The process of finding chemicals for potential therapeutic use.
The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include pharmacokinetics, dosage analysis, or drug administration analysis.
Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications.
Large collections of small molecules (molecular weight about 600 or less), of similar or diverse nature which are used for high-throughput screening analysis of the gene function, protein interaction, cellular processing, biochemical pathways, or other chemical interactions.
Rapid methods of measuring the effects of an agent in a biological or chemical assay. The assay usually involves some form of automation or a way to conduct multiple assays at the same time using sample arrays.
Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form.
Complex pharmaceutical substances, preparations, or matter derived from organisms usually obtained by biological methods or assay.
That segment of commercial enterprise devoted to the design, development, and manufacture of chemical products for use in the diagnosis and treatment of disease, disability, or other dysfunction, or to improve function.
Databases devoted to knowledge about PHARMACEUTICAL PRODUCTS.
A technology, in which sets of reactions for solution or solid-phase synthesis, is used to create molecular libraries for analysis of compounds on a large scale.
The deliberate and methodical practice of finding new applications for existing drugs.
Databases devoted to knowledge about specific chemicals.
Dynamic and kinetic mechanisms of exogenous chemical and DRUG LIBERATION; ABSORPTION; BIOLOGICAL TRANSPORT; TISSUE DISTRIBUTION; BIOTRANSFORMATION; elimination; and DRUG TOXICITY as a function of dosage, and rate of METABOLISM. LADMER, ADME and ADMET are abbreviations for liberation, absorption, distribution, metabolism, elimination, and toxicology.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
The study of the origin, nature, properties, and actions of drugs and their effects on living organisms.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
A quantitative prediction of the biological, ecotoxicological or pharmaceutical activity of a molecule. It is based upon structure and activity information gathered from a series of similar compounds.
Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity.
A class of drugs producing both physiological and psychological effects through a variety of mechanisms. They can be divided into "specific" agents, e.g., affecting an identifiable molecular mechanism unique to target cells bearing receptors for that agent, and "nonspecific" agents, those producing effects on different target cells and acting by diverse molecular mechanisms. Those with nonspecific mechanisms are generally further classed according to whether they produce behavioral depression or stimulation. Those with specific mechanisms are classed by locus of action or specific therapeutic use. (From Gilman AG, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p252)
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
The application of scientific knowledge or technology to pharmacy and the pharmaceutical industry. It includes methods, techniques, and instrumentation in the manufacture, preparation, compounding, dispensing, packaging, and storing of drugs and other preparations used in diagnostic and determinative procedures, and in the treatment of patients.
A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets.
Diseases that are underfunded and have low name recognition but are major burdens in less developed countries. The World Health Organization has designated six tropical infectious diseases as being neglected in industrialized countries that are endemic in many developing countries (HELMINTHIASIS; LEPROSY; LYMPHATIC FILARIASIS; ONCHOCERCIASIS; SCHISTOSOMIASIS; and TRACHOMA).
Treatments with drugs which interact with or block synthesis of specific cellular components characteristic of the individual's disease in order to stop or interrupt the specific biochemical dysfunction involved in progression of the disease.
The use of computers for designing and/or manufacturing of anything, including drugs, surgical procedures, orthotics, and prosthetics.
Drugs which have received FDA approval for human testing but have yet to be approved for commercial marketing. This includes drugs used for treatment while they still are undergoing clinical trials (Treatment IND). The main heading includes drugs under investigation in foreign countries.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The science of drugs prepared from natural-sources including preparations from PLANTS, animals, and other organisms as well as MINERALS and other substances included in MATERIA MEDICA. The therapeutic usage of plants is PHYTOTHERAPY.
A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.
The concentration of a compound needed to reduce population growth of organisms, including eukaryotic cells, by 50% in vitro. Though often expressed to denote in vitro antibacterial activity, it is also used as a benchmark for cytotoxicity to eukaryotic cells in culture.
Chemistry dealing with the composition and preparation of agents having PHARMACOLOGIC ACTIONS or diagnostic use.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The systematic study of the complete DNA sequences (GENOME) of organisms.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Process that is gone through in order for a drug to receive approval by a government regulatory agency. This includes any required pre-clinical or clinical testing, review, submission, and evaluation of the applications and test results, and post-marketing surveillance of the drug.
Sequential operating programs and data which instruct the functioning of a digital computer.
New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms.
The branch of pharmacology that deals directly with the effectiveness and safety of drugs in humans.
A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The field of information science concerned with the analysis and dissemination of data through the application of computers.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The systematic study of the complete complement of proteins (PROTEOME) of organisms.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Substances that inhibit or prevent the proliferation of NEOPLASMS.
The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS.
Infections with the protozoa of the phylum EUGLENOZOA.
Disorders that result from the intended use of PHARMACEUTICAL PREPARATIONS. Included in this heading are a broad variety of chemically-induced adverse conditions due to toxicity, DRUG INTERACTIONS, and metabolic effects of pharmaceuticals.
Comprehensive, methodical analysis of complex biological systems by monitoring responses to perturbations of biological processes. Large scale, computerized collection and analysis of the data are used to develop and test models of biological systems.
Computer-based representation of physical systems and phenomena such as chemical processes.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
A branch of genetics which deals with the genetic variability in individual responses to drugs and drug metabolism (BIOTRANSFORMATION).
Agents destructive to the protozoal organisms belonging to the suborder TRYPANOSOMATINA.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals.
Time period from 1901 through 2000 of the common era.
Drugs used to treat or prevent parasitic infections.
A social science dealing with group relationships, patterns of collective behavior, and social organization.
The study of the physical and chemical properties of a drug and its dosage form as related to the onset, duration, and intensity of its action.
A collection of cloned peptides, or chemically synthesized peptides, frequently consisting of all possible combinations of amino acids making up an n-amino acid peptide.
A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A site on an enzyme which upon binding of a modulator, causes the enzyme to undergo a conformational change that may alter its catalytic or binding properties.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Controlled operations of analytic or diagnostic processes, or systems by mechanical or electronic devices.
Organizations representing specialized fields which are accepted as authoritative; may be non-governmental, university or an independent research organization, e.g., National Academy of Sciences, Brookings Institution, etc.
Property, such as patents, trademarks, and copyright, that results from creative effort. The Patent and Copyright Clause (Art. 1, Sec. 8, cl. 8) of the United States Constitution provides for promoting the progress of science and useful arts by securing for limited times to authors and inventors, the exclusive right to their respective writings and discoveries. (From Black's Law Dictionary, 5th ed, p1014)
Tests that demonstrate the relative effectiveness of chemotherapeutic agents against specific parasites.
The branch of pharmacology dealing especially with the action of drugs upon various parts of the nervous system.
The portion of an interactive computer program that issues messages to and receives commands from a user.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
The study of the actions and properties of medicinal agents, often derived from PLANTS, indigenous to populations or ETHNIC GROUPS.
An array of tests used to determine the toxicity of a substance to living systems. These include tests on clinical drugs, foods, and environmental pollutants.
Controlled operation of an apparatus, process, or system by mechanical or electronic devices that take the place of human organs of observation, effort, and decision. (From Webster's Collegiate Dictionary, 1993)
Works about pre-planned studies of the safety, efficacy, or optimum dosage schedule (if appropriate) of one or more diagnostic, therapeutic, or prophylactic drugs, devices, or techniques selected according to predetermined criteria of eligibility and observed for predefined evidence of favorable and unfavorable effects. This concept includes clinical trials conducted both in the U.S. and in other countries.
Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585)
A loose confederation of computer communication networks around the world. The networks that make up the Internet are connected through several backbone networks. The Internet grew out of the US Government ARPAnet project and was designed to facilitate information exchange.
Cells from adult organisms that have been reprogrammed into a pluripotential state similar to that of EMBRYONIC STEM CELLS.
Extensive collections, reputedly complete, of facts and data garnered from material of a specialized subject area and made available for analysis and application. The collection can be automated by various contemporary methods for retrieval. The concept should be differentiated from DATABASES, BIBLIOGRAPHIC which is restricted to collections of bibliographic references.
Methods for determining interaction between PROTEINS.
Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties.
Use of sophisticated analysis tools to sort through, organize, examine, and combine large sets of information.
The characteristic three-dimensional shape of a molecule.
Manufacturing technology for making microscopic devices in the micrometer range (typically 1-100 micrometers), such as integrated circuits or MEMS. The process usually involves replication and parallel fabrication of hundreds or millions of identical structures using various thin film deposition techniques and carried out in environmentally-controlled clean rooms.
Time period from 2001 through 2100 of the common era.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
The metabolism of drugs and their mechanisms of action.
Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
Critical and exhaustive investigation or experimentation, having for its aim the discovery of new facts and their correct interpretation, the revision of accepted conclusions, theories, or laws in the light of newly discovered facts, or the practical application of such new or revised conclusions, theories, or laws. (Webster, 3d ed)
The use of DRUGS to treat a DISEASE or its symptoms. One example is the use of ANTINEOPLASTIC AGENTS to treat CANCER.
The application of discoveries generated by laboratory research and preclinical studies to the development of clinical trials and studies in humans. A second area of translational research concerns enhancing the adoption of best practices.
Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.
Luciferases from FIREFLIES, usually Photinus, that oxidizes FIREFLY LUCIFERIN to cause emission of PHOTONS.
A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both.
A cell line derived from cultured tumor cells.
A subfield of psychiatry that emphasizes the somatic substructure on which mental operations and emotions are based, and the functional or organic disturbances of the central nervous system that give rise to, contribute to, or are associated with mental and emotional disorders. (From Campbell's Psychiatric Dictionary, 8th ed.)
Agents that inhibit PROTEIN KINASES.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals.
Therapeutic approach tailoring therapy for genetically defined subgroups of patients.
A computer simulation developed to study the motion of molecules over a period of time.
The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES.
Substances that reduce the growth or reproduction of BACTERIA.
Established cell cultures that have the potential to propagate indefinitely.
Mixtures of many components in inexact proportions, usually natural, such as PLANT EXTRACTS; VENOMS; and MANURE. These are distinguished from DRUG COMBINATIONS which have only a few components in definite proportions.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A definite pathologic process with a characteristic set of signs and symptoms. It may affect the whole body or any of its parts, and its etiology, pathology, and prognosis may be known or unknown.
Databases devoted to knowledge about specific genes and gene products.
Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy.
The protein complement of an organism coded for by its genome.
Compounds that specifically inhibit STEROL 14-DEMETHYLASE. A variety of azole-derived ANTIFUNGAL AGENTS act through this mechanism.
The study of the structure, behavior, growth, reproduction, and pathology of cells; and the function and chemistry of cellular components.
Compounds that inhibit or prevent the proliferation of CELLS.
The Nobel Prize is not a medical term, but a prestigious international award given annually in several categories, including Physiology or Medicine, for significant contributions to humanity that have conferred the greatest benefit to mankind.
Theory and development of COMPUTER SYSTEMS which perform tasks that normally require human intelligence. Such tasks may include speech recognition, LEARNING; VISUAL PERCEPTION; MATHEMATICAL COMPUTING; reasoning, PROBLEM SOLVING, DECISION-MAKING, and translation of language.
Research that involves the application of the natural sciences, especially biology and physiology, to medicine.
Complex sets of enzymatic reactions connected to each other via their product and substrate metabolites.
The science concerned with the detection, chemical composition, and biological action of toxic substances or poisons and the treatment and prevention of toxic manifestations.
The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
ANESTHESIA achieved by lowering either BODY TEMPERATURE (core cooling) or SKIN TEMPERATURE (external cooling).
Drug agonism involving selective binding but reduced effect. This can result in some degree of DRUG ANTAGONISM.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The study of medicines derived from botanical sources.
Proteins found in any species of bacterium.
Substances that are destructive to protozoans.
A genus of protozoa that comprise the malaria parasites of mammals. Four species infect humans (although occasional infections with primate malarias may occur). These are PLASMODIUM FALCIPARUM; PLASMODIUM MALARIAE; PLASMODIUM OVALE, and PLASMODIUM VIVAX. Species causing infection in vertebrates other than man include: PLASMODIUM BERGHEI; PLASMODIUM CHABAUDI; P. vinckei, and PLASMODIUM YOELII in rodents; P. brasilianum, PLASMODIUM CYNOMOLGI; and PLASMODIUM KNOWLESI in monkeys; and PLASMODIUM GALLINACEUM in chickens.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
Experimentation on STEM CELLS and on the use of stem cells.
Measurable biological parameters that serve for drug development, safety and dosing (DRUG MONITORING).
Collections of facts, assumptions, beliefs, and heuristics that are used in combination with databases to achieve desired results, such as a diagnosis, an interpretation, or a solution to a problem (From McGraw Hill Dictionary of Scientific and Technical Terms, 6th ed).
Societies whose membership is limited to pharmacists.
Compounds that are designed to mimic the 3D structure of a natural peptide or protein.
A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection.
A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation.
Biological activities of viruses and their interactions with the cells they infect.
Diseases of any component of the brain (including the cerebral hemispheres, diencephalon, brain stem, and cerebellum) or the spinal cord.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
A technique encompassing morphometry, densitometry, neural networks, and expert systems that has numerous clinical and research applications and is particularly useful in anatomic pathology for the study of malignant lesions. The most common current application of image cytometry is for DNA analysis, followed by quantitation of immunohistochemical staining.
Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal.
Chromatographic techniques in which the mobile phase is a liquid.
The application of engineering principles and methods to living organisms or biological systems.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. They are used in embryological studies and to study the effects of certain chemicals on development.
Methods for maintaining or growing CELLS in vitro.
An interdisciplinary field in materials science, ENGINEERING, and BIOLOGY, studying the use of biological principles for synthesis or fabrication of BIOMIMETIC MATERIALS.
The relationships of groups of organisms as reflected by their genetic makeup.
Graphs representing sets of measurable, non-covalent physical contacts with specific PROTEINS in living organisms or in cells.
Time period from 1801 through 1900 of the common era.
A specialty concerned with the nature and cause of disease as expressed by changes in cellular or tissue structure and function caused by the disease process.
Methods utilizing the principles of MICROFLUIDICS for sample handling, reagent mixing, and separation and detection of specific components in fluids.
The scientific disciplines concerned with the embryology, anatomy, physiology, biochemistry, pharmacology, etc., of the nervous system.
A group of atoms or molecules attached to other molecules or cellular structures and used in studying the properties of these molecules and structures. Radioactive DNA or RNA sequences are used in MOLECULAR GENETICS to detect the presence of a complementary sequence by NUCLEIC ACID HYBRIDIZATION.
A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics.
A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.
Ligand-binding assays that measure protein-protein, protein-small molecule, or protein-nucleic acid interactions using a very large set of capturing molecules, i.e., those attached separately on a solid support, to measure the presence or interaction of target molecules in the sample.
The action of a drug that may affect the activity, metabolism, or toxicity of another drug.

A Fourier transformation based method to mine peptide space for antimicrobial activity. (1/2214)

BACKGROUND: Naturally occurring antimicrobial peptides are currently being explored as potential candidate peptide drugs. Since antimicrobial peptides are part of the innate immune system of every living organism, it is possible to discover new candidate peptides using the available genomic and proteomic data. High throughput computational techniques could also be used to virtually scan the entire peptide space for discovering out new candidate antimicrobial peptides. RESULT: We have identified a unique indexing method based on biologically distinct characteristic features of known antimicrobial peptides. Analysis of the entries in the antimicrobial peptide databases, based on our indexing method, using Fourier transformation technique revealed a distinct peak in their power spectrum. We have developed a method to mine the genomic and proteomic data, for the presence of peptides with potential antimicrobial activity, by looking for this distinct peak. We also used the Euclidean metric to rank the potential antimicrobial peptides activity. We have parallelized our method so that virtually any given protein space could be data mined, in search of antimicrobial peptides. CONCLUSION: The results show that the Fourier transform based method with the property based coding strategy could be used to scan the peptide space for discovering new potential antimicrobial peptides.  (+info)

A comparative study on the cost of new antibiotics and drugs of other therapeutic categories. (2/2214)

BACKGROUND: Drug treatment is becoming more expensive due to the increased cost for the introduction of new drugs, and there seems to be an uneven distribution of medication cost for different therapeutic categories. We hypothesized that the cost of new antimicrobial agents may differ from that of other therapeutic categories and this may play a role in the stagnation of development of new antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: We performed a pharmaco-economical comparative analysis of the drug cost of treatment for new agents introduced in the United States drug market in various therapeutic categories. We calculated the drug cost (in US dollars) of a ten-day treatment of all new drugs approved by the FDA during the period between January 1997 and July 2003, according to the 2004 Red Book Pharmacy's Fundamental Reference. New anti-neoplastic agents were found to be the most expensive drugs in comparison to all other therapeutic categories, with a median ten-day drug-treatment cost of US$848 compared to the median ten-day drug-treatment costs of all other categories ranging from US$29 to US$301. On the other hand, new antimicrobial drugs were found to be much less expensive, with a median ten-day drug-treatment cost of US$137 and $US85 for all anti-microbial agents and for anti-microbial agents excluding anti-HIV medications, respectively. CONCLUSIONS/SIGNIFICANCE: The drug-treatment cost of new medications varies considerably by different therapeutic categories. This fact may influence industry decisions regarding the development of new drugs and may play a role in the shortage of new antimicrobial agents in the fight against the serious problem of antimicrobial resistance.  (+info)

Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. (3/2214)

Hydrogen sulfide (H2S), which is well known traditionally as a toxic gas, has been proven to be produced endogenously by 3 enzymes in mammalian tissues and plays important roles in physiological and pathophysiological conditions. In the central nervous system, H2S functions as not only a neuromodulator, but also a neuroprotectant against oxidative stress. In the cardiovascular system, H2S relaxes vascular smooth muscles by the activation of KATP channels and inhibits smooth muscle cell proliferation via the mitogen-activated protein kinase signaling pathway. These effects are important for maintaining blood pressure and preventing vessel structural remodeling, and identifies H2S as an important factor in the development of some vascular diseases, such as hypertension. H2S also shows cardioprotective effects in ischemic myocardium and septic and endotoxin shock. Recent studies have demonstrated a new mechanism to explain the motor effect of H2S on the rat detrusor muscle, which is through the activation of the capsaicin-sensitive primary neuron. This review focuses on the recent research achievements on H2S and discloses the great potential of H2S as the third gaseous transmitter in cardiac protection.  (+info)

Rapid discovery and optimization of therapeutic antibodies against emerging infectious diseases. (4/2214)

 (+info)

Theodore E. Woodward Award: development of novel, EBV-targeted therapies for EBV-positive tumors. (5/2214)

The near universal presence of EBV in certain tumors suggests that new EBV-based therapies could be developed for these malignancies. We have explored one EBV-based therapy that involves the purposeful induction of lytic EBV infection in tumors. Induction of lytic EBV infection in tumors activates expression of EBV-encoded kinases that convert the prodrug, ganciclovir, to its active cytotoxic form. In mouse models for EBV-positive tumors, the combination of lytic-inducing chemotherapy and ganciclovir is much more effective than either agent alone for treating tumors. Another potential EBV-based target is the cellular protein, CD70. EBV-positive tumors commonly express CD70, while CD70 expression in normal cells is restricted to a few highly activated B cells and T cells. Anti-CD70 monoclonal antibody inhibits the growth of CD70-positive (but not CD70-negative) Burkitt's lymphomas in SCID mice. Finally, while completely lytic EBV infection is clearly incompatible with tumor cell growth, we recently discovered that small numbers of lytically-infected cells actually promote the growth of EBV-immortalized lymphocytes in SCID mice, through the release of paracrine growth factors as well as angiogenic factors. Thus, agents that prevent the earliest stage of lytic EBV infection (such as fatty acid synthase inhibitors), rather than the later stage of viral replication, might also be useful in the treatment of early-stage EBV-positive tumors.  (+info)

Characterization of mitochondrial trifunctional protein and its inactivation study for medicine development. (6/2214)

 (+info)

Chemical and pathway proteomics: powerful tools for oncology drug discovery and personalized health care. (7/2214)

 (+info)

The lipopolysaccharide Parkinson's disease animal model: mechanistic studies and drug discovery. (8/2214)

 (+info)

Drug discovery is the process of identifying new chemical entities or biological agents that have the potential to be used as therapeutic or preventive treatments for diseases. This process involves several stages, including target identification, lead identification, hit-to-lead optimization, lead optimization, preclinical development, and clinical trials.

Target identification is the initial stage of drug discovery, where researchers identify a specific molecular target, such as a protein or gene, that plays a key role in the disease process. Lead identification involves screening large libraries of chemical compounds or natural products to find those that interact with the target molecule and have potential therapeutic activity.

Hit-to-lead optimization is the stage where researchers optimize the chemical structure of the lead compound to improve its potency, selectivity, and safety profile. Lead optimization involves further refinement of the compound's structure to create a preclinical development candidate. Preclinical development includes studies in vitro (in test tubes or petri dishes) and in vivo (in animals) to evaluate the safety, efficacy, and pharmacokinetics of the drug candidate.

Clinical trials are conducted in human volunteers to assess the safety, tolerability, and efficacy of the drug candidate in treating the disease. If the drug is found to be safe and effective in clinical trials, it may be approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) for use in patients.

Overall, drug discovery is a complex and time-consuming process that requires significant resources, expertise, and collaboration between researchers, clinicians, and industry partners.

"Drug design" is the process of creating and developing a new medication or therapeutic agent to treat or prevent a specific disease or condition. It involves identifying potential targets within the body, such as proteins or enzymes that are involved in the disease process, and then designing small molecules or biologics that can interact with these targets to produce a desired effect.

The drug design process typically involves several stages, including:

1. Target identification: Researchers identify a specific molecular target that is involved in the disease process.
2. Lead identification: Using computational methods and high-throughput screening techniques, researchers identify small molecules or biologics that can interact with the target.
3. Lead optimization: Researchers modify the chemical structure of the lead compound to improve its ability to interact with the target, as well as its safety and pharmacokinetic properties.
4. Preclinical testing: The optimized lead compound is tested in vitro (in a test tube or petri dish) and in vivo (in animals) to evaluate its safety and efficacy.
5. Clinical trials: If the preclinical testing is successful, the drug moves on to clinical trials in humans to further evaluate its safety and efficacy.

The ultimate goal of drug design is to create a new medication that is safe, effective, and can be used to improve the lives of patients with a specific disease or condition.

Preclinical drug evaluation refers to a series of laboratory tests and studies conducted to determine the safety and effectiveness of a new drug before it is tested in humans. These studies typically involve experiments on cells and animals to evaluate the pharmacological properties, toxicity, and potential interactions with other substances. The goal of preclinical evaluation is to establish a reasonable level of safety and understanding of how the drug works, which helps inform the design and conduct of subsequent clinical trials in humans. It's important to note that while preclinical studies provide valuable information, they may not always predict how a drug will behave in human subjects.

A Small Molecule Library is a collection of a large number of chemically synthesized, low molecular weight (typically under 900 daltons) compounds, which are used in drug discovery and development research. These libraries contain diverse structures and chemical properties, allowing researchers to screen them against specific targets, such as proteins or genes, to identify potential lead compounds that can be further optimized for therapeutic use. The use of small molecule libraries enables high-throughput screening, which is a rapid and efficient method to identify potential drug candidates.

High-throughput screening (HTS) assays are a type of biochemical or cell-based assay that are designed to quickly and efficiently identify potential hits or active compounds from large libraries of chemicals or biological molecules. In HTS, automated equipment is used to perform the assay in a parallel or high-throughput format, allowing for the screening of thousands to millions of compounds in a relatively short period of time.

HTS assays typically involve the use of robotics, liquid handling systems, and detection technologies such as microplate readers, imagers, or flow cytometers. These assays are often used in drug discovery and development to identify lead compounds that modulate specific biological targets, such as enzymes, receptors, or ion channels.

