The ester of diacylglycerol with the terminal phosphate of cytidine diphosphate. It serves as an intermediate in the biosynthesis of phosphatidylethanolamine and phosphatidylserine in bacteria.
Donor of choline in biosynthesis of choline-containing phosphoglycerides.
Cytosine nucleotides are organic compounds that consist of a nitrogenous base (cytosine), a pentose sugar (ribose in RNA or deoxyribose in DNA), and at least one phosphate group, playing crucial roles in genetic information storage, transmission, and expression within nucleic acids.
GLYCEROL esterified with FATTY ACIDS.
Diglycerides are a type of glyceride, specifically a form of lipid, that contains two fatty acid chains linked to a glycerol molecule by ester bonds.
Nucleoside Diphosphate Sugars (NDPs) are biomolecules consisting of a nucleoside monophosphate sugar molecule, which is formed from the condensation of a nucleotide and a sugar molecule through a pyrophosphate bond.
A pyrimidine nucleoside that is composed of the base CYTOSINE linked to the five-carbon sugar D-RIBOSE.
Cytidine 5'-(trihydrogen diphosphate). A cytosine nucleotide containing two phosphate groups esterified to the sugar moiety. Synonyms: CRPP; cytidine pyrophosphate.
A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.
An enzyme that catalyzes the deamination of cytidine, forming uridine. EC 3.5.4.5.
A genus of EUKARYOTES, in the phylum EUGLENIDA, found mostly in stagnant water. Characteristics include a pellicle usually marked by spiral or longitudinal striations.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Cytidine (dihydrogen phosphate). A cytosine nucleotide containing one phosphate group esterified to the sugar moiety in the 2', 3' or 5' position.
Compounds in which one or more of the three hydroxyl groups of glycerol are in ethereal linkage with a saturated or unsaturated aliphatic alcohol; one or two of the hydroxyl groups of glycerol may be esterified. These compounds have been found in various animal tissue.

Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. (1/64)

Phosphatidylcholine is a major lipid of eukaryotic membranes, but found in only few prokaryotes. Enzymatic methylation of phosphatidylethanolamine by phospholipid N-methyltransferase was thought to be the only biosynthetic pathway to yield phosphatidylcholine in bacteria. However, mutants of the microsymbiotic soil bacterium Sinorhizobium (Rhizobium) meliloti, defective in phospholipid N-methyltransferase, form phosphatidylcholine in wild type amounts when choline is provided in the growth medium. Here we describe a second bacterial pathway for phosphatidylcholine biosynthesis involving the novel enzymatic activity, phosphatidylcholine synthase, that forms phosphatidylcholine directly from choline and CDP-diacylglycerol in cell-free extracts of S. meliloti. We further demonstrate that roots of host plants of S. meliloti exude choline and that the amounts of exuded choline are sufficient to allow for maximal phosphatidylcholine biosynthesis in S. meliloti via the novel pathway.  (+info)

Pharmacological inhibition of phosphatidylcholine biosynthesis is associated with induction of phosphatidylinositol accumulation and cytolysis of neoplastic cell lines. (2/64)

De novo production of phosphatidic acid (PA) in tumor cells is required for phospholipid biosynthesis and growth of tumor cells. In addition, PA production by phospholipase D has been cited among the effects of certain oncogenes and growth factors. In this report, it has been demonstrated that enhanced phospholipid metabolism through PA in tumor cells can be exploited pharmacologically for development of anticancer agents, such as CT-2584, a cancer chemotherapeutic drug candidate currently in Phase II clinical trials. By inhibiting CTP:choline-phosphate cytidylyltransferase (CT), CT-2584 caused de novo phospholipid biosynthesis via PA to be shunted away from phosphatidylcholine (PC) and into phosphatidylinositol (PI), the latter of which was doubled in a variety of CT-2584-treated tumor cell lines. In contrast, cytotoxic concentrations of cisplatin did not induce accumulation of PI, indicating that PI elevation by CT-2584 was not a general consequence of chemotherapy-induced cell death. Consistent with this mechanism of action, propranolol, an inhibitor of PA phosphohydrolase and phosphatidylcholine biosynthesis, was also cytotoxic to tumor cell lines, induced PI accumulation, and potentiated the activity of CT-2584 in cytotoxicity assays. As expected from biophysical properties of anionic phospholipids on cellular membranes, CT-2584 cytotoxicity was associated with disruption and swelling of endoplasmic reticulum and mitochondria. We conclude that CT-2584 effects a novel mechanism of cytotoxicity to cancer cells, involving a specific modulation of phospholipid metabolism.  (+info)

