Therapy for MOVEMENT DISORDERS, especially PARKINSON DISEASE, that applies electricity via stereotactic implantation of ELECTRODES in specific areas of the BRAIN such as the THALAMUS. The electrodes are attached to a neurostimulator placed subcutaneously.
Lens-shaped structure on the inner aspect of the INTERNAL CAPSULE. The SUBTHALAMIC NUCLEUS and pathways traversing this region are concerned with the integration of somatic motor function.
The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus.
A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75)
Slow or diminished movement of body musculature. It may be associated with BASAL GANGLIA DISEASES; MENTAL DISORDERS; prolonged inactivity due to illness; and other conditions.
Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body.
A relatively common disorder characterized by a fairly specific pattern of tremors which are most prominent in the upper extremities and neck, inducing titubations of the head. The tremor is usually mild, but when severe may be disabling. An autosomal dominant pattern of inheritance may occur in some families (i.e., familial tremor). (Mov Disord 1988;13(1):5-10)
Techniques used mostly during brain surgery which use a system of three-dimensional coordinates to locate the site to be operated on.
Application of electric current in treatment without the generation of perceptible heat. It includes electric stimulation of nerves or muscles, passage of current into the body, or use of interrupted current of low intensity to raise the threshold of the skin to pain.
Agents used in the treatment of Parkinson's disease. The most commonly used drugs act on the dopaminergic system in the striatum and basal ganglia or are centrally acting muscarinic antagonists.
An attitude or posture due to the co-contraction of agonists and antagonist muscles in one region of the body. It most often affects the large axial muscles of the trunk and limb girdles. Conditions which feature persistent or recurrent episodes of dystonia as a primary manifestation of disease are referred to as DYSTONIC DISORDERS. (Adams et al., Principles of Neurology, 6th ed, p77)
Abnormal involuntary movements which primarily affect the extremities, trunk, or jaw that occur as a manifestation of an underlying disease process. Conditions which feature recurrent or persistent episodes of dyskinesia as a primary manifestation of disease may be referred to as dyskinesia syndromes (see MOVEMENT DISORDERS). Dyskinesias are also a relatively common manifestation of BASAL GANGLIA DISEASES.
Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain.
The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system.
Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres.
Use of electric potential or currents to elicit biological responses.
Cyclical movement of a body part that can represent either a physiologic process or a manifestation of disease. Intention or action tremor, a common manifestation of CEREBELLAR DISEASES, is aggravated by movement. In contrast, resting tremor is maximal when there is no attempt at voluntary movement, and occurs as a relatively frequent manifestation of PARKINSON DISEASE.
Syndromes which feature DYSKINESIAS as a cardinal manifestation of the disease process. Included in this category are degenerative, hereditary, post-infectious, medication-induced, post-inflammatory, and post-traumatic conditions.
Brain waves with frequency between 15-30 Hz seen on EEG during wakefulness and mental activity.
WHITE MATTER pathway, flanked by nuclear masses, consisting of both afferent and efferent fibers projecting between the WHITE MATTER and the BRAINSTEM. It consists of three distinct parts: an anterior limb, posterior limb, and genu.
A transition zone in the anterior part of the diencephalon interposed between the thalamus, hypothalamus, and tegmentum of the mesencephalon. Components of the subthalamus include the SUBTHALAMIC NUCLEUS, zona incerta, nucleus of field H, and the nucleus of ansa lenticularis. The latter contains the ENTOPEDUNCULAR NUCLEUS.
Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum.
Acquired and inherited conditions that feature DYSTONIA as a primary manifestation of disease. These disorders are generally divided into generalized dystonias (e.g., dystonia musculorum deformans) and focal dystonias (e.g., writer's cramp). They are also classified by patterns of inheritance and by age of onset.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Dense collection of cells in the caudal pontomesencephalic tegmentum known to play a role in the functional organization of the BASAL GANGLIA and in the modulation of the thalamocortical neuronal system.
A technique that involves the use of electrical coils on the head to generate a brief magnetic field which reaches the CEREBRAL CORTEX. It is coupled with ELECTROMYOGRAPHY response detection to assess cortical excitability by the threshold required to induce MOTOR EVOKED POTENTIALS. This method is also used for BRAIN MAPPING, to study NEUROPHYSIOLOGY, and as a substitute for ELECTROCONVULSIVE THERAPY for treating DEPRESSION. Induction of SEIZURES limits its clinical usage.
Continuous involuntary sustained muscle contraction which is often a manifestation of BASAL GANGLIA DISEASES. When an affected muscle is passively stretched, the degree of resistance remains constant regardless of the rate at which the muscle is stretched. This feature helps to distinguish rigidity from MUSCLE SPASTICITY. (From Adams et al., Principles of Neurology, 6th ed, p73)
An anxiety disorder characterized by recurrent, persistent obsessions or compulsions. Obsessions are the intrusive ideas, thoughts, or images that are experienced as senseless or repugnant. Compulsions are repetitive and seemingly purposeful behavior which the individual generally recognizes as senseless and from which the individual does not derive pleasure although it may provide a release from tension.
Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures.
A group of disorders which feature impaired motor control characterized by bradykinesia, MUSCLE RIGIDITY; TREMOR; and postural instability. Parkinsonian diseases are generally divided into primary parkinsonism (see PARKINSON DISEASE), secondary parkinsonism (see PARKINSON DISEASE, SECONDARY) and inherited forms. These conditions are associated with dysfunction of dopaminergic or closely related motor integration neuronal pathways in the BASAL GANGLIA.
Acquired or developmental conditions marked by an impaired ability to comprehend or generate spoken forms of language.
Stimulation of the brain, which is self-administered. The stimulation may result in negative or positive reinforcement.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
A neuropsychological disorder related to alterations in DOPAMINE metabolism and neurotransmission involving frontal-subcortical neuronal circuits. Both multiple motor and one or more vocal tics need to be present with TICS occurring many times a day, nearly daily, over a period of more than one year. The onset is before age 18 and the disturbance is not due to direct physiological effects of a substance or a another medical condition. The disturbance causes marked distress or significant impairment in social, occupational, or other important areas of functioning. (From DSM-IV, 1994; Neurol Clin 1997 May;15(2):357-79)
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Neural tracts connecting one part of the nervous system with another.
Surgery performed on the nervous system or its parts.
Treatment of chronic, severe and intractable psychiatric disorders by surgical removal or interruption of certain areas or pathways in the brain, especially in the prefrontal lobes.
Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed)
Disorders of the centrally located thalamus, which integrates a wide range of cortical and subcortical information. Manifestations include sensory loss, MOVEMENT DISORDERS; ATAXIA, pain syndromes, visual disorders, a variety of neuropsychological conditions, and COMA. Relatively common etiologies include CEREBROVASCULAR DISORDERS; CRANIOCEREBRAL TRAUMA; BRAIN NEOPLASMS; BRAIN HYPOXIA; INTRACRANIAL HEMORRHAGES; and infectious processes.
Surgically placed electric conductors through which ELECTRIC STIMULATION of nerve tissue is delivered.
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
Disorders of the special senses (i.e., VISION; HEARING; TASTE; and SMELL) or somatosensory system (i.e., afferent components of the PERIPHERAL NERVOUS SYSTEM).
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
A primary headache disorder that is characterized by severe, strictly unilateral PAIN which is orbital, supraorbital, temporal or in any combination of these sites, lasting 15-180 min. occurring 1 to 8 times a day. The attacks are associated with one or more of the following, all of which are ipsilateral: conjunctival injection, lacrimation, nasal congestion, rhinorrhea, facial SWEATING, eyelid EDEMA, and miosis. (International Classification of Headache Disorders, 2nd ed. Cephalalgia 2004: suppl 1)
Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons.
An adjunctive treatment for PARTIAL EPILEPSY and refractory DEPRESSION that delivers electrical impulses to the brain via the VAGUS NERVE. A battery implanted under the skin supplies the energy.
Electronic devices that increase the magnitude of a signal's power level or current.
Cell groups within the internal medullary lamina of the THALAMUS. They include a rostral division comprising the paracentral, central lateral, central dorsal, and central medial nuclei, and a caudal division composed of the centromedian and parafascicular nuclei.
Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA.
A portion of the nucleus of ansa lenticularis located medial to the posterior limb of the internal capsule, along the course of the ansa lenticularis and the inferior thalamic peduncle or as a separate nucleus within the internal capsule adjacent to the medial GLOBUS PALLIDUS (NeuroNames, http://rprcsgi.rprc. washington.edu/neuronames/ (September 28, 1998)). In non-primates, the entopeduncular nucleus is analogous to both the medial globus pallidus and the entopeduncular nucleus of human.
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states.
Elements of limited time intervals, contributing to particular results or situations.
Performance of complex motor acts.
The smallest difference which can be discriminated between two stimuli or one which is barely above the threshold.
The ability of a substrate to retain an electrical charge.
Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain.
An inhibitor of DOPA DECARBOXYLASE, preventing conversion of LEVODOPA to dopamine. It is used in PARKINSON DISEASE to reduce peripheral adverse effects of LEVODOPA. It has no antiparkinson actions by itself.
Producing a lesion in the posteroventral portion of the medial GLOBUS PALLIDUS to treat PARKINSON DISEASE and other extrapyramidal disorders. The placement of the lesion is aided by STEREOTACTIC TECHNIQUES and imaging procedures.
Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury.
A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction.
A surgical specialty concerned with the treatment of diseases and disorders of the brain, spinal cord, and peripheral and sympathetic nervous system.
Disorders of speech articulation caused by imperfect coordination of pharynx, larynx, tongue, or face muscles. This may result from CRANIAL NERVE DISEASES; NEUROMUSCULAR DISEASES; CEREBELLAR DISEASES; BASAL GANGLIA DISEASES; BRAIN STEM diseases; or diseases of the corticobulbar tracts (see PYRAMIDAL TRACTS). The cortical language centers are intact in this condition. (From Adams et al., Principles of Neurology, 6th ed, p489)
Assessment of sensory and motor responses and reflexes that is used to determine impairment of the nervous system.
Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity.
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
Habitual, repeated, rapid contraction of certain muscles, resulting in stereotyped individualized actions that can be voluntarily suppressed for only brief periods. They often involve the face, vocal cords, neck, and less often the extremities. Examples include repetitive throat clearing, vocalizations, sniffing, pursing the lips, and excessive blinking. Tics tend to be aggravated by emotional stress. When frequent they may interfere with speech and INTERPERSONAL RELATIONS. Conditions which feature frequent and prominent tics as a primary manifestation of disease are referred to as TIC DISORDERS. (From Adams et al., Principles of Neurology, 6th ed, pp109-10)
A subfield of psychiatry that emphasizes the somatic substructure on which mental operations and emotions are based, and the functional or organic disturbances of the central nervous system that give rise to, contribute to, or are associated with mental and emotional disorders. (From Campbell's Psychiatric Dictionary, 8th ed.)
Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex.
A large group of nuclei lying between the internal medullary lamina and the INTERNAL CAPSULE. It includes the ventral anterior, ventral lateral, and ventral posterior nuclei.
Involuntary shock-like contractions, irregular in rhythm and amplitude, followed by relaxation, of a muscle or a group of muscles. This condition may be a feature of some CENTRAL NERVOUS SYSTEM DISEASES; (e.g., EPILEPSY, MYOCLONIC). Nocturnal myoclonus is the principal feature of the NOCTURNAL MYOCLONUS SYNDROME. (From Adams et al., Principles of Neurology, 6th ed, pp102-3).
A symptom, not a disease, of a twisted neck. In most instances, the head is tipped toward one side and the chin rotated toward the other. The involuntary muscle contractions in the neck region of patients with torticollis can be due to congenital defects, trauma, inflammation, tumors, and neurological or other factors.
Dominance of one cerebral hemisphere over the other in cerebral functions.
Collections of illustrative plates, charts, etc., usually with explanatory captions.
Misunderstanding among individuals, frequently research subjects, of scientific methods such as randomization and placebo controls.
A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use.
The time from the onset of a stimulus until a response is observed.
Conditions which feature clinical manifestations resembling primary Parkinson disease that are caused by a known or suspected condition. Examples include parkinsonism caused by vascular injury, drugs, trauma, toxin exposure, neoplasms, infections and degenerative or hereditary conditions. Clinical features may include bradykinesia, rigidity, parkinsonian gait, and masked facies. In general, tremor is less prominent in secondary parkinsonism than in the primary form. (From Joynt, Clinical Neurology, 1998, Ch38, pp39-42)
Electrically induced CONVULSIONS primarily used in the treatment of severe AFFECTIVE DISORDERS and SCHIZOPHRENIA.
The function of opposing or restraining the excitation of neurons or their target excitable cells.
Gait abnormalities that are a manifestation of nervous system dysfunction. These conditions may be caused by a wide variety of disorders which affect motor control, sensory feedback, and muscle strength including: CENTRAL NERVOUS SYSTEM DISEASES; PERIPHERAL NERVOUS SYSTEM DISEASES; NEUROMUSCULAR DISEASES; or MUSCULAR DISEASES.
Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits.
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.
A dopaminergic neurotoxic compound which produces irreversible clinical, chemical, and pathological alterations that mimic those found in Parkinson disease.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Measurement of the temperature of a material, or of the body or an organ by various temperature sensing devices which measure changes in properties of the material that vary with temperature, such as ELASTICITY; MAGNETIC FIELDS; or LUMINESCENCE.
A complex group of fibers arising from the basal olfactory regions, the periamygdaloid region, and the septal nuclei, and passing to the lateral hypothalamus. Some fibers continue into the tegmentum.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported.
Failure to respond to two or more trials of antidepressant monotherapy or failure to respond to four or more trials of different antidepressant therapies. (Campbell's Psychiatric Dictionary, 9th ed.)
Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The utilization of an electrical current to measure, analyze, or alter chemicals or chemical reactions in solution, cells, or tissues.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
Computer-based representation of physical systems and phenomena such as chemical processes.
The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior.
The use of technology-based interventions to improve functional capacities rather than to treat disease.
The physical activity of a human or an animal as a behavioral phenomenon.
The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis.
Intellectual or mental process whereby an organism obtains knowledge.
The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations.
A class of statistical methods applicable to a large set of probability distributions used to test for correlation, location, independence, etc. In most nonparametric statistical tests, the original scores or observations are replaced by another variable containing less information. An important class of nonparametric tests employs the ordinal properties of the data. Another class of tests uses information about whether an observation is above or below some fixed value such as the median, and a third class is based on the frequency of the occurrence of runs in the data. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1284; Corsini, Concise Encyclopedia of Psychology, 1987, p764-5)