HTS assays can be used to measure a variety of endpoints, including enzyme activity, binding affinity, cell viability, gene expression, and protein-protein interactions. The data generated from HTS assays are typically analyzed using statistical methods and bioinformatics tools to prioritize and optimize hit compounds for further development.

Overall, high-throughput screening assays are a powerful tool in modern drug discovery and development, enabling researchers to rapidly identify and characterize potential therapeutic agents with improved efficiency and accuracy.

Pharmaceutical preparations refer to the various forms of medicines that are produced by pharmaceutical companies, which are intended for therapeutic or prophylactic use. These preparations consist of an active ingredient (the drug) combined with excipients (inactive ingredients) in a specific formulation and dosage form.

The active ingredient is the substance that has a therapeutic effect on the body, while the excipients are added to improve the stability, palatability, bioavailability, or administration of the drug. Examples of pharmaceutical preparations include tablets, capsules, solutions, suspensions, emulsions, ointments, creams, and injections.

The production of pharmaceutical preparations involves a series of steps that ensure the quality, safety, and efficacy of the final product. These steps include the selection and testing of raw materials, formulation development, manufacturing, packaging, labeling, and storage. Each step is governed by strict regulations and guidelines to ensure that the final product meets the required standards for use in medical practice.

According to the United States Food and Drug Administration (FDA), biological products are "products that are made from or contain a living organism or its derivatives, such as vaccines, blood and blood components, cells, genes, tissues, and proteins." These products can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, and they can come from many sources, including humans, animals, microorganisms, or plants.

Biological products are often used to diagnose, prevent, or treat a wide range of medical conditions, and they can be administered in various ways, such as through injection, inhalation, or topical application. Because biological products are derived from living organisms, their manufacturing processes can be complex and must be tightly controlled to ensure the safety, purity, and potency of the final product.

It's important to note that biological products are not the same as drugs, which are chemically synthesized compounds. While drugs are designed to interact with specific targets in the body, such as enzymes or receptors, biological products can have more complex and varied mechanisms of action, making them potentially more difficult to characterize and regulate.

The "drug industry" is also commonly referred to as the "pharmaceutical industry." It is a segment of the healthcare sector that involves the research, development, production, and marketing of medications or drugs. This includes both prescription and over-the-counter medicines used to treat, cure, or prevent diseases and medical conditions in humans and animals.

The drug industry comprises various types of organizations, such as:

1. Research-based pharmaceutical companies: These are large corporations that focus on the research and development (R&D) of new drugs, clinical trials, obtaining regulatory approvals, manufacturing, and marketing their products globally. Examples include Pfizer, Johnson & Johnson, Roche, and Merck.

2. Generic drug manufacturers: After the patent for a brand-name drug expires, generic drug manufacturers can produce and sell a similar version of the drug at a lower cost. These companies must demonstrate that their product is bioequivalent to the brand-name drug in terms of safety, quality, and efficacy.

3. Biotechnology companies: These firms specialize in developing drugs using biotechnological methods, such as recombinant DNA technology, gene therapy, or monoclonal antibodies. Many biotech companies focus on specific therapeutic areas, like oncology, immunology, or neurology.

4. Contract research organizations (CROs): CROs provide various services to the drug industry, including clinical trial management, data analysis, regulatory affairs support, and pharmacovigilance. They work with both large pharmaceutical companies and smaller biotech firms to help streamline the drug development process.

5. Drug delivery system companies: These organizations focus on developing innovative technologies for delivering drugs more effectively and safely to patients. Examples include transdermal patches, inhalers, or long-acting injectables.

6. Wholesalers and distributors: Companies that purchase drugs from manufacturers and distribute them to pharmacies, hospitals, and other healthcare providers.

The drug industry plays a crucial role in improving public health by discovering, developing, and delivering new treatments for various diseases and medical conditions. However, it is also subject to criticism and regulation due to concerns about high drug prices, marketing practices, and the potential for conflicts of interest between industry and healthcare professionals.

Pharmaceutical databases are collections of information related to pharmaceuticals and medications. These databases can contain a variety of data types, including:

1. Drug information: This includes details about the chemical properties, therapeutic uses, dosages, side effects, interactions, and contraindications of medications.
2. Clinical trials data: Information on ongoing or completed clinical trials, including study design, participant demographics, outcomes, and safety data.
3. Prescription data: Data related to prescribing patterns, medication utilization, and adherence.
4. Pharmacoeconomic data: Cost-effectiveness analyses, budget impact models, and other economic evaluations of medications.
5. Regulatory information: Details about drug approvals, labeling changes, and safety alerts from regulatory agencies such as the US Food and Drug Administration (FDA) or the European Medicines Agency (EMA).
6. Pharmacovigilance data: Information on adverse events, medication errors, and other safety concerns reported to pharmacovigilance databases.
7. Literature databases: Citations and abstracts from medical literature related to pharmaceuticals and medications.

Pharmaceutical databases can be used by healthcare professionals, researchers, regulatory agencies, and the pharmaceutical industry for a variety of purposes, including drug development, clinical decision making, post-marketing surveillance, and health policy planning.

Combinatorial chemistry techniques are a group of methods used in the field of chemistry to synthesize and optimize large libraries of chemical compounds in a rapid and efficient manner. These techniques involve the systematic combination of different building blocks, or reagents, in various arrangements to generate a diverse array of molecules. This approach allows chemists to quickly explore a wide chemical space and identify potential lead compounds for drug discovery, materials science, and other applications.

There are several common combinatorial chemistry techniques, including:

1. **Split-Pool Synthesis:** In this method, a large collection of starting materials is divided into smaller groups, and each group undergoes a series of chemical reactions with different reagents. The resulting products from each group are then pooled together and redistributed for additional rounds of reactions. This process creates a vast number of unique compounds through the iterative combination of building blocks.
2. **Parallel Synthesis:** In parallel synthesis, multiple reactions are carried out simultaneously in separate reaction vessels. Each vessel contains a distinct set of starting materials and reagents, allowing for the efficient generation of a series of related compounds. This method is particularly useful when exploring structure-activity relationships (SAR) or optimizing lead compounds.
3. **Encoded Libraries:** To facilitate the rapid identification of active compounds within large libraries, encoded library techniques incorporate unique tags or barcodes into each molecule. These tags allow for the simultaneous synthesis and screening of compounds, as the identity of an active compound can be determined by decoding its corresponding tag.
4. **DNA-Encoded Libraries (DELs):** DELs are a specific type of encoded library that uses DNA molecules to encode and track chemical compounds. In this approach, each unique compound is linked to a distinct DNA sequence, enabling the rapid identification of active compounds through DNA sequencing techniques.
5. **Solid-Phase Synthesis:** This technique involves the attachment of starting materials to a solid support, such as beads or resins, allowing for the stepwise addition of reagents and building blocks. The solid support facilitates easy separation, purification, and screening of compounds, making it an ideal method for combinatorial chemistry applications.

Combinatorial chemistry techniques have revolutionized drug discovery and development by enabling the rapid synthesis, screening, and optimization of large libraries of chemical compounds. These methods continue to play a crucial role in modern medicinal chemistry and materials science research.

Drug repositioning, also known as drug repurposing or therapeutic switching, refers to the process of discovering new uses for approved or investigational drugs that are outside the scope of their original medical indication. This strategy leverages existing knowledge about a drug's safety, efficacy, and pharmacological properties to expedite development and reduce costs compared to de novo drug discovery. By finding new therapeutic applications for existing drugs, drug repositioning can provide faster and more cost-effective treatment options for various diseases, including neglected and rare disorders.

A chemical database is a collection of data that stores and organizes information about various chemical compounds and their properties. These databases can contain a wide range of information, including the structures of the molecules, physical and chemical properties, biological activities, hazards, and safety data. They may also include literature references, spectral data, and other relevant information. Chemical databases are used in many fields, including chemistry, biology, pharmacology, toxicology, and materials science. Some examples of chemical databases include PubChem, ChemSpider, and the Protein Data Bank.

Pharmacokinetics is the branch of pharmacology that deals with the movement of a drug in the body after administration. It involves the processes of absorption, distribution, metabolism, and excretion (ADME) of drugs.

1. Absorption: This is the process by which a drug is taken into the body and made available for distribution to the site of action.
2. Distribution: This refers to the dispersion of the drug throughout the body after absorption. It involves the transfer of the drug from the bloodstream into various tissues and organs.
3. Metabolism: This is the biotransformation of a drug by enzymes, usually in the liver, into metabolic products (also known as metabolites). These metabolites may be pharmacologically active, inactive, or toxic.
4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, typically through the kidneys (urine), lungs (exhaled air), skin (sweat), or gastrointestinal tract (feces).

Understanding pharmacokinetics is crucial for determining the optimal dosage regimen of a drug to achieve and maintain its therapeutic concentration in the body while minimizing potential side effects.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Pharmacology is the branch of medicine and biology concerned with the study of drugs, their actions, and their uses. It involves understanding how drugs interact with biological systems to produce desired effects, as well as any adverse or unwanted effects. This includes studying the absorption, distribution, metabolism, and excretion of drugs (often referred to as ADME), the receptors and biochemical pathways that drugs affect, and the therapeutic benefits and risks of drug use. Pharmacologists may also be involved in the development and testing of new medications.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Quantitative Structure-Activity Relationship (QSAR) is a method used in toxicology and medicinal chemistry that attempts to establish mathematical relationships between the chemical structure of a compound and its biological activity. QSAR models are developed using statistical methods to analyze a set of compounds with known biological activities and their structural properties, which are represented as numerical or categorical descriptors. These models can then be used to predict the biological activity of new, structurally similar compounds.

QSAR models have been widely used in drug discovery and development, as well as in chemical risk assessment, to predict the potential toxicity of chemicals based on their structural properties. The accuracy and reliability of QSAR predictions depend on various factors, including the quality and diversity of the data used to develop the models, the choice of descriptors and statistical methods, and the applicability domain of the models.

In summary, QSAR is a quantitative method that uses mathematical relationships between chemical structure and biological activity to predict the potential toxicity or efficacy of new compounds based on their structural properties.

Drug delivery systems (DDS) refer to techniques or technologies that are designed to improve the administration of a pharmaceutical compound in terms of its efficiency, safety, and efficacy. A DDS can modify the drug release profile, target the drug to specific cells or tissues, protect the drug from degradation, and reduce side effects.

The goal of a DDS is to optimize the bioavailability of a drug, which is the amount of the drug that reaches the systemic circulation and is available at the site of action. This can be achieved through various approaches, such as encapsulating the drug in a nanoparticle or attaching it to a biomolecule that targets specific cells or tissues.

Some examples of DDS include:

1. Controlled release systems: These systems are designed to release the drug at a controlled rate over an extended period, reducing the frequency of dosing and improving patient compliance.
2. Targeted delivery systems: These systems use biomolecules such as antibodies or ligands to target the drug to specific cells or tissues, increasing its efficacy and reducing side effects.
3. Nanoparticle-based delivery systems: These systems use nanoparticles made of polymers, lipids, or inorganic materials to encapsulate the drug and protect it from degradation, improve its solubility, and target it to specific cells or tissues.
4. Biodegradable implants: These are small devices that can be implanted under the skin or into body cavities to deliver drugs over an extended period. They can be made of biodegradable materials that gradually break down and release the drug.
5. Inhalation delivery systems: These systems use inhalers or nebulizers to deliver drugs directly to the lungs, bypassing the digestive system and improving bioavailability.

Overall, DDS play a critical role in modern pharmaceutical research and development, enabling the creation of new drugs with improved efficacy, safety, and patient compliance.

Central nervous system (CNS) agents are drugs or substances that act on the central nervous system, which includes the brain and spinal cord. These agents can affect the CNS in various ways, depending on their specific mechanism of action. They may be used for therapeutic purposes, such as to treat medical conditions like pain, anxiety, seizures, or sleep disorders, or they may be abused for their psychoactive effects.

CNS agents can be broadly classified into several categories based on their primary site of action and the nature of their effects. Some common categories of CNS agents include:

1. Depressants: These drugs slow down the activity of the CNS, leading to sedative, hypnotic, or anxiolytic effects. Examples include benzodiazepines, barbiturates, and sleep aids like zolpidem.
2. Stimulants: These drugs increase the activity of the CNS, leading to alertness, energy, and improved concentration. Examples include amphetamines, methylphenidate, and caffeine.
3. Analgesics: These drugs are used to treat pain and can act on various parts of the nervous system, including the peripheral nerves, spinal cord, and brain. Examples include opioids (such as morphine and oxycodone), non-opioid analgesics (such as acetaminophen and ibuprofen), and adjuvant analgesics (such as antidepressants and anticonvulsants).
4. Antiepileptics: These drugs are used to treat seizure disorders and work by modulating the electrical activity of neurons in the brain. Examples include phenytoin, carbamazepine, valproic acid, and lamotrigine.
5. Antipsychotics: These drugs are used to treat psychosis, schizophrenia, and other mental health disorders by blocking dopamine receptors in the brain. Examples include haloperidol, risperidone, and clozapine.
6. Antidepressants: These drugs are used to treat depression and anxiety disorders by modulating neurotransmitter activity in the brain. Examples include selective serotonin reuptake inhibitors (SSRIs) like fluoxetine and sertraline, tricyclic antidepressants like amitriptyline, and monoamine oxidase inhibitors (MAOIs) like phenelzine.
7. Anxiolytics: These drugs are used to treat anxiety disorders and work by modulating the activity of the neurotransmitter gamma-aminobutyric acid (GABA) in the brain. Examples include benzodiazepines like diazepam and alprazolam, and non-benzodiazepine anxiolytics like buspirone.
8. Stimulants: These drugs are used to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy by increasing the activity of dopamine and norepinephrine in the brain. Examples include methylphenidate, amphetamine salts, and modafinil.
9. Sedative-hypnotics: These drugs are used to treat insomnia and other sleep disorders by depressing the activity of the central nervous system. Examples include benzodiazepines like triazolam and zolpidem, and non-benzodiazepine sedative-hypnotics like eszopiclone and ramelteon.
10. Antipsychotics: These drugs are used to treat psychotic disorders like schizophrenia, bipolar disorder, and major depressive disorder by blocking the activity of dopamine in the brain. Examples include typical antipsychotics like haloperidol and chlorpromazine, and atypical antipsychotics like risperidone and aripiprazole.
11. Antidepressants: These drugs are used to treat depression and anxiety disorders by increasing the activity of serotonin, norepinephrine, or dopamine in the brain. Examples include selective serotonin reuptake inhibitors (SSRIs) like fluoxetine and sertraline, tricyclic antidepressants like amitriptyline, and monoamine oxidase inhibitors (MAOIs) like phenelzine.
12. Anticonvulsants: These drugs are used to treat seizure disorders like epilepsy, as well as chronic pain and bipolar disorder. They work by stabilizing the electrical activity of the brain. Examples include valproic acid, lamotrigine, and carbamazepine.
13. Anxiolytics: These drugs are used to treat anxiety disorders by reducing anxiety and promoting relaxation. Examples include benzodiazepines like diazepam and alprazolam, and non-benzodiazepine anxiolytics like buspirone.
14. Hypnotics: These drugs are used to treat insomnia and other sleep disorders by promoting sleep. Examples include benzodiazepines like triazolam and temazepam, and non-benzodiazepine hypnotics like zolpidem and eszopiclone.
15. Stimulants: These drugs are used to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy by increasing alertness and focus. Examples include amphetamine salts, methylphenidate, and modafinil.
16. Antihistamines: These drugs are used to treat allergies and allergic reactions by blocking the activity of histamine, a chemical that is released during an allergic response. Examples include diphenhydramine, loratadine, and cetirizine.
17. Antipsychotics: These drugs are used to treat psychosis, schizophrenia, bipolar disorder, and other mental health conditions by reducing the symptoms of these conditions. Examples include risperidone, olanzapine, and quetiapine.
18. Antidepressants: These drugs are used to treat depression, anxiety disorders, and some chronic pain conditions by increasing the levels of certain neurotransmitters in the brain. Examples include selective serotonin reuptake inhibitors (SSRIs) like fluoxetine and sertraline, and tricyclic antidepressants like amitriptyline and imipramine.
19. Anticonvulsants: These drugs are used to treat seizure disorders and some chronic pain conditions by stabilizing the electrical activity of the brain. Examples include valproic acid, lamotrigine, and carbamazepine.
20. Muscle relaxants: These drugs are used to treat muscle spasms and pain by reducing muscle tension. Examples include cyclobenzaprine, methocarbamol, and baclofen.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Medical technology, also known as health technology, refers to the use of medical devices, medicines, vaccines, procedures, and systems for the purpose of preventing, diagnosing, or treating disease and disability. This can include a wide range of products and services, from simple devices like tongue depressors and bandages, to complex technologies like MRI machines and artificial organs.

Pharmaceutical technology, on the other hand, specifically refers to the application of engineering and scientific principles to the development, production, and control of pharmaceutical drugs and medical devices. This can include the design and construction of manufacturing facilities, the development of new drug delivery systems, and the implementation of quality control measures to ensure the safety and efficacy of pharmaceutical products.

Both medical technology and pharmaceutical technology play crucial roles in modern healthcare, helping to improve patient outcomes, reduce healthcare costs, and enhance the overall quality of life for individuals around the world.

Computational biology is a branch of biology that uses mathematical and computational methods to study biological data, models, and processes. It involves the development and application of algorithms, statistical models, and computational approaches to analyze and interpret large-scale molecular and phenotypic data from genomics, transcriptomics, proteomics, metabolomics, and other high-throughput technologies. The goal is to gain insights into biological systems and processes, develop predictive models, and inform experimental design and hypothesis testing in the life sciences. Computational biology encompasses a wide range of disciplines, including bioinformatics, systems biology, computational genomics, network biology, and mathematical modeling of biological systems.

Neglected Tropical Diseases (NTDs) are a group of infectious diseases that primarily affect people living in poverty, in tropical and subtropical areas. These diseases are called "neglected" because they have been largely ignored by medical research and drug development, as well as by global health agencies and pharmaceutical companies.

The World Health Organization (WHO) has identified 20 diseases as NTDs, including:

1. Buruli ulcer
2. Chagas disease
3. Dengue and chikungunya
4. Dracunculiasis (guinea-worm disease)
5. Echinococcosis
6. Endemic treponematoses
7. Foodborne trematodiases
8. Human African trypanosomiasis (sleeping sickness)
9. Leishmaniasis
10. Leprosy (Hansen's disease)
11. Lymphatic filariasis
12. Onchocerciasis (river blindness)
13. Rabies
14. Schistosomiasis
15. Soil-transmitted helminthiases
16. Snakebite envenoming
17. Taeniasis/Cysticercosis
18. Trachoma
19. Mycetoma, chromoblastomycosis and other deep mycoses
20. Yaws (Endemic treponematoses)

These diseases can lead to severe disfigurement, disability, and even death if left untreated. They affect more than 1 billion people worldwide, mainly in low-income countries in Africa, Asia, and the Americas. NTDs also have significant social and economic impacts, contributing to poverty, stigma, discrimination, and exclusion.

Efforts are underway to raise awareness and increase funding for research, prevention, and treatment of NTDs. The WHO has set targets for controlling or eliminating several NTDs by 2030, including dracunculiasis, lymphatic filariasis, onchocerciasis, trachoma, and human African trypanosomiasis.

Molecular targeted therapy is a type of treatment that targets specific molecules involved in the growth, progression, and spread of cancer. These molecules can be proteins, genes, or other molecules that contribute to the development of cancer. By targeting these specific molecules, molecular targeted therapy aims to block the abnormal signals that promote cancer growth and progression, thereby inhibiting or slowing down the growth of cancer cells while minimizing harm to normal cells.

Examples of molecular targeted therapies include monoclonal antibodies, tyrosine kinase inhibitors, angiogenesis inhibitors, and immunotherapies that target specific immune checkpoints. These therapies can be used alone or in combination with other cancer treatments such as chemotherapy, radiation therapy, or surgery. The goal of molecular targeted therapy is to improve the effectiveness of cancer treatment while reducing side effects and improving quality of life for patients.

Computer-Aided Design (CAD) is the use of computer systems to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to create and manage designs in a variety of fields, such as architecture, engineering, and manufacturing. It allows designers to visualize their ideas in 2D or 3D, simulate how the design will function, and make changes quickly and easily. This can help to improve the efficiency and accuracy of the design process, and can also facilitate collaboration and communication among team members.

Investigational drugs, also known as experimental or trial drugs, refer to medications that are currently being tested in clinical trials to evaluate their safety and efficacy for the treatment of various medical conditions. These drugs have not yet been approved by regulatory agencies such as the US Food and Drug Administration (FDA) for general use.

Before entering clinical trials, investigational drugs must undergo extensive preclinical testing in the lab and on animals to assess their safety and potential therapeutic benefits. Clinical trials are conducted in phases, starting with small groups of healthy volunteers to assess safety, followed by larger groups of patients to evaluate efficacy and side effects.

Participation in clinical trials is voluntary, and participants must meet certain eligibility criteria to ensure their safety and the validity of the trial results. Investigational drugs may ultimately be approved for general use if they are found to be safe and effective in clinical trials.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Pharmacognosy is the study of the physical, chemical, biochemical and biological properties of drugs or potential drugs derived from natural sources. It involves the examination, isolation, identification, and analysis of the active and non-active components of medicinal plants and other natural materials. The field also encompasses the investigation of the traditional uses, pharmacology, toxicology, and standardization of these naturally occurring drug preparations. Pharmacognosy is a branch of pharmaceutical sciences that contributes to the development of new drugs and natural health products.

An algorithm is not a medical term, but rather a concept from computer science and mathematics. In the context of medicine, algorithms are often used to describe step-by-step procedures for diagnosing or managing medical conditions. These procedures typically involve a series of rules or decision points that help healthcare professionals make informed decisions about patient care.

For example, an algorithm for diagnosing a particular type of heart disease might involve taking a patient's medical history, performing a physical exam, ordering certain diagnostic tests, and interpreting the results in a specific way. By following this algorithm, healthcare professionals can ensure that they are using a consistent and evidence-based approach to making a diagnosis.

Algorithms can also be used to guide treatment decisions. For instance, an algorithm for managing diabetes might involve setting target blood sugar levels, recommending certain medications or lifestyle changes based on the patient's individual needs, and monitoring the patient's response to treatment over time.

Overall, algorithms are valuable tools in medicine because they help standardize clinical decision-making and ensure that patients receive high-quality care based on the latest scientific evidence.

Inhibitory Concentration 50 (IC50) is a measure used in pharmacology, toxicology, and virology to describe the potency of a drug or chemical compound. It refers to the concentration needed to reduce the biological or biochemical activity of a given substance by half. Specifically, it is most commonly used in reference to the inhibition of an enzyme or receptor.

In the context of infectious diseases, IC50 values are often used to compare the effectiveness of antiviral drugs against a particular virus. A lower IC50 value indicates that less of the drug is needed to achieve the desired effect, suggesting greater potency and potentially fewer side effects. Conversely, a higher IC50 value suggests that more of the drug is required to achieve the same effect, indicating lower potency.

It's important to note that IC50 values can vary depending on the specific assay or experimental conditions used, so they should be interpreted with caution and in conjunction with other measures of drug efficacy.

