classified as type C retroviruses, which means they contain an envelope, have reverse transcriptase enzyme activity, and replicate through a DNA intermediate.

The murine sarcoma viruses (MSVs) are associated with the development of various types of tumors in mice, particularly fibrosarcomas, which are malignant tumors that originate from fibroblasts, the cells that produce collagen and other fibers in connective tissue.

The MSVs are closely related to the murine leukemia viruses (MLVs), and together they form a complex called the murine leukemia virus-related viruses (MLVRVs). The MLVRVs can undergo recombination events, leading to the generation of new viral variants with altered biological properties.

The MSVs are important tools in cancer research because they can transform normal cells into tumor cells in vitro and in vivo. The study of these viruses has contributed significantly to our understanding of the molecular mechanisms underlying cancer development and progression.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

I am not aware of a specific medical definition for the term "China." Generally, it is used to refer to:

1. The People's Republic of China (PRC), which is a country in East Asia. It is the most populous country in the world and the fourth largest by geographical area. Its capital city is Beijing.
2. In a historical context, "China" was used to refer to various dynasties and empires that existed in East Asia over thousands of years. The term "Middle Kingdom" or "Zhongguo" (中国) has been used by the Chinese people to refer to their country for centuries.
3. In a more general sense, "China" can also be used to describe products or goods that originate from or are associated with the People's Republic of China.

If you have a specific context in which you encountered the term "China" related to medicine, please provide it so I can give a more accurate response.

Cellular immunity, also known as cell-mediated immunity, is a type of immune response that involves the activation of immune cells, such as T lymphocytes (T cells), to protect the body against infected or damaged cells. This form of immunity is important for fighting off infections caused by viruses and intracellular bacteria, as well as for recognizing and destroying cancer cells.

Cellular immunity involves a complex series of interactions between various immune cells and molecules. When a pathogen infects a cell, the infected cell displays pieces of the pathogen on its surface in a process called antigen presentation. This attracts T cells, which recognize the antigens and become activated. Activated T cells then release cytokines, chemicals that help coordinate the immune response, and can directly attack and kill infected cells or help activate other immune cells to do so.

Cellular immunity is an important component of the adaptive immune system, which is able to learn and remember specific pathogens in order to mount a faster and more effective response upon subsequent exposure. This form of immunity is also critical for the rejection of transplanted organs, as the immune system recognizes the transplanted tissue as foreign and attacks it.

Reoviridae infections refer to diseases caused by the Reoviridae family of viruses, which are non-enveloped, double-stranded RNA viruses. These viruses are widespread and can infect a variety of hosts, including humans, animals, and insects. The infection typically causes mild respiratory or gastrointestinal symptoms in humans, such as cough, runny nose, sore throat, and diarrhea. In some cases, Reoviridae infections may also lead to more severe diseases, such as meningitis or encephalitis, particularly in immunocompromised individuals. However, it's worth noting that many Reoviridae infections are asymptomatic and do not cause any noticeable illness.

Reoviridae viruses include several genera, such as Orthoreovirus, Rotavirus, Coltivirus, and Orbivirus, among others. Some of the most well-known human pathogens in this family include Rotaviruses, which are a leading cause of severe diarrheal disease in young children worldwide, and Orthoreoviruses, which can cause respiratory illnesses.

Treatment for Reoviridae infections is generally supportive, focusing on managing symptoms such as fever, dehydration, and pain. Antiviral medications are not typically used to treat these infections. Prevention measures include good hygiene practices, such as handwashing and avoiding close contact with infected individuals, as well as vaccination against specific Reoviridae viruses, such as Rotavirus vaccines.

Archaeal viruses are viruses that infect and replicate within archaea, which are single-celled microorganisms without a nucleus. These viruses have unique characteristics that distinguish them from bacterial and eukaryotic viruses. They often possess distinct morphologies, such as icosahedral or filamentous shapes, and their genomes can be composed of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), double-stranded RNA (dsRNA), or single-stranded RNA (ssRNA).

Archaeal viruses have evolved various strategies to hijack the host cell's machinery for replication, packaging, and release of new virus particles. Some archaeal viruses even encode their own proteins for transcription and translation, suggesting a more complex relationship with their hosts than previously thought. The study of archaeal viruses provides valuable insights into the evolution of viruses and their hosts and has implications for understanding the origins of life on Earth.

Hepatitis C is a liver infection caused by the hepatitis C virus (HCV). It's primarily spread through contact with contaminated blood, often through sharing needles or other equipment to inject drugs. For some people, hepatitis C is a short-term illness but for most — about 75-85% — it becomes a long-term, chronic infection that can lead to serious health problems like liver damage, liver failure, and even liver cancer. The virus can infect and inflame the liver, causing symptoms like jaundice (yellowing of the skin and eyes), abdominal pain, fatigue, and dark urine. Many people with hepatitis C don't have any symptoms, so they might not know they have the infection until they experience complications. There are effective treatments available for hepatitis C, including antiviral medications that can cure the infection in most people. Regular testing is important to diagnose and treat hepatitis C early, before it causes serious health problems.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

"Influenza A Virus, H7N7 Subtype" is a type of influenza virus that causes respiratory illness in humans and animals. The "H" and "N" in the name refer to two proteins on the surface of the virus, hemagglutinin (H) and neuraminidase (N), respectively. In this subtype, the H7 protein is combined with the N7 protein.

H7N7 viruses are primarily avian influenza viruses, meaning they naturally infect birds. However, they can occasionally infect other animals, including humans, and have caused sporadic human infections and outbreaks, mainly in people who have close contact with infected birds or their droppings.

H7N7 infections in humans can range from mild to severe respiratory illness, and some cases have resulted in death. However, human-to-human transmission of H7N7 viruses is rare. Public health authorities closely monitor H7N7 and other avian influenza viruses due to their potential to cause a pandemic if they acquire the ability to transmit efficiently between humans.

Serotyping is a laboratory technique used to classify microorganisms, such as bacteria and viruses, based on the specific antigens or proteins present on their surface. It involves treating the microorganism with different types of antibodies and observing which ones bind to its surface. Each distinct set of antigens corresponds to a specific serotype, allowing for precise identification and characterization of the microorganism. This technique is particularly useful in epidemiology, vaccine development, and infection control.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

I'm not aware of any medical definition for the term "Texas." It is primarily used as the name of a state in the United States, located in the southern region. If you're referring to a specific medical term or concept that I might not be aware of, please provide more context or clarify your question.

If you meant to ask for an explanation of a medical condition named 'Texas', it is likely a typo or a misunderstanding, as there is no widely recognized medical condition associated with the name 'Texas'.

I'm sorry for any confusion, but "Thailand" is not a medical term. It is a country located in Southeast Asia. If you have any questions about medical terms or concepts, I would be happy to help answer those for you!

Fowlpox is a viral disease that primarily affects birds, particularly poultry such as chickens and turkeys. The Fowlpox virus belongs to the family Poxviridae and genus Avipoxvirus. It is transmitted through the bites of insects like mosquitoes or by direct contact with an infected bird.

The virus causes lesions on the skin (cutaneous form) or internal organs (diphtheritic form). Cutaneous form symptoms include wart-like growths or scabs on unfeathered areas such as the eyes, comb, wattles, and feet. Diphtheritic form symptoms are more severe and include difficulty breathing due to the formation of diphtheritic membranes in the upper respiratory tract and lungs.

Fowlpox is not generally a threat to human health but can lead to significant economic losses in poultry farming operations due to decreased egg production, reduced growth rates, and increased mortality. Vaccination programs are available to control and prevent fowlpox outbreaks in domestic birds.

I'm sorry for any confusion, but "Austria" is not a medical term or concept. It is a country located in central Europe, known officially as the Republic of Austria. It is not a medical condition, treatment, or related term. If you have any questions about a medical issue, I would be happy to try to help answer those for you!