Mechanisms of deep brain stimulation: an intracellular study in rat thalamus. (1/725)

High-frequency deep brain stimulation (DBS) in the thalamus alleviates most kinds of tremor, yet its mechanism of action is unknown. Studies in subthalamic nucleus and other brain sites have emphasized non-synaptic factors. To explore the mechanism underlying thalamic DBS, we simulated DBS in vitro by applying high-frequency (125 Hz) electrical stimulation directly into the sensorimotor thalamus of adult rat brain slices. Intracellular recordings revealed two distinct types of membrane responses, both of which were initiated with a depolarization and rapid spike firing. However, type 1 responses repolarized quickly and returned to quiescent baseline during simulated DBS whereas type 2 responses maintained the level of membrane depolarization, with or without spike firing. Individual thalamic neurones exhibited either type 1 or type 2 response but not both. In all neurones tested, simulated DBS-evoked membrane depolarization was reversibly eliminated by tetrodotoxin, glutamate receptor antagonists, and the Ca(2+) channel antagonist Cd(2+). Simulated DBS also increased the excitability of thalamic cells in the presence of glutamate receptor blockade, although this non-synaptic effect induced no spontaneous firing such as that found in subthalamic nucleus neurones. Our data suggest that high-frequency stimulation when applied in the ventral thalamus can rapidly disrupt local synaptic function and neuronal firing thereby leading to a 'functional deafferentation' and/or 'functional inactivation'. These mechanisms, driven primarily by synaptic activation, help to explain the paradox that lesions, muscimol and DBS in thalamus all effectively stop tremor.  (+info)

Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson's disease. (2/725)

Deep brain stimulation (DBS) is used to treat a variety of severe medically intractable movement disorders, including Parkinson's disease, tremor and dystonia. There have been few studies examining the effect of chronic DBS on the brains of Parkinson's disease patients. Most of these post mortem studies concluded that chronic DBS caused mild gliosis around the lead track and did not damage brain tissue. There have been no similar histopathological studies on brains from dystonic patients who have undergone DBS. In this study, our objective was to discover whether tissue would be attached to DBS electrodes removed from patients for routine clinical reasons. We hoped that by examining explanted DBS electrodes using scanning (SEM) and/or transmission (TEM) electron microscopy we might visualize any attached tissue and thus understand the electrode-human brain tissue interaction more accurately. Initially, SEM was performed on one control DBS electrode that had not been implanted. Then 21 (one subthalamic nucleus and 20 globus pallidus internus) explanted DBS electrodes were prepared, after fixation in 3% glutaraldehyde, for SEM (n = 9) or TEM (n = 10), or both (n = 2), according to departmental protocol. The electrodes were sourced from two patients with Parkinson's disease, one with myoclonic dystonia, two with cervical dystonia and five with primary generalized dystonia, and had been in situ for 11 and 31 months (Parkinson's disease), 16 months (myoclonic dystonia), 14 and 24 months (cervical dystonia) and 3-24 months (primary generalized dystonia). Our results showed that a foreign body multinucleate giant cell-type reaction was present in all TEM samples and in SEM samples, prewashed to remove surface blood and fibrin, regardless of the diagnosis. Some of the giant cells were >100 microm in diameter and might have originated from either fusion of parenchymal microglia, resident perivascular macrophage precursors and/or monocytes/macrophages invading from the blood stream. The presence of mononuclear macrophages containing lysosomes and sometimes having conspicuous filopodia was detected by TEM. Both types of cell contained highly electron-dense inclusions, which probably represent phagocytosed material. Similar material, the exact nature of which is unknown, was also seen in the vicinity of these cells. This reaction was present irrespective of the duration of implantation and may be a response to the polyurethane component of the electrodes' surface coat. These findings may be relevant to our understanding of the time course of the clinical response to DBS in Parkinson's disease and various forms of dystonia, as well as contributing to the design characteristics of future DBS electrodes.  (+info)

Dorsal posterior parietal rTMS affects voluntary orienting of visuospatial attention. (3/725)

Patients with lesions in posterior parietal cortex (PPC) are relatively unimpaired in voluntarily directing visual attention to different spatial locations, while many neuroimaging studies in healthy subjects suggest dorsal PPC involvement in this function. We used an offline repetitive transcranial magnetic stimulation (rTMS) protocol to study this issue further. Ten healthy participants performed a cue-target paradigm. Cues prompted covert orienting of spatial attention under voluntary control to either a left or right visual field position. Targets were flashed subsequently at the cued or uncued location, or bilaterally. Following rTMS over right dorsal PPC, (i) the benefit for target detection at cued versus uncued positions was preserved irrespective of cueing direction (left- or rightward), but (ii) leftward cueing was associated with a global impairment in target detection, at all target locations. This reveals that leftward orienting was still possible after right dorsal PPC stimulation, albeit at an increased overall cost for target detection. In addition, rTMS (iii) impaired left, but (iv) enhanced right target detection after rightward cueing. The finding of a global drop in target detection during leftward orienting with a spared, relative detection benefit at the cued (left) location (i-ii) suggests that right dorsal PPC plays a subsidiary rather than pivotal role in voluntary spatial orienting. This finding reconciles seemingly conflicting results from patients and neuroimaging studies. The finding of attentional inhibition and enhancement occurring contra- and ipsilaterally to the stimulation site (iii-iv) supports the view that spatial attention bias can be selectively modulated through rTMS, which has proven useful to transiently reduce visual hemispatial neglect.  (+info)

Microstimulation of the superior colliculus focuses attention without moving the eyes. (4/725)

The superior colliculus (SC) is part of a network of brain areas that directs saccadic eye movements, overtly shifting both gaze and attention from position to position, in space. Here, we seek direct evidence that the SC also contributes to the control of covert spatial attention, a process that focuses attention on a region of space different from the point of gaze. While requiring monkeys to keep their gaze fixed, we tested whether microstimulation of a specific location in the SC spatial map would enhance visual performance at the corresponding region of space, a diagnostic measure of covert attention. We find that microstimulation improves performance in a spatially selective manner: thresholds decrease at the location in visual space represented by the stimulated SC site, but not at a control location in the opposite hemifield. Our data provide direct evidence that the SC contributes to the control of covert spatial attention.  (+info)

Different patterns of medication change after subthalamic or pallidal stimulation for Parkinson's disease: target related effect or selection bias? (5/725)

BACKGROUND: Bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) is favoured over bilateral globus pallidus internus (Gpi) DBS for symptomatic treatment of advanced Parkinson's disease (PD) due to the possibility of reducing medication, despite lack of definitive comparative evidence. OBJECTIVE: To analyse outcomes after one year of bilateral Gpi or STN DBS, with consideration of influence of selection bias on the pattern of postsurgical medication change. METHODS: The first patients to undergo bilateral Gpi (n = 10) or STN (n = 10) DBS at our centre were studied. They were assessed presurgically and one year after surgery (CAPIT protocol). RESULTS: Before surgery the Gpi DBS group had more dyskinesias and received lower doses of medication. At one year, mean reduction in UPDRS off medication score was 35% and 39% in the Gpi and STN groups, respectively (non-significant difference). Dyskinesias reduced in proportion to presurgical severity. The levodopa equivalent dose was significantly reduced only in the STN group (24%). This study high-lights the absence of significant differences between the groups in clinical scales and medication dose at one year. In the multivariate analysis of predictive factors for off-state motor improvement, the presurgical levodopa equivalent dose showed a direct relation in the STN and an inverse relation in the Gpi group. CONCLUSION: Differences in the patterns of medication change after Gpi and STN DBS may be partly due to a patient selection bias. Both procedures may be equally useful for different subgroups of patients with advanced PD, Gpi DBS especially for patients with lower threshold for dyskinesia.  (+info)

Subthalamic nucleus stimulation in tremor dominant parkinsonian patients with previous thalamic surgery. (6/725)

Before the introduction of high frequency stimulation of the subthalamic nucleus (STN), many disabled tremor dominant parkinsonian patients underwent lesioning or chronic electrical stimulation of the thalamus. We studied the effects of STN stimulation in patients with previous ventral intermediate nucleus (VIM) surgery whose motor state worsened. Fifteen parkinsonian patients were included in this study: nine with unilateral and two with bilateral VIM stimulation, three with unilateral thalamotomy, and one with both unilateral thalamotomy and contralateral VIM stimulation. The clinical evaluation consisted of a formal motor assessment using the Unified Parkinson's Disease Rating Scale (UPDRS) and neuropsychological tests encompassing a 50 point frontal scale, the Mattis Dementia Rating Scale, and the Beck Depression Inventory. The first surgical procedure was performed a mean (SD) of 8 (5) years after the onset of disease. STN implantation was carried out 10 (4) years later, and duration of follow up after beginning STN stimulation was 24 (20) months. The UPDRS motor score, tremor score, difficulties in performance of activities of daily living, and levodopa equivalent daily dose significantly decreased after STN stimulation. Neither axial symptoms nor neuropsychological status significantly worsened after the implantation of the STN electrodes. The parkinsonian motor state is greatly improved by bilateral STN stimulation even in patients with previous thalamic surgery, and STN stimulation is more effective than VIM stimulation in tremor dominant parkinsonian patients.  (+info)

Comparisons between pharmacologically and Edinger-Westphal-stimulated accommodation in rhesus monkeys. (7/725)

PURPOSE: Accommodation results in increased lens thickness and lens surface curvatures. Previous studies suggest that lens biometric accommodative changes are different with pharmacological and voluntary accommodation. In this study, refractive and biometric changes during Edinger-Westphal (EW) and pharmacologically stimulated accommodation in rhesus monkeys were compared. METHODS: Accommodation was stimulated by an indwelling permanent electrode in the EW nucleus of the midbrain in one eye each of four rhesus monkeys. Dynamic refractive changes were measured with infrared photorefraction, and lens biometric changes were measured with high-resolution, continuous A-scan ultrasonography for increasing stimulus current amplitudes, including supramaximal current amplitudes. Accommodation was then stimulated pharmacologically and biometry was measured continuously for 30 minutes. RESULTS: During EW-stimulated accommodation, lens surfaces move linearly with refraction, with an increase in lens thickness of 0.06 mm/D, an anterior movement of the anterior lens surface of 0.04 mm/D, and a posterior movement of the posterior lens surface of 0.02 mm/D. Peak velocity of accommodation (diopters per second) and lens thickness (in millimeters per second) increased with supramaximal stimulus currents, but without further increase in amplitude or total lens thickness. After carbachol stimulation, there was initially an anterior movement of the anterior lens surface and a posterior movement of the posterior lens surface; but by 30 minutes, there was an overall anterior shift of the lens. CONCLUSIONS: Ocular biometric changes differ with EW and pharmacological stimulation of accommodation. Pharmacological stimulation results in a greater increase in lens thickness, an overall forward movement of the lens and a greater change in dioptric power.  (+info)

Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. (8/725)

We enrolled six patients suffering from refractory chronic cluster headache in a pilot trial of neurostimulation of the ipsilateral ventroposterior hypothalamus using the stereotactic coordinates published previously. After the varying durations needed to determine optimal stimulation parameters and a mean follow-up of 14.5 months, the clinical outcome is excellent in three patients (two are pain-free; one has fewer than three attacks per month), but unsatisfactory in one patient, who only has had transient remissions. Mean voltage is 3.28 V, diplopia being the major factor limiting its increase. When the stimulator was switched off in one pain-free patient, attacks resumed after 3 months until it was turned on again. In one patient the implantation procedure had to be interrupted because of a panic attack with autonomic disturbances. Another patient died from an intracerebral haemorrhage that developed along the lead tract several hours after surgery; there were no other vascular changes on post-mortem examination. After 1 month, the hypothalamic stimulation induced resistance against the attack-triggering agent nitroglycerin and tended to increase pain thresholds at extracephalic, but not at cephalic, sites. It had no detectable effect on neurohypophyseal hormones or melatonin excretion. We conclude that hypothalamic stimulation has remarkable efficacy in most, but not all, patients with treatment-resistant chronic cluster headache. Its efficacy is not due to a simple analgesic effect or to hormonal changes. Intracerebral haemorrhage cannot be neglected in the risk evaluation of the procedure. Whether it might be more prevalent than in deep-brain stimulation for movement disorders remains to be determined.  (+info)

Deep brain stimulation (DBS) is a surgical procedure that involves the implantation of a medical device called a neurostimulator, which sends electrical impulses to specific targets in the brain. The impulses help to regulate abnormal brain activity, and can be used to treat a variety of neurological conditions, including Parkinson's disease, essential tremor, dystonia, and obsessive-compulsive disorder.

During the procedure, electrodes are implanted into the brain and connected to the neurostimulator, which is typically implanted in the chest. The neurostimulator can be programmed to deliver electrical impulses at varying frequencies, amplitudes, and pulse widths, depending on the specific needs of the patient.

DBS is generally considered a safe and effective treatment option for many patients with neurological conditions, although it does carry some risks, such as infection, bleeding, and hardware complications. It is typically reserved for patients who have not responded well to other forms of treatment, or who experience significant side effects from medication.

The subthalamic nucleus (STN) is a small, lens-shaped structure located in the basal ganglia of the brain. It plays a crucial role in motor control and has been identified as a key target for deep brain stimulation surgery in the treatment of Parkinson's disease and other movement disorders.

