The process by which the CYTOPLASM of a cell is divided.
The final phase of cell nucleus division following ANAPHASE, in which two daughter nuclei are formed, the CYTOPLASM completes division, and the CHROMOSOMES lose their distinctness and are transformed into CHROMATIN threads.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules.
The subfamily of myosin proteins that are commonly found in muscle fibers. Myosin II is also involved a diverse array of cellular functions including cell division, transport within the GOLGI APPARATUS, and maintaining MICROVILLI structure.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
A protein complex of actin and MYOSINS occurring in muscle. It is the essential contractile substance of muscle.
The phase of cell nucleus division following METAPHASE, in which the CHROMATIDS separate and migrate to opposite poles of the spindle.
Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena.
A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales.
A family of GTP-binding proteins that were initially identified in YEASTS where they were shown to initiate the process of septation and bud formation. Septins form into hetero-oligomeric complexes that are comprised of several distinct septin subunits. These complexes can act as cytoskeletal elements that play important roles in CYTOKINESIS, cytoskeletal reorganization, BIOLOGICAL TRANSPORT, and membrane dynamics.
An aurora kinase that is a component of the chromosomal passenger protein complex and is involved in the regulation of MITOSIS. It mediates proper CHROMOSOME SEGREGATION and contractile ring function during CYTOKINESIS.
A family of highly conserved serine-threonine kinases that are involved in the regulation of MITOSIS. They are involved in many aspects of cell division, including centrosome duplication, SPINDLE APPARATUS formation, chromosome alignment, attachment to the spindle, checkpoint activation, and CYTOKINESIS.
Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS.
Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules.
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
A microtubule-associated mechanical adenosine triphosphatase, that uses the energy of ATP hydrolysis to move organelles along microtubules toward the plus end of the microtubule. The protein is found in squid axoplasm, optic lobes, and in bovine brain. Bovine kinesin is a heterotetramer composed of two heavy (120 kDa) and two light (62 kDa) chains. EC 3.6.1.-.
The process by which the CELL NUCLEUS is divided.
The cell center, consisting of a pair of CENTRIOLES surrounded by a cloud of amorphous material called the pericentriolar region. During interphase, the centrosome nucleates microtubule outgrowth. The centrosome duplicates and, during mitosis, separates to form the two poles of the mitotic spindle (MITOTIC SPINDLE APPARATUS).
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
The orderly segregation of CHROMOSOMES during MEIOSIS or MITOSIS.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible.
Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.
Proteins that activate the GTPase of specific GTP-BINDING PROTEINS.
Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.
Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell.
The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm.
Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
A class of organic compounds containing four or more ring structures, one of which is made up of more than one kind of atom, usually carbon plus another atom. The heterocycle may be either aromatic or nonaromatic.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A family of low molecular weight proteins that bind ACTIN and control actin polymerization. They are found in eukaryotes and are ubiquitously expressed.
A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain.
Recording serial images of a process at regular intervals spaced out over a longer period of time than the time in which the recordings will be played back.
A plant genus of the family POACEAE originating from the savanna of eastern Africa. It is widely grown for livestock forage.
A RHO GTP-BINDING PROTEIN involved in regulating signal transduction pathways that control assembly of focal adhesions and actin stress fibers. This enzyme was formerly listed as EC 3.6.1.47.
Proteins found in any species of fungus.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Protein factors that promote the exchange of GTP for GDP bound to GTP-BINDING PROTEINS.
Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47.
Microscopy in which television cameras are used to brighten magnified images that are otherwise too dark to be seen with the naked eye. It is used frequently in TELEPATHOLOGY.
A species of nematode that is widely used in biological, biochemical, and genetic studies.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Proteins from the nematode species CAENORHABDITIS ELEGANS. The proteins from this species are the subject of scientific interest in the area of multicellular organism MORPHOGENESIS.
Nocodazole is an antineoplastic agent which exerts its effect by depolymerizing microtubules.
Proteins found in any species of protozoan.
Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-.
An order of fungi in the phylum Ascomycota that multiply by budding. They include the telomorphic ascomycetous yeasts which are found in a very wide range of habitats.
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
A set of protein subcomplexes involved in PROTEIN SORTING of UBIQUITINATED PROTEINS into intraluminal vesicles of MULTIVESICULAR BODIES and in membrane scission during formation of intraluminal vesicles, during the final step of CYTOKINESIS, and during the budding of enveloped viruses. The ESCRT machinery is comprised of the protein products of Class E vacuolar protein sorting genes.
Agents and factors that activate GTP phosphohydrolase activity.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina).
The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO.
Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors.
Aurora kinase C is a chromosomal passenger protein that interacts with aurora kinase B in the regulation of MITOSIS. It is found primarily in GERM CELLS in the TESTIS, and may mediate CHROMOSOME SEGREGATION during SPERMATOGENESIS.
Basic functional unit of plants.
Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.
A subfamily of Q-SNARE PROTEINS which occupy the same position as syntaxin 1A in the SNARE complex and which also are most similar to syntaxin 1A in their AMINO ACID SEQUENCE. This subfamily is also known as the syntaxins, although a few so called syntaxins are Qc-SNARES.
The presence of four sets of chromosomes. It is associated with ABNORMALITIES, MULTIPLE; and MISCARRAGES.
An enzyme that converts UDP glucosamine into chitin and UDP. EC 2.4.1.16.
A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.
In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.
The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A large family of MONOMERIC GTP-BINDING PROTEINS that play a key role in cellular secretory and endocytic pathways. EC 3.6.1.-.
The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity.
The process of germ cell development in plants, from the primordial PLANT GERM CELLS to the mature haploid PLANT GAMETES.
The functional hereditary units of FUNGI.
Minute cells produced during development of an OOCYTE as it undergoes MEIOSIS. A polar body contains one of the nuclei derived from the first or second meiotic CELL DIVISION. Polar bodies have practically no CYTOPLASM. They are eventually discarded by the oocyte. (from King & Stansfield, A Dictionary of Genetics, 4th ed)
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A method used to study the lateral movement of MEMBRANE PROTEINS and LIPIDS. A small area of a cell membrane is bleached by laser light and the amount of time necessary for unbleached fluorescent marker-tagged proteins to diffuse back into the bleached site is a measurement of the cell membrane's fluidity. The diffusion coefficient of a protein or lipid in the membrane can be calculated from the data. (From Segen, Current Med Talk, 1995).
A species of fruit fly much used in genetics because of the large size of its chromosomes.
Signaling proteins which function as master molecular switches by activating Rho GTPases through conversion of guanine nucleotides. Rho GTPases in turn control many aspects of cell behavior through the regulation of multiple downstream signal transduction pathways.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
Established cell cultures that have the potential to propagate indefinitely.
Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface.
The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents.
The smaller subunits of MYOSINS that bind near the head groups of MYOSIN HEAVY CHAINS. The myosin light chains have a molecular weight of about 20 KDa and there are usually one essential and one regulatory pair of light chains associated with each heavy chain. Many myosin light chains that bind calcium are considered "calmodulin-like" proteins.
Self-replicating, short, fibrous, rod-shaped organelles. Each centriole is a short cylinder containing nine pairs of peripheral microtubules, arranged so as to form the wall of the cylinder.
Specific particles of membrane-bound organized living substances present in eukaryotic cells, such as the MITOCHONDRIA; the GOLGI APPARATUS; ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.
Structures which form the base of FLAGELLA and CILIA. They contain nine triplets of MICROTUBULES that are arranged around the periphery and that serve as the nucleation center for AXONEME assembly.

Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes. (1/1179)

Previous data suggested that anastral spindles, morphologically similar to those found in oocytes, can assemble in a centrosome-independent manner in cells that contain centrosomes. It is assumed that the microtubules that build these acentrosomal spindles originate over the chromatin. However, the actual processes of centrosome-independent microtubule nucleation, polymerisation, and sorting have not been documented in centrosome-containing cells. We have identified two experimental conditions in which centrosomes are kept close to the plasma membrane, away from the nuclear region, throughout meiosis I in Drosophila spermatocytes. Time-lapse confocal microscopy of these cells labelled with fluorescent chimeras reveals centrosome-independent microtubule nucleation, growth, and sorting into a bipolar spindle array over the nuclear region, away from the asters. The onset of noncentrosomal microtubule nucleation is significantly delayed with respect to nuclear envelope breakdown and coincides with the end of chromosome condensation. It takes place in foci that are close to the membranes that ensheath the nuclear region, not over the condensed chromosomes. Metaphase plates are formed in these spindles, and, in a fraction of them, some degree of polewards chromosome segregation takes place. In these cells that contain both membrane-bound asters and an anastral spindle, the orientation of the cytokinesis furrow correlates with the position of the asters and is independent of the orientation of the spindle. We conclude that the fenestrated nuclear envelope may significantly contribute to the normal process of spindle assembly in Drosophila spermatocytes. We also conclude that the anastral spindles that we have observed are not likely to provide a robust back-up able to ensure successful cell division. We propose that these anastral microtubule arrays could be a constitutive component of wild-type spindles, normally masked by the abundance of centrosome-derived microtubules and revealed when asters are kept away. These observations are consistent with a model in which centrosomal and noncentrosomal microtubules contribute to the assembly and are required for the robustness of the cell division spindle in cells that contain centrosomes.  (+info)

Dynacortin contributes to cortical viscoelasticity and helps define the shape changes of cytokinesis. (2/1179)

During cytokinesis, global and equatorial pathways deform the cell cortex in a stereotypical manner, which leads to daughter cell separation. Equatorial forces are largely generated by myosin-II and the actin crosslinker, cortexillin-I. In contrast, global mechanics are determined by the cortical cytoskeleton, including the actin crosslinker, dynacortin. We used direct morphometric characterization and laser-tracking microrheology to quantify cortical mechanical properties of wild-type and cortexillin-I and dynacortin mutant Dictyostelium cells. Both cortexillin-I and dynacortin influence cytokinesis and interphase cortical viscoelasticity as predicted from genetics and biochemical data using purified dynacortin proteins. Our studies suggest that the regulation of cytokinesis ultimately requires modulation of proteins that control the cortical mechanical properties that establish the force-balance that specifies the shapes of cytokinesis. The combination of genetic, biochemical, and biophysical observations suggests that the cell's cortical mechanical properties control how the cortex is remodeled during cytokinesis.  (+info)

Loss of Apm1, the micro1 subunit of the clathrin-associated adaptor-protein-1 complex, causes distinct phenotypes and synthetic lethality with calcineurin deletion in fission yeast. (3/1179)

Calcineurin is a highly conserved regulator of Ca(2+) signaling in eukaryotes. In fission yeast, calcineurin is not essential for viability but is required for cytokinesis and Cl(-) homeostasis. In a genetic screen for mutations that are synthetically lethal with calcineurin deletion, we isolated a mutant, cis1-1/apm1-1, an allele of the apm1(+) gene that encodes a homolog of the mammalian micro1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex. The cis1-1/apm1-1 mutant as well as the apm1-deleted (Deltaapm1) cells showed distinct phenotypes: temperature sensitivity; tacrolimus (FK506) sensitivity; and pleiotropic defects in cytokinesis, cell integrity, and vacuole fusion. Electron micrographs revealed that Deltaapm1 cells showed large vesicular structures associated with Golgi stacks and accumulated post-Golgi secretory vesicles. Deltaapm1 cells also showed the massive accumulation of the exocytic v-SNARE Syb1 in the Golgi/endosomes and a reduced secretion of acid phosphatase. These phenotypes observed in apm1 mutations were accentuated upon temperature up-shift and FK506 treatment. Notably, Apm1-GFP localized to the Golgi/endosomes, the spindle pole bodies, and the medial region. These findings suggest a role for Apm1 associated with the Golgi/endosome function, thereby affecting various cellular processes, including secretion, cytokinesis, vacuole fusion, and cell integrity and also suggest that calcineurin is involved in these events.  (+info)

The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction. (4/1179)

Throughout its elongation, the new flagellum of the procyclic form of the African trypanosome Trypanosoma brucei is tethered at its tip to the lateral aspect of the old flagellum. This phenomenon provides a cytotactic mechanism for influencing inheritance of cellular pattern. Here, we show that this tethering is produced via a discrete, mobile transmembrane junction - the flagella connector. Light and electron microscopy reveal that the flagella connector links the extending microtubules at the tip of the new flagellum to the lateral aspect of three of the doublet microtubules in the old flagellar axoneme. Two sets of filaments connect the microtubules to three plates on the inner faces of the old and new flagellar membranes. Three differentiated areas of old and new flagellar membranes are then juxtaposed and connected by a central interstitial core of electron-dense material. The flagella connector is formed early in flagellum extension and is removed at the end of cytokinesis, but the exact timing of the latter event is slightly variable. The flagella connector represents a novel form of cellular junction that is both dynamic and mobile.  (+info)

Role of the midbody matrix in cytokinesis: RNAi and genetic rescue analysis of the mammalian motor protein CHO1. (5/1179)

CHO1 is a kinesin-like motor protein essential for cytokinesis in mammalian cells. To analyze how CHO1 functions, we established RNAi and genetic rescue assays. CHO1-depleted cells reached a late stage of cytokinesis but fused back to form binucleate cells because of the absence of the midbody matrix in the middle of the intercellular bridge. Expression of exogenous CHO1 restored the formation of the midbody matrix and rescued cytokinesis in siRNA-treated cells. By analyzing phenotypes rescued with different constructs, it was shown that both motor and stalk domains function in midbody formation, whereas the tail is essential for completion of cytokinesis after the midbody matrix has formed. During the terminal stage of cytokinesis, different subregions of the tail play distinctive roles in stabilizing the midbody matrix and maintaining an association between the midbody and cell cortex. These results demonstrate that CHO1 consists of functionally differentiated subregions that act in concert to ensure complete cell separation.  (+info)