Pharmaceutical chemistry is a branch of chemistry that deals with the design, synthesis, and development of chemical entities used as medications. It involves the study of drugs' physical, chemical, and biological properties, as well as their interactions with living organisms. This field also encompasses understanding the absorption, distribution, metabolism, and excretion (ADME) of drugs in the body, which are critical factors in drug design and development. Pharmaceutical chemists often work closely with biologists, medical professionals, and engineers to develop new medications and improve existing ones.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Genomics is the scientific study of genes and their functions. It involves the sequencing and analysis of an organism's genome, which is its complete set of DNA, including all of its genes. Genomics also includes the study of how genes interact with each other and with the environment. This field of study can provide important insights into the genetic basis of diseases and can lead to the development of new diagnostic tools and treatments.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

"Drug approval" is the process by which a regulatory agency, such as the US Food and Drug Administration (FDA), grants formal authorization for a pharmaceutical company to market and sell a drug for a specific medical condition. The approval process is based on rigorous evaluation of clinical trial data to ensure that the drug is safe and effective for its intended use.

The FDA's approval process typically involves several stages, including preclinical testing in the lab and animal studies, followed by three phases of clinical trials in human subjects. The first phase tests the safety of the drug in a small group of healthy volunteers, while the second and third phases test the drug's efficacy and side effects in larger groups of patients with the medical condition for which the drug is intended.

If the results of these studies demonstrate that the drug is safe and effective, the pharmaceutical company can submit a New Drug Application (NDA) or Biologics License Application (BLA) to the FDA for review. The application includes data from the clinical trials, as well as information about the manufacturing process, labeling, and proposed use of the drug.

The FDA reviews the application and may seek input from independent experts before making a decision on whether to approve the drug. If approved, the drug can be marketed and sold to patients with the medical condition for which it was approved. The FDA continues to monitor the safety and efficacy of approved drugs after they reach the market to ensure that they remain safe and effective for their intended use.

I am not aware of a widely accepted medical definition for the term "software," as it is more commonly used in the context of computer science and technology. Software refers to programs, data, and instructions that are used by computers to perform various tasks. It does not have direct relevance to medical fields such as anatomy, physiology, or clinical practice. If you have any questions related to medicine or healthcare, I would be happy to try to help with those instead!

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

Clinical pharmacology is a branch of medicine that deals with the study of drugs and their interactions with living organisms. It involves understanding how drugs are absorbed, distributed, metabolized, and excreted by the body, as well as their therapeutic effects, side effects, and toxicity. Clinical pharmacology also encompasses the design and conduct of clinical trials to evaluate the safety and efficacy of new drugs in human subjects. The ultimate goal of clinical pharmacology is to optimize drug therapy for individual patients by considering factors such as age, sex, genetics, lifestyle, and comorbidities. In summary, clinical pharmacology is the application of pharmacological principles to the practice of medicine for the benefit of patients.

Molecular docking simulation is a computational method used in structural molecular biology and drug design to predict the binding orientation and affinity of two molecules, such as a protein (receptor) and a ligand (drug). It involves modeling the three-dimensional structures of the molecules and simulating their interaction using physical forces and energies. The goal is to identify the most stable and favorable binding conformation(s) between the two molecules, which can provide insights into how they interact at the molecular level and help in the design and optimization of new drugs or therapeutic agents.

Molecular docking simulations typically involve several steps, including:

1. Preparation of the receptor and ligand structures, such as adding hydrogen atoms, assigning charges, and optimizing the geometry.
2. Defining a search space or grid around the binding site of the receptor where the ligand is likely to bind.
3. Generating multiple conformations of the ligand using various algorithms, such as systematic, stochastic, or genetic algorithms.
4. Docking each ligand conformation into the receptor's binding site and scoring its binding affinity based on various energy functions, such as van der Waals forces, electrostatic interactions, hydrogen bonding, and desolvation effects.
5. Analyzing the docking results to identify the most promising binding modes and refining them using molecular dynamics simulations or other methods.

Molecular docking simulations have become an essential tool in drug discovery and development, as they can help predict the activity and selectivity of potential drugs, reduce the time and cost of experimental screening, and guide the optimization of lead compounds for further development.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Informatics, in the context of medicine and healthcare, is the scientific discipline that deals with the systematic processing, transmission, and manipulation of biomedical data, information, and knowledge. It involves the application of computer and information science principles, methods, and systems to improve healthcare delivery, research, and education.

Health Informatics, also known as Healthcare Informatics or Medical Informatics, encompasses various areas such as clinical informatics, public health informatics, nursing informatics, dental informatics, and biomedical informatics. These fields focus on developing and using information systems, technologies, and tools to support healthcare professionals in their decision-making processes, improve patient care, enhance clinical outcomes, and promote evidence-based practice.

Health Informatics plays a crucial role in facilitating the integration of data from different sources, such as electronic health records (EHRs), medical imaging systems, genomic databases, and wearable devices, to create comprehensive and longitudinal patient records. It also supports research and education by providing access to large-scale biomedical data repositories and advanced analytical tools for knowledge discovery and evidence generation.

In summary, Informatics in healthcare is a multidisciplinary field that combines information technology, communication, and healthcare expertise to optimize the health and well-being of individuals and populations.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Proteomics is the large-scale study and analysis of proteins, including their structures, functions, interactions, modifications, and abundance, in a given cell, tissue, or organism. It involves the identification and quantification of all expressed proteins in a biological sample, as well as the characterization of post-translational modifications, protein-protein interactions, and functional pathways. Proteomics can provide valuable insights into various biological processes, diseases, and drug responses, and has applications in basic research, biomedicine, and clinical diagnostics. The field combines various techniques from molecular biology, chemistry, physics, and bioinformatics to study proteins at a systems level.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

G-protein-coupled receptors (GPCRs) are a family of membrane receptors that play an essential role in cellular signaling and communication. These receptors possess seven transmembrane domains, forming a structure that spans the lipid bilayer of the cell membrane. They are called "G-protein-coupled" because they interact with heterotrimeric G proteins upon activation, which in turn modulate various downstream signaling pathways.

When an extracellular ligand binds to a GPCR, it causes a conformational change in the receptor's structure, leading to the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on the associated G protein's α subunit. This exchange triggers the dissociation of the G protein into its α and βγ subunits, which then interact with various effector proteins to elicit cellular responses.

There are four main families of GPCRs, classified based on their sequence similarities and downstream signaling pathways:

1. Gq-coupled receptors: These receptors activate phospholipase C (PLC), which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces calcium release from intracellular stores, while DAG activates protein kinase C (PKC).
2. Gs-coupled receptors: These receptors activate adenylyl cyclase, which increases the production of cyclic adenosine monophosphate (cAMP) and subsequently activates protein kinase A (PKA).
3. Gi/o-coupled receptors: These receptors inhibit adenylyl cyclase, reducing cAMP levels and modulating PKA activity. Additionally, they can activate ion channels or regulate other signaling pathways through the βγ subunits.
4. G12/13-coupled receptors: These receptors primarily activate RhoGEFs, which in turn activate RhoA and modulate cytoskeletal organization and cellular motility.

GPCRs are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and sensory perception. Dysregulation of GPCR function has been implicated in numerous diseases, making them attractive targets for drug development.

Euglenozoa is a group of unicellular organisms that includes both free-living and parasitic species. Two major parasitic groups within Euglenozoa are the kinetoplastids, which include organisms such as Trypanosoma and Leishmania, and the diplonemids.

Trypanosoma infections can cause diseases such as African sleeping sickness (also known as human African trypanosomiasis) and Chagas disease (also known as American trypanosomiasis), while Leishmania infections can cause various forms of leishmaniasis, including cutaneous, mucocutaneous, and visceral leishmaniasis. These diseases are transmitted to humans through the bites of infected insect vectors, such as tsetse flies (in the case of African sleeping sickness) or sandflies (in the case of leishmaniasis and Chagas disease).

Diplonemid infections in humans have not been well-studied, and it is currently unclear whether these organisms are capable of causing disease in humans. However, diplonemids have been found to infect a wide range of marine and freshwater organisms, including fish, crustaceans, and other protists.

In general, euglenozoan infections can cause a variety of symptoms depending on the specific organism involved and the location of the infection within the body. Symptoms may include fever, swelling, skin lesions, anemia, and damage to various organs. Treatment for these infections typically involves the use of antiparasitic drugs, such as pentamidine, suramin, or benznidazole, although the specific treatment approach will depend on the organism involved and the severity of the infection.

Drug-related side effects and adverse reactions refer to any unintended or harmful outcome that occurs during the use of a medication. These reactions can be mild or severe and may include predictable, known responses (side effects) as well as unexpected, idiosyncratic reactions (adverse effects). Side effects are typically related to the pharmacologic properties of the drug and occur at therapeutic doses, while adverse reactions may result from allergic or hypersensitivity reactions, overdoses, or interactions with other medications or substances.

Side effects are often dose-dependent and can be managed by adjusting the dose, frequency, or route of administration. Adverse reactions, on the other hand, may require discontinuation of the medication or treatment with antidotes or supportive care. It is important for healthcare providers to monitor patients closely for any signs of drug-related side effects and adverse reactions and to take appropriate action when necessary.

Systems Biology is a multidisciplinary approach to studying biological systems that involves the integration of various scientific disciplines such as biology, mathematics, physics, computer science, and engineering. It aims to understand how biological components, including genes, proteins, metabolites, cells, and organs, interact with each other within the context of the whole system. This approach emphasizes the emergent properties of biological systems that cannot be explained by studying individual components alone. Systems biology often involves the use of computational models to simulate and predict the behavior of complex biological systems and to design experiments for testing hypotheses about their functioning. The ultimate goal of systems biology is to develop a more comprehensive understanding of how biological systems function, with applications in fields such as medicine, agriculture, and bioengineering.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Pharmacogenetics is a branch of pharmacology that deals with the study of genetic factors that influence an individual's response to drugs. It involves the examination of how variations in genes encoding drug-metabolizing enzymes, transporters, receptors, and other targets affect drug absorption, distribution, metabolism, excretion, and efficacy, as well as the incidence and severity of adverse reactions.

The goal of pharmacogenetics is to optimize drug therapy by tailoring it to an individual's genetic makeup, thereby improving treatment outcomes, reducing adverse effects, and minimizing healthcare costs. This field has significant implications for personalized medicine, as it may help identify patients who are more likely to benefit from certain medications or who are at increased risk of toxicity, allowing for more informed prescribing decisions.

Trypanocidal agents are a type of medication specifically used for the treatment and prevention of trypanosomiasis, which is a group of diseases caused by various species of protozoan parasites belonging to the genus Trypanosoma. These agents work by killing or inhibiting the growth of the parasites in the human body.

There are two main types of human trypanosomiasis: African trypanosomiasis, also known as sleeping sickness, which is caused by Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense; and American trypanosomiasis, also known as Chagas disease, which is caused by Trypanosoma cruzi.

Trypanocidal agents can be divided into two categories:

1. Drugs used to treat African trypanosomiasis: These include pentamidine, suramin, melarsoprol, and eflornithine. Pentamidine and suramin are used for the early stages of the disease, while melarsoprol and eflornithine are used for the later stages.
2. Drugs used to treat American trypanosomiasis: The main drug used for Chagas disease is benznidazole, which is effective in killing the parasites during the acute phase of the infection. Another drug, nifurtimox, can also be used, although it has more side effects than benznidazole.

It's important to note that trypanocidal agents have limited availability and are often associated with significant toxicity, making their use challenging in some settings. Therefore, prevention measures such as avoiding insect vectors and using vector control methods remain crucial in controlling the spread of these diseases.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

Drug screening assays for antitumor agents are laboratory tests used to identify and evaluate the effectiveness of potential drugs or compounds that can inhibit the growth of tumor cells or induce their death. These assays are typically performed in vitro (in a test tube or petri dish) using cell cultures of various types of cancer cells.

The assays measure different parameters such as cell viability, proliferation, apoptosis (programmed cell death), and cytotoxicity to determine the ability of the drug to kill or inhibit the growth of tumor cells. The results of these assays can help researchers identify promising antitumor agents that can be further developed for clinical use in cancer treatment.

There are different types of drug screening assays for antitumor agents, including high-throughput screening (HTS) assays, which allow for the rapid and automated testing of a large number of compounds against various cancer cell lines. Other types of assays include phenotypic screening assays, target-based screening assays, and functional screening assays, each with its own advantages and limitations.

Overall, drug screening assays for antitumor agents play a critical role in the development of new cancer therapies by providing valuable information on the activity and safety of potential drugs, helping to identify effective treatments and reduce the time and cost associated with bringing new drugs to market.

I'm sorry for any confusion, but "History, 20th Century" is a broad and complex topic that refers to the events, developments, and transformations that occurred throughout the world during the 1900s. It is not a medical term or concept. If you're interested in learning more about this historical period, I would recommend consulting a history textbook, reputable online resources, or speaking with a historian. They can provide detailed information about the political, social, economic, and cultural changes that took place during the 20th century.

Antiparasitic agents are a type of medication used to treat parasitic infections. These agents include a wide range of drugs that work to destroy, inhibit the growth of, or otherwise eliminate parasites from the body. Parasites are organisms that live on or inside a host and derive nutrients at the host's expense.

Antiparasitic agents can be divided into several categories based on the type of parasite they target. Some examples include:

* Antimalarial agents: These drugs are used to treat and prevent malaria, which is caused by a parasite that is transmitted through the bites of infected mosquitoes.
* Antiprotozoal agents: These drugs are used to treat infections caused by protozoa, which are single-celled organisms that can cause diseases such as giardiasis, amoebic dysentery, and sleeping sickness.
* Antihelminthic agents: These drugs are used to treat infections caused by helminths, which are parasitic worms that can infect various organs of the body, including the intestines, lungs, and skin. Examples include roundworms, tapeworms, and flukes.

Antiparasitic agents work in different ways to target parasites. Some disrupt the parasite's metabolism or interfere with its ability to reproduce. Others damage the parasite's membrane or exoskeleton, leading to its death. The specific mechanism of action depends on the type of antiparasitic agent and the parasite it is targeting.

It is important to note that while antiparasitic agents can be effective in treating parasitic infections, they can also have side effects and potential risks. Therefore, it is essential to consult with a healthcare provider before starting any antiparasitic medication to ensure safe and appropriate use.

I'm sorry for any confusion, but "sociology" is not a term that has a medical definition. Sociology is a social science that focuses on the study of human behavior and interactions in society, including the development, structure, and functioning of human societies. It is distinct from medical disciplines which focus on the diagnosis and treatment of health conditions.

Biopharmaceutics is a branch of pharmaceutical sciences that deals with the study of the properties of biological, biochemical, and physicochemical systems and their interactions with drug formulations and delivery systems. It encompasses the investigation of the absorption, distribution, metabolism, and excretion (ADME) of drugs in biological systems, as well as the factors that affect these processes.

The main goal of biopharmaceutics is to understand how the physical and chemical properties of a drug and its formulation influence its pharmacokinetics and pharmacodynamics, with the aim of optimizing drug delivery and improving therapeutic outcomes. Biopharmaceutical studies are essential for the development and optimization of new drugs, as well as for the improvement of existing drug products.

Some key areas of study in biopharmaceutics include:

1. Drug solubility and dissolution: The ability of a drug to dissolve in biological fluids is critical for its absorption and bioavailability. Biopharmaceutical studies investigate the factors that affect drug solubility, such as pH, ionic strength, and the presence of other molecules, and use this information to optimize drug formulations.
2. Drug permeability: The ability of a drug to cross biological membranes is another key factor in its absorption and bioavailability. Biopharmaceutical studies investigate the mechanisms of drug transport across cell membranes, including passive diffusion, active transport, and endocytosis, and use this information to design drugs and formulations that can effectively penetrate target tissues.
3. Drug metabolism: The metabolic fate of a drug in the body is an important consideration for its safety and efficacy. Biopharmaceutical studies investigate the enzymes and pathways involved in drug metabolism, as well as the factors that affect these processes, such as genetic polymorphisms, age, sex, and disease state.
4. Drug interactions: The interaction between drugs and biological systems can lead to unexpected effects, both beneficial and harmful. Biopharmaceutical studies investigate the mechanisms of drug-drug and drug-biological interactions, and use this information to design drugs and formulations that minimize these risks.
5. Pharmacokinetics and pharmacodynamics: The study of how a drug is absorbed, distributed, metabolized, and excreted (pharmacokinetics) and how it interacts with its target receptors or enzymes to produce its effects (pharmacodynamics) is an essential component of biopharmaceutical research. Biopharmaceutical studies use a variety of techniques, including in vitro assays, animal models, and clinical trials, to characterize the pharmacokinetics and pharmacodynamics of drugs and formulations.

Overall, biopharmaceutical research is an interdisciplinary field that combines principles from chemistry, biology, physics, mathematics, and engineering to develop new drugs and therapies. By understanding the complex interactions between drugs and biological systems, biopharmaceutical researchers can design more effective and safer treatments for a wide range of diseases and conditions.

A peptide library is a collection of a large number of peptides, which are short chains of amino acids. Each peptide in the library is typically composed of a defined length and sequence, and may contain a variety of different amino acids. Peptide libraries can be synthesized using automated techniques and are often used in scientific research to identify potential ligands (molecules that bind to specific targets) or to study the interactions between peptides and other molecules.

In a peptide library, each peptide is usually attached to a solid support, such as a resin bead, and the entire library can be created using split-and-pool synthesis techniques. This allows for the rapid and efficient synthesis of a large number of unique peptides, which can then be screened for specific activities or properties.

Peptide libraries are used in various fields such as drug discovery, proteomics, and molecular biology to identify potential therapeutic targets, understand protein-protein interactions, and develop new diagnostic tools.

A biological assay is a method used in biology and biochemistry to measure the concentration or potency of a substance (like a drug, hormone, or enzyme) by observing its effect on living cells or tissues. This type of assay can be performed using various techniques such as:

1. Cell-based assays: These involve measuring changes in cell behavior, growth, or viability after exposure to the substance being tested. Examples include proliferation assays, apoptosis assays, and cytotoxicity assays.
2. Protein-based assays: These focus on measuring the interaction between the substance and specific proteins, such as enzymes or receptors. Examples include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and pull-down assays.
3. Genetic-based assays: These involve analyzing the effects of the substance on gene expression, DNA structure, or protein synthesis. Examples include quantitative polymerase chain reaction (qPCR) assays, reporter gene assays, and northern blotting.

Biological assays are essential tools in research, drug development, and diagnostic applications to understand biological processes and evaluate the potential therapeutic efficacy or toxicity of various substances.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

An allosteric site is a distinct and separate binding site on a protein (usually an enzyme) other than the active site where the substrate binds. The binding of a molecule (known as an allosteric modulator or effector) to this site can cause a conformational change in the protein's structure, which in turn affects its activity, either by enhancing (allosteric activation) or inhibiting (allosteric inhibition) its function. This allosteric regulation allows for complex control mechanisms in biological systems and is crucial for many cellular processes.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Automation in a laboratory refers to the use of technology and machinery to automatically perform tasks that were previously done manually by lab technicians or scientists. This can include tasks such as mixing and dispensing liquids, tracking and monitoring experiments, and analyzing samples. Automation can help increase efficiency, reduce human error, and allow lab personnel to focus on more complex tasks.

There are various types of automation systems used in laboratory settings, including:

1. Liquid handling systems: These machines automatically dispense precise volumes of liquids into containers or well plates, reducing the potential for human error and increasing throughput.
2. Robotic systems: Robots can be programmed to perform a variety of tasks, such as pipetting, centrifugation, and incubation, freeing up lab personnel for other duties.
3. Tracking and monitoring systems: These systems automatically track and monitor experiments, allowing scientists to remotely monitor their progress and receive alerts when an experiment is complete or if there are any issues.
4. Analysis systems: Automated analysis systems can quickly and accurately analyze samples, such as by measuring the concentration of a particular molecule or identifying specific genetic sequences.

Overall, automation in the laboratory can help improve accuracy, increase efficiency, and reduce costs, making it an essential tool for many scientific research and diagnostic applications.

"Academies and Institutes" in a medical context typically refer to organizations that are dedicated to advancing knowledge, research, and education in a specific field of medicine or healthcare. These organizations often bring together experts and leaders in the field to share knowledge, conduct research, and develop guidelines or policies. They may also provide training and certification for healthcare professionals.

Examples of medical academies and institutes include:

* The National Academy of Medicine (NAM) in the United States, which provides independent, objective analysis and advice to the nation on medical and health issues.
* The Royal College of Physicians (RCP) in the United Kingdom, which is a professional body dedicated to improving the practice of medicine, with a particular focus on physicians.
* The American Heart Association (AHA) and the American College of Cardiology (ACC), which are two leading organizations focused on cardiovascular disease and healthcare.
* The World Health Organization (WHO) is an international organization that coordinates and directs global health activities, including research, policy-making, and service delivery.

These institutions play a crucial role in shaping medical practice and policy by providing evidence-based recommendations and guidelines, as well as training and certification for healthcare professionals.

I'm sorry for any confusion, but "Intellectual Property" is not a term that has a specific medical definition. Instead, it is a legal and business concept. Intellectual property refers to creations of the mind, such as inventions, literary and artistic works, symbols, names, images, and designs used in commerce. It is protected by law through various types of intellectual property rights, such as patents, trademarks, copyrights, and trade secrets.

However, in a broader context, protecting intellectual property can have implications for medical research and development, innovation, and collaboration. For instance, patent protection encourages biomedical companies to invest in the development of new drugs and therapies by providing them with exclusive rights to manufacture and sell their inventions for a certain period. Similarly, trademark protection helps ensure that medical products and services are reliably and distinctly identified, while copyright protection can apply to written works like medical research articles or educational materials.

Parasitic sensitivity tests, also known as parasite drug susceptibility tests, refer to laboratory methods used to determine the effectiveness of specific antiparasitic medications against a particular parasitic infection. These tests help healthcare providers identify which drugs are most likely to be effective in treating an individual's infection and which ones should be avoided due to resistance or increased risk of side effects.

There are several types of parasitic sensitivity tests, including:

1. In vitro susceptibility testing: This involves culturing the parasite in a laboratory setting and exposing it to different concentrations of antiparasitic drugs. The growth or survival of the parasite is then observed and compared to a control group that was not exposed to the drug. This helps identify the minimum inhibitory concentration (MIC) of the drug, which is the lowest concentration required to prevent the growth of the parasite.
2. Molecular testing: This involves analyzing the genetic material of the parasite to detect specific mutations or gene variations that are associated with resistance to certain antiparasitic drugs. This type of testing can be performed using a variety of methods, including polymerase chain reaction (PCR) and DNA sequencing.
3. Phenotypic testing: This involves observing the effects of antiparasitic drugs on the growth or survival of the parasite in a laboratory setting. For example, a parasite may be grown in a culture medium and then exposed to different concentrations of a drug. The growth of the parasite is then monitored over time to determine the drug's effectiveness.

Parasitic sensitivity tests are important for guiding the treatment of many parasitic infections, including malaria, tuberculosis, and leishmaniasis. These tests can help healthcare providers choose the most effective antiparasitic drugs for their patients, reduce the risk of drug resistance, and improve treatment outcomes.

Neuropharmacology is a branch of pharmacology that deals with the study of how drugs affect the nervous system and its cells or organs. It involves investigating the interactions between neurochemical communication systems, such as neurotransmitters and neuromodulators, and drugs that alter their function. This field also includes understanding the effects of drugs on behavior, cognition, and other neurological processes. Neuropharmacology can be further divided into two main areas: behavioral neuropharmacology, which focuses on the study of drugs that affect behavior, and molecular neuropharmacology, which deals with the molecular and cellular mechanisms of drug action in the nervous system.

A User-Computer Interface (also known as Human-Computer Interaction) refers to the point at which a person (user) interacts with a computer system. This can include both hardware and software components, such as keyboards, mice, touchscreens, and graphical user interfaces (GUIs). The design of the user-computer interface is crucial in determining the usability and accessibility of a computer system for the user. A well-designed interface should be intuitive, efficient, and easy to use, minimizing the cognitive load on the user and allowing them to effectively accomplish their tasks.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Ethnopharmacology is a branch of pharmacology that focuses on the study of traditional medicines and their active components, as well as the cultural, historical, and social practices surrounding their use. It involves the interdisciplinary investigation of indigenous knowledge, beliefs, and customs related to medicinal plants and other natural remedies.

