Embryonic Induction
Gastrula
Mesoderm
Gene Expression Regulation, Developmental
Embryo, Nonmammalian
Body Patterning
Nervous System
Xenopus Proteins
Morphogenesis
In Situ Hybridization
Chick Embryo
Bone Morphogenetic Proteins
Sea Urchins
Neural Crest
Bone Morphogenetic Protein 4
Homeodomain Proteins
Germ Layers
Xenopus
Neural Plate
Blastula
Xenopus laevis
Embryonic Structures
Fibroblast Growth Factor 8
Fibroblast Growth Factors
Gastrulation
Cell Differentiation
Limb Buds
Transcription Factors
Tissue Transplantation
Quail
Signal Transduction
Notochord
Wnt Proteins
Lens, Crystalline
Paired Box Transcription Factors
Otx Transcription Factors
Genes, Homeobox
Zebrafish Proteins
Nodal Protein
Branchial Region
Hedgehog Proteins
Head
Cell Lineage
Embryo, Mammalian
Central Nervous System
Triturus
Molecular Sequence Data
Strongylocentrotus purpuratus
Bone Morphogenetic Protein Receptors
SOXB1 Transcription Factors
Trans-Activators
Epidermis
Organizers, Embryonic
Somites
Drosophila Proteins
Drosophila
Fibroblast Growth Factor 4
HMGB Proteins
DNA-Binding Proteins
Zebrafish
Chordata, Nonvertebrate
Activins
Blastocyst
MSX1 Transcription Factor
Base Sequence
Blastoderm
Proteins
Amino Acid Sequence
Repressor Proteins
Rhombencephalon
Neural Tube
Limb Deformities, Congenital
Wnt1 Protein
Models, Biological
Culture Techniques
T-Box Domain Proteins
Nerve Tissue Proteins
Eye
RNA, Messenger
Nodal Signaling Ligands
Pleurodeles
Coturnix
Wnt3 Protein
Hemicentrotus
Goosecoid Protein
Bone Morphogenetic Protein 2
LIM-Homeodomain Proteins
Feathers
Bone Morphogenetic Protein 7
Prosencephalon
Amphibians
Receptors, Fibroblast Growth Factor
Microinjections
The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. (1/1870)
The nephric duct is the first epithelial tubule to differentiate from intermediate mesoderm that is essential for all further urogenital development. In this study we identify the domain of intermediate mesoderm that gives rise to the nephric duct and demonstrate that the surface ectoderm is required for its differentiation. Removal of the surface ectoderm resulted in decreased levels of Sim-1 and Pax-2 mRNA expression in mesenchymal nephric duct progenitors, and caused inhibition of nephric duct formation and subsequent kidney development. The surface ectoderm expresses BMP-4 and we show that it is required for the maintenance of high-level BMP-4 expression in lateral plate mesoderm. Addition of a BMP-4-coated bead to embryos lacking the surface ectoderm restored normal levels of Sim-1 and Pax-2 mRNA expression in nephric duct progenitors, nephric duct formation and the initiation of nephrogenesis. Thus, BMP-4 signaling can substitute for the surface ectoderm in supporting nephric duct morphogenesis. Collectively, these data suggest that inductive interactions between the surface ectoderm, lateral mesoderm and intermediate mesoderm are essential for nephric duct formation and the initiation of urogenital development. (+info)Regulation of neurotrophin-3 expression by epithelial-mesenchymal interactions: the role of Wnt factors. (2/1870)
Neurotrophins regulate survival, axonal growth, and target innervation of sensory and other neurons. Neurotrophin-3 (NT-3) is expressed specifically in cells adjacent to extending axons of dorsal root ganglia neurons, and its absence results in loss of most of these neurons before their axons reach their targets. However, axons are not required for NT-3 expression in limbs; instead, local signals from ectoderm induce NT-3 expression in adjacent mesenchyme. Wnt factors expressed in limb ectoderm induce NT-3 in the underlying mesenchyme. Thus, epithelial-mesenchymal interactions mediated by Wnt factors control NT-3 expression and may regulate axonal growth and guidance. (+info)Fish swimbladder: an excellent mesodermal inductor in primary embryonic induction. (3/1870)
Swimbladder of the crucian carp, Carassius auratus, was found to be better as a vegatalizing tissue than other tissues, such as guinea-pig bone marrow, when presumptive ectoderm of Triturus gastrulae was used as reacting tissue. Swimbladder usually induced assemblies of highly organized mesodermal tissues, such as notochord, somites and pronephric tubules, some of which were covered by mesodermal epithelium without any epidermal covering. A special character of the effect of swimbladder was the rather frequent induction of solid balls of undifferentiated cells, which were identified as mesodermal or mesodermal and probably endodermal. These findings show that swimbladder has a strong and fast spreading vegetalizing effect on the responding presumptive ectoderm. (+info)Embryological study of a T/t locus mutation (tw73) affecting trophectoderm development. (4/1870)
Mouse embryos homozygous for the recessive lethal mutation tw73 show specific defects in trophectoderm shortly after implantation. The trophectoderm and ectoplacental cone fail to form the usual close association with the uterine decidua, and proliferation is markedly reduced. The embryo proper ceases to develop beyond the two-layered stage and degenerates and dies within 5 days of implantation. (+info)Bmp4 is required for the generation of primordial germ cells in the mouse embryo. (5/1870)
In many organisms the allocation of primordial germ cells (PGCs) is determined by the inheritance of maternal factors deposited in the egg. However, in mammals, inductive cell interactions are required around gastrulation to establish the germ line. Here, we show that Bmp4 homozygous null embryos contain no PGCs. They also lack an allantois, an extraembryonic mesodermal tissue derived, like the PGCs, from precursors in the proximal epiblast. Heterozygotes have fewer PGCs than normal, due to a reduction in the size of the founding population and not to an effect on its subsequent expansion. Analysis of beta-galactosidase activity in Bmp4(lacZneo) embryos reveals that prior to gastrulation, Bmp4 is expressed in the extraembryonic ectoderm. Later, Bmp4 is expressed in the extraembryonic mesoderm, but not in PGCs. Chimera analysis indicates that it is the Bmp4 expression in the extraembryonic ectoderm that regulates the formation of allantois and primordial germ cell precursors, and the size of the founding population of PGCs. The initiation of the germ line in the mouse therefore depends on a secreted signal from the previously segregated, extraembryonic, trophectoderm lineage. (+info)BMP7 acts in murine lens placode development. (6/1870)