A role for the Cdc14-family phosphatase Flp1p at the end of the cell cycle in controlling the rapid degradation of the mitotic inducer Cdc25p in fission yeast. (6/1179)

The Schizosaccaromyces pombe protein Flp1p belongs to a conserved family of serine-threonine-phosphatases. The founding member of this family, Saccharomyces cerevisiae Cdc14p, is required for inactivation of mitotic CDKs and reversal of CDK mediated phosphorylation at the end of mitosis, thereby bringing about the M-G1 transition. Initial studies of Flp1p suggest that it may play a different role to Cdc14p. Here we show that Flp1p is required for rapid degradation of the mitotic inducer Cdc25p at the end of mitosis, and that Cdc25p is a substrate of Flp1p in vitro. Down-regulation of Cdc25p activity by Flp1p may ensure a prompt inactivation of mitotic CDK complexes to trigger cell division. Our results suggest a regulatory mechanism, and a universal role, for Cdc14p like proteins in coordination of cytokinesis with other cell cycle events.  (+info)

Functional characterization of Dma1 and Dma2, the budding yeast homologues of Schizosaccharomyces pombe Dma1 and human Chfr. (7/1179)

Proper transmission of genetic information requires correct assembly and positioning of the mitotic spindle, responsible for driving each set of sister chromatids to the two daughter cells, followed by cytokinesis. In case of altered spindle orientation, the spindle position checkpoint inhibits Tem1-dependent activation of the mitotic exit network (MEN), thus delaying mitotic exit and cytokinesis until errors are corrected. We report a functional analysis of two previously uncharacterized budding yeast proteins, Dma1 and Dma2, 58% identical to each other and homologous to human Chfr and Schizosaccharomyces pombe Dma1, both of which have been previously implicated in mitotic checkpoints. We show that Dma1 and Dma2 are involved in proper spindle positioning, likely regulating septin ring deposition at the bud neck. DMA2 overexpression causes defects in septin ring disassembly at the end of mitosis and in cytokinesis. The latter defects can be rescued by either eliminating the spindle position checkpoint protein Bub2 or overproducing its target, Tem1, both leading to MEN hyperactivation. In addition, dma1Delta dma2Delta cells fail to activate the spindle position checkpoint in response to the lack of dynein, whereas ectopic expression of DMA2 prevents unscheduled mitotic exit of spindle checkpoint mutants treated with microtubule-depolymerizing drugs. Although their primary functions remain to be defined, our data suggest that Dma1 and Dma2 might be required to ensure timely MEN activation in telophase.  (+info)

The nucleolus is involved in mRNA export from the nucleus in fission yeast. (8/1179)

To elucidate the mechanism of mRNA export from the nucleus, we isolated five novel temperature-sensitive mutants (ptr7 to ptr11) that accumulate poly(A)(+) RNA in the nuclei at the nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr11 mutation was found in the top2(+) gene encoding DNA topoisomerase II. In addition to the nuclear accumulation of poly(A)(+) RNA, ptr11 exhibited the cut (cell untimely torn) phenotype at the nonpermissive temperature, like the previously isolated mutant, ptr4. In these two mutants, cytokinesis occurred without prior nuclear division, resulting in cleavage of the undivided nuclei by the septum. To investigate the relationship between mRNA export defects and the cut phenotype observed in ptr4 and ptr11, we analyzed 11 other mutants displaying the cut phenotype and found that all these tested mutants accumulate poly(A)(+) mRNA in the aberrantly cleaved nuclei. Interestingly, nuclear accumulation of poly(A)(+) mRNA was observed only in the anucleolate nuclei produced by aberrant cytokinesis. In addition, nuc1, the S. pombe mutant exhibiting a collapsed nucleolus, trapped poly(A)(+) mRNA in the nucleolar region at the nonpermissive temperature. In ptr11 and nuc1, mRNA transcribed from the intron-containing TBP gene showed nuclear accumulation, but not transcripts from the intron-less TBP cDNA, suggesting that the export pathway differs between the spliced and unspliced TBP mRNAs. These findings support the notion that a subset of mRNAs in yeast is exported from the nucleus through transient association with the nucleolus.  (+info)

Cytokinesis is the part of the cell division process (mitosis or meiosis) in which the cytoplasm of a single eukaryotic cell divides into two daughter cells. It usually begins after telophase, and it involves the constriction of a contractile ring composed of actin filaments and myosin motor proteins that forms at the equatorial plane of the cell. This results in the formation of a cleavage furrow, which deepens and eventually leads to the physical separation of the two daughter cells. Cytokinesis is essential for cell reproduction and growth in multicellular organisms, and its failure can lead to various developmental abnormalities or diseases.

Telophase is a phase in the cell division process (mitosis or meiosis) where the chromosomes reach their most condensed form and move to the poles of the cell. The nuclear membrane begins to reform around each set of chromosomes, and the spindle fibers that were used to separate the chromosomes break down. This phase is followed by cytokinesis, where the cytoplasm of the cell divides, resulting in two separate daughter cells. In telophase I of meiosis, crossing over between homologous chromosomes has already occurred during prophase I and sister chromatids remain together until anaphase II.

Mitosis is a type of cell division in which the genetic material of a single cell, called the mother cell, is equally distributed into two identical daughter cells. It's a fundamental process that occurs in multicellular organisms for growth, maintenance, and repair, as well as in unicellular organisms for reproduction.

The process of mitosis can be broken down into several stages: prophase, prometaphase, metaphase, anaphase, and telophase. During prophase, the chromosomes condense and become visible, and the nuclear envelope breaks down. In prometaphase, the nuclear membrane is completely disassembled, and the mitotic spindle fibers attach to the chromosomes at their centromeres.

During metaphase, the chromosomes align at the metaphase plate, an imaginary line equidistant from the two spindle poles. In anaphase, sister chromatids are pulled apart by the spindle fibers and move toward opposite poles of the cell. Finally, in telophase, new nuclear envelopes form around each set of chromosomes, and the chromosomes decondense and become less visible.

Mitosis is followed by cytokinesis, a process that divides the cytoplasm of the mother cell into two separate daughter cells. The result of mitosis and cytokinesis is two genetically identical cells, each with the same number and kind of chromosomes as the original parent cell.

The spindle apparatus is a microtubule-based structure that plays a crucial role in the process of cell division, specifically during mitosis and meiosis. It consists of three main components:

1. The spindle poles: These are organized structures composed of microtubules and associated proteins that serve as the anchoring points for the spindle fibers. In animal cells, these poles are typically formed by centrosomes, while in plant cells, they form around nucleation sites called microtubule-organizing centers (MTOCs).
2. The spindle fibers: These are dynamic arrays of microtubules that extend between the two spindle poles. They can be categorized into three types: kinetochore fibers, which connect to the kinetochores on chromosomes; astral fibers, which radiate from the spindle poles and help position the spindle within the cell; and interpolar fibers, which lie between the two spindle poles and contribute to their separation during anaphase.
3. Regulatory proteins: Various motor proteins, such as dynein and kinesin, as well as non-motor proteins like tubulin and septins, are involved in the assembly, maintenance, and dynamics of the spindle apparatus. These proteins help to generate forces that move chromosomes, position the spindle, and ultimately segregate genetic material between two daughter cells during cell division.

The spindle apparatus is essential for ensuring accurate chromosome separation and maintaining genomic stability during cell division. Dysfunction of the spindle apparatus can lead to various abnormalities, including aneuploidy (abnormal number of chromosomes) and chromosomal instability, which have been implicated in several diseases, such as cancer and developmental disorders.

Myosin Type II, also known as myosin II or heavy meromyosin, is a type of motor protein involved in muscle contraction and other cellular movements. It is a hexameric protein composed of two heavy chains and four light chains. The heavy chains have a head domain that binds to actin filaments and an tail domain that forms a coiled-coil structure, allowing the formation of filaments. Myosin II uses the energy from ATP hydrolysis to move along actin filaments, generating force and causing muscle contraction or other cell movements. It plays a crucial role in various cellular processes such as cytokinesis, cell motility, and maintenance of cell shape.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

Actomyosin is a contractile protein complex that consists of actin and myosin filaments. It plays an essential role in muscle contraction, cell motility, and cytokinesis (the process of cell division where the cytoplasm is divided into two daughter cells). The interaction between actin and myosin generates force and movement through a mechanism called sliding filament theory. In this process, myosin heads bind to actin filaments and then undergo a power stroke, which results in the sliding of one filament relative to the other and ultimately leads to muscle contraction or cellular movements. Actomyosin complexes are also involved in various non-muscle cellular processes such as cytoplasmic streaming, intracellular transport, and maintenance of cell shape.

Anaphase is a stage in the cell division process called mitosis, where sister chromatids (the two copies of each chromosome formed during DNA replication) separate at the centromeres and move toward opposite poles of the cell. This separation is facilitated by the attachment of microtubules from the spindle apparatus to the kinetochores, protein structures located on the centromeres of each sister chromatid. Anaphase is followed by telophase, during which the nuclear membrane reforms around each set of separated chromosomes, and cytokinesis, the division of the cytoplasm to form two separate daughter cells.

Contractile proteins are a type of protein found in muscle cells that are responsible for the ability of the muscle to contract and generate force. The two main types of contractile proteins are actin and myosin, which are arranged in sarcomeres, the functional units of muscle fibers. When stimulated by a nerve impulse, actin and myosin filaments slide past each other, causing the muscle to shorten and generate force. This process is known as excitation-contraction coupling. Other proteins, such as tropomyosin and troponin, regulate the interaction between actin and myosin and control muscle contraction.

I apologize for any confusion, but "Schizosaccharomyces" is not a medical term. It is a genus name in the field of microbiology and genetics, referring to a group of budding, tear-shaped yeasts that are widely used as model organisms in scientific research. The most well-known species within this genus is Schizosaccharomyces pombe, which has been extensively studied for its cell cycle regulation, DNA repair mechanisms, and other fundamental biological processes.

If you have any questions related to medical terminology or health-related topics, I would be happy to help.

Septins are a group of GTP-binding proteins that play a crucial role in the organization of cell membranes and cytoskeleton. They are involved in various cellular processes, including cell division, polarity establishment, and regulation of the actin cytoskeleton. In mammalian cells, there are 13 different septin proteins that can assemble into hetero-oligomeric complexes to form higher-order structures such as filaments and rings. Septins have been implicated in several human diseases, including cancer, neurodegenerative disorders, and infectious diseases.

Aurora Kinase B is a type of enzyme that plays a crucial role in the regulation of cell division and mitosis. It is a member of the Aurora kinase family, which includes three different isoforms (Aurora A, B, and C). Among these, Aurora Kinase B is specifically involved in the proper alignment and separation of chromosomes during cell division.

During mitosis, Aurora Kinase B forms a complex with other proteins to form the chromosomal passenger complex (CPC), which plays a critical role in ensuring accurate chromosome segregation. The CPC is responsible for regulating various events during mitosis, including the attachment of microtubules to kinetochores (protein structures that connect chromosomes to spindle fibers), the correction of erroneous kinetochore-microtubule attachments, and the regulation of the anaphase promoting complex/cyclosome (APC/C), which targets specific proteins for degradation during mitosis.

Dysregulation of Aurora Kinase B has been implicated in various human diseases, including cancer. Overexpression or amplification of this kinase can lead to chromosomal instability and aneuploidy, contributing to tumorigenesis and cancer progression. As a result, Aurora Kinase B is considered a promising target for the development of anti-cancer therapies, with several inhibitors currently being investigated in preclinical and clinical studies.

Aurora kinases are a family of serine/threonine protein kinases that play crucial roles in the regulation of cell division. There are three members of the Aurora kinase family, designated as Aurora A, Aurora B, and Aurora C. These kinases are involved in the proper separation of chromosomes during mitosis and meiosis, and their dysregulation has been implicated in various types of cancer.

Aurora A is primarily located at the centrosomes and spindle poles during cell division, where it regulates centrosome maturation, bipolar spindle formation, and chromosome segregation. Aurora B, on the other hand, is a component of the chromosomal passenger complex (CPC) that localizes to the centromeres during prophase and moves to the spindle midzone during anaphase. It plays essential roles in kinetochore-microtubule attachment, chromosome alignment, and cytokinesis. Aurora C is most similar to Aurora B and appears to have overlapping functions with it, although its specific roles are less well understood.

Dysregulation of Aurora kinases has been associated with various types of cancer, including breast, ovarian, colon, and lung cancers. Overexpression or amplification of Aurora A is observed in many cancers, leading to chromosomal instability and aneuploidy. Inhibition of Aurora kinases has emerged as a potential therapeutic strategy for cancer treatment, with several small molecule inhibitors currently under investigation in clinical trials.

Microtubules are hollow, cylindrical structures composed of tubulin proteins in the cytoskeleton of eukaryotic cells. They play crucial roles in various cellular processes such as maintaining cell shape, intracellular transport, and cell division (mitosis and meiosis). Microtubules are dynamic, undergoing continuous assembly and disassembly, which allows them to rapidly reorganize in response to cellular needs. They also form part of important cellular structures like centrioles, basal bodies, and cilia/flagella.

I'm sorry for any confusion, but "Schizosaccharomyces pombe proteins" is not a medical term or concept. Schizosaccharomyces pombe is a type of single-celled microorganism called a yeast, which is often used as a model organism in scientific research. Proteins are complex molecules that do most of the work in cells and are necessary for the structure, function, and regulation of the body's tissues and organs.