The main objectives of ethnopharmacology include:

1. Identifying and documenting traditional medicines and healing practices used by various cultures around the world.
2. Investigating the pharmacological properties and mechanisms of action of these traditional remedies, often through laboratory experiments and clinical trials.
3. Evaluating the safety, efficacy, and quality of traditional medicines to establish their potential therapeutic value in modern healthcare settings.
4. Promoting the sustainable use of natural resources and preserving indigenous knowledge and cultural heritage related to traditional medicine.
5. Fostering collaboration between scientists, healthcare professionals, and local communities to develop new drugs, therapies, and treatment approaches based on traditional medicines.

Examples of ethnopharmacological research include studying the active ingredients in Ayurvedic herbs, evaluating the effectiveness of Traditional Chinese Medicine (TCM) formulations, and investigating the potential benefits of psychoactive plants used in shamanic rituals.

Toxicity tests, also known as toxicity assays, are a set of procedures used to determine the harmful effects of various substances on living organisms, typically on cells, tissues, or whole animals. These tests measure the degree to which a substance can cause damage, inhibit normal functioning, or lead to death in exposed organisms.

Toxicity tests can be conducted in vitro (in a test tube or petri dish) using cell cultures or in vivo (in living organisms) using animals such as rats, mice, or rabbits. The results of these tests help researchers and regulators assess the potential risks associated with exposure to various chemicals, drugs, or environmental pollutants.

There are several types of toxicity tests, including:

1. Acute toxicity tests: These tests measure the immediate effects of a single exposure to a substance over a short period (usually 24 hours or less).
2. Chronic toxicity tests: These tests evaluate the long-term effects of repeated exposures to a substance over an extended period (weeks, months, or even years).
3. Genotoxicity tests: These tests determine whether a substance can damage DNA or cause mutations in genetic material.
4. Developmental and reproductive toxicity tests: These tests assess the impact of a substance on fertility, embryonic development, and offspring health.
5. Carcinogenicity tests: These tests evaluate the potential of a substance to cause cancer.
6. Ecotoxicity tests: These tests determine the effects of a substance on entire ecosystems, including plants, animals, and microorganisms.

Toxicity tests play a crucial role in protecting public health by helping to identify potentially harmful substances and establish safe exposure levels. They also contribute to the development of new drugs, chemicals, and consumer products by providing critical data for risk assessment and safety evaluation.

Automation in the medical context refers to the use of technology and programming to allow machines or devices to operate with minimal human intervention. This can include various types of medical equipment, such as laboratory analyzers, imaging devices, and robotic surgical systems. Automation can help improve efficiency, accuracy, and safety in healthcare settings by reducing the potential for human error and allowing healthcare professionals to focus on higher-level tasks. It is important to note that while automation has many benefits, it is also essential to ensure that appropriate safeguards are in place to prevent accidents and maintain quality of care.

Clinical trials are research studies that involve human participants and are designed to evaluate the safety and efficacy of new medical treatments, drugs, devices, or behavioral interventions. The purpose of clinical trials is to determine whether a new intervention is safe, effective, and beneficial for patients, as well as to compare it with currently available treatments. Clinical trials follow a series of phases, each with specific goals and criteria, before a new intervention can be approved by regulatory authorities for widespread use.

Clinical trials are conducted according to a protocol, which is a detailed plan that outlines the study's objectives, design, methodology, statistical analysis, and ethical considerations. The protocol is developed and reviewed by a team of medical experts, statisticians, and ethicists, and it must be approved by an institutional review board (IRB) before the trial can begin.

Participation in clinical trials is voluntary, and participants must provide informed consent before enrolling in the study. Informed consent involves providing potential participants with detailed information about the study's purpose, procedures, risks, benefits, and alternatives, as well as their rights as research subjects. Participants can withdraw from the study at any time without penalty or loss of benefits to which they are entitled.

Clinical trials are essential for advancing medical knowledge and improving patient care. They help researchers identify new treatments, diagnostic tools, and prevention strategies that can benefit patients and improve public health. However, clinical trials also pose potential risks to participants, including adverse effects from experimental interventions, time commitment, and inconvenience. Therefore, it is important for researchers to carefully design and conduct clinical trials to minimize risks and ensure that the benefits outweigh the risks.

Antimalarials are a class of drugs that are used for the prevention, treatment, and elimination of malaria. They work by targeting the malaria parasite at various stages of its life cycle, particularly the erythrocytic stage when it infects red blood cells. Some commonly prescribed antimalarials include chloroquine, hydroxychloroquine, quinine, mefloquine, and artemisinin-based combinations. These drugs can be used alone or in combination with other antimalarial agents to increase their efficacy and prevent the development of drug resistance. Antimalarials are also being investigated for their potential use in treating other diseases, such as autoimmune disorders and cancer.

I'm sorry for any confusion, but "Internet" is a term that pertains to the global network of interconnected computers and servers that enable the transmission and reception of data via the internet protocol (IP). It is not a medical term and does not have a specific medical definition. If you have any questions related to medicine or health, I'd be happy to try to help answer them for you!

Induced Pluripotent Stem Cells (iPSCs) are a type of pluripotent stem cells that are generated from somatic cells, such as skin or blood cells, through the introduction of specific genes encoding transcription factors. These reprogrammed cells exhibit similar characteristics to embryonic stem cells, including the ability to differentiate into any cell type of the three germ layers (endoderm, mesoderm, and ectoderm). The discovery and development of iPSCs have opened up new possibilities in regenerative medicine, drug testing and development, and disease modeling, while avoiding ethical concerns associated with embryonic stem cells.

A factual database in the medical context is a collection of organized and structured data that contains verified and accurate information related to medicine, healthcare, or health sciences. These databases serve as reliable resources for various stakeholders, including healthcare professionals, researchers, students, and patients, to access evidence-based information for making informed decisions and enhancing knowledge.

Examples of factual medical databases include:

1. PubMed: A comprehensive database of biomedical literature maintained by the US National Library of Medicine (NLM). It contains citations and abstracts from life sciences journals, books, and conference proceedings.
2. MEDLINE: A subset of PubMed, MEDLINE focuses on high-quality, peer-reviewed articles related to biomedicine and health. It is the primary component of the NLM's database and serves as a critical resource for healthcare professionals and researchers worldwide.
3. Cochrane Library: A collection of systematic reviews and meta-analyses focused on evidence-based medicine. The library aims to provide unbiased, high-quality information to support clinical decision-making and improve patient outcomes.
4. OVID: A platform that offers access to various medical and healthcare databases, including MEDLINE, Embase, and PsycINFO. It facilitates the search and retrieval of relevant literature for researchers, clinicians, and students.
5. ClinicalTrials.gov: A registry and results database of publicly and privately supported clinical studies conducted around the world. The platform aims to increase transparency and accessibility of clinical trial data for healthcare professionals, researchers, and patients.
6. UpToDate: An evidence-based, physician-authored clinical decision support resource that provides information on diagnosis, treatment, and prevention of medical conditions. It serves as a point-of-care tool for healthcare professionals to make informed decisions and improve patient care.
7. TRIP Database: A search engine designed to facilitate evidence-based medicine by providing quick access to high-quality resources, including systematic reviews, clinical guidelines, and practice recommendations.
8. National Guideline Clearinghouse (NGC): A database of evidence-based clinical practice guidelines and related documents developed through a rigorous review process. The NGC aims to provide clinicians, healthcare providers, and policymakers with reliable guidance for patient care.
9. DrugBank: A comprehensive, freely accessible online database containing detailed information about drugs, their mechanisms, interactions, and targets. It serves as a valuable resource for researchers, healthcare professionals, and students in the field of pharmacology and drug discovery.
10. Genetic Testing Registry (GTR): A database that provides centralized information about genetic tests, test developers, laboratories offering tests, and clinical validity and utility of genetic tests. It serves as a resource for healthcare professionals, researchers, and patients to make informed decisions regarding genetic testing.

Protein interaction mapping is a research approach used to identify and characterize the physical interactions between different proteins within a cell or organism. This process often involves the use of high-throughput experimental techniques, such as yeast two-hybrid screening, mass spectrometry-based approaches, or protein fragment complementation assays, to detect and quantify the binding affinities of protein pairs. The resulting data is then used to construct a protein interaction network, which can provide insights into functional relationships between proteins, help elucidate cellular pathways, and inform our understanding of biological processes in health and disease.

Biotechnology is defined in the medical field as a branch of technology that utilizes biological processes, organisms, or systems to create products that are technologically useful. This can include various methods and techniques such as genetic engineering, cell culture, fermentation, and others. The goal of biotechnology is to harness the power of biology to produce drugs, vaccines, diagnostic tests, biofuels, and other industrial products, as well as to advance our understanding of living systems for medical and scientific research.

The use of biotechnology has led to significant advances in medicine, including the development of new treatments for genetic diseases, improved methods for diagnosing illnesses, and the creation of vaccines to prevent infectious diseases. However, it also raises ethical and societal concerns related to issues such as genetic modification of organisms, cloning, and biosecurity.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

A protein database is a type of biological database that contains information about proteins and their structures, functions, sequences, and interactions with other molecules. These databases can include experimentally determined data, such as protein sequences derived from DNA sequencing or mass spectrometry, as well as predicted data based on computational methods.

Some examples of protein databases include:

1. UniProtKB: a comprehensive protein database that provides information about protein sequences, functions, and structures, as well as literature references and links to other resources.
2. PDB (Protein Data Bank): a database of three-dimensional protein structures determined by experimental methods such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.
3. BLAST (Basic Local Alignment Search Tool): a web-based tool that allows users to compare a query protein sequence against a protein database to identify similar sequences and potential functional relationships.
4. InterPro: a database of protein families, domains, and functional sites that provides information about protein function based on sequence analysis and other data.
5. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins): a database of known and predicted protein-protein interactions, including physical and functional associations.

Protein databases are essential tools in proteomics research, enabling researchers to study protein function, evolution, and interaction networks on a large scale.

Data mining, in the context of health informatics and medical research, refers to the process of discovering patterns, correlations, and insights within large sets of patient or clinical data. It involves the use of advanced analytical techniques such as machine learning algorithms, statistical models, and artificial intelligence to identify and extract useful information from complex datasets.

The goal of data mining in healthcare is to support evidence-based decision making, improve patient outcomes, and optimize resource utilization. Applications of data mining in healthcare include predicting disease outbreaks, identifying high-risk patients, personalizing treatment plans, improving clinical workflows, and detecting fraud and abuse in healthcare systems.

Data mining can be performed on various types of healthcare data, including electronic health records (EHRs), medical claims databases, genomic data, imaging data, and sensor data from wearable devices. However, it is important to ensure that data mining techniques are used ethically and responsibly, with appropriate safeguards in place to protect patient privacy and confidentiality.

Molecular conformation, also known as spatial arrangement or configuration, refers to the specific three-dimensional shape and orientation of atoms that make up a molecule. It describes the precise manner in which bonds between atoms are arranged around a molecular framework, taking into account factors such as bond lengths, bond angles, and torsional angles.

Conformational isomers, or conformers, are different spatial arrangements of the same molecule that can interconvert without breaking chemical bonds. These isomers may have varying energies, stability, and reactivity, which can significantly impact a molecule's biological activity and function. Understanding molecular conformation is crucial in fields such as drug design, where small changes in conformation can lead to substantial differences in how a drug interacts with its target.

I'm sorry for any confusion, but "Microtechnology" is not a term that has a specific medical definition. Microtechnology generally refers to the development and application of technologies on a microscopic or tiny scale. It is used in various fields including engineering, physics, electronics, and materials science.

In the context of medicine, microtechnologies can be used in the development of medical devices, diagnostic tools, drug delivery systems, and other healthcare applications. For example, microfabrication techniques are used to create microfluidic devices for lab-on-a-chip applications, which can perform complex biochemical analyses for disease diagnosis or drug screening.

However, it's important to note that the application of microtechnologies in medicine is constantly evolving, and new developments and techniques are being explored all the time.

I believe there might be a bit of confusion in your question. "History" is a subject that refers to events, ideas, and developments of the past. It's not something that has a medical definition. However, if you're referring to the "21st century" in a historical context, it relates to the period from 2001 to the present. It's an era marked by significant advancements in technology, medicine, and society at large. But again, it doesn't have a medical definition. If you meant something else, please provide more context so I can give a more accurate response.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Pharmacological processes refer to the series of interactions and reactions that occur when a drug is introduced into a living organism. This encompasses various stages, including:

1. **Drug Absorption:** The process by which a drug is taken up by the body's tissues after administration, often through routes such as oral, intravenous, or topical.

2. **Distribution:** The movement of the drug throughout the body, often involving transport across biological membranes and into various organs and fluids.

3. **Metabolism (Biotransformation):** The chemical alteration of a drug by enzymes, primarily in the liver but also in other organs, which can result in the drug becoming more or less active, or being broken down into products that can be excreted.

4. **Excretion:** The removal of the drug and its metabolites from the body, typically through urine, feces, sweat, or exhaled air.

5. **Pharmacodynamics:** The study of how drugs interact with their targets (receptors, enzymes, etc.) to produce a biological response.

6. **Pharmacokinetics:** The mathematical analysis of the time course of drug concentrations in the body and how these concentrations affect pharmacological responses.

Understanding these pharmacological processes is crucial for determining the optimal dosage, frequency, and route of administration for a drug, as well as predicting potential interactions and side effects.

Embryonic stem cells are a type of pluripotent stem cell that are derived from the inner cell mass of a blastocyst, which is a very early-stage embryo. These cells have the ability to differentiate into any cell type in the body, making them a promising area of research for regenerative medicine and the study of human development and disease. Embryonic stem cells are typically obtained from surplus embryos created during in vitro fertilization (IVF) procedures, with the consent of the donors. The use of embryonic stem cells is a controversial issue due to ethical concerns surrounding the destruction of human embryos.

Research, in the context of medicine, is a systematic and rigorous process of collecting, analyzing, and interpreting information in order to increase our understanding, develop new knowledge, or evaluate current practices and interventions. It can involve various methodologies such as observational studies, experiments, surveys, or literature reviews. The goal of medical research is to advance health care by identifying new treatments, improving diagnostic techniques, and developing prevention strategies. Medical research is typically conducted by teams of researchers including clinicians, scientists, and other healthcare professionals. It is subject to ethical guidelines and regulations to ensure that it is conducted responsibly and with the best interests of patients in mind.

Drug therapy, also known as pharmacotherapy, refers to the use of medications to treat, cure, or prevent a disease or disorder. It is a crucial component of medical treatment and involves the prescription, administration, and monitoring of drugs to achieve specific therapeutic goals. The choice of drug therapy depends on various factors, including the patient's age, sex, weight, overall health status, severity of the condition, potential interactions with other medications, and personal preferences.

The goal of drug therapy is to alleviate symptoms, reduce the risk of complications, slow down disease progression, or cure a disease. It can be used as a standalone treatment or in combination with other therapies such as surgery, radiation therapy, or lifestyle modifications. The effectiveness of drug therapy varies depending on the condition being treated and the individual patient's response to the medication.

Drug therapy requires careful monitoring to ensure its safety and efficacy. Patients should be informed about the potential benefits and risks associated with the medication, including side effects, contraindications, and interactions with other drugs or foods. Regular follow-up appointments with healthcare providers are necessary to assess the patient's response to the therapy and make any necessary adjustments.

In summary, drug therapy is a medical intervention that involves the use of medications to treat, cure, or prevent diseases or disorders. It requires careful consideration of various factors, including the patient's individual needs and preferences, and ongoing monitoring to ensure its safety and effectiveness.

Translational medical research, also known as "translational research," refers to the process of turning basic scientific discoveries into clinical interventions that improve human health and well-being. This type of research aims to "translate" findings from laboratory, animal, or cellular studies into practical applications for the prevention, diagnosis, and treatment of human diseases.

Translational medical research typically involves a multidisciplinary approach, bringing together researchers from various fields such as biology, chemistry, engineering, genetics, and medicine to work collaboratively on solving complex health problems. The process often includes several stages, including:

1. Identifying basic scientific discoveries that have the potential to be translated into clinical applications.
2. Developing and optimizing new diagnostic tools, drugs, or therapies based on these discoveries.
3. Conducting preclinical studies in the laboratory or with animal models to evaluate the safety and efficacy of these interventions.
4. Designing and implementing clinical trials to test the effectiveness and safety of the new interventions in human patients.
5. Disseminating research findings to the scientific community, healthcare providers, and the public to facilitate the adoption of new practices or treatments.

Translational medical research is essential for bridging the gap between basic scientific discoveries and clinical applications, ultimately improving patient care and outcomes.

Oligonucleotide Array Sequence Analysis is a type of microarray analysis that allows for the simultaneous measurement of the expression levels of thousands of genes in a single sample. In this technique, oligonucleotides (short DNA sequences) are attached to a solid support, such as a glass slide, in a specific pattern. These oligonucleotides are designed to be complementary to specific target mRNA sequences from the sample being analyzed.

During the analysis, labeled RNA or cDNA from the sample is hybridized to the oligonucleotide array. The level of hybridization is then measured and used to determine the relative abundance of each target sequence in the sample. This information can be used to identify differences in gene expression between samples, which can help researchers understand the underlying biological processes involved in various diseases or developmental stages.

It's important to note that this technique requires specialized equipment and bioinformatics tools for data analysis, as well as careful experimental design and validation to ensure accurate and reproducible results.

Luciferases are enzymes that catalyze the emission of light by a chemical reaction. Firefly luciferase is a specific type of luciferase that is found in fireflies and certain other insects. This enzyme catalyzes the oxidation of luciferin, a molecule that produces light when it is oxidized. The reaction also requires ATP (adenosine triphosphate) and oxygen. The light produced by this reaction is bioluminescence, which is light that is produced by a living organism. Firefly luciferase is widely used in research for a variety of purposes, including the detection of specific molecules and the study of gene expression.

Cluster analysis is a statistical method used to group similar objects or data points together based on their characteristics or features. In medical and healthcare research, cluster analysis can be used to identify patterns or relationships within complex datasets, such as patient records or genetic information. This technique can help researchers to classify patients into distinct subgroups based on their symptoms, diagnoses, or other variables, which can inform more personalized treatment plans or public health interventions.

Cluster analysis involves several steps, including:

1. Data preparation: The researcher must first collect and clean the data, ensuring that it is complete and free from errors. This may involve removing outlier values or missing data points.
2. Distance measurement: Next, the researcher must determine how to measure the distance between each pair of data points. Common methods include Euclidean distance (the straight-line distance between two points) or Manhattan distance (the distance between two points along a grid).
3. Clustering algorithm: The researcher then applies a clustering algorithm, which groups similar data points together based on their distances from one another. Common algorithms include hierarchical clustering (which creates a tree-like structure of clusters) or k-means clustering (which assigns each data point to the nearest centroid).
4. Validation: Finally, the researcher must validate the results of the cluster analysis by evaluating the stability and robustness of the clusters. This may involve re-running the analysis with different distance measures or clustering algorithms, or comparing the results to external criteria.

Cluster analysis is a powerful tool for identifying patterns and relationships within complex datasets, but it requires careful consideration of the data preparation, distance measurement, and validation steps to ensure accurate and meaningful results.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Neuropsychiatry is a subspecialty that focuses on the integration of neurology and psychiatry, combining knowledge from both fields to understand, diagnose, and treat disorders that involve both the brain and behavior. It addresses conditions where mental disorders (such as schizophrenia, mood disorders, anxiety disorders) are thought to be caused or influenced by underlying neurological conditions (such as epilepsy, dementia, Parkinson's disease). Neuropsychiatrists evaluate, manage, and treat patients with complex neurobehavioral disorders using a comprehensive approach that considers biological, psychological, and social factors.

Protein kinase inhibitors (PKIs) are a class of drugs that work by interfering with the function of protein kinases. Protein kinases are enzymes that play a crucial role in many cellular processes by adding a phosphate group to specific proteins, thereby modifying their activity, localization, or interaction with other molecules. This process of adding a phosphate group is known as phosphorylation and is a key mechanism for regulating various cellular functions, including signal transduction, metabolism, and cell division.

In some diseases, such as cancer, protein kinases can become overactive or mutated, leading to uncontrolled cell growth and division. Protein kinase inhibitors are designed to block the activity of these dysregulated kinases, thereby preventing or slowing down the progression of the disease. These drugs can be highly specific, targeting individual protein kinases or families of kinases, making them valuable tools for targeted therapy in cancer and other diseases.

Protein kinase inhibitors can work in various ways to block the activity of protein kinases. Some bind directly to the active site of the enzyme, preventing it from interacting with its substrates. Others bind to allosteric sites, changing the conformation of the enzyme and making it inactive. Still, others target upstream regulators of protein kinases or interfere with their ability to form functional complexes.

Examples of protein kinase inhibitors include imatinib (Gleevec), which targets the BCR-ABL kinase in chronic myeloid leukemia, and gefitinib (Iressa), which inhibits the EGFR kinase in non-small cell lung cancer. These drugs have shown significant clinical benefits in treating these diseases and have become important components of modern cancer therapy.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Medicinal plants are defined as those plants that contain naturally occurring chemical compounds which can be used for therapeutic purposes, either directly or indirectly. These plants have been used for centuries in various traditional systems of medicine, such as Ayurveda, Chinese medicine, and Native American medicine, to prevent or treat various health conditions.

Medicinal plants contain a wide variety of bioactive compounds, including alkaloids, flavonoids, tannins, terpenes, and saponins, among others. These compounds have been found to possess various pharmacological properties, such as anti-inflammatory, analgesic, antimicrobial, antioxidant, and anticancer activities.

Medicinal plants can be used in various forms, including whole plant material, extracts, essential oils, and isolated compounds. They can be administered through different routes, such as oral, topical, or respiratory, depending on the desired therapeutic effect.

It is important to note that while medicinal plants have been used safely and effectively for centuries, they should be used with caution and under the guidance of a healthcare professional. Some medicinal plants can interact with prescription medications or have adverse effects if used inappropriately.

Individualized medicine, also known as personalized medicine, is a medical model that uses molecular profiling and various diagnostic tests to understand the genetic and environmental variations affecting an individual's health and disease susceptibility. It aims to tailor medical treatments, including prevention strategies, diagnostics, therapies, and follow-up care, to each person's unique needs and characteristics. By incorporating genomic, proteomic, metabolomic, and other "omics" data into clinical decision-making, individualized medicine strives to improve patient outcomes, reduce adverse effects, and potentially lower healthcare costs.

Molecular Dynamics (MD) simulation is a computational method used in the field of molecular modeling and molecular physics. It involves simulating the motions and interactions of atoms and molecules over time, based on classical mechanics or quantum mechanics. In MD simulations, the equations of motion for each atom are repeatedly solved, allowing researchers to study the dynamic behavior of molecular systems, such as protein folding, ligand-protein binding, and chemical reactions. These simulations provide valuable insights into the structural and functional properties of biological macromolecules at the atomic level, and have become an essential tool in modern drug discovery and development.

Allosteric regulation is a process that describes the way in which the binding of a molecule (known as a ligand) to an enzyme or protein at one site affects the ability of another molecule to bind to a different site on the same enzyme or protein. This interaction can either enhance (positive allosteric regulation) or inhibit (negative allosteric regulation) the activity of the enzyme or protein, depending on the nature of the ligand and its effect on the shape and/or conformation of the enzyme or protein.

In an allosteric regulatory system, the binding of the first molecule to the enzyme or protein causes a conformational change in the protein structure that alters the affinity of the second site for its ligand. This can result in changes in the activity of the enzyme or protein, allowing for fine-tuning of biochemical pathways and regulatory processes within cells.