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Bovine Leukemia Virus (BLV) is a retrovirus that infects cattle and causes enzootic bovine leukosis, a neoplastic disease characterized by the proliferation of malignant B-lymphocytes. The virus primarily targets the animal's immune system, leading to a decrease in the number of white blood cells (leukopenia) and an increased susceptibility to other infections.

The virus is transmitted horizontally through close contact with infected animals or vertically from mother to offspring via infected milk or colostrum. The majority of BLV-infected cattle remain asymptomatic carriers, but a small percentage develop clinical signs such as lymphoma, weight loss, and decreased milk production.

BLV is closely related to human T-cell leukemia virus (HTLV), and both viruses belong to the Retroviridae family, genus Deltaretrovirus. However, it's important to note that BLV does not cause leukemia or any other neoplastic diseases in humans.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Interferon-gamma (IFN-γ) is a soluble cytokine that is primarily produced by the activation of natural killer (NK) cells and T lymphocytes, especially CD4+ Th1 cells and CD8+ cytotoxic T cells. It plays a crucial role in the regulation of the immune response against viral and intracellular bacterial infections, as well as tumor cells. IFN-γ has several functions, including activating macrophages to enhance their microbicidal activity, increasing the presentation of major histocompatibility complex (MHC) class I and II molecules on antigen-presenting cells, stimulating the proliferation and differentiation of T cells and NK cells, and inducing the production of other cytokines and chemokines. Additionally, IFN-γ has direct antiproliferative effects on certain types of tumor cells and can enhance the cytotoxic activity of immune cells against infected or malignant cells.

