Preservative for wines, soft drinks, and fruit juices and a gentle esterifying agent.
Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group.
An essential amino acid that is required for the production of HISTAMINE.
Organic compounds composed of tin and three ethyl groups. Affect mitochondrial metabolism and inhibit oxidative phosphorylation by acting directly on the energy conserving processes.
A colorless inorganic compound (HONH2) used in organic synthesis and as a reducing agent, due to its ability to donate nitric oxide.
Organic esters of sulfuric acid.
A cytotoxic polypeptide quinoxaline antibiotic isolated from Streptomyces echinatus that binds to DNA and inhibits RNA synthesis.
Salts or ions of the theoretical carbonic acid, containing the radical CO2(3-). Carbonates are readily decomposed by acids. The carbonates of the alkali metals are water-soluble; all others are insoluble. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Organic compounds that contain the (-NH2OH) radical.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A mobile, very volatile, highly flammable liquid used as an inhalation anesthetic and as a solvent for waxes, fats, oils, perfumes, alkaloids, and gums. It is mildly irritating to skin and mucous membranes.
The rate dynamics in chemical or physical systems.
A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A reagent that is highly selective for the modification of arginyl residues. It is used to selectively inhibit various enzymes and acts as an energy transfer inhibitor in photophosphorylation.
Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.
"Ethyl ethers, also known as diethyl ether, is a colorless, highly volatile, and flammable liquid that belongs to the class of organic compounds called ethers, used as an anesthetic in medicine."
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
**Maleates** are organic compounds that contain a carboxylic acid group and a hydroxyl group attached to adjacent carbon atoms, often used as intermediates in the synthesis of pharmaceuticals and other chemicals, or as drugs themselves, such as maleic acid or its salts.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499)
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.

Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation. (1/406)

The Helicobacter pylori VacA toxin plays a major role in the gastric pathologies associated with this bacterium. When added to cultured cells, VacA induces vacuolation, an effect potentiated by preexposure of the toxin to low pH. Its mechanism of action is unknown. We report here that VacA forms anion-selective, voltage-dependent pores in artificial membranes. Channel formation was greatly potentiated by acidic conditions or by pretreatment of VacA at low pH. No requirement for particular lipid(s) was identified. Selectivity studies showed that anion selectivity was maintained over the pH range 4.8-12, with the following permeability sequence: Cl- approximately HCO3- > pyruvate > gluconate > K+ approximately Li+ approximately Ba2+ > NH4+. Membrane permeabilization was due to the incorporation of channels with a voltage-dependent conductance in the 10-30 pS range (2 M KCl), displaying a voltage-independent high open probability. Deletion of the NH2 terminus domain (p37) or chemical modification of VacA by diethylpyrocarbonate inhibited both channel activity and vacuolation of HeLa cells without affecting toxin internalization by the cells. Collectively, these observations strongly suggest that VacA channel formation is needed to induce cellular vacuolation, possibly by inducing an osmotic imbalance of intracellular acidic compartments.  (+info)

Ubiquinol:cytochrome c oxidoreductase. Effects of inhibitors on reverse electron transfer from the iron-sulfur protein to cytochrome b. (2/406)

The effects of inhibitors on the reduction of the bis-heme cytochrome b of ubiquinol: cytochrome c oxidoreductase (complex III, bc1 complex) has been studied in bovine heart submitochondrial particles (SMP) when cytochrome b was reduced by NADH and succinate via the ubiquinone (Q) pool or by ascorbate plus N,N,N', N'-tetramethyl-p-phenylenediamine via cytochrome c1 and the iron-sulfur protein of complex III (ISP). The inhibitors used were antimycin (an N-side inhibitor), beta-methoxyacrylate derivatives, stigmatellin (P-side inhibitors), and ethoxyformic anhydride, which modifies essential histidyl residues in ISP. In agreement with our previous findings, the following results were obtained: (i) When ISP/cytochrome c1 were prereduced or SMP were treated with a P-side inhibitor, the high potential heme bH was fully and rapidly reduced by NADH or succinate, whereas the low potential heme bL was only partially reduced. (ii) Reverse electron transfer from ISP/c1 to cytochrome b was inhibited more by antimycin than by the P-side inhibitors. This reverse electron transfer was unaffected when, instead of normal SMP, Q-extracted SMP containing 200-fold less Q (0. 06 mol Q/mol cytochrome b or c1) were used. (iii) The cytochrome b reduced by reverse electron transfer through the leak of a P-side inhibitor was rapidly oxidized upon subsequent addition of antimycin. This antimycin-induced reoxidation did not happen when Q-extracted SMP were used. The implications of these results on the path of electrons in complex III, on oxidant-induced extra cytochrome b reduction, and on the inhibition of forward electron transfer to cytochrome b by a P-side plus an N-side inhibitor have been discussed.  (+info)