Targeted inactivation of the Bmp7 gene in mouse leads to eye defects with late onset and variable penetrance (A. T. Dudley et al., 1995, Genes Dev. 9, 2795-2807; G. Luo et al., 1995, Genes Dev. 9, 2808-2820). Here we report that the expressivity of the Bmp7 mutant phenotype markedly increases in a C3H/He genetic background and that the phenotype implicates Bmp7 in the early stages of lens development. Immunolocalization experiments show that BMP7 protein is present in the head ectoderm at the time of lens placode induction. Using an in vitro culture system, we demonstrate that addition of BMP7 antagonists during the period of lens placode induction inhibits lens formation, indicating a role for BMP7 in lens placode development. Next, to integrate Bmp7 into a developmental pathway controlling formation of the lens placode, we examined the expression of several early lens placode-specific markers in Bmp7 mutant embryos. In these embryos, Pax6 head ectoderm expression is lost just prior to the time when the lens placode should appear, while in Pax6-deficient (Sey/Sey) embryos, Bmp7 expression is maintained. These results could suggest a simple linear pathway in placode induction in which Bmp7 functions upstream of Pax6 and regulates lens placode induction. At odds with this interpretation, however, is the finding that expression of secreted Frizzled Related Protein-2 (sFRP-2), a component of the Wnt signaling pathway which is expressed in prospective lens placode, is absent in Sey/Sey embryos but initially present in Bmp7 mutants. This suggests a different model in which Bmp7 function is required to maintain Pax6 expression after induction, during a preplacodal stage of lens development. We conclude that Bmp7 is a critical component of the genetic mechanism(s) controlling lens placode formation. (+info)Gap junction signalling mediated through connexin-43 is required for chick limb development. (7/1870)
During chick limb development the gap junction protein Connexin-43 (Cx43) is expressed in discrete spatially restricted domains in the apical ectodermal ridge (AER) and mesenchyme of the zone of polarising activity. Antisense oligonucleotides (ODNs) were used to investigate the role of Connexin-43 (Cx43) in the development of the chick limb bud. We have used unmodified ODNs in Pluronic F-127 gel, which is liquid at low temperature but sets at room temperature and so remains situated at the point of application. As a mild surfactant, the gel increases antisense ODN penetration and supplies ODNs to the embryo continually for 12-18 h. We have shown a strong decrease in Cx43 protein expression after application of specific antisense oligonucleotides but the abundance of a closely related protein, Connexin-32 (Cx32), was not affected. Application of antisense Cx43 ODNs at stages 8-15 HH before limb outgrowth resulted in dramatic limb phenotypes. About 40% of treated embryos exhibited defects such as truncation of the limb bud, fragmentation into two or more domains, or complete splitting of the limb bud into two or three branches. Molecular analysis of antisense treated embryos failed to detect Shh or Bmp-2 in anterior structures and suggested that extra lobes seen in nicked and split limbs were not a result of establishment of new signalling centres as found after the application of FGF to the flank. However, examination of markers for the AER showed a number of abnormalities. In severely truncated specimens we were unable to detect the expression of either Fgf-4 or Fgf-8. In both nicked and split limbs the expression of these genes was discontinuous. Down-regulation of Cx43 after the antisense application could be comparable to AER removal and results in distal truncation of the limb bud. Taken together these data suggest the existence of a feedback loop between the FGFs and signalling mediated by Cx43. (+info)Chick Barx2b, a marker for myogenic cells also expressed in branchial arches and neural structures. (8/1870)
We have isolated a new chicken gene, cBarx2b, which is related to mBarx2 in sequence, although the expression patterns of the two genes are quite different from one another. The cBarx2b gene is expressed in craniofacial structures, regions of the neural tube, and muscle groups in the limb, neck and cloaca. Perturbation of anterior muscle pattern by application of Sonic Hedgehog protein results in a posteriorization of cBarx2b expression. (+info)Xenopus proteins are proteins that are found in the African clawed frog, Xenopus laevis. These proteins have been widely used in the field of molecular biology and genetics as model systems for studying gene expression, development, and other biological processes. Xenopus proteins have been used in a variety of research applications, including the study of gene regulation, cell signaling, and the development of new drugs. They have also been used to study the mechanisms of diseases such as cancer, neurodegenerative disorders, and infectious diseases. In the medical field, Xenopus proteins have been used to develop new treatments for a variety of diseases, including cancer and genetic disorders. They have also been used to study the effects of drugs and other compounds on biological processes, which can help to identify potential new treatments for diseases. Overall, Xenopus proteins are important tools in the field of molecular biology and genetics, and have contributed significantly to our understanding of many biological processes and diseases.
Bone morphogenetic proteins (BMPs) are a group of signaling proteins that play a crucial role in the development and maintenance of bone tissue. They are secreted by various cells in the body, including bone-forming cells called osteoblasts, and are involved in processes such as bone growth, repair, and remodeling. BMPs are also used in medical treatments to promote bone growth and healing. For example, they are sometimes used in orthopedic surgeries to help repair fractures or to stimulate the growth of new bone in areas where bone has been lost, such as in spinal fusion procedures. They may also be used in dental procedures to help promote the growth of new bone in areas where teeth have been lost. BMPs are also being studied for their potential use in other medical applications, such as in the treatment of osteoporosis, a condition characterized by weak and brittle bones, and in the repair of damaged or diseased tissues in other parts of the body.