Allosteric regulation is a fundamental mechanism in many biological systems, including metabolic pathways, signal transduction cascades, and gene expression networks. Understanding allosteric regulation can provide valuable insights into the mechanisms underlying various physiological and pathological processes, and can inform the development of novel therapeutic strategies for the treatment of disease.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

A complex mixture is a type of mixture that contains a large number of different chemical components, which can interact with each other in complex ways. These interactions can result in the emergence of new properties or behaviors that are not present in the individual components.

In the context of medical research and regulation, complex mixtures can pose significant challenges due to their complexity and the potential for unexpected interactions between components. Examples of complex mixtures include tobacco smoke, air pollution, and certain types of food and beverages.

Because of their complexity, it can be difficult to study the health effects of complex mixtures using traditional methods that focus on individual chemicals or components. Instead, researchers may need to use more holistic approaches that take into account the interactions between different components and the overall composition of the mixture. This is an active area of research in fields such as toxicology, epidemiology, and environmental health.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

A disease is a condition that impairs normal functioning and causes harm to the body. It is typically characterized by a specific set of symptoms and may be caused by genetic, environmental, or infectious agents. A disease can also be described as a disorder of structure or function in an organism that produces specific signs or symptoms. Diseases can range from minor ones, like the common cold, to serious illnesses, such as heart disease or cancer. They can also be acute, with a sudden onset and short duration, or chronic, lasting for a long period of time. Ultimately, a disease is any deviation from normal homeostasis that causes harm to an organism.

A genetic database is a type of biomedical or health informatics database that stores and organizes genetic data, such as DNA sequences, gene maps, genotypes, haplotypes, and phenotype information. These databases can be used for various purposes, including research, clinical diagnosis, and personalized medicine.

There are different types of genetic databases, including:

1. Genomic databases: These databases store whole genome sequences, gene expression data, and other genomic information. Examples include the National Center for Biotechnology Information's (NCBI) GenBank, the European Nucleotide Archive (ENA), and the DNA Data Bank of Japan (DDBJ).
2. Gene databases: These databases contain information about specific genes, including their location, function, regulation, and evolution. Examples include the Online Mendelian Inheritance in Man (OMIM) database, the Universal Protein Resource (UniProt), and the Gene Ontology (GO) database.
3. Variant databases: These databases store information about genetic variants, such as single nucleotide polymorphisms (SNPs), insertions/deletions (INDELs), and copy number variations (CNVs). Examples include the Database of Single Nucleotide Polymorphisms (dbSNP), the Catalogue of Somatic Mutations in Cancer (COSMIC), and the International HapMap Project.
4. Clinical databases: These databases contain genetic and clinical information about patients, such as their genotype, phenotype, family history, and response to treatments. Examples include the ClinVar database, the Pharmacogenomics Knowledgebase (PharmGKB), and the Genetic Testing Registry (GTR).
5. Population databases: These databases store genetic information about different populations, including their ancestry, demographics, and genetic diversity. Examples include the 1000 Genomes Project, the Human Genome Diversity Project (HGDP), and the Allele Frequency Net Database (AFND).

Genetic databases can be publicly accessible or restricted to authorized users, depending on their purpose and content. They play a crucial role in advancing our understanding of genetics and genomics, as well as improving healthcare and personalized medicine.

Antitubercular agents, also known as anti-tuberculosis drugs or simply TB drugs, are a category of medications specifically used for the treatment and prevention of tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis. These drugs target various stages of the bacteria's growth and replication process to eradicate it from the body or prevent its spread.

There are several first-line antitubercular agents, including:

1. Isoniazid (INH): This is a bactericidal drug that inhibits the synthesis of mycolic acids, essential components of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
2. Rifampin (RIF) or Rifampicin: A bactericidal drug that inhibits DNA-dependent RNA polymerase, preventing the transcription of genetic information into mRNA. This results in the interruption of protein synthesis and ultimately leads to the death of the bacteria.
3. Ethambutol (EMB): A bacteriostatic drug that inhibits the arabinosyl transferase enzyme, which is responsible for the synthesis of arabinan, a crucial component of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
4. Pyrazinamide (PZA): A bactericidal drug that inhibits the synthesis of fatty acids and mycolic acids in the mycobacterial cell wall, particularly under acidic conditions. PZA is most effective during the initial phase of treatment when the bacteria are in a dormant or slow-growing state.

These first-line antitubercular agents are often used together in a combination therapy to ensure complete eradication of the bacteria and prevent the development of drug-resistant strains. Treatment duration typically lasts for at least six months, with the initial phase consisting of daily doses of INH, RIF, EMB, and PZA for two months, followed by a continuation phase of INH and RIF for four months.

Second-line antitubercular agents are used when patients have drug-resistant TB or cannot tolerate first-line drugs. These include drugs like aminoglycosides (e.g., streptomycin, amikacin), fluoroquinolones (e.g., ofloxacin, moxifloxacin), and injectable bacteriostatic agents (e.g., capreomycin, ethionamide).

It is essential to closely monitor patients undergoing antitubercular therapy for potential side effects and ensure adherence to the treatment regimen to achieve optimal outcomes and prevent the development of drug-resistant strains.

The proteome is the entire set of proteins produced or present in an organism, system, organ, or cell at a certain time under specific conditions. It is a dynamic collection of protein species that changes over time, responding to various internal and external stimuli such as disease, stress, or environmental factors. The study of the proteome, known as proteomics, involves the identification and quantification of these protein components and their post-translational modifications, providing valuable insights into biological processes, functional pathways, and disease mechanisms.

14-alpha Demethylase Inhibitors are a class of antifungal medications that work by inhibiting the enzyme 14-alpha demethylase, which is essential for the synthesis of ergosterol, a critical component of fungal cell membranes. By inhibiting this enzyme, the drugs disrupt the structure and function of the fungal cell membrane, leading to fungal cell death.

Examples of 14-alpha Demethylase Inhibitors include:

* Fluconazole (Diflucan)
* Itraconazole (Sporanox)
* Ketoconazole (Nizoral)
* Posaconazole (Noxafil)
* Voriconazole (Vfend)

These medications are used to treat a variety of fungal infections, including candidiasis, aspergillosis, and cryptococcosis. However, they can also have significant drug-drug interactions and toxicities, so their use must be monitored closely by healthcare professionals.

Cell biology is the branch of biology that deals with the study of cells, which are the basic units of life. It involves understanding the structure, function, and behavior of cells, as well as their interactions with one another and with their environment. Cell biologists may study various aspects of cellular processes, such as cell growth and division, metabolism, gene expression, signal transduction, and intracellular transport. They use a variety of techniques, including microscopy, biochemistry, genetics, and molecular biology, to investigate the complex and dynamic world inside cells. The ultimate goal of cell biology is to gain a deeper understanding of how cells work, which can have important implications for human health and disease.

Cytostatic agents are a type of medication used in cancer treatment that work by inhibiting or suppressing the growth and division of cancer cells. Unlike cytotoxic chemotherapy, which kills cancer cells outright, cytostatic agents aim to keep cancer cells from dividing and multiplying, effectively halting or slowing down the progression of the disease.

These agents target specific pathways involved in cell division and growth, such as the cell cycle, DNA replication, or protein synthesis. By interfering with these processes, cytostatic agents can prevent cancer cells from multiplying while minimizing harm to healthy cells.

Examples of cytostatic agents include hormonal therapies, targeted therapies, and some types of immunotherapy. While cytostatic agents may not cure cancer, they can help manage the disease, improve quality of life, and extend survival for patients with advanced or metastatic cancer.

I'm sorry for any confusion, but the term "Nobel Prize" is not a medical definition. The Nobel Prize is an international award given annually in several categories, and one of those categories is physiology or medicine. The Nobel Prize in Physiology or Medicine is awarded to individuals who have made significant discoveries of outstanding importance in the fields of life sciences and medicine. It is one of the most prestigious awards in these fields.

Artificial Intelligence (AI) in the medical context refers to the simulation of human intelligence processes by machines, particularly computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using the rules to reach approximate or definite conclusions), and self-correction.

In healthcare, AI is increasingly being used to analyze large amounts of data, identify patterns, make decisions, and perform tasks that would normally require human intelligence. This can include tasks such as diagnosing diseases, recommending treatments, personalizing patient care, and improving clinical workflows.

Examples of AI in medicine include machine learning algorithms that analyze medical images to detect signs of disease, natural language processing tools that extract relevant information from electronic health records, and robot-assisted surgery systems that enable more precise and minimally invasive procedures.

Biomedical research is a branch of scientific research that involves the study of biological processes and diseases in order to develop new treatments and therapies. This type of research often involves the use of laboratory techniques, such as cell culture and genetic engineering, as well as clinical trials in humans. The goal of biomedical research is to advance our understanding of how living organisms function and to find ways to prevent and treat various medical conditions. It encompasses a wide range of disciplines, including molecular biology, genetics, immunology, pharmacology, and neuroscience, among others. Ultimately, the aim of biomedical research is to improve human health and well-being.

Metabolic networks and pathways refer to the complex interconnected series of biochemical reactions that occur within cells to maintain life. These reactions are catalyzed by enzymes and are responsible for the conversion of nutrients into energy, as well as the synthesis and breakdown of various molecules required for cellular function.

A metabolic pathway is a series of chemical reactions that occur in a specific order, with each reaction being catalyzed by a different enzyme. These pathways are often interconnected, forming a larger network of interactions known as a metabolic network.

Metabolic networks can be represented as complex diagrams or models, which show the relationships between different pathways and the flow of matter and energy through the system. These networks can help researchers to understand how cells regulate their metabolism in response to changes in their environment, and how disruptions to these networks can lead to disease.

Some common examples of metabolic pathways include glycolysis, the citric acid cycle (also known as the Krebs cycle), and the pentose phosphate pathway. Each of these pathways plays a critical role in maintaining cellular homeostasis and providing energy for cellular functions.

Toxicology is a branch of medical science that deals with the study of the adverse effects of chemicals or toxins on living organisms and the environment, including their detection, evaluation, prevention, and treatment. It involves understanding how various substances can cause harm, the doses at which they become toxic, and the factors that influence their toxicity. This field is crucial in areas such as public health, medicine, pharmacology, environmental science, and forensic investigations.

A human genome is the complete set of genetic information contained within the 23 pairs of chromosomes found in the nucleus of most human cells. It includes all of the genes, which are segments of DNA that contain the instructions for making proteins, as well as non-coding regions of DNA that regulate gene expression and provide structural support to the chromosomes.

The human genome contains approximately 3 billion base pairs of DNA and is estimated to contain around 20,000-25,000 protein-coding genes. The sequencing of the human genome was completed in 2003 as part of the Human Genome Project, which has had a profound impact on our understanding of human biology, disease, and evolution.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Cryoanesthesia is a medical term that refers to the use of extreme cold or freezing temperatures to induce local anesthesia, which is the numbing of a specific area of the body. This technique can be used to reduce pain and discomfort during certain medical procedures, such as cryosurgery (the use of extreme cold to destroy abnormal tissue).

During cryoanesthesia, a cryoprobe (a tool that can conduct and transmit low temperatures) is applied to the skin in the area to be treated. The probe is cooled to a very low temperature, typically between -20°C and -50°C, which causes the surrounding tissue to freeze. This freezing process damages the nerve endings in the area, temporarily blocking the transmission of pain signals to the brain.

While cryoanesthesia can be effective for reducing pain during certain procedures, it is not without risks. Prolonged exposure to extreme cold temperatures can cause tissue damage and frostbite, so it is important that the procedure is performed by a trained medical professional who can carefully monitor the temperature and duration of the treatment. Additionally, cryoanesthesia may not be appropriate for all patients or procedures, so it is important to discuss the potential risks and benefits with a healthcare provider before undergoing the treatment.

Drug partial agonism is a pharmacological concept that refers to the ability of a drug to bind to and activate a receptor, but with a lower maximal efficacy compared to a full agonist. This means that when a partial agonist binds to a receptor, it will stimulate a response, but the magnitude of that response will be less than what would be observed with a full agonist.

Partial agonists can have both agonistic and antagonistic effects depending on the receptor environment and the presence of other agonists or antagonists. At low doses, partial agonists may act as agonists and stimulate a response, while at higher doses they may compete with full agonists for receptor binding sites and block their ability to activate the receptor, thereby acting as an antagonist.

An example of a drug that exhibits partial agonism is buprenorphine, which is used in the treatment of opioid use disorder. Buprenorphine binds to mu-opioid receptors and activates them, but with lower efficacy than full agonists like heroin or morphine. This means that buprenorphine can help alleviate withdrawal symptoms and cravings in individuals with opioid use disorder, while also having a ceiling effect that limits its potential for abuse and overdose.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Herbal medicine, also known as botanical medicine or phytomedicine, refers to the use of plants and plant extracts for therapeutic purposes. This traditional form of medicine has been practiced for thousands of years across various cultures worldwide. It involves the utilization of different parts of a plant, such as leaves, roots, seeds, flowers, and fruits, either in their whole form or as extracts, infusions, decoctions, tinctures, or essential oils.

Herbal medicines are believed to contain active compounds that can interact with the human body, influencing its physiological processes and helping to maintain or restore health. Some herbs have been found to possess pharmacological properties, making them valuable in treating various ailments, including digestive disorders, respiratory conditions, sleep disturbances, skin issues, and cardiovascular diseases.

However, it is essential to note that the regulation of herbal medicines varies significantly between countries, and their safety, efficacy, and quality may not always be guaranteed. Therefore, consulting a healthcare professional before starting any herbal medicine regimen is advisable to ensure proper usage, dosage, and potential interactions with other medications or health conditions.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Antiprotozoal agents are a type of medication used to treat protozoal infections, which are infections caused by microscopic single-celled organisms called protozoa. These agents work by either killing the protozoa or inhibiting their growth and reproduction. They can be administered through various routes, including oral, topical, and intravenous, depending on the type of infection and the severity of the illness.

Examples of antiprotozoal agents include:

* Metronidazole, tinidazole, and nitazoxanide for treating infections caused by Giardia lamblia and Entamoeba histolytica.
* Atovaquone, clindamycin, and pyrimethamine-sulfadoxine for treating malaria caused by Plasmodium falciparum or other Plasmodium species.
* Pentamidine and suramin for treating African trypanosomiasis (sleeping sickness) caused by Trypanosoma brucei gambiense or T. b. rhodesiense.
* Nitroimidazoles, such as benznidazole and nifurtimox, for treating Chagas disease caused by Trypanosoma cruzi.
* Sodium stibogluconate and paromomycin for treating leishmaniasis caused by Leishmania species.

Antiprotozoal agents can have side effects, ranging from mild to severe, depending on the drug and the individual patient's response. It is essential to follow the prescribing physician's instructions carefully when taking these medications and report any adverse reactions promptly.

"Plasmodium" is a genus of protozoan parasites that are the causative agents of malaria in humans and other animals. There are several species within this genus, including Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, among others.

These parasites have a complex life cycle that involves two hosts: an Anopheles mosquito and a vertebrate host (such as humans). When a person is bitten by an infected mosquito, the parasites enter the bloodstream and infect red blood cells, where they multiply and cause the symptoms of malaria.

Plasmodium species are transmitted through the bites of infected female Anopheles mosquitoes, which become infected after taking a blood meal from an infected person. The parasites then develop in the mosquito's midgut, eventually making their way to the salivary glands, where they can be transmitted to another human through the mosquito's bite.

Malaria is a serious and sometimes fatal disease that affects millions of people worldwide, particularly in tropical and subtropical regions. It is characterized by fever, chills, headache, muscle and joint pain, and anemia, among other symptoms. Prompt diagnosis and treatment are essential to prevent severe illness and death from malaria.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

Stem cell research is a branch of medical science that focuses on the study and application of stem cells, which are undifferentiated or unspecialized cells with the ability to differentiate into various specialized cell types in the body. These cells have the potential to regenerate and repair damaged tissues and organs, making them a promising area of research for the development of new treatments for a wide range of diseases and conditions, including cancer, neurodegenerative disorders, diabetes, heart disease, and more.

Stem cell research involves several key areas, such as:

1. Isolation and culture: Scientists isolate stem cells from various sources, such as embryos, umbilical cord blood, or adult tissues, and grow them in a lab to study their properties and behaviors.
2. Differentiation: Researchers induce stem cells to differentiate into specific cell types, such as heart cells, brain cells, or pancreatic cells, by exposing them to various growth factors and other chemical signals.
3. Genetic modification: Scientists may modify the genes of stem cells to enhance their therapeutic potential or to study the effects of genetic mutations on cell behavior and development.
4. Transplantation: In some cases, researchers transplant stem cells into animal models or human patients to investigate their ability to repair damaged tissues and organs.
5. Ethical considerations: Stem cell research raises several ethical concerns related to the use of embryonic stem cells, which are derived from human embryos. These concerns have led to ongoing debates about the limits and regulations surrounding this area of research.

Overall, stem cell research holds great promise for the development of new medical treatments and therapies, but it also requires careful consideration of ethical issues and rigorous scientific investigation to ensure its safety and effectiveness.

Biomarkers, in the context of pharmacology, refer to biological markers that are used to indicate the effects or impacts of a drug or pharmaceutical treatment on a biological system. These markers can be any measurable biological indicator, such as a molecule, gene expression pattern, cellular response, or physiological change, that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.

Pharmacological biomarkers can be used for various purposes, including:

1. Predicting drug response: Biomarkers can help identify patients who are likely to respond to a particular treatment, allowing for more personalized and targeted therapy.
2. Monitoring drug efficacy: Changes in biomarker levels can indicate whether a drug is having the desired effect on a biological system, helping clinicians assess treatment effectiveness.
3. Assessing safety and toxicity: Biomarkers can help detect potential adverse effects or toxicities of a drug, allowing for early intervention and risk mitigation.
4. Supporting drug development: Pharmacological biomarkers can aid in the design and implementation of clinical trials by providing objective measures of drug activity and safety, facilitating go/no-go decisions during the drug development process.
5. Understanding drug mechanisms: Biomarkers can offer insights into the molecular and cellular mechanisms of drug action, helping researchers optimize drug design and identify new therapeutic targets.

Examples of pharmacological biomarkers include changes in gene expression profiles, protein levels, or metabolite concentrations following drug administration. These markers can be measured in various biological samples, such as blood, urine, cerebrospinal fluid, or tissue biopsies, depending on the context and research question.

I'm sorry for any confusion, but "knowledge bases" is a general term that refers to structured collections of knowledge in a specific field or area, and it is not a medical term with a defined meaning in the medical field. Knowledge bases can be found in many fields, including medicine, and they typically take the form of databases or repositories of information that are used to store, organize, and retrieve knowledge. In the medical field, knowledge bases might include information about diseases, treatments, medications, and other medical topics. They can be used by healthcare professionals, researchers, and patients to access accurate and reliable information.

A pharmaceutical society is a professional organization that represents and serves the interests of pharmacists and the pharmaceutical industry in a given society or country. The primary objective of these societies is to promote the advancement of the profession of pharmacy, including education, research, and practice. They also work to ensure the safe and effective use of medications, advocate for evidence-based policies and practices, and provide resources and support to their members.

Pharmaceutical societies may engage in various activities, such as:

1. Developing guidelines and standards for pharmacy education and practice.
2. Providing continuing education programs for pharmacists.
3. Conducting research and disseminating knowledge related to pharmacy and medication use.
4. Advocating for policies that promote the safe and effective use of medications.
5. Collaborating with other healthcare professionals, regulatory bodies, and industry partners to improve patient outcomes.
6. Providing resources and support to members, including career development opportunities and networking events.

Examples of pharmaceutical societies include the American Pharmacists Association (APhA), the Royal Pharmaceutical Society (RPS) in the UK, and the International Pharmaceutical Federation (FIP).

Peptidomimetics are synthetic or naturally occurring molecules that mimic the structure and/or function of a peptide, but have improved pharmacological properties. They are designed to interact with the target protein or receptor in a similar way as the native peptide, while offering advantages such as increased stability, bioavailability, and specificity. Peptidomimetics can be used as drugs or research tools to study biological processes and develop new therapeutic strategies.

The term "peptidomimetic" is derived from two words: "peptide," which refers to a compound consisting of amino acid residues linked by peptide bonds, and "mimetic," meaning something that imitates or reproduces the function or form of an entity. Peptidomimetics can be designed to mimic various aspects of peptides, including their overall shape, charge distribution, hydrogen bonding patterns, and side-chain interactions with target proteins or receptors.

Peptidomimetics are often used in drug discovery and development as they offer several advantages over traditional peptide-based drugs. For example, peptidomimetics can be more resistant to degradation by enzymes, allowing them to have longer half-lives and improved bioavailability. They can also exhibit increased specificity for their targets, reducing the risk of off-target effects and side-effects.

There are various approaches to designing peptidomimetics, including:

1. Modification of native peptides: This involves introducing chemical modifications into natural peptides to enhance their stability, bioavailability, or specificity. Examples include the use of non-natural amino acids, cyclization, or incorporation of uncharged or D-amino acids.
2. De novo design: In this approach, researchers create entirely new molecules that mimic the key features of a peptide-protein interaction. This often involves using computational methods and structure-based design to identify promising scaffolds and optimize their properties.
3. Pharmacophore mapping: This method involves identifying the essential structural elements (pharmacophores) required for a peptide-protein interaction and then designing molecules that recapitulate these features.
4. Combinatorial libraries: Researchers can generate large collections of related compounds using techniques such as solid-phase synthesis or molecular evolution. These libraries can be screened to identify promising leads with desired properties.

Examples of peptidomimetic drugs include the HIV protease inhibitor saquinavir, the hepatitis C protease inhibitor telaprevir, and the integrin antagonist efalizumab. These and other peptidomimetics have demonstrated the potential of this approach to generate effective therapeutic agents with improved pharmacological properties compared to traditional peptide-based drugs.

Tandem mass spectrometry (MS/MS) is a technique used to identify and quantify specific molecules, such as proteins or metabolites, within complex mixtures. This method uses two or more sequential mass analyzers to first separate ions based on their mass-to-charge ratio and then further fragment the selected ions into smaller pieces for additional analysis. The fragmentation patterns generated in MS/MS experiments can be used to determine the structure and identity of the original molecule, making it a powerful tool in various fields such as proteomics, metabolomics, and forensic science.

'Mycobacterium tuberculosis' is a species of slow-growing, aerobic, gram-positive bacteria that demonstrates acid-fastness. It is the primary causative agent of tuberculosis (TB) in humans. This bacterium has a complex cell wall rich in lipids, including mycolic acids, which provides a hydrophobic barrier and makes it resistant to many conventional antibiotics. The ability of M. tuberculosis to survive within host macrophages and resist the immune response contributes to its pathogenicity and the difficulty in treating TB infections.

M. tuberculosis is typically transmitted through inhalation of infectious droplets containing the bacteria, which primarily targets the lungs but can spread to other parts of the body (extrapulmonary TB). The infection may result in a spectrum of clinical manifestations, ranging from latent TB infection (LTBI) to active disease. LTBI represents a dormant state where individuals are infected with M. tuberculosis but do not show symptoms and cannot transmit the bacteria. However, they remain at risk of developing active TB throughout their lifetime, especially if their immune system becomes compromised.

Effective prevention and control strategies for TB rely on early detection, treatment, and public health interventions to limit transmission. The current first-line treatments for drug-susceptible TB include a combination of isoniazid, rifampin, ethambutol, and pyrazinamide for at least six months. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis present significant challenges in TB control and require more complex treatment regimens.

I'm sorry for any confusion, but "Virus Physiological Processes" is not a widely recognized or established medical term or concept. Physiological processes typically refer to the functions and activities that occur within living organisms, like cells or organ systems. Viruses, however, are not considered alive in the traditional sense; they are obligate parasites that require host cells to replicate. Therefore, it's not typical to speak of physiological processes in relation to viruses.