The STN is involved in the regulation of movement, balance, and posture, and helps to filter and coordinate signals that are sent from the cerebral cortex to the thalamus and then on to the motor neurons in the brainstem and spinal cord. In Parkinson's disease, abnormal activity in the STN can contribute to symptoms such as tremors, rigidity, and difficulty initiating movements.

Deep brain stimulation of the STN involves implanting electrodes into the nucleus and delivering electrical impulses that help to regulate its activity. This can lead to significant improvements in motor function and quality of life for some people with Parkinson's disease.

The Globus Pallidus is a structure in the brain that is part of the basal ganglia, a group of nuclei associated with movement control and other functions. It has two main subdivisions: the external (GPe) and internal (GPi) segments. The GPe receives input from the striatum and sends inhibitory projections to the subthalamic nucleus, while the GPi sends inhibitory projections to the thalamus, which in turn projects to the cerebral cortex. These connections allow for the regulation of motor activity, with abnormal functioning of the Globus Pallidus being implicated in various movement disorders such as Parkinson's disease and Huntington's disease.

Parkinson's disease is a progressive neurodegenerative disorder that affects movement. It is characterized by the death of dopamine-producing cells in the brain, specifically in an area called the substantia nigra. The loss of these cells leads to a decrease in dopamine levels, which results in the motor symptoms associated with Parkinson's disease. These symptoms can include tremors at rest, stiffness or rigidity of the limbs and trunk, bradykinesia (slowness of movement), and postural instability (impaired balance and coordination). In addition to these motor symptoms, non-motor symptoms such as cognitive impairment, depression, anxiety, and sleep disturbances are also common in people with Parkinson's disease. The exact cause of Parkinson's disease is unknown, but it is thought to be a combination of genetic and environmental factors. There is currently no cure for Parkinson's disease, but medications and therapies can help manage the symptoms and improve quality of life.

Hypokinesia is a term used in medicine to describe decreased or reduced mobility and amplitude of movements. It can be seen in various medical conditions, most notably in Parkinson's disease. In this condition, hypokinesia manifests as bradykinesia (slowness of movement), akinesia (absence of movement), or both. Hypokinesia can also affect facial expressions, leading to a mask-like appearance. Other causes of hypokinesia include certain medications, stroke, and other neurological disorders.

Implanted electrodes are medical devices that are surgically placed inside the body to interface directly with nerves, neurons, or other electrically excitable tissue for various therapeutic purposes. These electrodes can be used to stimulate or record electrical activity from specific areas of the body, depending on their design and application.

There are several types of implanted electrodes, including:

1. Deep Brain Stimulation (DBS) electrodes: These are placed deep within the brain to treat movement disorders such as Parkinson's disease, essential tremor, and dystonia. DBS electrodes deliver electrical impulses that modulate abnormal neural activity in targeted brain regions.
2. Spinal Cord Stimulation (SCS) electrodes: These are implanted along the spinal cord to treat chronic pain syndromes. SCS electrodes emit low-level electrical pulses that interfere with pain signals traveling to the brain, providing relief for patients.
3. Cochlear Implant electrodes: These are surgically inserted into the cochlea of the inner ear to restore hearing in individuals with severe to profound hearing loss. The electrodes stimulate the auditory nerve directly, bypassing damaged hair cells within the cochlea.
4. Retinal Implant electrodes: These are implanted in the retina to treat certain forms of blindness caused by degenerative eye diseases like retinitis pigmentosa. The electrodes convert visual information from a camera into electrical signals, which stimulate remaining retinal cells and transmit the information to the brain via the optic nerve.
5. Sacral Nerve Stimulation (SNS) electrodes: These are placed near the sacral nerves in the lower back to treat urinary or fecal incontinence and overactive bladder syndrome. SNS electrodes deliver electrical impulses that regulate the function of the affected muscles and nerves.
6. Vagus Nerve Stimulation (VNS) electrodes: These are wrapped around the vagus nerve in the neck to treat epilepsy and depression. VNS electrodes provide intermittent electrical stimulation to the vagus nerve, which has connections to various regions of the brain involved in these conditions.

Overall, implanted electrodes serve as a crucial component in many neuromodulation therapies, offering an effective treatment option for numerous neurological and sensory disorders.

Essential tremor is a type of involuntary tremor, or shaking, that primarily affects the hands and arms. It can also affect the head, vocal cords, and other parts of the body. Essential tremor is often confused with Parkinson's disease, as they share some similar symptoms, but essential tremor is generally not associated with other neurological conditions.

The tremors associated with essential tremor typically occur when a person is performing voluntary movements, such as writing, eating, or using tools. The shaking may also occur at rest, but this is less common. Essential tremor usually worsens with stress, fatigue, and age.

While the exact cause of essential tremor is not known, it appears to have a genetic component, as it tends to run in families. In some cases, essential tremor may be related to alcohol use or other factors. There is no cure for essential tremor, but medications and lifestyle changes can help manage the symptoms and improve quality of life.

Stereotaxic techniques are minimally invasive surgical procedures used in neuroscience and neurology that allow for precise targeting and manipulation of structures within the brain. These methods use a stereotactic frame, which is attached to the skull and provides a three-dimensional coordinate system to guide the placement of instruments such as electrodes, cannulas, or radiation sources. The main goal is to reach specific brain areas with high precision and accuracy, minimizing damage to surrounding tissues. Stereotaxic techniques are widely used in research, diagnosis, and treatment of various neurological disorders, including movement disorders, pain management, epilepsy, and psychiatric conditions.

Electric stimulation therapy, also known as neuromuscular electrical stimulation (NMES) or electromyostimulation, is a therapeutic treatment that uses electrical impulses to stimulate muscles and nerves. The electrical signals are delivered through electrodes placed on the skin near the target muscle group or nerve.

The therapy can be used for various purposes, including:

1. Pain management: Electric stimulation can help reduce pain by stimulating the release of endorphins, which are natural painkillers produced by the body. It can also help block the transmission of pain signals to the brain.
2. Muscle rehabilitation: NMES can be used to prevent muscle atrophy and maintain muscle tone in individuals who are unable to move their muscles due to injury or illness, such as spinal cord injuries or stroke.
3. Improving circulation: Electric stimulation can help improve blood flow and reduce swelling by contracting the muscles and promoting the movement of fluids in the body.
4. Wound healing: NMES can be used to promote wound healing by increasing blood flow, reducing swelling, and improving muscle function around the wound site.
5. Muscle strengthening: Electric stimulation can be used to strengthen muscles by causing them to contract and relax repeatedly, which can help improve muscle strength and endurance.

It is important to note that electric stimulation therapy should only be administered under the guidance of a trained healthcare professional, as improper use can cause harm or discomfort.

Antiparkinson agents are a class of medications used to treat the symptoms of Parkinson's disease and related disorders. These agents work by increasing the levels or activity of dopamine, a neurotransmitter in the brain that is responsible for regulating movement and coordination.

There are several types of antiparkinson agents, including:

1. Levodopa: This is the most effective treatment for Parkinson's disease. It is converted to dopamine in the brain and helps to replace the missing dopamine in people with Parkinson's.
2. Dopamine agonists: These medications mimic the effects of dopamine in the brain and can be used alone or in combination with levodopa. Examples include pramipexole, ropinirole, and rotigotine.
3. Monoamine oxidase B (MAO-B) inhibitors: These medications block the breakdown of dopamine in the brain and can help to increase its levels. Examples include selegiline and rasagiline.
4. Catechol-O-methyltransferase (COMT) inhibitors: These medications block the breakdown of levodopa in the body, allowing it to reach the brain in higher concentrations. Examples include entacapone and tolcapone.
5. Anticholinergic agents: These medications block the action of acetylcholine, another neurotransmitter that can contribute to tremors and muscle stiffness in Parkinson's disease. Examples include trihexyphenidyl and benztropine.

It is important to note that antiparkinson agents can have side effects, and their use should be carefully monitored by a healthcare professional. The choice of medication will depend on the individual patient's symptoms, age, overall health, and other factors.

Dystonia is a neurological movement disorder characterized by involuntary muscle contractions, leading to repetitive or twisting movements. These movements can be painful and may affect one part of the body (focal dystonia) or multiple parts (generalized dystonia). The exact cause of dystonia varies, with some cases being inherited and others resulting from damage to the brain. Treatment options include medications, botulinum toxin injections, and deep brain stimulation surgery.

Dyskinesias are a type of movement disorder characterized by involuntary, erratic, and often repetitive muscle movements. These movements can affect any part of the body and can include twisting, writhing, or jerking motions, as well as slow, writhing contortions. Dyskinesias can be caused by a variety of factors, including certain medications (such as those used to treat Parkinson's disease), brain injury, stroke, infection, or exposure to toxins. They can also be a side effect of some medical treatments, such as radiation therapy or chemotherapy.

Dyskinesias can have a significant impact on a person's daily life, making it difficult for them to perform routine tasks and affecting their overall quality of life. Treatment for dyskinesias depends on the underlying cause and may include medication adjustments, surgery, or physical therapy. In some cases, dyskinesias may be managed with the use of assistive devices or by modifying the person's environment to make it easier for them to move around.

The thalamus is a large, paired structure in the brain that serves as a relay station for sensory and motor signals to the cerebral cortex. It is located in the dorsal part of the diencephalon and is made up of two symmetrical halves, each connected to the corresponding cerebral hemisphere.

The thalamus receives inputs from almost all senses, except for the olfactory system, and processes them before sending them to specific areas in the cortex. It also plays a role in regulating consciousness, sleep, and alertness. Additionally, the thalamus is involved in motor control by relaying information between the cerebellum and the motor cortex.

The thalamus is divided into several nuclei, each with distinct connections and functions. Some of these nuclei are involved in sensory processing, while others are involved in motor function or regulation of emotions and cognition. Overall, the thalamus plays a critical role in integrating information from various brain regions and modulating cognitive and emotional processes.

Levodopa, also known as L-dopa, is a medication used primarily in the treatment of Parkinson's disease. It is a direct precursor to the neurotransmitter dopamine and works by being converted into dopamine in the brain, helping to restore the balance between dopamine and other neurotransmitters. This helps alleviate symptoms such as stiffness, tremors, spasms, and poor muscle control. Levodopa is often combined with carbidopa (a peripheral decarboxylase inhibitor) to prevent the conversion of levodopa to dopamine outside of the brain, reducing side effects like nausea and vomiting.

The basal ganglia are a group of interconnected nuclei, or clusters of neurons, located in the base of the brain. They play a crucial role in regulating motor function, cognition, and emotion. The main components of the basal ganglia include the striatum (made up of the caudate nucleus, putamen, and ventral striatum), globus pallidus (divided into external and internal segments), subthalamic nucleus, and substantia nigra (with its pars compacta and pars reticulata).

The basal ganglia receive input from various regions of the cerebral cortex and other brain areas. They process this information and send output back to the thalamus and cortex, helping to modulate and coordinate movement. The basal ganglia also contribute to higher cognitive functions such as learning, decision-making, and habit formation. Dysfunction in the basal ganglia can lead to neurological disorders like Parkinson's disease, Huntington's disease, and dystonia.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

A tremor is an involuntary, rhythmic muscle contraction and relaxation that causes a shaking movement. It's a type of motion disorder that can affect any part of your body, but it most often occurs in your hands. Tremors can be harmless, but they can also be a symptom of a more serious neurological disorder. The cause of tremors isn't always known, but they can be the result of damage to the brain from a stroke, multiple sclerosis, or trauma. Certain medications, alcohol abuse, and drug withdrawal can also cause tremors. In some cases, tremors may be inherited and run in families.

Tremors can be classified based on their cause, appearance, and the situation in which they occur. The two most common types of tremors are:

* Resting tremors, which occur when your muscles are relaxed, such as when your hands are resting on your lap. Parkinson's disease is a common cause of this type of tremor.
* Action tremors, which occur with purposeful movement, such as when you're trying to hold something or when you're using a utensil. Essential tremor, the most common type of tremor, is an action tremor.

Tremors can also be classified based on their frequency (how often they occur) and amplitude (the size of the movement). High-frequency tremors are faster and smaller in amplitude, while low-frequency tremors are slower and larger in amplitude.

In general, tremors are not a life-threatening condition, but they can be embarrassing or make it difficult to perform daily activities. In some cases, tremors may indicate a more serious underlying condition that requires treatment. If you're concerned about tremors or have any questions about your symptoms, it's important to speak with a healthcare provider for an accurate diagnosis and appropriate treatment.

Movement disorders are a group of neurological conditions that affect the control and coordination of voluntary movements. These disorders can result from damage to or dysfunction of the cerebellum, basal ganglia, or other parts of the brain that regulate movement. Symptoms may include tremors, rigidity, bradykinesia (slowness of movement), akathisia (restlessness and inability to remain still), dystonia (sustained muscle contractions leading to abnormal postures), chorea (rapid, unpredictable movements), tics, and gait disturbances. Examples of movement disorders include Parkinson's disease, Huntington's disease, Tourette syndrome, and dystonic disorders.

The Beta rhythm is a type of brain wave that is typically observed in the electroencephalogram (EEG) of awake, alert individuals. It has a frequency range of 13-30 Hz (cycles per second) and is most prominent over the frontal and central regions of the scalp. Beta activity is associated with active thinking, problem solving, and focused attention. It can be suppressed during states of relaxation, meditation, or sleep. Additionally, abnormal beta activity has been observed in certain neurological conditions such as Parkinson's disease and seizure disorders.

The internal capsule is a critical structure in the brain that consists of a bundle of white matter fibers (nerve tracts) located deep within the cerebral hemispheres. It serves as a major pathway for the transmission of motor, sensory, and cognitive information between different regions of the brain. The internal capsule is divided into several segments, including the anterior limb, genu, posterior limb, and retrolentiform and sublentiform parts.

The fibers within the internal capsule can be categorized into three groups: corticopontine fibers, corticospinal and corticobulbar fibers, and thalamocortical fibers. Corticopontine fibers originate from the cerebral cortex and terminate in the pons. Corticospinal and corticobulbar fibers are responsible for motor functions, with corticospinal fibers controlling movements of the trunk and limbs, while corticobulbar fibers control movements of the face and head. Thalamocortical fibers carry sensory information from the thalamus to the cerebral cortex.