In the context of scientific research, "Schizosaccharomyces pombe proteins" would refer to the specific proteins found in or studied using this particular type of yeast. These proteins may have similarities to human proteins and can be used to help understand basic biological processes, as well as diseases that occur in humans. However, it is important to note that while research using model organisms like Schizosaccharomyces pombe has led to many important discoveries, the findings may not always translate directly to humans.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

Medical Definition:
Microtubule-associated proteins (MAPs) are a diverse group of proteins that bind to microtubules, which are key components of the cytoskeleton in eukaryotic cells. MAPs play crucial roles in regulating microtubule dynamics and stability, as well as in mediating interactions between microtubules and other cellular structures. They can be classified into several categories based on their functions, including:

1. Microtubule stabilizers: These MAPs promote the assembly of microtubules and protect them from disassembly by enhancing their stability. Examples include tau proteins and MAP2.
2. Microtubule dynamics regulators: These MAPs modulate the rate of microtubule polymerization and depolymerization, allowing for dynamic reorganization of the cytoskeleton during cell division and other processes. Examples include stathmin and XMAP215.
3. Microtubule motor proteins: These MAPs use energy from ATP hydrolysis to move along microtubules, transporting various cargoes within the cell. Examples include kinesin and dynein.
4. Adapter proteins: These MAPs facilitate interactions between microtubules and other cellular structures, such as membranes, organelles, or signaling molecules. Examples include MAP4 and CLASPs.

Dysregulation of MAPs has been implicated in several diseases, including neurodegenerative disorders like Alzheimer's disease (where tau proteins form abnormal aggregates called neurofibrillary tangles) and cancer (where altered microtubule dynamics can contribute to uncontrolled cell division).

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

Kinesin is not a medical term per se, but a term from the field of cellular biology. However, understanding how kinesins work is important in the context of medical and cellular research.

Kinesins are a family of motor proteins that play a crucial role in transporting various cargoes within cells, such as vesicles, organelles, and chromosomes. They move along microtubule filaments, using the energy derived from ATP hydrolysis to generate mechanical force and motion. This process is essential for several cellular functions, including intracellular transport, mitosis, and meiosis.

In a medical context, understanding kinesin function can provide insights into various diseases and conditions related to impaired intracellular transport, such as neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease) and certain genetic disorders affecting motor neurons. Research on kinesins can potentially lead to the development of novel therapeutic strategies targeting these conditions.

Cell nucleus division, also known as nuclear division, is the process by which the genetic material within the cell nucleus, referred to as chromosomes, is separated into two equal sets in preparation for cell division. This process results in the formation of two daughter nuclei, each with a complete set of chromosomes.

There are two types of nuclear division: mitosis and meiosis.

Mitosis is the type of nuclear division that occurs in somatic cells (cells other than sex cells) during growth, repair, and maintenance of tissues. It results in the formation of two genetically identical daughter nuclei. The process of mitosis can be divided into several stages: prophase, prometaphase, metaphase, anaphase, and telophase.

Meiosis, on the other hand, is the type of nuclear division that occurs in sex cells (sperm and egg cells) during sexual reproduction. It results in the formation of four genetically unique daughter nuclei, each with half the number of chromosomes as the parent cell. Meiosis consists of two consecutive divisions: meiosis I and meiosis II.

Both types of nuclear division are essential for the growth, development, and reproduction of living organisms.

A centrosome is a microtubule-organizing center found in animal cells. It consists of two barrel-shaped structures called centrioles, which are surrounded by a protein matrix called the pericentriolar material. The centrosome plays a crucial role in organizing the microtubules that form the cell's cytoskeleton and help to shape the cell, as well as in separating the chromosomes during cell division.

During mitosis, the two centrioles of the centrosome separate and move to opposite poles of the cell, where they nucleate the formation of the spindle fibers that pull the chromosomes apart. The centrosome also helps to ensure that the genetic material is equally distributed between the two resulting daughter cells.

It's worth noting that while centrioles are present in many animal cells, they are not always present in all types of cells. For example, plant cells do not have centrioles or centrosomes, and instead rely on other mechanisms to organize their microtubules.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Polyploidy is a condition in which a cell or an organism has more than two sets of chromosomes, unlike the typical diploid state where there are only two sets (one from each parent). Polyploidy can occur through various mechanisms such as errors during cell division, fusion of egg and sperm cells that have an abnormal number of chromosomes, or through the reproduction process in plants.

Polyploidy is common in the plant kingdom, where it often leads to larger size, increased biomass, and sometimes hybrid vigor. However, in animals, polyploidy is less common and usually occurs in only certain types of cells or tissues, as most animals require a specific number of chromosomes for normal development and reproduction. In humans, polyploidy is typically not compatible with life and can lead to developmental abnormalities and miscarriage.

The cell cycle is a series of events that take place in a cell leading to its division and duplication. It consists of four main phases: G1 phase, S phase, G2 phase, and M phase.

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins in preparation for DNA replication. In the S phase, the cell's DNA is copied, resulting in two complete sets of chromosomes. During the G2 phase, the cell continues to grow and produces more proteins and organelles necessary for cell division.

The M phase is the final stage of the cell cycle and consists of mitosis (nuclear division) and cytokinesis (cytoplasmic division). Mitosis results in two genetically identical daughter nuclei, while cytokinesis divides the cytoplasm and creates two separate daughter cells.

The cell cycle is regulated by various checkpoints that ensure the proper completion of each phase before progressing to the next. These checkpoints help prevent errors in DNA replication and division, which can lead to mutations and cancer.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Chromosome segregation is the process that occurs during cell division (mitosis or meiosis) where replicated chromosomes are separated and distributed equally into two daughter cells. Each chromosome consists of two sister chromatids, which are identical copies of genetic material. During chromosome segregation, these sister chromatids are pulled apart by a structure called the mitotic spindle and moved to opposite poles of the cell. This ensures that each new cell receives one copy of each chromosome, preserving the correct number and composition of chromosomes in the organism.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

'Dictyostelium' is a genus of social amoebae that are commonly found in soil and decaying organic matter. These microscopic organisms have a unique life cycle, starting as individual cells that feed on bacteria. When food becomes scarce, the cells undergo a developmental process where they aggregate together to form a multicellular slug-like structure called a pseudoplasmodium or grex. This grex then moves and differentiates into a fruiting body that can release spores for further reproduction.

Dictyostelium discoideum is the most well-studied species in this genus, serving as a valuable model organism for research in various fields such as cell biology, developmental biology, and evolutionary biology. The study of Dictyostelium has contributed significantly to our understanding of fundamental biological processes like chemotaxis, signal transduction, and cell differentiation.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Cytoskeletal proteins are a type of structural proteins that form the cytoskeleton, which is the internal framework of cells. The cytoskeleton provides shape, support, and structure to the cell, and plays important roles in cell division, intracellular transport, and maintenance of cell shape and integrity.

There are three main types of cytoskeletal proteins: actin filaments, intermediate filaments, and microtubules. Actin filaments are thin, rod-like structures that are involved in muscle contraction, cell motility, and cell division. Intermediate filaments are thicker than actin filaments and provide structural support to the cell. Microtubules are hollow tubes that are involved in intracellular transport, cell division, and maintenance of cell shape.

Cytoskeletal proteins are composed of different subunits that polymerize to form filamentous structures. These proteins can be dynamically assembled and disassembled, allowing cells to change their shape and move. Mutations in cytoskeletal proteins have been linked to various human diseases, including cancer, neurological disorders, and muscular dystrophies.

Cell polarity refers to the asymmetric distribution of membrane components, cytoskeleton, and organelles in a cell. This asymmetry is crucial for various cellular functions such as directed transport, cell division, and signal transduction. The plasma membrane of polarized cells exhibits distinct domains with unique protein and lipid compositions that define apical, basal, and lateral surfaces of the cell.

In epithelial cells, for example, the apical surface faces the lumen or external environment, while the basolateral surface interacts with other cells or the extracellular matrix. The establishment and maintenance of cell polarity are regulated by various factors including protein complexes, lipids, and small GTPases. Loss of cell polarity has been implicated in several diseases, including cancer and neurological disorders.

GTPase-activating proteins (GAPs) are a group of regulatory proteins that play a crucial role in the regulation of intracellular signaling pathways, particularly those involving GTP-binding proteins. GTPases are enzymes that can bind and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP). This biochemical reaction is essential for the regulation of various cellular processes, such as signal transduction, vesicle trafficking, and cytoskeleton organization.

GAPs function as negative regulators of GTPases by accelerating the rate of GTP hydrolysis, thereby promoting the inactive GDP-bound state of the GTPase. By doing so, GAPs help terminate GTPase-mediated signaling events and ensure proper control of downstream cellular responses.

There are various families of GAPs, each with specificity towards particular GTPases. Some well-known GAP families include:

1. p50/RhoGAP: Regulates Rho GTPases involved in cytoskeleton organization and cell migration.
2. GIT (G protein-coupled receptor kinase interactor 1) family: Regulates Arf GTPases involved in vesicle trafficking and actin remodeling.
3. IQGAPs (IQ motif-containing GTPase-activating proteins): Regulate Rac and Cdc42 GTPases, which are involved in cell adhesion, migration, and cytoskeleton organization.

In summary, GTPase-activating proteins (GAPs) are regulatory proteins that accelerate the GTP hydrolysis of GTPases, thereby acting as negative regulators of various intracellular signaling pathways and ensuring proper control of downstream cellular responses.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

Microfilament proteins are a type of structural protein that form part of the cytoskeleton in eukaryotic cells. They are made up of actin monomers, which polymerize to form long, thin filaments. These filaments are involved in various cellular processes such as muscle contraction, cell division, and cell motility. Microfilament proteins also interact with other cytoskeletal components like intermediate filaments and microtubules to maintain the overall shape and integrity of the cell. Additionally, they play a crucial role in the formation of cell-cell junctions and cell-matrix adhesions, which are essential for tissue structure and function.

The cytoskeleton is a complex network of various protein filaments that provides structural support, shape, and stability to the cell. It plays a crucial role in maintaining cellular integrity, intracellular organization, and enabling cell movement. The cytoskeleton is composed of three major types of protein fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. These filaments work together to provide mechanical support, participate in cell division, intracellular transport, and help maintain the cell's architecture. The dynamic nature of the cytoskeleton allows cells to adapt to changing environmental conditions and respond to various stimuli.

Spermatocytes are a type of cell that is involved in the process of spermatogenesis, which is the formation of sperm in the testes. Specifically, spermatocytes are the cells that undergo meiosis, a special type of cell division that results in the production of four haploid daughter cells, each containing half the number of chromosomes as the parent cell.

There are two types of spermatocytes: primary and secondary. Primary spermatocytes are diploid cells that contain 46 chromosomes (23 pairs). During meiosis I, these cells undergo a process called crossing over, in which genetic material is exchanged between homologous chromosomes. After crossing over, the primary spermatocytes divide into two secondary spermatocytes, each containing 23 chromosomes (but still with 23 pairs).

Secondary spermatocytes then undergo meiosis II, which results in the formation of four haploid spermatids. Each spermatid contains 23 single chromosomes and will eventually develop into a mature sperm cell through a process called spermiogenesis.

It's worth noting that spermatocytes are only found in males, as they are specific to the male reproductive system.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Heterocyclic compounds with 4 or more rings refer to a class of organic compounds that contain at least four aromatic or non-aromatic rings in their structure, where one or more of the rings contains atoms other than carbon (heteroatoms) such as nitrogen, oxygen, sulfur, or selenium. These compounds are widely found in nature and have significant importance in medicinal chemistry due to their diverse biological activities. Many natural and synthetic drugs, pigments, vitamins, and antibiotics contain heterocyclic structures with four or more rings. The properties of these compounds depend on the size, shape, and nature of the rings, as well as the presence and position of functional groups.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

Profilins are a type of protein that play a role in the regulation of actin filaments, which are important components of the cytoskeleton in cells. They bind to both actin and to small G-proteins called profilin-binding proteins (PBPs), and help to control the assembly and disassembly of actin filaments. Profilins have been found to be involved in various cellular processes, including cell motility, cytokinesis, and intracellular transport. They also play a role in the immune response by regulating the production of reactive oxygen species (ROS) and the release of histamine from mast cells. Mutations in profilin genes have been associated with certain diseases, such as neurodegenerative disorders and cancer.

Myosins are a large family of motor proteins that play a crucial role in various cellular processes, including muscle contraction and intracellular transport. They consist of heavy chains, which contain the motor domain responsible for generating force and motion, and light chains, which regulate the activity of the myosin. Based on their structural and functional differences, myosins are classified into over 35 classes, with classes II, V, and VI being the most well-studied.

Class II myosins, also known as conventional myosins, are responsible for muscle contraction in skeletal, cardiac, and smooth muscles. They form filaments called thick filaments, which interact with actin filaments to generate force and movement during muscle contraction.

Class V myosins, also known as unconventional myosins, are involved in intracellular transport and organelle positioning. They have a long tail that can bind to various cargoes, such as vesicles, mitochondria, and nuclei, and a motor domain that moves along actin filaments to transport the cargoes to their destinations.

Class VI myosins are also unconventional myosins involved in intracellular transport and organelle positioning. They have two heads connected by a coiled-coil tail, which can bind to various cargoes. Class VI myosins move along actin filaments in a unique hand-over-hand motion, allowing them to transport their cargoes efficiently.

Overall, myosins are essential for many cellular functions and have been implicated in various diseases, including cardiovascular diseases, neurological disorders, and cancer.

Time-lapse imaging is a medical imaging technique where images are captured at regular intervals over a period of time and then played back at a faster rate to show the progression or changes that occur during that time frame. This technique is often used in various fields of medicine, including microbiology, pathology, and reproductive medicine. In microbiology, for example, time-lapse imaging can be used to observe bacterial growth or the movement of individual cells. In pathology, it might help track the development of a lesion or the response of a tumor to treatment. In reproductive medicine, time-lapse imaging is commonly employed in embryo culture during in vitro fertilization (IVF) procedures to assess the development and quality of embryos before implantation.