Enzymatical properties of psychrophilic phosphatase I. (3/406)

Phosphatase I purified from a psychrophile (Shewanella sp.) [Tsuruta et al. (1998) J. Biochem. 123, 219-225] dephosphorylated O-phospho-L-tyrosine and phospho-tyrosyl residues in phosphorylated poly(Glu4,Tyr1) random polymer (polyEY) and phosphorylated myelin basic protein (MBP) but not phosphoseryl and/or phosphothreonyl residues in phosphorylated histone H1, casein and phosphorylase a, indicating that the enzyme showed protein-tyrosine-phosphatase (PTPase, EC 3.1.3.48)-like activity in vitro. The enzyme was remarkably inhibited by diethylpyrocarbonate (DEPC), monoiodoacetic acid (MIAA), and monoiodoacetamide (MIAM). Binding of 1 mol of DEPC to 1 mol of the enzyme caused complete inhibition of the enzyme; and 0.88 mol of 1-carboxymethylated histidine per mole of the enzyme was found when 90% of enzyme activity was lost by modification with 14C-MIAA. These results indicated that this psychrophilic enzyme was a PTPase-like enzyme with histidine as its catalytic residue.  (+info)

Identification of three cysteines as targets for the Zn2+ blockade of the human skeletal muscle chloride channel. (4/406)

Currents through the human skeletal muscle chloride channel hClC-1 can be blocked by external application of 1 mM Zn2+ or the histidine-reactive compound diethyl pyrocarbonate (DEPC). The current block by Zn2+ strongly depends on the external pH (pKa near 6.9), whereas the block by DEPC is rather independent of the pH in the range of 5.5 to 8.5. To identify the target sites of these reagents, we constructed a total of twelve cysteine- and/or histidine-replacement mutants, transfected tsA201 cells with them, and investigated the resulting whole-cell chloride currents. The majority of the mutants exhibited a similar sensitivity toward Zn2+ or DEPC as wild type (WT) channels. Block by 1 mM Zn2+ was nearly absent only with the mutant C546A. Four mutants (C242A, C254A, H180A, and H451A) were slightly less sensitive to Zn2+ than WT. Tests with double, triple, and quadruple mutants yielded that, in addition to C546, C242 and C254 are also most likely participating in Zn2+-binding.  (+info)

Chemical modification of NADP-isocitrate dehydrogenase from Cephalosporium acremonium evidence of essential histidine and lysine groups at the active site. (5/406)

NADP-isocitrate dehydrogenase from Cephalosporium acremonium CW-19 has been inactivated by diethyl pyrocarbonate following a first-order process giving a second-order rate constant of 3.0 m-1. s-1 at pH 6.5 and 25 degrees C. The pH-inactivation rate data indicated the participation of a group with a pK value of 6.9. Quantifying the increase in absorbance at 240 nm showed that six histidine residues per subunit were modified during total inactivation, only one of which was essential for catalysis, and substrate protection analysis would seem to indicate its location at the substrate binding site. The enzyme was not inactivated by 5, 5'-dithiobis(2-nitrobenzoate), N-ethylmaleimide or iodoacetate, which would point to the absence of an essential reactive cysteine residue at the active site. Pyridoxal 5'-phosphate reversibly inactivated the enzyme at pH 7.7 and 5 degrees C, with enzyme activity declining to an equilibrium value within 15 min. The remaining activity depended on the modifier concentration up to about 2 mm. The kinetic analysis of inactivation and reactivation rate data is consistent with a reversible two-step inactivation mechanism with formation of a noncovalent enzyme-pyridoxal 5'-phosphate complex prior to Schiff base formation with a probable lysyl residue of the enzyme. The analysis of substrate protection shows the essential residue(s) to be at the active site of the enzyme and probably to be involved in catalysis.  (+info)

Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. (6/406)

The apical H+-coupled peptide transporter (PEPT1) and basolateral peptide transporter in human intestinal Caco-2 cells were functionally compared by the characterization of [14C]glycylsarcosine transport. The glycylsarcosine uptake via the basolateral peptide transporter was less sensitive to medium pH than uptake via PEPT1 and was not transported against the concentration gradient. Kinetic analysis indicated that glycylsarcosine uptake across the basolateral membranes was apparently mediated by a single peptide transporter. Small peptides and beta-lactam antibiotics inhibited glycylsarcosine uptake by the basolateral peptide transporter, and these inhibitions were revealed to be competitive. Comparison of the inhibition constant values of various beta-lactam antibiotics between PEPT1 and the basolateral peptide transporter suggested that the former had a higher affinity than the latter. A histidine residue modifier, diethyl pyrocarbonate, inhibited glycylsarcosine uptake by both transporters, although the inhibitory effect was greater on PEPT1. These findings suggest that a single facilitative peptide transporter is expressed at the basolateral membranes of Caco-2 cells and that PEPT1 and the basolateral peptide transporter cooperate in the efficient transepithelial transport of small peptides and peptidelike drugs.  (+info)

Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. (7/406)

Zinc (Zn2+) inhibition of N-methyl-D-aspartate receptor (NMDAR) activity involves both voltage-independent and voltage-dependent components. Recombinant NR1/NR2A and NR1/NR2B receptors exhibit similar voltage-dependent block, but voltage-independent Zn2+ inhibition occurs with much higher affinity for NR1/NR2A than NR1/NR2B receptors (nanomolar versus micromolar IC50, respectively). Here, we show that two neighboring histidine residues on NR2A represent the critical determinant (termed the "short spacer") for high-affinity, voltage-independent Zn2+ inhibition using the Xenopus oocyte expression system and site-directed mutagenesis. Mutation of either one of these two histidine residues (H42 and H44) in the extracellular N-terminal domain of NR2A shifted the IC50 for high-affinity Zn2+ inhibition approximately 200-fold without affecting the EC50 of the coagonists NMDA and glycine. We suggest that the mechanism of high-affinity Zn2+ inhibition on the NMDAR involves enhancement of proton inhibition.  (+info)

Magnesium-dependent alternative foldings of active and inactive Escherichia coli tRNA(Glu) revealed by chemical probing. (8/406)

A stable conformer of Escherichia coli tRNA(Glu), obtained in the absence of Mg(2+), is inactive in the aminoacylation reaction. Probing it with diethylpyrocarbonate, dimethyl sulfate and ribonuclease V1 revealed that it has a hairpin structure with two internal loops; the helical segments at both extremities have the same structure as the acceptor stem and the anticodon arm of the native conformer of tRNA(Glu)and the middle helix is formed of nucleotides from the D-loop (G15-C20:2) and parts of the T-loop and stem (G51-C56), with G19 bulging out. This model is consistent with other known properties of this inactive conformer, including its capacity to dimerize. Therefore, this tRNA requires magnesium to acquire a conformation that can be aminoacylated, as others require a post-transcriptional modification to reach this active conformation.  (+info)

Diethyl pyrocarbonate (DEPC) is a chemical compound with the formula (C2H5O)2CO. It is a colorless, volatile liquid that is used as a disinfectant and sterilizing agent, particularly for laboratory equipment and solutions. DEPC works by reacting with amino groups in proteins, forming covalent bonds that inactivate enzymes and other proteins. This makes it effective at destroying bacteria, viruses, and spores.

However, DEPC is also reactive with nucleic acids, including DNA and RNA, so it must be removed or deactivated before using solutions treated with DEPC for molecular biology experiments. DEPC can be deactivated by heating the solution to 60-70°C for 30 minutes to an hour, which causes it to hydrolyze into ethanol and carbon dioxide.