... an ancestral Sindbis virus-like virus, and an ancestral Eastern equine encephalitis virus-like virus. There have been under 700 ... Eastern equine encephalitis virus Sherman, M. B.; Weaver, S. C. (2010). "Structure of the Recombinant Alphavirus Western Equine ... The Western equine encephalomyelitis virus is the causative agent of relatively uncommon viral disease Western equine ... Western equine encephalitis virus was one of more than a dozen agents that the United States researched as potential biological ...
Feeding Habits of Culex tarsalis Coq., a Mosquito Host of the Viruses of Western Equine and St. Louis Encephalitis." Journal of ... "Replacement of virus-destroyed epithelium by keratinized squamous cells in vitamin A-deprived chickens." Proceedings of the ... "Laryngotracheitis virus in chickens: a model for study of acute nonfatal desquamating rhinitis." Journal of Experimental ... "Virus-induced lysosomal enzyme dissolution of nasal turbinate cartilage." The American Journal of Pathology 87.3 (1977): 667. ...
A. satureioides extract might have antiviral effects against the Western equine encephalitis virus. The extract could also have ...
... virus (EEEV) is closely related to Venezuelan equine encephalitis virus and western equine ... most commonly western equine encephalitis virus, Venezuelan equine encephalitis virus, and tetanus. Most vaccinations for EEE ... encephalitis virus. The incubation period for Eastern equine encephalitis virus (EEEV) disease ranges from 4 to 10 days. The ... "Eastern Equine Encephalitis (EEE)". ceh.vetmed.ucdavis.edu. Retrieved 5 November 2022. "Eastern Equine Encephalitis". Centers ...
After leaving there, he worked in private industry on the Western equine encephalitis virus. This work resulted to the creation ... From 1946 to 1952, he researched macromolecules and viruses at the National Institutes of Health in Bethesda, Maryland. In 1948 ... viruses. While there, he photographed the growth of living cells using ultraviolet light and determined the structure of urea. ...
Louis encephalitis, eastern equine encephalitis and western equine encephalitis emerged in the US. The virus that causes La ... There are numerous causes, including viruses - particularly hepatitis A virus, hepatitis B virus and hepatitis C virus. ... yellow fever virus, dengue virus and Pappataci fever virus. More than 100 of such viruses are now known to cause human diseases ... These giant viruses have renewed interest in the role viruses play in evolution. Smallpox virus was a major cause of death in ...
"Characterization of Fort Morgan Virus, an Alphavirus of the Western Equine Encephalitis Virus Complex in an Unusual Ecosystem ... Fort Morgan virus is an RNA virus in the genus Alphavirus. It is an Alphavirus isolated from nesting Cliff Swallows, House ... Sparrows and from cimicid bugs in eastern Colorado for which the name Fort Morgan virus was proposed. Calisher, Charles H.; ... researchexperts.utmb.edu/en/publications/characterization-of-fort-morgan-virus-an-alphavirus-of-the-wester https://wwwn.cdc.gov ...
The species is a major vector of Saint Louis encephalitis and Western equine encephalitis virus in the western USA. It is also ... a confirmed vector of West Nile virus. Omar Fahmy (19 October 2006). "Culex tarsalis - Western Encephalitis Mosquito". Bug ... Culex tarsalis, also known as Western Encephalitis Mosquito, is a mosquito species that appears in southern California. The ...
... and Western equine encephalitis viruses. This area of the genome forms eight stem loops. Each of these loops contain triplet ... Closely related viruses include Mucambo virus and Everglades virus. Rio Negro virus is a spherical, enveloped virus. The ... The virus was first called Ag80-663 but was renamed to Rio Negro virus in 2005. It is a former member of the Venezuelan equine ... "Venezuelan equine encephalitis virus disrupts STAT1 signaling by distinct mechanisms independent of host shutoff". Journal of ...
... later called western equine encephalitis. Meyer proved that it was of viral origin. Later it became clear that the virus can ... among them equine encephalitis. Several diseases transmitted from animals to humans are due to a group of viruses carried by ... Meyer therefore qualified encephalitis as a man-made disease. Subsequently, a vaccine for horses was developed. And it turned ... out that the isolation of the virus by Meyer led to the discovery of similar kinds causing other types of encephalitis in man ...
... shingles Venezuelan equine encephalitis virus West Nile virus Western equine encephalitis virus Zika virus Encephalitic viruses ... California encephalitis virus Chandipura virus Chikungunya virus Cytomegalovirus Dengue virus Eastern equine encephalitis virus ... virus Murray Valley encephalitis virus Nipah virus Powassan virus Rabies virus Rubella virus SARS-CoV-2 Snowshoe hare virus St ... such as those against Eastern equine encephalitis, Western equine encephalitis, and Venezuelan equine encephalitis. Although ...
... and Western and Eastern equine encephalitis. Brazilian scientists are investigating if Culex species transmit zika virus. ... The diseases they vector include arbovirus infections such as West Nile virus, Japanese encephalitis, or St. Louis encephalitis ... Arbovirus infections transmitted by various species of Culex include West Nile virus, Japanese encephalitis, St. Louis ... This is because avian species amplify diseases such as West Nile virus. A hybridized mosquito can become infected by feeding on ...
Within less than a year, he worked out such a method for Western equine encephalitis virus, which then opened up animal ... Dulbecco and his group demonstrated that the infection of normal cells with certain types of viruses (oncoviruses) led to the ... 12 Sep 2012 Verma, I. M. (2012). "Renato Dulbecco (1914-2012) Molecular biologist who proved that virus-derived genes can ... Dulbecco, R.; Vogt, M. (February 1954). "Plaque formation and isolation of pure lines with poliomyelitis viruses". The Journal ...
Western and Eastern equine encephalitis, Japanese encephalitis, Saint Louis encephalitis and West Nile virus. McJunkin, J. E.; ... La Crosse encephalitis virus (LACV) is one of a group of mosquito-transmitted viruses that can cause encephalitis, or ... La Crosse encephalitis is an encephalitis caused by an arbovirus (the La Crosse virus) which has a mosquito vector ( ... La Crosse encephalitis was discovered in 1965, after the virus was isolated from stored brain and spinal tissue of a child who ...
An example of a recombinant virus is Western equine encephalitis virus (WEE), which is a recombinant virus between two other ... Both these and mutation within the virus have been suggested as ways in which influenza and other viruses evolve. ... closely related yet distinct encephalitis viruses. In addition, reassortment is most important for pandemic influenza viruses. ... A Recombinant Virus Archived 2009-12-15 at the Wayback Machine Viral Genetics Transmission of Influenza A Viruses Between ...
Louis encephalitis virus, Western equine encephalitis virus, Zika virus and West Nile virus. It is taxonomically regarded as a ... Louis encephalitis, Western equine encephalitis, and West Nile fever, and may be a vector of the Zika virus. It causes ... Louis encephalitis virus and West Nile virus, plus filarial worms and avian malarial parasites. It transmits zoonotic diseases ... Louis encephalitis virus. In India and Southeast Asia, it is the primary vector of Wuchereria bancrofti, a nematode that causes ...
... equine encephalitis virus Japanese encephalitis virus Venezuelan equine encephalitis virus Western equine encephalitis virus ... Equine encephalitis is a family of horse diseases that also affect humans. Encephalitis is an inflammation of the brain. ... Several forms of viral encephalitis can infect equines, and these include: Eastern ... West Nile virus This article includes a list of related items that share the same name (or similar names). If an internal link ...
Equine encephalitis viruses, such as Eastern equine encephalitis virus, Western equine encephalitis virus, and Venezuelan ... Even more dramatically, in most of its range in North America, the main vector for the Western equine encephalitis virus is ... and such birds are typically the main reservoir of the Eastern equine encephalitis virus in North America. Early in the season ... equine encephalitis virus, can be spread by mosquito vectors such as Aedes taeniorhynchus. Tularemia, a bacterial disease ...
It is known to bite humans and can carry a number of diseases, including yellow fever, Venezuelan equine encephalitis virus, ... Aedes scapularis has been recorded throughout neo-tropical regions of the western hemisphere. Larval specimens were reported in ...
... "act as vectors of West Nile virus, Western equine encephalitis and St. Louis encephalitis". The California Office of ... The Salton Sea had some success as a resort area, with Salton City, Salton Sea Beach, and Desert Shores, on the western shore ... Western Washington University. Retrieved June 6, 2010. Singer, Eugene. "Ancient Lake Cahuilla". Excerpted from Geology of the ...