Regulation of the DPP1-encoded diacylglycerol pyrophosphate (DGPP) phosphatase by inositol and growth phase. Inhibition of DGPP phosphatase activity by CDP-diacylglyceron and activation of phosphatidylserine synthase activity by DGPP. (3/64)

The regulation of the Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate (DGPP) phosphatase by inositol supplementation and growth phase was examined. Addition of inositol to the growth medium resulted in a dose-dependent increase in the level of DGPP phosphatase activity in both exponential and stationary phase cells. Activity was greater in stationary phase cells when compared with exponential phase cells, and the inositol- and growth phase-dependent regulations of DGPP phosphatase were additive. Analyses of DGPP phosphatase mRNA and protein levels, and expression of beta-galactosidase activity driven by a P(DPP1)-lacZ reporter gene, indicated that a transcriptional mechanism was responsible for this regulation. Regulation of DGPP phosphatase by inositol and growth phase occurred in a manner that was opposite that of many phospholipid biosynthetic enzymes. Regulation of DGPP phosphatase expression by inositol supplementation, but not growth phase, was altered in opi1Delta, ino2Delta, and ino4Delta phospholipid synthesis regulatory mutants. CDP-diacylglycerol, a phospholipid pathway intermediate used for the synthesis of phosphatidylserine and phosphatidylinositol, inhibited DGPP phosphatase activity by a mixed mechanism that caused an increase in K(m) and a decrease in V(max). DGPP stimulated the activity of pure phosphatidylserine synthase by a mechanism that increased the affinity of the enzyme for its substrate CDP-diacylglycerol. Phospholipid composition analysis of a dpp1Delta mutant showed that DGPP phosphatase played a role in the regulation of phospholipid metabolism by inositol, as well as regulating the cellular levels of phosphatidylinositol.  (+info)

Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. (4/64)

Capsular polysaccharide (CPS) is a major virulence factor in Streptococcus pneumoniae. CPS gene clusters of S. pneumoniae types 4, 6B, 8, and 18C were sequenced and compared with those of CPS types 1, 2, 14, 19F, 19A, 23F, and 33F. All have the same four genes at the 5' end, encoding proteins thought to be involved in regulation and export. Sequences of these genes can be divided into two classes, and evidence of recombination between them was observed. Next is the gene encoding the transferase for the first step in the synthesis of CPS. The predicted amino acid sequences of these first sugar transferases have multiple transmembrane segments, a feature lacking in other transferases. Sugar pathway genes are located at the 3' end of the gene cluster. Comparison of the four dTDP-L-rhamnose pathway genes (rml genes) of CPS types 1, 2, 6B, 18C, 19F, 19A, and 23F shows that they have the same gene order and are highly conserved. There is a gradient in the nature of the variation of rml genes, the average pairwise difference for those close to the central region being higher than that for those close to the end of the gene cluster and, again, recombination sites can be observed in these genes. This is similar to the situation we observed for rml genes of O-antigen gene clusters of Salmonella enterica. Our data indicate that the conserved first four genes at the 5' ends and the relatively conserved rml genes at the 3' ends of the CPS gene clusters were sites for recombination events involved in forming new forms of CPS. We have also identified wzx and wzy genes for all sequenced CPS gene clusters by use of motifs.  (+info)

Biosynthesis of bis(monoacylglyceryl)phosphate and acylphosphatidylglycerol in rat liver mitochondrial. (5/64)

Bis(monoacylglyceryl)phosphate is present in trace quantities in normal liver where it represents smaller than 1 percent of total liver phospholipids. This compound is of considerable interest since its level can be greatly increased in certain lipidoses, either of a genetic nature or caused by drugs. Biosynthesis of bis(monoacylglyceryl)P in vitro has not previously been demonstrated. This paper reports the enzymatic formation of bis(monoacylglyceryl)P and acylphosphatidylglycerol as minor products from cytidine diphosphate diglyceride and radioactive sn-glycerol-3-P using a crude mitochondrial fraction from normal rat liver; phosphatidylglycerol was the principal product. Evidence is also presented which shows the enzymatic formation of acylphosphatidylglycerol and bis(monoacylglyceryl)P from [1',3'-14C]phosphatidylglycerol by a crude rat liver mitochondrial preparation in vitro. The structures of the radioactive bis(monoacylglyceryl)P and acylphosphatidylglycerol were tentatively established by thin layer chromatography, and chromatography of the products of mild alkaline hydrolysis and acetolysis. Radioactive acylphosphatidylglycerol was stoichiometrically converted to bis(monoacylglyceryl)P by treatment with bee venom phospholipase A, providing additional evidence for the structure of acylphosphatidylglycerol and bis(monoacylglyceryl)P.  (+info)

Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. (6/64)

Two Arabidopsis thaliana genes were shown to encode phosphatidylglycerophosphate synthases (PGPS) of 25.4 and 32.2 kDa, respectively. Apart from their N-terminal regions, the two proteins exhibit high sequence similarity. Functional expression studies in yeast provided evidence that the 25.4 kDa protein is a microsomal PGPS while the 32.2 kDa protein represents a preprotein which can be imported into yeast mitochondria and processed to a mature PGPS. The two isozymes were solubilized and purified as fusion proteins carrying a His tag at their C-terminus. Enzyme assays with both membrane fractions and purified enzyme fractions revealed that the two A. thaliana isozymes have similar properties but differ in their CDP-diacylglycerol species specificity.  (+info)

Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. (7/64)

Phosphatidylcholine (PC) is a ubiquitous membrane lipid in eukaryotes but has been found in only a limited number of prokaryotes. Both eukaryotes and prokaryotes synthesize PC by methylating phosphatidylethanolamine (PE) by use of a phospholipid methyltransferase (Pmt). Eukaryotes can synthesize PC by the activation of choline to form choline phosphate and then CDP-choline. The CDP-choline then condenses with diacylglycerol (DAG) to form PC. In contrast, prokaryotes condense choline directly with CDP-DAG by use of the enzyme PC synthase (Pcs). PmtA was the first enzyme identified in prokaryotes that catalyzes the synthesis of PC, and Pcs in Sinorhizobium meliloti was characterized. The completed release of the Pseudomonas aeruginosa PAO1 genomic sequence contains on open reading frame predicted to encode a protein that is highly homologous (35% identity, 54% similarity) to PmtA from Rhodobacter sphaeroides. Moreover, the P. aeruginosa PAO1 genome encodes a protein with significant homology (39% amino acid identity) to Pcs of S. meliloti. Both the pcs and pmtA homologues were cloned from PAO1, and homologous sequences were found in almost all of the P. aeruginosa strains examined. Although the pathway for synthesizing PC by use of Pcs is functional in P. aeruginosa, it does not appear that this organism uses the PmtA pathway for PC synthesis. We demonstrate that the PC synthesized by P. aeruginosa PAO1 localized to both the inner and outer membranes, where it is readily accessible to its periplasmic, PC-specific phospholipase D.  (+info)

Partial purification and characterization of cytidine 5'-diphosphate-diglyceride hydrolase from membranes of Escherichia coli. (8/64)

Cytidine 5'-diphosphate (CDP)-diglyceride is hydrolyzed to phosphatidic acid and cytidine 5'-monophosphate by a specific membrane-bound enzyme in cell-free extracts of Escherichia coli. The hydrolase can be extracted from the particulate fraction with Triton X-100 and purified 1,000-fold in the presence of this detergent. Several nucleoside disphosphate diglycerides were synthesized to determine the substrate specificity of the hydrolase. CDP-diglyceride was hydrolyzed preferentially, although uridine 5'-diphosphate-diglyceride, guanosine 5'-diphosphate-diglyceride, and adenosine 5'-diphosphate (ADP)-diglyceride were also slowly hydrolyzed. Surprisingly, the purified enzyme did not catalyze detectable cleavage of deoxy-CDP (dCDP)-diglyceride. The liponucleotide pool of E. coli contains dCDP-diglyceride and CDP-diglyceride in approximately equal amounts (Raetz and Kennedy, 1973). Water-soluble nucleoside pyrophosphates, such as CDP-choline, nicotinamide adenine dinucleotide, or adenosine 5'-triphosphate are not attacked by this specific hydrolase. Hydrolysis of CDP-diglyceride is strongly inhibited by adenosine 5'-monophosphate and by ADP-diglyceride.  (+info)

Cytidine diphosphate-diacylglycerol (CDP-DAG) is a bioactive lipid molecule that plays a crucial role in the synthesis of other lipids and is also involved in cell signaling pathways. It is formed from the reaction between cytidine diphosphocholine (CDP-choline) and phosphatidic acid, catalyzed by the enzyme CDP-choline:1,2-diacylglycerol cholinephosphotransferase.