If you have a more specific context or term related to virology or virus biology, I would be happy to help interpret or define that!

Central nervous system (CNS) diseases refer to medical conditions that primarily affect the brain and spinal cord. The CNS is responsible for controlling various functions in the body, including movement, sensation, cognition, and behavior. Therefore, diseases of the CNS can have significant impacts on a person's quality of life and overall health.

There are many different types of CNS diseases, including:

1. Infectious diseases: These are caused by viruses, bacteria, fungi, or parasites that infect the brain or spinal cord. Examples include meningitis, encephalitis, and polio.
2. Neurodegenerative diseases: These are characterized by progressive loss of nerve cells in the brain or spinal cord. Examples include Alzheimer's disease, Parkinson's disease, and Huntington's disease.
3. Structural diseases: These involve damage to the physical structure of the brain or spinal cord, such as from trauma, tumors, or stroke.
4. Functional diseases: These affect the function of the nervous system without obvious structural damage, such as multiple sclerosis and epilepsy.
5. Genetic disorders: Some CNS diseases are caused by genetic mutations, such as spinal muscular atrophy and Friedreich's ataxia.

Symptoms of CNS diseases can vary widely depending on the specific condition and the area of the brain or spinal cord that is affected. They may include muscle weakness, paralysis, seizures, loss of sensation, difficulty with coordination and balance, confusion, memory loss, changes in behavior or mood, and pain. Treatment for CNS diseases depends on the specific condition and may involve medications, surgery, rehabilitation therapy, or a combination of these approaches.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

Image cytometry is a technique that combines imaging and cytometry to analyze individual cells within a population. It involves capturing digital images of cells, followed by the extraction and analysis of quantitative data from those images. This can include measurements of cell size, shape, and fluorescence intensity, which can be used to identify and characterize specific cell types or functional states. Image cytometry has applications in basic research, diagnostics, and drug development, particularly in the fields of oncology and immunology.

The term "image cytometry" is often used interchangeably with "cellular imaging," although some sources distinguish between the two based on the level of automation and quantitative analysis involved. In general, image cytometry involves more automated and standardized methods for acquiring and analyzing large numbers of cell images, while cellular imaging may involve more manual or qualitative assessment of individual cells.

Biosensing techniques refer to the methods and technologies used to detect and measure biological molecules or processes, typically through the use of a physical device or sensor. These techniques often involve the conversion of a biological response into an electrical signal that can be measured and analyzed. Examples of biosensing techniques include electrochemical biosensors, optical biosensors, and piezoelectric biosensors.

Electrochemical biosensors measure the electrical current or potential generated by a biochemical reaction at an electrode surface. This type of biosensor typically consists of a biological recognition element, such as an enzyme or antibody, that is immobilized on the electrode surface and interacts with the target analyte to produce an electrical signal.

Optical biosensors measure changes in light intensity or wavelength that occur when a biochemical reaction takes place. This type of biosensor can be based on various optical principles, such as absorbance, fluorescence, or surface plasmon resonance (SPR).

Piezoelectric biosensors measure changes in mass or frequency that occur when a biomolecule binds to the surface of a piezoelectric crystal. This type of biosensor is based on the principle that piezoelectric materials generate an electrical charge when subjected to mechanical stress, and this charge can be used to detect changes in mass or frequency that are proportional to the amount of biomolecule bound to the surface.

Biosensing techniques have a wide range of applications in fields such as medicine, environmental monitoring, food safety, and biodefense. They can be used to detect and measure a variety of biological molecules, including proteins, nucleic acids, hormones, and small molecules, as well as to monitor biological processes such as cell growth or metabolism.

Liquid chromatography (LC) is a type of chromatography technique used to separate, identify, and quantify the components in a mixture. In this method, the sample mixture is dissolved in a liquid solvent (the mobile phase) and then passed through a stationary phase, which can be a solid or a liquid that is held in place by a solid support.

The components of the mixture interact differently with the stationary phase and the mobile phase, causing them to separate as they move through the system. The separated components are then detected and measured using various detection techniques, such as ultraviolet (UV) absorbance or mass spectrometry.

Liquid chromatography is widely used in many areas of science and medicine, including drug development, environmental analysis, food safety testing, and clinical diagnostics. It can be used to separate and analyze a wide range of compounds, from small molecules like drugs and metabolites to large biomolecules like proteins and nucleic acids.

Bioengineering, also known as biological engineering, is defined as the application of principles and methods from engineering to study, modify, and control biological systems, often with the goal of creating new technologies or improving existing ones. This field combines knowledge and expertise from various disciplines, including biology, chemistry, physics, mathematics, and computer science, to solve complex problems related to health, medicine, agriculture, and the environment.

Bioengineers may work on a wide range of projects, such as developing new medical devices or therapies, designing synthetic biological systems for industrial applications, creating biosensors for environmental monitoring, or engineering tissues and organs for transplantation. They use a variety of tools and techniques, including genetic engineering, biomaterials, computational modeling, and nanotechnology, to design and build novel biological systems that can perform specific functions or solve practical problems.

Bioengineering has the potential to transform many areas of science and technology, with significant implications for human health, sustainability, and innovation. As such, it is an exciting and rapidly growing field that offers many opportunities for interdisciplinary collaboration and discovery.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

A zebrafish is a freshwater fish species belonging to the family Cyprinidae and the genus Danio. Its name is derived from its distinctive striped pattern that resembles a zebra's. Zebrafish are often used as model organisms in scientific research, particularly in developmental biology, genetics, and toxicology studies. They have a high fecundity rate, transparent embryos, and a rapid development process, making them an ideal choice for researchers. However, it is important to note that providing a medical definition for zebrafish may not be entirely accurate or relevant since they are primarily used in biological research rather than clinical medicine.

Cell culture is a technique used in scientific research to grow and maintain cells from plants, animals, or humans in a controlled environment outside of their original organism. This environment typically consists of a sterile container called a cell culture flask or plate, and a nutrient-rich liquid medium that provides the necessary components for the cells' growth and survival, such as amino acids, vitamins, minerals, and hormones.

There are several different types of cell culture techniques used in research, including:

1. Adherent cell culture: In this technique, cells are grown on a flat surface, such as the bottom of a tissue culture dish or flask. The cells attach to the surface and spread out, forming a monolayer that can be observed and manipulated under a microscope.
2. Suspension cell culture: In suspension culture, cells are grown in liquid medium without any attachment to a solid surface. These cells remain suspended in the medium and can be agitated or mixed to ensure even distribution of nutrients.
3. Organoid culture: Organoids are three-dimensional structures that resemble miniature organs and are grown from stem cells or other progenitor cells. They can be used to study organ development, disease processes, and drug responses.
4. Co-culture: In co-culture, two or more different types of cells are grown together in the same culture dish or flask. This technique is used to study cell-cell interactions and communication.
5. Conditioned medium culture: In this technique, cells are grown in a medium that has been conditioned by previous cultures of other cells. The conditioned medium contains factors secreted by the previous cells that can influence the growth and behavior of the new cells.

Cell culture techniques are widely used in biomedical research to study cellular processes, develop drugs, test toxicity, and investigate disease mechanisms. However, it is important to note that cell cultures may not always accurately represent the behavior of cells in a living organism, and results from cell culture experiments should be validated using other methods.

Biomimetics, also known as biomimicry, is the process of mimicking or taking inspiration from nature and biological systems to design materials, structures, or processes that solve human problems. It involves studying the models, systems, and elements of nature and then applying the knowledge gained to create new technologies and solutions.

In a medical context, biomimetics can be used to develop new therapies, medical devices, and diagnostic tools. For example, researchers might look to the structure of a spider's web to design a better surgical mesh or take inspiration from the way a gecko sticks to surfaces to create a new type of adhesive bandage.

Biomimetics is an interdisciplinary field that draws on knowledge from biology, chemistry, physics, engineering, and materials science. It has the potential to lead to innovative solutions in healthcare, sustainability, energy, transportation, and other areas.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Protein interaction maps are graphical representations that illustrate the physical interactions and functional relationships between different proteins in a cell or organism. These maps can be generated through various experimental techniques such as yeast two-hybrid screens, affinity purification mass spectrometry (AP-MS), and co-immunoprecipitation (Co-IP) followed by mass spectrometry. The resulting data is then visualized as a network where nodes represent proteins and edges represent the interactions between them. Protein interaction maps can provide valuable insights into cellular processes, signal transduction pathways, and disease mechanisms, and are widely used in systems biology and network medicine research.

"History, 19th Century" is not a medical term or concept. It refers to the historical events, developments, and figures related to the 1800s in various fields, including politics, culture, science, and technology. However, if you are looking for medical advancements during the 19th century, here's a brief overview:

The 19th century was a period of significant progress in medicine, with numerous discoveries and innovations that shaped modern medical practices. Some notable developments include:

1. Edward Jenner's smallpox vaccine (1796): Although not strictly within the 19th century, Jenner's discovery laid the foundation for vaccination as a preventive measure against infectious diseases.
2. Germ theory of disease: The work of Louis Pasteur, Robert Koch, and others established that many diseases were caused by microorganisms, leading to the development of antiseptic practices and vaccines.
3. Anesthesia: In 1842, Crawford Long first used ether as an anesthetic during surgery, followed by the introduction of chloroform in 1847 by James Simpson.
4. Antisepsis and asepsis: Joseph Lister introduced antiseptic practices in surgery, significantly reducing postoperative infections. Later, the concept of asepsis (sterilization) was developed to prevent contamination during surgical procedures.
5. Microbiology: The development of techniques for culturing and staining bacteria allowed for better understanding and identification of pathogens.
6. Physiology: Claude Bernard's work on the regulation of internal body functions, or homeostasis, contributed significantly to our understanding of human physiology.
7. Neurology: Jean-Martin Charcot made significant contributions to the study of neurological disorders, including multiple sclerosis and Parkinson's disease.
8. Psychiatry: Sigmund Freud developed psychoanalysis, a new approach to understanding mental illnesses.
9. Public health: The 19th century saw the establishment of public health organizations and initiatives aimed at improving sanitation, water quality, and vaccination programs.
10. Medical education reforms: The Flexner Report in 1910 led to significant improvements in medical education standards and practices.

Pathology is a significant branch of medical science that deals with the study of the nature of diseases, their causes, processes, development, and consequences. It involves the examination of tissues, organs, bodily fluids, and autopsies to diagnose disease and determine the course of treatment. Pathology can be divided into various sub-specialties such as anatomical pathology, clinical pathology, molecular pathology, and forensic pathology. Ultimately, pathology aims to understand the mechanisms of diseases and improve patient care through accurate diagnosis and effective treatment plans.

Microfluidic analytical techniques refer to the use of microfluidics, which is the manipulation of fluids in channels with dimensions of tens to hundreds of micrometers, for analytical measurements and applications. These techniques involve the integration of various functional components such as pumps, valves, mixers, and detectors onto a single chip or platform to perform chemical, biochemical, or biological analyses.

Microfluidic analytical techniques offer several advantages over traditional analytical methods, including reduced sample and reagent consumption, faster analysis times, increased sensitivity and throughput, and improved automation and portability. Examples of microfluidic analytical techniques include lab-on-a-chip devices, digital microfluidics, bead-based assays, and micro total analysis systems (μTAS). These techniques have found applications in various fields such as diagnostics, drug discovery, environmental monitoring, and food safety.

Neurosciences is a multidisciplinary field of study that focuses on the structure, function, development, and disorders of the nervous system, which includes the brain, spinal cord, and peripheral nerves. It incorporates various scientific disciplines such as biology, chemistry, physics, mathematics, engineering, and computer science to understand the complexities of the nervous system at different levels, from molecular and cellular mechanisms to systems and behavior.

The field encompasses both basic research and clinical applications, with the aim of advancing our knowledge of the nervous system and developing effective treatments for neurological and psychiatric disorders. Specialties within neurosciences include neuroanatomy, neurophysiology, neurochemistry, neuropharmacology, neurobiology, neuroimmunology, behavioral neuroscience, cognitive neuroscience, clinical neuroscience, and computational neuroscience, among others.

Molecular probes, also known as bioprobes or molecular tracers, are molecules that are used to detect and visualize specific biological targets or processes within cells, tissues, or organisms. These probes can be labeled with a variety of detection methods such as fluorescence, radioactivity, or enzymatic activity. They can bind to specific biomolecules such as DNA, RNA, proteins, or lipids and are used in various fields including molecular biology, cell biology, diagnostic medicine, and medical research.

For example, a fluorescent molecular probe may be designed to bind specifically to a certain protein in a living cell. When the probe binds to its target, it emits a detectable signal that can be observed under a microscope, allowing researchers to track the location and behavior of the protein within the cell.

Molecular probes are valuable tools for understanding biological systems at the molecular level, enabling researchers to study complex processes such as gene expression, signal transduction, and metabolism in real-time. They can also be used in clinical settings for diagnostic purposes, such as detecting specific biomarkers of disease or monitoring the effectiveness of therapies.

'Plasmodium falciparum' is a specific species of protozoan parasite that causes malaria in humans. It is transmitted through the bites of infected female Anopheles mosquitoes and has a complex life cycle involving both human and mosquito hosts.

In the human host, the parasites infect red blood cells, where they multiply and cause damage, leading to symptoms such as fever, chills, anemia, and in severe cases, organ failure and death. 'Plasmodium falciparum' malaria is often more severe and life-threatening than other forms of malaria caused by different Plasmodium species. It is a major public health concern, particularly in tropical and subtropical regions of the world where access to prevention, diagnosis, and treatment remains limited.

A "gene library" is not a recognized term in medical genetics or molecular biology. However, the closest concept that might be referred to by this term is a "genomic library," which is a collection of DNA clones that represent the entire genetic material of an organism. These libraries are used for various research purposes, such as identifying and studying specific genes or gene functions.

Protein array analysis is a high-throughput technology used to detect and measure the presence and activity of specific proteins in biological samples. This technique utilizes arrays or chips containing various capture agents, such as antibodies or aptamers, that are designed to bind to specific target proteins. The sample is then added to the array, allowing the target proteins to bind to their corresponding capture agents. After washing away unbound materials, a detection system is used to identify and quantify the bound proteins. This method can be used for various applications, including protein-protein interaction studies, biomarker discovery, and drug development. The results of protein array analysis provide valuable information about the expression levels, post-translational modifications, and functional states of proteins in complex biological systems.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