It is important to handle DEPC with care, as it can cause irritation to the skin, eyes, and respiratory tract. It should be used in a well-ventilated area or under a fume hood, and protective clothing, gloves, and eye/face protection should be worn when handling the chemical.

I'm sorry for any confusion, but "Formates" is not a recognized term in medical terminology. It is possible that you may be referring to "formic acid" or "formate," which are terms used in chemistry and biochemistry. Formic acid is a colorless, pungent, and corrosive liquid with the chemical formula HCOOH. Its salts are called formates.

Formate is the anion (negatively charged ion) of formic acid, with the chemical formula HCOO-. Formate can be found in various biological systems and is involved in several metabolic processes. If you could provide more context or clarify your question, I would be happy to help further.

Histidine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C6H9N3O2. Histidine plays a crucial role in several physiological processes, including:

1. Protein synthesis: As an essential amino acid, histidine is required for the production of proteins, which are vital components of various tissues and organs in the body.

2. Hemoglobin synthesis: Histidine is a key component of hemoglobin, the protein in red blood cells responsible for carrying oxygen throughout the body. The imidazole side chain of histidine acts as a proton acceptor/donor, facilitating the release and uptake of oxygen by hemoglobin.

3. Acid-base balance: Histidine is involved in maintaining acid-base homeostasis through its role in the biosynthesis of histamine, which is a critical mediator of inflammatory responses and allergies. The decarboxylation of histidine results in the formation of histamine, which can increase vascular permeability and modulate immune responses.

4. Metal ion binding: Histidine has a high affinity for metal ions such as zinc, copper, and iron. This property allows histidine to participate in various enzymatic reactions and maintain the structural integrity of proteins.

5. Antioxidant defense: Histidine-containing dipeptides, like carnosine and anserine, have been shown to exhibit antioxidant properties by scavenging reactive oxygen species (ROS) and chelating metal ions. These compounds may contribute to the protection of proteins and DNA from oxidative damage.

Dietary sources of histidine include meat, poultry, fish, dairy products, and wheat germ. Histidine deficiency is rare but can lead to growth retardation, anemia, and impaired immune function.

Triethyltin compounds refer to organotin substances that contain the triethyltin (C2H5)3Sn- group. These compounds have been used in various industrial applications, such as biocides and polyvinyl chloride stabilizers. However, they are highly toxic and can cause neurological damage in humans and animals. Long-term exposure to triethyltin compounds has been linked to symptoms including headaches, memory loss, tremors, and seizures.

Hydroxylamine is not a medical term, but it is a chemical compound with the formula NH2OH. It's used in some industrial processes and can also be found as a byproduct of certain metabolic reactions in the body. In a medical context, exposure to high levels of hydroxylamine may cause irritation to the skin, eyes, and respiratory tract, and it may have harmful effects on the nervous system and blood if ingested or absorbed in large amounts. However, it is not a substance that is commonly encountered or monitored in medical settings.

Sulfuric acid esters, also known as sulfate esters, are chemical compounds formed when sulfuric acid reacts with alcohols or phenols. These esters consist of a organic group linked to a sulfate group (SO4). They are widely used in industry, for example, as detergents, emulsifiers, and solvents. In the body, they can be found as part of various biomolecules, such as glycosaminoglycans and steroid sulfates. However, excessive exposure to sulfuric acid esters can cause irritation and damage to tissues.

Echinomycin is a type of antibiotic that is derived from a species of bacteria called Streptomyces echinatus. It has been studied for its potential as an anticancer agent, due to its ability to bind to DNA and inhibit the growth of cancer cells. However, its use in clinical practice is not widespread, and more research is needed to determine its safety and efficacy for treating cancer.

Echinomycin works by binding to the minor groove of DNA, which prevents the transcription of genes that are necessary for cell growth and division. This can lead to the death of cancer cells and may help to slow or stop the progression of tumors. However, echinomycin can also bind to DNA in normal cells, which can cause toxic side effects and limit its therapeutic potential.