Bone Morphogenetic Protein 4 (BMP4) is a protein that plays a crucial role in the development and maintenance of bone tissue in the human body. It is a member of the transforming growth factor-beta (TGF-β) superfamily of proteins, which are involved in a wide range of cellular processes, including cell growth, differentiation, and migration. In the medical field, BMP4 is used as a therapeutic agent to promote bone growth and regeneration in a variety of conditions, including fractures, osteoporosis, and spinal cord injuries. It is also being studied as a potential treatment for other diseases, such as cancer and diabetes. BMP4 is produced by a variety of cells in the body, including osteoblasts (cells that produce bone tissue) and chondrocytes (cells that produce cartilage). It acts by binding to specific receptors on the surface of cells, which triggers a signaling cascade that leads to changes in gene expression and cellular behavior. Overall, BMP4 is a critical protein for the development and maintenance of bone tissue, and its therapeutic potential is being actively explored in the medical field.
Homeodomain proteins are a class of transcription factors that play a crucial role in the development and differentiation of cells and tissues in animals. They are characterized by a highly conserved DNA-binding domain called the homeodomain, which allows them to recognize and bind to specific DNA sequences. Homeodomain proteins are involved in a wide range of biological processes, including embryonic development, tissue differentiation, and organogenesis. They regulate the expression of genes that are essential for these processes by binding to specific DNA sequences and either activating or repressing the transcription of target genes. There are many different types of homeodomain proteins, each with its own unique function and target genes. Some examples of homeodomain proteins include the Hox genes, which are involved in the development of the body plan in animals, and the Pax genes, which are involved in the development of the nervous system. Mutations in homeodomain proteins can lead to a variety of developmental disorders, including congenital malformations and intellectual disabilities. Understanding the function and regulation of homeodomain proteins is therefore important for the development of new treatments for these conditions.
Fibroblast Growth Factor 8 (FGF8) is a protein that plays a crucial role in the development and maintenance of various tissues in the human body. It is a member of the fibroblast growth factor family, which is a group of proteins that regulate cell growth, differentiation, and survival. In the medical field, FGF8 is involved in a wide range of biological processes, including embryonic development, tissue repair, and cancer progression. It is expressed in various tissues, including the brain, heart, lungs, and kidneys. FGF8 is also a key regulator of angiogenesis, the process by which new blood vessels form from existing ones. It has been shown to stimulate the growth of blood vessels in various tissues, including the retina, heart, and tumors. In addition, FGF8 has been implicated in the development of several diseases, including cancer, cardiovascular disease, and neurological disorders. For example, high levels of FGF8 have been associated with the development of certain types of cancer, such as breast cancer and glioblastoma. Overall, FGF8 is a critical protein in the regulation of various biological processes, and its dysregulation has been linked to several diseases. As such, it is an important target for research and potential therapeutic interventions.
Fibroblast Growth Factors (FGFs) are a family of proteins that play important roles in cell growth, differentiation, and tissue repair. They are produced by a variety of cells, including fibroblasts, endothelial cells, and neurons, and act on a wide range of cell types, including epithelial cells, muscle cells, and bone cells. FGFs are involved in many physiological processes, including embryonic development, wound healing, and tissue regeneration. They also play a role in the development of certain diseases, such as cancer and fibrosis. There are 23 known members of the FGF family, and they act by binding to specific receptors on the surface of cells, which then activate intracellular signaling pathways that regulate cell growth and other cellular processes. FGFs are often used as therapeutic agents in clinical trials for the treatment of various diseases, including cancer, heart disease, and neurological disorders.
Transcription factors are proteins that regulate gene expression by binding to specific DNA sequences and controlling the transcription of genetic information from DNA to RNA. They play a crucial role in the development and function of cells and tissues in the body. In the medical field, transcription factors are often studied as potential targets for the treatment of diseases such as cancer, where their activity is often dysregulated. For example, some transcription factors are overexpressed in certain types of cancer cells, and inhibiting their activity may help to slow or stop the growth of these cells. Transcription factors are also important in the development of stem cells, which have the ability to differentiate into a wide variety of cell types. By understanding how transcription factors regulate gene expression in stem cells, researchers may be able to develop new therapies for diseases such as diabetes and heart disease. Overall, transcription factors are a critical component of gene regulation and have important implications for the development and treatment of many diseases.
Wnt proteins are a family of signaling molecules that play a crucial role in regulating cell proliferation, differentiation, migration, and survival. They are secreted by cells and bind to receptors on the surface of neighboring cells, activating a signaling cascade that regulates gene expression and cellular behavior. In the medical field, Wnt proteins are of great interest because they are involved in a wide range of diseases and conditions, including cancer, developmental disorders, and neurodegenerative diseases. For example, mutations in Wnt signaling pathways have been implicated in the development of colorectal cancer, and dysregulated Wnt signaling has been linked to the progression of other types of cancer as well. Wnt proteins are also being studied as potential therapeutic targets for a variety of diseases. For example, drugs that target Wnt signaling have shown promise in preclinical studies for the treatment of cancer, and there is ongoing research into the use of Wnt signaling inhibitors for the treatment of other conditions, such as inflammatory bowel disease and osteoporosis.
Paired box transcription factors (PAX genes) are a family of transcription factors that play important roles in the development and differentiation of various tissues and organs in the body. These proteins are characterized by a highly conserved DNA-binding domain called the paired box, which allows them to recognize and bind to specific DNA sequences. PAX genes are involved in a wide range of biological processes, including cell proliferation, differentiation, migration, and apoptosis. They are expressed in many different tissues and organs throughout the body, including the brain, heart, lungs, kidneys, and reproductive organs. Mutations in PAX genes can lead to a variety of developmental disorders and diseases, including eye disorders, brain malformations, and certain types of cancer. Understanding the role of PAX genes in development and disease is an active area of research in the medical field.
OTX transcription factors are a family of transcription factors that play important roles in the development of the nervous system, eye, and other organs in vertebrates. They are named after the "otx" gene, which was first identified in the fruit fly Drosophila melanogaster. OTX transcription factors are characterized by a conserved DNA-binding domain called the OTX domain, which is responsible for recognizing specific DNA sequences. In vertebrates, there are three OTX genes: OTX1, OTX2, and OTX3. These genes are expressed in specific regions of the developing embryo and are involved in regulating the differentiation and development of various cell types. In the nervous system, OTX transcription factors are involved in the development of the retina, optic nerve, and brain. They are also involved in the development of the ear and other sensory organs. In the eye, OTX transcription factors are involved in the development of the retina and the lens. In addition to their roles in development, OTX transcription factors have also been implicated in various diseases, including cancer. For example, overexpression of OTX2 has been associated with the development of certain types of brain tumors, while mutations in the OTX1 gene have been linked to a rare form of eye cancer called retinoblastoma. Overall, OTX transcription factors are important regulators of development and have important roles in the formation and function of various organs and tissues in vertebrates.