Zheng W, Thorne N, McKew JC (November 2013). "Phenotypic screens as a renewed approach for drug discovery". Drug Discovery ... ISBN 978-3-527-31291-7. Erlanson DA (June 2011). "Introduction to fragment-based drug discovery". Fragment-Based Drug Discovery ... Antitarget Bioinformatics Biomedical informatics Cheminformatics Drug discovery hit to lead Drug metabolism Fragment-based drug ... but which have been or are the subject of drug discovery efforts. The majority of targets selected for drug discovery efforts ...
... : Disease Models, Drug Discovery Today: Therapeutic Strategies, and Drug Discovery Today: Technologies. The ... In 2004, the Drug Discovery Today journal series expanded with the launch of four online-only review journals: Drug Discovery ... Drug Discovery Today is a monthly peer-reviewed scientific journal that is published by Elsevier. It was established in 1996 ... However, as of 2022, these titles have been discontinued and incorporated back into Drug Discovery Today. According to the ...
"Collaborative Drug Discovery Receives Grant to Support the Development of a Database to Accelerate Discovery of New Therapies ... Collaborative Drug Discovery (CDD) is a software company founded in 2004 as a spin-out of Eli Lilly by Barry Bunin, PhD. CDD ... 1. CDD Vault is a research informatics web platform by Collaborative Drug Discovery. It contains several modules for ... Collaborative Drug Discovery Inc. (CDD)". www.collaborativedrug.com. September 3, 2022.[self-published source] "CDD Vault ...
... is a monthly peer-reviewed review journal published by Nature Portfolio. It was established in ... Guide : Information : Nature Reviews Drug Discovery. Nature.com. Retrieved on 2011-06-29. Official website v t e (Articles with ... Nature Reviews Drug Discovery". CASSI. Chemical Abstracts Service. Retrieved 2022-08-09. "About the Editors". nature.com. ... 2002 and covers drug discovery and development. The editor-in-chief is Peter Kirkpatrick. According to the Journal Citation ...
Project Director, Open Source Drug Discovery. ""OPEN SOURCE DRUG DISCOVERY" AN OPEN COLLABORATIVE DRUG DISCOVERY MODEL FOR ... "OPEN SOURCE DRUG DISCOVERY: A GLOBAL COLLABORATIVE DRUG DISCOVERY MODEL FOR TUBERCULOSIS" (PDF). Scienceandculture-isna.org\ ... "About Us - Open Source Drug Discovery". Osdd.net. Retrieved 2015-04-30. "Open source drug discovery - timesofindia- ... The process of drug discovery is divided into ten work packages, namely WP1 - Drug target identification. This promotes ...
"20th International Conference on Alzheimer's Drug Discovery , Alzheimer's Drug Discovery Foundation , Alzheimer's Drug ... "Staff - Alzheimer's Drug Discovery Foundation - Alzheimer's Drug Discovery Foundation". www.alzdiscovery.org. "About ADDF". ... "About Us - Alzheimer's Drug Discovery Foundation". www.alzdiscovery.org. "Research Portfolio - Alzheimer's Drug Discovery ... "Events & Conferences - Alzheimer's Drug Discovery Foundation - Alzheimer's Drug Discovery Foundation". www.alzdiscovery.org. " ...
... (ARDD) is a non-profit conference which is organized by University of Copenhagen and Columbia ... "Matt Kaeberlein To Present At The 8th Aging Research & Drug Discovery Meeting 2021 - SCIENMAG: Latest Science And Health News ... "Notes from the Aging Research and Drug Discovery 2021 Conference". Fight Aging!. 2021-09-14. Retrieved 2022-01-24. "Longevity ... team, CEHA administration (2021-08-31). "The 8th Annual Aging Research and Drug Discovery Meeting". healthyaging.ku.dk. ...
... is a monthly peer-reviewed medical journal publishing review articles on novel technologies ... involved in drug discovery. The editor-in-chief is David Janero from Northeastern University. The journal is abstracted and ...
Computational Resources for Drug Discovery (CRDD) is one of the important silico modules of Open Source for Drug Discovery ( ... DrugPedia: A wiki for Drug Discovery is a Wiki created for collecting and compiling information related to computer-aided drug ... It is developed under the umbrella of the Open Source Drug Discovery (OSDD) project and covers a wide range of subjects around ... It is developed under the umbrella of the Open Source Drug Discovery (OSDD) project. The CRDD Forum was launched to discuss the ...
... (CO-ADD). Retrieved 25 June 2015. Community for Open Antimicrobial Drug ... confronting the challenges of antibacterial discovery". Nature Reviews Drug Discovery. 6 (1): 29-40. doi:10.1038/nrd2201. PMID ... 6. Nature Reviews Drug Discovery.(subscription required) Sally C Davies; Tom Fowlera; John Watson; David M Livermore; David ... The Community for Open Antimicrobial Drug Discovery (CO-ADD) is a not-for-profit initiative created in 2015 reaching out to ...
Before the discovery of SSRI drugs, the treatments for mood disorders were relatively limited. Now, however, there are dozens ... "The Discovery of The SSRIs: A Milestone In Neuropsychopharmacology and Rational Drug Design" (PDF). landesbioscience.com. Laned ... The strategy behind rational drug design is to develop a new drug that is capable of affecting a specific biological target, or ... Analogue-based drug discovery II. John Wiley & Sons. pp. 269-270.{{cite book}}: CS1 maint: multiple names: authors list (link) ...
Synthesis of drugs has led to novel drugs, including those that have not existed before in nature, particularly drugs based on ... this allowed a switch in drug development and research from the traditional way of drug discovery that was isolating molecules ... The following is a table of drugs organized by their year of discovery. Naturally occurring chemicals in plants, including ... Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to ...
Drug Discovery. 2 (2): 132-9. doi:10.1038/nrd1010. PMID 12563304. S2CID 205474918. Senn-Bilfinger, Jörg; Sturm, Ernst (2006). " ... Silverman, Richard B. (2004). "Receptors". The organic chemistry of drug design and drug action (2nd ed.). Academic Press. p. ... Analogue-based Drug Discovery. pp. 81-113. doi:10.1002/3527608001.ch5. ISBN 978-3-527-60800-3. Shin, Jai Moo; Munson, Keith; ... Analogue-based Drug Discovery. pp. 115-36. doi:10.1002/3527608001.ch6. ISBN 978-3-527-60800-3. Lindberg, Per; Carlsson, Enar ( ...
Drug Discovery. 1 (9): 674-682. doi:10.1038/nrd893. PMID 12209148. S2CID 11807377. Ravipati, G.; McClung, J. A.; Aronow, W. S ... Campbell, S.F. (2000). "Science, art and drug discovery: a personal perspective". Clinical Science. 99 (4): 255-260. doi: ... Kirkpatrick, P; Neumayer, K (2004). "Tadalafil and vardenafil". Natural Ref Drug Discovery. 3 (4): 295-296. doi:10.1038/nrd1362 ... Nature Reviews Drug Discovery 5, 689-702. Sung, B. J.; et al. (2003). "Structure of the catalytic domain of human ...
Rami H, Gunthorpe M (2004). "The therapeutic potential of TRPV1 (VR1) antagonists: clinical answers await". Drug Discovery ... Drug Discovery Today. 14 (1-2): 56-67. doi:10.1016/j.drudis.2008.11.005. PMID 19063991. Kym PR, Kort ME, Hutchins CW (August ... The discovery that the pungency of capsaicin is mediated through TRPV1 set the stage for further research of the function of ... Many discoveries are yet to be made, both in terms of the range of potential therapeutic applications in addition to analgesia ...
Birari RB, Bhutani KK (October 2007). "Pancreatic lipase inhibitors from natural sources: unexplored potential". Drug Discovery ... Cetilistat, a new lipase inhibitor, is an experimental drug for obesity. In October 2016 the drug was still in clinical trials ... ISBN 978-1-893997-12-7. (Infobox drug articles with non-default infobox title, Infobox drug articles with contradicting ... Recent Patents on Anti-Cancer Drug Discovery. 7 (2): 185-97. doi:10.2174/157489212799972891. PMID 22338595. Vaclavik V, ...
Nature Reviews Drug Discovery. 2 (7): 517-526. doi:10.1038/nrd1112. PMID 12815379. S2CID 3344720. Endo, Akira (November 1, 1992 ... The discovery of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase inhibitors, called statins, was a breakthrough in the ... The statins that have the ability to be metabolized by multiple CYP isoenzymes may therefore avoid drug accumulation when one ... Christians, Uwe; Jacobsen, Wolfgang; Floren, Leslie C. (October 1998). "Metabolism and Drug Interactions of 3-Hydroxy-3- ...
Nahleh, Z (2008). "Functional and structural analysis of androgen receptors for anti-cancer drug discovery" (PDF). Cancer ... "Drug safety is a barrier to the discovery and development of new androgen receptor antagonists". The Prostate. 71 (5): 480-8. ... Drug Discovery Today. 12 (5-6): 241-8. doi:10.1016/j.drudis.2007.01.003. PMC 2072879. PMID 17331889. Battmann T, Branche C, ... making it a difficult target for drug discovery. In 2008 there were reports of a chlorinated peptide, sintokamide A, isolated ...
Drugs Under Clinical Investigation". Discovery Medicine. 13 (73): 445-50. PMID 22742650. (CS1 maint: multiple names: authors ... For a modern society, convenient and fast drug administration is the key to a good drug compliance. In 2008 the first direct Xa ... Nature Reviews Drug Discovery. 10 (1): 61-75. doi:10.1038/nrd3185. PMID 21164526. S2CID 19217582. Bauer, K.A. (2013). "Pros and ... Unlike older drugs, e.g. heparin, DX-9065a is selective for FXa compared to thrombin even though FXa and thrombin are similar ...
Many drugs have been discovered to treat the disease but mutations in the virus and resistance to the drugs make development ... The second INSTI drug, elvitegravir, was identified by Japan Tobacco and clinical trials began in 2005. In 2011 the drug was ... In this process HIV-1 integrase is essential and therefore a very promising target for anti-AIDS drug design. Selective drug ... Nature Reviews Drug Discovery. 4 (3): 236-248. doi:10.1038/nrd1660. PMID 15729361. S2CID 11505680. McColl, DJ; Chen, X (Jan ...
Three drugs have been accepted by the Food and Drug Administration (FDA) in the United States; dapagliflozin, canagliflozin and ... Nature Reviews Drug Discovery. 9 (7): 551-559. doi:10.1038/nrd3180. PMID 20508640. S2CID 21788174. McGill, Janet B. (12 April ... The discovery of T-1095 led to an investigation[when?] of how to enhance potency, selectivity and oral bioavailability by ... The discovery of insulin eventually led to a diabetes management focus on the pancreas. Traditional foci of therapeutic ...
Drug Discovery. 6 (12): 975-990. doi:10.1038/nrd2422. PMC 7097588. PMID 18049472. Whitehead KA, Dahlman JE, Langer RS, Anderson ... These PEGylated drugs are injected once weekly, rather than administering two or three times per week, as is necessary for ... Both hepatitis B and hepatitis C can be treated with IFN-α, often in combination with other antiviral drugs. Some of those ... For example, in January 2001, the Food and Drug Administration (FDA) approved the use of PEGylated interferon-alpha in the USA ...
Drug Discovery. 5 (2): 160-70. doi:10.1038/nrd1958. PMID 16424917. S2CID 21379258. Nakamura T, Lipton SA (February 2010). " ... Drugs missing an ATC code, Drugs with no legal status, Articles containing unverified chemical infoboxes, Adamantanes, Amines, ... Antidementia agents, NMDA receptor antagonists, Nitrate esters, All stub articles, Nervous system drug stubs). ...
Drug Discovery. 4 (2): 107-20. doi:10.1038/nrd1631. PMID 15665857. S2CID 32781560. Cox, Joanna H., Stefano Seri, and Andrea E. ... Drug Discovery. 4 (2): 107-20. doi:10.1038/nrd1631. PMID 15665857. S2CID 32781560. Esbenshade TA, Fox GB, Cowart MD (Apr 2006 ... Leurs R, Bakker RA, Timmerman H, de Esch IJ (Feb 2005). "The histamine H3 receptor: from gene cloning to H3 receptor drugs". ... Leurs R, Bakker RA, Timmerman H, de Esch IJ (Feb 2005). "The histamine H3 receptor: from gene cloning to H3 receptor drugs". ...
Drug Discovery. 4 (2): 131-44. doi:10.1038/nrd1630. PMID 15665858. S2CID 15037387. Skeberdis VA, Lan J, Opitz T, Zheng X, ... a potential target for drug discovery?". Annals of the New York Academy of Sciences. 1053 (1): 55-73. Bibcode:2005NYASA1053... ... The same drug has been shown to interfere in the hypothalamic-pituitary-adrenal axis, with chronic oral administration of this ... The drug LY354740 (also known as Eglumegad, an mGlu2/3 agonist) was shown to attenuate physiologic and cognitive abnormalities ...
Drug Discovery. 17 (4): 243-260. doi:10.1038/nrd.2017.229. PMC 5936084. PMID 29302067. Cahill TJ, Thomsen AR, Tarrasch JT, ...
Drug Discovery. 4 (7): 581-93. doi:10.1038/nrd1775. PMID 16052241. S2CID 20972049. Nayerossadat N, Maedeh T, Ali PA (6 July ... The 10th US-Japan Symposium on Drug Delivery Systems Nature: Gene Delivery Genetic Science Learning Center: Gene Delivery ...
Drug Discovery. 10 (9): 685-97. doi:10.1038/nrd3502. PMC 3375401. PMID 21799515. Lambert JJ, Belelli D, Peden DR, Vardy AW, ... Little is known about where different complexes are located in the brain, complicating drug discovery. For example, the binding ... CS1: long volume value, GABAA receptor positive allosteric modulators, Drug discovery). ... and the barbiturate drugs. The GABAA receptors have historically been a target of drug treatment research. The earliest ...
Overington JP, Al-Lazikani B, Hopkins AL (December 2006). "How many drug targets are there?". Nature Reviews. Drug Discovery. 5 ... Drug Discovery. 3 (11): 950-64. doi:10.1038/nrd1551. PMID 15520817. S2CID 205475111. Busch BB, Stevens WC, Martin R, Ordentlich ... Food and Drug Administration (FDA) approved drugs target nuclear receptors. A number of nuclear receptors, referred to as ... A number of drugs that work through nuclear receptors display an agonist response in some tissues and an antagonistic response ...
Drug Discovery. 5 (11): 932-40. doi:10.1038/nrd2159. PMID 17080029. S2CID 413230. Fineberg AM, Ellman LM (May 2013). " ... Famous examples include drug trials in Africa without informed consent, the Guatemala syphilis experiments, the Tuskegee ... U.S. Food and Drug Administration. April 5, 2019. Wakefield AJ, Murch SH, Anthony A, Linnell J, Casson DM, Malik M, Berelowitz ... "Thimerosal in vaccines". Center for Biologics Evaluation and Research, U.S. Food and Drug Administration. June 3, 2008. ...
Zheng W, Thorne N, McKew JC (November 2013). "Phenotypic screens as a renewed approach for drug discovery". Drug Discovery ... ISBN 978-3-527-31291-7. Erlanson DA (June 2011). "Introduction to fragment-based drug discovery". Fragment-Based Drug Discovery ... Antitarget Bioinformatics Biomedical informatics Cheminformatics Drug discovery hit to lead Drug metabolism Fragment-based drug ... but which have been or are the subject of drug discovery efforts. The majority of targets selected for drug discovery efforts ...
Drag Week With the help of some racing legends, Big Chief resurrects his first race car, a 72 Pontiac LeMans he calls The Crow ... discovery and its affiliates may use your email address to provide updates, ads, and offers. ...
... but it is only recently that opportunities to specifically target these differences to develop novel anticancer drugs are being ... Nature Reviews Drug Discovery (Nat Rev Drug Discov) ISSN 1474-1784 (online) ISSN 1474-1776 (print) ... Nature Reviews Drug Discovery volume 9, pages 503-504 (2010)Cite this article ... but it is only recently that opportunities to specifically target these differences to develop novel anticancer drugs are being ...
... battle the ruthless Mexican Drug Cartels to prevent drugs and guns from being smuggled across the border. High speed chases, ... Elite Texas law enforcement units, including the Texas Rangers, battle the ruthless Mexican Drug Cartels to prevent drugs and ... discovery and its affiliates may use your email address to provide updates, ads, and offers. ...
... 2 - 4 July 2014, Rouen, France ... covering the main stages of modern drug discovery. ...
Bactevos drug discovery platform integrates microfluidics, nanotechnology, and AI. It can survey vast chemical spaces quickly ... Alzheimer diseaseAmyotrophic lateral sclerosisDrug discoveryDrug research and developmentEndocrine diseasesMedicine, Diagnosis ... TIME is the Google of drug discovery. "It will radically increase the success rate and speed of medicine discovery by ... TIME is being used to rapidly advance the speed, efficiency, and quality of drug discovery programs internally and with ...
The Department of Drug Discovery is composed of faculty with expertise in molecular & cellular biology, structural biology, ... The Department of Drug Discovery is interdisciplinary and composed of faculty members with expertise in molecular and cellular ... and synthesize chemical probes to modulate such disregulated pathways and to develop these probes into novel anticancer drugs. ... probes through traditional synthetic organic chemistry and medicinal chemistry approaches along with structure-based drug ...
... All About Mass Spectrometry videos including those listed below may also be enjoyed on ... The Role of Mass Spectrometry in Drug Discovery and Development presented by Walter A. Korfmacher (Merck Research Labs) on May ...
International Conference on Drug Discovery (ICDD) 2020 (Archive). li a:link { color: #333333; } li a:visited { color: #646363 ...
A new version of mass spectrometry could speed the process of drug discovery by enabling more accurate screening of thousands ... The discovery of new drugs is a tedious process with many complicated steps, says lead investigator Milan Mrksich. Most ... Pharmaceutical and biotech firms, which spend billions of dollars every year searching for new drugs, keep an eye open for ... technologies to make their drug screening more fruitful. Chemists at the University of Chicago report a new screening method, ...
Corning® ELISA microplates are ideal for biochemical and cell-based assays designed to identify and quantify protein species.
Tags: influenzaantiviralsdrug discoveryflu pandemicM2 proton channelS31Nvirus ... Biophysics in Influenza A Drug Design. Anonym / Wednesday, February 10, 2016. 0 2046 ... and others to collaborate and push scientific discoveries. Check back often for the latest news and updates. ...
Research shows that the IAP-targeting drugs that promote the death of cancer cells also induce the growth and repair of muscle. ... Novel discovery links anti-cancer drugs to muscle repair. Date:. October 16, 2012. Source:. Childrens Hospital of Eastern ... "Novel discovery links anti-cancer drugs to muscle repair." ScienceDaily. www.sciencedaily.com. /. releases. /. 2012. /. 10. /. ... "Novel discovery links anti-cancer drugs to muscle repair." ScienceDaily. ScienceDaily, 16 October 2012. ,www.sciencedaily.com. ...
Use Reaxys for drug discovery to reach preclinical candidates faster. Reaxys helps you make better-informed decisions for hit- ... Solve big challenges in drug discovery with Reaxys. Carve your IP niche. Get deep insights into your competition to ...
In vivo phenotypic drug screening relies on isolating drug candidates by their ability to produce a desired therapeutic ... Engineering Xenopus embryos for phenotypic drug discovery screening Adv Drug Deliv Rev. 2014 Apr:69-70:225-46. doi: 10.1016/j. ... In vivo phenotypic drug screening relies on isolating drug candidates by their ability to produce a desired therapeutic ... of Xenopus embryos as in vivo models to study human inherited diseases will be presented and their utility for drug discovery ...
"Part of the reason why drug discovery is so expensive is because it has high failure rates," says Rohit Singh, PhD 12, a CSAIL ... Large language models may speed drug discovery. An AI technique developed by MIT researchers can screen more than 100,000 ... that could go a long way in lowering the cost of drug discovery." ... From the top hits, they tested 19 drug-protein pairs; the tests ... The researchers tested their model by screening a library of about 4,700 candidate drug molecules for their ability to bind to ...
Dr Scott Webster is a Reader in Drug Discovery for Cardiovascular Science at the College of Medicine and Veterinary Medicine, ... Scott Webster and drug discovery. Dr Scott Webster is a Reader in Drug Discovery for Cardiovascular Science at the College of ... Edinburgh Drug Discovery. To find out more about Scotts research activities, visit the Edinburgh Drug Discovery website. ... I came back to Edinburgh to start a drug discovery team with professors Brian Walker and Jonathan Seckl. This ultimately led to ...
Drug Discovery Technology Conference said they are optimistic that new tools being incorporated early in the drug discovery ... Drug discovery tools questioned. New strategies hold promise, but some worry they will prevent some useful compounds from ... The focus of several scientific panels at the conference, being held here this week, was on drug target validation strategies ... and biomarkers that are enabling scientists to make predictions about the utility of new compounds earlier in the discovery ...
title = {Ribosomal targets for antibiotic drug discovery},. author = {Blanchard, Scott C. and Feldman, Michael Brian and Wang, ... Ribosomal targets for antibiotic drug discovery. United States: N. p., 2016. Web. ... Ribosomal targets for antibiotic drug discovery. United States. ... "Ribosomal targets for antibiotic drug discovery". United States ... Synthetic LDL as targeted drug delivery vehicle Patent Forte, Trudy M [Berkeley, CA]; Nikanjam, Mina [Richmond, CA] ...
A research team from the Virginia Tech Center for Drug Discovery has received a $431,126 two-year grant from the National ... Fralin Life Science Institute Virginia Tech Center for Drug Discovery Malaria malaria drug Compound Drug Resistance ... A research team from the Virginia Tech Center for Drug Discovery has received a $431,126 two-year grant from the National ... The Virginia Tech Center for Drug Discovery was created in 2012 to bring together researchers from various departments and ...
New database could aid large-molecule drug discovery and research ... fragment-based drug discovery and ligand-based drug discovery. ... Currently, there are several in-silico approaches available for the drug discovery process alone, such as structure-based drug ... The process of drug development, beginning from the discovery of a pharmacological lead to its commercial launch, is estimated ... New database could aid large-molecule drug discovery and research. Jun 03, 2020,3 min read. Jeffrey Bouley ...
Foundation-led Drug Discovery. Virtual biotechs target and develop translational research.. Robert E. Pacifici and David P. ... Once a target has been selected, we stress early proof-of-concept experiments since, unlike other drug discovery units, our ... CHDI Foundation, a virtual biotech exclusively focused on the discovery and development of drugs for Huntingtons disease (HD) ... and intellectual involvement has triggered collaborative translational drug discovery efforts. ...
The combination of these new discoveries and the underlying mechanism of IMO-2125 merited further consideration, which is what ... but is worth noting that while the approval of drugs such as CTLA4 and PD1 have been incredible advances in cancer care, the ...
A paradigm shift in drug discovery James Cook University scientists have developed a new drug screening technology thats ... The discovery will not only lead to the development of better drugs but will also be applicable for the hunt for new herbicides ... He said the technology is a breakthrough discovery.. "The world is facing a huge ongoing challenge against drug resistance, ... Dr Schaeffer said in order to develop new, safe and effective drugs, millions of compounds need to be screened and tested. The ...
Drug discovery. Our approach to drug discovery builds the basis of UCBs future, so we continuously monitor disruptive ... Monoclonal antibody drugs can be used against targets that are outside cells or on the cell surface, but because of their size ... One of the most exciting advances in modern medicine has been the discovery of how AAV can be used as an effective delivery ... so that our researchers have access to state-of-the-art capabilities enabling them to pioneer new approaches to drug discovery. ...
Emerging Drug Discovery Targets provides a twice monthly summary of some... ... Emerging Drug Discovery Targetsfrom LeadDiscovery21st November 2003to view this alert on line please go to http://www. ... Emerging Drug Discovery Targets archive. NVP-LAQ824, Novartis novel histone deacetylase inhibitor: The field of histone ... "Emerging Drug Discovery Targets" provides a twice monthly summary of some of the most exciting breaking information recently ...
... unlocking the potential to bring life-saving drugs to market faster. ... Accelerate Key Applications in Drug Discovery. Drug discovery spans many workflows, from exploring the chemical universe and ... Clara for Drug Discovery helps computational biologists, computational chemists, and AI drug discovery researchers and ... Clara for Drug Discovery includes a variety of tools and frameworks for molecular simulation, including GROMACS, NAMD, Tinker- ...
Unprecedented access to large library drug discovery, Dynamic Library technology offers more reliable results than classical ... An effective drug discovery library needs to account for not only quantity, but also quality of compounds. DEL technology has ... If you felt previously priced out of large library drug discovery, this is the kit for you. Any group with common biochemistry ... DNA-Encoded Library (DEL) technology is an increasingly mature and prominent approach to early-stage drug discovery. As opposed ...
Collaborative Drug Discovery. CombiUgi. Comparative Toxicogenomics Database. Computational Organic Chemistry Blog. Conway Group ... Marine Drugs. Mark Archibald. Marker DB. Martin Walker. MassBank. Matthew McBride. McGibony Group (R. Bryan Sears and J. Kevin ... NINDS Approved Drug Screening Program. NIOSH. NIST. NIST Chemistry WebBook. NIST Chemistry WebBook Spectra. NIST Spectra. ... Prous Science Drugs of the Future. PubMed. PurePEG. Química Orgânica Estrutural Group, FCT - Universidade Nova de Lisboa. ...
... research has shown that the blood vessels that feed aggressive brain tumours have receptors that could allow a new type of drug ... The birthplace of discoveries such as MRI and ibuprofen, our innovations transform lives and tackle global problems such as ... The key now is to use drug and prodrug nanoparticles to target these receptors and cut off the energy supply of the cancer ... Professor Needham, who has been investigating this drug as a possible treatment for cancer for a number of years and has been ...
  • The interdisciplinary nature of biophysics provides the opportunity for biologists, physicists, chemists, bioengineers, and others to collaborate and push scientific discoveries. (biophysics.org)
  • Knowing the three-dimensional structure of the enzyme bound to inhibitors will help the chemists to design increasingly potent drugs that inhibit IPP synthesis," said Slade. (newswise.com)
  • Built to support cross-disciplinary workflows, Clara for Drug Discovery helps computational biologists, computational chemists, and AI drug discovery researchers and scientists understand disease mechanisms and get drugs to market faster. (nvidia.com)
  • You'll be taught by academic researchers including pharmacologists, cell biologists, and medicinal and pharmaceutical chemists, whose own research is in pharmacology and drug discovery. (uea.ac.uk)
  • Examples of drug compounds isolated from crude preparations are morphine, the active agent in opium, and digoxin, a heart stimulant originating from Digitalis lanata. (wikipedia.org)
  • BOSTON - Researchers at the 7th annual Drug Discovery Technology Conference said they are optimistic that new tools being incorporated early in the drug discovery process will lead to the faster development of more useful compounds, but are concerned that some of these tools may be leading scientists or regulators to throw out otherwise promising compounds. (the-scientist.com)
  • The focus of several scientific panels at the conference, being held here this week, was on drug target validation strategies and technology such as high throughput assays and biomarkers that are enabling scientists to make predictions about the utility of new compounds earlier in the discovery process. (the-scientist.com)
  • Dr Schaeffer said in order to develop new, safe and effective drugs, millions of compounds need to be screened and tested. (edu.au)
  • An effective drug discovery library needs to account for not only quantity, but also quality of compounds. (sigmaaldrich.com)
  • The majority of DEL libraries are built with a number of cycles of split-and-pool chemistry, which can quickly lead to the generation of compounds well outside the bounds of traditionally "drug-like" chemical space. (sigmaaldrich.com)
  • It will expand by 1000-fold the number of such "make-on-demand" compounds readily available to scientists for chemical biology and drug discovery. (nih.gov)
  • The wealth of chemical diversity that has evolved with biological diversity is underrepresented in the commercial chemical library offerings, but needs to be expanded to strategically cover available chemical space and include drug-like compounds with improved pharmacologic, pharmacodynamic, and pharmacokinetic properties as compared to their current nitrogen-rich counterparts. (selectbiosciences.com)
  • This Funding Opportunity Announcement (FOA) encourages research grant applications directed toward the discovery and preclinical testing of novel compounds for the prevention and treatment of nervous system disorders. (nih.gov)
  • This is a critical step in the drug discovery pipeline that allows researchers to identify the exact chemical compounds needed to develop medicines that treat disease. (edu.au)
  • In a landmark move for Australian medical research, the Institute has established a Drug Discovery Centre so that researchers in Australia can screen and pinpoint the exact chemical compounds needed to progress their basic research discoveries into new medicines. (edu.au)
  • So rather than developing synthetic compounds into drugs, our finding suggests you could screen these harmless proteins against whatever target you're interested in. (earthsky.org)
  • In addition, as an important drug discovery tool, IPA predicted several compounds that might be useful to ameliorate the inflammatory phenotype. (cdc.gov)
  • The idea that the effect of a drug in the human body is mediated by specific interactions of the drug molecule with biological macromolecules, (proteins or nucleic acids in most cases) led scientists to the conclusion that individual chemicals are required for the biological activity of the drug. (wikipedia.org)
  • The scientific programme will include over 25 plenary lectures by internationally well-known scientists, covering the main stages of modern drug discovery. (rsc.org)
  • Newswise - As long as parasites continue to mount resistance to malaria drugs, scientists will be faced with the task of developing new, improved pharmaceuticals. (newswise.com)
  • James Cook University scientists have developed a new drug screening technology that's described as a 'paradigm shift' in the war against drug-resistant microorganisms. (edu.au)
  • The world is facing a huge ongoing challenge against drug resistance, with scientists constantly battling in the hunt for new drugs and targets. (edu.au)
  • Every year this event bring together about 200 drug discovery scientists together at a platform to discuss and share drug discovery related research and facilitates collaborations amongst scientists from across the globe. (selectbiosciences.com)
  • UK-led scientists have made a discovery about snake venom that could lead to the development of new drugs to treat a range of life-threatening conditions like cancer, diabetes and high blood pressure. (earthsky.org)