CDP-DAG is a critical intermediate in the biosynthesis of several important lipids, including phosphatidylglycerol (PG), cardiolipin (CL), and platelet-activating factor (PAF). These lipids are essential components of cell membranes and have various functions in cell signaling, energy metabolism, and other physiological processes.

CDP-DAG also acts as a second messenger in intracellular signaling pathways, particularly those involved in the regulation of gene expression, cell proliferation, differentiation, and survival. It activates several protein kinases, including protein kinase C (PKC) isoforms, which phosphorylate and regulate various target proteins, leading to changes in their activity and function.

Abnormalities in CDP-DAG metabolism have been implicated in several diseases, including cancer, cardiovascular disease, and neurological disorders. Therefore, understanding the regulation and function of CDP-DAG and its downstream signaling pathways is an active area of research with potential therapeutic implications.

Cytidine diphosphate choline (CDP-choline) is a biomolecule that plays a crucial role in the synthesis of phosphatidylcholine, a major component of cellular membranes. It is formed from the reaction between cytidine triphosphate (CTP) and choline, catalyzed by the enzyme CTP:phosphocholine cytidylyltransferase. CDP-choline serves as an essential intermediate in the Kennedy pathway of phosphatidylcholine synthesis. This molecule is also involved in various cellular processes, including signal transduction and neurotransmitter synthesis. CDP-choline has been studied for its potential therapeutic benefits in several neurological disorders due to its role in supporting membrane integrity and promoting neuronal health.

Cytosine nucleotides are the chemical units or building blocks that make up DNA and RNA, one of the four nitrogenous bases that form the rung of the DNA ladder. A cytosine nucleotide is composed of a cytosine base attached to a sugar molecule (deoxyribose in DNA and ribose in RNA) and at least one phosphate group. The sequence of these nucleotides determines the genetic information stored in an organism's genome. In particular, cytosine nucleotides pair with guanine nucleotides through hydrogen bonding to form base pairs that are held together by weak interactions. This pairing is specific and maintains the structure and integrity of the DNA molecule during replication and transcription.

Glycerides are esters formed from glycerol and one, two, or three fatty acids. They include monoglycerides (one fatty acid), diglycerides (two fatty acids), and triglycerides (three fatty acids). Triglycerides are the main constituents of natural fats and oils, and they are a major form of energy storage in animals and plants. High levels of triglycerides in the blood, also known as hypertriglyceridemia, can increase the risk of heart disease and stroke.

Diacylglycerols (also known as diglycerides) are a type of glyceride, which is a compound that consists of glycerol and one or more fatty acids. Diacylglycerols contain two fatty acid chains bonded to a glycerol molecule through ester linkages. They are important intermediates in the metabolism of lipids and can be found in many types of food, including vegetable oils and dairy products. In the body, diacylglycerols can serve as a source of energy and can also play roles in cell signaling processes.

Nucleoside diphosphate sugars (NDP-sugars) are essential activated sugars that play a crucial role in the biosynthesis of complex carbohydrates, such as glycoproteins and glycolipids. They consist of a sugar molecule linked to a nucleoside diphosphate, which is formed from a nucleotide by removal of one phosphate group.

NDP-sugars are created through the action of enzymes called nucleoside diphosphate sugars synthases or transferases, which transfer a sugar molecule from a donor to a nucleoside diphosphate, forming an NDP-sugar. The resulting NDP-sugar can then be used as a substrate for various glycosyltransferases that catalyze the addition of sugars to other molecules, such as proteins or lipids.

NDP-sugars are involved in many important biological processes, including cell signaling, protein targeting, and immune response. They also play a critical role in maintaining the structural integrity of cells and tissues.

Cytidine is a nucleoside, which consists of the sugar ribose and the nitrogenous base cytosine. It is an important component of RNA (ribonucleic acid), where it pairs with guanosine via hydrogen bonding to form a base pair. Cytidine can also be found in some DNA (deoxyribonucleic acid) sequences, particularly in viral DNA and in mitochondrial DNA.

Cytidine can be phosphorylated to form cytidine monophosphate (CMP), which is a nucleotide that plays a role in various biochemical reactions in the body. CMP can be further phosphorylated to form cytidine diphosphate (CDP) and cytidine triphosphate (CTP), which are involved in the synthesis of lipids, glycogen, and other molecules.

Cytidine is also available as a dietary supplement and has been studied for its potential benefits in treating various health conditions, such as liver disease and cancer. However, more research is needed to confirm these potential benefits and establish safe and effective dosages.