Zebrafish proteins refer to proteins that are expressed in the zebrafish, a small freshwater fish that is commonly used as a model organism in biomedical research. These proteins can be studied to gain insights into the function and regulation of proteins in humans and other organisms. Zebrafish are particularly useful as a model organism because they have a similar genetic makeup to humans and other vertebrates, and they develop externally, making it easy to observe and manipulate their development. Additionally, zebrafish embryos are transparent, allowing researchers to visualize the development of their organs and tissues in real-time. Zebrafish proteins have been studied in a variety of contexts, including the development of diseases such as cancer, cardiovascular disease, and neurodegenerative disorders. By studying zebrafish proteins, researchers can identify potential therapeutic targets and develop new treatments for these diseases.
In the medical field, a nodal protein is a type of signaling protein that plays a crucial role in the development and differentiation of cells. Nodal proteins are members of the transforming growth factor-beta (TGF-beta) superfamily and are involved in the regulation of various cellular processes, including cell proliferation, migration, and differentiation. Nodal proteins are particularly important during embryonic development, where they help to establish the body plan and determine the fate of different cell types. They are also involved in the development of various organs and tissues, including the heart, lungs, and limbs. In the context of cancer, nodal proteins have been implicated in the development and progression of various types of tumors. For example, overexpression of nodal proteins has been associated with the development of breast cancer, ovarian cancer, and other types of cancer. Overall, nodal proteins are important signaling molecules that play a critical role in the development and function of various tissues and organs in the body.
Hedgehog proteins are a family of signaling molecules that play important roles in the development and maintenance of various tissues and organs in the body. They are named after the hedgehog animal because of their shape and the way they move around. In the medical field, hedgehog proteins are of particular interest because they have been implicated in the development of certain types of cancer, including basal cell carcinoma and medulloblastoma. These proteins are involved in regulating cell growth and differentiation, and when they are overactive or mutated, they can lead to uncontrolled cell proliferation and the formation of tumors. Hedgehog proteins are also involved in the development of other diseases, such as liver fibrosis and osteoarthritis. In addition, they have been studied as potential targets for the development of new treatments for these conditions. Overall, hedgehog proteins are an important area of research in the medical field, and understanding their role in health and disease is critical for developing new therapies and improving patient outcomes.
Bone Morphogenetic Protein Receptors (BMPRs) are a type of cell surface receptor that play a critical role in the development and maintenance of bone tissue. BMPRs are activated by binding to specific ligands called Bone Morphogenetic Proteins (BMPs), which are secreted by cells in the bone marrow and other tissues. BMPRs are members of the Transforming Growth Factor-beta (TGF-beta) superfamily of receptors, and they are expressed by a wide variety of cell types, including osteoblasts (bone-forming cells), chondrocytes (cartilage-forming cells), and fibroblasts (connective tissue cells). When BMPRs are activated by BMPs, they initiate a signaling cascade that leads to the activation of various intracellular signaling pathways, including the Smad pathway. These signaling pathways regulate a wide range of cellular processes, including cell proliferation, differentiation, migration, and apoptosis (programmed cell death). In the context of bone development and maintenance, BMPRs play a critical role in regulating the balance between bone formation and resorption. BMPs stimulate osteoblast differentiation and bone formation, while BMPRs also play a role in inhibiting osteoclast differentiation and bone resorption. Dysregulation of BMP signaling has been implicated in a number of bone disorders, including osteoporosis, osteogenesis imperfecta, and bone cancer.
SOXB1 transcription factors are a family of proteins that play a crucial role in regulating gene expression in various biological processes, including development, differentiation, and homeostasis. The SOXB1 family includes three members: SOX9, SOX8, and SOX10. SOX9 is primarily expressed in the developing testis and is essential for the development of male sexual characteristics. It also plays a role in the development of the skeleton, cartilage, and bone. SOX8 is expressed in a variety of tissues, including the brain, heart, and skeletal muscle. It is involved in the regulation of cell proliferation and differentiation, as well as the development of the nervous system. SOX10 is expressed in neural crest cells, which give rise to a variety of cell types, including melanocytes, Schwann cells, and neurons. It is involved in the development of the peripheral nervous system, as well as the development of the skin and eyes. Mutations in SOXB1 transcription factors have been associated with a variety of human diseases, including developmental disorders, cancers, and neurological disorders. Understanding the function of these transcription factors is important for developing new treatments for these diseases.
In the medical field, "trans-activators" refer to proteins or molecules that activate the transcription of a gene, which is the process by which the information in a gene is used to produce a functional product, such as a protein. Trans-activators can bind to specific DNA sequences near a gene and recruit other proteins, such as RNA polymerase, to initiate transcription. They can also modify the chromatin structure around a gene to make it more accessible to transcription machinery. Trans-activators play important roles in regulating gene expression and are involved in many biological processes, including development, differentiation, and disease.
Drosophila proteins are proteins that are found in the fruit fly Drosophila melanogaster, which is a widely used model organism in genetics and molecular biology research. These proteins have been studied extensively because they share many similarities with human proteins, making them useful for understanding the function and regulation of human genes and proteins. In the medical field, Drosophila proteins are often used as a model for studying human diseases, particularly those that are caused by genetic mutations. By studying the effects of these mutations on Drosophila proteins, researchers can gain insights into the underlying mechanisms of these diseases and potentially identify new therapeutic targets. Drosophila proteins have also been used to study a wide range of biological processes, including development, aging, and neurobiology. For example, researchers have used Drosophila to study the role of specific genes and proteins in the development of the nervous system, as well as the mechanisms underlying age-related diseases such as Alzheimer's and Parkinson's.