Secretary (2014). "Eastern Equine Encephalitis Virus Deer and Moose Serosurvey Project". Vermont Department of Public Health. ... The western border with New York and the area around Lake Champlain lies within the Eastern Great Lakes lowland forests. The ... and eastern equine encephalitis virus whose antibodies were found in moose or deer in each of Vermont's counties. Vermont is in ... Vermont contains one species of venomous snake, the timber rattlesnake, which is confined to a few acres in western Rutland ...
Eastern equine encephalitis virus Western equine encephalitis virus Venezuelan equine encephalitis virus Viral encephalitis ...
Western/Eastern/Venezuelan Equine Encephalitis) Coronaviruses (SARS, MERS, SARS-CoV-2) Enterovirus D68 Filoviruses (Ebola and ... Parainfluenza Virus and Human Metapneumovirus) Respiratory Syncytial Virus Tuberculosis Zika Virus In July 2010, a ... among other viruses, and therapeutic antibodies against SARS-CoV-2 (the virus responsible for COVID-19) and other pathogens. ... mAb114 is a monoclonal antibody therapy that is being evaluated as a treatment for Ebola virus disease and has shown great ...
... singer WEE virus, the western equine encephalitis virus Wee1, a nuclear protein In the Wee Small Hours, album of Frank Sinatra ...
... syndrome Wernicke's encephalopathy West Nile virus West syndrome Westerhof-Beemer-Cormane syndrome Western equine encephalitis ...
The sole mammalian fatality attributed to HJ was a Florida horse originally diagnosed with Western equine encephalitis in 1964 ... Though nearly identical in structure and natural cycle to the Eastern equine encephalitis virus, it is considerably less ... Highlands J (HJ) virus is a zoonotic alphavirus native to North and South America. It maintains a natural reservoir in the ... Louis encephalitis outbreak in Missouri, 4 patients were found to be comorbidly infected with SLE and HJ, though no harmful ...
Saint Louis encephalitis, Western equine encephalitis, Eastern equine encephalitis, Venezuelan equine encephalitis, Ross River ... Flaviviridae viruses transmissible via vectors like mosquitoes include West Nile virus and yellow fever virus, which are single ... Eastern equine encephalitis (EEE) and Western equine encephalitis (WEE) occur in the United States where they cause disease in ... Examples are the Zika virus, chikungunya virus, yellow fever and dengue fever. The re-emergence of the viruses has been at a ...
Secretary (2014). "Eastern Equine Encephalitis Virus Deer and Moose Serosurvey Project". Vermont Department of Public Health. ... The western border with New York and the area around Lake Champlain lies within the Eastern Great Lakes lowland forests. The ... and eastern equine encephalitis virus whose antibodies were found in moose or deer in each of Vermont's counties. Vermont is in ... U.S. Route 7 runs a north-south path in western Vermont from the Massachusetts state line to the Canada-U.S. border. U.S. Route ...
Venezuelan equine encephalitis, Eastern and Western equine encephalitis, chikungunya fever, Argentine hemorrhagic fever, the ... That law defined a biological agent as: any micro-organism, virus, infectious substance, or biological product that may be ... Venezuelan equine encephalitis, Q fever, coccidioidomycosis, and a variety of plant and animal pathogens Particular attention ... Rift Valley fever and Venezuelan equine encephalitis). In addition, vaccines are provided to persons who may be occupationally ...
Chikungunya virus (CHIKV) Dengue fever Eastern equine encephalitis (EEE) Hantavirus Lassa fever Late blight of potato glanders ... Rinderpest Typhus Western equine encephalitis (WEE) Yellow fever Edgewood Arsenal experiments Operation Big Buzz Operation Big ...
There are reports of confirmed and probable human cases of Western equine encephalitis virus (WEEV) infection in rural areas of ... Western equine encephalitis virus (WEEV) is a virus most commonly spread to people through the bite of an infected mosquito. ... Western equine encephalitis-Argentina. *PAHO: Epidemiological Alert-Risk to Human Health Associated with Western Equine ... There are reports of confirmed and probable human cases of Western equine encephalitis virus (WEEV) infection in rural areas of ...
... an ancestral Sindbis virus-like virus, and an ancestral Eastern equine encephalitis virus-like virus. There have been under 700 ... Eastern equine encephalitis virus Sherman, M. B.; Weaver, S. C. (2010). "Structure of the Recombinant Alphavirus Western Equine ... The Western equine encephalomyelitis virus is the causative agent of relatively uncommon viral disease Western equine ... Western equine encephalitis virus was one of more than a dozen agents that the United States researched as potential biological ...
Access Western Equine Encephalitis Virus Disease case definitions; uniform criteria used to define a disease for public health ... Eastern equine encephalitis virus disease 2005 Current Powassan virus disease 2005 Current St. Louis encephalitis virus disease ... Western equine encephalitis virus disease Case Definition(s). *Arboviral Diseases, Neuroinvasive and Non-neuroinvasive , 2015 ...
Fever, headache, prostration, conjunctival inflammation, stiff neck, myalgia, arthralgia, CNS signs (including encephalitis), ... Virus Sections. Virus Name/Prototype. Original Source. Method of Isolation. Virus Properties. Antigenic Relationship. Biologic ... Click on the PDF icon to the left to view a copy of this virus entry in PDF format. You can get a copy of the PDF viewer by ... Virus Name: Western equine encephalomyelitis Abbreviation: WEEV Status. Arbovirus Select Agent. No SALS Level. 2 ...
viral encephalitides (eastern, western, Venezuelan equine encephalomyelitis; St Louis, California encephalitis; West Nile Virus ... Enteroviral infections (i.e., Group A and B Coxsackie viruses and Echo viruses) (excludes polio virus) ... Ebola virus (see Viral Hemorrhagic Fevers). n/a. n/a. Ebola Virus Disease for Healthcare Workers [2014]. Update: ... Ebola Virus Disease for Healthcare Workers [2014]. Update: Recommendations for healthcare workers can be found at Ebola For ...
Categories: Encephalitis Virus, Western Equine Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
Some of the important arboviruses include the eastern and western equine encephalitis viruses, from the Togavirus family; St. ... Herpes family viruses. Herpes simplex virus (HSV)-1, HSV-2, varicella-zoster virus (VZV), Ebstein-Barr virus (EBV), ... and California virus, which infects young children. Children with St. Louis or California group encephalitis viruses may not ... Louis encephalitis (SLE) virus is the most common cause of arboviral meningitis, and is also the most common mosquito- ...
... strives to protect the nation from viruses and bacteria spread by mosquitoes, ticks, or fleas. ... Venezuelan equine encephalitis virus. Top of Page. W. West Nile virus. Western equine encephalitis virus ... Tick-borne encephalitis virus (vaccine available). Tickborne relapsing fever (Borrelia hermsii, B. turicatae, and B. parkerii) ... Only a few mosquito-borne viruses can be prevented with vaccines. In most cases, people need to protect themselves from ...
western 062.1. *. viral, virus 049.9. *. arthropod-borne NEC 064. *. mosquito-borne 062.9. *. Australian X disease 062.4. ... Short description: East equine encephalitis.. *ICD-9-CM 062.2 is a billable medical code that can be used to indicate a ... Encephalitis (bacterial) (chronic) (hemorrhagic) (idiopathic) (nonepidemic) (spurious) (subacute) 323.9. *. Eastern equine ... Encephalomyelitis (chronic) (granulomatous) (myalgic, benign) (see also Encephalitis) 323.9. *. equine (acute) (infectious) ...
Eastern, western, and Venezuelan equine encephalitis and West Nile viruses: clinical and public health considerations. ... Functional landscape of African swine fever virus-host and virus-virus protein interactions. ... Pteropid bats are the natural reservoir of HeV and other important zoonotic viruses such as Nipah and Ebola viruses. Equivac ... Here, we constructed and assembled the EMCV virus-like particles (VLPs) in vitro and verified high efficiency of virus ...
Western Equine Encephalitis (WEE): No human cases have been reported. Cases in horses have occurred in South Dakota (6 cases ... Eastern Equine Encephalitis (EEE): Nine human cases of EEE have been diagnosed by virus isolation or serology. Three cases ... In 1983, EEE virus transmission appeared earlier than in previous years in some areas. The first equine case in New Jersey, ... California Virus Group Encephalitis: Eleven confirmed and presumptive human cases have been reported. Five cases occurred in ...
... which may progress to encephalitis. It is caused by the Venezuelan equine encephalitis virus and is a significant disease in ... Venezuelan equine encephalitis is an acute viral disease characterized by fever, chills, headache, nausea, vomiting, ... Western equine encephalitis and eastern equine encephalitis alphaviruses are those most associated with a similar infection in ... Venezuelan equine encephalitis virus is a member of the genus Alphavirus of the family Togaviridae. [5] These viruses were ...
Eastern and Western equine encephalitis viruses; Rift valley fever virus; Junin virus; Ebola virus; and botulinum neurotoxins." ... Eastern and Western equine encephalitis viruses; Rift valley fever virus; Junin virus; Ebola virus; and botulinum neurotoxins ... Should it become possible in a few years to build smallpox virus in the laboratory, the situation would be turned upside down. ... that countries apart from Russia and the USA have access to smallpox virus. This is the basis of the current threat assessments ...