Brachiaria is a genus of tropical and subtropical grasses that are native to Africa, but have since been introduced and naturalized in many other parts of the world. They are important pasture grasses for grazing livestock, particularly in areas with low soil fertility and high temperatures. Some species of Brachiaria have also been found to have potential as cover crops and for erosion control.

There is no medical definition of 'Brachiaria' as it is a term used in botany and agriculture, not medicine.

RhoA (Ras Homolog Family Member A) is a small GTPase protein that acts as a molecular switch, cycling between an inactive GDP-bound state and an active GTP-bound state. It plays a crucial role in regulating various cellular processes such as actin cytoskeleton organization, gene expression, cell cycle progression, and cell migration.

RhoA GTP-binding protein becomes activated when it binds to GTP, and this activation leads to the recruitment of downstream effectors that mediate its functions. The activity of RhoA is tightly regulated by several proteins, including guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP, GTPase-activating proteins (GAPs) that stimulate the intrinsic GTPase activity of RhoA to hydrolyze GTP to GDP and return it to an inactive state, and guanine nucleotide dissociation inhibitors (GDIs) that sequester RhoA in the cytoplasm and prevent its association with the membrane.

Mutations or dysregulation of RhoA GTP-binding protein have been implicated in various human diseases, including cancer, neurological disorders, and cardiovascular diseases.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Guanine Nucleotide Exchange Factors (GEFs) are a group of regulatory proteins that play a crucial role in the activation of GTPases, which are enzymes that regulate various cellular processes such as signal transduction, cytoskeleton reorganization, and vesicle trafficking.

GEFs function by promoting the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on GTPases. GTP is the active form of the GTPase, and its binding to the GTPase leads to a conformational change that activates the enzyme's function.

In the absence of GEFs, GTPases remain in their inactive GDP-bound state, and cellular signaling pathways are not activated. Therefore, GEFs play a critical role in regulating the activity of GTPases and ensuring proper signal transduction in cells.

There are many different GEFs that are specific to various GTPase families, including Ras, Rho, and Arf families. Dysregulation of GEFs has been implicated in various diseases, including cancer and neurological disorders.

The actin cytoskeleton is a complex, dynamic network of filamentous (threadlike) proteins that provides structural support and shape to cells, allows for cell movement and division, and plays a role in intracellular transport. Actin filaments are composed of actin monomers that polymerize to form long, thin fibers. These filaments can be organized into different structures, such as stress fibers, which provide tension and support, or lamellipodia and filopodia, which are involved in cell motility. The actin cytoskeleton is constantly remodeling in response to various intracellular and extracellular signals, allowing for changes in cell shape and behavior.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Rho GTP-binding proteins are a subfamily of the Ras superfamily of small GTPases, which function as molecular switches in various cellular signaling pathways. These proteins play crucial roles in regulating diverse cellular processes such as actin cytoskeleton dynamics, gene expression, cell cycle progression, and cell migration.

Rho GTP-binding proteins cycle between an active GTP-bound state and an inactive GDP-bound state. In the active state, they interact with various downstream effectors to regulate their respective cellular functions. Guanine nucleotide exchange factors (GEFs) activate Rho GTP-binding proteins by promoting the exchange of GDP for GTP, while GTPase-activating proteins (GAPs) inactivate them by enhancing their intrinsic GTP hydrolysis activity.

There are several members of the Rho GTP-binding protein family, including RhoA, RhoB, RhoC, Rac1, Rac2, Rac3, Cdc42, and Rnd proteins, each with distinct functions and downstream effectors. Dysregulation of Rho GTP-binding proteins has been implicated in various human diseases, including cancer, cardiovascular disease, neurological disorders, and inflammatory diseases.

Video microscopy is a medical technique that involves the use of a microscope equipped with a video camera to capture and display real-time images of specimens on a monitor. This allows for the observation and documentation of dynamic processes, such as cell movement or chemical reactions, at a level of detail that would be difficult or impossible to achieve with the naked eye. Video microscopy can also be used in conjunction with image analysis software to measure various parameters, such as size, shape, and motion, of individual cells or structures within the specimen.

There are several types of video microscopy, including brightfield, darkfield, phase contrast, fluorescence, and differential interference contrast (DIC) microscopy. Each type uses different optical techniques to enhance contrast and reveal specific features of the specimen. For example, fluorescence microscopy uses fluorescent dyes or proteins to label specific structures within the specimen, allowing them to be visualized against a dark background.

Video microscopy is used in various fields of medicine, including pathology, microbiology, and neuroscience. It can help researchers and clinicians diagnose diseases, study disease mechanisms, develop new therapies, and understand fundamental biological processes at the cellular and molecular level.

'Caenorhabditis elegans' is a species of free-living, transparent nematode (roundworm) that is widely used as a model organism in scientific research, particularly in the fields of biology and genetics. It has a simple anatomy, short lifespan, and fully sequenced genome, making it an ideal subject for studying various biological processes and diseases.

Some notable features of C. elegans include:

* Small size: Adult hermaphrodites are about 1 mm in length.
* Short lifespan: The average lifespan of C. elegans is around 2-3 weeks, although some strains can live up to 4 weeks under laboratory conditions.
* Development: C. elegans has a well-characterized developmental process, with adults developing from eggs in just 3 days at 20°C.
* Transparency: The transparent body of C. elegans allows researchers to observe its internal structures and processes easily.
* Genetics: C. elegans has a fully sequenced genome, which contains approximately 20,000 genes. Many of these genes have human homologs, making it an excellent model for studying human diseases.
* Neurobiology: C. elegans has a simple nervous system, with only 302 neurons in the hermaphrodite and 383 in the male. This simplicity makes it an ideal organism for studying neural development, function, and behavior.

Research using C. elegans has contributed significantly to our understanding of various biological processes, including cell division, apoptosis, aging, learning, and memory. Additionally, studies on C. elegans have led to the discovery of many genes associated with human diseases such as cancer, neurodegenerative disorders, and metabolic conditions.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

'Caenorhabditis elegans' (C. elegans) is a type of free-living, transparent nematode (roundworm) that is often used as a model organism in scientific research. C. elegans proteins refer to the various types of protein molecules that are produced by the organism's genes and play crucial roles in maintaining its biological functions.

Proteins are complex molecules made up of long chains of amino acids, and they are involved in virtually every cellular process, including metabolism, DNA replication, signal transduction, and transportation of molecules within the cell. In C. elegans, proteins are encoded by genes, which are transcribed into messenger RNA (mRNA) molecules that are then translated into protein sequences by ribosomes.

Studying C. elegans proteins is important for understanding the basic biology of this organism and can provide insights into more complex biological systems, including humans. Because C. elegans has a relatively simple nervous system and a short lifespan, it is often used to study neurobiology, aging, and development. Additionally, because many of the genes and proteins in C. elegans have counterparts in other organisms, including humans, studying them can provide insights into human disease processes and potential therapeutic targets.

Nocodazole is not a medical condition or disease, but rather a pharmacological agent used in medical research and clinical settings. It's a synthetic chemical compound that belongs to the class of drugs known as microtubule inhibitors. Nocodazole works by binding to and disrupting the dynamic assembly and disassembly of microtubules, which are important components of the cell's cytoskeleton and play a critical role in cell division.

Nocodazole is primarily used in research settings as a tool for studying cell biology and mitosis, the process by which cells divide. It can be used to synchronize cells in the cell cycle or to induce mitotic arrest, making it useful for investigating various aspects of cell division and chromosome behavior.

In clinical settings, nocodazole has been used off-label as a component of some cancer treatment regimens, particularly in combination with other chemotherapeutic agents. Its ability to disrupt microtubules can interfere with the proliferation of cancer cells and enhance the effectiveness of certain anti-cancer drugs. However, its use is not widespread due to potential side effects and the availability of alternative treatments.

I'm sorry for any confusion, but "Protozoan Proteins" is not a specific medical or scientific term. Protozoa are single-celled eukaryotic organisms, and proteins are large biological molecules consisting of one or more chains of amino acid residues. Therefore, "Protozoan Proteins" generally refers to the various types of proteins found in protozoa.

However, if you're looking for information about proteins specific to certain protozoan parasites with medical relevance (such as Plasmodium falciparum, which causes malaria), I would be happy to help! Please provide more context or specify the particular protozoan of interest.

GTP (Guanosine Triphosphate) Phosphohydrolases are a group of enzymes that catalyze the hydrolysis of GTP to GDP (Guanosine Diphosphate) and inorganic phosphate. This reaction plays a crucial role in regulating various cellular processes, including signal transduction pathways, protein synthesis, and vesicle trafficking.

The human genome encodes several different types of GTP Phosphohydrolases, such as GTPase-activating proteins (GAPs), GTPase effectors, and G protein-coupled receptors (GPCRs). These enzymes share a common mechanism of action, in which they utilize the energy released from GTP hydrolysis to drive conformational changes that enable them to interact with downstream effector molecules and modulate their activity.

Dysregulation of GTP Phosphohydrolases has been implicated in various human diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the structure, function, and regulation of these enzymes is essential for developing novel therapeutic strategies to target these conditions.

Saccharomycetales is an order of fungi that are commonly known as "true yeasts." They are characterized by their single-celled growth and ability to reproduce through budding or fission. These organisms are widely distributed in nature and can be found in a variety of environments, including soil, water, and on the surfaces of plants and animals.

Many species of Saccharomycetales are used in industrial processes, such as the production of bread, beer, and wine. They are also used in biotechnology to produce various enzymes, vaccines, and other products. Some species of Saccharomycetales can cause diseases in humans and animals, particularly in individuals with weakened immune systems. These infections, known as candidiasis or thrush, can affect various parts of the body, including the skin, mouth, and genital area.

Meiosis is a type of cell division that results in the formation of four daughter cells, each with half the number of chromosomes as the parent cell. It is a key process in sexual reproduction, where it generates gametes or sex cells (sperm and eggs).

The process of meiosis involves one round of DNA replication followed by two successive nuclear divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes pair, form chiasma and exchange genetic material through crossing over, then separate from each other. In meiosis II, sister chromatids separate, leading to the formation of four haploid cells. This process ensures genetic diversity in offspring by shuffling and recombining genetic information during the formation of gametes.

Tubulin is a type of protein that forms microtubules, which are hollow cylindrical structures involved in the cell's cytoskeleton. These structures play important roles in various cellular processes, including maintaining cell shape, cell division, and intracellular transport. There are two main types of tubulin proteins: alpha-tubulin and beta-tubulin. They polymerize to form heterodimers, which then assemble into microtubules. The assembly and disassembly of microtubules are dynamic processes that are regulated by various factors, including GTP hydrolysis, motor proteins, and microtubule-associated proteins (MAPs). Tubulin is an essential component of the eukaryotic cell and has been a target for anti-cancer drugs such as taxanes and vinca alkaloids.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Metaphase is a phase in the cell division process (mitosis or meiosis) where the chromosomes align in the middle of the cell, also known as the metaphase plate or equatorial plane. During this stage, each chromosome consists of two sister chromatids attached to each other by a protein complex called the centromere. The spindle fibers from opposite poles of the cell attach to the centromeres of each chromosome, and through a process called congression, they align the chromosomes in the middle of the cell. This alignment allows for accurate segregation of genetic material during the subsequent anaphase stage.

'Drosophila proteins' refer to the proteins that are expressed in the fruit fly, Drosophila melanogaster. This organism is a widely used model system in genetics, developmental biology, and molecular biology research. The study of Drosophila proteins has contributed significantly to our understanding of various biological processes, including gene regulation, cell signaling, development, and aging.

Some examples of well-studied Drosophila proteins include:

1. HSP70 (Heat Shock Protein 70): A chaperone protein involved in protein folding and protection from stress conditions.
2. TUBULIN: A structural protein that forms microtubules, important for cell division and intracellular transport.
3. ACTIN: A cytoskeletal protein involved in muscle contraction, cell motility, and maintenance of cell shape.
4. BETA-GALACTOSIDASE (LACZ): A reporter protein often used to monitor gene expression patterns in transgenic flies.
5. ENDOGLIN: A protein involved in the development of blood vessels during embryogenesis.
6. P53: A tumor suppressor protein that plays a crucial role in preventing cancer by regulating cell growth and division.
7. JUN-KINASE (JNK): A signaling protein involved in stress response, apoptosis, and developmental processes.
8. DECAPENTAPLEGIC (DPP): A member of the TGF-β (Transforming Growth Factor Beta) superfamily, playing essential roles in embryonic development and tissue homeostasis.

These proteins are often studied using various techniques such as biochemistry, genetics, molecular biology, and structural biology to understand their functions, interactions, and regulation within the cell.

Endosomal Sorting Complexes Required for Transport (ESCRT) are a set of protein complexes found in the endosomal membrane of eukaryotic cells. They play a crucial role in the sorting and trafficking of proteins and lipids between various cellular compartments, particularly in the formation of vesicles and the budding of viruses.

The ESCRT system is composed of several distinct complexes (ESCRT-0, -I, -II, and -III) that work together in a coordinated manner to carry out their functions. ESCRT-0 recognizes and binds to ubiquitinated proteins on the endosomal membrane, initiating the sorting process. ESCRT-I and -II then help to deform the membrane and recruit ESCRT-III, which forms a tight spiral around the neck of the budding vesicle. Finally, the AAA+ ATPase Vps4 disassembles the ESCRT-III complex, allowing for the release of the vesicle into the lumen of the endosome or extracellular space.