  • Scientists have long recognized that the way toxins work makes them useful targets for drug development. (earthsky.org)
  • The Structural Genomics Consortium is a global public-private partnership that seeks to accelerate drug discovery by fostering collaboration among a large network of scientists in academia and industry and making all research outputs openly available to the scientific community. (tmcnet.com)
  • The researchers tested their model by screening a library of about 4,700 candidate drug molecules for their ability to bind to a set of 51 enzymes. (technologyreview.com)
  • The Virginia Tech Center for Drug Discovery was created in 2012 to bring together researchers from various departments and colleges across the university, who are interested in drug discovery and delivery. (newswise.com)
  • So it was welcome news from researchers at North Carolina State University (NC State) and Collaborations Pharmaceuticals when they reported that they have created a free-to-use database of 14,000 known macrolactones-large molecules used in drug development-that contains information about the molecular characteristics, chemical diversity and biological activities of this structural class. (drugdiscoverynews.com)
  • Our approach to drug discovery builds the basis of UCB's future, so we continuously monitor disruptive technologies, keep pace with evolving science and expand our therapeutic modality platforms so that our researchers have access to state-of-the-art capabilities enabling them to pioneer new approaches to drug discovery. (ucb.com)
  • Our target audience includes business development personnel, senior management and researchers within the drug development sector as well as bioscience investors and analysts. (pharmiweb.com)
  • The Institute's Drug Discovery Centre will offer the latest robotic equipment and expertise to researchers, so they can undertake ultra-high-throughput chemical screening. (edu.au)
  • This meant that many promising research discoveries were either never pursued, or researchers were forced overseas to develop their research into new therapies," Professor Hilton said. (edu.au)
  • Now researchers have discovered that the toxins that make snake and lizard venom deadly can evolve back into completely harmless molecules, raising the possibility that they could be developed into drugs. (earthsky.org)
  • But the researchers' discovery that there may be many harmless versions of venom toxins throughout a snake's body opens the door to a whole new era of drug discovery. (earthsky.org)
  • These are indeed exciting times for both researchers and patients.Many agents now on the market have been discovered and approved on somewhat shorter timelines than Taxol, but the discovery-to-bedside timeline for the PARP inhibitors is quite remarkable--probably more so because of the promising results presented in this year's ASCO plenary session in breast cancer. (curetoday.com)
  • This approach is known as classical pharmacology, forward pharmacology, or phenotypic drug discovery. (wikipedia.org)
  • In vivo phenotypic drug screening relies on isolating drug candidates by their ability to produce a desired therapeutic phenotype in whole organisms. (nih.gov)
  • In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. (wikipedia.org)
  • This made for the beginning of the modern era in pharmacology, as pure chemicals, instead of crude extracts of medicinal plants, became the standard drugs. (wikipedia.org)
  • The Department of Drug Discovery is interdisciplinary and composed of faculty members with expertise in molecular and cellular biology, structural biology, chemistry and pharmacology. (moffitt.org)
  • The origin of many modern drugs is derived from ethnopharmacology, traditional medicine, and reverse pharmacology. (selectbiosciences.com)
  • The Diversity in Drug Discovery and Development, or "4D" Fellowship program is a joint effort between Janssen Oncology and Drexel's Pharmacology and Physiology Department to support underrepresented minority students enrolled in Drexel graduate programs. (drexel.edu)
  • These are just some of the challenges you'll explore on our pharmacology and drug discovery degree. (uea.ac.uk)
  • Our research-rich environment is pivotal to the Pharmacology and Drug Discovery course, which has been designed to prepare you for a career at the forefront of pharmaceutical research. (uea.ac.uk)
  • Pharmacology is the study of drugs and their effects on living organisms. (uea.ac.uk)
  • The Pharmacology Drug Discovery programme is the only MSci of its type in the UK and is innovative in its multidisciplinary approach. (uea.ac.uk)
  • For example, in practical classes you'll gain experience of synthetic medicinal chemistry as well as techniques in current molecular pharmacology - the techniques used in the discovery of new medicines. (uea.ac.uk)
  • You'll be introduced to medicinal chemistry, principles of pharmacology and neuropharmacology, drug delivery and pharmacokinetics. (uea.ac.uk)
  • A new paper in Molecular Pharmacology describes how 'reverse pharmacology', enabled by Heptares Therapeutics StaR(R) technology, can be applied to and accelerate GPCR-based drug discovery. (science20.com)
  • Once a compound that fulfills all of these requirements has been identified, the process of drug development can continue. (wikipedia.org)
  • In the 21st century, basic discovery research is funded primarily by governments and by philanthropic organizations, while late-stage development is funded primarily by pharmaceutical companies or venture capitalists. (wikipedia.org)
  • In his estimation, TIME could shorten drug-development times by orders of magnitude. (genengnews.com)
  • This can change the whole paradigm of safety and efficacy during drug development. (genengnews.com)
  • The Role of Mass Spectrometry in Drug Discovery and Development presented by Walter A. Korfmacher (Merck Research Labs) on May 23, 2010. (asms.org)
  • The projects are at different stages in the discovery and development process. (ed.ac.uk)
  • Added Ekins: "Anyone interested in these molecules or in drug development utilizing macrolactones now has a user-friendly database where everything is accessible and in one location. (drugdiscoverynews.com)
  • The process of drug development, beginning from the discovery of a pharmacological lead to its commercial launch, is estimated to take around 10 to 15 years, involving capital investments in the range of $4 billion to $10 billion. (drugdiscoverynews.com)
  • The discovery will not only lead to the development of better drugs but will also be applicable for the hunt for new herbicides and pesticides which use similar technology workflows. (edu.au)
  • The findings pave the way for using drugs already in development at both institutions that could target these receptors and so be taken up by the tumors. (nottingham.ac.uk)
  • Many barriers do exist for the discovery and development of natural product based drugs. (selectbiosciences.com)
  • The Master of Science degree program in Drug Discovery & Development (DDD) offers students the opportunity to understand, evaluate and engage with the entire process of drug discovery and development. (drexel.edu)
  • The Drug Discovery & Development curriculum provides a complete overview of the drug discovery process. (drexel.edu)
  • Once I found Drexel's program in Drug Discovery and Development, it seemed like the perfect fit. (drexel.edu)
  • The Drug Discovery and Development program is super malleable. (drexel.edu)
  • The Drug Discovery & Development program faculty includes full-time faculty with extensive industry experience as well as senior-level executives from Greater Philadelphia area pharmaceutical and biotechnology companies, who provide unique knowledge, experience, and expertise. (drexel.edu)
  • With the wealth of potential new drug targets, the opportunity exists to accelerate the process of drug discovery and development to make quantum leaps toward novel and effective treatments for mental disorders, drug and alcohol abuse, and nervous system disorders associated with aging. (nih.gov)
  • For many years the translation of world-class Australian research into new medicines has been hampered by a lack of capacity for drug development. (edu.au)
  • San Francisco-based Walling is said to be a pharmaceutical executive with extensive experience in the global development of anti-cancer drugs. (scotsman.com)
  • Now PARP is one of the most 'Googled' cancer-related words on the Web.The events leading up to this year's much-publicized presentation on PARP inhibitors in breast cancer (see CURE's coverage of ASCO 2009 ) represent the dramatic acceleration in drug development timelines. (curetoday.com)
  • HitGen is a world leader in the development of DEL technology and applications to early-stage small molecule drug discovery. (tmcnet.com)
  • Public-private partnerships for product development do not directly develop drugs. (who.int)
  • PGx data is also important for drug discovery, clinical trials, and development of clinical PGx tests. (cdc.gov)
  • Computational models have been a major time saver when it comes to predicting which protein molecules could make effective drugs, but many of those methods themselves take a lot of time and computing power. (technologyreview.com)
  • The model can match target proteins and potential drug molecules without the computationally intensive step of calculating each protein's 3D structure from its amino acid sequence. (technologyreview.com)
  • RALEIGH, N.C.-Small molecules dominate so much of drug discovery research efforts that we don't get to highlight the larger ones nearly enough in the pages of DDN . (drugdiscoverynews.com)
  • The new database, called MacrolactoneDB, fills a knowledge gap concerning these molecules and could serve as a useful tool for future drug discovery. (drugdiscoverynews.com)
  • Keeping up with the theme of large molecules, there is also news recently out of Dublin-based Research and Markets of a new report from Roots Analysis, titled "In Silico/Computer-Aided Drug Discovery Services Market: Focus on Large Molecules. (drugdiscoverynews.com)
  • Over time, the complexities of drug discovery have increased, and this is especially true for large molecules, which are inherently more complex than conventional small-molecule drugs. (drugdiscoverynews.com)
  • They target proteins with exceptional specificity and can be engineered to target multiple proteins (bispecific antibodies), combine with linker molecules (antibody drug conjugates), and can be reduced in size to bring unique advantageous pharmacological properties (fragment antibodies). (ucb.com)
  • Drug discovery spans many workflows, from exploring the chemical universe and predicting protein structures to scanning drug candidates and simulating molecules. (nvidia.com)
  • A staggering number of potential drug-like molecules are known to exist. (nih.gov)
  • These studies revealed several novel drug-like molecules that bind only to the D4 receptor (and not the closely related D2 or D3 dopamine receptors) and turned the receptor on or off. (nih.gov)
  • The screening datasets, curated in a ML-ready format, will be posted to a publicly accessible portal to facilitate drug discovery and ML experts from around the world to model the data and make predictions about new active molecules that would be experimentally tested at SGC as part of the Target 2035 initiative. (tmcnet.com)
  • Its platform includes over 1.2 trillion small molecules generated by the DEL technology, and the efficiency of the screening process has made it possible for HitGen to enable drug discovery projects for many organizations around the world. (tmcnet.com)
  • HitGen has established leading technology platforms to enable the discovery and optimization of small molecules and nucleic acid drugs. (tmcnet.com)
  • With today's advancements in science and technology, new possibilities for innovative and creative new approaches to discovering small molecule drugs are opening up. (ucb.com)
  • Deep learning models based on transformer architectures are poised to accelerate every phase of drug discovery. (nvidia.com)
  • While that medicine took 30 years to reach patients, we hope that our commitment to building a centre that enhances Australia's capacity for translating basic biomedical research will serve to accelerate the process of drug discovery bringing future medicines to patients faster. (edu.au)
  • They accomplish the design and synthesis of chemical probes through traditional synthetic organic chemistry and medicinal chemistry approaches along with structure-based drug design and experimental and in-silico high-throughput screening. (moffitt.org)
  • For example, in addition to its mitochondrial program, Bactevo is in the early stages of research to generate new antibiotic drugs that combat the highly drug-resistant Gram-negative pathogens that cause septicemia, and chest and severe urinary tract infections. (genengnews.com)
  • Among many useful characteristics, macrolactones' ability to bind to difficult protein targets makes them suitable for antiviral, antibiotic, antifungal and antiparasitic drugs. (drugdiscoverynews.com)
  • The resulting synthetic chemical library also can be inspired by hits obtained from the engineered bacteria, thus allowing the biologically evolved chemical scaffolds to be further "evolved" to ideal drug candidates. (genengnews.com)
  • To design and synthesize chemical probes to modulate such disregulated pathways and to develop these probes into novel anticancer drugs. (moffitt.org)
  • But its chemical structure had to be modified to make it safe to use as a drug. (earthsky.org)
  • The introduction of this drug, arsphenamine (Salvarsan), and its chemical derivative neoarsphenamine (Neosalvarsan) in 1910 ushered in a complete transformation of syphilis therapy and the concept of chemotherapy. (cdc.gov)
  • The combination of these new discoveries and the underlying mechanism of IMO-2125 merited further consideration, which is what led us to running the preclinical studies that we have published to date and ultimately into the clinical study we are currently running in partnership with MD Anderson Cancer Center . (drugdiscoverynews.com)
  • The objective of this FOA is to stimulate research in the discovery, design, and preclinical testing of novel therapeutics aimed at prevention or treatment of nervous system disorders. (nih.gov)
  • Using naturally occurring microbial products as a starting point increases the chances that any resulting drug candidates will have biological relevance and, thus, possess the potential to interact with mammalian systems. (genengnews.com)
  • These anti-cancer drugs target the IAP genes, an important family of proteins related to tumour survival that were discovered by the Children's Hospital of Eastern Ontario (CHEO) group over 15 years ago. (sciencedaily.com)
  • I am confident that this partnership has the potential to be transformative," said Aled Edwards , Chief Executive of the SGC, "We look forward to providing the ML community with high-quality, well-curated data so they can contribute to our global effort to find drug starting points for all human proteins. (tmcnet.com)
  • Where the world's brightest minds collaborate and innovate to make discoveries that will help us to live healthier for longer. (edu.au)
  • Despite advances in technology and understanding of biological systems, drug discovery is still a lengthy, "expensive, difficult, and inefficient process" with low rate of new therapeutic discovery. (wikipedia.org)
  • Meanwhile, for disorders whose rarity means that no large commercial success or public health effect can be expected, the orphan drug funding process ensures that people who experience those disorders can have some hope of pharmacotherapeutic advances. (wikipedia.org)
  • Doody concluded, "It's certainly too early at this point to fully grasp the commercial potential of this technology and approach, but is worth noting that while the approval of drugs such as CTLA4 and PD1 have been incredible advances in cancer care, the overwhelmingly large majority of cancer patients' needs continue to be unmet. (drugdiscoverynews.com)
  • One of the most exciting advances in modern medicine has been the discovery of how AAV can be used as an effective delivery system for therapeutic genetic material into living tissues. (ucb.com)
  • Running alongside the Drug Discovery India 2017 conference will be an Exhibition covering the latest technological advances within these fields. (selectbiosciences.com)
  • Significant advances in neuroscience, genetics, and basic behavioral science, together with technological developments, have provided a rich knowledge base for identifying new molecular targets for drug discovery, and developing rational pharmacotherapies for the treatment of a wide variety of nervous system disorders. (nih.gov)
  • but close).Comparing a commonly used cancer drug, Taxol, to the PARP inhibitors brings these advances into focus. (curetoday.com)
  • Research shows that the IAP-targeting drugs that promote the death of cancer cells also induce the growth and repair of muscle. (sciencedaily.com)
  • A compelling discovery that may change this was made recently by a research group led by Dr. Robert Korneluk, distinguished professor at University of Ottawa's Faculty of Medicine and founder of the CHEO Research Institute's Apoptosis Research Centre, was reported Oct. 16 in Science Signaling . (sciencedaily.com)
  • The research team has also found that some of the muscle-enhancing effects of the drugs can be repeated using a growth factor normally found in the body, called TWEAK. (sciencedaily.com)
  • Part of the reason why drug discovery is so expensive is because it has high failure rates," says Rohit Singh, PhD '12, a CSAIL research scientist and one of the lead authors of a paper on the work. (technologyreview.com)
  • To find out more about Scott's research activities, visit the Edinburgh Drug Discovery website. (ed.ac.uk)
  • A research team from the Virginia Tech Center for Drug Discovery has received a $431,126 two-year grant from the National Institutes of Health to make improved versions of a promising compound called MMV008138, or 8138 for short. (newswise.com)
  • New research has shown that the blood vessels that feed aggressive brain tumours have receptors that could allow a new type of drug-containing nanoparticle to be used to starve the tumours of the energy they use to grow and spread, and also cause other disruptions to their adapted existence, even killing themselves. (nottingham.ac.uk)
  • Professor Needham, who has been investigating this drug as a possible treatment for cancer for a number of years and has been driving research in this area and is co-author on this study, said: "We know that niclosamide works by turning down the dimmer switch on host cells in the body, like in the nose as a preventative for COVID19 and other infections. (nottingham.ac.uk)
  • Even in undergrad, I was doing research with professors there that was related to cancer and developing drugs. (drexel.edu)
  • This significant investment is helping to overcome a challenge in Australian drug discovery by enabling the translation of world-class Australian biomedical research into lifesaving medicines for patients. (edu.au)
  • Institute director Professor Doug Hilton thanked the federal government for recognising the importance of a Drug Discovery Centre for the whole Australian medical research sector that fills a vital gap in our drug discovery pipeline. (edu.au)
  • The Drug Discovery Centre is a great example of how as a nation we can excel in health and medical research on the international stage. (edu.au)
  • The Institute's own contribution to the establishment of the new centre has come from philanthropic and state government support, as well as $32.1 million from the sale of royalty rights for venetoclax , an anti-cancer treatment based on a landmark research discovery made at the Institute in the 1980s. (edu.au)
  • Venetoclax is a leading example of how patients can benefit from the translation of basic research discoveries made in Australia. (edu.au)
  • Our research using these cells will help determine if an individual is suited to a clinical trial for a particular type of drug. (cdc.gov)
  • Arneric SP, Holladay M, Williams M. Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. (medlineplus.gov)
  • In addition, lack of ethnic diversity in PGx data sets can widen health disparities by negatively affecting the outcomes of clinical drug trials and translating genetic research into clinical practice. (cdc.gov)
  • Currently, there are several in-silico approaches available for the drug discovery process alone, such as structure-based drug design, fragment-based drug discovery and ligand-based drug discovery. (drugdiscoverynews.com)
  • This edition of 'Emerging Drug Discovery Targets' features a potent histone deacetylase inhibitor from Norvartis for the treatment of cancer, two new approaches to metabolic disorders and VEGFR-1 as a target for rheumatoid arthritis. (pharmiweb.com)
  • With AI and accelerated computing, millions of drug candidates can be screened against a rigid protein target. (nvidia.com)
  • In essence, TIME combines library generation, candidate screening, and assay analysis to support a high-throughput approach to drug discovery. (genengnews.com)
  • However, there has been a de-emphasis on natural product-based drug discovery programs over the last 20 years by the pharmaceutical industry, in part because of a perceived promise of high-throughput screening and combinatorial chemistry which never came to fully meet heightened expectations. (selectbiosciences.com)
  • Executive director of Children's Cancer Institute Michelle Haber said a nationally-accessible Drug Discovery Centre would increase the probability of developing lifesaving medicines. (edu.au)
  • The unusual serendipity involved in the discovery of penicillin demonstrates the difficulties in finding new antibiotics and should remind health professionals to expertly manage these extraordinary medicines. (cdc.gov)
  • Our key technology platforms include world-leading DNA-encoded library technology (DEL), fragment-based drug discovery and structure-based drug design technologies (FBDD/SBDD), as well as the emerging technology platforms for synthetic therapeutic oligonucleotide technology (STO), and targeted protein degradation technology (TPD). (tmcnet.com)
  • The advantages of Xenopus embryos as in vivo models to study human inherited diseases will be presented and their utility for drug discovery screening will be discussed. (nih.gov)
  • The ability to predict whether a compound will behave as an agonist, inverse agonist or antagonist in an in vitro, in silico or in vivo setting is a very powerful tool for drug discovery," said Fiona Marshall, Heptares' Chief Scientific Officer. (science20.com)
  • Damian and I secured one of the first worldwide Discovery Partnerships with Academia (DPAc) collaborations with the pharmaceutical company GSK, which has been very successful. (ed.ac.uk)
  • Modern drug discovery involves the identification of screening hits, medicinal chemistry and optimization of those hits to increase the affinity, selectivity (to reduce the potential of side effects), efficacy/potency, metabolic stability (to increase the half-life), and oral bioavailability. (wikipedia.org)
  • GPU-powered molecular dynamics frameworks can simulate the fundamental mechanisms of cells and calculate how strongly a candidate drug will bind to its intended protein target. (nvidia.com)
  • Clara for Drug Discovery includes a variety of tools and frameworks for molecular simulation, including GROMACS , NAMD , Tinker-HP , VMD , TorchANI , and DeePMD-Kit . (nvidia.com)
  • Over the past few years, Roth, Shoichet, and colleagues have employed their virtual structure-based docking approach to uncover molecular secrets of an antipsychotic drug and LSD docked in their respective target receptors - and to create a designer painkiller that selectively targets brain analgesic circuitry without morphine's side effects. (nih.gov)
  • Accelerating Molecular Dynamics Simulations for Drug Discovery. (bvsalud.org)
  • To be allowed to come to market, drugs must undergo several successful phases of clinical trials, and pass through a new drug approval process, called the New Drug Application in the United States. (wikipedia.org)
  • We know of five pharmaceutical companies pursuing phase one clinical trials with specific drugs to treat cancer patients," says Dr. Korneluk. (sciencedaily.com)
  • Our most advanced project is for Alzheimer's disease where we plan to test our discovery in people with disease this year (this is known as a Phase 2 clinical trial). (ed.ac.uk)
  • Dr Ruman Rahman from the University of Nottingham's School of Medicine led the study and said: "Brain tumours can be very hard to treat with the current techniques available, this is because many of the drugs or nanoparticles that have been shown to work in cells, when used in tests of clinical treatments cannot penetrate the blood brain barrier that many tumours sit behind. (nottingham.ac.uk)
  • HitGen has multiple programmes from early discovery to clinical trial stage. (tmcnet.com)
  • Its detection completely changed the process of drug discovery, its large-scale production transformed the pharmaceutical industry, and its clinical use changed forever the therapy for infectious diseases. (cdc.gov)
  • Modern drug discovery is thus usually a capital-intensive process that involves large investments by pharmaceutical industry corporations as well as national governments (who provide grants and loan guarantees). (wikipedia.org)
  • Pharmaceutical and biotech firms, which spend billions of dollars every year searching for new drugs, keep an eye open for technologies to make their drug screening more fruitful. (sciencenews.org)
  • Emerging Drug Discovery Targets " provides a twice monthly summary of some of the most exciting breaking information recently featured by the pharmaceutical analysts, LeadDiscovery . (pharmiweb.com)
  • This conference is especially aimed to provide a forum to critically examine these barriers and revive interest in natural products to ease drug discovery bottleneck being experienced by the pharmaceutical industry in recent years. (selectbiosciences.com)
  • Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China. (who.int)
  • We look forward to welcoming you at the Drug Discovery India 2017 Conference and Exhibition and hope that the two days will be both informative and enjoyable. (selectbiosciences.com)
  • The key now is to use drug and prodrug nanoparticles to target these receptors and cut off the energy supply of the cancer cells. (nottingham.ac.uk)
  • Pharmacogenetic (PGx) tests are used to help predict an individual's reaction to drugs by interrogating the presence or absence of known genetic variants in genes that encode drug-metabolizing enzymes, drug transporters, drug receptors, or targets of drug action. (cdc.gov)
  • Being a tetrapod, Xenopus complements zebrafish as an indispensable non-mammalian animal model for the study of human disease pathologies and the discovery of novel therapeutics for inherited diseases. (nih.gov)
  • This discovery was part of an NCI program established in 1955 to systematically search for natural products--essentially a hunt-and-peck method for drug discovery. (curetoday.com)
  • This ultimately led to the discovery of a drug candidate that we progressed into humans and allowed me to expand our activities and work with colleagues who were also keen to take their findings towards drug discovery. (ed.ac.uk)
  • Historically, drugs were discovered by identifying the active ingredient from traditional remedies or by serendipitous discovery, as with penicillin. (wikipedia.org)
  • According to British hematologist and biographer Gwyn Macfarlane, the discovery of penicillin was "a series of chance events of almost unbelievable improbability" ( 1 ). (cdc.gov)
  • Feodoroff M, Mikkonen P, Turunen L, Hassinen A, Paasonen L, Paavolainen L, Potdar S, Murumägi A, Kallioniemi O, Pietiäinen V. Comparison of two supporting matrices for patient-derived cancer cells in 3D drug sensitivity and resistance testing assay (3D-DSRT). (helsinki.fi)
  • Please feel free to pass this mail onto colleagues that may benefit from registration to Emerging Drug Discovery Targets . (pharmiweb.com)
  • Feodoroff M, Mikkonen P, Arjama M, Murumägi A, Kallioniemi O, Potdar S, Turunen L, Pietiäinen V. Protocol for 3D Drug Sensitivity and Resistance Testing of Patient-Derived Cancer Cells in 384-Well Plates. (helsinki.fi)
  • This includes using computer-aided drug design (CADD) with artificial intelligence (AI). (ucb.com)
  • Accurate prediction of ligand binding thermodynamics and kinetics is crucial in drug design . (bvsalud.org)
  • LiGaMD and LiGaMD2 simulations could capture repetitive ligand binding and unbinding events within microsecond simulations, allowing to simultaneously characterize ligand binding thermodynamics and kinetics , which is expected to greatly facilitate drug design . (bvsalud.org)
  • Physicians use the results of these tests to determine appropriate drugs and doses for their patients to prevent toxic effects or ineffective treatments. (cdc.gov)
  • Dr Scott Webster is a Reader in Drug Discovery for Cardiovascular Science at the College of Medicine and Veterinary Medicine, and a graduate of the University of Edinburgh. (ed.ac.uk)
  • Within integrated modules, you'll learn about the major diseases and the science behind the drugs used to treat them. (uea.ac.uk)
  • Metabolism in cancer cells differs from that in normal cells, but it is only recently that opportunities to specifically target these differences to develop novel anticancer drugs are being revealed. (nature.com)
  • In your first year you'll gain a solid base for understanding how drugs work, what they target, and how they're developed. (uea.ac.uk)
  • They already target metabolic processes, which is precisely what you need drugs to do. (earthsky.org)
  • The resulting system can screen more than 100 million drug-protein pairs in a single day. (technologyreview.com)
  • I came back to Edinburgh to start a drug discovery team with professors Brian Walker and Jonathan Seckl. (ed.ac.uk)
  • Discovering drugs that may be a commercial success, or a public health success, involves a complex interaction between investors, industry, academia, patent laws, regulatory exclusivity, marketing and the need to balance secrecy with communication. (wikipedia.org)
  • Edinburgh-based drug discovery accelerator Cumulus Oncology is targeting a fresh investment round after appointing a new director. (scotsman.com)
  • UCB's ExtremeDiversity™ platform enables the discovery of synthetic macrocyclic peptides and is based on messenger ribonucleic acid (mRNA) display. (ucb.com)
  • Jonathan Choe joined Dan Bongino on Unfiltered on Fox News to share his coverage of the drug crisis crippling cities like Seattle. (discovery.org)
  • Carlier will synthesize improved versions of the compound in his laboratory, and Cassera will test these potential drugs for their ability to reduce growth of the malaria parasite Plasmodium falciparum in blood. (newswise.com)
  • You can read more about the Taxol in The Discovery of Taxol from CURE's Winter 2006 issue).PARP inhibition as an antitumor strategy first emerged from the laboratory around 1994. (curetoday.com)
  • AutoDock is a growing collection of methods for computational docking and virtual screening for use in structure-based drug discovery and exploration of the basic mechanisms of biomolecular structure. (nvidia.com)