Echinomycin has been studied in clinical trials for the treatment of various types of cancer, including lung cancer, leukemia, and brain tumors. While some studies have shown promising results, others have found that echinomycin has limited efficacy or is too toxic to be used as a standalone therapy. Therefore, more research is needed to determine the best way to use echinomycin in cancer treatment and to identify which patients are most likely to benefit from it.

Carbonates are a class of chemical compounds that consist of a metal or metalloid combined with carbonate ions (CO32-). These compounds form when carbon dioxide (CO2) reacts with a base, such as a metal hydroxide. The reaction produces water (H2O), carbonic acid (H2CO3), and the corresponding carbonate.

Carbonates are important in many biological and geological processes. In the body, for example, calcium carbonate is a major component of bones and teeth. It also plays a role in maintaining pH balance by reacting with excess acid in the stomach to form carbon dioxide and water.

In nature, carbonates are common minerals found in rocks such as limestone and dolomite. They can also be found in mineral waters and in the shells of marine organisms. Carbonate rocks play an important role in the global carbon cycle, as they can dissolve or precipitate depending on environmental conditions, which affects the amount of carbon dioxide in the atmosphere.

Hydroxylamines are organic compounds that contain a hydroxy group (-OH) and an amino group (-NH2) in their structure. More specifically, they have the functional group R-N-OH, where R represents a carbon-containing radical. Hydroxylamines can be considered as derivatives of ammonia (NH3), where one hydrogen atom is replaced by a hydroxy group.

These compounds are important in organic chemistry and biochemistry due to their ability to act as reducing agents, nitrogen donors, and intermediates in various chemical reactions. They can be found in some natural substances and are also synthesized for use in pharmaceuticals, agrochemicals, and other industrial applications.

Examples of hydroxylamines include:

* Hydroxylamine (NH2OH) itself, which is a colorless liquid at room temperature with an odor similar to ammonia.
* N-Methylhydroxylamine (CH3NHOH), which is a solid that can be used as a reducing agent and a nucleophile in organic synthesis.
* Phenylhydroxylamine (C6H5NHOH), which is a solid used as an intermediate in the production of dyes, pharmaceuticals, and other chemicals.

It's important to note that hydroxylamines can be unstable and potentially hazardous, so they should be handled with care during laboratory work or industrial processes.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

In medical terms, "ether" is an outdated term that was used to refer to a group of compounds known as diethyl ethers. The most common member of this group, and the one most frequently referred to as "ether," is diethyl ether, also known as sulfuric ether or simply ether.

Diethyl ether is a highly volatile, flammable liquid that was once widely used as an anesthetic agent in surgical procedures. It has a characteristic odor and produces a state of unconsciousness when inhaled, allowing patients to undergo surgery without experiencing pain. However, due to its numerous side effects, such as nausea, vomiting, and respiratory depression, as well as the risk of explosion or fire during use, it has largely been replaced by safer and more effective anesthetic agents.

It's worth noting that "ether" also has other meanings in different contexts, including a term used to describe a substance that produces a feeling of detachment from reality or a sense of unreality, as well as a class of organic compounds characterized by the presence of an ether group (-O-, a functional group consisting of an oxygen atom bonded to two alkyl or aryl groups).

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Dithionitrobenzoic acid is not a medical term, as it is related to chemistry rather than medicine. It is an organic compound with the formula C6H4N2O4S2. This compound is a type of benzenediol that contains two sulfur atoms and two nitro groups. It is a white crystalline powder that is soluble in water and alcohol.

Dithionitrobenzoic acid is not used directly in medical applications, but it can be used as a reagent in chemical reactions that are relevant to medical research or analysis. For example, it can be used to determine the concentration of iron in biological samples through a reaction that produces a colored complex. However, if you have any specific questions related to its use or application in a medical context, I would recommend consulting with a medical professional or a researcher in the relevant field.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Phenylglyoxal is not typically considered a medical term, but it does have relevance to the field of biochemistry and medicine. Here's a definition:

Phenylglyoxal (also known as pyruvic aldehyde or 2-oxophenyle) is an organic compound with the formula C6H5CHO. It is a white crystalline solid that is soluble in water and polar organic solvents. Phenylglyoxal is used primarily for research purposes, particularly in the study of glycation and protein modifications.