Fibroblast Growth Factor 4 (FGF4) is a protein that plays a role in cell growth, differentiation, and development. It is a member of the fibroblast growth factor family, which includes a group of proteins that regulate various cellular processes, including cell proliferation, migration, and differentiation. In the medical field, FGF4 has been studied for its potential role in various diseases and conditions, including cancer, cardiovascular disease, and neurological disorders. For example, FGF4 has been shown to promote the growth and survival of cancer cells, and it may play a role in the development and progression of certain types of cancer, such as breast cancer and glioblastoma. FGF4 has also been implicated in the development of cardiovascular disease, as it can promote the growth and proliferation of smooth muscle cells in the walls of blood vessels. In addition, FGF4 has been shown to play a role in the development and function of the nervous system, and it may be involved in the pathogenesis of certain neurological disorders, such as Alzheimer's disease and Parkinson's disease. Overall, FGF4 is a protein that has important functions in cell growth, differentiation, and development, and it is being studied for its potential role in various diseases and conditions.
HMGB proteins, also known as high mobility group box proteins, are a family of non-histone chromosomal proteins that are found in the nuclei of eukaryotic cells. They are involved in a variety of cellular processes, including DNA replication, transcription, and repair. HMGB proteins are characterized by their ability to bind to DNA and facilitate the opening of nucleosomes, which are the basic units of chromatin. They are also involved in the regulation of gene expression and the maintenance of genome stability. In the medical field, HMGB proteins have been implicated in a number of diseases, including cancer, inflammatory disorders, and neurodegenerative diseases.
DNA-binding proteins are a class of proteins that interact with DNA molecules to regulate gene expression. These proteins recognize specific DNA sequences and bind to them, thereby affecting the transcription of genes into messenger RNA (mRNA) and ultimately the production of proteins. DNA-binding proteins play a crucial role in many biological processes, including cell division, differentiation, and development. They can act as activators or repressors of gene expression, depending on the specific DNA sequence they bind to and the cellular context in which they are expressed. Examples of DNA-binding proteins include transcription factors, histones, and non-histone chromosomal proteins. Transcription factors are proteins that bind to specific DNA sequences and regulate the transcription of genes by recruiting RNA polymerase and other factors to the promoter region of a gene. Histones are proteins that package DNA into chromatin, and non-histone chromosomal proteins help to organize and regulate chromatin structure. DNA-binding proteins are important targets for drug discovery and development, as they play a central role in many diseases, including cancer, genetic disorders, and infectious diseases.
Activins are a family of signaling proteins that play important roles in various biological processes, including embryonic development, cell differentiation, and tissue repair. They are composed of two chains, alpha and beta, that are encoded by different genes and can form either homodimers or heterodimers. Activins are secreted by cells and bind to specific receptors on the surface of target cells, triggering a signaling cascade that regulates gene expression and cellular activity. In the medical field, activins have been studied for their potential therapeutic applications in a variety of diseases, including infertility, cancer, and autoimmune disorders.
MSX1 Transcription Factor is a protein that plays a role in the development of various organs and tissues in the human body. It is a transcription factor, which means that it helps to regulate the expression of other genes by binding to specific DNA sequences. MSX1 is involved in the development of the craniofacial region, including the eyes, ears, and mouth, as well as the limbs and the skeleton. It is also important for the development of the lungs and the digestive system. Mutations in the MSX1 gene can lead to a variety of developmental disorders, including cleft palate, cleft lip, and limb abnormalities. These disorders can have a significant impact on an individual's health and quality of life. In the medical field, MSX1 is studied as a potential target for the development of new treatments for these and other disorders. Understanding the role of MSX1 in development and disease can help researchers develop more effective therapies and improve patient outcomes.
Fetal proteins are proteins that are produced by the developing fetus and are present in the mother's blood during pregnancy. These proteins are not normally present in the mother's blood before pregnancy and are not produced by the mother's body. They are produced by the fetus as it grows and develops, and they can be used to monitor the health and development of the fetus. There are several different types of fetal proteins, including alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), and unconjugated estriol (uE3). These proteins are typically measured in the mother's blood through a blood test called a pregnancy test or a pregnancy screening test. The levels of these proteins can provide information about the health of the fetus and can be used to detect certain conditions, such as neural tube defects, chromosomal abnormalities, and fetal tumors. It is important to note that the levels of fetal proteins in the mother's blood can also be affected by other factors, such as the mother's age, weight, and medical history. Therefore, the results of a pregnancy test or pregnancy screening test should be interpreted in the context of the mother's overall health and medical history.
Proteins are complex biomolecules made up of amino acids that play a crucial role in many biological processes in the human body. In the medical field, proteins are studied extensively as they are involved in a wide range of functions, including: 1. Enzymes: Proteins that catalyze chemical reactions in the body, such as digestion, metabolism, and energy production. 2. Hormones: Proteins that regulate various bodily functions, such as growth, development, and reproduction. 3. Antibodies: Proteins that help the immune system recognize and neutralize foreign substances, such as viruses and bacteria. 4. Transport proteins: Proteins that facilitate the movement of molecules across cell membranes, such as oxygen and nutrients. 5. Structural proteins: Proteins that provide support and shape to cells and tissues, such as collagen and elastin. Protein abnormalities can lead to various medical conditions, such as genetic disorders, autoimmune diseases, and cancer. Therefore, understanding the structure and function of proteins is essential for developing effective treatments and therapies for these conditions.
Repressor proteins are a class of proteins that regulate gene expression by binding to specific DNA sequences and preventing the transcription of the associated gene. They are often involved in controlling the expression of genes that are involved in cellular processes such as metabolism, growth, and differentiation. Repressor proteins can be classified into two main types: transcriptional repressors and post-transcriptional repressors. Transcriptional repressors bind to specific DNA sequences near the promoter region of a gene, which prevents the binding of RNA polymerase and other transcription factors, thereby inhibiting the transcription of the gene. Post-transcriptional repressors, on the other hand, bind to the mRNA of a gene, which prevents its translation into protein or causes its degradation, thereby reducing the amount of protein produced. Repressor proteins play important roles in many biological processes, including development, differentiation, and cellular response to environmental stimuli. They are also involved in the regulation of many diseases, including cancer, neurological disorders, and metabolic disorders.