Damage to the internal capsule can result in various neurological deficits, depending on the specific location and extent of the injury. These may include motor impairments, sensory loss, cognitive dysfunction, or a combination of these symptoms.

The subthalamus is a region in the brain that is located deep beneath the thalamus and above the midbrain. It is a part of the basal ganglia, which are a group of structures involved in the control of movement. The subthalamus contains several different types of neurons, including glutamatergic and GABAergic neurons, and plays a role in regulating movement, reward, and motivation. It is also thought to be involved in the pathophysiology of certain neurological disorders such as Parkinson's disease.

The subthalamic nucleus (STN) is a specific structure within the subthalamus that has been the target of deep brain stimulation surgery for the treatment of movement disorders like Parkinson's disease and dystonia. The STN is responsible for regulating the activity of other structures in the basal ganglia, and its overactivity can lead to symptoms such as tremors, rigidity, and difficulty initiating movements. By implanting electrodes in the STN and delivering electrical impulses, deep brain stimulation can help to regulate the activity of the STN and alleviate some of these symptoms.

An electrode is a medical device that can conduct electrical currents and is used to transmit or receive electrical signals, often in the context of medical procedures or treatments. In a medical setting, electrodes may be used for a variety of purposes, such as:

1. Recording electrical activity in the body: Electrodes can be attached to the skin or inserted into body tissues to measure electrical signals produced by the heart, brain, muscles, or nerves. This information can be used to diagnose medical conditions, monitor the effectiveness of treatments, or guide medical procedures.
2. Stimulating nerve or muscle activity: Electrodes can be used to deliver electrical impulses to nerves or muscles, which can help to restore function or alleviate symptoms in people with certain medical conditions. For example, electrodes may be used to stimulate the nerves that control bladder function in people with spinal cord injuries, or to stimulate muscles in people with muscle weakness or paralysis.
3. Administering treatments: Electrodes can also be used to deliver therapeutic treatments, such as transcranial magnetic stimulation (TMS) for depression or deep brain stimulation (DBS) for movement disorders like Parkinson's disease. In these procedures, electrodes are implanted in specific areas of the brain and connected to a device that generates electrical impulses, which can help to regulate abnormal brain activity and improve symptoms.

Overall, electrodes play an important role in many medical procedures and treatments, allowing healthcare professionals to diagnose and treat a wide range of conditions that affect the body's electrical systems.

Dystonic disorders are a group of neurological conditions characterized by sustained or intermittent muscle contractions that result in involuntary, repetitive, and often twisting movements and abnormal postures. These movements can affect any part of the body, including the face, neck, limbs, and trunk. Dystonic disorders can be primary, meaning they are caused by genetic mutations or idiopathic causes, or secondary, resulting from brain injury, infection, or other underlying medical conditions.

The most common form of dystonia is cervical dystonia (spasmodic torticollis), which affects the muscles of the neck and results in abnormal head positioning. Other forms of dystonia include blepharospasm (involuntary eyelid spasms), oromandibular dystonia (affecting the muscles of the jaw, face, and tongue), and generalized dystonia (affecting multiple parts of the body).

Dystonic disorders can significantly impact a person's quality of life, causing pain, discomfort, and social isolation. Treatment options include oral medications, botulinum toxin injections, and deep brain stimulation surgery in severe cases.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

The Pedunculopontine Tegmental Nucleus (PPN) is a group of neurons located in the brainstem, specifically in the rostral pons and caudal mesencephalon. It plays a crucial role in various functions such as sleep-wake regulation, motor control, reward processing, and attention.

The PPN can be further divided into two subregions: the pedunculopontine tegmental nucleus pars oralis (PPTg) and the pedunculopontine tegmental nucleus pars caudalis (PPTc). These subregions contain cholinergic, glutamatergic, and GABAergic neurons that project to various brain regions, including the thalamus, basal forebrain, and cerebral cortex.

Dysfunction of the PPN has been implicated in several neurological disorders, such as Parkinson's disease, REM sleep behavior disorder, and depression. Therefore, understanding the structure and function of the PPN is essential for developing potential therapeutic strategies for these conditions.

Transcranial Magnetic Stimulation (TMS) is a non-invasive form of brain stimulation where a magnetic field is generated via an electromagnetic coil placed on the scalp. This magnetic field induces an electric current in the underlying brain tissue, which can lead to neuronal activation or inhibition, depending on the frequency and intensity of the stimulation. TMS has been used as a therapeutic intervention for various neurological and psychiatric conditions, such as depression, migraine, and tinnitus, among others. It is also used in research settings to investigate brain function and connectivity.

Muscle rigidity is a term used to describe an increased resistance to passive movement or muscle tone that is present at rest, which cannot be overcome by the person. It is a common finding in various neurological conditions such as Parkinson's disease, stiff-person syndrome, and tetanus. In these conditions, muscle rigidity can result from hyperexcitability of the stretch reflex arc or abnormalities in the basal ganglia circuitry.

Muscle rigidity should be distinguished from spasticity, which is a velocity-dependent increase in muscle tone that occurs during voluntary movement or passive stretching. Spasticity is often seen in upper motor neuron lesions such as stroke or spinal cord injury.

It's important to note that the assessment of muscle rigidity requires a careful physical examination and may need to be evaluated in conjunction with other signs and symptoms to determine an underlying cause.

Obsessive-Compulsive Disorder (OCD) is a mental health disorder characterized by the presence of obsessions and compulsions. Obsessions are recurrent and persistent thoughts, urges, or images that are intrusive, unwanted, and often distressing. Compulsions are repetitive behaviors or mental acts that an individual feels driven to perform in response to an obsession or according to rigid rules, and which are aimed at preventing or reducing anxiety or distress, or preventing some dreaded event or situation. These obsessions and/or compulsions cause significant distress, take up a lot of time (an hour or more a day), and interfere with the individual's daily life, including social activities, relationships, and work or school performance. OCD is considered a type of anxiety disorder and can also co-occur with other mental health conditions.

Neurological models are simplified representations or simulations of various aspects of the nervous system, including its structure, function, and processes. These models can be theoretical, computational, or physical and are used to understand, explain, and predict neurological phenomena. They may focus on specific neurological diseases, disorders, or functions, such as memory, learning, or movement. The goal of these models is to provide insights into the complex workings of the nervous system that cannot be easily observed or understood through direct examination alone.

Brain mapping is a broad term that refers to the techniques used to understand the structure and function of the brain. It involves creating maps of the various cognitive, emotional, and behavioral processes in the brain by correlating these processes with physical locations or activities within the nervous system. Brain mapping can be accomplished through a variety of methods, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET) scans, electroencephalography (EEG), and others. These techniques allow researchers to observe which areas of the brain are active during different tasks or thoughts, helping to shed light on how the brain processes information and contributes to our experiences and behaviors. Brain mapping is an important area of research in neuroscience, with potential applications in the diagnosis and treatment of neurological and psychiatric disorders.

Parkinsonian disorders are a group of neurological conditions characterized by motor symptoms such as bradykinesia (slowness of movement), rigidity, resting tremor, and postural instability. These symptoms are caused by the degeneration of dopamine-producing neurons in the brain, particularly in the substantia nigra pars compacta.

The most common Parkinsonian disorder is Parkinson's disease (PD), which is a progressive neurodegenerative disorder. However, there are also several other secondary Parkinsonian disorders, including:

1. Drug-induced parkinsonism: This is caused by the use of certain medications, such as antipsychotics and metoclopramide.
2. Vascular parkinsonism: This is caused by small vessel disease in the brain, which can lead to similar symptoms as PD.
3. Dementia with Lewy bodies (DLB): This is a type of dementia that shares some features with PD, such as the presence of alpha-synuclein protein clumps called Lewy bodies.
4. Progressive supranuclear palsy (PSP): This is a rare brain disorder that affects movement, gait, and eye movements.
5. Multiple system atrophy (MSA): This is a progressive neurodegenerative disorder that affects multiple systems in the body, including the autonomic nervous system, motor system, and cerebellum.
6. Corticobasal degeneration (CBD): This is a rare neurological disorder that affects both movement and cognition.

It's important to note that while these disorders share some symptoms with PD, they have different underlying causes and may require different treatments.

Speech disorders refer to a group of conditions in which a person has difficulty producing or articulating sounds, words, or sentences in a way that is understandable to others. These disorders can be caused by various factors such as developmental delays, neurological conditions, hearing loss, structural abnormalities, or emotional issues.

Speech disorders may include difficulties with:

* Articulation: the ability to produce sounds correctly and clearly.
* Phonology: the sound system of language, including the rules that govern how sounds are combined and used in words.
* Fluency: the smoothness and flow of speech, including issues such as stuttering or cluttering.
* Voice: the quality, pitch, and volume of the spoken voice.
* Resonance: the way sound is produced and carried through the vocal tract, which can affect the clarity and quality of speech.

Speech disorders can impact a person's ability to communicate effectively, leading to difficulties in social situations, academic performance, and even employment opportunities. Speech-language pathologists are trained to evaluate and treat speech disorders using various evidence-based techniques and interventions.

'Self-stimulation' is more commonly known as "autoeroticism" or "masturbation." It refers to the act of stimulating one's own genitals for sexual pleasure, which can lead to orgasm. This behavior is considered a normal part of human sexuality and is a safe way to explore one's body and sexual responses. Self-stimulation can also be used as a means of relieving sexual tension and promoting relaxation. It is important to note that self-stimulation should always be a consensual, private activity and not performed in public or against the will of another individual.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Tourette Syndrome (TS) is a neurological disorder characterized by the presence of multiple motor tics and at least one vocal (phonic) tic. These tics are sudden, repetitive, rapid, involuntary movements or sounds that occur for more than a year and are not due to substance use or other medical conditions. The symptoms typically start before the age of 18, with the average onset around 6-7 years old.

The severity, frequency, and types of tics can vary greatly among individuals with TS and may change over time. Common motor tics include eye blinking, facial grimacing, shoulder shrugging, and head or limb jerking. Vocal tics can range from simple sounds like throat clearing, coughing, or barking to more complex phrases or words.

In some cases, TS may be accompanied by co-occurring conditions such as attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, and depression. These associated symptoms can sometimes have a greater impact on daily functioning than the tics themselves.

The exact cause of Tourette Syndrome remains unclear, but it is believed to involve genetic factors and abnormalities in certain brain regions involved in movement control and inhibition. There is currently no cure for TS, but various treatments, including behavioral therapy and medications, can help manage the symptoms and improve quality of life.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

Neurosurgical procedures are operations that are performed on the brain, spinal cord, and peripheral nerves. These procedures are typically carried out by neurosurgeons, who are medical doctors with specialized training in the diagnosis and treatment of disorders of the nervous system. Neurosurgical procedures can be used to treat a wide range of conditions, including traumatic injuries, tumors, aneurysms, vascular malformations, infections, degenerative diseases, and congenital abnormalities.

Some common types of neurosurgical procedures include:

* Craniotomy: A procedure in which a bone flap is temporarily removed from the skull to gain access to the brain. This type of procedure may be performed to remove a tumor, repair a blood vessel, or relieve pressure on the brain.
* Spinal fusion: A procedure in which two or more vertebrae in the spine are fused together using bone grafts and metal hardware. This is often done to stabilize the spine and alleviate pain caused by degenerative conditions or spinal deformities.
* Microvascular decompression: A procedure in which a blood vessel that is causing pressure on a nerve is repositioned or removed. This type of procedure is often used to treat trigeminal neuralgia, a condition that causes severe facial pain.
* Deep brain stimulation: A procedure in which electrodes are implanted in specific areas of the brain and connected to a battery-operated device called a neurostimulator. The neurostimulator sends electrical impulses to the brain to help alleviate symptoms of movement disorders such as Parkinson's disease or dystonia.
* Stereotactic radiosurgery: A non-invasive procedure that uses focused beams of radiation to treat tumors, vascular malformations, and other abnormalities in the brain or spine. This type of procedure is often used for patients who are not good candidates for traditional surgery due to age, health status, or location of the lesion.

Neurosurgical procedures can be complex and require a high degree of skill and expertise. Patients considering neurosurgical treatment should consult with a qualified neurosurgeon to discuss their options and determine the best course of action for their individual situation.

Psychosurgery is a surgical intervention aimed at modifying or altering brain functions to treat severe and disabling mental disorders. It involves the deliberate destruction or disconnection of specific areas of the brain, typically through procedures such as lobotomy or stereotactic neurosurgery. These interventions are usually considered a last resort when other treatments have failed, and they are reserved for individuals with extreme cases of mental illness, such as intractable depression, obsessive-compulsive disorder, or severe anxiety disorders.

It's important to note that psychosurgery is a highly controversial and stigmatized field, and its use has declined significantly since the mid-20th century due to concerns about its effectiveness, ethics, and potential for harm. Today, psychosurgery is tightly regulated and subject to strict ethical guidelines in most countries.

A microelectrode is a small electrode with dimensions ranging from several micrometers to a few tens of micrometers in diameter. They are used in various biomedical applications, such as neurophysiological studies, neuromodulation, and brain-computer interfaces. In these applications, microelectrodes serve to record electrical activity from individual or small groups of neurons or deliver electrical stimuli to specific neural structures with high spatial resolution.

Microelectrodes can be fabricated using various materials, including metals (e.g., tungsten, stainless steel, platinum), metal alloys, carbon fibers, and semiconductor materials like silicon. The design of microelectrodes may vary depending on the specific application, with some common types being sharpened metal wires, glass-insulated metal microwires, and silicon-based probes with multiple recording sites.

The development and use of microelectrodes have significantly contributed to our understanding of neural function in health and disease, enabling researchers and clinicians to investigate the underlying mechanisms of neurological disorders and develop novel therapies for conditions such as Parkinson's disease, epilepsy, and hearing loss.