Venezuelan equine encephalitis virus. H01547. T40053. Western equine encephalitis virus. H01534. Flaviviridae. Flavivirus. ... Influenza C virus (C/Ann Arbor/1/50). H00398. Kolmioviridae. Deltavirus. T40085. Hepatitis D virus (Hepatitis delta virus). ... Hepatitis B virus. H00412. ssRNA-RT viruses. Retroviridae. Deltaretrovirus. T40003. Human T-cell leukemia virus type 1 (HTLV-1) ... Bean leafroll virus. -ssRNA viruses. Rhabdoviridae. Alphanucleorhabdovirus. T40199. Maize mosaic virus (Maize mosaic ...
Western equine encephalomyelitis Cite CITE. Title : Western equine encephalomyelitis Personal Author(s) : Price, E. R. ... Price, E. R. "Western equine encephalomyelitis" 1950, no. 2 (1950). Price, E. R. "Western equine encephalomyelitis" vol. 1950, ... Virus encephalitis in the Missouri River Basin. 1950(2). Cockburn, T. A. and Rowe, J. A. and Price, E. R. "Virus encephalitis ... Title : Virus encephalitis in the Missouri River Basin Personal Author(s) : Cockburn, T. A.;Rowe, J. A.;Price, E. R.; Corporate ...
Eastern and Western Equine Encephalitides. Outbreaks of these related encephalitis viruses are rare. Several different mosquito ... Louis encephalitis, LaCrosse (California) encephalitis, and Eastern equine and Western equine encephalitis. ... known as the western encephalitis mosquito, is the vector of Western equine encephalitis. Their uncommon occurrence is ... Like all encephalitis producing viruses, West Nile virus survives in birds and/or mammals, using them as reservoirs. Most birds ...
... virus was identified in the Western Hemisphere in 1999. Along with human encephalitis cases, 20 equine cases of WN virus were ... "West Nile virus outbreak among horses in New York State, 1999 and 2000." 7, no. 4 (2001). Trock, S. C. et al. "West Nile virus ... Title : West Nile virus outbreak among horses in New York State, 1999 and 2000. Personal Author(s) : Trock, S. C.;Meade, B. J.; ... 2001). West Nile virus outbreak among horses in New York State, 1999 and 2000.. 7(4). Trock, S. C. et al. " ...
also vector the virus to other mammals, humans and horses.. Although no vaccine for western equine encephalitis has been ... Symptoms include serious sequelae among young children. Compared to the eastern form of the virus, mortality is below 4.2 ... virus is of the recombinant type of two other alphaviruses. The incidence of infection is quite low as there have been only ...
Encephalitis). Find specific details on this topic and related topics from the MSD Vet Manual. ... Learn about the veterinary topic of Equine Viral Encephalomyelitis ( ... West Nile virus and Western equine encephalomyelitis are less severe. Not all infected animals develop signs of disease; a ... Western equine encephalitis (found in western Canada, US states west of the Mississippi river, Mexico, and South America), and ...
UCSC Genome Browser on ViralProj14831 May 2002 Western equine encephalitis virus (71V-1658 2000) (GCF_000850885.1). move <<< ...
These viruses are West Nile virus (WNV), St. Louis Encephalitis virus (SLE), and Western Equine Encephalitis virus (WEE). The ... However, none of these viruses are known to be transmitted within Nebraska, but people are infected with these viruses in other ... Aedes aegypti and Aedes albopictus have the potential to transmit several viruses, including dengue, chikungunya, Zika, and ... for the presence of three endemic viruses of human concern in the state. ...
The viruses most likely to be carried by mosquitoes in our local area are West Nile Virus, Western Equine encephalitis and St. ... "Active virus" in the valley means that mosquitoes have become infected with West Nile virus after they have fed on infected ... The virus may kill the bird or the bird may continue to perpetuate the virus without showing any noticeable symptoms. An ... they are unable to develop high levels of virus in their blood stream and cannot pass the virus on to other biting mosquitoes. ...
Wild birds are a natural reservoir for EEE and WEE viruses, and mosquitoes that feed on these birds can transmit the virus to ... and Western Equine Encephalitis (WEE) are viral diseases that cause inflammation of the brain and spinal cord. ... Eastern equine encephalitis virus (EEE), also known as sleeping sickness, ... Eastern equine encephalitis virus (EEE), also known as sleeping sickness, and Western Equine Encephalitis (WEE) are viral ...
Effect of exogenous interferon and an interferon inducer on western equine encephalitis virus disease in a hamster model. J G. ...
... swollen lymph nodes-but an accompanying rash may indicate a case of West Nile virus (WNV). ... Japanese encephalitis, St. Louis encephalitis, western equine encephalitis, eastern equine encephalitis), dengue virus, and ... One of the viruses they carry causes the West Nile Virus in humans and it can be asymptomatic or fatal. Since the virus ... The virus doesnt replicate well in humans or large mammals, so neither serves as significant sources of the virus. ...
Eastern Equine Encephalitis (EEE), Western Equine Encephalitis (WEE) and West Nile Virus (WNV). ... Make sure your horse is vaccinated against Eastern Equine Encephalitis (EEE), Western Equine Encephalitis (WEE) and West Nile ... Mosquitoes can transmit West Nile Virus and Eastern and Western Equine Encephalomyelitis, also known as "sleeping sickness." ... Take, for example, Zika Virus.. The first cases of this mosquito-borne disease that is related to West Nile Virus (WNV) and ...
Zika Virus, Dengue Fever, St. Louis encephalitis, Western equine encephalitis, and Eastern equine encephalitis for up to 30 ... Kills mosquitoes that may carry West Nile Virus, ...
  • Eastern, western, and Venezuelan equine encephalitis and West Nile viruses: clinical and public health considerations. (cabi.org)
  • It is caused by the Venezuelan equine encephalitis virus and has a significant presence in the tropical Americas. (medscape.com)
  • Epidemics of Venezuelan equine encephalitis involving tens of thousands of humans and hundreds of thousands of equines have been reported. (medscape.com)
  • Although predominantly a disease found in South and Central America, Venezuelan equine encephalitis has been reported in southern border areas of the United States. (medscape.com)
  • Venezuelan equine encephalitis may have been present for centuries as one of many undiagoised fevers common in the tropical Americas. (medscape.com)
  • In 1943, the first descriptions of Venezuelan equine encephalitis in humans were reported from laboratories where equine isolates were being characterized. (medscape.com)
  • In 1952, the first naturally acquired human case of Venezuelan equine encephalitis was reported from Colombia, whereas the first reported natural human infection in the United States was not documented until 1968. (medscape.com)
  • This was the first major epidemic of Venezuelan equine encephalitis in 22 years. (medscape.com)
  • Studies have begun to document a geographic spread of Venezuelan equine encephalitis. (medscape.com)
  • Over the past few years, Venezuelan equine encephalitis has been found in Brazil and the northern countries of South America. (medscape.com)
  • Major outbreaks involving humans have been associated with Venezuelan equine encephalitis subtype I, varieties AB and C. The IA and IB strains are considered genetically indistinguishable and are thus classified as IAB. (medscape.com)
  • While these epizootic strains are virulent in equines and humans, the enzootic Venezuelan equine encephalitis virus serotypes ID, IE, and IIIA can cause illness in humans but not in equines. (medscape.com)
  • All natural transmission of Venezuelan equine encephalitis is via mosquitoes. (medscape.com)
  • Venezuelan equine encephalitis virus is highly infectious by the aerosol route, and numerous laboratory infections have occurred, making it a possible biowarfare agent. (medscape.com)
  • Recognition of signs and symptoms of illness by those living and working in endemic areas is essential to limit the spread of Venezuelan equine encephalitis. (medscape.com)
  • Venezuelan equine encephalitis virus is a positive-strand, unsegmented ribonucleic acid (RNA) virus. (medscape.com)
  • Venezuelan equine encephalitis virus is a member of the genus Alphavirus of the family Togaviridae. (medscape.com)
  • Enzootic Venezuelan equine encephalitis serotypes ID, IE, and IIIA are avirulent in equines but can cause illness in humans. (medscape.com)
  • Venezuelan equine encephalitis is an arthropod-borne virus, with the mosquito serving as the most common vector. (medscape.com)
  • Other viruses that cause encephalomyelitis are Eastern equine encephalitis (found primarily in eastern Canada, US states east of the Mississippi river, and the Caribbean islands), Western equine encephalitis (found in western Canada, US states west of the Mississippi river, Mexico, and South America), and Venezuelan equine encephalitis (found in Mexico, and Central and South America). (msdvetmanual.com)
  • Infections with Eastern and Venezuelan equine encephalitis are generally severe and can progress to death over a short period of time. (msdvetmanual.com)
  • Researchers believe this attribute could make the Eilat virus a uniquely useful tool for studying other alphaviruses, a genus of largely mosquito-borne pathogens that includes the viruses responsible for chikungunya, Venezuelan equine encephalitis, western equine encephalitis and eastern equine encephalitis. (scienceblog.com)