Defects in the ESCRT system have been linked to a variety of human diseases, including neurological disorders, cancer, and viral infections.

GTP (Guanosine Triphosphate) phosphohydrolase activators are substances or molecules that increase the activity or function of GTP phosphohydrolases. These enzymes play a crucial role in regulating intracellular signaling pathways, including those involved in cell growth, division, and motility.

GTP phosphohydrolases, also known as GTPases, hydrolyze GTP to GDP (Guanosine Diphosphate) and inorganic phosphate, which leads to a conformational change in the enzyme and its subsequent activation or deactivation.

GTP phosphohydrolase activators can modulate this hydrolysis process by binding to the GTPase and altering its activity. These activators may either promote or inhibit the hydrolysis of GTP, depending on the specific context and type of GTPase involved.

Examples of GTP phosphohydrolases include Ras, Rac, and Cdc42, which are critical regulators of various cellular processes, including signal transduction, cytoskeletal reorganization, and gene expression. Dysregulation of these enzymes has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

In summary, GTP phosphohydrolase activators are molecules that regulate the activity of GTPases by modulating their GTP hydrolysis function, thereby influencing various cellular processes and disease states.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Trypanosoma brucei brucei is a species of protozoan flagellate parasite that causes African trypanosomiasis, also known as sleeping sickness in humans and Nagana in animals. This parasite is transmitted through the bite of an infected tsetse fly (Glossina spp.). The life cycle of T. b. brucei involves two main stages: the insect-dwelling procyclic trypomastigote stage and the mammalian-dwelling bloodstream trypomastigote stage.

The distinguishing feature of T. b. brucei is its ability to change its surface coat, which helps it evade the host's immune system. This allows the parasite to establish a long-term infection in the mammalian host. However, T. b. brucei is not infectious to humans; instead, two other subspecies, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, are responsible for human African trypanosomiasis.

In summary, Trypanosoma brucei brucei is a non-human-infective subspecies of the parasite that causes African trypanosomiasis in animals and serves as an essential model organism for understanding the biology and pathogenesis of related human-infective trypanosomes.

A nonmammalian embryo refers to the developing organism in animals other than mammals, from the fertilized egg (zygote) stage until hatching or birth. In nonmammalian species, the developmental stages and terminology differ from those used in mammals. The term "embryo" is generally applied to the developing organism up until a specific stage of development that is characterized by the formation of major organs and structures. After this point, the developing organism is referred to as a "larva," "juvenile," or other species-specific terminology.

The study of nonmammalian embryos has played an important role in our understanding of developmental biology and evolutionary developmental biology (evo-devo). By comparing the developmental processes across different animal groups, researchers can gain insights into the evolutionary origins and diversification of body plans and structures. Additionally, nonmammalian embryos are often used as model systems for studying basic biological processes, such as cell division, gene regulation, and pattern formation.

Luminescent proteins are a type of protein that emit light through a chemical reaction, rather than by absorbing and re-emitting light like fluorescent proteins. This process is called bioluminescence. The light emitted by luminescent proteins is often used in scientific research as a way to visualize and track biological processes within cells and organisms.

One of the most well-known luminescent proteins is Green Fluorescent Protein (GFP), which was originally isolated from jellyfish. However, GFP is actually a fluorescent protein, not a luminescent one. A true example of a luminescent protein is the enzyme luciferase, which is found in fireflies and other bioluminescent organisms. When luciferase reacts with its substrate, luciferin, it produces light through a process called oxidation.

Luminescent proteins have many applications in research, including as reporters for gene expression, as markers for protein-protein interactions, and as tools for studying the dynamics of cellular processes. They are also used in medical imaging and diagnostics, as well as in the development of new therapies.

Aurora Kinase C is a type of serine/threonine protein kinase that is involved in the regulation of cell division and mitosis. It plays a crucial role in the proper separation of chromosomes during cell division, ensuring the genetic stability of cells. Mutations in the gene that encodes Aurora Kinase C have been associated with various types of cancer, including colon, breast, and ovarian cancers. Inhibitors of Aurora Kinase C are being studied as potential cancer therapeutics.

A plant cell is defined as a type of eukaryotic cell that makes up the structural basis of plants and other forms of multicellular plant-like organisms, such as algae and mosses. These cells are typically characterized by their rigid cell walls, which provide support and protection, and their large vacuoles, which store nutrients and help maintain turgor pressure within the cell.

Plant cells also contain chloroplasts, organelles that carry out photosynthesis and give plants their green color. Other distinctive features of plant cells include a large central vacuole, a complex system of membranes called the endoplasmic reticulum, and numerous mitochondria, which provide energy to the cell through cellular respiration.

Plant cells are genetically distinct from animal cells, and they have unique structures and functions that allow them to carry out photosynthesis, grow and divide, and respond to their environment. Understanding the structure and function of plant cells is essential for understanding how plants grow, develop, and interact with their surroundings.

A two-hybrid system technique is a type of genetic screening method used in molecular biology to identify protein-protein interactions within an organism, most commonly baker's yeast (Saccharomyces cerevisiae) or Escherichia coli. The name "two-hybrid" refers to the fact that two separate proteins are being examined for their ability to interact with each other.

The technique is based on the modular nature of transcription factors, which typically consist of two distinct domains: a DNA-binding domain (DBD) and an activation domain (AD). In a two-hybrid system, one protein of interest is fused to the DBD, while the second protein of interest is fused to the AD. If the two proteins interact, the DBD and AD are brought in close proximity, allowing for transcriptional activation of a reporter gene that is linked to a specific promoter sequence recognized by the DBD.

The main components of a two-hybrid system include:

1. Bait protein (fused to the DNA-binding domain)
2. Prey protein (fused to the activation domain)
3. Reporter gene (transcribed upon interaction between bait and prey proteins)
4. Promoter sequence (recognized by the DBD when brought in proximity due to interaction)

The two-hybrid system technique has several advantages, including:

1. Ability to screen large libraries of potential interacting partners
2. High sensitivity for detecting weak or transient interactions
3. Applicability to various organisms and protein types
4. Potential for high-throughput analysis

However, there are also limitations to the technique, such as false positives (interactions that do not occur in vivo) and false negatives (lack of detection of true interactions). Additionally, the fusion proteins may not always fold or localize correctly, leading to potential artifacts. Despite these limitations, two-hybrid system techniques remain a valuable tool for studying protein-protein interactions and have contributed significantly to our understanding of various cellular processes.

Qa-SNARE proteins, also known as R-SNAREs, are a subgroup of SNARE (Soluble NSF Attachment REceptor) proteins that play a crucial role in intracellular membrane fusion events. These proteins contain a conserved Qa-SNARE domain, which is characterized by the presence of a glutamine (Q) residue at a specific position within the SNARE motif.

Qa-SNAREs are typically located on the vesicle membrane and interact with other SNARE proteins on the target membrane to form a stable complex, known as a SNARE complex. This interaction brings the two membranes into close proximity, allowing for the fusion of the membranes and the release of cargo from the vesicle into the target compartment.

Examples of Qa-SNARE proteins include syntaxin 1, syntaxin 2, syntaxin 3, and syntaxin 4, which are involved in various intracellular trafficking pathways, such as neurotransmitter release, endocytosis, and Golgi transport. Mutations or dysregulation of Qa-SNARE proteins have been implicated in several human diseases, including neurological disorders and cancer.

Tetraploidy is a genetic condition where an individual has four sets of chromosomes in their cells instead of the typical two sets (two from each parent). This means that the person has twice the normal number of chromosomes, resulting in a total of 92 chromosomes compared to the usual 46.

Tetraploidy can occur as a result of errors during cell division, such as during fertilization when two sperm fertilize a single egg, or during mitosis when an abnormal number of chromosomes are distributed unevenly between two daughter cells.

Tetraploidy is often associated with developmental delays, intellectual disability, physical abnormalities, and increased risk of certain medical conditions. However, the severity of symptoms can vary widely depending on the specific genetic makeup of the individual and the degree to which the extra chromosomes are present in different cells throughout the body.

It is important to note that tetraploidy is a rare condition, and its diagnosis typically requires specialized genetic testing and evaluation by medical professionals with expertise in genetics and developmental disorders.

Chitin synthase is an enzyme that is responsible for the biosynthesis of chitin, which is a long-chain polymer of N-acetylglucosamine. Chitin is a structural component in the exoskeletons of arthropods, such as insects and crustaceans, as well as in the cell walls of fungi.

Chitin synthase catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to a growing chitin chain. There are several different isoforms of chitin synthase, which are classified based on their sequence similarity and biochemical properties. These isoforms play distinct roles in the biosynthesis of chitin in different organisms.

Inhibitors of chitin synthase have been developed as potential therapeutic agents for the control of insect pests and fungal pathogens.

Cyclin B is a type of cyclin protein that regulates the cell cycle, specifically the transition from G2 phase to mitosis (M phase) in eukaryotic cells. Cyclin B binds and activates cyclin-dependent kinase 1 (CDK1), forming the complex known as M-phase promoting factor (MPF). This complex triggers the events leading to cell division, such as chromosome condensation, nuclear envelope breakdown, and spindle formation. The levels of cyclin B increase during the G2 phase and are degraded by the anaphase-promoting complex/cyclosome (APC/C) at the onset of anaphase, allowing the cell cycle to progress into the next phase.

Chromosomes are thread-like structures that exist in the nucleus of cells, carrying genetic information in the form of genes. They are composed of DNA and proteins, and are typically present in pairs in the nucleus, with one set inherited from each parent. In humans, there are 23 pairs of chromosomes for a total of 46 chromosomes. Chromosomes come in different shapes and forms, including sex chromosomes (X and Y) that determine the biological sex of an individual. Changes or abnormalities in the number or structure of chromosomes can lead to genetic disorders and diseases.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

CDC2 protein kinase, also known as cell division cycle 2 or CDK1, is a type of enzyme that plays a crucial role in the regulation of the cell cycle. The cell cycle is the series of events that cells undergo as they grow, replicate their DNA, and divide into two daughter cells.

CDC2 protein kinase is a member of the cyclin-dependent kinase (CDK) family, which are serine/threonine protein kinases that are activated by binding to regulatory subunits called cyclins. CDC2 protein kinase is primarily associated with the regulation of the G2 phase and the entry into mitosis, the stage of the cell cycle where nuclear and cytoplasmic division occur.

CDC2 protein kinase functions by phosphorylating various target proteins, which alters their activity and contributes to the coordination of the different events that occur during the cell cycle. The activity of CDC2 protein kinase is tightly regulated through a variety of mechanisms, including phosphorylation and dephosphorylation, as well as the binding and destruction of cyclin subunits.

Dysregulation of CDC2 protein kinase has been implicated in various human diseases, including cancer, where uncontrolled cell division can lead to the formation of tumors. Therefore, understanding the regulation and function of CDC2 protein kinase is an important area of research in molecular biology and medicine.

Interphase is a phase in the cell cycle during which the cell primarily performs its functions of growth and DNA replication. It is the longest phase of the cell cycle, consisting of G1 phase (during which the cell grows and prepares for DNA replication), S phase (during which DNA replication occurs), and G2 phase (during which the cell grows further and prepares for mitosis). During interphase, the chromosomes are in their relaxed, extended form and are not visible under the microscope. Interphase is followed by mitosis, during which the chromosomes condense and separate to form two genetically identical daughter cells.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Rab GTP-binding proteins, also known as Rab GTPases or simply Rabs, are a large family of small GTP-binding proteins that play a crucial role in regulating intracellular vesicle trafficking. They function as molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state.

In the active state, Rab proteins interact with various effector molecules to mediate specific membrane trafficking events such as vesicle budding, transport, tethering, and fusion. Each Rab protein is thought to have a unique function and localize to specific intracellular compartments or membranes, where they regulate the transport of vesicles and organelles within the cell.

Rab proteins are involved in several important cellular processes, including endocytosis, exocytosis, Golgi apparatus function, autophagy, and intracellular signaling. Dysregulation of Rab GTP-binding proteins has been implicated in various human diseases, such as cancer, neurodegenerative disorders, and infectious diseases.

Myosin Heavy Chains are the large, essential components of myosin molecules, which are responsible for the molecular motility in muscle cells. These heavy chains have a molecular weight of approximately 200 kDa and form the motor domain of myosin, which binds to actin filaments and hydrolyzes ATP to generate force and movement during muscle contraction. There are several different types of myosin heavy chains, each with specific roles in various tissues and cellular functions. In skeletal and cardiac muscles, for example, myosin heavy chains have distinct isoforms that contribute to the contractile properties of these tissues.

Gametogenesis in plants refers to the process of formation and development of gametes or sex cells (male: sperm and female: egg) through meiotic cell division. This process occurs within specialized reproductive organs called anthers (in male gametophyte) and ovules (in female gametophyte).

In the case of male gametogenesis, also known as microsporogenesis, diploid microspore mother cells undergo meiosis to produce haploid microspores. These microspores further develop into mature pollen grains through a process called pollen grain development or maturation.

Female gametogenesis, also known as megasporogenesis, involves the formation of megaspore mother cells within the ovule sac. The megaspore mother cell undergoes meiosis to produce four haploid megaspores. Only one of these megaspores survives and develops into a multicellular female gametophyte, also known as an embryo sac. This embryo sac contains several cells, including the egg cell, two synergids, three antipodal cells, and two polar nuclei.

These male and female gametes are involved in fertilization to form a zygote, which eventually develops into a new plant through the process of embryogenesis.

Fungal genes refer to the genetic material present in fungi, which are eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The genetic material of fungi is composed of DNA, just like in other eukaryotes, and is organized into chromosomes located in the nucleus of the cell.