Thalamic diseases refer to conditions that affect the thalamus, which is a part of the brain that acts as a relay station for sensory and motor signals to the cerebral cortex. The thalamus plays a crucial role in regulating consciousness, sleep, and alertness. Thalamic diseases can cause a variety of symptoms depending on the specific area of the thalamus that is affected. These symptoms may include sensory disturbances, motor impairment, cognitive changes, and altered levels of consciousness. Examples of thalamic diseases include stroke, tumors, multiple sclerosis, infections, and degenerative disorders such as dementia and Parkinson's disease. Treatment for thalamic diseases depends on the underlying cause and may include medications, surgery, or rehabilitation therapy.

An implantable neurostimulator is a type of medical device that is surgically placed inside the body to deliver electrical stimulation to specific nerves or areas of the brain. This can be used to treat a variety of neurological conditions, such as chronic pain, epilepsy, Parkinson's disease, and essential tremor.

The device typically consists of one or more electrodes that are implanted near the target nerve or brain region, connected to a pulse generator that is implanted under the skin, usually in the chest or abdomen. The patient or healthcare provider can program the pulse generator to deliver electrical stimulation at specific times and intensities, which can help to modulate the activity of the targeted nerves and alleviate symptoms.

Implantable neurostimulators are typically considered when other treatments have failed or are not well-tolerated. While they are generally safe and effective, there are some risks associated with surgery and long-term use, such as infection, device malfunction, and discomfort at the implantation site. Therefore, careful consideration and discussion with a healthcare provider is necessary before deciding to proceed with this type of treatment.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

Sensation disorders are conditions that affect the nervous system's ability to receive and interpret sensory information from the environment. These disorders can affect any of the five senses, including sight, hearing, touch, taste, and smell. They can result in symptoms such as numbness, tingling, pain, or loss of sensation in various parts of the body.

Some common types of sensation disorders include:

1. Neuropathy: A disorder that affects the nerves, often causing numbness, tingling, or pain in the hands and feet.
2. Central pain syndrome: A condition that results from damage to the brain or spinal cord, leading to chronic pain.
3. Tinnitus: A ringing or buzzing sound in the ears that can be a symptom of an underlying hearing disorder.
4. Ageusia: The loss of taste sensation, often caused by damage to the tongue or nerves that transmit taste information to the brain.
5. Anosmia: The loss of smell sensation, which can result from a variety of causes including injury, infection, or neurological disorders.

Sensation disorders can have significant impacts on a person's quality of life and ability to perform daily activities. Treatment may involve medication, physical therapy, or other interventions aimed at addressing the underlying cause of the disorder.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

A cluster headache is a type of primary headache disorder characterized by severe, one-sided headaches that occur in clusters, meaning they happen several times a day for several weeks or months and then go into remission for a period of time. The pain of a cluster headache is typically intense and often described as a sharp, stabbing, or burning sensation around the eye or temple on one side of the head.

Cluster headaches are relatively rare, affecting fewer than 1 in 1000 people. They tend to affect men more often than women and usually start between the ages of 20 and 50. The exact cause of cluster headaches is not fully understood, but they are thought to be related to abnormalities in the hypothalamus, a part of the brain that regulates various bodily functions, including hormone production and sleep-wake cycles.

Cluster headache attacks can last from 15 minutes to several hours and may be accompanied by other symptoms such as redness or tearing of the eye, runny nose, sweating, or swelling on the affected side of the face. During a cluster period, headaches typically occur at the same time each day, often at night or in the early morning.

Cluster headaches can be treated with various medications, including triptans, oxygen therapy, and local anesthetics. Preventive treatments such as verapamil, lithium, or corticosteroids may also be used to reduce the frequency and severity of cluster headache attacks during a cluster period.

Dopamine agents are medications that act on dopamine receptors in the brain. Dopamine is a neurotransmitter, a chemical messenger that transmits signals in the brain and other areas of the body. It plays important roles in many functions, including movement, motivation, emotion, and cognition.

Dopamine agents can be classified into several categories based on their mechanism of action:

1. Dopamine agonists: These medications bind to dopamine receptors and mimic the effects of dopamine. They are used to treat conditions such as Parkinson's disease, restless legs syndrome, and certain types of dopamine-responsive dystonia. Examples include pramipexole, ropinirole, and rotigotine.
2. Dopamine precursors: These medications provide the building blocks for the body to produce dopamine. Levodopa is a commonly used dopamine precursor that is converted to dopamine in the brain. It is often used in combination with carbidopa, which helps to prevent levodopa from being broken down before it reaches the brain.
3. Dopamine antagonists: These medications block the action of dopamine at its receptors. They are used to treat conditions such as schizophrenia and certain types of nausea and vomiting. Examples include haloperidol, risperidone, and metoclopramide.
4. Dopamine reuptake inhibitors: These medications increase the amount of dopamine available in the synapse (the space between two neurons) by preventing its reuptake into the presynaptic neuron. They are used to treat conditions such as attention deficit hyperactivity disorder (ADHD) and depression. Examples include bupropion and nomifensine.
5. Dopamine release inhibitors: These medications prevent the release of dopamine from presynaptic neurons. They are used to treat conditions such as Tourette's syndrome and certain types of chronic pain. Examples include tetrabenazine and deutetrabenazine.

It is important to note that dopamine agents can have significant side effects, including addiction, movement disorders, and psychiatric symptoms. Therefore, they should be used under the close supervision of a healthcare provider.

Vagus nerve stimulation (VNS) is a medical treatment that involves the use of a device to send electrical signals to the vagus nerve, which is a key part of the body's autonomic nervous system. The autonomic nervous system controls various automatic functions of the body, such as heart rate and digestion.

In VNS, a small generator is implanted in the chest, and thin wires are routed under the skin to the vagus nerve in the neck. The generator is programmed to send electrical signals to the vagus nerve at regular intervals. These signals can help regulate certain body functions and have been found to be effective in treating a number of conditions, including epilepsy and depression.

The exact mechanism by which VNS works is not fully understood, but it is thought to affect the release of neurotransmitters, chemicals that transmit signals in the brain. This can help reduce seizure activity in people with epilepsy and improve mood and other symptoms in people with depression.

VNS is typically used as a last resort for people who have not responded to other treatments. It is generally considered safe, but like any medical procedure, it does carry some risks, such as infection, bleeding, and damage to the vagus nerve or surrounding tissues.

An electronic amplifier is a device that increases the power of an electrical signal. It does this by taking a small input signal and producing a larger output signal while maintaining the same or similar signal shape. Amplifiers are used in various applications, such as audio systems, radio communications, and medical equipment.

In medical terminology, electronic amplifiers can be found in different diagnostic and therapeutic devices. For example, they are used in electrocardiogram (ECG) machines to amplify the small electrical signals generated by the heart, making them strong enough to be recorded and analyzed. Similarly, in electromyography (EMG) tests, electronic amplifiers are used to amplify the weak electrical signals produced by muscles.

In addition, electronic amplifiers play a crucial role in neurostimulation devices such as cochlear implants, which require amplification of electrical signals to stimulate the auditory nerve and restore hearing in individuals with severe hearing loss. Overall, electronic amplifiers are essential components in many medical applications that involve the detection, measurement, or manipulation of weak electrical signals.

The Intralaminar Thalamic Nuclei are a group of nuclei located within the thalamus, a part of the brain that serves as a relay station for sensory and motor signals. These nuclei are situated between the laminae (layers) of the thalamus and are characterized by their intricate internal organization. They play a crucial role in various functions, including attention, consciousness, and sleep-wake regulation. The Intralaminar Thalamic Nuclei have extensive connections with the cerebral cortex and other subcortical structures, making them an essential component of the brain's neural circuitry.

The nucleus accumbens is a part of the brain that is located in the ventral striatum, which is a key region of the reward circuitry. It is made up of two subregions: the shell and the core. The nucleus accumbens receives inputs from various sources, including the prefrontal cortex, amygdala, and hippocampus, and sends outputs to the ventral pallidum and other areas.

The nucleus accumbens is involved in reward processing, motivation, reinforcement learning, and addiction. It plays a crucial role in the release of the neurotransmitter dopamine, which is associated with pleasure and reinforcement. Dysfunction in the nucleus accumbens has been implicated in various neurological and psychiatric conditions, including substance use disorders, depression, and obsessive-compulsive disorder.

The entopeduncular nucleus (EP) is a small, compact collection of neurons located in the ventral region of the diencephalon, specifically within the posterior intralaminar complex of the thalamus. It is present in various mammals, including humans. The EP nucleus receives inputs from the basal ganglia and projects to the brainstem and other thalamic nuclei.

In rodents, the entopeduncular nucleus is also known as the globus pallidus internus (GPi). However, in primates, including humans, the GPi is a separate structure located near the EP nucleus. Both structures are part of the basal ganglia circuitry and play essential roles in motor control, procedural learning, and habit formation.

The entopeduncular nucleus has been implicated in several neurological conditions, such as Parkinson's disease, Huntington's disease, and dystonia. Deep brain stimulation (DBS) of the EP nucleus or GPi is an effective treatment for reducing motor symptoms associated with these disorders.

Brain chemistry refers to the chemical processes that occur within the brain, particularly those involving neurotransmitters, neuromodulators, and neuropeptides. These chemicals are responsible for transmitting signals between neurons (nerve cells) in the brain, allowing for various cognitive, emotional, and physical functions.

Neurotransmitters are chemical messengers that transmit signals across the synapse (the tiny gap between two neurons). Examples of neurotransmitters include dopamine, serotonin, norepinephrine, GABA (gamma-aminobutyric acid), and glutamate. Each neurotransmitter has a specific role in brain function, such as regulating mood, motivation, attention, memory, and movement.

Neuromodulators are chemicals that modify the effects of neurotransmitters on neurons. They can enhance or inhibit the transmission of signals between neurons, thereby modulating brain activity. Examples of neuromodulators include acetylcholine, histamine, and substance P.

Neuropeptides are small protein-like molecules that act as neurotransmitters or neuromodulators. They play a role in various physiological functions, such as pain perception, stress response, and reward processing. Examples of neuropeptides include endorphins, enkephalins, and oxytocin.

Abnormalities in brain chemistry can lead to various neurological and psychiatric conditions, such as depression, anxiety disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. Understanding brain chemistry is crucial for developing effective treatments for these conditions.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Motor skills are defined as the abilities required to plan, control and execute physical movements. They involve a complex interplay between the brain, nerves, muscles, and the environment. Motor skills can be broadly categorized into two types: fine motor skills, which involve small, precise movements (such as writing or picking up small objects), and gross motor skills, which involve larger movements using the arms, legs, and torso (such as crawling, walking, or running).

Motor skills development is an essential aspect of child growth and development, and it continues to evolve throughout adulthood. Difficulties with motor skills can impact a person's ability to perform daily activities and can be associated with various neurological and musculoskeletal conditions.

The Differential Threshold, also known as the Just Noticeable Difference (JND), is the minimum change in a stimulus that can be detected or perceived as different from another stimulus by an average human observer. It is a fundamental concept in psychophysics, which deals with the relationship between physical stimuli and the sensations and perceptions they produce.

The differential threshold is typically measured using methods such as the method of limits or the method of constant stimuli, in which the intensity of a stimulus is gradually increased or decreased until the observer can reliably detect a difference. The difference between the original stimulus and the barely detectable difference is then taken as the differential threshold.

The differential threshold can vary depending on a number of factors, including the type of stimulus (e.g., visual, auditory, tactile), the intensity of the original stimulus, the observer's attention and expectations, and individual differences in sensory sensitivity. Understanding the differential threshold is important for many applications, such as designing sensory aids for people with hearing or vision impairments, optimizing the design of multimedia systems, and developing more effective methods for detecting subtle changes in physiological signals.

Electric capacitance is a measure of the amount of electrical charge that a body or system can hold for a given electric potential. In other words, it is a measure of the capacity of a body or system to store an electric charge. The unit of electric capacitance is the farad (F), which is defined as the capacitance of a conductor that, when charged with one coulomb of electricity, has a potential difference of one volt between its surfaces.

In medical terms, electric capacitance may be relevant in the context of electrical stimulation therapies, such as transcutaneous electrical nerve stimulation (TENS) or functional electrical stimulation (FES). In these therapies, electrodes are placed on the skin and a controlled electric current is applied to stimulate nerves or muscles. The electric capacitance of the tissue and electrodes can affect the distribution and intensity of the electric field, which in turn can influence the therapeutic effect.

It is important to note that while electric capacitance is a fundamental concept in physics and engineering, it is not a commonly used term in medical practice or research. Instead, terms such as impedance or resistance are more commonly used to describe the electrical properties of biological tissues.

Electroencephalography (EEG) is a medical procedure that records electrical activity in the brain. It uses small, metal discs called electrodes, which are attached to the scalp with paste or a specialized cap. These electrodes detect tiny electrical charges that result from the activity of brain cells, and the EEG machine then amplifies and records these signals.

EEG is used to diagnose various conditions related to the brain, such as seizures, sleep disorders, head injuries, infections, and degenerative diseases like Alzheimer's or Parkinson's. It can also be used during surgery to monitor brain activity and ensure that surgical procedures do not interfere with vital functions.

EEG is a safe and non-invasive procedure that typically takes about 30 minutes to an hour to complete, although longer recordings may be necessary in some cases. Patients are usually asked to relax and remain still during the test, as movement can affect the quality of the recording.

Carbidopa is a peripheral decarboxylase inhibitor used in the treatment of Parkinson's disease. It works by preventing the conversion of levodopa to dopamine outside of the brain, allowing more levodopa to reach the brain and reduce the symptoms of Parkinson's disease. Carbidopa is often combined with levodopa in medication formulations and is available under various brand names, such as Sinemet.

Here are some key points about carbidopa:

* It is a peripheral decarboxylase inhibitor that prevents the conversion of levodopa to dopamine outside of the brain.
* Carbidopa is often combined with levodopa in medication formulations for the treatment of Parkinson's disease.
* By preventing the conversion of levodopa to dopamine outside of the brain, more levodopa can reach the brain and reduce the symptoms of Parkinson's disease.
* Common side effects of carbidopa include nausea, vomiting, and orthostatic hypotension.
* Carbidopa should be used under the guidance of a healthcare professional and dosed appropriately to minimize side effects and maximize therapeutic benefit.