Limb deformities, congenital, also known as congenital limb anomalies, are birth defects that affect the structure or function of a limb. These deformities can be present at birth or may become apparent later in childhood. They can range from minor deformities that do not affect function to severe deformities that can cause significant disability or disfigurement. Congenital limb deformities can be caused by a variety of factors, including genetic mutations, environmental factors, or unknown causes. Some common examples of congenital limb deformities include clubfoot, Poland syndrome, and congenital hip dysplasia. Treatment for congenital limb deformities depends on the severity and type of deformity. In some cases, surgery may be necessary to correct the deformity and improve function. Physical therapy and other forms of rehabilitation may also be recommended to help the affected limb function properly. In some cases, prosthetics or other assistive devices may be necessary to help the affected individual perform daily activities.
Wnt1 protein is a signaling molecule that plays a crucial role in the development and maintenance of various tissues and organs in the human body. It is a member of the Wnt family of proteins, which are involved in regulating cell proliferation, differentiation, and migration. In the medical field, Wnt1 protein is often studied in the context of cancer, as mutations in the Wnt signaling pathway have been implicated in the development of various types of cancer, including colorectal cancer, breast cancer, and pancreatic cancer. Wnt1 protein is also involved in the development of other diseases, such as Alzheimer's disease and osteoporosis. Wnt1 protein is a secreted protein that binds to receptors on the surface of cells, activating a signaling cascade that regulates gene expression and cellular behavior. The activity of Wnt1 protein is tightly regulated by a complex network of proteins and signaling pathways, and dysregulation of this network can lead to a variety of diseases.
T-Box Domain Proteins are a family of transcription factors that play important roles in the development and differentiation of various cell types in the body. They are characterized by the presence of a conserved T-box DNA binding domain, which allows them to interact with specific DNA sequences and regulate gene expression. T-Box Domain Proteins are involved in a wide range of biological processes, including cell proliferation, differentiation, migration, and apoptosis. They have been implicated in the development and progression of various diseases, including cancer, cardiovascular disease, and neurological disorders. In the medical field, T-Box Domain Proteins are the subject of ongoing research, with the goal of understanding their roles in disease pathogenesis and developing targeted therapies for the treatment of these conditions.
Nerve tissue proteins are proteins that are found in nerve cells, also known as neurons. These proteins play important roles in the structure and function of neurons, including the transmission of electrical signals along the length of the neuron and the communication between neurons. There are many different types of nerve tissue proteins, each with its own specific function. Some examples of nerve tissue proteins include neurofilaments, which provide structural support for the neuron; microtubules, which help to maintain the shape of the neuron and transport materials within the neuron; and neurofilament light chain, which is involved in the formation of neurofibrillary tangles, which are a hallmark of certain neurodegenerative diseases such as Alzheimer's disease. Nerve tissue proteins are important for the proper functioning of the nervous system and any disruption in their production or function can lead to neurological disorders.
In the medical field, RNA, Messenger (mRNA) refers to a type of RNA molecule that carries genetic information from DNA in the nucleus of a cell to the ribosomes, where proteins are synthesized. During the process of transcription, the DNA sequence of a gene is copied into a complementary RNA sequence called messenger RNA (mRNA). This mRNA molecule then leaves the nucleus and travels to the cytoplasm of the cell, where it binds to ribosomes and serves as a template for the synthesis of a specific protein. The sequence of nucleotides in the mRNA molecule determines the sequence of amino acids in the protein that is synthesized. Therefore, changes in the sequence of nucleotides in the mRNA molecule can result in changes in the amino acid sequence of the protein, which can affect the function of the protein and potentially lead to disease. mRNA molecules are often used in medical research and therapy as a way to introduce new genetic information into cells. For example, mRNA vaccines work by introducing a small piece of mRNA that encodes for a specific protein, which triggers an immune response in the body.
Nodal signaling ligands are a group of proteins that play a crucial role in embryonic development and tissue regeneration. They are also known as Nodal proteins or TGF-beta superfamily members. Nodal signaling ligands are secreted by cells and bind to specific receptors on the surface of neighboring cells, triggering a signaling cascade that regulates cell differentiation, proliferation, and migration. They are involved in a wide range of biological processes, including embryonic patterning, organogenesis, and tissue repair. In the medical field, Nodal signaling ligands have been studied for their potential therapeutic applications. For example, they have been shown to promote the regeneration of damaged tissues, such as the heart and spinal cord, and to play a role in the development of certain cancers. Additionally, Nodal signaling ligands have been used as targets for the development of new drugs to treat various diseases, including cancer and autoimmune disorders.
Wnt3 protein is a signaling molecule that plays a crucial role in the development and maintenance of various tissues and organs in the human body. It is a member of the Wnt family of proteins, which are involved in regulating cell proliferation, differentiation, migration, and apoptosis. In the medical field, Wnt3 protein is often studied in the context of various diseases and disorders, including cancer, developmental disorders, and neurological disorders. For example, mutations in the Wnt3 gene have been associated with certain types of cancer, such as colon cancer and breast cancer. Additionally, Wnt3 protein has been implicated in the development of developmental disorders such as autism spectrum disorder and schizophrenia. Wnt3 protein signaling pathways are also being investigated as potential therapeutic targets for various diseases. For example, drugs that target Wnt3 signaling have shown promise in preclinical studies for the treatment of cancer and other diseases.
Goosecoid Protein is a type of transcription factor that plays a crucial role in the development of various tissues and organs in the human body. It is encoded by the "GOSE1" gene and is primarily expressed in the developing limbs, heart, and brain. In the developing limbs, Goosecoid Protein is involved in the formation of the digits and the development of the skeletal system. It also plays a role in the development of the heart, where it helps to regulate the formation of the cardiac muscle and the conduction system. Goosecoid Protein is also involved in the development of the brain, where it helps to regulate the formation of the neural tube and the development of the spinal cord. In the medical field, Goosecoid Protein is studied as a potential target for the treatment of various diseases, including cancer, cardiovascular disease, and neurological disorders. It is also being studied as a potential biomarker for the early detection of certain diseases.