Fungal genes are segments of DNA that contain the information necessary to produce proteins and RNA molecules required for various cellular functions. These genes are transcribed into messenger RNA (mRNA) molecules, which are then translated into proteins by ribosomes in the cytoplasm.

Fungal genomes have been sequenced for many species, revealing a diverse range of genes that encode proteins involved in various cellular processes such as metabolism, signaling, and regulation. Comparative genomic analyses have also provided insights into the evolutionary relationships among different fungal lineages and have helped to identify unique genetic features that distinguish fungi from other eukaryotes.

Understanding fungal genes and their functions is essential for advancing our knowledge of fungal biology, as well as for developing new strategies to control fungal pathogens that can cause diseases in humans, animals, and plants.

Polar bodies are small, non-functional cells that are produced during the process of female meiosis, which results in the formation of an egg cell. They are formed when cytoplasmic divisions occur without subsequent cytokinesis, resulting in the separation of a small amount of cytoplasm and organelles from the main cell.

In the first meiotic division, a primary oocyte divides into a larger secondary oocyte and a smaller polar body, which contains half the number of chromosomes as the original cell. During the second meiotic division, the secondary oocyte divides into a larger ovum (egg) and another smaller polar body, again with half the number of chromosomes.

Polar bodies are typically extruded from the main cell and eventually disintegrate or are absorbed by surrounding cells. They do not contribute to the genetic makeup of the resulting egg or any offspring that may be produced from it. The formation of polar bodies helps ensure that the egg contains the correct number of chromosomes for normal development.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Fluorescence Recovery After Photobleaching (FRAP) is a microscopy technique used to study the mobility and diffusion of molecules in biological samples, particularly within living cells. This technique involves the use of an intense laser beam to photobleach (or permanently disable) the fluorescence of a specific region within a sample that has been labeled with a fluorescent probe or dye. The recovery of fluorescence in this bleached area is then monitored over time, as unbleached molecules from adjacent regions move into the bleached area through diffusion or active transport.

The rate and extent of fluorescence recovery can provide valuable information about the mobility, binding interactions, and dynamics of the labeled molecules within their native environment. FRAP is widely used in cell biology research to investigate various processes such as protein-protein interactions, membrane fluidity, organelle dynamics, and gene expression regulation.

'Drosophila melanogaster' is the scientific name for a species of fruit fly that is commonly used as a model organism in various fields of biological research, including genetics, developmental biology, and evolutionary biology. Its small size, short generation time, large number of offspring, and ease of cultivation make it an ideal subject for laboratory studies. The fruit fly's genome has been fully sequenced, and many of its genes have counterparts in the human genome, which facilitates the understanding of genetic mechanisms and their role in human health and disease.

Here is a brief medical definition:

Drosophila melanogaster (droh-suh-fih-luh meh-lon-guh-ster): A species of fruit fly used extensively as a model organism in genetic, developmental, and evolutionary research. Its genome has been sequenced, revealing many genes with human counterparts, making it valuable for understanding genetic mechanisms and their role in human health and disease.

Rho Guanine Nucleotide Exchange Factors (Rho-GEFs) are a group of proteins that play a crucial role in the regulation of intracellular signaling pathways. They function as molecular switches that activate Rho GTPases, which are important regulators of various cellular processes such as cytoskeleton reorganization, gene expression, cell cycle progression, and cell migration.

Rho-GEFs catalyze the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on Rho GTPases, leading to their activation. This process is tightly regulated and occurs in response to various extracellular signals, such as hormones, growth factors, and integrin-mediated adhesion. Once activated, Rho GTPases interact with downstream effectors to modulate cell behavior.

There are several families of Rho-GEFs, including the Dbl family, the Vav family, and the Trio family, among others. Each family has distinct structural features and regulatory mechanisms that allow for specificity in Rho GTPase activation and downstream signaling. Dysregulation of Rho-GEFs and Rho GTPases has been implicated in various human diseases, including cancer, neurological disorders, and cardiovascular disease.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

"Drosophila" is a genus of small flies, also known as fruit flies. The most common species used in scientific research is "Drosophila melanogaster," which has been a valuable model organism for many areas of biological and medical research, including genetics, developmental biology, neurobiology, and aging.

The use of Drosophila as a model organism has led to numerous important discoveries in genetics and molecular biology, such as the identification of genes that are associated with human diseases like cancer, Parkinson's disease, and obesity. The short reproductive cycle, large number of offspring, and ease of genetic manipulation make Drosophila a powerful tool for studying complex biological processes.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Endosomes are membrane-bound compartments within eukaryotic cells that play a critical role in intracellular trafficking and sorting of various cargoes, including proteins and lipids. They are formed by the invagination of the plasma membrane during endocytosis, resulting in the internalization of extracellular material and cell surface receptors.

Endosomes can be classified into early endosomes, late endosomes, and recycling endosomes based on their morphology, molecular markers, and functional properties. Early endosomes are the initial sorting stations for internalized cargoes, where they undergo sorting and processing before being directed to their final destinations. Late endosomes are more acidic compartments that mature from early endosomes and are responsible for the transport of cargoes to lysosomes for degradation.

Recycling endosomes, on the other hand, are involved in the recycling of internalized cargoes back to the plasma membrane or to other cellular compartments. Endosomal sorting and trafficking are regulated by a complex network of molecular interactions involving various proteins, lipids, and intracellular signaling pathways.

Defects in endosomal function have been implicated in various human diseases, including neurodegenerative disorders, developmental abnormalities, and cancer. Therefore, understanding the mechanisms underlying endosomal trafficking and sorting is of great importance for developing therapeutic strategies to treat these conditions.

A cell wall is a rigid layer found surrounding the plasma membrane of plant cells, fungi, and many types of bacteria. It provides structural support and protection to the cell, maintains cell shape, and acts as a barrier against external factors such as chemicals and mechanical stress. The composition of the cell wall varies among different species; for example, in plants, it is primarily made up of cellulose, hemicellulose, and pectin, while in bacteria, it is composed of peptidoglycan.

Myosin light chains are regulatory proteins that bind to the myosin head region of myosin molecules, which are involved in muscle contraction. There are two types of myosin light chains, essential and regulatory, that have different functions. The essential light chains are necessary for the assembly and stability of the myosin filaments, while the regulatory light chains control the calcium-sensitive activation of the myosin ATPase activity during muscle contraction. Phosphorylation of the regulatory light chains plays a critical role in regulating muscle contraction and relaxation.

Centrioles are small, cylindrical structures found in the centrosome of animal cells. They play a crucial role in organizing the microtubules that make up the cell's cytoskeleton and are also involved in the formation of the spindle apparatus during cell division. A typical centriole is made up of nine sets of triplet microtubules arranged in a ring-like fashion around a central hub or core.

Centrioles have two main functions:

1. Microtubule Organization: Centrioles serve as the primary site for microtubule nucleation and organization within the cell. They help to form the mitotic spindle during cell division, which is responsible for separating replicated chromosomes into two identical sets that are distributed equally between the two daughter cells.

2. Formation of Cilia and Flagella: In specialized cells, centrioles can also function as basal bodies for the formation of cilia and flagella. These hair-like structures protrude from the cell surface and play a role in cell movement and the movement of extracellular fluids over the cell surface.

It is important to note that plants and fungi do not have centrioles, and their cells use alternative mechanisms for microtubule organization and cell division.

Organelles are specialized structures within cells that perform specific functions essential for the cell's survival and proper functioning. They can be thought of as the "organs" of the cell, and they are typically membrane-bound to separate them from the rest of the cellular cytoplasm. Examples of organelles include the nucleus (which contains the genetic material), mitochondria (which generate energy for the cell), ribosomes (which synthesize proteins), endoplasmic reticulum (which is involved in protein and lipid synthesis), Golgi apparatus (which modifies, sorts, and packages proteins and lipids for transport), lysosomes (which break down waste materials and cellular debris), peroxisomes (which detoxify harmful substances and produce certain organic compounds), and vacuoles (which store nutrients and waste products). The specific organelles present in a cell can vary depending on the type of cell and its function.

Basal bodies are specialized, cylindrical structures that are found at the base of cilia and flagella in eukaryotic cells. They are composed of nine triplet microtubules arranged in a ring, and they serve as the foundation for the assembly of these hair-like organelles. The basal body is structurally and functionally similar to the centriole, which is a component of the centrosome and plays a role in mitosis. In some cells, basal bodies can also act as microtubule-organizing centers, helping to organize the cell's microtubule cytoskeleton.