Pallidotomy is a surgical procedure that involves the lesioning or removal of a specific part of the brain called the globus pallidus, which is located within the basal ganglia. This procedure is typically performed to alleviate symptoms associated with movement disorders such as Parkinson's disease and dystonia. By selectively damaging or removing the overactive neurons in the globus pallidus, pallidotomy can help restore balance to the neural circuits that control movement, thereby reducing tremors, rigidity, and other motor symptoms.

It is important to note that pallidotomy is an invasive procedure with potential risks and complications, including infection, bleeding, and cognitive or emotional side effects. As a result, it is typically reserved for patients who have not responded well to more conservative treatments such as medication. In recent years, deep brain stimulation (DBS) has emerged as an alternative surgical treatment that can achieve similar therapeutic benefits with fewer risks and greater reversibility.

Neuropsychological tests are a type of psychological assessment that measures cognitive functions, such as attention, memory, language, problem-solving, and perception. These tests are used to help diagnose and understand the cognitive impact of neurological conditions, including dementia, traumatic brain injury, stroke, Parkinson's disease, and other disorders that affect the brain.

The tests are typically administered by a trained neuropsychologist and can take several hours to complete. They may involve paper-and-pencil tasks, computerized tasks, or interactive activities. The results of the tests are compared to normative data to help identify any areas of cognitive weakness or strength.

Neuropsychological testing can provide valuable information for treatment planning, rehabilitation, and assessing response to treatment. It can also be used in research to better understand the neural basis of cognition and the impact of neurological conditions on cognitive function.

A nerve net, also known as a neural net or neuronal network, is not a medical term per se, but rather a concept in neuroscience and artificial intelligence (AI). It refers to a complex network of interconnected neurons that process and transmit information. In the context of the human body, the nervous system can be thought of as a type of nerve net, with the brain and spinal cord serving as the central processing unit and peripheral nerves carrying signals to and from various parts of the body.

In the field of AI, artificial neural networks are computational models inspired by the structure and function of biological nerve nets. These models consist of interconnected nodes or "neurons" that process information and learn patterns through a process of training and adaptation. They have been used in a variety of applications, including image recognition, natural language processing, and machine learning.

Neurosurgery, also known as neurological surgery, is a medical specialty that involves the diagnosis, surgical treatment, and rehabilitation of disorders of the nervous system. This includes the brain, spinal cord, peripheral nerves, and extra-cranial cerebrovascular system. Neurosurgeons use both traditional open and minimally invasive techniques to treat various conditions such as tumors, trauma, vascular disorders, infections, stroke, epilepsy, pain, and congenital anomalies. They work closely with other healthcare professionals including neurologists, radiologists, oncologists, and critical care specialists to provide comprehensive patient care.

Dysarthria is a motor speech disorder that results from damage to the nervous system, particularly the brainstem or cerebellum. It affects the muscles used for speaking, causing slurred, slow, or difficult speech. The specific symptoms can vary depending on the underlying cause and the extent of nerve damage. Treatment typically involves speech therapy to improve communication abilities.

A neurological examination is a series of tests used to evaluate the functioning of the nervous system, including both the central nervous system (the brain and spinal cord) and peripheral nervous system (the nerves that extend from the brain and spinal cord to the rest of the body). It is typically performed by a healthcare professional such as a neurologist or a primary care physician with specialized training in neurology.

During a neurological examination, the healthcare provider will assess various aspects of neurological function, including:

1. Mental status: This involves evaluating a person's level of consciousness, orientation, memory, and cognitive abilities.
2. Cranial nerves: There are 12 cranial nerves that control functions such as vision, hearing, smell, taste, and movement of the face and neck. The healthcare provider will test each of these nerves to ensure they are functioning properly.
3. Motor function: This involves assessing muscle strength, tone, coordination, and reflexes. The healthcare provider may ask the person to perform certain movements or tasks to evaluate these functions.
4. Sensory function: The healthcare provider will test a person's ability to feel different types of sensations, such as touch, pain, temperature, vibration, and proprioception (the sense of where your body is in space).
5. Coordination and balance: The healthcare provider may assess a person's ability to perform coordinated movements, such as touching their finger to their nose or walking heel-to-toe.
6. Reflexes: The healthcare provider will test various reflexes throughout the body using a reflex hammer.

The results of a neurological examination can help healthcare providers diagnose and monitor conditions that affect the nervous system, such as stroke, multiple sclerosis, Parkinson's disease, or peripheral neuropathy.

Computer-assisted signal processing is a medical term that refers to the use of computer algorithms and software to analyze, interpret, and extract meaningful information from biological signals. These signals can include physiological data such as electrocardiogram (ECG) waves, electromyography (EMG) signals, electroencephalography (EEG) readings, or medical images.

The goal of computer-assisted signal processing is to automate the analysis of these complex signals and extract relevant features that can be used for diagnostic, monitoring, or therapeutic purposes. This process typically involves several steps, including:

1. Signal acquisition: Collecting raw data from sensors or medical devices.
2. Preprocessing: Cleaning and filtering the data to remove noise and artifacts.
3. Feature extraction: Identifying and quantifying relevant features in the signal, such as peaks, troughs, or patterns.
4. Analysis: Applying statistical or machine learning algorithms to interpret the extracted features and make predictions about the underlying physiological state.
5. Visualization: Presenting the results in a clear and intuitive way for clinicians to review and use.

Computer-assisted signal processing has numerous applications in healthcare, including:

* Diagnosing and monitoring cardiac arrhythmias or other heart conditions using ECG signals.
* Assessing muscle activity and function using EMG signals.
* Monitoring brain activity and diagnosing neurological disorders using EEG readings.
* Analyzing medical images to detect abnormalities, such as tumors or fractures.

Overall, computer-assisted signal processing is a powerful tool for improving the accuracy and efficiency of medical diagnosis and monitoring, enabling clinicians to make more informed decisions about patient care.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

A tic is a sudden, repetitive, involuntary movement or vocalization that occurs frequently. Tics can be simple, involving only one muscle group, or complex, involving several muscle groups or coordinated patterns of movements. Common motor tics include eye blinking, facial grimacing, and shoulder shrugging, while common vocal tics include throat clearing, sniffing, and grunting.

Tics can vary in severity and frequency over time, and they may be exacerbated by stress, anxiety, or fatigue. In some cases, tics may be suppressible for brief periods of time, but this can lead to a buildup of tension that eventually results in an explosive release of the tic.

Tourette syndrome is a neurological disorder characterized by the presence of both motor and vocal tics that persist for more than one year. However, tics can also occur as a symptom of other medical conditions, such as Huntington's disease, Wilson's disease, or certain infections. In some cases, tics may be caused by medication side effects or substance abuse.

Neuropsychiatry is a subspecialty that focuses on the integration of neurology and psychiatry, combining knowledge from both fields to understand, diagnose, and treat disorders that involve both the brain and behavior. It addresses conditions where mental disorders (such as schizophrenia, mood disorders, anxiety disorders) are thought to be caused or influenced by underlying neurological conditions (such as epilepsy, dementia, Parkinson's disease). Neuropsychiatrists evaluate, manage, and treat patients with complex neurobehavioral disorders using a comprehensive approach that considers biological, psychological, and social factors.

The motor cortex is a region in the frontal lobe of the brain that is responsible for controlling voluntary movements. It is involved in planning, initiating, and executing movements of the limbs, body, and face. The motor cortex contains neurons called Betz cells, which have large cell bodies and are responsible for transmitting signals to the spinal cord to activate muscles. Damage to the motor cortex can result in various movement disorders such as hemiplegia or paralysis on one side of the body.

The ventral thalamic nuclei are a group of nuclei located in the ventral part of the thalamus, a region of the diencephalon in the brain. These nuclei play a crucial role in sensory and motor functions, as well as cognitive processes such as attention and memory. They include several subnuclei, such as the ventral anterior (VA), ventral lateral (VL), ventral medial (VM), and ventral posterior (VP) nuclei.

The ventral anterior and ventral lateral nuclei are involved in motor control and receive inputs from the basal ganglia, cerebellum, and cortex. They project to the premotor and motor areas of the cortex, contributing to the planning, initiation, and execution of movements.

The ventral medial nucleus is associated with emotional processing and receives inputs from the limbic system, including the amygdala and hippocampus. It projects to the prefrontal cortex and cingulate gyrus, contributing to the regulation of emotions and motivation.

The ventral posterior nuclei are involved in sensory processing, particularly for tactile and proprioceptive information. They receive inputs from the spinal cord and brainstem and project to the primary somatosensory cortex, where they contribute to the perception of touch, pressure, temperature, and body position.

Overall, the ventral thalamic nuclei are an essential component of the neural circuits involved in sensory, motor, and cognitive functions, and their dysfunction has been implicated in various neurological and psychiatric disorders.

Myoclonus is a medical term that describes a quick, involuntary jerking muscle spasm. These spasms can happen once or repeat in a series, and they can range from mild to severe in nature. Myoclonus can affect any muscle in the body and can be caused by several different conditions, including certain neurological disorders, injuries, or diseases. In some cases, myoclonus may occur without an identifiable cause.

There are various types of myoclonus, classified based on their underlying causes, patterns of occurrence, and associated symptoms. Some common forms include:

1. Action myoclonus: Occurs during voluntary muscle movements
2. Stimulus-sensitive myoclonus: Triggered by external or internal stimuli, such as touch, sound, or light
3. Physiological myoclonus: Normal muscle jerks that occur during sleep onset (hypnic jerks) or during sleep (nocturnal myoclonus)
4. Reflex myoclonus: Result of a reflex arc activation due to a peripheral nerve stimulation
5. Epileptic myoclonus: Part of an epilepsy syndrome, often involving the brainstem or cortex
6. Symptomatic myoclonus: Occurs as a result of an underlying medical condition, such as metabolic disorders, infections, or neurodegenerative diseases

Treatment for myoclonus depends on the specific type and underlying cause. Medications, physical therapy, or lifestyle modifications may be recommended to help manage symptoms and improve quality of life.

Torticollis, also known as wry neck, is a condition where the neck muscles contract and cause the head to turn to one side. There are different types of torticollis including congenital (present at birth), acquired (develops after birth), and spasmodic (neurological).

Congenital torticollis can be caused by a tight or shortened sternocleidomastoid muscle in the neck, which can occur due to positioning in the womb or abnormal blood vessels in the muscle. Acquired torticollis can result from injury, infection, or tumors in the neck. Spasmodic torticollis is a neurological disorder that causes involuntary contractions of the neck muscles and can be caused by a variety of factors including genetics, environmental toxins, or head trauma.

Symptoms of torticollis may include difficulty turning the head, tilting the chin upwards or downwards, pain or discomfort in the neck, and a limited range of motion. Treatment for torticollis depends on the underlying cause and can include physical therapy, stretching exercises, medication, or surgery.

Cerebral dominance is a concept in neuropsychology that refers to the specialization of one hemisphere of the brain over the other for certain cognitive functions. In most people, the left hemisphere is dominant for language functions such as speaking and understanding spoken or written language, while the right hemisphere is dominant for non-verbal functions such as spatial ability, face recognition, and artistic ability.

Cerebral dominance does not mean that the non-dominant hemisphere is incapable of performing the functions of the dominant hemisphere, but rather that it is less efficient or specialized in those areas. The concept of cerebral dominance has been used to explain individual differences in cognitive abilities and learning styles, as well as the laterality of brain damage and its effects on cognition and behavior.

It's important to note that cerebral dominance is a complex phenomenon that can vary between individuals and can be influenced by various factors such as genetics, environment, and experience. Additionally, recent research has challenged the strict lateralization of functions and suggested that there is more functional overlap and interaction between the two hemispheres than previously thought.

An "atlas" in the medical context refers to a collection of anatomical plates or illustrations, often accompanied by detailed descriptions or explanations. A medical atlas is a type of textbook that focuses primarily on providing visual representations of human anatomy, physiology, or pathology. These atlases are used by medical students, healthcare professionals, and researchers to learn about the structure and function of the human body, as well as to identify and understand various diseases and conditions.

Medical atlases can cover a wide range of topics, including gross anatomy, histology (the study of tissues), embryology (the study of embryonic development), pathology (the study of disease), and radiology (the use of medical imaging to diagnose and treat diseases). Some atlases may focus on specific regions or systems of the body, such as the nervous system, musculoskeletal system, or cardiovascular system.

Medical atlases are often used in conjunction with other educational materials, such as textbooks, lectures, and hands-on dissections. They can be a valuable resource for students and practitioners seeking to deepen their understanding of human anatomy and related fields.

Therapeutic misconception is a term used in medical ethics to describe the situation where research subjects fail to understand the primary purpose of a clinical trial and instead view it as a treatment for their personal illness. This can occur when participants do not fully comprehend the difference between standard medical care and experimental treatments, and they may believe that the experimental treatment is specifically tailored to their needs or that it has greater benefits than it actually does.

Therapeutic misconception can lead to participants making uninformed decisions about participating in clinical trials, potentially compromising their ability to provide informed consent. It can also result in unrealistic expectations and disappointment if the experimental treatment is not as effective as they hoped. Therefore, it is essential for researchers to ensure that potential trial participants fully understand the nature of the study and the distinction between therapeutic and research objectives before obtaining their informed consent.

Apomorphine is a non-selective dopamine receptor agonist, which means that it activates dopamine receptors in the brain. It has a high affinity for D1 and D2 dopamine receptors and is used medically to treat Parkinson's disease, particularly in cases of severe or intractable motor fluctuations.

Apomorphine can be administered subcutaneously (under the skin) as a solution or as a sublingual (under the tongue) film. It works by stimulating dopamine receptors in the brain, which helps to reduce the symptoms of Parkinson's disease such as stiffness, tremors, and difficulty with movement.