  • Because these chimeras, like Eilat, would not be able to infect vertebrates, such research could be done without the elaborate and often cumbersome containment precautions needed for working with pathogens like chikungunya, Venezuelan equine encephalitis, or eastern and western equine encephalitis. (scienceblog.com)
  • The horse's veterinarian requested a variety of blood tests to determine the cause: West Nile virus, Eastern Equine Encephalitis, Western Equine Encephalitis and Venezuelan Equine Encephalitis. (texasthoroughbred.com)
  • Background Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus group. (biodiversityhotspot.org)
  • History Venezuelan equine encephalitis pathogen (VEEV) is one of the Alphavirus genus inside the Togaviridae family members and was initially isolated from horses in the long run from the 1930s [1,2]. (biodiversityhotspot.org)
  • Madariaga and Venezuelan equine encephalitis virus seroprevalence in rodent enzootic hosts in Eastern and Western Panama. (ox.ac.uk)
  • An alphavirus of the family Togaviridae, the WEE virus is an arbovirus (arthropod-borne virus) transmitted by mosquitoes of the genera Culex and Culiseta. (wikipedia.org)
  • The virus is transmitted to people and horses by bites from infected mosquitoes (Culex tarsalis and Aedes taeniorhynchus) and birds during wet, summer months. (wikipedia.org)
  • The Division of Vector-Borne Diseases (DVBD) strives to protect the nation from viruses and bacteria spread by mosquitoes, ticks, or fleas. (cdc.gov)
  • WEE virus transmission is at a high level, as reflected by isolations from Culex tarsalis mosquitoes in parts of Arizona, California, Minnesota, and North Dakota. (cdc.gov)
  • The threat of developing encephalitis from mosquitoes is far greater than the threat of malaria in the United States. (standardofcare.com)
  • Encephalitis, meningitis and other diseases can develop from the bites of mosquitoes infected with certain viruses: West Nile, St. Louis encephalitis, LaCrosse (California) encephalitis, and Eastern equine and Western equine encephalitis. (standardofcare.com)
  • The West Nile virus is transmitted predominantly by Culex mosquitoes. (standardofcare.com)
  • Culex species mosquitoes that are collected from across the state as part of the Nebraska Department of Health and Human Services Mosquito and Arboviral Surveillance Program are tested at the Nebraska Public Health Laboratory (NPHL) for the presence of three endemic viruses of human concern in the state. (ne.gov)
  • The increased health risk during a significant water year is due to animals and livestock being exposed to increased numbers of mosquitoes, which may be infected with a number of viruses. (nevadaappeal.com)
  • The viruses most likely to be carried by mosquitoes in our local area are West Nile Virus, Western Equine encephalitis and St. Louis encephalitis. (nevadaappeal.com)
  • Active virus" in the valley means that mosquitoes have become infected with West Nile virus after they have fed on infected birds. (nevadaappeal.com)
  • Unlike birds, they are unable to develop high levels of virus in their blood stream and cannot pass the virus on to other biting mosquitoes. (nevadaappeal.com)
  • Wild birds are a natural reservoir for EEE and WEE viruses, and mosquitoes that feed on these birds can transmit the virus to mammals, including horses and humans. (horsejournals.com)
  • In addition to mosquitoes, ticks and other bloodsucking insects can also transmit the virus after feeding on an infected bird. (horsejournals.com)
  • EEE and WEE are spread when infected mosquitoes bite horses after having picked up the virus, usually by feeding on an infected bird. (farnam.com)
  • This virus is unique - it's related to all of these mosquito-borne viruses that cause disease and cycle between mosquitoes and animals, and yet it is incapable of infecting vertebrate cells," said University of Texas Medical Branch at Galveston graduate student Farooq Nasar, lead author of a paper on the virus now online in the Proceedings of the National Academy of Sciences . (scienceblog.com)
  • Infected mosquitoes can then spread the virus to humans and horses. (buttecounty.net)
  • Culex mosquitoes tend to bite in the morning and evening and are not known to spread Zika, dengue, or chikungunya viruses. (buttecounty.net)
  • When some species of birds become infected, they produce high quantities of the virus, which can then be passed on to other mosquitoes that bite them. (buttecounty.net)
  • Arboviruses are viruses transmitted to people through the bites of arthropods, usually mosquitoes, fleas, or ticks. (msdmanuals.com)
  • With few exceptions, humans across the globe are susceptible to a wide range of pathogens that are carried by adult mosquitoes, including debilitating and sometimes fatal diseases like malaria, dengue, yellow fever, and West Nile encephalitis. (biomedcentral.com)
  • Horses and humans are considered "dead-end" hosts which means if infected they cannot transmit the virus back to feeding mosquitoes. (texasthoroughbred.com)
  • There are 28 different types of mosquitoes present in Western Colorado, the Culex species are the only mosquitoes that cause disease (West Nile virus). (mesacounty.us)
  • There are reports of confirmed and probable human cases of Western equine encephalitis virus (WEEV) infection in rural areas of several provinces in Argentina with WEEV activity in horses (see map). (cdc.gov)
  • Western equine encephalitis virus (WEEV) is a virus most commonly spread to people through the bite of an infected mosquito. (cdc.gov)
  • Western equine encephalitis virus (WEEV) naturally cycles between mosquitos and birds or rodents, with a case fatality rate of up to 15% in humans during epizootic outbreaks. (bvsalud.org)
  • The anti-VEEV scFv phage clones CB-7598 did not show any cross-reactivity with Alphavirus species of the Western equine encephalitis virus (WEEV) and Eastern equine encephalitis virus (EEEV) antigenic complex, nor did they react with Chikungunya virus (CHIKV), if they were used as detection reagent. (biodiversityhotspot.org)
  • One of the main goals of the District is to suppress mosquito-borne illnesses such as West Nile virus, Malaria, Zika, Dengue, Chikungunya, Yellow fever, and others. (buttecounty.net)
  • High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the Southeast of France. (medscape.com)
  • Chikungunya - an alphavirus that in the same family with Eastern and Western Equine Encephalitis viruses. (werindia.com)
  • Dengue and chikungunya are genetically distant relatives but Zika virus is closely related to dengue and often cross reacts (i.e. gives a false positive dengue test) on dengue serology or on some rapid assays that are available at some posts. (werindia.com)
  • WEE is a recombinant virus between two other alphaviruses, an ancestral Sindbis virus-like virus, and an ancestral Eastern equine encephalitis virus-like virus. (wikipedia.org)
  • Unlike Eastern equine encephalitis, the overall mortality of WEE is low (approximately 4%) and is associated mostly with infection in the elderly. (wikipedia.org)
  • Eastern equine encephalitis virus Sherman, M. B. (wikipedia.org)
  • Eastern Equine Encephalitis (EEE): Nine human cases of EEE have been diagnosed by virus isolation or serology. (cdc.gov)
  • Compared to the eastern form of the virus, mortality is below 4.2 percent confined mostly to elderly patients. (ucr.edu)
  • Eastern equine encephalitis virus (EEE), also known as sleeping sickness, and Western Equine Encephalitis (WEE) are viral diseases that cause inflammation of the brain and spinal cord. (horsejournals.com)
  • There are three mosquito-borne diseases that every horse owner should recognize and vaccinate against: Eastern Equine Encephalitis (EEE), Western Equine Encephalitis (WEE) and West Nile Virus (WNV). (farnam.com)
  • They can transmit infectious diseases such as malaria, West Nile virus, dengue fever, yellow fever, Zika virus, and Eastern equine encephalitis (EEE). (westernpest.com)
  • We have taken the genes for the envelope proteins of very dangerous viruses like eastern equine encephalitis and used them to replace the genes for Eilat's structural proteins," Nasar said. (scienceblog.com)
  • That gives us viruses that we can grow in insect cells that can't do anything in vertebrate cells at all, but still produce immunity against eastern equine encephalitis -they can be used to vaccinate animals, and hopefully someday people. (scienceblog.com)
  • General guidelines include annual vaccinations for Rabies, West Nile Virus, Eastern/Western Equine Encephalitis, and Tetanus. (lucernefarms.com)
  • Evolutionary patterns of eastern equine encephalitis virus in North versus South America suggest ecological differences and taxonomic revision. (microbiologyresearch.org)
  • All foals should receive core vaccinations against tetanus, Eastern and Western equine encephalitis, west nile virus and rabies," continues Carlson. (horseillustrated.com)
  • Additional Texas horses have tested positive for Eastern Equine Encephalitis (EEE). (texasthoroughbred.com)
  • Mosquito bites can be more than annoying, they can transmit diseases like West Nile virus and eastern equine encephalitis. (mesacounty.us)
  • Antibodies to Eastern and Venezualan encephalitis viruses and to West Nile virus were detected only in IRL dolphins. (aquaticmammalsjournal.org)