Plant cytokinesis differs from animal cytokinesis, partly because of the rigidity of plant cell walls. Instead of plant cells ... "cytokinesis". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2020-03-22. "cytokinesis". ... ISBN 978-1-947172-04-3. The Molecular Requirements for Cytokinesis by M. Glotzer (2005), Science 307, 1735 "Animal Cytokinesis ... At the cytokinesis furrow, it is the actin-myosin contractile ring that drives the cleavage process, during which cell membrane ...
... (Dock6), also known as Zir1 is a large (~200 kDa) protein encoded in the human by the DOCK6 ... "Entrez gene: DOCK6 dedicator of cytokinesis 6". Côté JF, Vuori K (December 2002). "Identification of an evolutionarily ...
... (Dock5) is a large (~180 kDa) protein encoded in the human by the DOCK5 gene, involved in ... "Entrez Gene: DOCK5 dedicator of cytokinesis 5". Côté JF, Vuori K (December 2002). "Identification of an evolutionarily ...
... (Dock2) is a protein encoded in the human by the DOCK2 gene. Dock2 is a large (~180 kDa) ... Overview of all the structural information available in the PDB for UniProt: Q92608 (Dedicator of cytokinesis protein 2) at the ... "Entrez Gene: DOCK2 dedicator of cytokinesis 2". Nishihara H, Kobayashi S, Hashimoto Y, et al. (November 1999). "Non-adherent ...
... (Dock9), also known as Zizimin1, is a large (~230 kDa) protein encoded in the human by the ... "Entrez Gene: DOCK9 dedicator of cytokinesis 9". Meller N, Irani-Tehrani M, Kiosses WB, et al. (September 2002). "Zizimin1, a ...
... (Dock8) is a large (~190 kDa) protein encoded in the human by the DOCK8 gene, involved in ... "Entrez Gene: DOCK8 dedicator of cytokinesis 8". Ruusala A, Aspenström P (August 2004). "Isolation and characterisation of DOCK8 ...
... (Dock11), also known as Zizimin2, is a large (~240 kDa) protein encoded in the human by the ... "Entrez Gene: DOCK11 dedicator of cytokinesis 11". Côté JF, Vuori K (December 2002). "Identification of an evolutionarily ...
... (Dock3), also known as MOCA (modifier of cell adhesion) and PBP (presenilin-binding protein ... "Entrez Gene: DOCK3 dedicator of cytokinesis 3". Kashiwa A, Yoshida H, Lee S, et al. (July 2000). "Isolation and ...
... (Dock4), is a large (~190 kDa) protein encoded in the human by the DOCK4 gene, involved in ... "Entrez Gene: DOCK4 dedicator of cytokinesis 4". Yajnik V, Paulding C, Sordella R, et al. (March 2003). "DOCK4, a GTPase ...
... (Dock1), also (DOCK180), is a large (~180 kDa) protein encoded in the human by the DOCK1 ... "Entrez Gene: DOCK1 dedicator of cytokinesis 1". Meller N, Merlot S, Guda C (November 2005). "CZH proteins: a new family of Rho- ... Dedicator of cytokinesis protein 1) at the PDBe-KB. (Articles with short description, Short description is different from ...
Dedicator of cytokinesis protein (Dock7) is a large (~240 kDa) protein encoded in the human by the DOCK7 gene, involved in ... "Entrez Gene: DOCK7 dedicator of cytokinesis 7". Côté JF, Vuori K (December 2002). "Identification of an evolutionarily ...
... (Dock10), also known as Zizimin3, is a large (~240 kDa) protein involved in intracellular ... Overview of all the structural information available in the PDB for UniProt: Q96BY6 (Dedicator of cytokinesis protein 10) at ... "Entrez Gene: DOCK10 dedicator of cytokinesis 10". Côté JF, Vuori K (December 2002). "Identification of an evolutionarily ...
In animals the cytokinesis ends with formation of a contractile ring and thereafter a cleavage. But in plants it happen ... The last stage of the cell division process is cytokinesis. In this stage there is a cytoplasmic division that occurs at the ... Telophase is the last stage of the cell cycle in which a cleavage furrow splits the cells cytoplasm (cytokinesis) and chromatin ... After the cell proceeds successfully through the M phase, it may then undergo cell division through cytokinesis. The control of ...
This prevents cytokinesis. When MPF activity falls at anaphase, the inhibitory sites are dephosphorylated and cytokinesis ...
"Cytokinesis in Yeast , Learn Science at Scitable". www.nature.com. Retrieved 2022-10-13. Csuk, Rene.; Glaenzer, Brigitte I. ( ...
... and cytokinesis. JADE1S negatively regulates cytokinesis of the epithelial cell cycle, a function specific to the small ... The number of reports concerning cytokinesis control has been growing over the past decade. JADE1 role in cytokinesis was ... The data demonstrated that JADE1 negatively controls cytokinesis, presumably by contributing to cytokinesis delay. JADE1 down- ... Cytokinesis is the final step of cell cycle which controls fidelity of division of cellular content, including cytoplasm, ...
In cytokinesis the cell cortex plays a central role by producing a myosin-rich contractile ring to constrict the dividing cell ... Green RA, Paluch E, Oegema K (November 2012). "Cytokinesis in animal cells". Annual Review of Cell and Developmental Biology. ...
The end of cytokinesis marks the end of the M-phase. There are many cells where mitosis and cytokinesis occur separately, ... Cytokinesis does not always occur; coenocytic (a type of multinucleate condition) cells undergo mitosis without cytokinesis. ... Cytokinesis is not a phase of mitosis, but rather a separate process necessary for completing cell division. In animal cells, a ... Even in animals, cytokinesis and mitosis may occur independently, for instance during certain stages of fruit fly embryonic ...
Cytokinesis-block micronucleus cytome assay; Sister-chromatid exchange assay; Allium assay; Alamar blue assay; Trypan blue ... cytokinesis-block micronucleus cytome assay and sister chromatids exchange assay. Evaluation of cytotoxic and cytostatic ...
... can crosslink actin, and in many organisms, IQGAP1 is involved in cytokinesis. Cadherins are a family of adhesion ... Machesky LM (March 1998). "Cytokinesis: IQGAPs find a function". Curr. Biol. 8 (6): R202-5. doi:10.1016/S0960-9822(98)70125-3. ... In the above example, actin cytoskeleton rearrangement is required for proliferation (cytokinesis during mitosis). IQGAP1 helps ...
Robinson DN, Spudich JA (2000). "Towards a molecular understanding of cytokinesis". Trends in Cell Biology. 10 (6): 228-237. ...
In red algae, cytokinesis is incomplete. Typically, a small pore is left in the middle of the newly formed partition. The pit ... Pit connections and pit plugs are unique and distinctive features of red algae that form during the process of cytokinesis ...
Lee, KY; Davies, T; Mishima, M (Aug 1, 2012). "Cytokinesis microtubule organisers at a glance". Journal of Cell Science. 125 ( ... The central spindle is widely regarded as a key regulating center for cytokinesis, recruiting proteins for successful cleavage ... Without this regulation, signaling faults in cytokinesis can occur, resulting in unequal chromosome segregation or polyploid ...
After cytokinesis is complete, one of the two daughter cells inherits a remnant known as the midbody ring. Activation of the ... Apart from cytokinesis, in which the ring constricts as the cells divide (Figure 2), actomyosin ring constriction has also been ... Cytokinesis § Actin-myosin ring assembly and contraction Cheffings, T. H.; Burroughs, N. J.; Balasubramanian, M. K. (2016). " ... These structures are not made out of actomyosin, but serve a similar role in constricting and permitting cytokinesis. In plant ...
After karyokinesis, the cell undergoes cytokinesis. At this point the nuclei are already spherical and resemble that of mature ...
DOCK8, or "dedicator of cytokinesis 8", is a protein involved in regulating the actin skeleton of the cell. It may also be a ... Su, Helen C. (2010-12-01). "DOCK8 (Dedicator of cytokinesis 8) deficiency". Current Opinion in Allergy and Clinical Immunology ...
Smith LG (March 2002). "Plant cytokinesis: motoring to the finish". Current Biology. 12 (6): R206-8. doi:10.1016/S0960-9822(02) ... bipolar thick filaments provide the force of contraction needed to divide the cell into two daughter cells during cytokinesis. ...
"Signaling Networks in Chemotaxis and Cytokinesis". National Institutes of Health. Retrieved September 2, 2021. (Use mdy dates ...
Cytokinesis begins with the budding process in late G1 and is not completed until about halfway through the next cycle. The ... This bud grows during the cell cycle and detaches; fission yeast divide by forming a cell wall Cytokinesis begins at G1 for ... Bi, Erfei (2002). "Cytokinesis in Budding Yeast: the Relationship between Actomyosin Ring Function and Septum Formation". Cell ... Thus, the AMR and septum formation are the major drivers of cytokinesis.[citation needed] Budding yeast form a bud from the ...
"Entrez Gene: PRC1 protein regulator of cytokinesis 1". Eggert US, Mitchison TJ, Field CM (2006). "Animal Cytokinesis: From ... Protein Regulator of cytokinesis 1 (PRC1) is a protein that in humans is encoded by the PRC1 gene and is involved in ... This regulation is crucial in order for cytokinesis to progress properly. PRC1 is a non-motor microtubule-associated protein ( ... Overview of all the structural information available in the PDB for UniProt: O43663 (Protein regulator of cytokinesis 1) at the ...
Plant cytokinesis differs from animal cytokinesis, partly because of the rigidity of plant cell walls. Instead of plant cells ... "cytokinesis". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2020-03-22. "cytokinesis". ... ISBN 978-1-947172-04-3. The Molecular Requirements for Cytokinesis by M. Glotzer (2005), Science 307, 1735 "Animal Cytokinesis ... At the cytokinesis furrow, it is the actin-myosin contractile ring that drives the cleavage process, during which cell membrane ...
... and monitored the activity of numerous live fluorescently labeled probes to address protein incorporation during cytokinesis. ...
... which in Tetrahymena may indicate a function late in cytokinesis. The lack of profilin also affected cytokinesis in the cells ... Profilin Functions in Cytokinesis, Nuclear Positioning, and Stomatogenesis in Tetrahymena thermophila. DAVID E. WILKES, JOANN J ... DAVID E. WILKES and JOANN J. OTTO "Profilin Functions in Cytokinesis, Nuclear Positioning, and Stomatogenesis in Tetrahymena ... DAVID E. WILKES, JOANN J. OTTO "Profilin Functions in Cytokinesis, Nuclear Positioning, and Stomatogenesis in Tetrahymena ...
The final step of the cell cycle that divides a cell into two daughter cells is called cytokinesis. Cytokinesis begins after ... The beginning of cytokinesis is marked by the appearance of a crease, called the cleavage furrow. Starting in anaphase, the ... Animal cell cytokinesis: the rho-dependent actomyosin-anilloseptin contractile ring as a membrane microdomain gathering, ... During the final stages of the cytokinesis, the contractile ring and the central spindle containing compact microtubules ...
positive regulation of cytokinesis, actomyosin contractile ring assembly + positive regulation of cytokinesis, site selection + ... positive regulation of cytokinesis, site selection (GO:2000076). Annotations: Rat: (0) Mouse: (0) Human: (0) Chinchilla: (0) ... Any process that activates or increases the frequency, rate or extent of site selection that occurs as part of cytokinesis. ...
Ockleford, Colin (1974) CYTOKINESIS IN HELIOZOAN ACTINOPHRYS-SOL. Journal of Cell Science, 16 (3). pp. 499-517. ISSN 0021-9533 ...
This website uses cookies to provide you the best browsing experience. By continuing to use this website you accept our use of cookies.. ...
... a mutation screening test which was applied by cytokinesis-blocked (CB) method. In this study, 10 CML patients at diagnosis, ... Spontaneous micronuclei in cytokinesis-blocked bone marrow and peripheral blood Iymphocytes of CML patients. ... BAŞER, DİLEK KOÇ; SUNGUROĞLU, ASUMAN; BÖKESOY, IŞIK; and UYSAL, AKIN (1999) "Spontaneous micronuclei in cytokinesis-blocked ... a mutation screening test which was applied by cytokinesis-blocked (CB) method. In this study, 10 CML patients at diagnosis, ...
Bacillus subtilis cells during cytokinesis, with FtsZ fluorescently labeled. FtsZ forms a ring-like structure at the division ... Bacillus subtilis cells during cytokinesis, with FtsZ fluorescently labeled. FtsZ forms a ring-like structure at the division ...
The YRC PDR provides for the searching of millions of protein descriptions from many databases to find proteins and public experimental data describing those proteins produced by the YRC. The experimental data is in the form of mass spectrometry, yeast two-hybrid, protein structure prediction, light microscopy and protein complex predictions.
Structure of Cdc4p, a contractile ring protein essential for cytokinesis in Schizosaccharomyces pombe. ... Structure of Cdc4p, a contractile ring protein essential for cytokinesis in Schizosaccharomyces pombe. ... Structure of Cdc4p, a contractile ring protein essential for cytokinesis in Schizosaccharomyces pombe ... remaining completely folded at temperatures significantly above those causing failure of cytokinesis in intact cells. Therefore ...
IPIP27 Coordinates PtdIns(4,5)P2 Homeostasis for Successful Cytokinesis. During cytokinesis, an actomyosin contractile ring ... Despite the importance of PtdIns(4,5)P2 in cytokinesis, the regulation of this lipid in cell division remains poorly understood ... We have therefore identified IPIP27 as a key modulator of cellular PtdIns(4,5)P2 homeostasis required for normal cytokinesis. ... This phenotype is observed in Drosophila and human cells and can result in cytokinesis failure. ...
A defect in cytokinesis was not what they expected to find when they knocked down centriolin function, but there it was. "We ... A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase ... Unlike the actomyosin ring, the centriolin/SNARE ring did not constrict during cytokinesis. Instead, the authors saw, secretory ... Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis ...
Cytokinesis is the process of a single cell dividing its cytoplasm to develop two daughter cells. This is the final stage of ... What is Cytokinesis?. Simone Lawson. Last Modified Date: September 28, 2023 Simone Lawson. Last Modified Date: September 28, ... It is supposed to aid the body in the cytokinesis process. Post your comments. Please enter the following code: ... Cytokinesis occurs in plants when the cells divide, forming two daughter cells. There are four main stages of this process in ...
... - A cell that has almost completed cytokinesis. An arrow points to a centrosome that can still be seen … Wikipedia ... cytokinesis - cytokinesis. См. цитотомия. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., ... Cytokinesis - citoplazmos dalijimasis statusas T sritis histologija atitikmenys: lot. Cytokinesis ryšiai: platesnis terminas - ... Cytokinesis - citoplazmos dalijimasis statusas T sritis embriologija atitikmenys: lot. Cytokinesis ryšiai: platesnis terminas ...
Finally, the regulation of actin dynamics in cytokinesis has been well studied in terms of actin-interacting proteins such as ... Given that the central spindle does not induce formation of conventional cytokinesis, finding that all of these components, ... A deeper understanding of both these processes of cytokinesis will provide valuable insight into the mechanisms of cell ... serves as a major component in timing the formation of a furrow and may provide valuable insight into timing cytokinesis in ...
html5media height="600" width="600",File:Human Cytokinesis_Movie 1.mp4,/html5media, Click Here to play on mobile device ... 2013). Mitochondria localize to the cleavage furrow in mammalian cytokinesis. PLoS ONE , 8, e72886. PMID: 23991162 DOI. ... This movie shows where mitochondrial relocation during cytokinesis. Images were acquired every 1 minute and the display rate is ... Cite this page: Hill, M.A. (2023, December 3) Embryology Human Cytokinesis Movie 1. Retrieved from https://embryology.med.unsw. ...
Cytokinesis bridge instability leads to binucleated cells that can promote tumorigenesis in vivo. Membrane trafficking is ... However, little is known about how these pathways are coordinated for successful cytokinesis. The Rab35 GTPase controls a fast ... and thus for completion of cytokinesis. Here, we report that the ARF6 GTPase negatively regulates Rab35 activation and hence ... GTP-bound ARF6 mutant display identical endocytic recycling and cytokinesis defects as those observed upon overexpression of ...
Copyright 2023 Regents of the University of Michigan , Disclaimer , Privacy Statement , Nondiscrimination Policy. Developed for U-M Medical School by Michigan MultiMedia, Health Information Technology & Services.. ...
Facts about cytokinesis. Click on a property for more details on the statement. Click on a column header to use it as a ... be in plant cells similar to cytokinesis in animal cells. 0.66. 0.6592073460 ...