In addition to its use in Parkinson's disease, apomorphine has also been investigated for its potential therapeutic benefits in other neurological disorders, including alcohol use disorder and drug addiction. However, more research is needed to establish its safety and efficacy in these conditions.

Reaction time, in the context of medicine and physiology, refers to the time period between the presentation of a stimulus and the subsequent initiation of a response. This complex process involves the central nervous system, particularly the brain, which perceives the stimulus, processes it, and then sends signals to the appropriate muscles or glands to react.

There are different types of reaction times, including simple reaction time (responding to a single, expected stimulus) and choice reaction time (choosing an appropriate response from multiple possibilities). These measures can be used in clinical settings to assess various aspects of neurological function, such as cognitive processing speed, motor control, and alertness.

However, it is important to note that reaction times can be influenced by several factors, including age, fatigue, attention, and the use of certain medications or substances.

Secondary Parkinson's disease, also known as acquired or symptomatic Parkinsonism, is a clinical syndrome characterized by the signs and symptoms of classic Parkinson's disease (tremor at rest, rigidity, bradykinesia, and postural instability) but caused by a known secondary cause. These causes can include various conditions such as brain injuries, infections, drugs or toxins, metabolic disorders, and vascular damage. The underlying pathology of secondary Parkinson's disease is different from that of classic Parkinson's disease, which is primarily due to the degeneration of dopamine-producing neurons in a specific area of the brain called the substantia nigra pars compacta.

Electroconvulsive therapy (ECT) is a medical treatment most commonly used in cases of severe or treatment-resistant major depression, bipolar disorder, and catatonia. In ECT, a brief electrical current is passed through the brain, intentionally triggering a seizure. The purpose and specific effects of this procedure are not fully understood, but it's believed to cause changes in brain chemistry that can help relieve symptoms of certain mental health conditions.

The treatment is typically administered under general anesthesia and is usually given two to three times a week for a total of six to twelve treatments. While ECT has been associated with certain risks, such as memory loss and confusion, it is generally considered safe when performed by trained medical professionals. It's important to note that ECT should only be used in cases where other treatment options have been exhausted or have proven ineffective.

Neural inhibition is a process in the nervous system that decreases or prevents the activity of neurons (nerve cells) in order to regulate and control communication within the nervous system. It is a fundamental mechanism that allows for the balance of excitation and inhibition necessary for normal neural function. Inhibitory neurotransmitters, such as GABA (gamma-aminobutyric acid) and glycine, are released from the presynaptic neuron and bind to receptors on the postsynaptic neuron, reducing its likelihood of firing an action potential. This results in a decrease in neural activity and can have various effects depending on the specific neurons and brain regions involved. Neural inhibition is crucial for many functions including motor control, sensory processing, attention, memory, and emotional regulation.

A gait disorder is a disturbance in the ability to walk that can't be attributed to physical disabilities such as weakness or paralysis. Neurologic gait disorders are those specifically caused by underlying neurological conditions. These disorders can result from damage to the brain, spinal cord, or peripheral nerves that disrupts communication between the muscles and the brain.

Neurologic gait disorders can present in various ways, including:

1. **Spastic Gait:** This is a stiff, foot-dragging walk caused by increased muscle tone (hypertonia) and stiffness (spasticity). It's often seen in conditions like cerebral palsy or multiple sclerosis.

2. **Ataxic Gait:** This is a broad-based, unsteady, and irregular walk caused by damage to the cerebellum, which affects balance and coordination. Conditions such as cerebellar atrophy or stroke can cause this type of gait disorder.

3. **Parkinsonian Gait:** This is a shuffling walk with small steps, flexed knees, and difficulty turning. It's often seen in Parkinson's disease.

4. **Neuropathic Gait:** This is a high-stepping walk caused by foot drop (difficulty lifting the front part of the foot), which results from damage to the peripheral nerves. Conditions such as diabetic neuropathy or Guillain-Barre syndrome can cause this type of gait disorder.

5. **Choreic Gait:** This is an irregular, dance-like walk caused by involuntary movements (chorea) seen in conditions like Huntington's disease.

6. **Mixed Gait:** Sometimes, a person may exhibit elements of more than one type of gait disorder.

The specific type of gait disorder can provide important clues about the underlying neurological condition and help guide diagnosis and treatment.

A brain injury is defined as damage to the brain that occurs following an external force or trauma, such as a blow to the head, a fall, or a motor vehicle accident. Brain injuries can also result from internal conditions, such as lack of oxygen or a stroke. There are two main types of brain injuries: traumatic and acquired.

Traumatic brain injury (TBI) is caused by an external force that results in the brain moving within the skull or the skull being fractured. Mild TBIs may result in temporary symptoms such as headaches, confusion, and memory loss, while severe TBIs can cause long-term complications, including physical, cognitive, and emotional impairments.

Acquired brain injury (ABI) is any injury to the brain that occurs after birth and is not hereditary, congenital, or degenerative. ABIs are often caused by medical conditions such as strokes, tumors, anoxia (lack of oxygen), or infections.

Both TBIs and ABIs can range from mild to severe and may result in a variety of physical, cognitive, and emotional symptoms that can impact a person's ability to perform daily activities and function independently. Treatment for brain injuries typically involves a multidisciplinary approach, including medical management, rehabilitation, and supportive care.

An action potential is a brief electrical signal that travels along the membrane of a nerve cell (neuron) or muscle cell. It is initiated by a rapid, localized change in the permeability of the cell membrane to specific ions, such as sodium and potassium, resulting in a rapid influx of sodium ions and a subsequent efflux of potassium ions. This ion movement causes a brief reversal of the electrical potential across the membrane, which is known as depolarization. The action potential then propagates along the cell membrane as a wave, allowing the electrical signal to be transmitted over long distances within the body. Action potentials play a crucial role in the communication and functioning of the nervous system and muscle tissue.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a chemical compound that can cause permanent parkinsonian symptoms. It is not a medication or a treatment, but rather a toxin that can damage the dopamine-producing neurons in the brain, leading to symptoms similar to those seen in Parkinson's disease.

MPTP itself is not harmful, but it is metabolized in the body into a toxic compound called MPP+, which accumulates in and damages dopaminergic neurons. MPTP was discovered in the 1980s when a group of drug users in California developed parkinsonian symptoms after injecting a heroin-like substance contaminated with MPTP.

Since then, MPTP has been used as a research tool to study Parkinson's disease and develop new treatments. However, it is not used clinically and should be handled with caution due to its toxicity.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Thermometry is the measurement of temperature. It involves the use of thermometers or other devices that can detect and quantify heat energy to determine the temperature of a body, object, environment, or substance. There are various types of thermometry techniques and thermometers, including mercury or alcohol-based clinical thermometers for measuring human body temperature, digital thermometers, infrared thermometers, and thermocouples or resistance temperature detectors (RTDs) for industrial or scientific applications. The choice of thermometry method depends on the required precision, temperature range, and the nature of the substance or object being measured.

The medial forebrain bundle (MFB) is a group of fiber tracts in the brain that carries various neurotransmitters, including dopamine, serotonin, and norepinephrine. It plays a crucial role in reward processing, motivation, and reinforcement, as well as regulation of motor function, cognition, and emotion.

The MFB is located in the ventral part of the forebrain and extends from the ventral tegmental area (VTA) in the midbrain to the prefrontal cortex, nucleus accumbens, amygdala, and other limbic structures in the basal forebrain.

Damage to the MFB can result in various neurological and psychiatric symptoms, such as motor impairment, mood disorders, and addiction. Stimulation of the MFB has been shown to produce rewarding effects and is implicated in the reinforcing properties of drugs of abuse.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

Evoked potentials (EPs) are medical tests that measure the electrical activity in the brain or spinal cord in response to specific sensory stimuli, such as sight, sound, or touch. These tests are often used to help diagnose and monitor conditions that affect the nervous system, such as multiple sclerosis, brainstem tumors, and spinal cord injuries.

There are several types of EPs, including:

1. Visual Evoked Potentials (VEPs): These are used to assess the function of the visual pathway from the eyes to the back of the brain. A patient is typically asked to look at a patterned image or flashing light while electrodes placed on the scalp record the electrical responses.
2. Brainstem Auditory Evoked Potentials (BAEPs): These are used to evaluate the function of the auditory nerve and brainstem. Clicking sounds are presented to one or both ears, and electrodes placed on the scalp measure the response.
3. Somatosensory Evoked Potentials (SSEPs): These are used to assess the function of the peripheral nerves and spinal cord. Small electrical shocks are applied to a nerve at the wrist or ankle, and electrodes placed on the scalp record the response as it travels up the spinal cord to the brain.
4. Motor Evoked Potentials (MEPs): These are used to assess the function of the motor pathways in the brain and spinal cord. A magnetic or electrical stimulus is applied to the brain or spinal cord, and electrodes placed on a muscle measure the response as it travels down the motor pathway.

EPs can help identify abnormalities in the nervous system that may not be apparent through other diagnostic tests, such as imaging studies or clinical examinations. They are generally safe, non-invasive procedures with few risks or side effects.

Treatment-resistant depressive disorder is a severe form of depression that does not respond to standard treatments. It is also known as refractory depression or treatment-refractory depression.

The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) defines treatment-resistant depressive disorder as a major depressive disorder that has not responded to at least two trials of adequate doses of appropriately chosen antidepressant medications, either singly or in combination, for a sufficient duration of time.

The definition may also include cases where the patient has not responded to psychotherapy, electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), or other forms of treatment.

It is important to note that determining whether a depression is truly treatment-resistant can be challenging and requires careful evaluation by a mental health professional. Factors such as medication adherence, dosage, duration of treatment, and the presence of co-occurring medical or psychiatric conditions must be taken into account before making this diagnosis.

Brain neoplasms, also known as brain tumors, are abnormal growths of cells within the brain. These growths can be benign (non-cancerous) or malignant (cancerous). Benign brain tumors typically grow slowly and do not spread to other parts of the body. However, they can still cause serious problems if they press on sensitive areas of the brain. Malignant brain tumors, on the other hand, are cancerous and can grow quickly, invading surrounding brain tissue and spreading to other parts of the brain or spinal cord.

Brain neoplasms can arise from various types of cells within the brain, including glial cells (which provide support and insulation for nerve cells), neurons (nerve cells that transmit signals in the brain), and meninges (the membranes that cover the brain and spinal cord). They can also result from the spread of cancer cells from other parts of the body, known as metastatic brain tumors.

Symptoms of brain neoplasms may vary depending on their size, location, and growth rate. Common symptoms include headaches, seizures, weakness or paralysis in the limbs, difficulty with balance and coordination, changes in speech or vision, confusion, memory loss, and changes in behavior or personality.

Treatment for brain neoplasms depends on several factors, including the type, size, location, and grade of the tumor, as well as the patient's age and overall health. Treatment options may include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence and manage any long-term effects of treatment.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Electrochemical techniques are a group of analytical methods used in chemistry and biochemistry that involve the study of chemical processes that cause electrons to move. These techniques use an electrochemical cell, which consists of two electrodes (a working electrode and a counter electrode) immersed in an electrolyte solution. An electrical potential is applied between the electrodes, which drives redox reactions to occur at the electrode surfaces. The resulting current that flows through the cell can be measured and related to the concentration of analytes in the solution.

There are several types of electrochemical techniques, including:

1. Voltammetry: This technique measures the current that flows through the cell as a function of the applied potential. There are several types of voltammetry, including cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry.
2. Amperometry: This technique measures the current that flows through the cell at a constant potential.
3. Potentiometry: This technique measures the potential difference between the working electrode and a reference electrode at zero current flow.
4. Impedance spectroscopy: This technique measures the impedance of the electrical circuit formed by the electrochemical cell as a function of frequency.

Electrochemical techniques are widely used in various fields, such as environmental monitoring, pharmaceuticals, food analysis, and biomedical research. They offer several advantages, including high sensitivity, selectivity, and simplicity, making them a powerful tool for chemical analysis.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

In the context of medicine and healthcare, "movement" refers to the act or process of changing physical location or position. It involves the contraction and relaxation of muscles, which allows for the joints to move and the body to be in motion. Movement can also refer to the ability of a patient to move a specific body part or limb, which is assessed during physical examinations. Additionally, "movement" can describe the progression or spread of a disease within the body.

Biomedical enhancement refers to the use of medical treatments, technologies, or interventions to improve human capabilities beyond what is considered normal or necessary for good health. This can include things like cognitive-enhancing drugs, gene editing, genetic selection, and other forms of human augmentation. The goal of biomedical enhancement is typically to improve performance, appearance, or physical or mental abilities beyond typical or optimal levels. It's a controversial topic that raises ethical questions about the limits of medical intervention and the potential for unequal access to enhancements based on factors like wealth and social status.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

The Substantia Nigra is a region in the midbrain that plays a crucial role in movement control and reward processing. It is composed of two parts: the pars compacta and the pars reticulata. The pars compacta contains dopamine-producing neurons, whose loss or degeneration is associated with Parkinson's disease, leading to motor symptoms such as tremors, rigidity, and bradykinesia.

In summary, Substantia Nigra is a brain structure that contains dopamine-producing cells and is involved in movement control and reward processing. Its dysfunction or degeneration can lead to neurological disorders like Parkinson's disease.

Cognition refers to the mental processes involved in acquiring, processing, and utilizing information. These processes include perception, attention, memory, language, problem-solving, and decision-making. Cognitive functions allow us to interact with our environment, understand and respond to stimuli, learn new skills, and remember experiences.

In a medical context, cognitive function is often assessed as part of a neurological or psychiatric evaluation. Impairments in cognition can be caused by various factors, such as brain injury, neurodegenerative diseases (e.g., Alzheimer's disease), infections, toxins, and mental health conditions. Assessing cognitive function helps healthcare professionals diagnose conditions, monitor disease progression, and develop treatment plans.

Neuronal plasticity, also known as neuroplasticity or neural plasticity, refers to the ability of the brain and nervous system to change and adapt as a result of experience, learning, injury, or disease. This can involve changes in the structure, organization, and function of neurons (nerve cells) and their connections (synapses) in the central and peripheral nervous systems.