  • Eastern equine encephalitis (EEE) has caused the death of two alpacas in Dunn County, Wisconsin and a horse in that state has also been diagnosed with the deadly mosquito-borne virus that attacks the central nervous system. (equusmagazine.com)
  • Please read the AAEP Report on Eastern/Western Equine Encephalitis and check with your veterinarian that all horses on your property or in your care are up-to-date on their vaccinations. (equusmagazine.com)
  • West Nile virus, rabies, tetanus, and eastern/western equine encephalitis should all be vaccinated in every horse. (chastainequine.com)
  • The Western equine encephalomyelitis virus is the causative agent of relatively uncommon viral disease Western equine encephalomyelitis (WEE). (wikipedia.org)
  • West Nile virus and Western equine encephalomyelitis are less severe. (msdvetmanual.com)
  • The most immediate mosquito danger in Tulare County comes from a different genus, Culex , a type that typically bites at dawn and dusk and can carry West Nile virus, St. Louis encephalitis, and western equine encephalomyelitis virus, all of which can be fatal. (physiciansweekly.com)
  • WEE was discovered in 1930 when a number of horses in the San Joaquin Valley of California, USA died of a mysterious encephalitis. (wikipedia.org)
  • and California group and Jamestown Canyon viruses, from the Bunyaviridae family. (medscape.com)
  • Some agents preferentially infect certain age groups, such as St. Louis encephalitis, which affects the extremes of age, and California virus, which infects young children. (medscape.com)
  • St. Louis Encephalitis (SLE): Two serologically confirmed, non-fatal cases of SLE have been reported (one in a 24-year-old woman from near Yuma, Arizona, with onset June 20, and a second in a 3-year-old boy from Bard, California, with onset July 26). (cdc.gov)
  • California Virus Group Encephalitis: Eleven confirmed and presumptive human cases have been reported. (cdc.gov)
  • Although no vaccine for western equine encephalitis has been developed, there are some therapeutic drugs available for the infection. (ucr.edu)
  • For example, the UTMB researchers say, Eilat could be transformed into a vaccine against one of its dangerous relatives by making changes to the genes that produce its envelope proteins, which are exposed on virus particle surfaces and stimulate the critical parts of the immune response. (scienceblog.com)
  • The American Association of Equine Practitioners (AAEP) recommends the incorporation of a WNV vaccine as an annual core vaccine in equine vaccination protocols. (buttecounty.net)
  • Encephalitis is inflammation of the brain that occurs when a virus directly infects the brain or when a virus, vaccine, or something else triggers inflammation. (msdmanuals.com)
  • Vaccines are available that protect against other strains of equine encephalitis along with EEE, and a separate West Nile virus vaccine is also available. (equusmagazine.com)
  • Only a few mosquito-borne viruses can be prevented with vaccines. (cdc.gov)
  • The disease was first recognized as a unique mosquito borne virus in horses in Venezuela in 1938. (medscape.com)
  • The extensive transmission of the virus was probably due to a combination of unvaccinated horses and a record high level of rainfall leading to an increase in the mosquito population. (medscape.com)
  • Although a mosquito-transmitted disease, researchers determined that these infections can also be acquired from aerosolized virus. (medscape.com)
  • Tens of millions more are killed and debilitated by a host of other mosquito-borne diseases, including filariasis, yellow fever, dengue and encephalitis. (standardofcare.com)
  • Mosquitos that develop in urban areas, and the western encephalitis mosquito (C. tarsalis) more commonly found in rural areas, typically bite at dusk and after dark. (standardofcare.com)
  • This fogging effort has to be done after dusk when there is peak mosquito activity and especially that of flight activity of Culex tarsalis, which is the species that is the most competent vector of encephalitis and other arboviral diseases. (nevadaappeal.com)
  • The mosquito Culiseta melanura is the primary vector (although other species of mosquito can also transmit the virus). (horsejournals.com)
  • The virus circulates naturally in birds and is transmitted to horses and people primarily by the mosquito vector Culex tarsalis . (horsejournals.com)
  • The first cases of this mosquito-borne disease that is related to West Nile Virus (WNV) and dengue fever, were diagnosed in the United States in 2015. (farnam.com)
  • Even if Zika never becomes an issue in the equine population, there are already enough mosquito-borne diseases that do infect horses. (farnam.com)
  • Other than West Nile, which most horse owners are now aware of, we must also remain committed to continued vaccination against the 'older' mosquito-borne encephalitis viruses," cautions Mallicote. (farnam.com)
  • A mosquito sample collected three decades ago in Israel's Negev Desert has yielded an unexpected discovery: a previously unknown virus that's closely related to some of the world's most dangerous mosquito-borne pathogens but, curiously, incapable of infecting non-insect hosts. (scienceblog.com)
  • The common and most health concern for humans is the West Nile virus transmitted through mosquito bites. (scienceblog.com)
  • While the people infected by the virus will not have any signs or symptoms, 1 out of 160 people bite by a West Nile virus infected mosquito will experience symptoms. (scienceblog.com)
  • This mosquito can be used to get vaccines for viruses. (scienceblog.com)
  • West Nile Virus (WNV) is a mosquito-borne virus most commonly active from June through September. (buttecounty.net)
  • The virus is maintained in this bird-mosquito cycle. (buttecounty.net)
  • Caraballo H, King K. Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. (medscape.com)
  • As the virus infection rate increases in birds it is more likely to be transmitted by an infected mosquito that bites horses and humans. (texasthoroughbred.com)
  • TVMDL, TAHC and the Texas Department of State Health Services have information related to West Nile virus and mosquito control available for free download. (texasthoroughbred.com)
  • Mosquito-borne viruses are of increasing concern in the US and Florida. (grantome.com)
  • The results will be applicable to other viruses and other locations, and will provide information on the interpretation of surveillance results, the influence of mosquito age and population age structure on transmission, and the effect of multiple species of vectors involved in the transmission cycles. (grantome.com)
  • Those diseases include encephalitis, meningitis and acute flaccid paralysis, which can be fatal. (aruplab.com)
  • Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. (mdpi.com)
  • The simple answer is many of the diseases (West Nile Virus, EEE/WEE) you are vaccinating against are spread by insects. (starlitridge.com)
  • The mosquito's saliva also may contain pathogens such as malaria parasites or encephalitis virus, transmitting disease. (standardofcare.com)
  • Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? (mdpi.com)
  • and West Nile virus represents the first reports of these pathogens in cetacean populations. (aquaticmammalsjournal.org)
  • Viral names the causative agent, and the term meningitis implies lack of parenchymal and spinal cord involvement (otherwise called encephalitis and myelitis, respectively). (medscape.com)
  • As discussed below, many viruses are capable of causing meningitis. (medscape.com)
  • Seizures are more common with arboviral meningitis than with any other group of viruses. (medscape.com)
  • Less than 1%% of individuals (about 1 in 150 people) infected with WNV will develop severe neurological illnesses, such as encephalitis or meningitis (inflammation of the brain or surrounding tissue). (buttecounty.net)
  • Sometimes bacteria cause encephalitis, usually as part of bacterial meningitis (called meningoencephalitis). (msdmanuals.com)
  • The mechanisms by which circulating viruses penetrate the blood-brain barrier and seed the cerebrospinal fluid (CSF) to cause meningitis are unclear. (medscape.com)
  • Damage from viral meningitis may be due to an associated encephalitis and increased intracranial pressure (ICP). (medscape.com)
  • Echoviruses belong to genus Enterovirus and are associated with illnesses including aseptic meningitis, nonspecific rashes, encephalitis, and myositis. (medscape.com)
  • Both HSV-1 and HSV-2 may produce a more subacute encephalitis, apparent psychiatric syndromes, and benign recurrent meningitis. (medscape.com)
  • Arboviruses consist of more than 500 viruses from different viral families, all given the common name "ar-bo," for arthropod-borne disease. (medscape.com)
  • [ 5 ] These viruses were known formally as group A arboviruses. (medscape.com)
  • Eilat was discovered in a virus sample that Joseph Peleg of Hebrew University sent to UTMB's Dr. Robert Tesh, an author of the PNAS paper and director of the World Reference Center for Emerging Viruses and Arboviruses. (scienceblog.com)
  • Many arboviruses can cause encephalitis. (msdmanuals.com)
  • The viruses could also serve as the basis for new diagnostic tools that could be deployed in an alphavirus outbreak. (scienceblog.com)