Cytidine diphosphate (CDP) is a nucleotide that is a constituent of coenzymes and plays a role in the synthesis of lipids, such as phosphatidylcholine and sphingomyelin, which are important components of cell membranes. It is formed from cytidine monophosphate (CMP) through the addition of a second phosphate group by the enzyme CTP synthase. CDP can also be converted to other nucleotides, such as uridine diphosphate (UDP) and deoxythymidine diphosphate (dTDP), through the action of various enzymes. These nucleotides play important roles in the biosynthesis of carbohydrates, lipids, and other molecules in the cell.

Choline is an essential nutrient that is vital for the normal functioning of all cells, particularly those in the brain and liver. It is a water-soluble compound that is neither a vitamin nor a mineral, but is often grouped with vitamins because it has many similar functions. Choline is a precursor to the neurotransmitter acetylcholine, which plays an important role in memory, mood, and other cognitive processes. It also helps to maintain the structural integrity of cell membranes and is involved in the transport and metabolism of fats.

Choline can be synthesized by the body in small amounts, but it is also found in a variety of foods such as eggs, meat, fish, nuts, and cruciferous vegetables. Some people may require additional choline through supplementation, particularly if they follow a vegetarian or vegan diet, are pregnant or breastfeeding, or have certain medical conditions that affect choline metabolism.

Deficiency in choline can lead to a variety of health problems, including liver disease, muscle damage, and neurological disorders. On the other hand, excessive intake of choline can cause fishy body odor, sweating, and gastrointestinal symptoms such as diarrhea and vomiting. It is important to maintain adequate levels of choline through a balanced diet and, if necessary, supplementation under the guidance of a healthcare professional.

Cytidine deaminase is an enzyme that catalyzes the removal of an amino group from cytidine, converting it to uridine. This reaction is part of the process of RNA degradation and also plays a role in the immune response to viral infections.

Cytidine deaminase can be found in various organisms, including bacteria, humans, and other mammals. In humans, cytidine deaminase is encoded by the APOBEC3 gene family, which consists of several different enzymes that have distinct functions and expression patterns. Some members of this gene family are involved in the restriction of retroviruses, such as HIV-1, while others play a role in the regulation of endogenous retroelements and the modification of cellular RNA.

Mutations in cytidine deaminase genes have been associated with various diseases, including cancer and autoimmune disorders. For example, mutations in the APOBEC3B gene have been linked to an increased risk of breast cancer, while mutations in other members of the APOBEC3 family have been implicated in the development of lymphoma and other malignancies. Additionally, aberrant expression of cytidine deaminase enzymes has been observed in some autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus, suggesting a potential role for these enzymes in the pathogenesis of these conditions.

'Euglena' is a genus of unicellular flagellate protists that are typically characterized by their oval-shaped bodies, long whip-like tail (flagellum), and eyespot (stigma) which helps them to move towards light. They are commonly found in freshwater environments and can also be found in soil and brackish water. Some species of Euglena have the ability to photosynthesize, while others obtain their nutrition through heterotrophy (consuming other organisms or organic matter). The term 'Euglena' is derived from the Greek word 'euglenes', which means "well-shaped" or "true-eyed". Medical professionals and researchers may study Euglena as part of broader research into protists, microbiology, or ecology.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Cytidine monophosphate (CMP) is a nucleotide that consists of a cytosine molecule attached to a ribose sugar molecule, which in turn is linked to a phosphate group. It is one of the four basic building blocks of RNA (ribonucleic acid) along with adenosine monophosphate (AMP), guanosine monophosphate (GMP), and uridine monophosphate (UMP). CMP plays a critical role in various biochemical reactions within the body, including protein synthesis and energy metabolism.

Glyceryl ethers, also known as glycerol ethers or alkyl glycosides, are a class of compounds formed by the reaction between glycerol and alcohols. In the context of medical definitions, glyceryl ethers may refer to a group of naturally occurring compounds found in some organisms, including humans.

These compounds are characterized by an ether linkage between the glycerol molecule and one or more alkyl chains, which can vary in length. Glyceryl ethers have been identified as components of various biological tissues, such as lipid fractions of human blood and lung surfactant.

In some cases, glyceryl ethers may also be used as pharmaceutical excipients or drug delivery systems due to their unique physicochemical properties. For example, they can enhance the solubility and bioavailability of certain drugs, making them useful in formulation development. However, it is important to note that specific medical applications and uses of glyceryl ethers may vary depending on the particular compound and its properties.

No FAQ available that match "cytidine diphosphate diglycerides"

No images available that match "cytidine diphosphate diglycerides"