Bone Morphogenetic Protein 2 (BMP2) is a protein that plays a crucial role in bone development and repair. It is a member of the transforming growth factor-beta (TGF-β) superfamily of proteins, which are involved in a wide range of cellular processes, including cell growth, differentiation, and migration. In the medical field, BMP2 is used as a therapeutic agent to promote bone growth and regeneration in a variety of conditions, including spinal fusion, non-unions, and osteoporosis. It is typically administered as a bone graft substitute or in combination with other growth factors to enhance bone formation. BMP2 has also been studied for its potential use in tissue engineering and regenerative medicine, where it is used to stimulate the growth of new bone tissue in vitro and in vivo. Additionally, BMP2 has been shown to have anti-inflammatory and anti-cancer effects, making it a promising target for the development of new therapies for a range of diseases.
LIM-homeodomain proteins are a family of transcription factors that play important roles in the development and differentiation of various tissues and organs in the body. They are characterized by the presence of two zinc-finger domains, known as the LIM domains, which are responsible for DNA binding and protein-protein interactions. LIM-homeodomain proteins are involved in a wide range of biological processes, including cell migration, differentiation, and proliferation. They are expressed in many different tissues and organs, including the heart, brain, and skeletal muscle, and are involved in the development of these tissues. Mutations in LIM-homeodomain proteins have been linked to a number of human diseases, including limb malformations, cardiac defects, and certain types of cancer. Understanding the function and regulation of these proteins is therefore important for the development of new treatments for these diseases.
Bone Morphogenetic Protein 7 (BMP7) is a protein that plays a crucial role in bone development and repair. It is a member of the transforming growth factor-beta (TGF-β) superfamily of proteins, which are involved in a wide range of cellular processes, including cell growth, differentiation, and migration. In the medical field, BMP7 is used as a therapeutic agent to promote bone growth and repair in various conditions, such as non-unions (incomplete healing of bone fractures), spinal fusion, and osteoporosis. It is also being investigated for its potential use in tissue engineering and regenerative medicine to create artificial bones and other tissues. BMP7 is typically administered as a recombinant protein, which is produced using genetic engineering techniques. It can be delivered locally to the site of injury or disease, either as a standalone treatment or in combination with other therapies. However, the use of BMP7 in medicine is still in its early stages, and more research is needed to fully understand its potential benefits and risks.
Receptors, Fibroblast Growth Factor (FGFRs) are a family of transmembrane receptors that play a crucial role in regulating cell growth, differentiation, and survival. These receptors are activated by binding to specific ligands, such as fibroblast growth factors (FGFs), which are secreted by cells in response to various stimuli. FGFRs are composed of three extracellular immunoglobulin-like domains, a single transmembrane domain, and two intracellular tyrosine kinase domains. When an FGF ligand binds to an FGFR, it induces a conformational change in the receptor, leading to the activation of the intracellular tyrosine kinase domain. This, in turn, triggers a cascade of intracellular signaling pathways that regulate various cellular processes, including cell proliferation, differentiation, migration, and survival. Mutations in FGFR genes can lead to the overactivation or constitutive activation of FGFRs, which can contribute to the development of various diseases, including cancer. Therefore, FGFRs are an important target for the development of therapeutic agents for the treatment of cancer and other diseases.
Eye proteins are proteins that are found in the eye and play important roles in maintaining the structure and function of the eye. These proteins can be found in various parts of the eye, including the cornea, lens, retina, and vitreous humor. Some examples of eye proteins include: 1. Collagen: This is a protein that provides strength and support to the cornea and lens. 2. Alpha-crystallin: This protein is found in the lens and helps to maintain its shape and transparency. 3. Rhodopsin: This protein is found in the retina and is responsible for vision in low light conditions. 4. Vitreous humor proteins: These proteins are found in the vitreous humor, a clear gel-like substance that fills the space between the lens and the retina. They help to maintain the shape of the eye and provide support to the retina. Disruptions in the production or function of these proteins can lead to various eye diseases and conditions, such as cataracts, glaucoma, and age-related macular degeneration. Therefore, understanding the structure and function of eye proteins is important for the development of effective treatments for these conditions.
Ectoderm
Surface ectoderm
Ectoderm specification
Embryo
Hydra viridissima
Neurulation
Germline development
Mesoderm
Polycomb protein EED
Germ layer
Invagination
Dullard protein
Human tooth
Spermalege
Opiliones anatomy
Neural tube
Laminar organization
Cerebral organoid
Follistatin
Ablepharon macrostomia syndrome
John W. Saunders Jr.
Myoepithelial cell
Tissue (biology)
Capsule of lens
BioTapestry
Spinal cord
Neuromere
Neurula
Prenatal memory
Eye development
Cep15 embryo ectoderm gene expression
Coelom formation: binary decision of the lateral plate mesoderm is controlled by the ectoderm | Development | The Company of...
Ectoderm-heural cortex protein 1 (ENC-1), Mouse Monoclonal Antibody
Congenital Hand Deformities: Overview, Incidence, Embryology
Human Pluripotent Stem Cell-Derived Micropatterned Ectoderm Allows Cell Sorting of Meso-Endoderm Lineages. | Front Bioeng...
Developmental biology - Latest research and news | Nature
insect dorsal thoracic disc - Ontology Report - Rat Genome Database
EDAR gene: MedlinePlus Genetics
Chapter 6 Changes in cluster abundance | Multi-Sample Single-Cell Analyses with Bioconductor
Embryo\S.Bifida
Ektoderm - Wikipedia, ang malayang ensiklopedya
Focal Dermal Hypoplasia Syndrome: Background, Pathophysiology, Etiology
Erik Segerdell</dc...
Your Baby's Skeleton: How Many Bones Does a Baby Have?
Anatomy, Head and Neck, Nasal Cavity - StatPearls - NCBI Bookshelf
Animal - New World Encyclopedia
Drosophila gene interactions: Dorsal-ventral patterning and Spitz group
Self Study 4 - Embryology of the eye Flashcards by Abby McCabe | Brainscape
The Virtual Human Embryo
Subpopulations of human embryonic stem cells with distinct tissue-specific fates can be selected from pluripotent cultures. -...
Plus it
Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish...