Chapter 4 Cell Division Mitosis and Cytokinesis. February 21, 2022. Cell division mitosis and cytokines in self-replicating ...
During pregnancy the sheep conceptus produces various proteins, most notably oIFNr (ovine trophoblast protein-1, oTP-1). Their production is enhanced by various cytokines/growth factors. To study the role of GM-CSF in the ...
Cytokinesis refers to the division of the cytoplasm during cell division (mitosis). Read more here. ... What is Cytokinesis? Vs Mitosis. Cytokinesis refers to the division of the cytoplasm during cell division (mitosis). While this ... Mitosis Vs Cytokinesis. Mitosis and cytokinesis are both part of cell division. While there are several differences between ... As such, cytokinesis is truly the last phase of cell division. As mentioned, the end of cytokinesis is characterized by ...
stomatal cytokinesis defective / SCD1 protein (SCD1). STOMATAL CYTOKINESIS-DEFECTIVE 1. 1. 0.31. -0.29 ...
Do not fret on the process of mitosis and cytokinesis. Hank provides an excellent presentation that make it easy to break down ... Do not fret on the process of mitosis and cytokinesis. Hank provides an excellent presentation that make it easy to break down ... Mitosis and Cytokinesis Simplified in 10 Minutes. Mitosis and Cytokinesis Simplified in 10 Minutes. posted on September 17, ... Do not fret on the process of mitosis and cytokinesis. Hank provides an excellent presentation that make it easy to break down ...
Human DOCK3(Dedicator Of Cytokinesis 3) ELISA Kit. Human DOCK3(Dedicator Of Cytokinesis 3) ELISA Kit ... dedicator of cytokinesis) family of guanine nucleotide exchange factors (GEFs). This protein, dedicator of cytokinesis 3 (DOCK3 ... dedicator of cytokinesis) family of guanine nucleotide exchange factors (GEFs). This protein, dedicator of cytokinesis 3 (DOCK3 ... Description: A sandwich ELISA kit for detection of Dedicator Of Cytokinesis 3 from Human in samples from blood, serum, plasma, ...
... it produces two daughter cells initially connected by a cytokinesis bridge, which is eventually cut through abscission. One of ... When a cell divides, it produces two daughter cells initially connected by a cytokinesis bridge, which is eventually cut ... A simple model for the fate of the cytokinesis midbody remnant: Implications for remnant degradation by autophagy: Modeling ... A simple model for the fate of the cytokinesis midbody remnant: Implications for remnant degradation by autophagy. ...
Cell plate method of cytokinesis occur in cells of 1) Skin cell 2) bone marrow 3) Apical meristem 4) morula in human ...
CYT01 GRAPHIC SET ANIMATION ANIMATION DESCRIPTION Cytokinesis Animation, Cell Division Animation, Mitosis Animation This ... Cytokinesis Animation, Cell Division Animation, Mitosis Animation. This animation begins with the exterior of a parent cell, ...
  • TgMAPK-L1 has a key role in coupling mitosis and cytokinesis. (figshare.com)
  • Do not fret on the process of mitosis and cytokinesis. (qdnurses.com)
  • Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Dedicator Of Cytokinesis 3 (DOCK3) in Tissue homogenates and other biological fluids. (hudsen.org)
  • Description: A sandwich ELISA kit for detection of Dedicator Of Cytokinesis 3 from Human in samples from blood, serum, plasma, cell culture fluid and other biological fluids. (hudsen.org)
  • Description: Quantitative sandwich ELISA for measuring Human Dedicator of cytokinesis protein 3 (DOCK3) in samples from cell culture supernatants, serum, whole blood, plasma and other biological fluids. (hudsen.org)
  • During cytokinesis, an actomyosin contractile ring drives the separation of the two daughter cells. (iric.ca)
  • Signals from the mitotic spindle during anaphase specify the location of the actomyosin contractile ring during cytokinesis, but the detailed mechanism remains unresolved. (dundee.ac.uk)
  • Membrane trafficking is crucial for animal cell cytokinesis, and several endocytic pathways regulated by distinct GTPases (Rab11, Rab21, Rab35, ARF6, RalA/B) contribute to the postfurrowing steps of cytokinesis. (pasteur.fr)
  • However, little is known about how these pathways are coordinated for successful cytokinesis. (pasteur.fr)
  • During cytokinesis, global and equatorial pathways deform the cell cortex in a stereotypical manner, which leads to daughter cell separation. (johnshopkins.edu)
  • Cytokinesis (/ˌsaɪtoʊkɪˈniːsɪs/) is the part of the cell division process during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. (wikipedia.org)
  • The final step of the cell cycle that divides a cell into two daughter cells is called cytokinesis. (jove.com)
  • Cytokinesis begins after chromosome separation in mitosis and ends when the cell divides. (jove.com)
  • When a cell divides, it produces two daughter cells initially connected by a cytokinesis bridge, which is eventually cut through abscission. (hal.science)
  • Mitosis includes prophase, prometaphase, metaphase, and anaphase, as well as telophase, during which chromosome copies are carefully separated in preparation for cytokinesis, where the cytoplasm divides. (coursehero.com)
  • During cytokinesis the spindle apparatus partitions and transports duplicated chromatids into the cytoplasm of the separating daughter cells. (wikipedia.org)
  • Cytokinesis refers to the process of a single cell dividing its cytoplasm to develop two daughter cells . (wise-geek.com)
  • Cytokinesis refers to the division of the cytoplasm during cell division (mitosis). (microscopemaster.com)
  • Because it involves the separation/division of the cytoplasm, cytokinesis serves to divide the cell into two with each of the daughter cells containing the same cell contents as the parent cell. (microscopemaster.com)
  • The process of division of the cytoplasm in the plant cell is what is referred to as Cytokinesis in the plant cell. (vivadifferences.com)
  • In plant Cytokinesis, cell plate formation takes place to divide cytoplasm into two daughter cells. (vivadifferences.com)
  • Cytokinesis represents the final stage of eukaryotic cell division during which the cytoplasm becomes partitioned between daughter cells. (ox.ac.uk)
  • Besides being a structural component of the central spindle itself, CPC also plays a role in the phosphoregulation of other central spindle components, including PRC1 (microtubule-bundling protein required for cytokinesis 1) and MKLP1 (a kinesin motor protein). (wikipedia.org)
  • We have performed microinjection studies and monitored the activity of numerous live fluorescently labeled probes to address protein incorporation during cytokinesis. (upstate.edu)
  • Thus, an effector of an ARF protein is a GAP for a downstream Rab protein, and we propose that this hierarchical ARF/Rab GTPase cascade controls the proper activation of a common endocytic pathway essential for cytokinesis. (pasteur.fr)
  • These complexes interact with 5'-AMP-activated protein kinase (AMPK) that is part of the mechanistic target of rapamycin (mTOR) pathway, which is involved in cellular energy, cytokinesis, cell motility, cellular adhesion, and nutrient sensing. (medscape.com)
  • The beginning of cytokinesis is marked by the appearance of a crease, called the cleavage furrow. (jove.com)
  • Mitochondria localize to the cleavage furrow in mammalian cytokinesis. (edu.au)
  • The final process of Cytokinesis in animal cells is referred to as abscission when the actin-myosin contractile ring that created the cytokinetic furrow contracts all round and the outer plasma membranes of each cell undergoes fission to separate the two daughter cells completely. (vivadifferences.com)
  • In animal cell Cytokinesis, the furrow starts to deepen from the lateral /periphery sides of the cell towards the center. (vivadifferences.com)
  • We finally demonstrate that expression of non-SUMOylatable septin variants from the SEPT6 and SEPT7 groups leads to aberrant septin bundle formation and defects in cytokinesis after furrow ingression. (pasteur.fr)
  • We demonstrate that SCAR activity is essential to drive myosin-II-independent cytokinesis, and stabilises the furrow, ensuring symmetrical division. (biologists.com)
  • The GAP activity of Tum is required for cytokinesis: in its absence cytokinesis fails early even though Tum is present on microtubules at the cell equator where the furrow should form. (biologists.com)
  • Cytokinesis can also be referred to as Cytoplasmic division or cell cleavage . (vivadifferences.com)
  • Cytokinesis in the animal cell takes place through cleavage. (vivadifferences.com)
  • A central question in understanding cytokinesis is how the cleavage plane is positioned. (biologists.com)
  • Homeostasis for Successful Cytokinesis. (iric.ca)
  • IPIP27 Coordinates PtdIns(4,5)P 2 Homeostasis for Successful Cytokinesis. (iric.ca)
  • We have therefore identified IPIP27 as a key modulator of cellular PtdIns(4,5)P 2 homeostasis required for normal cytokinesis. (iric.ca)
  • Animal cell cytokinesis is more complex process than that of the plant cells, as animal cellular regeneration is structured by a contractile ring. (wise-geek.com)
  • One appeal of studying cytokinesis as a model for cellular morphogenesis is its relatively simple geometry during normal mitotic cell divisions, which produce equal sized daughter cells. (biomedcentral.com)
  • The actin cytoskeleton is responsible for cellular functions such as growth, endocytosis, exocytosis, and cytokinesis. (medscape.com)
  • During cytokinesis, the contractile ring contracts (undergoes ingression) thus creating an intercellular bridge between the two cells before they completely separate. (microscopemaster.com)
  • Animal cell cytokinesis begins shortly after the onset of sister chromatid separation in the anaphase of mitosis. (wikipedia.org)
  • As mentioned, cytokinesis starts during the anaphase stage of mitosis. (microscopemaster.com)
  • For this reason, cytokinesis cannot occur during metaphase and therefore has to wait until the separation of chromosomes start (during anaphase). (microscopemaster.com)
  • In most animals, Cytokinesis begins sometime in late anaphase or early telophase, to ensure the chromosomes have been completely segregated. (vivadifferences.com)
  • Animal cell cytokinesis starts with the stabilization of microtubules and reorganization of the mitotic spindle to form the central spindle. (wikipedia.org)
  • Given that the central spindle does not induce formation of conventional cytokinesis, finding that all of these components, plus the chromosomal passenger complex (Aurora B and INCENP), also localize to the central spindle was unexpected. (escholarship.org)
  • The middle part of the spindle remains active during Cytokinesis in a plant cell. (vivadifferences.com)
  • We show that the actin nucleation factor SCAR/WAVE is strongly activated during Dictyostelium cytokinesis. (biologists.com)
  • Bacillus subtilis cells during cytokinesis, with FtsZ fluorescently labeled. (harvard.edu)
  • After the completion of the telophase and cytokinesis, each daughter cell enters the interphase of the cell cycle. (wikipedia.org)
  • Cytokinesis typically occurs at the end of mitosis, after telophase but the two are independent processes. (vivadifferences.com)
  • Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. (ox.ac.uk)
  • Thus, restriction of lateral diffusion by endocytosis may serve to maintain specificity of syntaxin localization during late cytokinesis. (ox.ac.uk)
  • Both cortexillin-I and dynacortin influence cytokinesis and interphase cortical viscoelasticity as predicted from genetics and biochemical data using purified dynacortin proteins. (johnshopkins.edu)
  • Our studies suggest that the regulation of cytokinesis ultimately requires modulation of proteins that control the cortical mechanical properties that establish the force-balance that specifies the shapes of cytokinesis. (johnshopkins.edu)
  • The combination of genetic, biochemical, and biophysical observations suggests that the cell's cortical mechanical properties control how the cortex is remodeled during cytokinesis. (johnshopkins.edu)
  • These results suggest models for how Kinesin-6 might define the position of cortical myosin during cytokinesis. (dundee.ac.uk)
  • Formation of multiple micronuclei, which divide mitotically, was observed in cells with a single macronucleus, indicating a defect in early cytokinesis. (bioone.org)
  • Spontaneous micronuclei in cytokinesis-blocked bone marrow and periphe" by DİLEK KOÇ BAŞER, ASUMAN SUNGUROĞLU et al. (tubitak.gov.tr)
  • Here, it's worth noting that cytokinesis is a tightly coordinated process that follows the separation of chromosomes. (microscopemaster.com)
  • One dramatic example of a process in which a cell reshapes itself is during the mechanical separation of a mother cell into two daughter cells during cytokinesis. (biomedcentral.com)
  • it omits cytokinesis, thereby yielding multinucleate cells. (wikipedia.org)
  • Cultures of cells with the antisense disruption could be maintained, indicating that profilin was not essential for cytokinesis or vegetative growth. (bioone.org)
  • Some cells with the antisense disruption contained multiple macronuclei, which in Tetrahymena may indicate a function late in cytokinesis. (bioone.org)
  • The lack of profilin also affected cytokinesis in the cells that could divide. (bioone.org)
  • Furthermore, thermal unfolding studies indicate that, like wild-type Cdc4p, the three mutant forms are all extremely stable, remaining completely folded at temperatures significantly above those causing failure of cytokinesis in intact cells. (ubc.ca)
  • This phenotype is observed in Drosophila and human cells and can result in cytokinesis failure. (iric.ca)
  • Plant cell cytokinesis occurs when plant cells divide by forming cross walls between the two daughter cells. (wise-geek.com)
  • Cytokinesis occurs in plants when the cells divide, forming two daughter cells. (wise-geek.com)
  • Cytokinesis bridge instability leads to binucleated cells that can promote tumorigenesis in vivo. (pasteur.fr)
  • Human cells expressing a constitutively activated, GTP-bound ARF6 mutant display identical endocytic recycling and cytokinesis defects as those observed upon overexpression of the inactivated, GDP-bound Rab35 mutant. (pasteur.fr)
  • Cytokinesis in plant cells involves the formation and insertion of a new cell wall that separates daughter nuclei after mitosis. (vivadifferences.com)
  • A simple model for the fate of the cytokinesis midbody remnant: Implications for remnant degradation by autophagy: Modeling remnant production and degradation enables re‐interpretation of published data and improves design of future experiments. (hal.science)
  • Any process that activates or increases the frequency, rate or extent of site selection that occurs as part of cytokinesis. (mcw.edu)
  • Cytokinesis occurs following mitosis. (wise-geek.com)
  • So, when the there is an extra chromosome, does this mean that the cytokinesis cell division malfunctioned? (wise-geek.com)
  • Cite this page: Hill, M.A. (2023, December 3) Embryology Human Cytokinesis Movie 1 . (edu.au)
  • The Rab35 GTPase controls a fast endocytic recycling pathway and must be activated for SEPTIN cytoskeleton localization at the intercellular bridge, and thus for completion of cytokinesis. (pasteur.fr)
  • Cytokinesis largely resembles the prokaryotic process of binary fission, but because of differences between prokaryotic and eukaryotic cell structures and functions, the mechanisms differ. (wikipedia.org)
  • It is supposed to aid the body in the cytokinesis process. (wise-geek.com)
  • During cytokinesis, the cell's equator contracts against the cell's global stiffness. (biomedcentral.com)
  • A row of vesicles is formed in the center of the cell during plant cell Cytokinesis. (vivadifferences.com)
  • There is no row of vesicles that form during animal cell Cytokinesis. (vivadifferences.com)
  • Despite the importance of PtdIns(4,5)P 2 in cytokinesis, the regulation of this lipid in cell division remains poorly understood. (iric.ca)
  • DAVID E. WILKES and JOANN J. OTTO "Profilin Functions in Cytokinesis, Nuclear Positioning, and Stomatogenesis in Tetrahymena thermophila ," The Journal of Eukaryotic Microbiology 50(4), 252-262, (1 July 2003). (bioone.org)
  • Plant cytokinesis differs from animal cytokinesis, partly because of the rigidity of plant cell walls. (wikipedia.org)
  • During Cytokinesis in an animal cell, spindles degenerate. (vivadifferences.com)
  • In animal cell Cytokinesis, microfilaments are very actively involved. (vivadifferences.com)
  • Since chronic myloid leukemia (CML) has a genetic base, we aimed to seek the genetic instability of patients by micronucleus analysis, a mutation screening test which was applied by cytokinesis-blocked (CB) method. (tubitak.gov.tr)