In biochemistry, phenylglyoxal is known as a glycating agent, which means it can react with amino groups in proteins to form advanced glycation end-products (AGEs). This reaction can alter the structure and function of proteins, contributing to aging and various diseases such as diabetes, neurodegenerative disorders, and cardiovascular disease.

While phenylglyoxal itself is not a medical term, its role in protein modification and glycation has implications for understanding the pathophysiology of several medical conditions.

Spectrophotometry, Ultraviolet (UV-Vis) is a type of spectrophotometry that measures how much ultraviolet (UV) and visible light is absorbed or transmitted by a sample. It uses a device called a spectrophotometer to measure the intensity of light at different wavelengths as it passes through a sample. The resulting data can be used to determine the concentration of specific components within the sample, identify unknown substances, or evaluate the physical and chemical properties of materials.

UV-Vis spectroscopy is widely used in various fields such as chemistry, biology, pharmaceuticals, and environmental science. It can detect a wide range of substances including organic compounds, metal ions, proteins, nucleic acids, and dyes. The technique is non-destructive, meaning that the sample remains unchanged after the measurement.

In UV-Vis spectroscopy, the sample is placed in a cuvette or other container, and light from a source is directed through it. The light then passes through a monochromator, which separates it into its component wavelengths. The monochromatic light is then directed through the sample, and the intensity of the transmitted or absorbed light is measured by a detector.

The resulting absorption spectrum can provide information about the concentration and identity of the components in the sample. For example, if a compound has a known absorption maximum at a specific wavelength, its concentration can be determined by measuring the absorbance at that wavelength and comparing it to a standard curve.

Overall, UV-Vis spectrophotometry is a versatile and powerful analytical technique for quantitative and qualitative analysis of various samples in different fields.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Nucleic acid conformation refers to the three-dimensional structure that nucleic acids (DNA and RNA) adopt as a result of the bonding patterns between the atoms within the molecule. The primary structure of nucleic acids is determined by the sequence of nucleotides, while the conformation is influenced by factors such as the sugar-phosphate backbone, base stacking, and hydrogen bonding.

Two common conformations of DNA are the B-form and the A-form. The B-form is a right-handed helix with a diameter of about 20 Å and a pitch of 34 Å, while the A-form has a smaller diameter (about 18 Å) and a shorter pitch (about 25 Å). RNA typically adopts an A-form conformation.

The conformation of nucleic acids can have significant implications for their function, as it can affect their ability to interact with other molecules such as proteins or drugs. Understanding the conformational properties of nucleic acids is therefore an important area of research in molecular biology and medicine.

Ethyl ether, also known as diethyl ether or simply ether, is a type of organic compound that is classified as a simple ether. It is a colorless and highly volatile liquid with a characteristic odor that is often described as sweet or fruity. In medical contexts, ethyl ether has been historically used as an anesthetic agent due to its ability to produce unconsciousness and insensitivity to pain when inhaled. However, its use as an anesthetic has largely been replaced by safer and more effective alternatives due to its flammability, explosiveness, and potential for causing serious adverse effects such as heart problems and liver damage.

Ethyl ether is a simple ether consisting of two ethyl groups (-C2H5) linked to an oxygen atom (O), with the molecular formula C4H10O. It is produced by the reaction of ethanol with sulfuric acid, followed by distillation to separate the resulting ethyl ether from other products.

In addition to its historical use as an anesthetic, ethyl ether has been used in various industrial and laboratory applications, such as a solvent for fats, oils, resins, and waxes, and as a starting material for the synthesis of other chemicals. However, due to its flammability and potential for causing harm, it is important to handle ethyl ether with care and follow appropriate safety precautions when using it.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Superhelical DNA refers to a type of DNA structure that is formed when the double helix is twisted around itself. This occurs due to the presence of negative supercoiling, which results in an overtwisted state that can be described as having a greater number of helical turns than a relaxed circular DNA molecule.

Superhelical DNA is often found in bacterial and viral genomes, where it plays important roles in compacting the genome into a smaller volume and facilitating processes such as replication and transcription. The degree of supercoiling can affect the structure and function of DNA, with varying levels of supercoiling influencing the accessibility of specific regions of the genome to proteins and other regulatory factors.