Neuronal plasticity can take many forms, including:

* Synaptic plasticity: Changes in the strength or efficiency of synaptic connections between neurons. This can involve the formation, elimination, or modification of synapses.
* Neural circuit plasticity: Changes in the organization and connectivity of neural circuits, which are networks of interconnected neurons that process information.
* Structural plasticity: Changes in the physical structure of neurons, such as the growth or retraction of dendrites (branches that receive input from other neurons) or axons (projections that transmit signals to other neurons).
* Functional plasticity: Changes in the physiological properties of neurons, such as their excitability, responsiveness, or sensitivity to stimuli.

Neuronal plasticity is a fundamental property of the nervous system and plays a crucial role in many aspects of brain function, including learning, memory, perception, and cognition. It also contributes to the brain's ability to recover from injury or disease, such as stroke or traumatic brain injury.

Nonparametric statistics is a branch of statistics that does not rely on assumptions about the distribution of variables in the population from which the sample is drawn. In contrast to parametric methods, nonparametric techniques make fewer assumptions about the data and are therefore more flexible in their application. Nonparametric tests are often used when the data do not meet the assumptions required for parametric tests, such as normality or equal variances.

Nonparametric statistical methods include tests such as the Wilcoxon rank-sum test (also known as the Mann-Whitney U test) for comparing two independent groups, the Wilcoxon signed-rank test for comparing two related groups, and the Kruskal-Wallis test for comparing more than two independent groups. These tests use the ranks of the data rather than the actual values to make comparisons, which allows them to be used with ordinal or continuous data that do not meet the assumptions of parametric tests.

Overall, nonparametric statistics provide a useful set of tools for analyzing data in situations where the assumptions of parametric methods are not met, and can help researchers draw valid conclusions from their data even when the data are not normally distributed or have other characteristics that violate the assumptions of parametric tests.

Video: Deep brain stimulation to treat Parkinsons disease Video: Deep brain stimulation therapy for Parkinsons disease The ... Treatment center for Deep Brain Stimulation of movement disorders, OCD, Tourette or depression. Treatment center for Deep Brain ... "Clinical perspectives of adaptive deep brain stimulation". Brain Stimulation. 14 (5): 1238-1247. doi:10.1016/j.brs.2021.07.063 ... "Deep Brain Stimulation for Movement Disorders". University of Pittsburgh. Young RF, Brechner T (1986). "Electrical stimulation ...
... uses a device called a neurostimulator to deliver electrical signals to the areas of the brain that control movement, pain, ... uses a device called a neurostimulator to deliver electrical signals to the areas of the brain that control movement, pain, ... Globus pallidus deep brain stimulation; Subthalamic deep brain stimulation; Thalamic deep brain stimulation; DBS; Brain ... Deep brain stimulation (DBS) uses a device called a neurostimulator to deliver electrical signals to the areas of the brain ...
Deep Brain Stimulation. From the Archive. Timeless stories from our 173-year archive handpicked to speak to the news of the day ... Addiction, Recovery, and Experimental Brain Surgery. Host Violet Lucca,Guest Zachary Siegel ...
Unfortunately, due to the little-understood nature of the brain, neurological disorders such as these can be hard to diagnose ... What is deep brain stimulation?. According to Harry Tamm, MD, a neurologist with HonorHealth Neurology in partnership with ... This is why recently developed medical treatments like deep brain stimulation (DBS) are so groundbreaking; it gives hope to ... How deep brain stimulation can help movement disorders. 7:57 AM, Oct 01, 2018 ...
A recent NIMH-supported study investigated whether deep brain stimulation could be personalized for individuals with treatment- ... The effectiveness of deep brain stimulation (DBS) as a treatment for disorders such as Parkinsons disease has led researchers ... Home , News & Events , Science News , Science News from 2022 , Personalizing Deep Brain Stimulation for Treatment-Resistant ... Deep brain stimulation for depression informed by intracranial readings. Biological Psychiatry. DOI: 10.1016/j.biopsych.2021.11 ...
But if drug treatments no longer control your symptoms, you may be suitable for deep brain stimulation (DBS). ... Deep brain stimulation for Parkinsons (PDF, 426KB). We know lots of people would rather have something in their hands to read ... But if drug treatments no longer control your symptoms, you may be suitable for deep brain stimulation (DBS). ... If a loved one or someone you care for is considering deep brain stimulation ...
... and sensory functions in the brain -- is safe and feasible. ... A first-in-human trial of deep brain stimulation (DBS) for post ... Deep Brain Stimulation Sites for OCD Target Distinct Symptoms. Mar. 7, 2019 Deep brain stimulation (DBS) reduces symptoms of ... Deep Brain Stimulation to Brain Area Linked to Reward and Motivation Is Potential Therapy for Treatment-Resistant Depression ... Imaging Brain Connections Can Predict Improvements in Obsessive-Compulsive Disorder Patients After Deep Brain Stimulation ...
Brain Sci. 2018;8(1):17. Published 2018 Jan 19. doi:10.3390/brainsci8010017. Lyons MK. Deep brain stimulation: current and ... Deep brain stimulation (DBS) has evolved as an important and established treatment for movement disorders. While DBS is not a ... Deep Brain Stimulation is currently being used in selected centers around the world, including the Baylor Medicine, to treat a ... Deep brain stimulation in Parkinsons disease: A multicentric, long-term, observational pilot study. J Neurol Sci. 2019;405: ...
The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling ... Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing PLoS One. 2012;7(5):e36572. doi: ... The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling ... brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these ...
Programming deep brain stimulation for tremor ad dystonia: The Toronto Western Hospital Algorithms. Brain Stimul. 2016. 9:438- ... Predictors of deep brain stimulation outcome in tremor patients. Brain Stimul. 2018. 11:592-9. ... Deep-brain stimulation of the subthalamic nucleus or pars interna of the globus pallidus in Parkinsons disease. N Engl.J Med. ... Deep brain stimulation lead is equipped with 4 electrode contacts, each of which may be used, alone or in combination, for ...
... deep brain stimulation) in treating the symptoms of epilepsy. ... Deep Brain Stimulation Indications DBS for Epilepsy Clinical ... Deep Brain Stimulation Download a summary of the published clinical evidence for deep brain stimulation in epilepsy patients. ... Refer to the MRI Guidelines for Medtronic Deep Brain Stimulation Systems at www.medtronic.com/mri or contact Medtronic at +44 ( ... The SANTE trial provides Level 1 Clinical Evidence for Medtronic Deep Brain Stimulation for Epilepsy. The studys outcomes ...
The study showed that deep brain stimulation, where a small device is implanted into the brain and sends electric pulses to ... Deep Brain Stimulation-probes shown in X-ray of the skull. Medtronics devices have been shown to improve quality of life and ... Deep Brain Stimulation Devices Help Parkinsons. Feb 14, 2013 02:32 PM. By ... but those that took their medication and had the deep brain stimulation had improvements of their quality of life. ...
If you suffer from movement related symptoms, consider deep brain stimulation (DBS). ... we understand how brain diseases can affect even the most routine aspects of daily life. ... Doctors Specializing in Deep Brain Stimulation (DBS) At Providence, youll have access to a vast network of dedicated and ... Deep Brain Stimulation (DBS). Sometimes, due to advanced Parkinsons disease, essential tremors, multiple sclerosis or dystonia ...
By delivering to the brain multiple electric fields at frequencies too high to … ... A noninvasive method for deep brain stimulation. Electrodes placed on the scalp could help patients with brain diseases. ... Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields, Cell 169(6):1029-1041. (* equal contribution). ... By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a ...
Norton Neuroscience Institute is a leading provider of deep-brain stimulation in Louisville and Southern Indiana, relieving ... What to Expect If You Have Deep Brain Stimulation. Think of having DBS in six steps. They are:. 1. Meet with a neurologist, ... Our board-certified and fellowship-trained specialists are experienced with deep brain stimulation and are at the forefront of ... 1st in Louisville Area to Perform Asleep Deep Brain Stimulation Routinely. Historically, DBS surgery has been performed with ...
Can Deep Brain Stimulation Survive Its Reputation for Success?" Deep brain stimulation (DBS) has been a well-accepted ... So when we look at deep brain stimulation and everything that could come of it, we are forced to look at it in the context of ... Ethical Considerations for Deep Brain Stimulation https://www.embs.org/pulse/wp-content/themes/movedo/images/empty/thumbnail. ...
... deep brain stimulation (DBS) can ease tremors associated with Parkinsons disease or help ... By delivering small electrical pulses directly to the brain, ... deep brain stimulation (DBS) can ease tremors associated with ... New algorithm could help enable next-generation deep brain stimulation devices. June 2, 2021. Brown University ... For one thing, the frequency signature of the stimulation artifact can sometimes overlap with that of the brain signal ...
28/11/2012 Standard guidelines for publication of deep brain stimulation studies in Parkinsons disease (Guide4DBS-PD) ...
JD performed the worlds first deep brain stimulation (DBS) using Mazor... ... Performs Worlds First Deep Brain Stimulation using Mazor Robotics Renaissance™ to Treat Parkinsons Disease ... PRWEB) September 03, 2013 -- On Monday, August 19, Nizam Razack, MD, JD performed the worlds first deep brain stimulation (DBS ... This could be a major application for Mazor Robotics technology as there are 180,000 new diagnoses of brain tumors each year, ...
Deep brain stimulation (DBS) is a neurosurgical approach... ... Deep Brain Stimulation for Gait and Postural Disturbances in ... Brain stimulation low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait ... F.J. Santos, R.M. Costa, F. Tecuapetla, Stimulation on demand: closing the loop on deep brain stimulation. Neuron 72, 197-198 ( ... Bilateral deep brain stimulation in Parkinsons disease: a multicentre study with 4 years follow-up. Brain 128(Pt 10), 2240- ...
Mansfield proposed deep brain stimulation (DBS) surgery. He would implant a device to send electrical signals to the brain to ... Since getting deep brain stimulation surgery, Marble is now able to hold Poppy without worry. ... Mansfield used high-resolution scans of Marbles brain to plan exactly where he would place the electrode. During the surgery, ... where she learned she had a brain bleed. ... Breakthrough in Deep Brain Stimulation Surgery. February 17, ...
Researchers have used deep brain stimulation with light on rats to alleviate symptoms of Parkinsons disease. ... "If you think of the area of the brain being treated in deep brain stimulation as a plate of spaghetti, with the meatballs ... They then delivered deep brain stimulation using light flashes at the standard 130 flashes per second. ... Biomedical engineers have used deep brain stimulation based on light to treat motor dysfunction in an animal model of ...
Psychiatric Complications of Deep Brain Stimulation for Parkinsons Disease. Shelley D. Piasecki, MD, and James W. Jefferson, ... Background: The purpose of this article is to review the current literature regarding deep brain stimulation (DBS) of the ... The search term used was deep brain stimulation. In addition, pertinent references were obtained from the retrieved articles. ...
Researchers at the Cleveland Clinic have completed the first human trial of a new procedure which uses deep brain stimulation ... Deep Brain Stimulation Is Ready for Prime Time in Treating Stroke and Much More ... How Advanced Deep Brain Stimulation Can Help Parkinsons Patients Better Manage Symptoms ... Doctors in Cleveland have for the first time implanted electrodes in the brain of a partially paralyzed patient in order to ...
The Vercise Genus Deep Brain Stimulation System is the latest device in a long line of meaningful innovations from Boston ... www.medtronic.com/us-en/healthcare-professionals/products/neurological/deep-brain-stimulation-systems/activa-pc.html Accessed ... www.medtronic.com/us-en/healthcare-professionals/products/neurological/deep-brain-stimulation-systems/activa-rc.html. Accessed ... www.sjm.com/en/professionals/resources-and-reimbursement/technical-resources/movement-disorder-therapies/deep-brain-stimulation ...
In this report, the authors discuss experimental treatments such as deep brain stimulation for depressed patients who are ... Deep Brain Stimulation Can Diminish Depression in Treatment-Resistant Patients. Ahmad Sleem, MD,a and Steven Lippmann, MDa,* ... Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651-660. PubMed CrossRef Show Abstract ... Deep brain stimulation is effective for treatment-resistant depression: a meta-analysis and meta-regression. J Clin Med. 2020;9 ...
Visit Boston Scientifics page to learn everything you need to know about living with a deep brain stimulator from Boston ... The Boston Scientific Vercise Deep Brain Stimulation System is indicated for use in:. *Bilateral stimulation of the subthalamic ... Deep Brain Stimulation Systems are indicated for use in:. *Bilateral stimulation of the subthalamic nucleus (STN) as an ... Not implanted with a Deep Brain Stimulation device? Please visit the DBS procedure page for more information. ...
... allowing for the introduction of the Vercise Gevia Deep Brain Stimulation System in Europe. The Vercise ... Vercise Gevia Deep Brain Stimulation System with Visual Brain Targeting Software Cleared in Europe. June 8th, 2017 Medgadget ... Boston Scientific won the CE Mark of approval, allowing for the introduction of the Vercise Gevia Deep Brain Stimulation System ... which can result in optimal therapy while avoiding common side effects resulting from deep brain stimulation. ...
Background The location of the optimal target for deep brain stimulation (DBS) of the subthalamic nucleus (STN) remains ... Impedance was inversely related to absolute symptom reduction during stimulation (−2.5 motor portion of the Unified Parkinsons ... which may help explain anatomic variation in stimulation efficacy. ...
A pacemaker-like device that stimulates the brain can help control some of the muscular problems brought on by Parkinsons ... Deep-brain stimulation can be started earlier to ease Parkinsons symptoms February 13, 2013 By Patrick J. Skerrett, Former ... Deep-brain stimulation traditionally isnt used until a person has lived with Parkinsons for a decade or more. French and ... Although deep-brain stimulation can be an excellent option for some people with Parkinsons disease, it isnt a miracle worker ...

No FAQ available that match "deep brain stimulation"

No images available that match "deep brain stimulation"