  • An exception is Eilat virus (EILV), the only described alphavirus with a host range restricted to insects. (microbiologyresearch.org)
  • Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication. (microbiologyresearch.org)
  • The American Association of Equine Practitioners (AAEP) recommends the EEE and WEE vaccines as core vaccines. (horsejournals.com)
  • American Association of Equine Practitioners (AAEP) also provides equine vaccination guidelines for horse owners. (starlitridge.com)
  • caused by infection with the West Nile virus, is currently the best-known encephalitis of this type. (msdvetmanual.com)
  • A virus that caused an infection in the past becomes reactivated and directly damages the brain. (msdmanuals.com)
  • If triggered by an infection, the disorder is called postinfectious encephalitis. (msdmanuals.com)
  • Background: Western Equine Encephalitis (WEE) is a naturally acquired infection and potentially devastating bioweapon, with no specific human countermeasures. (bvsalud.org)
  • Brain infection is thought to occur by means of direct neuronal transmission of the virus from a peripheral site to the brain via the trigeminal or olfactory nerve and indirect immune-mediated processes inducing neuroinflammation. (medscape.com)
  • Brain infections due to an autoimmune reaction sometimes develop in people who have cancer-a disorder called paraneoplastic encephalitis. (msdmanuals.com)
  • Infections that can directly lead to encephalitis can occur in epidemics or occasionally as isolated cases (sporadically). (msdmanuals.com)
  • In the past, the generation of monoclonal murine antibodies has improved the fast identification CB-7598 of VEEV infections to locate human and equine outbreaks of encephalitis. (biodiversityhotspot.org)
  • Approximately 15-20% of horses that acquire the virus will die or be put down. (wikipedia.org)
  • Hendra virus: an update on diagnosis, vaccination, and biosecurity protocols for horses. (cabi.org)
  • Hendra virus (HeV) emerged as a zoonotic pathogen in the 1990s, causing low morbidity but high mortality in humans and horses. (cabi.org)
  • #2 . also vector the virus to other mammals, humans and horses. (ucr.edu)
  • Outbreaks of WEE virus have resulted in significant numbers of deaths in horses and humans. (horsejournals.com)
  • We don't yet have information to suggest that horses become infected with Zika or develop disease, and there are certainly horses present in many parts of the world where Zika Virus is present," observes Martha Mallicote, DVM, a veterinarian in Large Animal Medicine at the University of Florida in Gainesville. (farnam.com)
  • While less likely to result in death to the horse than encephalitis, WNV can require extensive veterinary treatment and affected horses may suffer long-lasting neurologic deficits. (farnam.com)
  • The "core" equine vaccinations are those considered requirements for basic equine health care, and they remain fairly consistent for most horses across most geographical areas. (lucernefarms.com)
  • Horses under the age of five are more susceptible to EHV and West Nile Virus. (starlitridge.com)
  • Epizootic viral strains IAB and IC are virulent in humans and equines. (medscape.com)
  • One of the viruses they carry causes the West Nile Virus in humans and it can be asymptomatic or fatal. (aruplab.com)
  • While so far, the disease has only been found in humans and primates, it makes sense for horse owners to wonder if Zika could pose a problem in equines. (farnam.com)
  • Eilat's inability to grow in animal cells - even its genetic material cannot replicate in them - makes it unique among alphaviruses, and it also makes it likely that the virus could be uniquely valuable to researchers who study alphaviruses and work to protect humans and domestic animals from them. (scienceblog.com)
  • The virus is not transmitted between animals or between animals and humans. (equusmagazine.com)
  • Encephalitis is most commonly due to viruses, such as herpes simplex, herpes zoster, cytomegalovirus, or West Nile virus. (msdmanuals.com)
  • Herpes simplex encephalitis (HSE) is an acute or subacute illness that causes both general and focal signs of cerebral dysfunction. (medscape.com)
  • Axial diffusion-weighted image reveals restricted diffusion in left medial temporal lobe consistent with herpes encephalitis. (medscape.com)
  • This patient also had positive result on polymerase chain reaction assay for herpes simplex virus, which is both sensitive and specific. (medscape.com)
  • In addition, patient had periodic lateralized epileptiform discharges on electroencephalography, which supports diagnosis of herpes encephalitis. (medscape.com)
  • See Herpes Simplex Viruses: Test Your Knowledge , a Critical Images slideshow, for more information on clinical, histologic, and radiographic imaging findings in HSV-1 and HSV-2. (medscape.com)
  • These viruses are West Nile virus (WNV), St. Louis Encephalitis virus (SLE), and Western Equine Encephalitis virus (WEE). (ne.gov)
  • Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is an acute and highly contagious enteric disease of pigs, which leads to high morbidity and mortality in the suckling piglets, thereby bringing huge economic losses to the global pig industry. (cabi.org)
  • Antibodies to E2 can neutralize virus infectivity. (medscape.com)
  • a horse may be infected with the virus, develop antibodies to it, and eliminate the virus without showing any obvious signs of illness. (msdvetmanual.com)
  • Detection of certain blood antibodies (IgM) against the causative virus provides additional support for the diagnosis. (msdvetmanual.com)
  • Testing a patient's blood is not as effective as testing CSF because antibodies that fight the virus can stick around for up to a year in your body. (aruplab.com)
  • Conclusion For the very first time, this scholarly research details selecting antibodies against a human pathogenic virus from a human na?ve scFv antibody gene collection using complete, energetic virus contaminants as antigen. (biodiversityhotspot.org)
  • A promising method to generate recombinant antibodies against human pathogenic viruses like VEEV is the antibody phage display technology. (biodiversityhotspot.org)
  • Since the virus' arrival in North America in 1999, it has produced three of the largest neuroinvasive disease outbreaks ever recorded in the United States. (aruplab.com)
  • Not transmitted from person to person except rarely by transfusion, and for West Nile virus by organ transplant, breastmilk or transplacentally [530, 1047]. (cdc.gov)
  • This week, our District was notified that ten "pools" were confirmed as positive for West Nile virus. (nevadaappeal.com)
  • It is sometimes mistaken for the summer flu-fever, chills, headache, body aches, swollen lymph nodes-but an accompanying rash may indicate a case of West Nile virus (WNV). (aruplab.com)
  • The Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL) confirmed West Nile virus (WNV) in a horse located in south Texas. (texasthoroughbred.com)
  • As new communications are created between countries, vector spread of the virus has been documented. (medscape.com)
  • We will study these vector-virus systems using an integrated approach with field, laboratory and theoretical methods. (grantome.com)
  • These viruses are highly infectious as aerosols [14,15] and an intentional release of sufficient quantities as inhalable small-particle aerosol is expected to infect a high percentage of individuals within an area of a least 10,000 km2 [16]. (biodiversityhotspot.org)
  • However, the virus can cause some people to develop severe neurologic disease such as meningoencephalitis (inflammation of the brain and surrounding membranes) and myelitis (inflammation of the spinal cord). (cdc.gov)
  • Of the estimated 50,000 equines infected, 8% died of the disease. (medscape.com)
  • The severity of the disease depends on the individual virus. (msdvetmanual.com)
  • For more information on TVMDL's equine neurologic disease testing, visit tvmdl.tamu.edu , or contact the agency headquarters at 1.888.646.5623. (texasthoroughbred.com)
  • and Western equine encephalitis viruses also cause human disease and are of concern. (grantome.com)
  • Less commonly, HSV-1 may produce a brainstem encephalitis, and HSV-2 may produce a myelitis. (medscape.com)
  • In the central and southeastern United States (Alabama, Florida, Illinois, Indiana, Kentucky, Mississippi, Ohio, and Tennessee) SLE virus activity determined by serologic surveillance of wild birds and sentinel chickens has been minimal. (cdc.gov)
  • Many species of domestic animals and birds carry these viruses. (msdmanuals.com)
  • It is when the virus enters the central nervous system that it becomes severe, which happens in about one in 150 people," says Marc Couturier , PhD, medical director of Microbial Immunology at ARUP Laboratories. (aruplab.com)
  • The virus affects the brain and spinal cord of the infected host. (wikipedia.org)
  • For patient education information, see the Brain and Nervous System Center , as well as Encephalitis . (medscape.com)
  • Fourteen brain specimens were positive in reverse transcriptase-polymerase chain reaction assays, confirming the presence of West Nile/Kunjin virus. (cdc.gov)
  • A virus directly infects the brain. (msdmanuals.com)
  • can also infect the brain and cause encephalitis. (msdmanuals.com)