Search | The Embryo Project Encyclopedia
Neurocutaneous Disorders: Tuberous Sclerosis Complex and Sturge-Weber Syndrome
Frontiers | Tranylcypromine Causes Neurotoxicity and Represses BHC110/LSD1 in Human-Induced Pluripotent Stem Cell-Derived...
National Eligibility Test : CSIR - NET Dec 2015 questions with Answer keys (Life Sciences) | PharmaTutor
Week 9 - Lozier Institute
Pieper M et al. (2012),
Differential distribution of competence for pan... -
Paper
Book - Essentials of Pediatric Surgery
| Bentham Science
neural crest cells (Cytokines & Cells Encyclopedia - COPE)
Mesoderm6
- So, ectoderm (outer layer), mesoderm (middle layer) and endoderm (deep layer). (pediatric-orthopedics.com)
- Specifically, it is critical for interactions between two embryonic cell layers called the ectoderm and the mesoderm. (medlineplus.gov)
- Ectoderm-mesoderm interactions are essential for the formation of several structures that arise from the ectoderm, including the skin, hair, nails, teeth, and sweat glands. (medlineplus.gov)
- All of these genetic changes prevent the receptor from interacting with ectodysplasin A1, which impairs chemical signaling needed for interactions between the ectoderm and the mesoderm in early development. (medlineplus.gov)
- Around day 10, 3 germ layers (ectoderm, mesoderm, endoderm) are usually distinct in the embryo. (msdmanuals.com)
- Teratomas are a germ cell tumors composed of two or more tissues which originate from ectoderm, endoderm or mesoderm. (medscape.com)
Endoderm3
- Human Pluripotent Stem Cell-Derived Micropatterned Ectoderm Allows Cell Sorting of Meso-Endoderm Lineages. (bvsalud.org)
- This pre-patterned ectoderm can be used to investigate the cell sorting behavior of hPSC-derived meso- endoderm cells , with an endoderm that segregates from the neural ectoderm . (bvsalud.org)
- During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm. (asu.edu)
Neural6
- Here, the authors show that the entire post-gastrula ectoderm maintains expression of pluripotency genes, leading to the high stem cell capacity in the neural crest. (nature.com)
- Here, we developed an in vitro model of human ectodermal patterning, in which human pluripotent stem cells (hPSCs) self -organize to form a radially regionalized neural and non- central nervous system (CNS) ectoderm . (bvsalud.org)
- in contrast, the neurohypophysis develops from the infundibulum, which is a downward extension of neural ectoderm from the floor of the diencephalon (see the image below). (medscape.com)
- The oral ectoderm and neural ectoderm that form the pituitary anlagen are in close contact during early embryogenesis, and this connection is critical for pituitary development. (medscape.com)
- A: Infundibulum and Rathke's pouch develop from neural ectoderm and oral ectoderm, respectively. (medscape.com)
- The neurohypophysis develops from the differentiation of neural ectoderm into the pars nervosa, the infundibular stem, and the median eminence. (medscape.com)
Dorsal2
- En-1 blocks Wnt-7a expression, preventing expression of Lmx-1b there, and establishes the dorsal-ventral axis. (medscape.com)
- The zerknullt target gene is repressed by high and low levels of the gradient, so that expression is restricted to the presumptive dorsal ectoderm. (sdbonline.org)
Embryonic1
- By having the same embryonic origin of the central nervous system (ectoderm), it represents an important role in emotions, since its innervations are linked to several body systems and reacts even to the smallest physical and emotional stimulations. (bvsalud.org)
Ectodermal3
- It stimulates the apical ectodermal ridge (AER), the ectoderm at the tip of the developing limb bud, to secrete several different fibroblast growth factors (FGF), especially FGF-2, FGF-4, and FGF-8. (medscape.com)
- Introduction: Ectodermal dysplasia is an abnormality of the ectoderm and its derivatives, phenotypically expressed in males and genetically inherited from mothers. (bvsalud.org)
- Ectodermal dysplasia is an abnormality of the ectoderm and its derivatives. (bvsalud.org)
Nervous system1
- This central lengthwise surface strip of ectoderm will become the nervous system. (pediatric-orthopedics.com)
Gene1
- 1) the mechanisms and dynamics for gene regulatory switches affecting the pluripotent ectoderm in vivo . (uibk.ac.at)
Structures1
- What structures ultimately from surface ectoderm? (brainscape.com)
Surface1
- The optic vesicles reach the surface ectoderm which thickens (a placode - thicker embryological area) to form the optic placodes. (brainscape.com)
Expression1
- Upon differentiation in vitro, CD133(+)GFP(+) hESCs gave rise solely to ectoderm, as detected by expression of nestin. (ca.gov)
Neural crest4
- Here we show that zebrafish tfap2c, encoding AP-2 gamma (Tfap2c), is expressed in non-neural ectoderm including transiently in neural crest. (nih.gov)
- The overall aim of the Kerosuo Lab is to provide a comprehensive picture of early neural crest development as part of the ectoderm patterning process and neurulation. (nih.gov)
- A major goal of the Kerosuo Lab is to understand how neural crest cells acquire and regulate their exceptionally high stem cell potential in the ectoderm and subsequently control their commitment into progenitors and various differentiated cell types during early embryo development. (nih.gov)
- has shown that the entire ectoderm, and not just the neural crest domain, maintains a pluripotency-like signature after gastrulation, which challenges the dogmatic viewpoints of permanent loss of pluripotency during gastrulation. (nih.gov)
Genes1
- We hypothesize that expression of pluripotency genes (Nanog, oct4, Llf4, etc.) continue to be expressed in the entire ectoderm after gastrulation, which ensures a gradual ectodermal patterning process to the different domains. (nih.gov)
Cells1
- Cross sections from a neurulating chick head shows how cells with a pluripotency signature are not lost during gastrulation but instead are found throughout the entire ectoderm and are then gradually restricted to the dorsal neural tube at the end of neurulation. (nih.gov)
Found1
- The scientists looked for ANR-, ZLI- and IsO-like gene expression patterns in the developing ectoderm of Saccoglossus kowalevskii , an acorn worm found in intertidal zones along the East coast. (nih.gov)