Superhelical DNA is typically maintained in a stable state by topoisomerase enzymes, which introduce or remove twists in the double helix to regulate its supercoiling level. Changes in supercoiling can have significant consequences for cellular processes, as they can impact the expression of genes and the regulation of chromosome structure and function.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

"Maleate" is not a medical term in and of itself, but it is a chemical compound that can be found in some medications. Maleic acid or its salts (maleates) are used as a keratolytic agent in topical medications, which means they help to break down and remove dead skin cells. They can also be used as a preservative or a buffering agent in various pharmaceutical preparations.

Maleic acid is a type of organic compound known as a dicarboxylic acid, which contains two carboxyl groups. In the case of maleic acid, these carboxyl groups are located on a single carbon atom, which makes it a cis-conjugated diacid. This structural feature gives maleic acid unique chemical properties that can be useful in various pharmaceutical and industrial applications.

It's worth noting that maleic acid and its salts should not be confused with "maleate" as a gender-specific term, which refers to something related to or characteristic of males.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Indicators and reagents are terms commonly used in the field of clinical chemistry and laboratory medicine. Here are their definitions:

1. Indicator: An indicator is a substance that changes its color or other physical properties in response to a chemical change, such as a change in pH, oxidation-reduction potential, or the presence of a particular ion or molecule. Indicators are often used in laboratory tests to monitor or signal the progress of a reaction or to indicate the end point of a titration. A familiar example is the use of phenolphthalein as a pH indicator in acid-base titrations, which turns pink in basic solutions and colorless in acidic solutions.

2. Reagent: A reagent is a substance that is added to a system (such as a sample or a reaction mixture) to bring about a chemical reaction, test for the presence or absence of a particular component, or measure the concentration of a specific analyte. Reagents are typically chemicals with well-defined and consistent properties, allowing them to be used reliably in analytical procedures. Examples of reagents include enzymes, antibodies, dyes, metal ions, and organic compounds. In laboratory settings, reagents are often prepared and standardized according to strict protocols to ensure their quality and performance in diagnostic tests and research applications.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Diethyl pyrocarbonate (DEPC), also called diethyl dicarbonate (IUPAC name), is used in the laboratory to inactivate RNase ... A General Reaction of Diethylpyrocarbonate with Proteins". European Journal of Biochemistry. 13 (3): 519-25. doi:10.1111/j.1432 ... "A Mechanism of the Irreversible Inactivation of Bovine Pancreatic Ribonuclease by Diethylpyrocarbonate. ...
... diethylpyrocarbonate) 0.10% desarollado por Solmeglas bajo los estándares de calidad y seguridad para su uso en Laboratorio ... DEPC (diethylpyrocarbonate) 0.10%. Composition. Ingredients. Diethyl pyrocarbonate (RMN): 1.0000 Gms / Litre. Resistivity at ...
Diethyl Pyrocarbonate) For Molecular Biology (CAS-1609-47-8) supplier & exporter in India. ... Diethyl Pyrocarbonate) For Molecular Biology manufacturer in India, DEPC ( ... DEPC (Diethyl Pyrocarbonate) For Molecular Biology MSDS (material safety data sheet) or SDS, COA and Specs.. * Specs ... DEPC (Diethyl Pyrocarbonate) For Molecular Biology , 1609-47-8. Product Code New ...
Diethyl pyrocarbonate. View Price and Availability. Sigma-Aldrich. B62404. 1-Bromo-3-chloropropane ...
ABBREVIATIONS: MATE, multidrug and toxin extrusion; TEA, tetraethylammonium; DEPC, diethyl pyrocarbonate; PCMBS, p- ... and the histidine residue modifier diethyl pyrocarbonate (DEPC) in a concentration-dependent manner. The PCMBS-caused ...
It should NOT be necessary to treat solutions and equipment with diethyl pyrocarbonate (DEPC). DEPC can inhibit subsequent ...
... with a final concentration of 50 ng per microliter in diethyl pyrocarbonate water (DEPC, ROTH Art.-Nr. T143.3). The ...
DEPC diethyl pyrocarbonate treated filter sterilized water, pH 7) at 15 °C in the dark, no mixing procedure was applied (i.e., ...
Modification of vertebrate and algal prolyl 4-hydroxylases and vertebrate lysyl hydroxylase by diethyl pyrocarbonate. Evidence ... Modification of histidine residues by diethyl pyrocarbonate inactivated vertebrate and algal prolyl 4-hydroxylase and ... and its diethyl ester (diethyl-2,4-PDC) were studied in chick-embryo calvaria, which predominantly synthesize type I collagen. ... The collagenous material produced in the presence of diethyl-2,4-PDC showed an altered melting profile and a lowering of the ...
Chemical Modification of Glycolate Oxidase from Spinach by Diethyl Pyrocarbonate. Evidence of Essential Histidine for Enzyme ...
... diethyl pyrocarbonate-treated water (8-x) μl, RNase inhibitor (50 U/µl) 0.5 μl, random primers (50pM) 2 μl, and RNA x μl (2 μg ...
In order to avoid RNAse contamination, all solutions used for the APAAP technique were made in 0.1% diethyl pyrocarbonate (DEPC ...
Diethyl Pyro Carbonate. EDTA:. Ethylene Diamine Tetra Acetic Acid. FSH:. Follicle Stimulating Hormone ...
The Use of Diethyl Pyrocarbonate (DEPC) and Potassium Permanganate as Probes for Strand Separation and Structural Distortions ...
ZymoBIOMICS DNase/RNase-Free Water is DEPC-treated (diethyl pyrocarbonate), incubated overnight, and then inactivated by ...
... diethyl pyrocarbonate, 4-fluorochalcone oxide or 1,10-phenanthroline. ...
Chemical modification of chloroperoxidase with diethylpyrocarbonate. Evidence for the presence of an essential histidine ...
For cryosections, the samples were dehydrated in 15% and 30% sucrose in diethyl pyrocarbonate (DEPC)-treated PBS overnight at 4 ...
... the diethyl pyrocarbonate (DEPC) water group (n = 42), the negative control (NC) group (n = 15), and the control group (n = 42 ...
Keywords: [abr] CD; circular dichroism ; [abr] DEP; diethyl pyrocarbonate ; [abr] HPS; human parotid saliva ; [abr] TSB-Y ; [ ... Keywords: [abr] CD; circular dichroism ; [abr] DEP; diethyl pyrocarbonate ; [abr] HPS; human parotid saliva ; [abr] TSB-Y ; [ ...
Diethyl Pyrocarbonate. Preservative for wines, soft drinks, and fruit juices and a gentle esterifying agent.. ... Indicators and ReagentsCyanogen BromideBromosuccinimideMyosin SubfragmentsMacular EdemaBinding SitesDiethyl Pyrocarbonate ... AcidsAdrenodoxinHydroxylaminesIndicators and ReagentsCyanogen BromideBromosuccinimideMyosin SubfragmentsDiethyl Pyrocarbonate ...
Diethyl Pyrocarbonate • Dithiothreitol • D-Luciferin • dNTPs, Set of Four (dA, dC, dG, dT) 100mM Solutions, 4 X 100 μmol • ...
Keywords: [abr] CD; circular dichroism ; [abr] DEP; diethyl pyrocarbonate ; [abr] HPS; human parotid saliva ; [abr] TSB-Y ; [ ... Keywords: [abr] CD; circular dichroism ; [abr] DEP; diethyl pyrocarbonate ; [abr] HPS; human parotid saliva ; [abr] TSB-Y ; [ ...
Keywords : mRNA; messenger RNA; nACR; nicotinic acetylcholine receptor; DEPC; Diethyl pyrocarbonate; GABA; gamma aminobutric ...
Diethyl pyrocarbonate. View Price and Availability. Sigma-Aldrich. P1473. PCR 100 bp Low Ladder ...
Brain samples were taken from each experimental group, samples were washed with diethyl pyrocarbonate (DEPC-treated) saline, ...

No FAQ available that match "diethyl pyrocarbonate"